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ABSTRACT 

Road tunnels are susceptible to severe fire-induced heat flux due to the constant 

presence of vehicular traffic combined with the likelihood of accidents and subsequent 

combustion. Rapid assessment of thermal demands is a necessity to calculate appropriate 

design limit states and to better understand risk potential in a multitude of underground 

environments. A proposed approach is developed which allows for rapid assessment of 

thermal demands using models that are validated and informed through computationally 

intensive numerical assessment, experimental data, and semi-empirical relationships based 

on first principles. Utilizing Rhino and Grasshopper, the discretized solid flame model is 

adapted to account for the confinement present in tunnel structures and development of a 

convective zone under the tunnel ceiling. The confined discretized solid flame model 

(CDSF) accurately captures the spatial distribution of heat flux in circular tunnels as 

compared to experimentally-validated, high fidelity numerical solutions. Potential for 

cracking, spalling, breach, and other adverse structural consequences can be evaluated 

based on contour maps of total heat flux over the tunnel liner.  
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INTRODUCTION 

Recent tunnel fires have highlighted the need for enhanced understanding of the 

structural response of the reinforced concrete liner to fire events. The St. Gotthard Tunnel 

fire of 2001 claimed the lives of 11 people and resulted in over 250 m of collapsed concrete 

lining within the tunnel. In 1999, the Mont Blanc Tunnel fire resulted in 39 casualties and 

over 900 m of damaged tunnel lining, with the blaze continuing for over 50 hours (Carvel 

2004). As space above ground becomes limited, there is a concerted effort to move 

transportation infrastructure underground. A major example of this momentum is the 2016 

establishment of the Boring Company in California, which aims to significantly increase 

the presence of underground transportation (“The Boring Company” n.d.).  

Accurate and rapid assessment methods for tunnel systems would facilitate risk 

evaluation, retrofit design, suppression system deployment, and the potential development 

of new tunnel configurations. The array and inherent variability of inputs for a fire event 

calculation can be incorporated into a modified discretized solid flame (MDSF) model, 

which represents the flames and smoke as discretized solid objects with varying radiative 

power. The MDSF model was previously proposed by Quiel et al. (Quiel et al. 2015) for 

bridges exposed to open-air hydrocarbon fires - this method requires an “intermediate” 

level of computational effort between analytical calculations, semi-empirical models, and 

high-fidelity CFD solutions. Adapted from the MDSF, the new development of a confined 

discretized solid flame model (CDSF) which geometrically redefines the solid flame shape 

according to confinement and fire size while also including convective effects, is presented 

here. 
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To appropriately model a severe fire in a tunnel environment, the zone model and 

solid flame concepts are merged into a single approach that appropriately accounts for 

flame radiation, smoke effects, and convection from gaseous combustion byproducts. The 

CDSF is capable of providing rapid yet reliable predictions of the total heat flux received 

by tunnel liners from a range of typical vehicle design fires (Association 2011). Calibration 

of the CDSF model is performed via comparison to experimentally validated CFD 

solutions developed in NIST’s publically available Fire Dynamics Simulator (FDS) 

(McGrattan et al. 2013). The computational efficiency of the CDSF model versus its CFD 

counterpart enables for stochastic assessment of numerous input parameters over an 

inventory of tunnels. A commercial 3D computer-aided design software, Rhinoceros 3D 

(Robert McNeel & Associates 2018b) and accompanied visual programming language, 

Grasshopper (Robert McNeel & Associates 2018a), are utilized to implement the CDSF 

model for their extended capabilities in complex, parametric geometric analysis and 

visualization.  

BACKGROUND 

To evaluate the resilience of tunnel liners to damage resulting from fire events, 

engineers must first calculate the fire-induced heat exposure and then determine the 

structural effects due to heat transfer. There are generally three types of fire models for 

thermal exposure evaluation: parametric standard fire curves, computational fluid dynamic 

(CFD) models, and empirical or semi-empirical models with varying complexity. In 

practice, a parametric fire curve is often used for its simplicity. A great deal of experimental 

work has been done to obtain time-temperature curves for potential types and sizes of fire 

in tunnels, among which the Rijkswaterstaat (RWS) time-temperature curve is one of the 
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most widely adopted standards worldwide. In the US, the National Fire Protection 

Association (NFPA) defines failure criteria and fire protection performance criteria for 

tunnels based on the RWS curve. The fire event is represented as an upper-bound 

temperature time history caused by combustion of a 50m3 fuel tanker with a heat release 

rate (HRR) of 300MW and duration of 120 min. The temperature rapidly increases to 

1200℃ in 10 minutes from ignition and remains above 1200℃ for 2 hours (Association 

2011). While the standard fire curve is easy to apply to the tunnel liner as a worst case, it 

does not consider spatial distribution of heat exposure, which results in overly conservative 

and inefficient designs. The use of a specified temperature time history circumvents the 

calculation of realistic heat transfer from the fire to the liner via flame radiation and 

convection from smoke and hot gases resulting from combustion.  

CFD analyses provide high-resolution, data-rich calculations of fire demands 

within enclosures. However, these models require extensive computing time and a large 

amount of input, most of which must be assumed if experimental data or design guidance 

are not available. Such an approach is not feasible for rapid assessment of an inventory of 

tunnels and/or for a wide range of fire scenarios, nor is it practical for a stochastic 

assessment of structural resilience with realistically varying material and geotechnical 

characteristics of the tunnel. A model of intermediate complexity is therefore necessary for 

evaluation of numerous tunnel fire scenarios.  

CDSF MODEL DESCRIPTION 

The CDSF is a radiative and convective hybrid model for calculating incident heat 

flux on the surface of a tunnel liner. The flame is modelled as a discretized solid object 

with varied emissive power. Each target surface on the tunnel liner receives straight line 
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radiation from each discretized solid flame element. An approximate convective region, 

informed through computational modelling, is defined under the tunnel ceiling to account 

for additional thermal demands on the structure from developed ceiling jets. The 

summation of radiative and convective effects at each target surface is calculated and 

stored, Figure 1. Calculated, spatial distribution of heat fluxes on the tunnel liner can then 

be visualized directly on the tunnel structure and used for subsequent structural evaluation. 

 

Figure 1 – Radiative and convective heat flux summation schematic 

FDS has been integrated throughout the development of numerous aspects of the 

CDSF. The applicability of FDS in large scale tunnel fires has been previously established 

by members of the group (Root et al. 2018) through comparisons of temperature 

distribution obtained through FDS and full-scale, experimental data. While the use of FDS 

has been integral in the development of the model presented, it is not within the scope of 

this thesis and will be referenced without detailed description. Full description of the FDS 

model parameters used throughout the development can again be found in other work by 

the group (Root et al. 2018). 

All geometric modelling and calculation is performed using Rhino and 

Grasshopper, thus allowing for continuous, analytical flame shapes and rapid visualization 
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of thermal demands. While previous model iterations only addressed horseshoe-shaped 

cross sections (Root et al. 2018), the CDSF has been further refined to extend the range of 

capability to circular tunnels. Continued work will expand upon model parameters to 

capture all tunnel shapes and sizes. 

The input parameters to the CDSF first require a fire size, defined through peak 

heat release rate (HRR) and geometric footprint. The model is generalized to accept 

footprints and HRR of varying size and shapes, however an approach for streamlining the 

input parameters has been developed. In recognition of the variability in vehicle material 

composition and contents, an equivalent diesel footprint is defined as a function of the HRR 

and initial vehicle footprint. The equivalent diesel footprint is calculated to achieve the 

same HRR as that specified for the vehicle type/size, while applying geometric constraints 

to ensure the footprint obeys a limiting aspect ratio. The aspect ratio is limited to 2.0 for 

the equivalent diesel footprint, where 𝐴𝑓 (m2) represents the area contained inside the 

rectangle. Because the semi-empirical relationships used are based on circular pools, 

research has indicated that using an effective diameter, 𝐷𝑓,𝑒𝑓𝑓 (Equation 1) for aspect ratios 

greater than 2.5 may lead to inaccuracies (McGrattan, Baum, and Hamins 2000). 

 𝐷𝑓,𝑒𝑓𝑓 = √
4𝐴𝑓

𝜋
 (1) 

Equation 2 shows the relationship between peak HRR, �̇�𝑓,𝑚𝑎𝑥 and the equivalent 

footprint of the pool fire (Babrauskas 2016) , where 𝐷𝑓,𝑒𝑓𝑓 is taken from Equation 1. 

Remaining equation parameters are fuel specific and are obtained from previous 

experimental work for diesel (Siddapureddy 2013); where �̇�′′, ∆𝐻𝑐,𝑒𝑓𝑓 and 𝑘𝛽 are mass 
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loss rate in (kg/m2), effective heat of combustion in (kJ/kg) and an empirical constant in 

(m-1), respectively.  

 �̇�𝑓,𝑚𝑎𝑥 = �̇�′′∆𝐻𝑐,𝑒𝑓𝑓𝐴𝑓(1 − 𝑒−𝑘𝛽∗𝐷𝑓,𝑒𝑓𝑓) (2) 

 Using Equations 1-2 for diesel specific combustion parameters, the rectangular, 

equivalent diesel footprint is iteratively solved for to equal the specified HRR, sample 

shown below in Figure 2 where the dashed and solid line represent the vehicle footprint 

and calculated, equivalent diesel footprint, respectively. 

 

Figure 2 – Equivalent diesel footprint 

The rectangular, equivalent diesel footprint is converted to an equivalent analytical 

elliptical footprint, to remove any discontinuities when the solid flame shape is extruded. 

An initial ellipse is inscribed in the rectangular footprint, then uniformly scaled in size to 

equate the perimeters of the rectangular and analytical shapes as detailed below in Figure 

3, as the CDSF radiation is predicated on surface emissive power. 
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Figure 3 – Analytical elliptical footprint development 

The progression of footprints, from vehicle to analytical elliptical can be seen below 

in Figure 4. 

 

Figure 4 – Footprint development workflow 

The solid flame shape generated without consideration of tunnel confinement is 

first calculated, represented as the free flame. If the free flame is determined to extend 

beyond the confines of the tunnel geometry and specified ceiling offset, the shape is 

compressed and becomes confined to the tunnel, regarded as the confined flame shape. The 

flame shape, either confined or free, is then appropriately discretized for analysis, denoted 
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as the analytical flame, for which varied emissive power is assigned to each discretized 

surface. 

The height of the free flame 𝐻𝑓 (m) is calculated as a function of the peak heat 

release rate, �̇�𝑓,𝑚𝑎𝑥 (kW) and effective diameter, 𝐷𝑓,𝑒𝑓𝑓, as specified in Heskestad’s 

correlation (National Fire Protection Association 2016) Equation 3. 

 𝐻𝑓 = 0.235�̇�𝑓,𝑚𝑎𝑥
0.4 − 1.02𝐷𝑓,𝑒𝑓𝑓 (3) 

The free flame is proportioned in accordance with work done by Zhou, in which 

the solid flame is bifurcated into an extruded ellipse body and cone at 0.4𝐻𝑓 from the base 

of the flame (Zhou et al. 2014). To again avoid discontinuities in the solid flame shape, the 

pointed cone shape is replaced with a truncated ellipsoid dome, evidenced in the illustrative 

graphic below in Figure 5.  

 

Figure 5 – Conical and elliptical flame shape comparison 
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This avoidance of sharp edges in the solid flame radiation calculation has been 

shown to produce more accurate accounting of heat flux received on the tunnel liner, 

especially at the tunnel ceiling in close proximity to the flame. The surface area of the free 

flame body and dome are represented as 𝐴𝑏 (m2) and 𝐴𝑑 (m2), respectively. The flame 

emissive power in (kW/m2) is assumed to be uniform across the surface of the free flame, 

and calculated as a function of the radiative fraction, 𝜒𝑟, peak heat release rate, and total 

free flame surface area 𝐴 in (m2), Equation 5, where radiative fraction is calculated in 

accordance with Equation 4 (Muñoz et al. 2007). 

 𝜒𝑟 = {
0.158𝐷𝑓,𝑒𝑓𝑓

0.15 𝑓𝑜𝑟 𝐷𝑓,𝑒𝑓𝑓 ≤ 5𝑚

0.436𝐷𝑓,𝑒𝑓𝑓
−0.58 𝑓𝑜𝑟 𝐷𝑓,𝑒𝑓𝑓 > 5𝑚

 (4) 

 𝐸 =
𝜒𝑟 �̇�𝑓,𝑚𝑎𝑥

𝐴
 (5) 

As shown in Figure 6, the height of the fire’s base above the road surface, 𝐻𝑏𝑎𝑠𝑒 

(m), approximately accounts for the height of the vehicle. If the height of the free flame 𝐻𝑓 

from Equation 3, originating from 𝐻𝑏𝑎𝑠𝑒 above the road surface, remains below the tunnel 

height minus a specified ceiling offset of 0.02𝐻𝑓, then 𝐻𝑓 is used as the analytical flame 

height. However, the free flame height from Equation 3 will often exceed the height of the 

tunnel minus the ceiling offset for significant fires. In those cases, the analytical flame 

height is reduced to fit inside the tunnel enclosure, thus confined. 
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Figure 6 - Schematic comparison of the free flame and confined flame shapes 

 To allow the flame surfaces to have adequate view of the tunnel liner at close range 

and “engulf” those targets with appropriately high radiation heat flux, the top of the 

ellipsoid dome is restricted to an offset of 0.02𝐻𝑓 from the tunnel ceiling height. The 

confined flame height, 𝐻𝑐, (m) is therefore calculated as follows. 

 𝐻𝑐 = 𝐻𝑇 − 0.02𝐻𝑓 − 𝐻𝑏𝑎𝑠𝑒 (6) 

For free flame heights that just exceed the tunnel height, the dome is simply 

compressed as shown in Figure 6 while the height of the extruded ellipse body remains as 

0.4𝐻𝑓. As the free flame height increases for increasingly severe fires, the body height can 

become so large that the ellipsoid dome would be unrealistically compressed or even 

eliminated (resulting in poor analytical calculations of radiation heat flux on the ceiling) if 

no height adjustments were made to the body. To preserve the bifurcated structure of the 

confined solid flame, the height of the confined flame body can be no greater than 75% of 

𝐻𝑐, and the ellipsoid dome can therefore be no less than 25% of 𝐻𝑐. Note that because 𝐻𝑐 
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is itself a function of the free flame height, confined flame heights will actually reduce 

further below the tunnel ceiling with fires of increasing severity, thus accounting for the 

additional flame spread and pluming around the fire’s center expected with increasing fire 

size. 

Conservation of energy is preserved when free flame shapes that extend beyond the 

tunnel height are compressed to create the confined flame shape, which will naturally have 

less surface area. Since the ellipsoid dome and extruded ellipse body will experience 

different amounts of surface area reduction, the average emissive power over the free flame 

surface area, 𝐸 in (kW/m2) from Equation 5 is increased by the ratios shown below in 

Equation 7 and Equation 8 for the body and dome of the confined flame, respectively. 

 𝐸𝑏 = 𝐸 (
𝐴𝑏

𝐴𝑏′
) ∗ 𝐶 (7) 

 𝐸𝑑 = 𝐸 (
𝐴𝑑

𝐴𝑑′
) ∗ 𝐶 (8) 

𝐴𝑏 and 𝐴𝑑 (both in m2) are the areas of the free flame body and dome, and 𝐴𝑏′ and 

𝐴𝑑′ (again in m2) are the areas of the confined flame body and dome, respectively. Surface 

emissive power in the body, 𝐸𝑏 (kW/m2) and surface emissive power in the dome, 𝐸𝑑 

(kW/m2), are applied to the analytical flame body and dome, respectively. Additionally, 

when the free flame height far exceeds the tunnel height and the body height is restricted 

to 75% of 𝐻𝑐, the average emissive power, 𝐸, is increased by an additional confinement 

factor, 𝐶, to account for increased combustion efficiency and turbulence resulting from 

significant confinement of the flame (Wang et al. 2017). At present, 𝐶 is taken as the ratio 

of 𝐴𝑏 to 𝐴𝑏′. Note this value equals unity for free flame body heights not exceeding 75% 
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of 𝐻𝑐. As will be demonstrated, this approach to energy conservation between the free and 

confined solid flame models can accurately capture the magnitude and distribution of 

radiation heat fluxes expected with increasing fire size as compared to the FDS solutions. 

Preliminary study has indicated a maximum edge distance of 85 cm in the analytical flame 

mesh provides an acceptable level of resolution and convergence. Future model 

development will further investigate the trade-off between analysis time and slight 

variation in the calculated heat flux from radiation.  

With analytical flame shape and surface emissive powers defined, the radiative heat 

flux contribution can be calculated. Radiative contribution from each emitting surface, i, is 

summed at each target surface, j. Incident heat flux at each discretized surface, 𝑞′′𝑗 is 

calculated as a function of the emissive power and view factor, 𝐹𝑖→𝑗 between receiving and 

emitting surfaces as shown below in Equation 9. 

 𝑞′′
𝑗

= ∑ 𝐸𝑖𝐹𝑖→𝑗 = ∑ 𝐸𝑖
𝐴𝑖 cos 𝜃𝑖 cos 𝜃𝑗

𝜋𝑟𝑖→𝑗
2

𝑛
𝑖=1

𝑛
𝑖=1  (9) 

The addition of a convective field at the tunnel ceiling is provided in the CDSF to 

conservatively capture ceiling jet effects. Previous iterations of the model neglecting the 

effects of a connective zone under the tunnel ceiling were unable to accurately capture the 

longitudinal spread of thermal demands. Through FDS-informed calibration, additional 

convective heat flux is applied to target elements within the defined convective zone, 

having a depth denoted as 𝐷𝐶𝑍 in (m).  
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Figure 7 – Depth of convective zone under tunnel ceiling 

The depth of the convective zone below the tunnel ceiling is calculated as a 

percentage of 𝐻𝑇, where 𝐷𝐶𝑍/𝐻𝑇 has been found to have the following correlation 

illustrated below in Figure 8 and detailed in Equation 10. Note this correlation has only 

been made for fire sizes between 30MW and 200MW. Additional analysis and comparisons 

should be performed before extending the application of the convective depth calibration 

to fire sizes outside of this range.  

 

Figure 8 – Depth of convective zone calibration 
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𝐷𝐶𝑍

𝐻𝑇
= 0.002 (𝐻𝑅𝑅) + 0.1204 (10) 

Kurioka et al. determined a power scaling fit for longitudinal temperature decay in 

the smoke filled region accumulating under a tunnel ceiling (Kurioka et al. 2003). Using 

an FDS-informed fit correlated to peak heat release rate and tunnel size, a similar model 

has been developed for the longitudinal decay of convective heat flux under the tunnel 

ceiling. A maximum convective heat flux is first defined with the fit determined below in 

Figure 9 and detailed in Equation 11. 

 

Figure 9 – Maximum convective heat flux calibration 

 𝑞𝑐,𝑚𝑎𝑥 = 0.9788 (𝐻𝑅𝑅) − 26.118 (11) 
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The longitudinal scaling from 𝑞𝑐,𝑚𝑎𝑥 is detailed in Equations 12-14 below, where 

𝑥 in (m), represents the longitudinal distance from the fire center.  

 
𝑞𝑐

𝑞𝑐,𝑚𝑎𝑥
= 𝛼 (

𝑥

𝐻𝑇
)

𝛽

 (12) 

 𝑥0 = 0.26�̇�𝑓,𝑚𝑎𝑥
0.2

 (13) 

 
𝑥

𝐻𝑇
 ≤ 𝑥0, 𝛼 = 1, 𝛽 = 0

𝑥

𝐻𝑇
> 𝑥0, 𝛼 =  0.09�̇�𝑓,𝑚𝑎𝑥

0.4
, 𝛽 =  −2.8�̇�𝑓,𝑚𝑎𝑥

−0.2

 (14) 

This longitudinal scaling from maximum convective heat flux is illustrated below for a 

range of HRR, note the horizontal axis denotes the value 𝑥 in (m), and the vertical axis 

represents maximum convective heat flux at that longitudinal distance, 𝑞𝑐 in (kW/m2). The 

correlated scaling has proven to accurately capture the longitudinal spread and magnitude 

of large scale fires ranging from 30MW to 200MW.  
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Figure 10 – Longitudinal scaling of maximum applied convective heat flux 

The convective heat flux is further scaled linearly through the depth of the 

convective zone, as informed by Hu (Hu et al. 2004), who noted a strong correlation 

between smoke temperature and distance below tunnel ceiling. A sample convective zone 

noting applied 𝑞𝑐 in (kW/m2) is shown below for a 70MW fire, Figure 11. 
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Figure 11 – 70 MW convective heat flux distribution 

The correlations presented for additional heat flux applied within the convective 

zone have been determined for fire sizes ranging from 30MW to 200MW in a circular 

tunnel. Work done by others notes the dependency on tunnel ceiling shape to the heat 

accumulation under the ceiling, even with equal cross-sectional area (Kurioka et al. 2003). 

Preliminary analysis suggests the applicability of these correlations to horseshoe-shaped 

cross sections, however future work will consider generalizing the approach to accurately 

capture differing heat accumulation under tunnels with flat ceilings. Combining radiative 

and convective effects at each tunnel element yields a total mapping of incident heat flux 

in (kW/m2) on the tunnel liner, as shown below in Figure 12. The full workflow in 

Grasshopper can be seen illustrated in Appendix 1: CDSF Grasshopper Workflow. 
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Figure 12 –  Heat flux distribution on cross section at longitudinal center of tunnel 

ILLUSTRATIVE EXAMPLE AND MODEL VERIFICATION 

To demonstrate the application of the CDSF in a manner which allows for complete 

visualization of the process, an illustrative example is carried out below. A tunnel cross 

section must first be selected. The circular tunnel chosen here is representative of a real 

tunnel in service, dimensions shown below in Figure 13. 

 

Figure 13 – Circular tunnel dimensions 
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The tunnel cross section is extruded in the longitudinal direction to the desired 

analysis length and meshed. A total analysis length of 110 meters is selected here. For 

illustrative purposes, the tunnel walls have been crudely discretized for simplification 

during the verification process, with 10 elements along both the longitudinal and 

circumferential axes. The tunnel analysis mesh with 100 total faces is shown below in 

Figure 14.  

 

Figure 14 – Tunnel mesh coarse discretization 

With the tunnel analysis mesh defined, the fire must next be defined. A 70 MW fire 

is selected here as representative of a light heavy goods vehicle (HGV) (Association 2011). 

Dimensions of the HGV as illustrated in Figure 15, are taken from vehicle WB-12 in 

AASHTO design guidance (American Association of State Highway and Transportation 

Officials 2001).  
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Figure 15 – Light HGV vehicle dimensions in tunnel cross section 

First, the aspect ratio, 𝐴𝑟 of the vehicle footprint is calculated as the ratio of the 

long edge, 𝐿𝑓 (m) to the short edge, 𝑊𝑓 (m). 

𝐴𝑟 =
𝐿𝑓 

𝑊𝑓
=

13.90 𝑚

2.40 𝑚
= 5.79 

Limiting the aspect ratio to 2.0 to remain within the acceptable range of the semi-

empirical formula for flame height (Equation 3), the equivalent rectangular diesel footprint 

is iteratively calculated to satisfy the relationship between effective diameter 𝐷𝑓,𝑒𝑓𝑓 

(Equation 1) and peak HRR, �̇�𝑓,𝑚𝑎𝑥. Combustion parameters are obtained from previous 

experimental work for diesel (Siddapureddy 2013); where mass loss rate, �̇�′′is 0.057 

kg/m2-s, heat of combustion, ∆𝐻𝑐,𝑒𝑓𝑓 is 47,000 kJ/kg and 𝑘𝛽 is an empirical constant 

equaled to 1.16 m-1. Results of the iterative calculation are shown satisfied for the 

conditions below, yielding the equivalent rectangular footprint with dimensions 7.23 m by 

3.62 m.  
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 �̇�𝑓,𝑚𝑎𝑥 = �̇�′′∆𝐻𝑐,𝑒𝑓𝑓𝐴𝑓(1 − 𝑒−𝑘𝛽∗𝐷𝑓,𝑒𝑓𝑓) 

 0.057
𝑘𝑔

𝑚2𝑠
∗ 47,000

𝑘𝐽

𝑘𝑔
∗ 26.2𝑚2(1 − 𝑒−1.16𝑚−1∗5.77m) = 70𝑀𝑊 

 Comparison between vehicle footprint, dashed, and the calculated, equivalent 

diesel footprint, solid, is shown below in Figure 16. 

 

Figure 16 – Vehicle footprint and equivalent deisel footprint dimensioned (m) 

Radiative fraction is calculated in accordance with Equation 4, for the case in which 

diameter is larger than 5 m as 𝐷𝑓,𝑒𝑓𝑓 has been calculated as 5.77 m. Important to note, is 

that 𝐷𝑓,𝑒𝑓𝑓 is used in the calculation of radiative fraction.  

𝜒𝑟 = 0.436𝐷−0.58 = 0.158 

 Discontinuities in the subsequent solid flame shape are now removed by converting 

the equivalent diesel footprint into the analytical, elliptical footprint. An initial ellipse is 

first inscribed in the equivalent diesel footprint. However, because the solid flame model 

is predicated on surface emissive power, the ellipse is uniformly scaled to achieve the same 

perimeter as that of the equivalent diesel footprint. Final dimensions of the elliptical 

footprint are shown in Figure 17. 
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Figure 17 – Analytical elliptical footprint (m) 

Free flame height in (m), independent of tunnel confinement, can then be 

determined through Heskestad’s semi-empirical correlation (Equation 3). 

 𝐻𝑓 = 0.235 ∗ (70𝑀𝑊)0.4 − 1.02 ∗ (5.77𝑚) = 14.49𝑚 

The free flame is portioned into the body and dome at a height of 0.4𝐻𝑓. 

0.4𝐻𝑓 = 0.4(14.49𝑚) = 5.80𝑚 

  The flame is assumed to act 1 m above the road surface to account for vehicle 

height, 𝐻𝑏𝑎𝑠𝑒 equalled to 1 m, illustrated below in Figure 18.  
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Figure 18 – Dimesioned free flame in tunnel cross section (m) 

The surface areas of the free flame body, 𝐴𝑏 and dome, 𝐴𝑑 are geometrically 

calculated in the workflow as 125.8 m2 and 154.9 m2, for a total free flame area, 𝐴 of 280.7 

m2. Average surface emissive power can be determined through Equation 5 as shown 

below. 

 𝐸 =
0.158∗70𝐸3𝑘𝑊

280.7𝑚2 = 39.34
𝑘𝑊

𝑚2  

Because the calculated free flame clearly extends above the limiting elevation, 

tunnel confinement is now taken into account by reducing the flame height and thus 

generating the new, confined flame. As stated in Equation 6, the confined flame height is 

calculated as follows, where the height of the tunnel, 𝐻𝑇 can be seen in the dimensioned 

cross section in Figure 13 as 9.57 m. The confined flame dome extends up to the specified 

offset from the tunnel ceiling, calculated as 2% of the free flame height. 
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𝑜𝑓𝑓𝑠𝑒𝑡 = 0.02(14.49m) = 0.290𝑚 

 The height of the confined flame body is set to 75% of the confined flame height 

in the tunnel. 

𝐻𝑐 = 𝐻𝑇 − 𝑜𝑓𝑓𝑠𝑒𝑡 − 𝐻𝑏𝑎𝑠𝑒 = 9.57m − 0.290m − 1m = 8.28m 

0.75𝐻𝑐 = 0.75(8.28m) = 6.21m  

 Therefore, because the height of the body in the free flame, 5.80 m, is less than 75% 

of the confined flame height, the height of the body in the confined flame is maintained as 

the height of body in the free flame. The dimensioned confined flame can be seen below 

in Figure 19. 

 

Figure 19 – Dimesnioned confined flame (m) 

With the confined flame shape defined, it can now be carried through to analysis, 

thus becoming the analytical flame. Emissive power in the body and dome of the analytical 

flame are next calculated. The confining factor 𝐶 is taken as unity here as 𝐴𝑏 is equal to 
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𝐴𝑏′ when the free flame body is not geometrically reduced. Surface areas of the analytical 

body, 𝐴𝑏′ in (m2) and dome, 𝐴𝑑′ in (m2) are again built into the workflow and calculated 

as 125.8 m2 and 57.24 m2, respectively. Utilizing the expressions outlined in Equation 7 

and Equation 8 to increase emissive power in the body and dome, the following values are 

determined. 

  𝐸𝑏 = 39.34
𝑘𝑊

𝑚2
(

125.8𝑚2

125.8𝑚2
) ∗ 1.0 = 39.34

𝑘𝑊

𝑚2
 

 𝐸𝑑 = 39.34
𝑘𝑊

𝑚2 (
154.9𝑚2

57.24𝑚2) ∗ 1.0 = 106.4
𝑘𝑊

𝑚2 

 With varied emissive power acting over the analytical flame, the radiative effects 

from each, discretized fire surface can now be calculated and summed at every target 

surface on the tunnel liner. The analytical flame mesh selected for this illustrative example 

is extremely coarse, with only 12 elements in the body and 8 elements in the dome. The 

discretization in the flame used is purely for demonstrative purposes, and it must be noted 

that a flame mesh with so few elements is not recommended for calculation. Preliminary 

study has indicated a maximum edge distance of 85 cm in the analytical flame mesh 

provides an acceptable level of resolution and convergence. Future studies will further 

investigate the trade-off between analysis time and slight variation in the calculated heat 

flux from radiation. A comparison between mesh size used for this example, 20 elements, 

relative to the typical mesh size used in analysis, 1890 elements, can be seen below in 

Figure 20. 
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Figure 20 – Analytical solid flame (a) coarse mesh (b) and typical analytical mesh (c) 

Normal vectors at each flame center and each target surface can be visualized to 

verify appropriate sense of the vectors before calculation of the view factors, Figure 21 and 

Figure 22, below. More specifically, flame normal vectors should be pointed out toward 

the tunnel mesh, and target normal vectors pointed in toward the flame mesh. 

 

Figure 21 – Flame mesh normal vectors 
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Figure 22 – Tunnel mesh normal vectors 

 For this example, two target surfaces are selected – one close to the road surface 

16.5 m in the longitudinal direction from the center of fire source, tunnel mesh element 

number 30, and one near the tunnel ceiling 5.5 m in the longitudinal direction from the 

center of the fire source, tunnel mesh element number 54 shown below in Figure 23. 

 
Figure 23 – Selected tunnel mesh elements 

Originating from the center of each target element, j, chords are defined to the 

centers of each of flame mesh element, i. A total of 𝑛𝑖  x 𝑛𝑗  chords are defined, where 𝑛𝑖 



 

29 

and 𝑛𝑗  represent the number of elements in the flame mesh and tunnel mesh, respectively. 

The relative angle between the chord connecting a given target center to flame center, and 

normal vector at that flame element is defined as 𝜃𝑖 in (degrees), and the relative angle 

between the same chord and normal vector at each target element is defined as 𝜃𝑗  in 

(degrees). The length of the chord is measured as 𝑟𝑖→𝑗 in (m), and the surface area of the 

flame mesh face is additionally calculated and stored as 𝐴𝑖 in (m2). The summation of 

energy on each flame element received at tunnel mesh element number 30 can be seen 

below in Figure 24. 

 

Figure 24 – Chords beween tunnel mesh element number 30 and flame mesh elements 

In the given flame discretization, only a few elements have the radiation angles necessary 

for the selected target surface to receive radiation. More specifically, when the product of 

the cosines of angles 𝜃𝑖 and 𝜃𝑗  is less than or equal to 0, the view factor is set to 0, as the 
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flame element is “unable to see” the target surface in the orientation. The summation of 

energy is tabulated for tunnel mesh element number 30 below in Table 1.  

 

Table 1 – Summation of radiative energy for tunnel mesh element number 30 

𝑬𝒊 

(
𝒌𝑾

𝒎𝟐
) 

𝑨𝒊

 (𝒎𝟐) 
𝜽𝒊 𝜽𝒋

𝒓𝒊→𝒋 

(𝐦) 
𝑭𝒊→𝒋 

𝑬𝒊𝑭𝒊→𝒋 

(
𝒌𝑾

𝒎𝟐
) 

   ∑ 
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Flame elements with non-zero view factors are highlighted below in Figure 25 and 

can be additionally verified for corresponding indexing, angles, curve lengths, and flame 

surface areas as compared to those tabulated above. 

 

 

Figure 25 – Chords connecting tunnel mesh element number 30 to flame mesh elements 

having non-zero view factor 

Additional verification is provided at tunnel mesh element 54, illustrated in Figure 

23. Chords between the tunnel mesh element center and flame element centers with non-

zero view factors can be seen below in Figure 26. 
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Figure 26 - Chords connecting tunnel mesh element number 54 to flame mesh elements 

having non-zero view factor 

The corresponding tabulated summation of radiation received at tunnel mesh 

element number 54 can be seen below in Table 2. As is expected, the flame elements in the 

dome contribute significantly to the radiative energy received by the tunnel element 

because of the increased emissive power, comparatively small radiative angles, and short 

standoff distances. 

  



 

33 

  

Table 2 - Summation of radiative energy for tunnel mesh element number 54 

𝑬𝒊

 (
𝒌𝑾

𝒎𝟐
) 

𝑨𝒊

 (𝒎𝟐) 
𝜽𝒊 𝜽𝒋

𝒓𝒊→𝒋

(𝐦) 
𝑭𝒊→𝒋 

𝑬𝒊𝑭𝒊→𝒋 

(
𝒌𝑾

𝒎𝟐
) 

   ∑   

 

 Looking at the typical CDSF output for radiation only, the values calculated above 

can be verified once more as shown in Figure 27, highlighting the heat flux in (kW/m2) for 

tunnel mesh elements number 30 and number 54. 
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Figure 27 – Radiative heat flux output highlighting selected tunnel mesh elements 

 With the radiative component of the CDSF verified, the illustrative example will 

be extended to include the additional convective heat flux imparted on the target elements 

within the defined convective zone. The depth of the convective zone is first determined 

per the empirical correlation provided in Figure 8 and Equation 10. 

𝐷𝐶𝑍

𝐻𝑇
= 0.002(70𝑀𝑊) + 0.1204 = 0.260 

 For the tunnel height, 𝐻𝑇 of 9.57 m, the depth of the convective zone is calculated 

as 2.49 m. Target elements with an elevation greater than or equal to 𝐻𝑇 − 𝐷𝐶𝑍 are shown 

below in Figure 28.  
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Figure 28 – Target elements within convective zone 

Maximum convective heat flux is determined through the empirical correlation 

shown in Figure 9 and Equation 11. 

𝑞𝑐,𝑚𝑎𝑥 = 0.9778(70𝑀𝑊) − 26.118 = 42.3 
𝑘𝑊

𝑚2
 

Applying the longitudinal scaling correlations detailed in Equations 12-14 to 

𝑞𝑐,𝑚𝑎𝑥, and again scaling linearly through the depth of the convective zone, the following 

spatial distribution of applied convective heat flux in (kW/m2) rounded to the nearest 

integer, on the tunnel is determined. The convective, radiation only, and sum total incident 

heat flux in (kW/m2) are shown below in Figure 29.  
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Figure 29 – Convective, radiative, and total incident heat flux (left to right) 

COMPARISON TO FDS 

To show accuracy of the current iteration of the CDSF, three fire sizes have been 

analyzed and compared against experimentally validated FDS solutions. The same tunnel 

cross section shown previously in Figure 13 is used for comparison. Tunnel wall thickness 

is taken as 630 mm per previous work done by the author in the case of tunnel blast damage 

utilizing the same cross section (Bai et al. 2018). The selected scenarios represent three 

types of vehicular fires: bus, light heavy goods vehicle (HGV) and heavy HGV with HRR 

of 30MW, 70MW and 200MW, respectively (Association 2011). Vehicle dimensions are 

selected in accordance with available design guidance AASHTO (American Association 

of State Highway and Transportation Officials 2001), shown in the analyzed tunnel cross 

section for scale, Figure 30.  
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Figure 30 – Vehicle scenarios in tunnel cross section 

Equivalent diesel footprints (solid) and vehicle footprints (dashed) are additionally 

shown below in Figure 31. 

 

Figure 31 – Dimensioned equivalent diesel footprints (m) 
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Analysis carried out with the CDSF is presented at select locations along the 

ceiling, sidewall and cross section of the tunnel for FDS comparison, shown in Figure 32 

below. 

 

Figure 32- Measurements locations along ceiling, sidewall and cross section 

While the CDSF output provides a single heat flux value at each target location, 

FDS provides a heat flux time history at selected measurement points. To represent the 

time histories generated from FDS, comparable to those from the CDSF, an upper and 

lower bound are determined statistically. The time history of heat fluxes (solid) shown 

below in Figure 33 are those directly measured at one location in the tunnel for the three 

selected fire sizes in FDS. The mean +/- one standard deviation is included with the time 

histories for the heat fluxes measured after the user-specified 30-second ramp-up threshold 

as the upper and lower bounds (dashed).  
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Figure 33 - Heat flux time history with upper and lower bounds 

When considering thermal effects on humans in the event of a tunnel fire, it is 

appropriate to consider only peak values of thermal demands, however the case is different 

when evaluating thermal demands to be considered for resulting structural consequence. 

Through thickness temperature gradients are important in characterizing the structural 

response of concrete in fire for resulting damage, spalling or cracking (Le et al. 2016). 

Therefore, a representative analysis of thermal gradients developed from different 

magnitudes of heat flux is presented. Utilizing SAFIR (Franssen and Gernay 2017), a time-

dependent heat flux is applied on one face of the concrete panel and temporal temperature 

gradients are calculated. The tunnel liner is discretized into 100 layers through its thickness 

to be used in the 1-D heat transfer analysis. 

Ambient temperature is applied as a thermal boundary condition using the SAFIR 

defined F20 function. The concrete is defined as SILCONC_EN (i.e. siliceous concrete) in 

SAFIR, and the thermal properties are assumed according to Eurocode 2 (CEN 2004). Input 

parameters are summarized below in Table 3. 
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Table 3 – SILICON properties used in SAFIR 

Specific mass of concrete (including moisture content) 2300 kg/m3 

Water content 45 kg/m3 

Coefficient of convection on heated surfaces 25 W/m2K 

Coefficient of convection on unheated surfaces 4 W/m2K 

Emissivity 0.8 

Conductivity tuning parameter  0.5 

 

Upper and lower bound time histories start with a 30-second t2 ramp up to a constant 

heat flux are applied and remain at the constant value for the duration of analysis, illustrated 

above in Figure 33. The upper and lower bounds, along with FDS heat flux time history, 

are applied to the concrete surface for 300 seconds with a time step of one second. 

Comparisons of the temperature variation into the concrete liner are determined at two 

representative ceiling locations, (1) above fire and (2) 20 meters from fire are shown below 

in Figure 34, where dashed lines represent upper and lower bound flux histories and the 

solid lines represent the more complex FDS heat flux time history. The results are presented 

for the three fire cases and presented at three points in time, 50, 150 and 250 seconds. 
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Figure 34 - Through-thickness temperature gradients above fire (top) and 20 meters from 

fire (bottom) for 30MW (left), 70MW (center) and 200MW (right) fires 

The upper and lower bounds bracket the FDS solution of thermal gradients through 

the concrete section for the duration of the analysis. Subsequent FDS solutions will be 

presented utilizing these bounds, as they represent a holistic capture of the numerical 

solution. Results for the 30MW, 70MW, and 200MW with FDS upper and lower bounds, 

as well as the mean values from FDS after the 30 second ramp up time, are presented below 

in Figure 35, Figure 36, and Figure 37, respectively. 
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Figure 35 - Longitudinal (top) sidewall (center) and cross section (bottom) distribution of 

incident heat flux for 30MW fire 
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Figure 36 - Longitudinal (top) sidewall (center) and cross section (bottom) distribution of 

incident heat flux for 70MW fire 
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Figure 37 - Longitudinal (top) sidewall (center) and cross section (bottom) distribution of 

incident heat flux for 200MW fire 

The FDS and CDSF solutions show excellent agreement across the three fire sizes 

through a broad range of incident heat fluxes. FDS solutions suggest the presence of a 



 

45 

strong ceiling jet for both the 70MW and 200MW fire, where the heat flux distribution has 

a discontinuity in increase through the height of the cross section. This has been accurately 

captured with the CDSF. Analysis time for each CDSF solution is just under 4 minutes 

with the current mesh discretization having a maximum edge length of no more than 85 

cm. The computational effort required for FDS to run the 200MW fire on an equivalent 

desktop workstation is around 15 hours, further proving the necessity of a model which is 

efficient and conservatively accurate. 

CONCLUSIONS 

The development and verification of a confined discretized solid flame model 

(CDSF) has been presented. Demonstrative verification of the model with a coarse 

discretization has proven the architecture of the CDSF to be reliable. An evaluation of three 

fire sizes in a circular tunnel has proven accuracy of the model amongst a range of large 

scale fires. The CDSF allows for total mapping and visualization of the incident heat flux 

distribution on a tunnel structure, with analysis taking a fraction of the time required by 

computational fluid dynamics solutions.  

The author notes the initially limited application of the CDSF described above, 

namely one tunnel shape and size. However, the framework of the model has been verified, 

demonstrated and can be subsequently adapted to capture a broader range of tunnel 

geometries. In the Grasshopper-Rhino environment, the framework is visually represented 

and the geometric evolution of flame shape and tunnel-flame interaction can be seen 

firsthand. This level of control and visual feedback allows for exciting development of 

complex geometry which would be near impossible with conventional programming 

solutions. Future work will focus on extending the range of applicability of the CDSF to 
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not only curved tunnels, but rectangular structures as well. It should also be noted that 

while the CDSF has been developed with tunnel application in mind, the principles and 

architecture of the model used can be adapted to an array of confined spaces. The author 

looks forward to further developing and refining the range of the CDSF, across a multitude 

of applications. 
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APPENDIX 1: CDSF GRASSHOPPER WORKFLOW 

 

Figure 38 – CDSF input from Rhino 

 

 

 

Figure 39 – CDSF workflow start in Grasshopper 
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Figure 40 – Mesh creation visualized in Rhino 

 

 

Figure 41 - CDSF workflow middle in Grasshopper 
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Figure 42 – Free flame and analytical flame visualized in Rhino 

 
Figure 43 – Analytical flame mesh with normal vector verification visualized in Rhino 
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Figure 44 – Final CDSF workflow stage in Grasshopper 

 

 

Figure 45 – CDSF output visualized in Rhino with incident heat flux values tagged 
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