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ABSTRACT 

This report examines different fire protection measures to increase the fire resistance of 

circular hollow structural steel column sections while maintaining their appealing 

architectural appearance. The question of whether increasing size of the cross section can 

provide enough fire resistance to these members is asked. Also, the efficiency of adding 

intumescent paint, or filling the column with concrete on the fire resistance of the steel 

members is examined.  

Eighteen unprotected and fire protected circular structural hollow steel section models are 

analyzed with Abaqus software for heat transfer and strength calculations. Intumescent 

paint and concrete-filled column sections are studied among the fire protection methods 

that does not harm surface appearance of the structural steel members. These fire protection 

measures are then compared with the SFRM applied column models to evaluate their fire 

resistance efficiency.  

It was found that increasing size of the cross section in unprotected columns helps reduce 

the temperature of steel and delay the reduction in its strength during a fire. This can be 

used to increase fire resistance of unprotected steel columns when the required fire rating 

is below 30 minutes. Intumescent paint provided a good amount of fire resistance to the 

column when the fire exposure was not severe, because intumescent paint degrades at 

temperatures above 800 oC. For the concrete filled section, however, if the concrete is used 

only as heat sink, it was shown that it cannot provide considerable fire resistance. Lastly, 

of the fire protection methods studied, SFRM proved to be the most efficient fire protection 

method when the surface appearance of steel member is of no importance. 
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CHAPTER 1  

INTRODUCTION 

1.1 Introduction 

Architects occasionally desire to keep the appearance of the exposed structural steel in their 

architectural designs. Since the strength of steel components decrease at higher 

temperatures, these structural members should be safe and operate whiten their 

serviceability limit state during a fire exposure. This may be accomplished by using several 

fire protection methods such as, using unprotected steel members with increased cross 

section size, intumescent paint, concrete-filled section and sprayed fire resistance material 

(SFRM). The focus of this thesis is to investigate ways to provide acceptable fire 

performance of structural steel column members while preserving the nice aesthetic 

appearance of the original steel cross-section. 

The prototype column considered for this study is hollow circular steel column section, 

which was inspired by an actual project. One way of using unprotected column section 

proposed in this study is increasing size of the cross section. This delays the temperature 

increase in the member and provides extra load bearing surface when the strength of steel 

decrease at higher temperatures. The cost associated with using heavier section can be 

compensated with having an aesthetically appealing surface and eliminating the extra fire 

protection cost. The two methods of fire protection that do not harm the appearance of steel 

members proposed in this study are filling the column with concrete and applying 

intumescent paint to the column surface. Concrete inside functions as heat sink absorbing 

heat energy from its steel casing. The benefit of using intumescent paint is that it provides 

thermal resistance when the fire occurs and is inert at normal temperatures. 
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An additional way of demonstrating adequate performance of a steel structure in fire design 

is examining the response of the structure to a more realistic, often less intense fire. The 

code specified fire load E119 considers a severe fire case for all environments and 

conditions. However, by the growing trend of performance based designs permitted by the 

IBC Code Section 104.11, real fire curves can be generated by considering the size of the 

fire compartment and the ventilation size. This study investigates both the code specified 

fire and real fires with large and small compartment sizes on the steel column. 

This thesis studies the possibility of using unprotected circular hollow steel column 

sections in a building, and investigate the ways to thermally protect these members in 

standard and real fire exposures without harming their appealing architectural appearance. 

1.2 Objectives 

The objective of this study is to examine the methods to protect circular hollow structural 

steel column members in fire exposures without harming the aesthetic appearance of the 

original steel section. The following are the main objectives for this study. 

 Examine the behavior of unprotected steel columns under the exposure of code 

specified and real fires, and investigate if an increase in size of the column cross 

section provides adequate fire resistance without using any type of fire protection. 

 Study methods of fire protection that do not change the appealing surface 

appearance of the steel member in normal condition and can provide adequate fire 

protection for the structure to be safe in a fire situation. 

1.3 Summary of Approach 

The following four tasks are developed to attain the objectives of this study.  
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1. Create two-dimensional finite element heat transfer models for the cross section 

of the column with a finite element analysis software. Generate models of 

unprotected, intumescent painted, concrete filled and SFRM applied columns. 

2. Conduct heat transfer analysis for the unprotected and fire protected models and 

generate temperature-time profile of the cross section for the duration of the fire 

exposure. 

3. Conduct strength analysis of these column models by using the heat transfer 

analysis data obtained from step three and generate strength-time profile of the 

column cross section for the duration of fire exposure for each model. 

4. Compare the results obtained from heat transfer and strength analysis in tasks 3 

and 4 for the created models. 

1.4 Summary of Findings 

1. It was found that unprotected steel column sections cannot endure long durations 

of fire exposures. 60% of the column strength was reduced in the first 15 minutes. 

Increasing size of the cross section had small effect on the reduction in column’s 

strength and cannot be considered as the only means of fire protection. However, 

increasing size of the cross section can delay the reduction in strength and can be 

used to increase fire resistance of the column when the required fire ratings is 

small.  

2. It was found that adding intumescent paint to the column surface reduces the 

section’s temperature and slows the reduction in strength of the column in fire 

exposures. Intumescent paint protected column performed satisfactory in real fires 
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and at the beginning of the standard fire, but it behaved like unprotected column 

sections as intumescent paint started to degrade at temperatures above 800 oC.  

3. Using concrete solely as heat sink to absorb heat energy from the column had a 

minor effect on fire resistance of the column.  

4. Among the fire-resistant material analyzed in this study, SFRM provides the most 

efficient fire protection to steel member. 

1.5 Outline of Report 

The report is organized into seven chapters as follows: 

Chapter 2 contains background information related to this study. Topics such as heat 

transfer mechanisms, fire curves, material properties at elevated temperatures and use of 

finite element for heat transfer calculations are discussed in this chapter.  

Chapter 3 discusses the analysis models and methods used in this study. The type and 

characteristics of the analysis models and how they are implemented with Abaqus software 

are discussed in this chapter. The chapter also includes the organization of analysis matrix 

for this study. 

Chapter 4 presents the results of heat transfer analysis for the unprotected and fire 

protected models created for this study. Temperature-time profiles for the three nodes 

across the section are presented under the exposure of E119 and real fires. 

Chapter 5 presents the results of strength analysis for the analytical models considered 

for this study. Included in this chapter are the plots, and tables for the variation in yield 

strength, yield force and modulus of elasticity of these column sections during the fire 

exposure time. 
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Chapter 6 presents the discussion and comparison of the heat transfer and strength 

analysis results obtained in Chapters 4 and 5. Effects of increasing size of the cross section, 

adding SFRM and intumescent paint to the column surface as well as filling the column 

section with concrete on temperature distribution and variation of strength in these sections 

are discussed in this chapter. 

Chapter 7 presents the summary and conclusion drawn from analysis in this report. The 

chapter ends by discussing the potential future work to extend the knowledge around this 

topic. 

1.6 Notation 

A   Surface area (m2) 

cp    Specific heat (J/kg-K) 

C1     SFRM material dependent constant 

C2     SFRM material dependent constant 

oC    Temperature in degree Celsius (oC) 

E    Modulus of elasticity at elevated temperatures (N/m2) 

E0   Modulus of elasticity at normal temperature (N/m2) 

F   Yield strength at eleveated temperatuers (N/m2) 

fy    Yield strength at normal temperature (N/m2) 

h    Convection heat transfer coefficient (w/m2K) 

k    Thermal conductivity coefficient (W/m-K) 
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[𝐾𝑇]   Thermal conductivity matrix (W/m-K) 

n   Vector normal to the surface area 

{𝑄}   Matrix of thermal loads (W) 

qx   Components of heat flow in a unit area in x direction (W/m2) 

qy   Components of heat flow in a unit area in y direction (W/m2) 

qz   Components of heat flow in a unit area in z direction (W/m2) 

qr   The incident radiant heat flow per unit surface area (W/m2) 

q’’    Heat flow per unit area (W/m2) 

𝑅    Fire resistance rating (hours) 

Te    Absolute temperature of the radiation emitting surface (K) 

Tr    Absolute temperature of the radiation receiving surface (K) 

{𝑇}   Nodal temperature matrix (K) 

1-h   One hour fire rating              

2-h   Two hour fire rating 

ΔT   Temperature difference between two system (C or K) 

𝜑    Configuration factor for calculation of heat radiation 

𝜀    Resultant emissivity of the radiation emitting and receiving surfaces 

ρ   Density (kg/m3) 
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𝜀r    Emissivity of the receiving surface 

𝜀e    Emissivity of the emitting surface 

𝜎   Stefan-Boltzmann constant, equal to 5.67x10-8 W/(m2-K4) 

α   Surface absorption coefficient 

𝜕𝑇

𝜕𝑡
    Time rate of temperature change (K/s) 

𝜕qx

𝜕𝑥
,

𝜕qy

𝜕𝑦
,

𝜕qz

𝜕𝑧
    Material temperature gradient in x, y and z directions 

1.7 Unit Conversions 

SI units are used in most part of this report. Some dimensions for the column cross-

section are presented in US customary units and the following factors can be used for 

unit conversions: 

1 J = 9.48x10-4 BTU 

1 kg/m3= 6.24x10-2 lb/ft3 

1 mm = 25.4 in 

1 N = 2.25x10-1 lbf 

1 Pa = 2.09x10-2 psf 

1 W = 3.41 BTU/hr 
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CHAPTER 2  

BACKGROUND INFORMATION 

2.1 Introduction 

This chapter presents background information relevant to this study. Included in this 

chapter is a discussion of heat transfer mechanisms, followed by background information 

on fire properties and the fire loads. The next half of this chapter presents properties of the 

materials used in this study at elevated temperatures. This includes information about 

mechanical and thermal properties of steel, intumescent paint, concrete and sprayed fire 

resistance material (SFRM).  

2.2 Heat Transfer 

Heat transfer is the exchange of heat between systems. The rate at which heat flows 

depends on properties of the heated objects and the medium that heat flows through. The 

three major heat transfer mechanisms are conduction, convection, and radiation. In most 

practical problems, the three mechanisms of heat transfer occur at the same time. Each of 

these heat transfer mechanisms are briefly reviewed in the following sections. 

2.2.1 Conduction 

Heat conduction is the mechanism of heat movement through solid objects, which 

is done by the movements of electrons within the object. Conduction occurs when there is 

temperature gradient between two points in a body. When one part of the body is heated, 

the particles gain more energy and vibrate rapidly (AISC Design Guide 19, 2003). This 

vibration of particles, transfers heat from elevated temperature regions to lower 

temperature regions. Equation 2.1 is the general equation for one-dimensional conduction 

heat transfer rate calculations. 
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                                                         𝑄 = −𝑘 ⋅ 𝐴 ⋅
𝑑𝑇

𝑑𝑥
                                     (Equation 2.1) 

In this equation, k is the thermal conductivity of material (W/m-K), A is the area 

through which heat flows (m2), and 
𝑑𝑇

𝑑𝑥
 is the temperature gradient across the thickness of 

the section (K/m), shown in Figure 2-1. The negative sign indicates the direction of heat 

flow, because heat energy moves from high temperature regions towards lower temperature 

regions. 

  In general, materials that are effective electrical conductors are usually good 

conductors of heat, and those that are poor conductor of electricity have lower conductivity.  

To perform heat transfer analysis involving the conduction mechanism, information about 

material properties, such as density, specific heat, and thermal conductivity are needed. 

These properties are discussed later in this chapter. 

  In the case of unprotected steel, heat from a fire source reaches the exterior surface 

of the column through convection and radiation heat transfer mechanisms. After it reaches 

the exterior surface, it moves across the section by conduction mechanism. If intumescent 

paint or SFRM is applied on the surface of the column, heat would reach the insulation 

first. Then, the heat moves through the insulation and steel by the conduction heat transfer 

mechanism.  

2.2.2 Convection 

Convection heat transfer is the transfer of heat from one place to another place by 

the movement of fluids (liquid or gas).  In fire applications, convective heat transfer is 

usually performed between moving fluid and a solid body. The amount of convective heat 
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transfer between two bodies is directly proportional to their temperature difference and is 

interpreted as in Equation 2.2 (Buchanan 2002). 

                                                              q’’ = h ⋅ ΔT                                      (Equation 2.2) 

where, h is the convective heat transfer coefficient (w/m2K), ΔT is the temperature 

difference between the surface of the solid and the fluid (C or K), and q’’ is heat flow per 

unit area (w/m2). The parameter h depends on the nature and velocity of the fluid as well 

as surface regularity of the solid body.  

A typical value for convective heat transfer coefficient proposed by EC3 (2001) for 

heat transfer analysis in fire is 25 w/m2K and is used in this study. However, different 

values have been used in various sources. Lee (2006) performed sensitivity analysis by 

considering 6.5, 15 and 25 W/m2 values for h. These different values of h had small impact 

on heat transfer analysis results, because radiation heat transfer mechanism is dominant 

mechanism for the heat transfer in fires. Therefore, the value of 25 W/m2 used in this report 

yields reliable results. 

2.2.3 Radiation 

Radiation is a major mechanism of heat transfer in fire situations. Heat transfer via 

transmission of electromagnetic waves is identified as thermal radiation. All bodies radiate 

energy in form of photons emitting from their surfaces. When these photons reach another 

surface, they are either absorbed, reflected or transmitted.  For radiation heat transfer 

mechanism, and intervening medium is not required, as heat can travel through the vacuum. 

The heat flux through radiation is calculated with the Equation 2.3 (Buchanan 2002). 

                                                        𝑞′′ = 𝜑𝜀𝜎(Te
4-Tr

4)                                    (Equation 2.3) 
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Tr is the absolute temperature of receiving surface (K), Te is the absolute temperature of the 

emitting surface (K), and 𝜑 is the configuration factor, and can be calculated with Equation 

2.4.  

                                                      𝜑 = ∫
𝑐𝑜𝑠ϴ1𝑐𝑜𝑠ϴ2

𝜋𝑟2

𝐴1
                                      (Equation 2.4) 

𝜎 is the proportionality constant, referred to as the Stefan-Boltzmann constant, equal to 

5.67x10-8 W/(m2-K4). The values of ϴ1 and ϴ2 are displayed in Figure 2-2. 

 The resultant emissivity 𝜀 of the emitting and receiving surfaces, given by Equation 2.5. 

                                                             𝜀 =
1

1

𝜀𝑒
+

1

𝜀𝑟
−1

                                   (Equation 2.5) 

where 𝜀r is emissivity of the receiving surface and 𝜀e is emissivity of the emitting surface.  

Emissivity of fire (in this case the emitting surface) is usually considered 0.8 (Lee 

and Pessiki, 2006). Emissivity of receiving surface depends on the type of material and the 

receiving surface conditions. For instance, values as low as 0.625 in EC3 and as high as 

0.9 in ASCE SFP has been used for emissivity of steel. Table 2-2 shows various values of 

emissivity for steel that have been proposed from different sources. Sensitivity analysis 

performed by Lee and Pessiki (2006) explains that heat transfer analysis is highly 

dependent on emissivity value and the temperature increases as equivalent emissivity value 

rises. Careful parametric studies shall be conducted while selecting the value of emissivity 

in heat transfer analysis in fires. 

2.3 Fire Loads 

In order to evaluate performance of structural steel column in a fire exposure, a 

standard pre-defined fire load will be applied to them. This thesis considers two types of 

fires: Code specified fire (ASTM E119) and real fires. In performance based design 

methods, it is allowed by the code to create the specific fire curves considering the size of 
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the compartment under consideration and its ventilation size and should satisfy all the 

safety requirement set by the code. These fires, sometimes called real fires, will be studied 

for small and large compartments sizes in this study. These fire types are briefly explained 

in the following subsections. 

2.3.1 ASTM E119 Fire  

ASTM E119 (Figure 2-3) is the fire load specified by the design codes. ASTM 

E119 fire provides temperature-time profile of the fire as a function of time in the furnace. 

To calculate the fire rating of a product, manufacturers place it under this standardized fire 

test and find the time in which the material can retain their structural integrity. This 

standard is used to measure and describe the response of materials, products, or assemblies 

to heat and flame under controlled conditions. Application of these results predict the 

performance of actual building construction materials under the standard fire. While 

performing the test, temperature-time values shown in Figure 2-3 are controlled inside the 

furnace. 

In this study, E119 fire temperature is applied on each column section for 2 hours. 

2.3.2 Real Fires 

Building Research Establishment (BRE) built an 8-storey composite steel and 

lightweight concrete building frame at their large-scale test facility at Cardington, UK. 

They subjected the building to six full-scale fire tests in different floor levels and sections. 

Large amount of useful data was found during these fire tests, which brought significant 

changes to the design guides. One of their findings was that the temperature profile was 

different in each compartment and it depends on the size of the compartment and the size 

of the ventilation. (British Steel 1999). 
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Large Compartment Fires 

In the BRE Test 2, a large compartment fire simulation with floor area of 340m2 

and a fuel load of 40kg/m2 was considered (British Steel 1999). Temperature-time profile 

observed for this fire is shown in Figure 2-4 (regenerated from British Steel (1999) for this 

study).  

Small Compartment Fires (Office fire) 

In the British Steel Test 4, an office simulation in the corner compartment of the 

second floor with an area of 136m2 and an equivalent wood fuel load of 46kg/m2 was used. 

Temperature-time profile observed for this fire is shown in Figure 2-5 (regenerated from 

British Steel (1999) for this study).  

In large compartment fires (Figure 2-4), the temperatures do not reach as high as 

small compartments fire, but the elevated temperature exists for longer durations. This is 

due to the small ratio of ventilation to compartment size. This small ventilation size 

contains most of the fire inside the room, and allows smaller heat loss through the openings 

(Kirby 1999). This slow burning, causes a long decay period of large compartment fires. 

However, in small compartment fires (Figure 2-5), the ratio of ventilation size to size of 

the compartment is small and the heat energy escape at a high rate through the openings.  

This leads to faster decay in temperature-time profile in the small compartment fire. 

2.4 Properties of Steel at Elevated Temperatures 

As the temperature in steel increases, it begins to behave differently and its material 

properties starts to change. This section discusses thermal and mechanical properties of 

steel at elevated temperatures, which are used for heat transfer calculation in later chapters.  
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2.4.1 Thermal Conductivity of Steel 

Thermal conductivity is the amount of heat transferred in a unit thickness of material 

normal to the surface of a unit area due to temperature difference in steady state conditions.  

For heat transfer calculations, thermal conductivity of steel and its change as a function of 

temperature is an important parameter. As shown in Figure 2-5 taken from EC3 (2001), the 

thermal conductivity of steel varies linearly with respect to temperature up to 800℃.  After 

the temperature reaches 800℃, it remains constant. 

2.4.2 Specific Heat of Steel 

Specific heat is the amount of heat required per unit mass to rise the temperature of a 

material by one degree Celsius. In heat transfer analysis, specific heat is an important 

parameter. For steel, in simple calculations, a specific heat value of 600 J/kg K can be used. 

However, for more accurate and detailed calculation, the specific heat curve of steel shown 

in Figure 2-7 taken from EC3 (2001) is used. As can be seen in Figure 2-7, the peak in 

specific heat value at 735oC is due to metallurgical changes in in molecular structure of 

steel. The following equations taken from EC3 (2001) can also be used to find specific heat 

of steel as a function of temperature. 

𝑐𝑝 = 425 + 0.773 𝑇 − 1.69𝑥10−3𝑇2 + 2.22𝑥10−6𝑇3                    20℃ ≤ 𝑇 ≤ 600℃ 

𝑐𝑝 = 666 + 13002/(738 − 𝑇)                                                             600℃ ≤ 𝑇 ≤ 735℃ 

𝑐𝑝 = 545 + 17820/(𝑇 − 731)                                                              735℃ ≤ 𝑇 ≤ 900℃ 

𝑐𝑝 = 650                                                                                                     900℃ ≤ 𝑇 ≤ 1200℃ 

2.4.3 Steel Stress-Strain Curves 

Stress-strain relationships in steel are important material properties to predict the 

mechanical behavior of a steel member. Both yield stress and modulus of elasticity 

http://hyperphysics.phy-astr.gsu.edu/hbase/thermo/heat.html#c1
http://hyperphysics.phy-astr.gsu.edu/hbase/thermo/temper.html#c1
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decreases as temperatures rises. As shown in Figure 2-8, steel has a well-defined stress-

strain relationship at low temperatures, but as the temperature escalates, transition from 

elastic to plastic region becomes smooth. For design purposes, knowing the yield strength 

value of steel is an important parameter, but as is shown in Figure 2-8, this value is not 

clear at higher temperatures.  As shown in Figure 2-9, 1% offset value as an effective yield 

strength which is recommended by Kirby and Preston (1988) can be used in engineering 

calculations.  

Table 2-1 and Figure 2-10, which are taken from EC3 (2001) shows the reduction in 

yield strength and modulus of elasticity of steel as a function of temperature. As the 

temperature of steel increases, its modulus of elasticity and yield strength decreases. This 

table is used for strength analysis in Chapter 5 of this study and interpolation will be 

performed for the values in between.  

2.4.4 Density of Steel 

Density is the mass of material that occupies a unit volume. The density of steel 

varies based on its alloying constituents but usually ranges between 7,750 and 8,050 kg/m3. 

As the temperature increases, materials expand.  However, the change is not significant to 

influence the density. Because density has small effect on heat transfer calculations, a 

constant value of 7860 kg/m3 will be used for the analysis in this study. 

2.5 Properties of Intumescent Paint at Elevated Temperatures  

Intumescent paints are thin chemical films, which comprise a mixture of binders, 

ceramics, resins and refractory fillers. When temperature rises, these films expand and 

gases within the film tends to escape. It forms a durable, adherent and fire resisting foam 

(AISC Design guide 19). Intumescent paint is applied directly to steel members by means 
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of spray-applied adhesion. Intumescent paint expands significantly when exposed to hot 

temperatures. The key feature is that the paint is inert at low temperatures, but provides 

insulation as result of complex chemical reactions at higher temperatures. The reaction 

takes place at temperatures typically ranging between 200-250oC. The process of 

intumescent paint reaction is shown in Figure 2-11. This expansive nature makes it 

appealing fire protective material to preserve aesthetic appearance of structural steel 

members in buildings. Depending on the type and manufacturer of intumescent paint, it 

can expand up to 50 times its original thickness (Bradely and Sizemore, 2014). The 

disadvantage of using intumescent paint material is its high application and maintenance 

cost.  

Although intumescent paint material is appealing for fire protection purposes, the 

modeling process is difficult due to its changing nature. Chen and Shen (2011) have 

proposed an engineering model that makes this process simple. Table 2-3 gives all the 

parameters proposed by them and are used for the analysis in this study. 

2.5.1 Intumescent Paint Thermal Conductivity and Specific Heat 

Thermal conductivity of intumescent paint depends on its temperature (Figure 2-12). 

At lower temperatures, thermal conductivity has a constant value, but as the temperature 

rises, it begins to react and expand. This expansion increases the thickness of intumescent 

paint layer and causes amplified thermal resistance. Chen and Shen (2011) divides this 

entire process of expansion and degradation into five stages (Table 2-2). The first stage 

includes the normal condition. As is shown in Figure 2-12, within this stage, intumescent 

paint is inert without changing its original thickness and thus constant thermal conductivity. 

The second stage begins with T1 which is the time this material starts the reaction process 
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and expands. The conductivity of material drops linearly until it reaches certain 

temperature T2. The third stage starts with T2, the time that the process of expansion stops 

and material remains expanded. In stage four, after T3, material starts to degrade and lose 

its thickness. Figure 2-12 shows that as it loses its thickness, its conductivity rises to the 

same level as it was in its original state at T4 and remains constant in stage five.  

2.6 Sprayed Fire Resistant Material (SFRM)  

SFRM is used as thermal insulation due to its low thermal conductivity which slows 

down the transfer of heat to the steel section. SFRMs are lightweight plasters made of 

cementitious (gypsum or Portland cement) binders and inorganic porous aggregates 

(perlite, vermiculite, etc.) or mineral wools. Among those, cementitious SFRMs are 

commonly used; many of which are Portland cement based. SFRM’s structure provides 

excellent fire resistance due to its low thermal conductivity. Up to four hours of fire rating 

can be achieved with SFRM material. They are applied through spraying process, which 

significantly shortens the installation time and therefore lowers the cost. It also allows 

SFRM to cover detailed features easily, like bolts and connections. Most importantly, they 

are very cost effective compared to other fire protection materials.  

2.6.1 SFRM Thickness Calculation 

The amount of thickness for SFRM depends on the size and the shape of the 

member’s cross section and the amount of fire rating required by the building code. There 

are various ways to calculate thickness of SFRM, but it mainly depends on their type and 

manufacturer. In this section, two calculation methods presented are: International 

Building Code (IBC) and SFRM manufacturer catalog (Isolatek International Product 
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Manual, 2016). The thickness of SFRM for 8xx tube is calculated for 1 hour (1-h) and 2 

hour (2-h) fire rating as follow using both methods. 

IBC Method 

Section 720.5.1.3 of the IBC includes an equation for the determination of the 

required SFRM thickness as a function of the fire rating R, the W/D ratio of the column 

and coefficients, which reflect the thermal properties of the insulating material. 

                                                       𝑅 = [𝐶1 (
𝑊

𝐷
) + 𝐶2] ℎ                                  (Equation 2.6)                                                                                           

where h is SFRM thickness (in.), R is fire rating (hours), W is the column weight (lbs per 

ft), D is the perimeter of the column at the interface of the SFRM (in.), C1 and C2 are 

Material dependent constants ( see Table 2-3 copied from AISC provide these constants 

for some SFRM manufactures).                                                                                                                                                

Thickness Calculation for 1-h Rating 

𝐶1 = 0.86 

𝐶2 = 0.97                                                  Coefficients for Isolatek 800 SFRM 

𝑊 = 72.42 𝑙𝑏/𝑓𝑡                                      Weight of 8xx steel tube 

𝐷 = 8 𝑖𝑛                                                                             Diameter of 8xx steel tube 

ℎ =
𝑅

[𝐶1(
𝑊

𝐷
)+𝐶2]

= 0.29 𝑖𝑛                   Thickness of SFRM required for 1-h fire rating               

A similar calculation was performed for 2-h fire rating which resulted in 0.58-in thickness.  

Method 2: Supplier Data for Blaze Shield II from Isolatek International 

From manufacturer data manual for Blaze Shield II, the following equation is used 

to find the thickness of SFRM. 

                                                               ℎ =
𝑅−0.38

3.58(
𝐴

𝑃
)
                                           (Equation 2.7) 
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where R is the hourly rating (hours),  h is the thickness of protection material (in), A is the 

cross-sectional area (sq in.),  and P is the heated perimeter (in.). 

Equation 2.7 is used to find 1-h and 2-h fire rating thicknesses. 

R = 1 hours                                                   Duration of fire rating 

𝑑1 = 8 𝑖𝑛                                                        Outer diameter of 8xx tube 

𝑑1 = 8 − 2𝑥0.875 = 6.25 𝑖𝑛                        Inner diameter of 8xx tube 

𝐴 = 𝜋
𝑑1

2−𝑑2
2

4
= 19.6 𝑖𝑛2                                 Area of the section 

𝑃 = 𝜋𝑑1 = 25.1                                              Perimeter of the 8xx tube 

ℎ =
1−0.38

3.58(
19.6

25.1
)

= 0.222 𝑖𝑛                                 Thickness of SFRM for 1-h fire rating 

The same calculation was applied for two-hour fire rating and the thickness resulted 

in 0.58-in. For the purpose of achieving one hour and two-hour fire ratings, 0.25in (6.35 

mm) and 0.6in (15.2 mm) thick SFRM material are used in this study. 

2.6.2 Behavior of SFRM at Elevated Temperatures 

According to NIST (2005), the thermal conductivity and specific heat of Blaze Shield 

II type SFRM were determined as a function of temperature up to 1200°C. Figure 2-13 

illustrates thermal conductivity of SFRM as a function of time. As can be seen from this 

figure, thermal conductivity of SFRM increases when the temperature rises. Figure 2-14 

shows variation of specific heat for SFRM as a function of time. Specific heat of SFRM 

also increases with an increase in its temperature.  

2.7 Properties of Concrete at Elevated Temperatures 

Concrete can function as thermal insulation when it is applied on the exterior surface 

of structural steel members. The drawback of using concrete as thermal insulation on 
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exterior of the structural members is its high construction cost. Labor work required for 

formwork, placement and and curing are the main reasons of high cost. In this study, 

concrete is not considered as an exterior insulation, but instead it is investigated as thermal 

mass inside the steel column. In order to perform this investigation, thermal and mechanical 

properties of concrete are required. 

2.7.1 Thermal Conductivity and Specific Heat of Concrete 

As shown in Figure 2-15, the thermal conductivity of concrete decreases linearly 

as a function of time until it reaches 800oC and then stays constant. Since concrete has low 

thermal conductivity, it can be used as thermal protective material. Specific heat for 

concrete does not change dramatically according to EC3 (2001). Therefore, the value of 

880 J/Kg-C for a normal weight concrete is used in this study. 

2.7.2 Compressive Strength of Concrete 

Figure 2-16 shows variation of concrete compressive strength as a function of 

temperature. The shaded area shows the range of values achieved from tests by various 

researchers. This figure shows that at elevated temperatures, the compressive strength of 

concrete decreases.  

Figure 2-17 demonstrates that at elevated temperatures, the ultimate strength and 

modulus of elasticity of concrete decreases. All of the stress-strain curves shown in this 

figure begin with a linear elastic region, followed by a parabolic region until the concrete 

reaches the maximum strength. After the resistance of concrete reaches its maximum value, 

the resistance drops down until failure occurs. For this study, concrete is only treated as a 

heat sink to absorb heat energy from the steel casing. The compressive strength behavior 

of concrete is ignored in the strength analysis. 
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2.7.3 Density of Concrete 

The density of normal weight concrete is approximately 2400 Kg/m3. Depending 

on whether lightweight or heavyweight concrete is used, the density will change. An 

increase in temperature has a small effect on the density of concrete. Due to the fact that 

density has small influence on heat transfer calculation, a constant value of 2400Kg/m3 

will be used in this study. In addition, a 28 Mpa compressive strength concrete is assumed 

in this report, and the modulus of elasticity is taken as 1.73 E8 Mpa.  

2.8 Heat Transfer Finite Element 

Steady state heat transfer analysis for a small one dimensional elements can be done 

with direct calculations, but when the geometry of the problem gets complex, a numerical 

approach is needed. Finite element method of heat transfer is a useful tool for performing 

this analysis. Equation 2.7 shows the general formula for heat transfer analysis. 

                                                       − (
𝜕qx

𝜕𝑥
+

𝜕qy

𝜕𝑦
+

𝜕qz

𝜕𝑧
) + 𝑄 = 𝜌 · 𝑐𝑝 ·

𝜕𝑇

𝜕𝑡
     (Equation 2.7) 

𝑞𝑥 = −𝑘
𝜕𝑇

𝜕𝑥
 

𝑞𝑦 = −𝑘
𝜕𝑇

𝜕𝑦
 

𝑞𝑧 = −𝑘
𝜕𝑇

𝜕𝑧
 

qx, qy and qz are components of heat flow in a unit area (W/m2), Q(x, y, z, t) is the internal 

generation of heat per unit volume (W/m3), ρ is the density (kg/m3), c is the specific heat 

(J/K), T is the temperature (K), t is the time (s), and k is the thermal conductivity of material 

(W/m-K).  

The means in which heat enters the systems depends on boundary conditions. The 

boundary conditions assumed to be as follow: S1, S2, S3, S4 are the boundary surfaces. 

a. Fixed temperature 
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𝑇𝑠 = 𝑇1(𝑥, 𝑦, 𝑧, 𝑡)  𝑜𝑛 𝑆1 

b. Specified heat flow 

𝑞𝑥𝑛𝑥 + 𝑞𝑦𝑛𝑦 + 𝑞𝑧𝑛𝑧 = 𝑞2 𝑜𝑛 𝑆2 

c. Convection boundary conditions 

𝑞𝑥𝑛𝑥 + 𝑞𝑦𝑛𝑦 + 𝑞𝑧𝑛𝑧 = (𝑇𝑠 − 𝑇𝑒) 𝑜𝑛 𝑆3   

d. Radiation boundary condition 

𝑞𝑥𝑛𝑥 + 𝑞𝑦𝑛𝑦 + 𝑞𝑧𝑛𝑧 = σε𝑇𝑠
4 − α𝑞𝑟   𝑜𝑛 𝑆4  

In the equations above, h is the convection coefficient; TS is an unknown surface 

temperature; Te is a convective exchange temperature; σ is the Stefan–Boltzmann constant; 

ε is the surface emission coefficient; α is the surface absorption coefficient, n is a vector 

normal to the surface area, and qr is the incident radiant heat flow per unit surface area. 

Finite element for heat transfer works in a similar manner to finite element for 

structural analysis of solid bodies. Objects are discretized into smaller elements and matrix 

of thermal conductivity is created instead of stiffness matrix. The general equation for 

solving heat transfer problems with finite element is as follows: 

                                                                [𝐾𝑇]{𝑇} = {𝑄}                                  (Equation 2.9) 

where [𝐾𝑇] is thermal conductivity matrix (W/m-K), {𝑇} is nodal temperature (K), and {𝑄} 

is matrix of thermal loads (W). From this equation, after imposing boundary condition, 

nodal temperature in all the nodes of the finite element model can be determined. 
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Table 2-1 Reduction in yield strength and modulus of elasticity of steel at elevated 

temperatures (EC3, 2001). 

 

 

Table 2-2 Emissivity of steel taken from different sources. (Note: this table is copied 

from Keller (2012). References of the sources Keller used are included in reference list of 

this report). 
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Table 2-3 Intumescent paint parameters based on Chen and Shen (2011). 

Variable Description Value (FPS;SI) 

k: BTU/[in-s-oF] ; (W/[m-

K] 

Thermal 

conductivity 

1.3x10-6, 2.7x10-6, 6.7x10-6, 

1.3x10-5 ;  

(0.1, 0.2, 0.5, 1.0)a 

N Expansion Ratio 30 

d: in; (mm) Initial Thickness 0.079; (2) 

𝜌: lb/in3 ; (kg/m3) Density 0.0325; (900) 

cp: BTU/[lbm-oF] ; (J/[kg-

K]) 

Specific Heat 0.478; (2000) 

T0: 
oF ; (oC) Initial Temperature 68 ; (20) 

T1: 
oF ; (oC) Start of Expansion 499; (200) 

T2: 
oF ; (oC) End of Expansion 850; (450) 

T3: 
oF ; (oC) Char consumption 1200 ; (650) 

T4: 
oF ; (oC) All char consumed 1450 ; (800) 

a) Thermal conductivity for four different types of intumescent material. The values in bracket 

shows the SI values for the thermal conductivity and the values outside the bracket in US 

Customary units. 

 

 

Table 2-4 Coefficients of C1 and C2 for common SFRM manufacturers (based on AISC 

Design Guide 19 (2003)). 
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Figure 2-1 Heat conduction mechanism through a material of thickness L (Wang, 2002). 

 

 

 

Figure 2-2 Surface configuration factor for radiating and receiving surfaces  

adapted from Drysdale (1998). 
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Figure 2-3 Temperature-time profile for the E119 fire taken from ASTM E119. 

 

Figure 2-4 Temperature-time profile for the small compartment Cardington fire (digitized 

from British steel, 1999). 

 

Figure 2-5 Temperature-time profile for the large compartment Cardington fire (digitized 

from British Steel, 1999). 
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Figure 2-6 Thermal conductivity of steel as a function of temperature (EC3, 2001). 

 

Figure 2-7 Specific heat of steel as a function of temperature (EC3, 2001). 

 

Figure 2-8 Stress-strain curves for steel at higher temperatures (SFPE, 1998). 



29 

 

 

Figure 2-9 Effective yield strength proposed Kirby and Preston (1988). 

 

Figure 2-10 Reduction in yield strength and modulus of elasticity at elevated 

temperatures (EC3, 2001). 

 

 

Figure 2-11 Reaction process of intumescent paint at elevated temperatures (Bradley and 

Sizemore, 2014). 
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Figure 2-12 Thermal conductivity of intumescent paint as a function of temperature based 

on Chen and Shen (2011). 

 

Figure 2-13 Thermal conductivity of Blaze Shield II SFRM as a function of temperature 

based on NIST (2005). 

 

Figure 2-14 Specific heat of Blaze Shield II as a function of temperature  

based on NIST (2005). 
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Figure 2-15 Concrete thermal conductivity as a function of  

temperature (Buchanan, 2002). 

 

Figure 2-16 Variation in compressive strength of concrete at elevated 

 temperatures (Kodur, 2014). 

 

Figure 2-17 Concrete stress and strain curves at elevated temperatures (Kodur, 2014). 
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CHAPTER 3  

ANALYSIS MODELS AND METHODS 

3.1 Introduction 

This chapter presents the analysis models and methods used to achieve the objectives 

of this study. Analysis models for both unprotected and fire protected columns are 

presented, followed by a description of the analysis matrix developed to isolate specific 

variables including bare steel, SFRM, intumescent paint and concrete fill. This chapter also 

explains the analytical tools used and the modeling procedure for heat transfer mechanisms 

for this study.  

3.2 Analytical Models 

Two methods to determine the thermal and strength response of structural members 

in a fire exposure includes experiment and analysis. Since experimental tests are usually 

time consuming and very expensive, this study uses analysis to evaluate heat transfer and 

strength of various column sections.  

Two-dimensional finite element heat transfer models for the specific case of an 8xx 

steel tube column are considered in this study. 8xx tubes are circular hollow steel sections 

with an 8in (203.2 mm) outside diameter and 0.875in (22.2 mm) thickness as shown in 

Figure 3-1(d). In these analyses, heat is modeled from the fire source around the perimeter 

of the column to the surface of the column through convection and radiation mechanisms. 

Once it reaches the surface, the heat is transmitted within the section through the 

conduction heat transfer mechanism.  The modeling procedure for heat transfer 

mechanisms are explained in Section 3.4. 
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Three fire scenarios are considered for the analysis in this report: E119, small 

compartment, and large compartment fires. The properties of these fires were explained in 

Section 2.3. 

3.3 Analytical Matrix 

Eighteen analytical models with various column section sizes, fire protective 

material and fire load cases are implemented as shown in Table 3-1. As shown in this table, 

for each model, an analysis ID is generated that represent the insulation type, section size, 

and the exposed for fire curve type in order to simplify their identification in later chapters.  

All the analysis scenarios in this study are divided into 5 cases. 

1. Case 1 is the analyses of unprotected steel columns to study the effects of increasing 

wall thickness (i.e. total area) of the cross section on temperature distribution in the 

cross section of steel tubes. In this case, four analytical models for the 8in (203mm) 

diameter steel tube with various section’s wall thicknesses starting from 0.5in 

(13mm) to 1.5in (38mm) are analyzed (see Figure 3-1). The outer diameter of the 

section remains constant. All four models are considered under the E119 fire 

exposure. 

2. Case 2 studies the 8xx unprotected tube section under the exposure of the real fires. 

The objective of this case to investigate the effect of real fires on an unprotected 

column section. In this case, two models for large and small compartment fire 

exposures are studied. 

3. Case 3 studies the 8xx tube section with 1-h fire rating thick SFRM on the outer 

surface of the column as shown in Figure 3-2(b). From the calculations in Section 

2.6, it was found that the thickness of SFRM required for 1-h fire rating is 0.25in 
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(6.4mm). Three models will be created for a standard and compartment fire cases. 

Within the same case, an increased thickness of SFRM for 2-h fire rating is 

analyzed (Figure 3-2(a)). 

4. Case 4 examines the intumescent paint insulated 8xx steel tube with different fire 

exposure scenarios. According to Table 2-2, one layer of intumescent paint is 2mm 

thick. Figure 3-3c shows schematic of the model created for the intumescent paint 

applied 8xx tube column. In this case, three analyses will be piloted, one for E119 

and two for the real fires. 

5. Case 5 is an analysis for concrete-filled 8xx tube section as shown in Figure 3-2(d) 

under the exposure of three fire types. Concrete will solely function as a heat sink 

for these models and will act to absorb heat energy from the steel section. 

3.4 Analytical Tool 

Two-dimensional heat transfer finite element analyses are performed with Abaqus 

software in this study. Abaqus is a commercially available finite element software used for 

a variety of purposes, including thermal analysis.  

For the finite element meshing purpose, the 8-noded quadratic heat transfer 

quadrilateral (DC2D8) element is used in all of the analytical models. Mesh arrangements 

for the 8xx bare steel, intumescent paint applied, concrete-filled, SFRM applied models are 

shown in Figure 3-4. The interface between insulation material and steel tube are tied with 

each other to allow the flow of heat from the insulation to the steel tube. By doing this, the 

nodes at the interface from insulation material transfers temperature to the nearest nodes in 

steel tube section. 
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In all analysis cases, except for concrete filled sections, adiabatic boundary 

conditions for interior surface of the steel tube is used due to the reason that the columns 

are empty and the effect of cavity radiation is negligible (the reason that cavity radiation 

was ignored is discussed in Section 3.4.3). However, with concrete filled cross sections, 

heat transfer interaction occurs between interior surface of the steel tube and outer surface 

of the concrete. 

Abaqus is used to calculate the temperature-time profile for each node in the model 

cross section throughout the analysis time. The analysis time increment is selected based 

the amount of time that the fire temperature increases by 20oC. The analysis time increment 

is based on variation in temperature of fire. When the variation in fire temperature is steep, 

the analysis time steps are small and when the variation in temperature is slight, the analysis 

time increments are longer.  

Since this is a two-dimensional analysis, heat can only be transferred across the 

section not through the length of the member. The fire curves used in Abaqus models are 

E119, small and large compartment fires based on analysis cases. Note that the fire 

temperature is assumed to be consistent around the perimeter. This means that the fire 

intensity is assumed to be the same from all directions. 

3.4.1 Convection and Radiation Heat Transfer Modeling 

Convection and radiation boundary conditions are imposed on the outer surface of 

the column. Heat transfer is modeled to the column surfaces due to convection by creating 

a surface film condition interaction using Abaqus. Film condition interactions define 

heating or cooling due to convection by surrounding fluids. Film coefficients can also be a 

function of temperature, but for this analysis, it is considered instantaneously to 
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25 w/m2K (EC3 2001). It is also assumed that the temperature of the fire compartment is 

uniform, which is a reasonable assumption after flashover happens.  

With Abaqus, heat transfer is modeled between a non-concave surface and a 

nonreflecting environment due to radiation by creating a surface radiation interaction and 

using emissivity value of 0.8. The emissivity value can be considered variable, but in this 

analysis, it is assumed that the column surface has a constant emissivity value. The ambient 

temperature is the fire temperature in the fire related models and is considered based on 

E119 and real fire curves.  

3.4.2 Cavity Radiation Modeling 

For the inner surface, effects of cavity radiation are considered. To understand the 

consequences of cavity radiation, two models of unprotected 8x1.5 tube section are 

examined, one with cavity radiation, and the other with adiabatic boundary conditions on 

the inner surface of the tube. Figure 3-3 shows the case with the fire applied symmetrically 

around the column. Both analysis with and without cavity radiation yields the same results. 

This is because the amount of heat emitting is equal to the amount of heat entering into the 

interior surface of the tube section. This proves that cavity radiation is equivalent of having 

an adiabatic boundary condition when fire load is applied symmetrically on tube sections. 

If fire is applied unsymmetrical on the section, cavity radiation effects should be 

considered. Figure 3-4 shows temperature distribution across the section when half of the 

column exterior surface is exposed to the fire and the other half is exposed to an 

environment with a constant temperature of 20oC. This figure shows that if the section or 

the fire load is unsymmetrical, effects of cavity radiation are significant. 
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3.5 Summary 

For this analytical study, eighteen analytical models, six for unprotected column sections 

and twelve for the fire protected column sections are considered (see Table 3-1). Abaqus 

is used as an analysis tool to compute the temperature for each node across the section 

throughout the fire exposure. Heat is modeled to move to the column via convection and 

radiation heat transfer mechanisms and across the section through conduction mechanism. 

The values of h=25 w/m2K and 𝜀=0.8 will be used for convection heat transfer coefficient 

and the emissivity in this study respectively. Cavity radiation is nor included in these 

analyses because the column section and the applied fire are symmetrical. The resulting 

temperatures are recorded for every 20oC increment in fire temperature at the three nodes 

across the section (exterior surface, midsection and interior surface). 
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Table 3-1 Analytical matrix for the models considered for analysis. 

Case 

No. 

 

Model Type 

Wall Thickness  

inches,  (mm) 

 

Fire Protection 

 

Applied Fire Curve 

 

Analysis ID (a) 

 

Case 1 

 

 

 

Bare steel 

1.5 (38.1) None E119 Fire BS-8x1.5-E119 

1 (25.4) None E119 Fire BS-8x1-E119 

0.5 (12.7) None E119 Fire BS-8xx-E119 

0.875 (22.2) None E119 Fire BS-8x0.5-E119 

Case 2 Bare steel 0.875 (22.2) None LC Cardington Fire BS-8xx-LC 

0.875 (22.2) None SC Cardington Fire BS-8xx-SC 

 

 

 

Case 3 

 

 

1-h SFRM insulated 

column 

0.875 (22.2) (6.4mm) SFRM thick E119 Fire SFRM1h-8xx-E119 

0.875(22.2) (6.4mm) SFRM thick LC Cardington Fire SFRM1h-8xx-LC 

0.875 (22.2) (6.4mm) SFRM thick SC Cardington Fire SFRM1h-8xx-SC 

 

2-h SFRM insulated 

column 

0.875 (22.2) (15.2mm) SFRM thick E119 Fire SFRM2h-8xx-E119 

0.875 (22.2) (15.2mm) SFRM thick LC Cardington Fire SFRM2h-8xx-LC 

0.875 (22.2) (15.2mm) SFRM thick SC Cardington Fire SFRM2h-8xx-SC 

 

Case 4 

 

Intumescent paint 

insulated column 

0.875 (22.2) One layer of intumescent  E119 Fire IP-8xx-E119 

0.875 (22.2) One layer of intumescent LC Cardington Fire IP-8xx-LC 

0.875 (22.2) One layer of intumescent SC Cardington Fire IP-8xx -SC 

 

Case 5 

 

Concrete-filled 

column 

0.875 (22.2) Concrete filled  E119 Fire CF-8xx -E119 

0.875 (22.2) Concrete filled  LC Cardington Fire CF-8xx -LC 

0.875 (22.2) Concrete filled  SC Cardington Fire CF-8xx-SC 

(a) The first letter in analysis ID is the insulation type, the second letter is the section type and the third one is the fire curve.
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Figure 3-1 Unprotected circular steel section with different wall thicknesses used in this 

study: (a) 8x1.5; (b) 8x1; (c) 8xx; (d) 8x0.5.   
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Figure 3-2 Protected 8xx tube section with different types of insulations applied:  (a) 8xx 

with 2-h thick insulation; (b) 8xx with 1-h thick insulation; (c) 8xx with one layer of 

intumescent paint; (d) concrete fill 8xx. 
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Figure 3-3 Heat transfer analysis with and without considering cavity radiation for 8x1.5 

tube column under E119 fire exposure. ‘c’ means cavity radiation has been included. 
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Figure 3-4 Results of cavity radiation analysis on 8x1.5 steel tube when half of the 

column surface is under E119 fire exposure. ‘c’ means with cavity radiation. (a) location 

of each nodes where data is extracted; (b) temperature-time profile for node 1; (c) node 2;        

(d) node 3; (e) node 4; (f) node 5; (g) node 6. 
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Figure 3-5 Mesh arrangements for the 8xx steel tube created for the study in this report:   

(a) Bare steel; (b) with one layer of intumescent paint;  (c) with 1-h thick SFRM; (d) with 

2-h thick SFRM; (e) concrete-filled. 

(a) (b) 

(c) (d) 

(e) 
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CHAPTER 4  

THERMAL ANALYSIS RESULTS 

4.1 Introduction 

This chapter presents the results of the two-dimensional heat transfer finite element 

analyses conducted on the eighteen analytical models. As discussed in Section 3.3, these 

models are divided into five analytical cases: analyses for unprotected columns under the 

E119 and real fire exposures (Case1 and 2), SFRM and intumescent paint insulated (Case 

3 and 4), as well as concrete-filled tube sections (case 5). Based on temperature distribution 

results presented in this chapter, the strength analyses are conducted in Chapter 5. 

4.2 Unprotected Columns with Various Section Sizes in E119 Fire  

Exposure (Case 1) 

Columns that are considered for analyses in this case are: 8x1.5, 8x1, 8xx and 8x0.5 

unprotected steel tubes (see Figure 3-1) under the exposure of the E119 fire.   

The 8x1.5 steel tube is the heaviest column considered for the analysis in this study. 

For two hours duration of E119 fire exposure, the nodal temperature at every point in the 

cross section is obtained. Figure 4-1 shows temperature versus time results obtained for 

three nodes: outer surface, midsection and inner surface. As shown in this figure, the 

temperature increases rapidly as a function of time at the beginning of the E119 fire. When 

the E119 fire reaches its almost steady value, temperature of the member converges to the 

temperature of fire.  

The drop in temperature-time profile observed at point A is due to the existence of 

the transient increase in specific heat of steel at 735oC (see Figure 2-7). Since specific heat 
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is the amount of energy required to raise temperature of a unit mass by one degree Celsius, 

more energy is required to raise steel’s temperature at 735oC. 

Referring to Figure 4-1, the difference in temperature amongst Nodes 1, 2 and 3 is 

not substantial. Therefore, there is not significant temperature gradient within the section, 

which is due to the small distance between these nodes and the high thermal conductivity 

of steel. Figure 4-2 displays the temperature difference between the exterior and interior 

surfaces for the 8x1.5 tube section. The peak temperature difference observed between the 

exterior and interior surface for this heavy section is only 36 oC during the fire exposure. 

Figure 4-3 displays temperature-time profile for the 8x1 tube section in E119 fire 

exposure. The maximum temperature difference between the exterior and interior surface 

of the column is 18.3 degrees Celsius (Figure 4-4), which is lower in comparison to the 

value achieved for 8x1.5 tube (Figure 4-2). The reason for this lower value is the smaller 

wall thickness of the tube cross section. 

Figure 4-5 and 4.7 shows temperature-time profile for 8xx and 8x0.5 tube cross 

sections under the exposure of E119 fire. Since these cross sections have thinner walls than 

the first two, the temperature profile for the three nodes in the cross section are very close. 

This small variation in temperature between exterior and interior surface (node 1 and node 

3) can be seen in Figures 4-6 and 4-8 for 8xx and 8x0.5 tubes, respectively. The maximum 

temperature difference observed for 8xx and 8x0.5 tube sections are 14.5oC and 6.7oC for 

the duration of fire exposure.  

It can be interpreted from these results that in hollow section with smaller wall 

thicknesses (common for most structural members) the temperature change across the 
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section is not significant. Moreover, with all four unprotected-sections that are analyzed 

under E119 fire, there is a variation in rate of change of temperature at the point in which 

specific heat has maximum value. In addition, the temperature of steel section converges 

to the fire temperature after flashover occurs in E119 fires. 

4.3 Unprotected 8xx Section in Real Fire Exposures (Case 2) 

This section presents results of two-dimensional heat transfer analysis performed 

on an unprotected 8xx tube column under the real fire exposures in large and small 

compartments. 

Figure 4-9 shows nodal temperatures for the Nodes 1, 2 and 3 under the large 

compartment fire exposure. The section’s temperature rises to its maximum value of 635 

oC after 57 minutes and then decreases. As shown in this figure, in real fires, temperature 

increases rapidly at the beginning and reaches to its maximum temperature. After it reaches 

the maximum value, its temperature starts to decay. This decay of fire decreases the room 

temperature but the column remains hot which causes flow of heat from the column back 

to the room. This is due to the reason that heat flows from higher temperature regions to 

the lower temperature regions.  

Figure 4-10 shows temperature of unprotected 8xx steel section under the exposure 

of the small compartment fire. The maximum temperature observed is 725 oC, which occurs 

37 minutes after the start of the fire. After the fire temperature reaches its maximum value, 

the temperature in fire starts to decay and the process of heat transfer reverses from column 

to the room similar to the large compartment case.  
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4.4 SFRM as Thermal Insulation (Case 3) 

In this section, two-dimensional heat transfer analysis is conducted on a SFRM 

insulated 8xx steel tube column. Two subcases for 1-h and 2-h fire rating thicknesses of 

SFRM are studied. Both E119 and real fires are studied in three separate analyses for each 

subcases.  Thickness of SFRM required for 1-h and 2-h fire rating was calculated in Section 

2.6. 

4.4.1 1-h Fire Rating SFRM 

Figure 4-11 shows variation in temperature as a function of time obtained for Nodes 

1, 2 and 3 in an E119 fire exposure. Due to the thermal resistance behavior of SFRM, the 

increase in temperature-time profile of the steel section is slow and steady. However, the 

nodal temperatures are in close proximity to each other. The maximum temperature occurs 

at the end of the fire, and is equal to 735oC.  

Figures 4-12 and 4-13 shows variation in temperature for 1-h fire rating SFRM 

applied 8xx steel tube in large and small compartment fire exposures. The maximum 

temperature recorded for this column cross section under large compartment fire exposure 

is 407 ℃ after 86 minutes. The maximum temperature recorded under the exposure of 

small compartment fire is 434℃ after 62 minutes. As expected, higher and earlier 

maximum section’s temperature is obtained in small compartment fire in comparison to 

the large compartment fire.  

4.4.2 2-h Fire Rating SFRM 

Figure 4-14 shows the variation in temperature as a function of time under the E119 

fire exposure on 2-h fire rating SFRM applied 8xx steel tube. The temperature increases 

almost linearly and reaches its maximum value of 606 ℃ at the end of the fire. This steady 
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rise in temperature is a result of the increased thickness of SFRM, which retards flow of 

heat to the steel column.  

Figures 4-15 and 4-16 display the temperature-time profile of this same section in 

large and small compartment fire exposures. As shown in these figures, the temperature of 

the steel column raises to its maximum value of 265℃ after 120 minutes when exposed to 

the large compartment fire and 274℃ after 82 minutes when exposed to the small 

compartment fire. The process of heat transfer reverses from the column to the room after 

the fire temperature decays. From Figures 4-12, 4-13, 4-15 and 4-16, it appears that 

section’s temperature does not change very much after the maximum temperature value is 

attained. SFRM acts as a thermal barrier to heat flow from the column to the room during 

temperature reversal and limits the steel’s temperature to change much. 

4.5 Intumescent Paint as Thermal Insulation (Case 4) 

In this case, two-dimensional heat transfer analysis for the IP-applied 8xx tube 

section is conducted. Figure 4-17 displays the variation in section’s temperature as a 

function of time in E119 fire exposure. In this case, the increase in temperature is slower 

compared to the case of unprotected steel due to fire resistance of intumescent paint. 

Because thermal conductivity of intumescent paint changes as a function of time, four 

regions can be observed in temperature profile of the model. By referring to the thermal 

conductivity of intumescent paint shown in Figure 2-11, the reasons for the irregularities 

in temperature profile can be understood.  

When thermal conductivity of intumescent paint increases, the rate at which 

temperature increases slows down. This changes the slope of the curve and makes it 

concave downward. When thermal conductivity decreases, the rate of increase in 
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temperature rises and the plot concaves upward. At the end of analysis, the temperature of 

steel converges to the fire because intumescent paint disintegrates at higher temperatures. 

The same 8xx steel tube with one layer of intumescent paint applied at its exterior 

surface is analyzed in real fire exposures. Figures 4-18 and 4-19 shows temperature-time 

profile of this model in large and small compartment fire exposures. Temperature reaches 

its maximum value of 435oC after 84 minutes in the large compartment fire, and 528oC in 

55 minutes in the small compartment fire.  

4.6 Concrete-Filled Columns (Case 5) 

In this case, two dimensional heat transfer analysis for concrete-filled 8xx steel tube 

column under the E119 and real fire exposures in large and small compartments is 

performed. Concrete stores heat energy depending on its heating capacity and it’s mass 

inside the column.  

The behavior of the concrete-filled 8xx tube section under E119 fire is shown in 

Figure 4-20. The temperatures achieved are similar to the unprotected 8xx steel tube 

column except with slightly lower temperatures. This lower temperature is expected 

because concrete absorbs a portion of heat from the steel tube section. Due to the low 

thermal conductivity of concrete, heat transfer inside the concrete-filled section is slow. 

This causes the large portion of concrete to not receive the amount of heat it can store for 

the the two hours of fire exposure. Therefore, its effect on temperature-time profile of the 

section is not significant.  

Figures 4-21 and 4-22 show variation in temperature of concrete-filled 8xx tube 

section in large and small compartment fire exposures. These figures resembles the results 
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achieved for unprotected steel sections displayed in Figures 4-9 and 4-10 with a slight 

difference. This is due to the reason that concrete cannot absorb more energy.  

4.7 Summary 

The objective of this chapter was to perform heat transfer analysis on unprotected 

and fire protected steel sections in standard and real fire exposures. Eighteen analytical 

model were studied in order to investigate effects of increasing section’s size, adding 

various types of fire protective material and type of fire load on temperature response of 

the column section. Followings are the highlights of the findings in this chapter. 

Four unprotected column members with different section sizes were analyzed. The 

resulting temperatures in the exterior and interior surfaces of the column were in close 

proximity of each other and the differences were not more than 40oC for all these sections 

throughout the fire duration. 

Among the fire protective material selected for study in this chapter, SFRM 

provided the best thermal resistant to the member against fire and reduced the temperature 

of steel significantly. After SFRM, intumescent paint acted as a good thermal barrier, 

especially under compartment fires. Concrete-filled column section was the least effective 

way of fire insulation and its temperature was similar to the unprotected sections. 

In E119 fire exposure, section’s temperature increased throughout the burning and 

the maximum value occurred at the end (after two hours). In large and small compartment 

fire exposures, after the maximum value of compartment temperature was achieved, the 

steel temperature reduced as the transfer of heat reversed and flew from the column back 

to the environment. 
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Figure 4-1 Variation in temperature for Nodes 1, 2 and 3 as a function of time for the 

analysis BS-8X1.5-E119. 

 

Figure 4-2 Temperature difference between exterior and interior surface of the column 

for the analysis BS-8X1.5-E119. 
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Figure 4-3 Variation in temperature for Nodes 1, 2 and 3 as a function of time for the 

analysis BS-8X1-E119. 

 

 

Figure 4-4 Temperature difference between exterior and interior surface of the column 

for the analysis BS-8X1-E119. 
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Figure 4-5 Variation in temperature for Nodes 1, 2 and 3 as a function of time for the 

analysis BS-8X0.5-E119. 

 

 

Figure 4-6 Temperature difference between exterior and interior surface of the column 

for the analysis BS-8X0.5-E119. 
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Figure 4-7 Variation in temperature for Nodes 1, 2 and 3 as a function of time for the 

analysis BS-8xx-E119. 

 

 

Figure 4-8 Temperature difference between exterior and interior surface of the column 

for the analysis BS-8xx-E119. 
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Figure 4-9 Variation in temperature for Nodes 1, 2 and 3 as a function of time for the 

analysis BS-8xx-LC. 

 

 

Figure 4-10 Variation in temperature for Nodes 1, 2 and 3 as a function of time for the 

analysis BS-8xx-SC. 
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Figure 4-11 Variation in temperature for Nodes 1, 2 and 3 as a function of time for the 

analysis SFRM1h-8xx-E119. 

 

 

Figure 4-12 Variation in temperature for Nodes 1, 2 and 3 as a function of time for the 

analysis SFRM1h-8xx-LC. 
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Figure 4-13 Variation in temperature for Nodes 1, 2 and 3 as a function of time for the 

analysis SFRM1h-8xx-SC. 

 

 

Figure 4-14 Variation in temperature for Nodes 1, 2 and 3 as a function of time for the 

analysis SFRM2h-8xx-E119. 
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Figure 4-15 Variation in temperature for Nodes 1, 2 and 3 as a function of time for the 

analysis SFRM1h-8xx-LC. 

 

 

Figure 4-16 Variation in temperature for Nodes 1, 2 and 3 as a function of time for the 

analysis SFRM1h-8xx-SC. 
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Figure 4-17 Variation in temperature for Nodes 1, 2 and 3 as a function of time for the 

analysis IP-8xx-E119. 

 

 

Figure 4-18 Variation in temperature for Nodes 1, 2 and 3 as a function of time for the 

analysis IP-8xx-LC. 
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Figure 4-19 Variation in temperature for Nodes 1, 2 and 3 as a function of time for the 

analysis IP-8xx-SC. 

 

 

Figure 4-20 Variation in temperature for Nodes 1, 2 and 3 as a function of time for the 

analysis CF-8xx-E119. 
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Figure 4-21 Variation in temperature for Nodes 1, 2 and 3 as a function of time for the 

analysis CF-8xx-LC. 

 

 

Figure 4-22 Variation in temperature for Nodes 1, 2 and 3 as a function of time for the 

analysis CF-8xx-SC. 
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CHAPTER 5  

STRENGTH ANALYSIS RESULTS 

5.1 Introduction 

This chapter presents strength analysis for the analytical models explained in Section 

3.3 and listed in Table 3-1. By using the section’s temperature results obtained in Chapter 

4 and reduction of yield strength and modulus of elasticity as a function of temperature 

from Table 2-1, the variation in strength of the column cross section during the fire 

exposure are calculated for each model. Columns are assumed to be short and the second 

order effects are neglected. The variation in modulus of elasticity calculated in this study 

can be used for the stability analysis in future works. The specific case of A992 steel with 

a yield strength of 345 MPa is used for the strength analysis. 

5.2 Strength Analysis of Unprotected Steel Columns in E119 Fire  

Exposure (Case 1) 

Four models are analyzed for the case of an unprotected steel tube sections subject 

to the E119 fire exposure. Heat transfer analysis of these models were presented in Section 

4.2. Referring to the results of heat transfer analysis in chapter 4, the difference between 

temperatures of Nodes 1, 2 and 3 in each section were insignificant. Therefore, it is 

assumed that the midsection temperature can represent overall behavior of the column and 

was used for strength analysis. The plots of variation in strength and modulus of elasticity 

in this chapter are normalized with respect to their values at normal temperature (fy, E0). 

In addition, the variation in yield strength, modulus of elasticity and yield forces for the 

duration of 2 hour fire exposure are included in Appendix A of this report for each analysis 

model. 
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Figure 5-1 shows variation in yield strength (F) and modulus of elasticity (E) for 

8x1.5 steel tube under the E119 fire exposure for two hours. As shown in the figure, the 

section yield strength values converges to zero near the end of the fire in all analyses. The 

ratio of yield strength reaches 6.3% and 2.5% of their value at normal temperature after 1-

h and 2-h fires respectively (Table A.1). 

Figure 5-2 shows variation of yield strength and modulus of elasticity for 8x1 steel 

tube under the E119 fire exposure. Despite the half-inch decrease in wall thickness of the 

section, results obtained are very similar to Figure 5-1 for 8x1.5 tube, but with slightly 

smaller values. Yield strength of this section reaches 4.4% and 2.5% after 1-h and 2-h of 

fire exposure (Table A.2). 

Figure 5-3 and Figure 5-4 display yield strength and modulus of elasticity for 8xx 

and 8x0.5 tubes under E119 fire respectively. For these sections, slightly lower yield 

strengths are achieved due to higher temperatures caused by their smaller wall thicknesses. 

For the 8xx tube, yield strength reaches 4.0% and 2.5% of their values at normal 

temperature after 1-h and 2-h of the fire (Table A.3). Moreover, for the 8x0.5 tube, yield 

strength of the section reduces to 3.5% and 2.4% of their original values after 1-h and 2-h 

of the E119 fire (Table A.4). Since temperature of steel converges to E119 fire in all tube 

sections, the reduced yield strength after 2 hours are similar for all column sizes (%2.5). 

5.3 Strength of Unprotected 8xx Section in Real Fire Exposures (Case 2) 

Strength analysis is performed on an 8xx steel tube section under the large and 

small compartment fire exposures to investigate their effects on the strength of this column. 

The heat transfer analyses for the unprotected 8xx tube section in real fires was presented 

in Section 4.3.  
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Figure 5-5 shows variation of yield strength and modulus of elasticity for 8xx tube 

section with the application of large compartment fire. The minimum value of yield 

strength and modulus of elasticity occurs after 1-h and is equal to 14.2% and 24.4% of their 

values at normal temperature (Table A.5).  

Figure 5-6 shows yield strength and modulus of elasticity of 8xx tube as a function 

of time in small compartment fire exposure. The minimum value of 6.9% and 12.0% of 

their normal temperature value are recorded after 40 minutes for yield strength and 

modulus of elasticity respectively (Table A.6). 

5.4 Strength of Columns with SFRM as Thermal Insulation (Case 3) 

Two cases of 1-h and 2-h fire rating thickness are considered for study in the 

following subcases. Thermal analysis of this case was presented in Sections 4.4.1 and 4.4.2 

for three fire scenarios.  

5.4.1 1-h Fire Rating Thick SFRM 

Figure 5-7 and Table A.7 show variation in yield strength and modulus of elasticity 

of an 8xx steel tube with 1-h fire rating thick SFRM (6.4 mm) in E119 fire exposure. The 

yield strength and modulus of elasticity reach to their minimum values of 6.6% and 11.6% 

after 2 hours of fire. The values of yield strength and modulus of elasticity reduces to 27.8% 

and 46.8% of their value at normal temperature after 1-h of fire exposure.  

The same section is analyzed in real fire exposures for small and large 

compartments. Figure 5-8 and Table A.8 show yield strength and modulus of elasticity as 

a function of time for this section in a large compartment fire. Minimum values of 41.6% 

and 69.3% were obtained after 90 minutes of the fire for yield strength and modulus of 

elasticity of the cross section.  
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Figure 5-9 and Table 5.9 show variation in yield strength and modulus of elasticity 

caused by the small compartment fire. The minimum values of yield strength and modulus 

of elasticity observed are 40.1% and 66.9% of their original values after 70 minutes of 

burning. 

5.4.2 2-h Fire Rating Thick SFRM 

Figure 5-10 and Table A.10 shows yield strength and modulus of elasticity values 

for the 8xx steel tube with 2-h fire rating SFRM under the E119 fire exposure. Minimum 

values of 17.3% and 29.7% are observed at the end of the fire. The reduction in section 

capacity is slow due to the increased thickness of SFRM and its high thermal resistance. 

Figure 5-11 and Table A.11 shows yield strength and modulus of elasticity values 

for this same column section in large compartment fire. The minimum values of 67.9% and 

86.3% are achieved after 110 minutes of fire.  

When small compartment is applied, yield strength and modulus of elasticity reduced 

to the minimal values of 66.3% and 82.6% after 80 minutes of fire. These results are shown 

in Figure 5-12 and Table A.12 

5.5 Strength of Intumescent Paint Insulated Columns (Case 4)  

To evaluate impacts of adding intumescent paint to the column as thermal insulation 

on its strength response, one layer of intumescent paint is modeled to an 8xx steel tube 

(Figure 3-2). Heat transfer analysis of this case was presented in Section 4.5.  

Figure 5-13 and Table A.13 shows yield strength and modulus of elasticity of this 

section as a function of time in E119 fire exposure. Minimum section’s strength is observed 
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to be after 2 hours of fire (end of E119 fire). The minimum yield strength and modulus of 

elasticity calculated are 2.7% and 4.8% of their values at normal temperatures. 

Figure 5-14 and Table A.14 shows yield strength and modulus of elasticity ratios 

with respect to their original values in large compartment fire. The minimum values of 

40.0% for yield strength and 67.0% for modulus of elasticity were observed after 80 

minutes of fire. 

The same section under small compartment fire yielded minimum values of 31% and 

52.0% for yield strength and modulus of elasticity after 60 minutes of fire. Like 

temperature, minimum section’s strength is lower in small compartment fires than large 

compartment fires 

5.6 Strength of Concrete-Filled Models (Case 5) 

In this research, it is assumed that the concrete inside the column does not contribute 

to the strength of the cross section for the strength analysis. Instead, the purpose of the 

concrete is to serve as a heat sink to reduce steel temperatures. Thermal analyses for 8xx 

concrete-filled steel tube columns were presented in Section 4.6.  

Figure 5-16 and Table A.16 shows change in yield strength and modulus of elasticity 

for this column section as a function of time in E119 fire exposure. The minimum values 

of 2.6% and 4.6% for yield strength and modulus of elasticity are achieved after 2-h of fire 

is passed. 

Figure 5-17 and Table A.17 shows material properties for this section in large 

compartment fire exposure. Minimum values of 41.6% and 69.3% was achieved after 90 

minutes of burning. Figure 5-18 and Table A.18 shows variation in yield strength and 
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modulus of elasticity for the same cross section under the small compartment fire exposure. 

Minimum values of 40.1% and 66.9% has been achieved after 70 minutes of burning. 

5.7 Summary 

The purpose of this chapter was to study reduction in strength for the unprotected 

and fire protected circular hallow steel sections under E119 and real fires in large and small 

compartments. The following are highlights of the findings for this chapter. 

The strength of unprotected steel sections drops significantly during the first 30 

minutes of fire and can cause structural collapse if column members are not designed 

conservatively. The increase in column’s cross section size small effect on the reduction in 

yield strength of the section. The members bearing force increases mainly due to the 

increase in cross sectional area of the column, not the preservation of the strength of 

material due to the reduction in temperature. 

ASTM E119 is a most severe fire scenario on a structural member. Section’s strength 

continuously drops and reaches to its minimal value after two hours (end of the fire). In 

real fires, strength of these models reaches a minimal value when the temperature of the 

section reaches to its maximum. After the fire temperature start to drop, strength of these 

sections begin to increase as the column loses its heat energy back to the environment. 

When the cross section is exposed to the small compartment fire, the strength of the section 

reaches to its minimum value sooner in comparison to the large compartment fir exposures.  
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Figure 5-1 Variation in yield strength and modulus of elasticity for  

the model BS-8X1.5-E119. 

 

 

Figure 5-2 Variation in yield strength and modulus of elasticity for  

the model BS-8X1-E119. 
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Figure 5-3 Variation in yield strength and modulus of elasticity for  

the model BS-8xx-E119. 

 

 

Figure 5-4 Variation in yield strength and modulus of elasticity for 

 the model BS-8X0.5-E119. 
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Figure 5-5 Variation in yield strength and modulus of elasticity for  

the model BS-8xx-LC. 

 

 

Figure 5-6 Variation in yield strength and modulus of elasticity for 

 the model BS-8xx-SC. 
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Figure 5-7 Variation in yield strength and modulus of elasticity for  

the model SFRM1h-8xx-E119. 

 

 

Figure 5-8 Variation in yield strength and modulus of elasticity for  

the model SFRM1h-8xx-LC. 
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Figure 5-9 Variation in yield strength and modulus of elasticity for 

 the model SFRM1h-8xx-SC. 

 

 

Figure 5-10 Variation in yield strength and modulus of elasticity for  

the model SFRM2h-8xx-E119. 
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Figure 5-11 Variation in yield strength and modulus of elasticity for  

the model SFRM2h-8xx-LC. 

 

 

Figure 5-12 Variation in yield strength and modulus of elasticity for 

 the model SFRM2h-8xx-SC. 
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Figure 5-13 Variation in yield strength and modulus of elasticity for  

the model IP-8xx-E119. 

 

 

Figure 5-14 Variation in yield strength and modulus of elasticity for 

 the model IP-8xx-LC. 
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Figure 5-15 Variation in yield strength and modulus of elasticity for  

the model IP-8xx-SC. 

 

 

Figure 5-16 Variation in yield strength and modulus of elasticity for 

 the model CF-8xx-E119. 
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Figure 5-17 Variation in yield strength and modulus of elasticity for 

 the model CF-8xx-LC. 

 

Figure 5-18 Variation in yield strength and modulus of elasticity for  

the model CF-8xx-SC. 
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CHAPTER 6  

RESULTS COMPARSION AND DISCUSSION  

6.1 Introduction 

This chapter presents discussion and comparison of the results obtained in Chapters 

4 and 5 for the thermal and strength analysis of circular hollow steel column sections. The 

effects of increasing size of the column cross section, effects of adding SFRM as thermal 

insulation, applying intumescent paint to the column surface, and filling the column with 

concrete on fire resistance of circular hollow steel column sections are discussed.  

 Referring to the results of heat transfer analysis in Chapter 4, the difference between 

temperatures of Nodes 1, 2 and 3 in each section were insignificant. Therefore, the 

midsection temperature is used to represent overall behavior of each column and was used 

for strength analysis in Chapter 5 and is used for discussion and comparison purposes in 

this Chapter. 

6.2 Effects of Increasing Size of the Cross Section  

This section discusses the results of heat transfer and strength analysis presented 

Sections 4.2 and 5.2. The purpose of these analyses were to investigate effects of increasing 

size of the cross section on thermal resistance of circular hollow steel section.  

6.2.1 Heat Transfer 

Figure 6-1 shows variation of temperature as a function of time for the 8x1.5, 8x1, 

8xx and 8x0.5 steel tube models (see Figure 3-1) for two hours of the E119 fire exposure. 

It can be seen from this figure that the temperature-time profile for 8x0.5 tube section is 

closest to the E119 curve due to its thin wall thickness. When the size of the column section 
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is increased, this rise in temperature is less in comparison to the lighter sections. Since 

8x1.5 is the heaviest section, its temperature increase at any given time is lowest at any 

given time is lowest (see Figure 6-1). The irregularity at point A in all four analyzed models 

is due the peak in specific heat value of steel at 735oC. 

Figure 6-2 shows the temperature difference between node 1 and node 2 (exterior 

and exterior wall surfaces) of these models. The maximum temperature difference is 36oC 

for 8x1.5 and 6.5oC for 8x0.5 tube sections. It can be seen from Figure 6-2 that due to the 

small wall thickness and the high thermal conductivity of steel, the change in temperature 

within these sections are insignificant.  

6.2.2 Strength 

Figures 6-3 and 6-4 display variation of yield strength and modulus of elasticity as 

a function of time for unprotected 8x1.5, 8x1, 8xx and 8x0.5 tube sections. Since these 

columns are unprotected and the applied fire curve is E119, strength of these sections 

reduces rapidly and reaches their minimum value at the end of the fire. Significant 

reduction occurs during the first 30 minutes of the fire exposure. After the flashover occurs, 

the temperature and the section’s strength does not experience large variation. 

Approximately 40% of section’s strength will remain after 22, 17, 16 and 12 minutes from 

the beginning of the fire for unprotected 8x1.5, 8x1, 8xx and 8x0.5 tube columns 

respectively. Midsection temperature, yield strength and modulus of elasticity values for 

every 10 minutes are tabulated in Appendix A of this report for each of these column 

sections. 
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Figure 5-5 shows force resistance of these members as a function of time under the 

E119 fire exposure. The axial force resistances of these columns are obtained by 

multiplying the reduced section’s yield strength to the cross sectional area of the column.  

 From Figures 6-1 and 6-3, it is observed that the section’s size is increased 

significantly with a small improvement in strength of these members. It can be concluded 

that increasing column size does not provide adequate fire resistance to the unprotected 

steel members. The increase in size of the cross section increases the force resistance of 

the cross section because of the increased load bearing area. 

6.3 Effects of Using SFRM 

This section discusses the results of heat transfer and strength analysis presented in 

Sections 4.3 and 5.3. The purposes of these analyses was to investigate the benefits of using 

SFRM to the column surface on fire resistance of circular hollow steel column sections.  

6.3.1 Heat Transfer 

As expected, dding SFRM to the column provides a substantial increase in fire 

resistance. Figure 6-6 displays the temperature-time profile of the unprotected and SFRM-

applied 8xx tube columns in an E119 fire exposure. The increase in section’s temperature 

depends on the thickness of SFRM. A 15.2mm SFRM thickness (for 2-h fire rating) 

impedes the increase in temperature more as compared to 6.4mm SFRM thickness (for 1-

h fire rating).  In all three curves, the temperature increases to its maximum value at the 

end of the fire. 

Figure 6-8 and 6-10 shows variation in temperature of unprotected and SFRM-

applied 8xx tube sections under large and small compartment fire exposures. For the 

SFRM-applied sections, 1-h and 2-h fire rating thicknesses are used. The maximum 
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temperatures and the times at which they occurred are listed in Table 6-1. In comparison 

to E119 fire, the time when each section’s temperature is maximum, and yield strength as 

well as modulus of elasticity is minimum, occurs before the fire ends.  This point happens 

earlier in the small compartment fire in comparison to the large compartment fire due to 

the reasons explained in Section 2.3. 

6.3.2 Strength  

Figure 6-7 shows variation in yield strength of these models under the E119 fire 

exposure. Steel section’s strength reduces when the temperature increases above 100oC 

(Table 2-1). This reduction starts after 6 minutes for unprotected 8xx steel tube. By adding 

SFRM, it starts after 13 and 22 minutes for 1-h and 2-h fire ratings respectively. The 

section’s yield strength reduces constantly until it reaches a minimum value at the end of 

the fire. 40% of yield strength remains after 16, 45 and 81 minutes in unprotected, 1-h and 

2-h fire rating SFRM-applied 8xx steel tube columns. Adding fire protective material 

delays reduction of section’s strength depending on the type of SFRM and its thickness. 

Figure 6-9 and 6-11 display the change in values of yield strength when SFRM is 

added to the column in real fire exposures. Significant differences are observed by adding 

SFRM under compartment fires in comparison to the E119. Table 6-1 shows the minimum 

value of yield strength obtained for each model. By referring to this table, it can be seen 

that the minimum yield strength values changes from 14% for unprotected to 41% and 68% 

for 1-h and 2-h fire rating thick SFRM-applied 8xx tube section under the exposure of the 

large compartment fire. These values change from 7% for unprotected to 40% and 66% for 

1-h and 2-h fire rating thick SFRM-protected 8xx tube section in an exposure to the small 

compartment fire (Table 6-1) 
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6.4 Effect of Using Intumescent Paint as Thermal Insulation 

This section discusses the results of heat transfer analysis and strength analysis 

conducted in Sections 4.4 and 5.4 on intumescent paint insulated 8xx steel tube. The 

purposes of these analysis were to investigate the benefits of using intumescent paint to the 

column surface on fire resistance of circular hollow steel column sections.  

6.4.1 Heat Transfer 

The variation of temperature under the E119 fire exposure for both bare steel and 

intumescent paint protected 8xx section is displayed in Figure 6-12. The increase in 

temperature reduces due to the presence of the intumescent paint. As per Table 2-1, after 

the temperature increases above 800 oC (T4), intumescent paint degrades and its fire 

resistance capacity diminishes. Thus, after losing the effectiveness of the intumescent 

paint, the temperature of the tube section converges to that of the E119 fire, similar to the 

unprotected sections. 

Figures 6-13 and 6-14 display behavior of the intumescent paint insulated section 

under the large and small compartment fire exposures. The maximum temperature during 

the period of fire exposure changes from 636oC for unprotected 8xx tube section to 435oC 

when one layer of intumescent paint is applied (Table 6-1).  

6.4.2 Strength 

Figure 6-15 displays variation in yield strength of a bare steel and intumescent paint 

protected steel column under the E119 fire exposure. The minimum section’s strength 

occurs at the end of the fire and is similar to the unprotected section’s strength. The time 

that yield strength of the section reduces to its 40% or its value at normal temperature is 

extended from 16 minutes for bare steel to 33 minutes by adding one layer of intumescent 
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paint. When column is exposed to the E119 fire, the benefit of having intumescent paint 

insulation is to slow the reduction of yield strength at the beginning of the fire exposure. 

Figures 6-16 and 6-17 show variation of yield strength for unprotected and 

intumescent paint applied 8xx steel tube section in large and small compartment fires. As 

listed in Table 6-1, column section’s minimum yield strength increases from 14% to 40% 

when one layer of intumescent paint is added to the column under large compartment fire 

exposure. Section’s strength does not decrease more than 40% of their original value the 

whole time, which is a modest amount of strength for the service loads during fire in a 

building. This shift in minimum yield strength is from 7% to 31% under small compartment 

fire. 

6.5 Effect of Concrete-Filled Sections 

This section discusses the results of heat transfer analysis and strength analysis 

presented in Sections 4.5 and 5.6 on concrete filled 8xx steel tube. The purposes of these 

analysis were to investigate the benefits of filling circular hollow steel sections with 

concrete on fire resistance of these cross sections. 

6.5.1 Heat Transfer 

Concrete inside the column absorbs some of the heat energy from the steel casing. 

This behavior of concrete depends on its specific heat as explained in Section 2.7.1. Since 

the thermal conductivity of concrete is small, a minor amount of heat energy find its way 

to concrete core in column during the two hours of fire exposure. Because of this, it absorbs 

a small portion of heat from steel. As is shown in Figure 6-18, concrete-filled columns’ 

temperature decreases in comparison to the unprotected sections, but by an insignificant 
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amount. Temperature increases to its maximum value at the end of E119 fire and is very 

similar to the unprotected column sections’ temperatures. 

Figures 6-19 and 6-20 display temperature of concrete-filled 8xx column section 

under the large and small compartment fires exposures. Temperature-time profile for this 

model is similar to the unprotected section except for slightly smaller temperature values. 

The maximum temperature decreases from 636oC in unprotected section to 586oC when 

the section is filled with concrete under large compartment fire. In small compartment fire 

exposure, the maximum temperature observed changes from 723oC to 695oC by filling the 

section with concrete (see Table 6-1). 

6.5.2 Strength  

As discussed in heat transfer section, filling the column with concrete did not 

change temperature-time profile of the section significantly. Since strength of a steel 

section depend on its temperature, variation of yield strength does not change and is very 

similar to the unprotected column sections. Figure 6-21 shows variation of yield strength 

for an unprotected 8xx and concrete-filled 8xx steel tube section under E119 fire exposure. 

Contribution of concrete absorbing energy as heat sink is very small due to its low thermal 

conductivity. 

Figures 6-22 and 6-23 display yield strength of concrete-filled 8xx steel tube 

section under large and small compartment fires. By using concrete-filled section, the 

minimum yield strength value of this section changes from 14% to 20% of their original 

values in large compartment fire (see Table 6-1). This value changes from 7% to 8% when 

it is exposed to the small compartment fire.  
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Of the fire protection methods considered, using concrete solely for the purpose of 

absorbing heat from steel column is the least effective way of protecting column members 

against structural fire. Usually concrete inside tube column is considered for load bearing 

purposes after steel loses its strength. The concrete inside the tube column can be plain or 

reinforced depending on the amount of axial load they will resist assigned by the designer.   

6.6 Additional Comparison 

This section sums up the effects of different methods of fire protection considered in 

this study including SFRM, intumescent paint and concrete filled tube sections. Figure 6-

24 shows variation in temperature of the unprotected, SFRM applied, intumescent paint 

insulated and concrete filled 8xx tube sections under the exposure of the E119 fire. 

Figures 6-25 and 6-26 show the variation in temperature of the unprotected, SFRM 

applied, intumescent paint insulated and concrete filled tube sections under the exposure 

of the large and small compartment fires. These figures proves that SFRM is the most 

effective method of insulating column members against fire. This is followed by 

intumescent paint insulated, and concrete-filled sections. Figure 6-27 compares the 

temperature-time profile of the concrete filled section with the unprotected tube sections 

with different sizes. It can be seen that temperature-time profile for the concrete filled 

section is between 8x1 and 8x1.5 tube sections, thus the effectiveness of concrete filled 

with respect to the unprotected sections depends on how much size of the cross section is 

increased. 

6.6.1 Change in Strength after the First 20 and 30 Minutes 

Figure 6-28 shows normalized strength of each model after the 20 and 30 minutes of 

standard and real fire exposure. In this Figure, values are normalized with respect to the 
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strength of the unprotected 8xx steel tube at normal room temperature. As is shown in this 

figure, increasing size of the cross section improves the performance of the column in the 

first 20 and 30 minutes and can prevent from the collapse of the building before the building 

is evacuated depending on its occupancy and the evacuation time required by the code.  

In addition, it can be seen from this figure that adding intumescent paint to the 

column keeps its strength above 40% of its original value in the first 30 minutes of standard 

E119 fire and can be a useful method of fire protection to delay the reduction in strength. 

In real fire exposures, it was observed in Chapter 5 that intumescent paint can keep the 

strength of the steel column above 35% during the entire time. In concrete filled section, 

however, when the concrete is used solely as heat sink, there hasn’t been any significant 

increase in strength of the column even in the first 20 and 30 minutes. 

6.7 Summary 

This chapter discussed and compared the results obtained in Chapter 4 and Chapter 

5 for heat transfer and strength analysis. Following are the summary of findings in this 

chapter. 

Increasing size of the section did not significantly reduce the temperature. It was 

shown that yield strength capacity of the section has not changed significantly by 

increasing size of the cross section. However, this increase in column cross section 

increases its force capacity which is obtained by multiplying its reduced yield strength to 

the cross sectional area of the column. This increase is considerable in the first 20 and 30 

minutes of the fire. 



86 

 

As expected amongst the four methods of fire protection studied in this report, SFRM 

is the most effective method of insulating column members against fire. This is followed 

by intumescent paint insulated, concrete-filled sections. 

Under compartment fire exposure, behavior of the protected columns change and 

they more effectively preserve their strength. Since the temperature increases to a 

maximum value of 680oC and 872oC in large and small compartment fires then it starts to 

degrade, the column perform well with these fire protective material. 
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Table 6-1 Maximum temperature, the minimum yield strength and minimum modulus of elasticity as well as the time they 

occur for the all analyzed models. 

Case 

No. Section ID 

Type of  

Insulation Fire Type 

Time (a) 

(mins) 

Maximum 

Temperature (oC) 

Minimum 

(F/fy) 

Minimum 

(E/E0) 

 

Case 1 

BS-8x1.5-E119 Unprotected E119 120 998 0.025 0.045 

BS-8x1-E119 Unprotected E119 120 1002 0.027 0.048 

BS-8xx-E119 Unprotected E119 120 1003 0.026 0.047 

BS-8x0.5-E119 Unprotected E119 120 1006 0.027 0.048 

Case 2 BS-8xx-LC Unprotected LC Cardington 60 636 0.142 0.245 

BS-8xx-SC Unprotected SC Cardington 40 723 0.069 0.121 

 

 

Case 3 

SFRM1h-8xx-E119 1-h SFRM E119 120 736 0.066 0.116 

SFRM1h-8xx-LC 1-h SFRM LC Cardington 86 408 0.415 0.692 

SFRM1h-8xx-SC 1-h SFRM SC Cardington 62 434 0.400 0.666 

SFRM2h-8xx-E119 2-h SFRM E119 120 607 0.173 0.297 

SFRM2h-8xx-LC 2-h SFRM LC Cardington 120 264 0.682 0.836 

SFRM2h-8xx-SC 2-h SFRM SC Cardington 82 274 0.663 0.826 

 

Case 4 

IP-8xx-E119 IP applied E119 120 984 0.027 0.048 

IP-8xx-LC IP applied LC Cardington 85 435 0.399 0.665 

IP-8xx-SC IP applied SC Cardington 57 527 0.311 0.521 

 

Case 5 

CF-8xx-E119 Concrete-Filled E119 120 993 0.026 0.046 

CF-8xx-LC Concrete-Filled LC Cardington 63 586 0.205 0.351 

CF-8xx-SC Concrete-Filled SC Cardington 39 695 0.080 0.139 

(a)    This is the time where the maximum temperature, minimum yield strength and minimum modulus of elasticity 

occurs in the analysis models.
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Figure 6-1 Temperature-time profile for unprotected 8x1.5, 8x1, 8xx, 8x0.5 tube sections 

under E119 fire exposure. Plotted curves are for mid-section temperatures. 

 

 

 

Figure 6-2 Variation in temperature difference between exterior and interior wall 

 surface (Nodes 1 and 3) of unprotected 8x1.5, 8x1, 8xx, 8x0.5 tube sections under 

 E119 fire exposure. 
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Figure 6-3 Variation in yield strength of unprotected 8x1.5, 8x1, 8xx, 8x0.5 tube sections 

under the E119 fire exposure. 

 

 

Figure 6-4 Variation in modulus of elasticity of unprotected 8x1.5, 8x1, 8xx, 8x0.5 tube 

sections under the E119 fire exposure. 

0

0.2

0.4

0.6

0.8

1

1.2

0 1000 2000 3000 4000 5000 6000 7000 8000

F/
fy

Time, s

8x1.5
8x1
8xx
8x0.5

0

0.2

0.4

0.6

0.8

1

1.2

0 1000 2000 3000 4000 5000 6000 7000 8000

E/
E0

Time, s

8x1.5
8x1
8xx
8x0.5



90 

 

 

Figure 6-5 Variation in axial force resistance of unprotected 8x1.5, 8x1, 8xx, 8x0.5 tube 

sections under the E119 fire exposure. 

 

 

 

Figure 6-6 Effects of adding SFRM on temperature of 8xx section under the 

 E119 fire exposure. 
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Figure 6-7 Effects of adding SFRM on strength of the 8xx section under the  

E119 fire exposure. 

 

 

Figure 6-8 Effects of adding SFRM on temperature of 8xx section under the large 

compartment fire exposure. 
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Figure 6-9 Effect of adding SFRM on strength of the section under the large  

compartment fire exposure. 

 

 

Figure 6-10 Effect of adding SFRM on temperature of 8xx section under the small 

compartment fire exposure. 
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Figure 6-11 Effect of adding SFRM on strength of the section under the small 

compartment fire exposure. 

 

 

 

Figure 6-12 Effect of adding intumescent paint to the column surface on temperature of 

the section under the E119 fire exposure. 
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Figure 6-13 Effect of adding intumescent paint to the column surface on temperature of 

the section under large compartment fire exposure. 

 

 

 

Figure 6-14 Effect of adding intumescent paint to the column surface on temperature of 

the section under the small compartment fire exposure. 
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Figure 6-15 Effect of adding intumescent paint to the column surface on strength of the 

section under the E119 fire exposure. 

 

 

Figure 6-16 Effect of adding intumescent paint to the column surface on strength of the 

section under the exposure of large compartment fire. 
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Figure 6-17 Effect of adding intumescent paint to the column surface on temperature of 

the section under the small compartment fire exposure. 

 

 

 

Figure 6-18 Effect of filling the column with concrete on temperature of the section under 

the E119 fire exposure. 
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Figure 6-19 Effect of filling the column with concrete on temperature of the section under 

the large compartment fire exposure. 

 

 

 

Figure 6-20 Effect of filling the column with concrete on temperature of the section under 

the small compartment fire exposure. 
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Figure 6-21 Effect of filling the column with concrete on strength of the section under the 

E119 fire exposure. 

 

 

Figure 6-22 Effect of filling the column with concrete on strength of the section under the 

large compartment fire exposure. 
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Figure 6-23 Effect of filling the column with concrete on strength of the section under 

Small compartment fire exposure. 

 

 

Figure 6-24 Variation of temperature as a function of time with different insulation types 

for an 8xx steel tube column under E119 fire exposure. 
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Figure 6-25 Variation of temperature as a function of time for an 8xx steel tube column 

with different insulation types under large compartment fire exposure. 

 

 

 

Figure 6-26 Variation of temperature as a function of time for and 8xx steel tube section 

with different insulation types under small compartment fire exposure. 
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Figure 6-27 Variation of temperature as a function of time for the unprotected 8x1.5, 8x1, 

8xx, 8x0.5 and concrete filled 8xx tube sections 
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Figure 6-28 Normalized strength of each analyzed model with respect to the strength of unprotected 8xx steel tube section after 20 and 

30 minutes of standard and real fire exposures.
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CHAPTER 7  

SUMMARY, CONCLUSIONS AND FUTURE WORK 

7.1 Introduction 

The motivation for this study was to investigate the thermal and strength response of 

the unprotected and fire protected circular hollow steel sections under the standard and real 

fire exposures. The goal was to use either unprotected or the type of fire protected column 

sections to preserve the aesthetic appearance of the steel column surface. For the 

unprotected column sections, the objective was to study the effects of increasing size of the 

column section on its thermal resistance. Intumescent paint protected and concrete-filled 

sections are the two types of fire protection methods studied in this research which does 

not harm the appearance of the steel surface in a column. SFRM-applied sections were the 

third type of fire insulated sections studied in this report. Using SFRM changes the 

appearance of steel surface, but provides significant fire resistance to the column. 

To attain the objectives of this study, eighteen analytical models were analyzed. Heat 

transfer analysis of these models is performed in Chapter 4. Based on the obtained heat 

transfer analysis results, strength of the section for each model is calculated in Chapter 5. 

The results of chapters 4 and 5 are compared and discussed in Chapter 6. The summary of 

findings, conclusions and the possible future work on this topic are discussed in this 

chapter. 

7.2 Summary 

This section briefly reviews the research tasks and important observations in this 

study.  
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7.2.1 Heat Transfer Analysis 

Heat transfer analysis was performed on eighteen analytical models with various steel 

tube section sizes and fire protection (see Section 3.3 and Table 3-1). Four analytical 

models were created for the unprotected sections under the E119 fire exposure: 8x1.5, 8x1, 

8xx and 8x0.5 steel tubes. To investigate effects of compartment fires on unprotected 

column sections, 8xx tube was exposed to the large and small compartment fires in two 

separate models (see Table 3-1). 

For the fire protected sections, two thickness of SFRM for 1-h and 2-h fire ratings 

were used. Six analytical models, three for each thickness of SFRM were created. Also, 

three models for intumescent paint insulated and three models for concrete-filled section 

were created and analyzed under the standard and real fire exposures (see Table 3-1). 

2-dimentional heat transfer finite element analysis was performed with DCD8 

elements using Abaqus software for the two hours duration of fire. The temperature data 

was collected for every 20oC increment in fire temperature at three nodes across the wall 

of steel tube section. Results of the heat transfer analyses showed that the temperature in 

unprotected sections increases rapidly and approaches the fire temperature near the end 

under the exposure to the E119 fire. In real fire exposures, the section’s temperature rises 

to a maximum value and then starts to as the fire temperature begins to decay. 

For the SFRM-applied column sections, the temperature was lower than the 

unprotected columns. The increase in temperature was more gradual with SFRM under 

E119 fire exposure. In addition, in real fire exposures, SFRM functions as a very efficient 

mean of fire protection, and significant temperature difference can be observed between 

the SFRM-protected and unprotected 8xx steel tube columns. 
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One layer of intumescent paint provided moderate amount of fire protection. Under 

the E119 fire exposure, temperature of the intumescent paint applied section reached the 

fire curve near the end (similar to the unprotected sections) due to the reason that 

intumescent paint material degrades at higher temperatures.  

The temperature-time profile obtained for the concrete-filled columns were similar to 

the unprotected column sections with slightly lower temperatures. Concrete inside the 

column absorbed small amount of heat energy due to the concrete’s low thermal 

conductivity. 

7.2.2 Strength Analysis  

The unprotected and fire protected column sections investigated for thermal analysis 

in Chapter 4 were studied for strength analysis in Chapter 5. The heat transfer results 

obtained were used to calculate the reduction in yield strength of the column section by 

utilizing the information presented in Table 2-1. The columns were assumed to be short, so 

the buckling mechanism was disregarded. Variation in yield strength, modulus of elasticity 

and section’s axial force capacity values are tabulated for every 10 minutes interval of time 

in Appendix A of this report. 

The steel column’s strength reduced to its minimum value where the temperature was 

maximum. For the unprotected column sections, the strength reached their minimum values 

at the end of the E119 fire exposure (maximum temperature point). In the four unprotected 

models with varying section sizes analyzed, section’s yield strength was delayed at the 

beginning when the cross-section size was increased, but dropped to the minimum value of 

2.5% of their values in normal temperature at the end of E119 fire exposure. Under the real 
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fire exposures, section’s strength dropped to a minimum value then increased back as the 

column lost heat back to the room (see Table 6-1). 

Applying SFRM to the column surface impeded the flow of heat to the column section 

and therefore, prevented the loss of strength under a fire exposure. In both standard and 

real fire exposures, section’s yield strength followed the temperature trend and was 

minimum where the temperature was maximum (refer to Table 6-1). 

Intumescent paint delayed the reduction in yield strength of the steel section, but 

reached its minimum value at the end of the E119 fire exposure, similar to the unprotected 

column sections because intumescent paint degrades at temperatures above 800 oC. In real 

fires, however, significant contribution were observed because temperature does not 

increase as high as in the E119 fire. 

Strength in concrete-filled sections were closer to the unprotected columns except 

with slightly increased values due to the lower temperature obtained from its heat transfer 

analysis. The reason for small change in temperature time profile of concrete filled 

compared to the unprotected section is the low thermal conductivity of concrete which 

prevents the flow of heat inside the concrete. 

7.2.3 Additional Summary and Remarks 

 Increase in temperature and reduction in yield strength of unprotected steel columns 

with various section sizes were similar to each other with a slight change in their values. 

Enlarging the size of the cross section had small effect on temperature distribution. 

However, this increase had impact on axial force capacity of the member due to increased 

section area and was considerable in the first 20 and 30 minutes of fire exposure. 
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 SFRM provides the most effective thermal resistance and its efficiency depends on 

the thickness sprayed to the column. Intumescent paint insulated columns also showed 

improved fire resistance, but not as good as SFRM. Concrete-filed sections (where concrete 

is used solely as heat sink) proved to be the least effective way of fire protection. 

7.3 Conclusions 

The following are the conclusions drawn from the study in this report. 

1. Increase in size of the cross section in unprotected columns has small influence on 

their temperature-time profile of the section. In all the unprotected sections 

analyzed under both E119 and compartment fire exposures, the yield strength 

reduces below 10%. This means that for the sections to remain functional, the factor 

of safety for the design should be more than 10, which is neither practical nor 

economical. However, the increase in size of the column cross section can be useful 

when the fire duration is short and acceptable strength can be achieved in the first 

30 minutes of the fire. 

2. SFRM provides significant amount of fire protection to the columns. However, this 

material applied on the outer surface of the column and will change the aesthetic 

appearance of the steel surface. If architecturally allowed, this material can perform 

very satisfactory and can provide longer durations of fire protection depending on 

its thickness.  

3. Using intumescent paint coated sections helps postpones the reduction in section’s 

strength at the beginning of the standard E119 fire. After the temperature in E119 

fire increases above 800 oC near the end, this material will burn and the column will 

behave like unprotected section. However, under the exposure of the real fires, since 
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the temperature does not increase as high, it behaves well and the yield strength 

does not decrease below 35-40% of their original values.  

4. Using concrete inside the column to absorb heat energy from the steel does not 

provide significant thermal resistance, because the concrete inside the column 

cannot receive enough heat to store due to the low thermal conductivity of concrete. 

7.4 Future Work 

The following are recommended future work to further the understanding of this topic: 

1. The analysis work conducted in this report was focusing around circular hollow 

steel sections. Further work can be performed with rectangular hollow sections and 

other steel shapes commonly used for columns. 

2. The strength analysis performed in this study was for the assumed pined supported 

short columns. Different boundary condition and different column lengths together 

with the second order effect and buckling analysis can be included around this topic. 

3. Experimental tests of an unprotected circular hollow steel column under E119 fire 

exposure. Using the experimental test data, the exact heat transfer analysis 

parameters such emissivity and convection heat transfer coefficient should be 

quantified.
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Table A.1 Unprotected 8x1.5 steel tube column under the 

E119 fire load.  
Time 

(min) 

Mid-section 

temperature (oC) F/fy E/Ey 

Section yield 

capacity (KN) 

0 20 1 1 6810 

5 59 1 1 6810 

10 163 0.878 0.937 5978 

20 397 0.422 0.703 2922 

30 584 0.197 0.338 1419 

40 697 0.076 0.131 534 

50 725 0.069 0.120 467 

60 752 0.062 0.109 423 

70 826 0.047 0.084 320 

80 903 0.037 0.067 254 

90 941 0.032 0.058 222 

100 965 0.029 0.053 200 

110 982 0.027 0.049 187 

120 998 0.025 0.045 173 

Table A.2 Unprotected 8x1 steel tube column under the 

E119 fire load.  
Time 

(min) 

Mid-section 

temperature (oC) F/fy E/E0 

Section yield 

capacity (KN) 

0 20 1 1 4893 

5 73 1 1 4893 

10 211 0.786 0.889 3843 

20 490 0.366 0.610 1788 

30 672 0.104 0.180 512 

40 724 0.069 0.121 338 

50 754 0.062 0.108 302 

60 847 0.044 0.079 214 

70 914 0.036 0.064 173 

80 941 0.032 0.058 160 

90 959 0.030 0.054 147 

100 974 0.028 0.051 138 

110 988 0.027 0.048 129 

120 1002 0.027 0.048 129 

 



115 

 

Table A.3 Unprotected 8xx steel tube column under the 

E119 fire load.  
Time 

(min) 

Mid-section 

temperature (oC) F/fy E/E0 

Section yield 

capacity (KN) 

0 20 1 1 4355 

5 78 1 1 4355 

10 230 0.749 0.906 3261 

20 523 0.319 0.774 1388 

30 693 0.082 0.688 360 

40 731 0.067 0.515 294 

50 770 0.058 0.232 249 

60 877 0.040 0.123 178 

70 924 0.035 0.113 151 

80 945 0.032 0.100 138 

90 961 0.030 0.077 129 

100 975 0.028 0.062 125 

110 989 0.026 0.054 116 

120 1003 0.026 0.048 116 

Table A.4 Unprotected 8x0.5 steel tube column under 

the E119 fire load.  
Time 

(min) 

Mid-section 

temperature (oC) F/fy E/E0 

Section yield 

capacity (KN) 

0 20 1 1 2620 

5 109 0.976 0.988 2580 

10 331 0.544 0.764 1428 

20 647 0.126 0.218 329 

30 727 0.067 0.117 178 

40 781 0.054 0.096 142 

50 879 0.040 0.072 107 

60 916 0.035 0.064 93 

70 936 0.033 0.059 85 

80 950 0.031 0.056 80 

90 964 0.029 0.053 76 

100 978 0.028 0.050 71 

110 992 0.024 0.043 62 

120 1006 0.024 0.043 62 
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Table A.5 Unprotected 8xx steel tube column under the 

large compartment fire load.  
Time 

(min) 

Mid-section 

temperature (oC) F/fy E/E0 

Section yield 

capacity (KN) 

0 20 1 1 4355 

6 86 1 1 4355 

12.5 220 0.767 0.880 3341 

20 354 0.508 0.746 2215 

30 495 0.363 0.605 1579 

40 577 0.221 0.376 965 

50 625 0.153 0.264 667 

60 635 0.142 0.245 618 

70 617 0.162 0.279 707 

80 573 0.228 0.388 992 

90 509 0.343 0.572 1495 

100 442 0.395 0.658 1721 

110 384 0.451 0.716 1962 

120 334 0.547 0.766 2380 

Table A.6 Unprotected 8xx steel tube column under the 

small compartment fire load.  
Time 

(min) 

Mid-section 

temperature (oC) F/fy E/E0 

Section yield 

capacity (KN) 

0 20 1 1 4355 

5 79 1 1 4355 

10 233 0.744 0.867 3238 

20 593 0.192 0.330 836 

30 715 0.071 0.124 311 

40 723 0.069 0.121 302 

50 708 0.073 0.127 320 

60 626 0.152 0.263 663 

70 537 0.294 0.493 1281 

80 457 0.386 0.643 1681 

90 358 0.501 0.742 2184 

100 279 0.653 0.821 2847 

110 221 0.765 0.879 3336 

120 178 0.849 0.922 3701 
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Table A.7  1-h SFRM insulated 8xx steel tube column 

under the E119 fire load.  
Time 

(min) 

Mid-section 

temperature (oC) F/fy E/E0 

Section yield 

capacity (KN) 

0 20 1 1 4355 

5 31 1 1 4355 

10 72 1.000 1.000 4355 

20 172 0.862 0.928 3754 

30 275 0.661 0.825 2878 

40 376 0.466 0.724 2033 

50 466 0.380 0.634 1659 

60 545 0.278 0.468 1210 

70 613 0.167 0.287 725 

80 668 0.109 0.188 476 

90 701 0.076 0.131 329 

100 716 0.071 0.124 311 

110 726 0.068 0.119 298 

120 736 0.066 0.116 289 

Table A.8  1-h SFRM insulated 8xx steel tube column 

under the large compartment fire load.  
Time 

(min) 

Mid-section 

temperature (oC) F/fy E/E0 

Section yield 

capacity (KN) 

0 20 1 1 4355 

5 29 1 1 4355 

10 59 1 1 4355 

20 121 0.959 0.979 4177 

30 187 0.832 0.913 3621 

40 249 0.711 0.851 3096 

50 308 0.598 0.792 2607 

60 355 0.507 0.745 2211 

70 387 0.445 0.713 1935 

80 405 0.417 0.695 1819 

90 407 0.416 0.693 1810 

100 399 0.421 0.701 1833 

110 388 0.444 0.712 1931 

120 374 0.471 0.726 2051 
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Table A.9  1-h SFRM insulated 8xx steel tube column 

under the small compartment fire load.  
Time 

(min) 

Mid-section 

temperature (oC) F/fy E/E0 

Section yield 

capacity (KN) 

0 20 1 1 4355 

5 31 1 1 4355 

10 72 1 1 4355 

20 192 0.823 0.908 3585 

30 304 0.605 0.796 2638 

40 380 0.458 0.720 1997 

50 420 0.408 0.680 1779 

60 433 0.400 0.667 1744 

70 431 0.401 0.669 1748 

80 421 0.407 0.679 1775 

90 398 0.424 0.702 1850 

100 373 0.472 0.727 2055 

110 349 0.518 0.751 2255 

120 327 0.561 0.773 2442 

Table A.10 2-h SFRM insulated 8xx steel tube column 

under the E119 fire load.  
Time 

(min) 

Mid-section 

temperature (oC) F/fy E/E0 

Section yield 

capacity (KN) 

0 20 1 1 4355 

5 22 1 1 4355 

10 38 1 1 4355 

20 90 1 1 4355 

30 147 0.909 0.953 3959 

40 206 0.794 0.894 3461 

50 265 0.681 0.835 2967 

60 322 0.570 0.778 2482 

70 378 0.462 0.722 2011 

80 431 0.401 0.669 1748 

90 480 0.372 0.620 1619 

100 526 0.313 0.525 1366 

110 568 0.237 0.402 1032 

120 607 0.173 0.297 752 
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Table A.11 2-h SFRM insulated 8xx steel tube column 

under the large compartment fire load.  
Time 

(min) 

Mid-section 

temperature (oC) F/fy E/E0 

Section yield 

capacity (KN) 

0 20 1 1 4355 

5 22 1 1 4355 

10 34 1 1 4355 

20 67 1 1 4355 

30 103 0.994 0.997 4328 

40 140 0.923 0.960 4021 

50 175 0.854 0.925 3723 

60 207 0.792 0.893 3452 

70 233 0.743 0.867 3234 

80 251 0.707 0.849 3078 

90 262 0.687 0.838 2994 

100 266 0.680 0.834 2963 

110 266 0.679 0.834 2958 

120 264 0.682 0.836 2971 

Table A.12 2-h SFRM insulated8xx steel tube column 

under the small compartment fire load.  
Time 

(min) 

Mid-section 

temperature (oC) F/fy E/E0 

Section yield 

capacity (KN) 

0 20 1 1 4355 

5 22 1 1 4355 

10 38 1 1 4355 

20 99 1 1 4355 

30 162 0.881 0.938 3834 

40 211 0.786 0.889 3421 

50 244 0.722 0.856 3145 

60 262 0.687 0.838 2994 

70 271 0.670 0.829 2918 

80 274 0.663 0.826 2891 

90 270 0.671 0.830 2922 

100 262 0.688 0.838 2994 

110 253 0.704 0.847 3065 

120 245 0.720 0.855 3136 
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Table A.13 IP insulated 8xx steel tube column under the 

E119 Fire load.  
Time 

(min) 

Mid-section 

temperature (oC) F/fy E/E0 

Section yield 

capacity (KN) 

0 20 1 1 4355 

5 65 1 1 4355 

10 188 0.819 0.906 3567 

20 324 0.563 0.774 2451 

30 408 0.413 0.688 1802 

40 524 0.307 0.515 1339 

50 637 0.134 0.232 587 

60 711 0.070 0.123 307 

70 736 0.064 0.113 280 

80 766 0.056 0.100 245 

90 854 0.043 0.077 187 

100 920 0.035 0.062 151 

110 959 0.030 0.054 129 

120 984 0.027 0.048 116 

Table A.14 IP insulated 8xx steel tube column under the 

large compartment fire load.  
Time 

(min) 

Mid-section 

temperature (oC) F/fy E/E0 

Section yield 

capacity (KN) 

0 20 1 1 4355 

5 54 1 1 4355 

10 146 0.908 0.952 3954 

20 285 0.640 0.814 2789 

30 351 0.514 0.749 2237 

40 382 0.454 0.717 1975 

50 401 0.419 0.698 1824 

60 417 0.410 0.683 1784 

70 428 0.403 0.672 1757 

80 434 0.400 0.666 1739 

90 432 0.401 0.668 1744 

100 413 0.412 0.687 1797 

110 384 0.452 0.717 1971 

120 349 0.518 0.751 2260 
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Table A.15 IP insulated 8xx steel tube column under the 

small compartment Fire load.  
Time 

(min) 

Mid-section 

temperature (oC) F/fy E/E0 

Section yield 

capacity (KN) 

0 20 1 1 4355 

5 65 1 1 4355 

10 189 0.828 0.911 3608 

20 343 0.530 0.757 2309 

30 462 0.383 0.638 1668 

40 517 0.330 0.551 1437 

50 526 0.313 0.524 1366 

60 527 0.312 0.522 1357 

70 521 0.323 0.540 1406 

80 498 0.361 0.602 1570 

90 440 0.396 0.660 1726 

100 371 0.598 0.729 2607 

110 308 0.598 0.792 2607 

120 254 0.702 0.846 3056 

Table A.16 Concrete-Filled 8xx steel tube column under 

the E119 fire load.  
Time 

(min) 

Mid-section 

temperature (oC) F/fy E/E0 

Section yield 

capacity (KN) 

0 20 1 1 4355 

5 70 1 1 4355 

10 195 0.818 0.905 3563 

20 441 0.396 0.659 1721 

30 619 0.160 0.276 698 

40 709 0.073 0.127 316 

50 737 0.066 0.115 285 

60 787 0.053 0.095 231 

70 877 0.040 0.073 178 

80 917 0.035 0.064 156 

90 930 0.032 0.058 142 

100 977 0.030 0.054 129 

110 985 0.028 0.050 120 

120 993 0.026 0.046 111 
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Table A.17 Concrete-Filled 8xx steel tube column under 

large compartment fire load.  
Time 

(min) 

Mid-section 

temperature (oC) F/fy E/E0 

Section yield 

capacity (KN) 

0 20 1 1 4355 

5 57 1 1 4355 

10 144 0.915 0.956 3986 

20 287 0.638 0.813 2780 

30 412 0.413 0.688 1797 

40 499 0.358 0.596 1557 

50 560 0.253 0.427 1099 

60 585 0.207 0.353 903 

70 580 0.216 0.368 939 

80 548 0.273 0.461 1192 

90 498 0.357 0.596 1557 

100 445 0.393 0.655 1713 

110 400 0.424 0.700 1846 

120 361 0.495 0.739 2157 

Table A.18 Concrete-Filled 8xx steel tube column under 

small compartment fire load.  
Time 

(min) 

Mid-section 

temperature (oC) F/fy E/E0 

Section yield 

capacity (KN) 

0 20 1 1 4355 

5 69 1 1 4355 

10 194 0.819 0.906 3567 

20 504 0.352 0.587 1535 

30 667 0.110 0.190 480 

40 695 0.080 0.139 351 

50 658 0.119 0.205 516 

60 591 0.196 0.335 850 

70 522 0.320 0.535 1392 

80 461 0.383 0.639 1673 

90 383 0.452 0.717 1971 

100 325 0.566 0.775 2464 

110 282 0.649 0.818 2825 

120 248 0.713 0.852 3109 

 


