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Abstract 

The aim of this thesis is to develop a MATLAB computer model for optimum design of 

steel structures via harmony search (HS) algorithm.  The objective of the optimization 

routine is to provide a minimum weight structure while satisfying prescribed constraints 

such as strength and displacement limitations. The HS algorithm is a relatively new 

optimization method that has shown promise when adapted to structural optimization 

problems. Unlike other optimization routines, limited research has been presented 

incorporating this mathematical model. The author of this thesis decided to test the 

applications of the HS algorithm in structural engineering problems. 

The HS algorithm is a meta-heuristic search method recently developed and adapted to 

optimization problems. It uses a stochastic derivative, which utilizes the experiences of 

musicians in Jazz improvisation to find optimal solutions. It differs from classical 

calculus bases optimization techniques that require gradient information by giving each 

decision variable a probability of selection. 

Three examples have been provided showing the capabilities of the HS for least weight 

optimization of truss and frame structures. Both continuous and discrete optimization 

routines are present in this thesis. In the discrete optimization routine, standard steel 

shapes were used in accordance to the American Institute of Steel Construction (AISC) 

shape database. Strength and displacement constraints from the 2005 AISC load and 

resistance factor design specification were used to design.  
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In addition to least weight optimization, damage tolerance optimization of structural 

systems was also considered.  Least weight optimization was performed accounting for 

probable future damage to the structure. A general mathematical model for damage 

tolerant optimization is presented. This method is based on serviceability, ultimate and 

residual capacity requirements. 

It is shown that the HS algorithm can be a powerful tool for optimization problems, 

particularly structural engineering optimization problems. It has the ability to handle 

complex problems that would be very challenging to solve by traditional methods. It 

also, has been shown to be competitive with several other well know meta-heuristic 

optimization methods. 
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Chapter 1: Introduction 

1.1 General 

One of the most catastrophic structural failures in modern history has been the 

collapse of the World Trade Center towers in 2001.  Most individuals do not think twice 

about the structural systems they encounter on a daily basis. They typically view 

structural assemblages such as the twin towers as invulnerable structures incapable of 

collapse.  However, the collapse of the twin towers, among other failures, shed light to 

the public that structures are vulnerable. 

The collapse of the twin towers was found to be from a pancaking action that 

resulted in the towers crushing themselves completely after the planes struck.  The term 

progressive collapse was a widely used term in the structural engineering community 

after the events.  While progressive collapse is not a new phenomenon, it has been a 

source of increased interest due to these large-scale failures. Because of these failures, 

increased attention has been focused upon the concepts of structural robustness, 

reliability, damage and redundancy.  The importance of design procedures that provide 

redundant and robust structures is widely recognized to reduce further failures. 

In its most simplistic form, a structure is "any assemblage of materials which is 

intended to sustain loads" [1]. Typically, if an engineering structure fails it will result in 

loss of life or at the very least significant injury.  For this reason, a great deal of effort 

and work goes into the design of a structure so it can properly sustain prescribed 

loadings. However, failures still occur. Structural failure can be induced by a wide 
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variety of events such as, deterioration of the structure over time (corrosion), sudden 

impact damage (blast), natural events (earthquake, tornado, and typhoon) and improper 

initial design.  [1] 

The concept of robustness, redundancy and static indeterminacy are key in many 

design philosophies and widely recognized as an important aspect in structural 

engineering. However, finding a consistent definition of the redundancy and robustness 

can be challenging. For example, the definition of redundancy may be provided in terms 

of collapse load, number of plastic hinges, the probability of system failure, etc. Others 

tend to use the term redundancy and static indeterminacy interchangeably. It has been 

that the degree of static indeterminacy does not correlate to structural redundancy.  

Structures with lower degree of static indeterminacy can often times have greater 

redundancy than their higher degree counter parts. This is due to the fact the 

redundancy relies on a wide variety of factors like, member size, material properties, 

structural topology, loading sequence and applied loading. Generally, redundancy is the 

ability of a structural system to redistribute loads among members that cannot be 

sustained by another member due to damage. Whereas, robustness is the ability of a 

structural system to sustain a specific amount of damage not disproportionate to the 

cause of the damage itself. [2] 

In this thesis, the effects of prescribed damage scenarios on several structural 

systems are investigated. The structural systems investigated are then damaged from 

progressive deterioration of member material properties. The amount of damage is 



16 

 

prescribed by a damage index associated with specific patterns of cross-sectional 

deterioration. Once the damage is defined, structural performance will be evaluated and 

compared to the original intact structure.   

1.2 Problem statement 

The methods of finding optimum design solutions for structural systems can be 

very cumbersome to solve by hand, due to the large number of design variables present 

in the problem.  The designer must decide which parameters are important for their 

current problem.  Typically, in structural optimization problems, minimum weight is the 

desired search criterion. Optimal design of structural systems are normally limited by 

several constraints such as choice of material, feasible strength, displacements, 

deflection, size constraints, load cases, support conditions, and beam-column behavior. 

This research utilizes Harmony Search optimization algorithm for optimizing structural 

systems member sizes with both discrete and continuous design variables. 

1.3 Objectives 

The depth of this thesis is to develop a computer model that utilizes the harmony 

search algorithm for optimization of steel structures.  Strength constraints from the 

AISC Load and Resistant Factor Design specification will be used along with, 

displacement, deflection and member size constraints.  This model will then be adapted 

for damage tolerant optimization. Lastly, a brief section will discuss the correlation 

between damage and reliability. 



17 

 

1.4 Methodology 

In order to achieve the objectives presented in section 1.3, the following approach was 

taken: 

1. Perform a literature review of previous research related to optimization and 

damage tolerance 

2. Develop a suitable harmony search algorithm code 

3. Test the developed code to benchmark examples 

4. Implement damage tolerance constraints into the harmony search routine  

5. Compare optimization results 

6. Draw conclusions from the results  

1.5 Organization of thesis 

Chapter 2 presents the literature review of the AISC code, beam-column connections, 

behavior of semi-rigid connections, optimization and uncertainty in engineering. 

Chapter 3 presents an explanation of optimization and various techniques followed by a 

detailed overview of harmony search optimization. Chapter 4 covers the topic of risk 

and reliability in engineering. Chapter 5 presents the modeling of structural systems. 

Chapter 6 presents design examples of the topics covered in previous chapters. Chapter 

7 presents a conclusion and  recommendations for future work.  
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Chapter 2: Literature Review 

2.1 Introduction 

This chapter discusses background information that is relevant to the current study.  As 

discussed in Chapter 1, the goal of this research is to provide a computer model capable 

of optimizing steel structures.  The information presented in this chapter provides a 

foundation for achieving this goal. The following sections discuss the AISC code 

specifications, connections, optimization, harmony search algorithm, reliability and 

structural damage.  

2.2 AISC-LRFD specification of connections 

Connections are the components that hold a steel structure together. Typically, 

structural connections are bolted or welded together in different configurations 

depending on the system.  According to AISC, there are several types of steel 

connections: simple framing (unrestrained), rigid-frame (fully restrained), semi-rigid 

framing (partially restrained) and truss connections. [3] 

2.2.1 Truss connections 

In truss connections, only axial forces are transferred through the connection. They 

allow a full range of rotation and are considered one of the most simplistic connections. 

[3] 

2.2.2 Simple connections 

A simple connection, also known as a shear connection, can transmit shear and a 

negligible moment force through the connection. The connection allows unrestrained 
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relative rotation between the framing elements and shall have sufficient rotation 

capacity to accommodate the required rotation determined by analysis.  Inelastic 

rotation of the connection is acceptable. [3] 

2.2.3 Moment connections 

Moment connections, unlike simple connections are capable of transmitting moment 

forces across the connection. The LRFD specification for structural steel buildings 

classifies two types of moment connections: fully restrained (FR) and partially 

restrained (PR). When connection restraint is considered strength, stiffness and ductility 

characteristics must be included in the analysis and design of the structural system. [3] 

1. Fully-Restrained (FR) Moment Connections transfer the moment force while 

allowing a negligible amount of rotation between members. In analysis, this may 

be assumed as zero rotation between members or fully rigid connections. The 

connection shall have sufficient strength and stiffness to maintain the original 

angle between members at the strength limit states.  They are particularly useful 

when a framing system needs to provide more flexural resistance and reduce 

lateral deflections. [3] 

2. Partially-Restrained (PR) Moment Connections transfer the moment force while 

allowing rotation between members.  They have insufficient rigidity to maintain 

the original angle between the column and beam. In analysis, force-deformation 

response characteristics of the connection shall be included. [3] 
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Figure 1 - Connection Rotation [6] 

 

2.3 Types of connections  

2.3.1 Single web angle 

The single web angle connection is shown in figure 2 and consists of an angle 

connecting the web of the beam to the column flange. Number of bolts, angle thickness, 

web thickness and column thickness, influence the connections behavior. [4] 

 

Figure 2 - Single web angle [6] 
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2.3.2 Double web angle 

The double web angle connection shown in figure 3 and consists of two angles 

connecting the web of the beam to the column flange. Number of bolts, angle thickness, 

web thickness and column thickness, influence the connections behavior. [4] 

 

Figure 3 - Double web angle [6] 

2.3.3 Header plate 

The header plate connection is shown in figure 4 and consists of an end plate that's 

length is less than the depth of the beam, welded to the beam and bolted to the column. 

The behavior of this connection is influenced by plate thickness, plate depth and beam-

web thickness.  This connection performs similar to the double web angle connection. 

[4] 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4 - Header plate [6] 
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2.3.4 Top and seat angles 

The top and seat angle shown in figure 5 consists of two angles that are connected to the 

top and bottom flanges of the beam then connected to the flange of the column. The top 

angle is used for lateral stability and is not considered to carry gravity loading. The 

bottom or seat angle only transfers vertical loading and provides an insignificant 

amount of moment restraint. The number of bolts and angle thickness influence 

behavior. [4] 

 

Figure 5 - Top and set angle [6] 

2.3.5 Top and seat angles with double web angles  

The top and seat angle with double web angles is a combination of the top and seat 

angle connection and double web angle connection as seen in figure 6. Depth and 

thickness of the angles, column flange or web thickness and gauge distance of bolts in 

the vertical angles govern this connections behavior. Plate thickness, column flange 

thickness and moment arm for column flange bolts influence the behavior of this 

connection. [4] 
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Figure 6 - Top and seat with double web angle [6] 

2.3.6 Extended end plate without column stiffeners 

The extended end plate connection shown in figure 7 is comprised of a plate welded to 

the end of the beam then fastened to the column.  The plate extends past both the 

tension and compression flanges of the beam. Plate thickness, column flange thickness 

and moment arm for column flange bolts influence connection behavior. [4] 

 

Figure 7 - Extended end plate [6] 

 2.3.7 Extended end plate with column stiffeners 

The extended end plate with column stiffeners seen in figure 8 is the same 

configuration as the previous connection only with the addition of column stiffeners. [4] 
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Figure 8 - Extended end plate with stiffeners [6] 

 2.3.8 T-Stub 

The T-stub connection shown in figure 9 is similar to the top and seat 

connection except tee sections replaces the angles. This configuration provides a very 

rigid joint. T-stub thickness and width influence the behavior of this connection. [4] 

 

Figure 9 - T-stub [6] 

2.4 Behavior and modeling of semi-rigid connections 

A beam-column connection is subjected to axial and shear forces along with 

bending and torsion moments. When working with planar frames, the torsion moments 
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are often neglected. Axial and shear deformations are typically neglected because they 

are small relative to bending deformation of most connections. This leaves only the 

rotational deformation of the connection to be considered in semi-rigid connection 

framing. A semi-rigid connection is able to rotate through an angle θr due to an applied 

moment M previously shown in figure 1.  The angle θr is the relative rotation of the 

beam and the column taken at the connection.[4] 

Several connections were experimentally tested by Frye and Morris to show the 

rotation-moment relationship.  The connections moment-rotation behavior is non-linear 

in nature and falls between fully fixed and ideally pinned.  The relationship of several 

types of connections is shown in figure 10. [5] 

 

Figure 10 - Moment rotation curves [5] 
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2.5 Mathematical modeling of semi-rigid connections 

The most precise and dependable knowledge of beam-column connection 

behavior is found through experimental testing, but these test can be very complex and 

expensive and are not practical for design practice. To take in account connection 

behavior in structural analysis, connections are typically represented by mathematical 

models representing rotation-moment relationships. The non-linear behavior of a 

connection is difficult to represent exactly by mathematical representation and the 

models used are approximates due to simplifications.  

 2.5.1 Linear model 

The most simplistic connection model is single-stiffness linear model proposed 

by Batho, Rathbun and Baker with the following expression: [6] 

        1 

where M represents the connection moment and R and θ represent the stiffness and 

rotation respectively.  

2.5.2 Polynomial model 

The linear model is an over simplification of connection behavior and does not 

represent the true behavior of a connection. Polynomial models were proposed to 

provide a more accurate representation of connection behavior. Frye and Morris used an 

odd power polynomial model to represent the moment-rotation curve as follows: [6] 

                         2 
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where θ is the connection rotation and M is the moment acting on the connection. The 

variable K is the standardization factor determined by the connection type and geometry 

and C1, C2 and C3 are curve-fitting constants obtained by using the least squares 

method. These constants for various connection types can be seen in table 1. [5] 
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Table 1 - Moment rotation curve fitting equations [6] 
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2.5.4 Three-parameter power model  

Chen and Kishi adopted the power model to represent the rotation-moment 

relationship for beam-column connections as shown: 

  
     

              
  3 

    
  

  
 

   

                    4 

  
 

                 
  5 

  

where Rki representes the initial stiffness, Mu is the ultimate moment capacity and n is 

shape parameter.[6] 

2.6 Optimization of steel structure 

As today's world continues to increase in population with world resources 

declining the need for economical designs is at the forefront for structural engineers. 

More structures are needed for living and production than ever before which is why 

these structures need to be designed using the minimum amount of material available. 

Due to this need, optimization algorithms prove to be a useful tool when designing steel 

structures. These algorithms can be implemented while staying within design 

constraints specified from steel design code and search for a minimum weight or cost 

structure. Formulation of these optimization algorithms is through mathematical models 
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with discrete design variables. The reason for discrete design variables is so the design 

model can adopt standard steel sections commonly used in practice.  

Due to the complexity of structural optimization problems, heuristic search optimization 

methods have been the preferred choice for designers. Genetic algorithms, simulated 

annealing and ant colony optimization are some of the more popular heuristic search 

methods used in present optimization problems.  These methods are easily adaptable to 

structural engineering optimization problems. 

Several papers have focused on the optimization of steel structures. 

Pezeshk et al.., (2000) [7], researched the design of nonlinear framed structures 

using genetic optimization. The paper presented a genetic algorithm approach for 

optimum design of 2D frames using discrete structural elements. The designs were in 

compliance with the AISC-LRFD (1994) code. Both linear and geometrically nonlinear 

analysis were performed to learn how P-∆ effects influenced optimal designs. It was 

concluded that the P-∆ effects did not significantly influence the optimal designs, but in 

some cases, it could yield a better design. In addition, it was found that the proposed 

optimization approach was effective optimization technique.  

Hayalioglu et al.., (2001) [8], researched optimum load and resistance factor 

design of steel space frames using genetic algorithm. The paper presented a genetic 

algorithm to design moment-resisting space frames subjected to AISC-LRFD 

specifications for minimum weight. They utilized standard steel sections from AISC 

wide-flange (W) shapes. The proposed frame was subjected to wind loading in 
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accordance to the Uniform Building Code (UBC). Comparisons between AISC-ASD 

and AISC-LRFD designs were made and showed that the former code resulted in lighter 

structures for the presented examples.   

Hayalioglu and Degertekin (2005) [9], researched minimum cost design of steel 

frames with semi-ridged connections and column bases via genetic optimization. The 

optimization algorithm obtained the minimum total cost which comprised of total 

member and connection costs by selecting suitable sections from the AISC wide-flange 

(W) shapes. Displacement, stress and size constraints in accordance to the AISC-LRFD 

code were imposed on the frame. Comparisons were made between AISC-ASD and 

AISC-LRFD and the former code provided lighter structures. They also compared semi-

rigid connections to rigid connections and found that reducing connection stiffness 

caused an increase in both frame cost and sway. The reason for these increases is the 

more flexible frame the larger the displacements which was compensated by  increasing 

the member size to stay within code constraints.  

Lee and Geem (2005) [10], presented a structural optimization method based on 

harmony search meta-heuristic algorithm. The algorithm was conceptualized using the 

musical process of Jazz musicians searching for a perfect stat of harmony. The 

advantage of HS is that unlike other optimization methods it does not require initial 

values and uses a random search routine instead of a gradient search. Several structural 

truss examples were present in the study to show the effectiveness and robustness of the 
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new approach. The findings showed that the HS can be a powerful search and 

optimization method for solving structural engineering problems. 

Saka, (2008) [11], researched optimum design of steel sway frames using 

harmony search algorithm to British Standard BS5950. The optimum design algorithm 

developed imposed behavior and performance constraints in accordance to BS5950.  

The optimization routine used standard sections from the Universal beam and column 

sections of the Britich Code. Optimization results obtained from the harmony search 

algorithm were compared to genetic algorithms and produced lighter results.  

2.7 Harmony search algorithm in structural engineering 

Harmony search (HS) is a relatively new meta-heuristic search algorithm 

developed by Geem et al. [10]. The original purpose for the algorithm was for solving 

combinatorial optimization problems in applied mathematics, but it can be adapted to a 

wide variety of optimization problems. HS has been applied to a range of civil and 

structural engineering problems such as the optimization of trusses, frames, dams, etc. 

[12] 

2.8 Uncertainty and damage in structural engineering 

In its most simplistic form, a structure has been defined as "any assemblage of 

materials which is intended to sustain loads". Typically, if an engineering structure fails 

it will result in loss of life or at the very least significant injury.  For this reason, a great 

deal of effort and work goes into the design of a structure so it can properly sustain 

prescribed loadings. However, failures still occur. Structural failure can be induced by a 
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wide variety of events such as, deterioration of the structure over time (corrosion), 

sudden impact damage (blast), natural events (earthquake, tornado, and typhoon) and 

improper initial design. [1] 

The concept of robustness, redundancy and static indeterminacy are key in many 

design philosophies and widely recognized as an important aspect in structural 

engineering. However, finding a consistent definition of the redundancy and robustness 

can be challenging. For example, the definition of redundancy may be provided in terms 

of collapse load, number of plastic hinges, the probability of system failure, etc. Others 

tend to use the term redundancy and static indeterminacy interchangeably. It has been 

presented that the degree of static indeterminacy does not correlate to structural 

redundancy.  Structures with lower degree of static indeterminacy can often times have 

greater redundancy than their higher degree counter parts. This is due to the fact the 

redundancy relies on a wide variety of factors like, member size, material properties, 

structural topology, loading sequence and applied loading. Generally, redundancy is the 

ability of a structural system to redistribute loads among members that cannot be 

sustained by another member due to damage. Whereas, robustness is the ability of a 

structural system to sustain a specific amount of damage not disproportionate to the 

cause of the damage itself. [13] 

All aspects of life come with uncertainty and the same holds true for all sectors 

of engineering. Structural engineers make many decisions during the design and 

construction of structures. Many of these decisions are made with uncertainty, but not 
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often considered due to the uncertainty being accounted for in design codes. 

Uncertainties arise in many aspects of structural engineering in the form of nominal 

capacities, resistance factors, design loads and load factors. Allowable stress design 

utilizes a safety factor to handle these uncertainties whereas load and resistance factor 

design has multiple factors.  However, not all uncertainty can be accounted for in the 

design code.  Structural engineers have to be aware of the uncertainty present in their 

calculations and be able to account for it accordingly.  

2.10 Concluding remarks 

Based on the study of several papers, it was concluded that the new meta-heuristics 

algorithm harmony search proved to be a powerful tool for optimization of structural 

systems.  Many of the publications reviewed showed the Frye-Morris polynomial model 

provides an accurate representation for moment-rotation connection behavior. Lastly, it 

was found that the extended end plate connection is a popular connection used in steel 

structures and optimization routines.  
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Chapter 3: Optimization 

3.1 Introduction 

As previously discussed in chapters 1 and 2, mathematical optimization, simply is the 

process of making something the best it can possibly be.  Traditionally, optimization is 

performed using calculus-based methods such as numerical linear and nonlinear 

programming methods.  These methods require substantial gradient information and can 

be sensitive to starting points. They are ideal for obtaining global optimum points in 

relatively simple models.  However, real-world engineering problems tend to be very 

complex in nature and prove hard to solve using traditional methods. More than one 

optimal point may be present in these complex problems and the results would be very 

sensitive to the selected starting point.  The optimal solution may not necessarily be the 

global optimum for the problem. In addition to these issues, objective functions and 

constraints can have multiple or sharp peaks resulting in difficult or unstable gradient 

computations.  The drawbacks of traditional techniques led to the need of other 

optimization methods.  Researchers utilized meta-heuristic algorithms based on 

simulations to solve these complex problems.  These algorithms are typically based 

around natural phenomena and each have a unique set of rules and randomness 

intrinsically built in.  The following sections provide a brief overview of some of the 

more popular meta-heuristic algorithms followed by an in depth explanation of the 

harmony search method.  
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3.2 Heuristic optimization techniques 

Heuristic comes from the Greek work heuriskein, which means to discover.  In 

optimization, it refers to solution strategy by trial and error to produce a reasonable 

solution to complex optimization problems.  Due to the complexity of some problems it 

would be infeasible to search for all possible solutions, the aim of this strategy is to find 

an acceptable solution in a reasonable amount of time.  There is no way to know if the 

best solution can be found, nor will the algorithm work or why.  A heuristic algorithm is 

an efficient and practical approach that has been shown to provide good results, but no 

guarantee of optimality.  

Heuristic algorithms typically fall into three broad categories; simulated annealing, 

traditional genetic algorithm and evolutionary algorithms. The last two categories are 

very similar but have slight differences in the specifics of the algorithms. 

3.2.1 Genetic algorithm (GA) 

Genetic algorithms mimic the process of biological evolution in order to solve problems 

and to model evolutionary systems. The foundation for GAs revolves around the 

premise that over many generations, natural populations evolve according to the 

principles of natural selection, survival of the fittest.  By replicating this process GAs 

are able to "evolve" solutions to real world problems. The main goal of GAs is the 

survival of robust solutions and elimination of the weak solutions in a population. GAs 

were first proposed by John Holland in the 1960s and further developed by Holland and 
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his students [14]. The procedure for the genetic algorithm can be time consuming and 

the optimum solution may not be global ones, but they are feasible both mathematically 

and practically.  

3.2.2 Simulated annealing (SA) 

Simulated annealing (SA) is an accepted local-search technique, which utilizes the 

analogy between the way metals cool and freeze into a minimum energy crystalline 

structure (the annealing process). SA approaches the optimization problem by 

navigating the search space iteratively stepping from one solution to another solution. It 

begins at a "high" temperature, which enables it to have wide range of solutions so it 

can move freely around the solution space.  As the temperature declines, it will settle 

into a relatively small range, ultimately giving an optimal solution. It was developed in 

1983 to deal with highly nonlinear problems by Metropolis et al.. [15], and proposed by 

Kirkpatrick et al.. for optimization. 

3.2.3 Ant colony optimization algorithm (ACO) 

Ant colony optimization (ACO) is an algorithm based off ant methodology for finding 

food, and it is used to solve discrete optimization problems. The optimization problem 

can be transformed into a problem of finding the best path on a graph.  The "ants" 

incrementally build solutions by moving among the graph.  It utilizes several artificial 

characteristics such as memory, visibility and discrete time to come to an optimum 

solution. Dorigo et al.. was the first to utilize this method for optimization problems 

[16]. 
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3.2.4 Harmony search optimization algorithm (HS) 

Harmony search (HS) is a meta-heuristic algorithm that Geem et al.. developed in 2001 

and makes use of the analogy between the performance of musicians and searching for 

optimal solutions. When musicians, play a song, he/she selects musical notes to give the 

best overall harmony [10,12].  The optimization solution vector is analogous to the 

harmony created by the musicians, whereas the musician's improvisations are analogous 

to the optimization search schemes. HS algorithm, unlike previous mentioned methods, 

does not require initial values for the decision variables. It utilizes a stochastic random 

search and has light mathematical requirements so it can easily be adapted to a wide 

range of optimization problems [10,12].   

3.3  Basic of harmony search algorithm 

The definition of harmony is the combination of simultaneously sounded musical notes 

to produce chords and chord progressions having a pleasing effect. Do, Re, Mi, Fa, Sol, 

La, and Si are notes, which represent a specific singular sound.  HS algorithm imitates 

musical improvisation process where the musicians try to find a better harmony.  

Musicians are always striving to attain the best harmony, which can be accomplished 

through numerous practices of changing the notes that are played.  Figure 11 gives a 

visual representation of the analogy between music and mathematical representation. 

3.4  Harmony search optimization algorithm in structural engineering 

Figure 12 illustrates the analogy once again in terms of a steel frame design.  As 

explained by Lee and Geem, harmony memory (HM) is the most crucial part of the HS 
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methodology.  Geem's inspiration for HS was musically driven, in particular, the 

improvisation of jazz music. The method jazz musicians use to select their notes can be 

broken down into three different categories; play from memory, play from memory with 

a slightly different pitch, or randomly play another note. Utilization of these three 

processes makes up the core of the harmony search algorithm [10,12].   

Many jazz performances comprise of several musicians each playing a different 

instrument, such as a guitarist, saxophonist and a pianist.  Each member has a range of 

pitches they are capable of playing; guitarist [Do, Re, Mi]; saxophonist [Mi, Fa, Sol]; 

pianist [Sol, La, Si].  Each one is capable of playing any of their available pitches. 

Consider the following notes are played: guitarist Do; saxophonist Mi; pianist Sol. This 

would result in a harmony of [Do, Mi, Sol] [10,12].   

Figure 11 - Harmony search analogy [12] 
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3.4.1 Initialize the harmony search parameters 

The HS algorithm parameters are selected in the first step.  They are problem dependent 

and can be adjusted accordingly. These parameters are as followed: 

 Harmony Memory Consideration Rate (HMCR). 

 Harmony Memory Size (HMS). 

 Pitch Adjustment Rate (PAR). 

 Number of Improvisations (NI).  

Figure 12 - Harmony search and steel frames [12] 
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3.4.2 Initialize harmony memory 

In the second step, the harmony memory (HM) matrix is randomly generated with 

design variables.  Each row of the harmony memory matrix contains the values of 

design variables which were randomly selected from feasible solutions.  The matrix has 

N columns where N represents the total number of design variables and it has HMS 

rows, which was previously selected.  The harmony memory matrix can be seen in 

equation 6 [10,12].   
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3.4.3 Improvise a new harmony 

In the third step, a new harmony vector,       
    

      
   is improvised. There are 

three rules to choose a value for each decision variable: memory consideration 

(HMCR), pitch adjustment (PAR) and random selection (RN).  In harmony memory 

considering rate, the value of the first decision variable can be chosen from any discrete 

or continuous value in the specified HM range with the probability of HMCR which 

varies between 0 and 1. Values of the other decision variables can be chosen in the 

same manner. However, there is still a chance where the new value can be randomly 

chosen from the entire set possible values with the probability of (1-HMCR) [10,12].   
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Any component of the new harmony vector, whose value was chosen from the HM, is 

then examined to determine whether it should be pitch-adjusted. This operation uses 

pitch adjusting parameter (PAR) that sets the rate of pitch-adjustment decision as 

follows [10,12]: 

 
  
   

              
                 

  
8 

If the pitch adjustment decision for   
  is yes,   

  is replaced with       (the     element 

in   ), and the pitch-adjusted value of       becomes 

   
           for discrete design variables 

  
     

    for continuous design variables 

9 

The algorithm chooses a value form a neighboring index m with the same probability 

[10,12].   

3.4.4 Update the harmony memory 

If the new harmony       
    

      
   is better than the worst harmony in the HM in 

terms of objective function value, the new harmony is included in the HM and the 

existing worst harmony is excluded from the HM [10,12].   

 3.4.5 Termination criteria 

In the final step, the computation is terminated when the termination criterion is 

satisfied, typically a prescribed maximum number of iterations. Otherwise, Steps 3 and 

4 are repeated until the termination criteria have been met [10,12] 
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3.4.6 Harmony search flow chart 

Table 2 - Harmony search flow chart legend 
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Figure 13 - Harmony search flow chart [12] 
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Figure 12 

3.5 Comparison between harmony search and other optimization techniques 

3.5.1  Harmony search example: 10-bar planar truss 

 

 

 

 

 

 

 

 

 

 

The cantilever truss, shown in figure 14, has been previously analyzed using various 

mathematical optimization methods.  The material density for the truss was 0.1 lb/in
3
 

and the modulus of elasticity was 10,000 ksi.  Stress limitations were +/- 25 ksi, and 

displacements at each node were limited to +/- 2.0 inches in both x and y directions. 

The loading case used was with two single loads of Q=100 kips.  The minimum cross-

sectional area of the members was 0.1in
2
 and there were no maximum area limitations. 

Table 1 provides the data from this thesis along with several other publications for the 

same configuration. The one of most interest to this paper would be the findings of 

Kang Seok Lee [10].  Lee utilized a basic harmony search to find a minimum weight of 

Figure 14 - 10 bar truss configuration  



46 

 

5057.88 lbs, which is the lowest of all the studies found in this thesis. The same 

harmony search methodology was ran using MATLAB for this thesis, it performed 

better than most of the other reports, but was unable to replicate the same results Lee 

found.  The results were very close with only a 0.13% difference.  Different formulation 

of the constraints and the constraint handling methods could be the reason for the 

discrepancy. The MATLAB code ran for this thesis utilized a static penalty function in 

the handling of constraints. The harmony search optimization code used for this 

problem provided an adequate answer and will be used for the damage tolerant 

optimization routines. 
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Table 3 - 10 bar truss optimization comparison [12] 
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3.6 Damage tolerant optimization 

3.6.1 General mathematical formulation 

Find: 

 Design Variables                 
       10 

That minimizes: 

 Objective Function:                                         11 

The feasible set S belongs to an n-space determined by a set of equality and inequality 

conditions: 

 Equality        

Inequality              

12 

13 

For damage tolerant optimization the objective function is composed of: 

 Weight         

 Intact Capacity                      

 Residual Capacity        

Displacements        

14 

15 

16 

17 

Damage tolerant objective function: 

                 
  18 

The design variable vector for a damage tolerant truss system is made up of member 

areas 

                 
  19 

Bounds can be imposed on the cross-sectional areas resulting in the following feasible 

set for damage tolerant optimization  

                                        20 
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The above multi-objective problem can be transformed into a series of single objective 

minimization problems using the  -constraint method.  

       21 

Satisfying  

      
  

     
  

          
                  

                               

22 

23 

24 

25 

The required residual capacity   
  can be varied to cover the entire solution set. For this 

study we were focused on the influence of residual capacity requirements on the 

optimization results.  

Frangopol and Klisinksi proposed a three load level checking design; nominal load 

(   , ultimate load (   , and the residual load (   . Nominal and ultimate loads are 

used to check the serviceability and ultimate capacity requirements, respectively.   The 

residual load is used to check the residual capacity requirement under potential future 

damage conditions to the structural system.  Damage conditions can be represented by 

reductions in stiffness of members, complete removal of members, or combination of 

these.   

In this thesis, damage conditions are assessed by complete removal of a structural 

member.  The removal of a structural member creates a damaged structural system that 

will have a different performance from the original intact structure.  This process can be 

repeated for every member since it is assumed all damage conditions are equally 
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probable.  Once the member is removed, the damaged structural system is analyzed to 

find out its load capacity.   The damage system that provides the lowest capacity will 

define the residual capacity of the intact structural system, as follows: 

                         17 

where    is the capacity of the structure having member   removed from the system. 

This approach is only valid for statically indeterminate structures.   Statically 

determinate systems require the contribution of all members to function.   If a member 

was removed from a determinate system it would collapse.   Statically indeterminate 

structures are inherently redundant.  This allows the possible removal of one or more 

members from the system without the potential of collapse.   Some systems may still 

have critical members present that cannot be removed without resulting in a system 

collapse.  The correct indeterminate configuration must be chosen for the system to 

allow the consideration of residual capacity in structural optimization. 
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Chapter 4: Structural Reliability 

4.1 Introduction 

Structural reliability revolves around the uncertainties associated with the design of 

structures and assessing the safety of the structure.  Reliability is a relatively new 

technique in the structural engineering field that became prominent in the 1980's.  It was 

first implemented in the AISC code in the form of the load resistance factor design 

(LRFD) in 1986 as an alternative to the existing allowable stress design (ASD).   

Most engineering problems are solved under the assumption of deterministic values (i.e. 

no randomness is involved in the value being used).  In dealing with real world 

problems, uncertainties are unavoidable. Engineers must recognize the presence of 

uncertainty and account for it appropriately. Uncertainty can be classified into two 

expansive categories: First, those associated with natural randomness (aleatory) and 

second those associated with inaccuracies in human prediction and estimations 

(epistemic). When engineers are dealing with uncertainty, their goal is to reduce the 

total amount present in the current problem.  The total uncertainty in a problem is the 

combination of both aleatory and epistemic uncertainties. Aleatoric cannot be reduced 

due to its intrinsic randomness, i.e., one would be hard pressed to limit the amount of 

earthquakes, storms, and other natural events. However, epistemic can be reduced by 

increasing our knowledge and providing better estimations and predictions. [17] 

Epistemic uncertainty in structural engineering would be material properties such as 

yield strength, modulus of elasticity, thickness, etc.  The random behavior of the basic 
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strength can cause the strength of the structure to vary beyond acceptable limits.  To 

account for this random behavior one must quantify the uncertainty, or randomness to 

account for this fluctuation of material properties. Uncertainty may be calculated using 

simulation techniques, such as Monte-Carlo simulation, which allows the values to be 

generated based on their statistical distribution (probability density function). 

Alternatively, the uncertainty can be estimating via first-order reliability method 

(FORM) or second-order reliability method (SORM). [17, 18] 

The truss structure is defined as being made up of elements that can be in one of two 

states, an initial linear elastic state (safe) or a final zero-stiffness state (failure).  This 

type of behavior is consistent with brittle material properties.  For this type of structure, 

one can identify sequences of element failures that would lead to a structural collapse 

(failure event).  Structural failure will occur if any failure event were to arise, i.e., the 

structural failure is a union of all failure sequences.  This basic format allows 

conventional probability formulations in terms of unions and intersections to be used to 

represent the structure failure event. [18] 

An individual structural member is considered safe or reliable when the capacity of the 

member exceeds the demand being placed on the member.  A degree of uncertainty will 

be associated with both the load (L) and the resistance (R).  To understand the random 

nature of L and R the uncertainty must be quantified and evaluated. This is typically 

done through a series of test such as the ones performed by Galambos and Ravindra in 

1978 on the properties of steel [19].  From these results, probability density functions 



53 

 

can be formulated to give a representation of the random properties of the material. The 

probability of safe performance      can be expressed as:  
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where       and       are the probability density functions of R and L and           is 

their joint probability density function. [18] 

This concept can be delineated by figure 1 where the independent failure probability of 

both the L and the R is shown.  If an incremental load value dl is considered, the 

probability of the load value falling into the interval dl and the strength value 

simultaneously exceeding the load value at that point gives the reliability of that 

segment     which can be expressed as: 
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where:    represents the cumulative distribution function of R and       is indicated as 

area    in figure 15. The term         is represented by area,   . [18] 

Since the reliability of the members involves the probability of the strength exceeding 

the load, the total reliability      of the member is expressed as: 
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Failure is defined as the probability that the member will not survive. This means that 

the probability of failure      can be expressed as: 
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The failure probability is often computed from the reliability index  . 
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where   is the distribution function of the standard normal variety. The reliability index 

graphically depicts the shortest distance from the origin to a failure surface in standard 

normal space. [18] 

 

 

 

 

 

 

  

Figure 15 - Reliability diagram [18] 
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Chapter 5: Modeling of steel structures 

5.1 Introduction 

One of the most critical steps in structural analysis is the modeling process of how 

members will relate to each other.  A model, via finite element analysis software or user 

defined code needs to provide an accurate representation of its members and 

components to function properly.  One of the most difficult parts of structural analysis 

is developing a sound and accurate representation of these members.  Rarely, if ever, it 

is possible to model a structural system exactly as it occurs in nature, the user must 

make some general assumptions about how the structure will behave.  This assumptions 

assume structural material deform according to basic mechanics of materials. The 

degree of accuracy typically depends several factors such as the complexity of the 

model, time and cost. 

5.2 MATLAB 

Structural analysis for this thesis was performed in the MATLAB computer program 

using the direct stiffness method. Using the stiffness method requires an understanding 

of the concept of kinematic degrees of freedom (DOF). The kinematic degrees of 

freedom of a body are those motions that describe its position relative to some arbitrary 

base position.  For example, if we consider a point in Cartesian space we can measure 

its movement by three translations u, v, and w in the x, y, and z directions. A rigid body 

in space can have rotational movement as well.  To consider these movements we need 

to measure       and   , the rotations around the x, y, and z axes respectively, to 
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completely describe the motion of points on a rigid body.  This assumption assumes 

rigid body motion. If one were to consider a deformable body, there would be an 

infinite number of degrees of freedom. Each point on the body could move relative to 

its surrounding points. 

When analyzing structures, part of the challenge is to identify which degrees of freedom 

are to be used. If the structure is a deformable body with an infinite number of degrees 

of freedom, we must choose between "exact methods" and "approximate or numerical 

methods." The exact methods require the solution to differential equations with the 

appropriate boundary conditions applied. However, due to complex and irregular shapes 

solving these differential equations can be very difficult, if not impossible.  This is why 

approximate methods are typically used to solve engineering problems. 

Classical approximate solutions are usually based on approximating the displacement or 

stress fields in the body with series approximations or finite differences.  This reduces 

the degrees of freedom from infinity to the number of coefficients in the approximating 

function. The accuracy of these methods depends heavily on how well the 

approximating function simulates the actual solution.  

In finite element methods, the structure is approximated as a series of discrete elements 

that use various techniques to represent internal behavior associated with the element. 

Typically, when representing buildings, bridges, and other structures line elements are 

used. These are finite elements with nodes located at each end of the element. The 

structural degrees of freedom are all of the element degrees of freedom. This can result 
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in a very large number of degrees of freedom. However, with the advancements of 

computers large problems can be solved with minimal effort.   

5.2.1 Modeling of truss 

The forces in a truss element are completely determined if the displacements of the 

joints and the axial loads applied directly to the element are known. If we ignore 

element loads, the behavior of an entire truss can be determined if displacements of all 

the nodes are known; the nodal displacements are the degrees of freedom for 

formulating the problem. Truss members are represented by line elements that only 

support axial forces. 

5.2.2 Modeling of Frame 

Planar beam elements have 4 degrees of freedom. When combined with the truss 

elements degree of freedom it can be used to represent a frame element with 6 degrees 

of freedom (3 per node) capable of recognizing both axial and bending deformations. 

However, at the element level, these two basic types of response do not intact with each 

other as long as small deflections are considered. Bending of the element does not 

change the length of the member. 
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 5.2.3 Stiffness method flow chart 

Figure 16 - Stiffness method flow chart 
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5.2.4 Sources of Nonlinearity 

In linear elastic analysis, the materials investigated are assumed linear elastic, meaning 

the material is unyielding and its properties unchanging.  The equations of equilibrium 

are formulated on the geometry of the unloaded initial structural configuration.  It 

assumes very small subsequent deformations. This approach has the ability to treat axial 

force, bending moments and torques as uncoupled actions in stiffness equations. 

Several options are available to address the issues from the linear elastic assumptions.  

These can be generalized into two categories, geometric nonlinearities and material 

nonlinearities. The first category, geometric nonlinearities continues to treat the 

structure as an elastic material but includes the effects of deformation and finite 

displacements in formulating the equations of equilibrium.  The latter category, material 

nonlinearity considers the effect of changes in member material properties under load.   

5.2.5 Semi-rigid connection nonlinearity 

Semi-rigid connections are a source of material nonlinearities.  The modeling of semi-

rigid connections is typically handled by modifying the member stiffness matrix to 

account for the connection flexibility via end-fixity factors. The implementation of the 

concept of end-fixity factor into frame analysis can be done by multiplying the rigid 

member stiffness matrix   , by a correction matrix,      seen in equations 31. [6] 
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where end-fixity factors    and    are defined by: 
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where end connection spring stiffness,     is defined by the Frye and Morris curve 

fitting model in chapter 2. To take into account the nonlinear behavior of semi-rigid 

connections, an iterative process is used to obtain the solution. In each iteration, the 

member stiffness is modified by the correction matrix with updated end-fixity factors    

and   . [6] 

5.2.6 Geometric nonlinearity 

To account for geometric nonlinearities in structural systems a second-order elastic 

analysis needs to be performed. For rigid frames, the computer based second-order 



61 

 

elastic analysis is often done as an iterative procedure and the stiffness matrix of each 

member is composed of the elastic stiffness matrix and the geometrical stiffness matrix 

as show in equation 35: [6] 
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The geometrical stiffness matrix can also take into account semi-rigid connections with 

the addition of a correction matrix,      as seen in the following equations. [6] 
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where  
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5.4 SAP2000 

SAP2000 is a general-purpose engineering software package ideal for analysis and 

design of structural systems.  It can represent a wide range of systems from basic 2-D 

systems to complex 3-D structures.  Modeling of the structural elements is typically 

handled through a graphical user interface (GUI) that allows the user to define 

members, loading, material properties, etc. The user also has the option to edit an input 

file to define the structural system.  

SAP2000 was utilized to validate the MATLAB model.  Both analysis methods were 

performed on the three story, two bay frame with semi-rigid connections shown in 

Figure 17 - Frame diagram  
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figure 17. The material properties of the structural members were in accordance to the 

AISC steel design manual and the modulus of elasticity was set at 30,000ksi for the 

analysis. 

To account for semi-rigid connections the moment rotation curve shown in figure 18 

was used. The moment rotation curve is representative of an extended end plate 

connection without column stiffeners and the curve fitting constancies for this 

configuration can be seen in table 1 in chapter 2.  The end plate was assumed to have a 

thickness of 0.685" using 1" diameter bolts with a spacing between bolt groups  

equal to the member depths plus 6".   
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Figure 13 - Extended end plate moment rotation curve 
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SAP2000 does not have the capabilities to specify moment rotation interaction of 

connections. Instead, a rotational spring must be used at the connection points to 

represent the connection flexibility. For the testing analysis a secant stiffness of 

6.35x10
5
 (K.in/rad) was used as the member partial fixity values in both computer 

models.  

 

The results obtained from both models were relatively similar when compared to one 

another. The nodal displacements of the MATLAB model were all within 1-3% of the 

SAP model. Also, element bending, shear and axial loading vary from about 1-2% of 

each other. The results show that the MATLAB model is an acceptable representation 

of the structural system and can be used for the optimization process.  

 

 

 

 

 

Table 4 - Analysis comparison  
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Figure 14 - Ten bar truss configuration optimization 

Chapter 6: Design Examples 

6.1 Damage tolerant truss 

The 10-bar truss configuration 

shown in figure 2 with three 

proportional loads Q will be 

analyzed for damage tolerant 

optimization as outlined in 

Chapter 3.  Geometrical, 

mechanical and loading 

characteristic were assumed to be deterministic.  The modulus of elasticity was assumed 

to be E = 29,000ksi.  Each member was assigned its own individual cross sectional area 

Ai as shown in figure 2.  The material was assumed to be brittle with yielding stresses 

of +/- 25ksi.  Buckling constraints were also applied to each individual member.  The 

minimum and maximum cross-sectional areas were Aimin=0.1 and Aimax=infinity.  The 

initial cross sectional areas of the truss were set at Ai =1inch. 

6.1.2 Solving damage tolerant optimization problem 

The design variables for this problem are restricted to the cross sectional areas of the 

structural members.   The geometry of the structure and material properties are 

considered fixed.  The cross sectional areas of the members are the design variables   , 

subjected to size constraints 

                              44 
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where        and         are the minimum and maximum member areas, respectively.   

In this problem the minimum member area is limited to 0.1 in
2 

and the maximum area is 

not limited. 

The objective function for the optimization problem is to minimize the volume of the 

structure: 
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where    is the total length of the members and   is the corresponding area of the 

member.  The volume   can be multiplied by the unit weight of the structure to provide 

an adequate assessment of the structures cost. The following constraints must be 

satisfied. 

Ultimate load carrying capacity requirement:  

        
  46 

where    and   
  are the actual and the required ultimate load carrying capacity of the 

system respectively. 

Serviceability requirements: 

        
            47 

where    and   
 
 are the maximum and the allowable elastic displacement at section  , 

respectively.  It is logical to compute the displacements under the nominal load   . 

Residual capacity requirement: 

        
  48 
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where    and   
  are the actual and the required residual capacity of the system, 

respectively. 

Reserve strength factor is defined as: 

           49 

The reserve factor is a measurement of strength that compares the ultimate load to the 

nominal loading.  The reserve strength factor,   , can range from value of 0 when the 

intact structure has no loading effect, to a value of 1.0 when the nominal load on the 

intact structure equals its capacity,   . 

Residual strength factor is defined as: 

           50 

The residual strength factor,   , is used to show the strength of a structure once it is in a 

damage state.  This value can range from 0 when the damage structure is collapsed to a 

theoretical value of 1.0 when the damage structure can carry the same load capacity as 

the intact structure.  Frangopol and Klisinski show that for a given structural 

configuration, loading and material behavior there is always a maximum value of 

residual strength.  This is due to the fact that the residual capacity of the structural 

system,   , cannot increase over a certain threshold without raising the ultimate 

capacity of the intact structure,   . 

6.1.3 Optimization results 

First, the behavior of the initial intact structure was investigated. The initial structure 

had a volume of 1165.69in
3
. Table 5 shows the stress distribution for the intact structure 
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along with all (ten) possible damage scenarios. The ultimate capacity of the intact 

structure was 11.92 kips and the residual capacity was 5.06 kips. This resulted in a 

residual strength factor of 0.425. The governing constraint for the intact ultimate 

strength was buckling for member 8. The governing residual capacity was the removal 

of member 7; when removed the buckling constraint in member 8 was once again 

reached. 

 10-Bar Truss  
Intact and Damaged Trusses: Ultimate Capacities and Associated Stresses 

A1 = A2 = A3 = A4 = A5 = A6 = A7 = A8 = A9 = A10 =1 in3   ;   VINTACT = 1165.69 in4 

Element 
Removed 

Load Level 
(kips) 

Stress In Elements (ksi) 

1 2 3 4 5 6 7 8 9 10 

NONE 11.92 -13.72 3.68 22.04 3.68 1.88 3.68 19.41 -14.31 11.66 -5.20 

1 5.06 --- 0.96 15.18 0.96 6.02 0.96 0.00 -14.31 5.80 -1.35 

2 11.44 -12.76 --- 21.56 0.00 -1.32 0.00 18.05 -14.31 16.18 0.00 

3 5.89 -17.68 2.95 --- 2.95 -8.84 2.95 25.00 8.33 4.17 -4.17 

4 11.44 -12.76 0.00 21.56 --- -1.32 0.00 18.05 -14.31 16.18 0.00 

5 13.22 -16.32 3.10 23.34 3.10 --- 3.10 23.08 -14.31 14.31 -4.39 

6 11.44 -12.76 0.00 21.56 0.00 -1.32 --- 18.05 -14.31 16.18 0.00 

7 5.06 0.00 0.96 15.18 0.96 6.02 0.96 --- -14.31 5.80 -1.35 

8 8.84 -17.68 3.50 8.84 3.50 -5.33 3.50 25.00 --- 7.54 -4.96 

9 10.12 -12.46 10.12 17.90 10.12 7.78 10.12 17.62 -11.00 --- -14.31 

10 11.44 -12.76 0.00 21.56 0.00 -1.32 0.00 18.05 -14.31 16.18 --- 

Note: Bolded Stress represent failure of corresponding member via stress limits or buckling limits. 
Table 5 - Truss damage conditions 

An interesting observation happened from the removal of member 5.  The ultimate 

loading for the truss actually increased due to the distribution of forces shedding load 

from the 8
th

 member.  This allowed a higher load to be placed on the structure before 

the buckling constraint in member 8 was reached. 

Next, we will look at the same truss configuration optimized in two different ways. First 

it was optimized for minimum volume under ultimate capacity requirements and second 

for minimum volume under both ultimate capacity and residual capacity requirements.  

The results of these optimizations along with the initial truss results can be found in 

table 7.  
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The initial truss has a volume of 1165.69 and an ultimate loading of 11.92 kips due to 

buckling constraints.  The optimized truss for only ultimate loading had a significant 

decrease in total volume by over half coming in at 560.40 in
3
. This truss configuration 

sacrifices a significant amount residual capacity from the original intact truss, reducing 

the residual capacity of the truss by 70.36%  

This brings us to the next optimization routine, to consider both ultimate capacity and 

residual capacity of the system. Optimizing the truss with the same ultimate and 

residual capacities as the initial structure resulted in a decrease in volume from 1165.69 

to 659.73 or a reduction of 43.4%.  The residual capacity was then varied while keeping 

the ultimate capacity requirement fix to show different scenarios of optimization.  The 

truss was able to stay under the initial volume while having a significant increase in 

residual strength of the system.  These gains become capped at a residual factor of 

around 0.71 due to additional increase of the residual capacity results in an increase of 

the ultimate capacity.  Additional optimizations were run for an increased ultimate 

capacity and residual capacity. 

Due to the low complexity of this problem, both 

Harmony Search and Gradient methods were able to be 

used for minimization. As expected the gradient methods 

provided the global minimum values.  The harmony search 

method is a metaherustic algorithm and does not guarantee 

a global optimal solution. However, the search routine was 

Table 6 - Optimization comparison 
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not far off of the calculus based optimization as seen in table 6. It also implements 

stochastic optimization methods making the final solution vary slightly from run to run. 

Due to these factors, a majority of the figures and tables were produced with the 

calculus methods for more consistent results. The final results for the truss system can 

be seen in table 7. 

  



71 

 

 
Table 7 - Truss results 
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6.2 Frame Optimization 

The established harmony search optimization algorithm is used to formulate a minimum 

weight steel frame design. The constraints imposed on the problem will be in 

accordance to the 2005 AISC-LRFD strength requirements, displacement limitations, 

and size constraints for beam-column elements. Figure 20 shows the frame 

configuration, dimensions, loading and grouping of members. The optimum results 

collected from the harmony search optimization consider the design of rigid and semi-

rigid steel connections and account for linear and nonlinear effects.  The obtained 

results will be compared to an identical structure being optimized with the Genetic 

Algorithm Technique. The optimization program has discrete variables, which match 

the AISC shape database. All members with a weight less than 200 lbs were considered 

in the 

Figure 20 - Frame configuration 
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optimization routine. 

6.2.2 Frame design parameters 

 A36 grade steel  

 Young's modulus E=30,000ksi 

 Allowable total drift (H/300) = 1.44" 

 Allowable interstory drift (h/300) = 0.48" 

 Allowable beam deflection (L/240) = 1" 

 Out of plane effective length for columns (Ky) = 1.0 

 Length of the unbraced compression flange for each column was calculated 

during the optimization process. 

 Floor stringers were assumed to be at L/6 points of the beam span resulting 

in the out of plane unbraced length (Ky) = 40" 

6.2.3 Harmony search design parameters 

The following harmony search parameters were selected based on literature 

recommendations and several trials of the problem to achieve the most refined optimal 

solution. 

 Harmony memory size (HMS) - The value for harmony memory was equal 

to 25. This value limits the number of solutions stored in algorithm memory. 

It was found that a value of 25 had a good tradeoff between run time and 

accuracy.  
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 Harmony memory consideration rate (HMCR) - The value for the HMCR 

was equal to 0.9, which reflects the probability for selecting a value from 

memory. Once again, it was found that a 90% consideration rate provided a 

good balance between time and accuracy. 

 Pitch adjusting rate (PAR) - The pitch-adjusting rate was equal to a value 

of 0.45, like the HMCR this value reflects the probability of pitch 

adjustment. Increased values of PAR caused the solution to converge on non 

optimal designs where as lower values would not converge on the global 

maximum. 

 Termination criterion - The termination criteria was set as a maximum 

number of iterations of 8000. After several trials, it was found that the 

solution typically converged around 6000. The run time for 8000 iterations 

with the other parameters listed above takes roughly 75 minutes for the 

nonlinear analysis. Whereas the linear rigid analysis takes approximately  5 

minutes over the same iterations. 

 Number of runs - The optimal solution from the harmony search is not a 

global optimal. Because of this, the optimal solutions will vary from run to 

run. Ten independent runs were performed to get an average minimum 

weight structure.  
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6.2.2 Objective function 

The objective for the optimization process is to achieve a minimum weight steel frame 

design. The design variables for this problem are the AISC steel members. The weight 

of the frame can be expressed in the following equation: 
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where    is the total number of member groups,   represents the total number of 

members in that group. The terms             represent member density, area, and 

length respectively. 

6.2.3 Unconstrained objective penalty function  

The unconstrained penalty formula calculates the weight of the new design with an 

included penalty if any constraints have violation and can be expressed as: 

                  52 

where K = Penalty constant, C = Constraint violation function and   = Penalty function 

exponent. For this design example the values of K=1.0 and   = 2.0 were used 

6.2.4 Constraint violation function formula 
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where   
   is the constraint violations for max drift,   

   is the constraint violations for 

interstory drift,   
  is the constraint violations for column sizes,   

   is the constraint 

violations for beam sizes,   
  is the constraint violations for deflections and   

  is the 
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constraint violations for the LRFD interaction equations. The constraint violations are 

determined based on the following equation: 
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6.2.5 Drift constraints 

 
  
   

    

   
  

           

  
   

    

   
  

                          

55 

 

   56 

where    is the maximum top story displacement,   
  is the allowable top story 

displacement,     is interstory displacement,   
  is allowable interstory displacement 

and    is the number of stories. 

6.2.6 Size constraints 
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where    is the depth of the top compression member,    is the depth of the bottom 

compression member,      beam flange width,    is the column flange width,    is the 

number of compression members and    is the number of floors. 

6.2.7 Deflection constraints 
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where     is the deflection of the beam,    
  is the allowable beam deflection and    is 

the number of beams. 

6.2.8 Strength constraints 

Interaction equations from AISC-LRFD were used as the strength constraints for this 

problem.  Doubly and singly symmetric members in flexure and compression should 

comply with AISC equations H1-1a or H1-1b. 
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where    is the required axial compressive strength,    is the available axial compressive 

strength,    is the required flexural strength,    is the available flexural strength, x and y refer 

to strong and weak axis bending respectively. 

Lateral torsional buckling (LTB) should be checked depending on the unbraced length 

   as follows: 
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where 
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where c equals 1 for doubly symmetric shapes and    is the distance between flange 

centroids. 

6.2.8.1 Column strength 

AISC Column strength is computed from the following equations: 
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where K is the effective length factor. The effective length factor for unbraced 

compression flange for each column is calculated throughout the design process from 

the following equation: 
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where A and B represent the top and bottom of the column and the restraint factor G is 

calculated as 
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where    and   are moment of inertias and    and    are unbraced length of the column 

and beam respectively. 
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6.2.9 Rigid frame results 

Ten separate optimization routines were performed for the structural frame with rigid 

and semi-rigid connections. From the constraints, it was apparent that the limiting factor 

for the frame design was strength constraints for rigid connections and a combination of 

strength and displacement for semi-rigid connections. The lateral drift of the structures 

were well below acceptable values for 

all trials with rigid connections.  The 

maximum drift for the rigid design 

was 0.76" while the semi-rigid frame 

was at 1.43" due to a reduction in the 

frames stiffness.  

The program was set with a max 

Figure 21 - Harmony search iterations 

Table 8 - Rigid frame results 
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Table 9 - Semi-rigid frame results 

iteration of 8000. This value has a 

lot of control over the optimization 

results as the more iterations the 

better chance of  

a lower weight design. However, it 

does have a point of diminishing 

returns. Several extra hours of 

computer time could be needed for a 

few extra thousand iterations that  

may only improve the final solution by a fraction of a percent. The design results for the 

rigid frame and semi-rigid frame analysis are shown in tables 8 and 9 respectively.   

The results from table 10 show that harmony search optimization provided a lighter 

frame compared to the genetic algorithm used by Saka.  The results show a reduction in 

Table 10 - Frame optimization comparison  
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weight of 14.9% for the semi-rigid frame and 12.7% for the rigid frame structure.  The 

results could be improved upon with more efficient harmony search code to allow for a  

great amount of iterations.  

The code was once again implemented for damage tolerance optimization. Due to the 

extreme number of constraints present in a damage tolerant optimization of the frame 

structure only one analysis was performed. The same formulation used in the damage 

tolerant truss example was used for the frame optimization. The initial conditions from 

the previous frame optimization problem were replicated for the damage tolerant truss. 

A reduction in member stiffness was used to simulate damage to individual members. In 

this example members were reduced to 50% of initial stiffness. The loading for the 

damage structure was reduced by 50% to give a residual factor, R2 of 0.50.  The damage 

tolerant simulation run time took approximately 25 hours. Once again, a more efficient 

use of code could greatly reduce computational time needed. The damage tolerant frame 

was found to have an optimal weight of 7059.9 lbs. This represents a weight increase of 

about 17% over the non-damage tolerant design.  
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6.3 Damage Tolerance and Reliability  

 Using the previously stated reliability 

formulation, the five bar truss shown in 

figure 22 will be analyzed for reliability.  

As mentioned earlier, this truss 

configuration has been optimized for 

several loading conditions in another 

report. The member areas used for this 

problem are highlighted in table 11. The 

material properties of the structure 

resemble brittle behavior with a 

compressive stress limit of -10 ksi and a 

tensile stress limit of 20 ksi.  The modulus 

of elasticity was deemed deterministic and 

fixed at 29,000 ksi. The truss has an 

ultimate capacity of 8.256 kips and a 

residual capacity of 4.128 kips. This 

allows the structure to support a load of 

4.128 kips after the complete loss of any 

member.  The random variables used for 

Figure 22 - 5 bar truss 

Table 12 - 5 bar optimization results 

Table 11 - Random variables 
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Figure 23 - Series parallel model  

this example can be seen in table 12. 

To determine the system reliability, 

there needs to be a mathematical model 

representing the behavior of the system 

and the relationship of its components 

with respect to the overall system. This 

is accomplished by considering all 

possible failure modes present to the 

structure. The five bar truss is statically indeterminate to the first degree. This results in 

the configuration needing two members to fail to have a complete structural failure. 

From this, we can create a series-parallel model for the truss.  In this figure, the failure 

of each individual member is represented by the term    . With the intersecting 

probabilities being represented by         , which means the failure of member "i" 

given member "j" has already failed.  In total, we should have twenty-five failure paths 

for this structure. However, when a member is removed, forces throughout the system 

are redistributed.  This can be seen in the removal of member 2, which results in no 

force present in the fifth member. A zero force member is present once again after the 

removal of the fifth member. This reduces the total number of failure paths by two with 

giving a total of twenty-three as shown in figure 23. [2] 

The truss reliability was computed using RELSYS (RELiability of SYStems), a 

FORTRAN 77 computer program developed by Estes and Frangopol in (1998).  The 
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program works by first computing the reliability of all the system components in a 

given series-parallel system. The system is then continuously reduced to equivalent 

components until it is left with one component for the entire system.  Series and parallel 

events are solved separately and equivalent alpha vectors are used to account for the 

correlation between failure events. [18] 

For the truss series parallel system shown, 19 reductions were needed to find the overall 

system reliability. First, the 18 parallel failure events shown were reduced to a 

corresponding equivalent event, then the 18 equivalent failure events are represented in 

a series configuration, which was reduced once again to find the overall failure event. 

The truss system reliability index and failure probability for several loading magnitudes 

can be seen in figure 24 and 25 respectively.   

As expected probability of the system failing under the 4.128 kip loading was extremely 

small, so small it can be considered as zero. This trend continued up until a loading of 5 
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kips. Once the loading surpassed the 5-kip threshold, the probability of failure starts to 

rise. The ultimate load of the structure at 8.256 kips had a probability of failure right 

around 50% and a corresponding reliability index of 0.0.     

Correlation between random variables will affect the overall truss reliability.  

Correlation between the resistances was varied from uncorrelated (      
    ), 50% 

correlated (      
    ) and fully correlated (      

    ). Results for each case were 

plotted and are the results were relatively similar for each correlation case. Full 

correlation between stresses resulted in the highest reliability index whereas the 

uncorrelated results gave the lowest reliability index.  The effects of correlation 

between other random variables for the system could also be investigated. This shows 

the importance of accurately representing the problem data to achieve proper reliability 

results. 

6.3.1 Effects of Damage  

There are several definitions of structural 

damage.  The term can be defined as any 

strength deficiency introduced during the 

design or construction phase of the 

structure as well as any deterioration of 

strength caused by external loading 

and/or environmental conditions during 

Figure 26 - Damage effects 
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Figure 7 

the lifetime of the structure. For this example, we will investigate the effects of local 

damage to specific truss members.  The damage has been classified using a damage 

index associated with the progressive deterioration of the member properties (area).  

This damage index can range from         , with zero representing no damage and 

one representing complete loss of member.  The relationship between cross sectional 

performance and the damage index relationship can be seen in figure26. For a circular 

cross-section undergoing uniform damage on the external boundary, the initial area will 

be reduced by the following equation: 

             77 

      78 

where,    is the damaged cross-sectional area and    is the initial area. 

Using this representation of damage, each member of the truss was subjected to 

the full range of damage and the corresponding reliability index was calculated, figure 

27.  The loading on the truss was 

considered fixed at 3 kips for the 

damage conditions. This will 

ensure that the reliability index 

of the system will be greater than 

zero.  It can be seen that damage 

to members 1 and 2 result in 
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small reduction to the reliability index.  Actually, when these members are only slightly 

damaged the reliability index increases slightly due to the loadings being redistributed 

to other members.  The members that are of interest would be members 3 and 4 since 

damage to these members cause a significant reduction in the reliability index. It is 

interesting to note that member 3 should be the first member to fail in the system; 

however, it does not have the lowest reliability index due to damage. Damage to 

member 4 actually results in the greatest reduction to the reliability index. This is due to 

the redistribution of loads when member 4 is removed. The removal of the fourth 

member puts member 2 and 3 into a significant amount of axial compression resulting 

in higher failure probabilities for these members. Whereas, the removal of member 3 

only puts member 4 into a large amount of axial compress.  

6.3.2 Measure of Redundancy 

Several methods for the quantification of structural redundancy are presented in 

Frangopol and Curley (1987) and Fu and Frangopol (1990) [2]. The method adapted for 

this thesis was the probabilistic redundant index approach.  This can be expressed by 

the following equations: 
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Figure 28 - Redundancy index 

where,         represents the 

reliability index of the intact 

system; and         

represents the reliability index 

for the damaged system.  The 

probabilistic redundant index 

   varies from zero to infinity. 

With zero indicating a structural collapse and infinity an intact structure. The 

probabilistic redundancy index for this problem can be seen in figure 28. 

An approach to calculating component and system reliability of trusses has been 

presented. The techniques to quantify and account random variables, redundancy and 

damage are covered. The optimization methods used in previous work provided good 

results and correlated with the findings of this thesis.  Probabilistic concepts should be 

utilized when dealing with unknown variables and behavior of the structure needs to be 

looked at beyond single-element failures by looking at complete structural failure.  
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Chapter 7: Conclusion 

 

The goal of this research to develop a computer model capable of optimizing the weight 

of various steel structures has been presented. The recent developments in meta-

heuristic optimization algorithms have provided researchers with a wide variety of 

acceptable methods for optimization. The harmony search algorithm proved to be a well 

suitable approach for structural optimization.  Due to its stochastic random searches, 

derivative information is unnecessary which allows for the algorithm to easily be 

implemented. Further research is being done to improve upon this relatively new 

technique. New approaches have the algorithm constantly changing the search 

parameters in real time during the optimization process allowing for a more successful 

code.  

The optimum design of steel structures using harmony search algorithm has provided 

three minimum weight structures. This technique can be very beneficial to both clients 

and designers from a cost standpoint. The ability to provide a minimum weight deign 

can be correlated to a reduced cost of the structural system. The designer can also 

consider damage tolerance in his/her design with minimal change to the original coding. 

As seen a minimal amount of weight increase could lead to improved structural 

performance. 

Further work could be done to improve the harmony search coding algorithm to 

increase speed and performance. Also, damage conditions considered in these examples 
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were simplistic. Therefore, further research could be performed to provide a more 

accurate representation of damage. 
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Appendix A - W-Shape Selection List 

  
W A d bf tw tf bf/2tf h/tw Ix Zx Sx rx Iy Zy Sy ry J Cw 

1 W40X199 199 58.8 38.7 15.8 0.650 1.07 7.39 52.6 14900 869 770 16.0 695 137 88.2 3.45 18.3 246000 

2 W27X194 194 57.1 28.1 14.0 0.750 1.34 5.24 31.8 7860 631 559 11.7 619 136 88.1 3.29 27.1 111000 

3 W36X194 194 57.0 36.5 12.1 0.765 1.26 4.81 42.4 12100 767 664 14.6 375 97.7 61.9 2.56 22.2 116000 

4 W14X193 193 56.8 15.5 15.7 0.890 1.44 5.45 12.8 2400 355 310 6.50 931 180 119 4.05 34.8 45900 

5 W24X192 192 56.5 25.5 13.0 0.810 1.46 4.43 26.6 6260 559 491 10.5 530 126 81.8 3.07 30.8 76300 

6 W18X192 192 56.2 20.4 11.5 0.960 1.75 3.27 16.7 3870 442 380 8.28 440 119 76.8 2.79 44.7 38000 

7 W30X191 191 56.1 30.7 15.0 0.710 1.19 6.35 37.7 9200 675 600 12.8 673 138 89.5 3.46 21.0 146000 

8 W12X190 190 56.0 14.4 12.7 1.06 1.74 3.65 9.16 1890 311 263 5.82 589 143 93.0 3.25 48.8 23600 

9 W36X182 182 53.6 36.3 12.1 0.725 1.18 5.12 44.8 11300 718 623 14.5 347 90.7 57.6 2.55 18.5 107000 

10 W21X182 182 53.6 22.7 12.5 0.830 1.48 4.22 22.6 4730 476 417 9.40 483 119 77.2 3.00 30.7 54400 

11 W40X183 183 53.3 39.0 11.8 0.650 1.20 4.92 52.6 13200 774 675 15.7 331 88.3 56.0 2.49 19.3 118000 

12 W27X178 178 52.5 27.8 14.1 0.725 1.19 5.92 32.9 7020 570 505 11.6 555 122 78.8 3.25 20.1 98400 

13 W14X176 176 51.8 15.2 15.7 0.830 1.31 5.97 13.7 2140 320 281 6.43 838 163 107 4.02 26.5 40500 

14 W24X176 176 51.7 25.2 12.9 0.750 1.34 4.81 28.7 5680 511 450 10.5 479 115 74.3 3.04 23.9 68400 

15 W18X175 175 51.4 20.0 11.4 0.890 1.59 3.58 18.0 3450 398 344 8.20 391 106 68.8 2.76 33.8 33300 

16 W30X173 173 50.9 30.4 15.0 0.655 1.07 7.04 40.8 8230 607 541 12.7 598 123 79.8 3.42 15.6 129000 

17 W36X170 170 50.0 36.2 12.0 0.680 1.10 5.47 47.7 10500 668 581 14.5 320 83.8 53.2 2.53 15.1 98500 

18 W12X170 170 50.0 14.0 12.6 0.960 1.56 4.03 10.1 1650 275 235 5.74 517 126 82.3 3.22 35.6 20100 

19 W33X169 169 49.5 33.8 11.5 0.670 1.22 4.71 44.7 9290 629 549 13.7 310 84.4 53.9 2.50 17.7 82400 

20 W40X167 167 49.3 38.6 11.8 0.650 1.03 5.76 52.6 11600 693 600 15.3 283 76.0 47.9 2.40 14.0 99700 

21 W21X166 166 48.8 22.5 12.4 0.750 1.36 4.57 25.0 4280 432 380 9.36 435 108 70.0 2.99 23.6 48500 

22 W24X162 162 47.8 25.0 13.0 0.705 1.22 5.31 30.6 5170 468 414 10.4 443 105 68.4 3.05 18.5 62600 

23 W27X161 161 47.6 27.6 14.0 0.660 1.08 6.49 36.1 6310 515 458 11.5 497 109 70.9 3.23 15.1 87300 

24 W36X160 160 47.0 36.0 12.0 0.650 1.02 5.88 49.9 9760 624 542 14.4 295 77.3 49.1 2.50 12.4 90200 

25 W14X159 159 46.7 15.0 15.6 0.745 1.19 6.54 15.3 1900 287 254 6.38 748 146 96.2 4.00 19.7 35600 

26 W18X158 158 46.3 19.7 11.3 0.810 1.44 3.92 19.8 3060 356 310 8.12 347 94.8 61.4 2.74 25.2 29000 

27 W33X152 152 44.9 33.5 11.6 0.635 1.06 5.48 47.2 8160 559 487 13.5 273 73.9 47.2 2.47 12.4 71700 

28 W12X152 152 44.7 13.7 12.5 0.870 1.40 4.46 11.2 1430 243 209 5.66 454 111 72.8 3.19 25.8 17200 

29 W36X150 150 44.3 35.9 12.0 0.625 0.940 6.37 51.9 9040 581 504 14.3 270 70.9 45.1 2.47 10.1 82200 

30 W40X149 149 43.8 38.2 11.8 0.630 0.830 7.11 54.3 9800 598 513 15.0 229 62.2 38.8 2.29 9.36 80000 

31 W30X148 148 43.6 30.7 10.5 0.650 1.18 4.44 41.6 6680 500 436 12.4 227 68.0 43.3 2.28 14.5 49400 

32 W27X146 146 43.2 27.4 14.0 0.605 0.975 7.16 39.4 5660 464 414 11.5 443 97.7 63.5 3.20 11.3 77200 

33 W21X147 147 43.2 22.1 12.5 0.720 1.15 5.44 26.1 3630 373 329 9.17 376 92.6 60.1 2.95 15.4 41100 

34 W24X146 146 43.0 24.7 12.9 0.650 1.09 5.92 33.2 4580 418 371 10.3 391 93.2 60.5 3.01 13.4 54600 

35 W14X145 145 42.7 14.8 15.5 0.680 1.09 7.11 16.8 1710 260 232 6.33 677 133 87.3 3.98 15.2 31700 

36 W18X143 143 42.0 19.5 11.2 0.730 1.32 4.25 22.0 2750 322 282 8.09 311 85.4 55.5 2.72 19.2 25700 



98 

 

37 W33X141 141 41.5 33.3 11.5 0.605 0.960 6.01 49.6 7450 514 448 13.4 246 66.9 42.7 2.43 9.70 64400 

38 W36X135 135 39.9 35.6 12.0 0.600 0.790 7.56 54.1 7800 509 439 14.0 225 59.7 37.7 2.38 7.00 68100 

39 W12X136 136 39.9 13.4 12.4 0.790 1.25 4.96 12.3 1240 214 186 5.58 398 98.0 64.2 3.16 18.5 14700 

40 W30X132 132 38.8 30.3 10.5 0.615 1.00 5.27 43.9 5770 437 380 12.2 196 58.4 37.2 2.25 9.72 42100 

41 W21X132 132 38.8 21.8 12.4 0.650 1.04 6.01 28.9 3220 333 295 9.12 333 82.3 53.5 2.93 11.3 36000 

42 W14X132 132 38.8 14.7 14.7 0.645 1.03 7.15 17.7 1530 234 209 6.28 548 113 74.5 3.76 12.3 25500 

43 W24X131 131 38.6 24.5 12.9 0.605 0.960 6.70 35.6 4020 370 329 10.2 340 81.5 53.0 2.97 9.50 47100 

44 W33X130 130 38.3 33.1 11.5 0.580 0.855 6.73 51.7 6710 467 406 13.2 218 59.5 37.9 2.39 7.37 56600 

45 W18X130 130 38.3 19.3 11.2 0.670 1.20 4.65 23.9 2460 290 256 8.03 278 76.7 49.9 2.70 14.5 22700 

46 W27X129 129 37.8 27.6 10.0 0.610 1.10 4.55 39.7 4760 395 345 11.2 184 57.6 36.8 2.21 11.1 32500 

47 W30X124 124 36.5 30.2 10.5 0.585 0.930 5.65 46.2 5360 408 355 12.1 181 54.0 34.4 2.23 7.99 38600 

48 W21X122 122 35.9 21.7 12.4 0.600 0.960 6.45 31.3 2960 307 273 9.09 305 75.6 49.2 2.92 8.98 32700 

49 W14X120 120 35.3 14.5 14.7 0.590 0.940 7.80 19.3 1380 212 190 6.24 495 102 67.5 3.74 9.37 22700 

50 W12X120 120 35.2 13.1 12.3 0.710 1.11 5.57 13.7 1070 186 163 5.51 345 85.4 56.0 3.13 12.9 12400 

51 W18X119 119 35.1 19.0 11.3 0.655 1.06 5.31 24.5 2190 262 231 7.90 253 69.1 44.9 2.69 10.6 20300 

52 W33X118 118 34.7 32.9 11.5 0.550 0.740 7.76 54.5 5900 415 359 13.0 187 51.3 32.6 2.32 5.30 48300 

53 W24X117 117 34.4 24.3 12.8 0.550 0.850 7.53 39.2 3540 327 291 10.1 297 71.4 46.5 2.94 6.72 40800 

54 W30X116 116 34.2 30.0 10.5 0.565 0.850 6.17 47.8 4930 378 329 12.0 164 49.2 31.3 2.19 6.43 34900 

55 W27X114 114 33.6 27.3 10.1 0.570 0.930 5.41 42.5 4080 343 299 11.0 159 49.3 31.5 2.18 7.33 27600 

56 W10X112 112 32.9 11.4 10.4 0.755 1.25 4.17 10.4 716 147 126 4.66 236 69.2 45.3 2.68 15.1 6020 

57 W21X111 111 32.6 21.5 12.3 0.550 0.875 7.05 34.1 2670 279 249 9.05 274 68.2 44.5 2.90 6.83 29200 

58 W14X109 109 32.0 14.3 14.6 0.525 0.860 8.49 21.7 1240 192 173 6.22 447 92.7 61.2 3.73 7.12 20200 

59 W30X108 108 31.7 29.8 10.5 0.545 0.760 6.89 49.6 4470 346 299 11.9 146 43.9 27.9 2.15 4.99 30900 

60 W12X106 106 31.2 12.9 12.2 0.610 0.990 6.17 15.9 933 164 145 5.47 301 75.1 49.3 3.11 9.13 10700 

61 W18X106 106 31.1 18.7 11.2 0.590 0.940 5.96 27.2 1910 230 204 7.84 220 60.5 39.4 2.66 7.48 17400 

62 W24X104 104 30.7 24.1 12.8 0.500 0.750 8.50 43.1 3100 289 258 10.1 259 62.4 40.7 2.91 4.72 35200 

63 W24X103 103 30.3 24.5 9.00 0.550 0.980 4.59 39.2 3000 280 245 10.0 119 41.5 26.5 1.99 7.07 16600 

64 W27X102 102 30.0 27.1 10.0 0.515 0.830 6.03 47.1 3620 305 267 11.0 139 43.4 27.8 2.15 5.28 24000 

65 W21X101 101 29.8 21.4 12.3 0.500 0.800 7.68 37.5 2420 253 227 9.02 248 61.7 40.3 2.89 5.21 26200 

66 W16X100 100 29.4 17.0 10.4 0.585 0.985 5.29 24.3 1490 198 175 7.10 186 54.9 35.7 2.51 7.73 11900 

67 W10X100 100 29.3 11.1 10.3 0.680 1.12 4.62 11.6 623 130 112 4.60 207 61.0 40.0 2.65 10.9 5150 

68 W14X99 99.0 29.1 14.2 14.6 0.485 0.780 9.34 23.5 1110 173 157 6.17 402 83.6 55.2 3.71 5.37 18000 

69 W30X99 99.0 29.0 29.7 10.5 0.520 0.670 7.80 51.9 3990 312 269 11.7 128 38.6 24.5 2.10 3.77 26800 

70 W18X97 97.0 28.5 18.6 11.1 0.535 0.870 6.41 30.0 1750 211 188 7.82 201 55.3 36.1 2.65 5.86 15800 

71 W12X96 96.0 28.2 12.7 12.2 0.550 0.900 6.76 17.7 833 147 131 5.44 270 67.5 44.4 3.09 6.85 9410 

72 W24X94 94.0 27.7 24.3 9.07 0.515 0.875 5.18 41.9 2700 254 222 9.87 109 37.5 24.0 1.98 5.26 15000 

73 W27X94 94.0 27.6 26.9 10.0 0.490 0.745 6.70 49.5 3270 278 243 10.9 124 38.8 24.8 2.12 4.03 21300 

74 W21X93 93.0 27.3 21.6 8.42 0.580 0.930 4.53 32.3 2070 221 192 8.70 92.9 34.7 22.1 1.84 6.03 9940 

75 W14X90 90.0 26.5 14.0 14.5 0.440 0.710 10.2 25.9 999 157 143 6.14 362 75.6 49.9 3.70 4.06 16000 
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76 W30X90 90.0 26.3 29.5 10.4 0.470 0.610 8.52 57.5 3610 283 245 11.7 115 34.7 22.1 2.09 2.84 24000 

77 W16X89 89.0 26.2 16.8 10.4 0.525 0.875 5.92 27.0 1300 175 155 7.05 163 48.1 31.4 2.49 5.45 10200 

78 W10X88 88.0 26.0 10.8 10.3 0.605 0.990 5.18 13.0 534 113 98.5 4.54 179 53.1 34.8 2.63 7.53 4330 

79 W12X87 87.0 25.6 12.5 12.1 0.515 0.810 7.48 18.9 740 132 118 5.38 241 60.4 39.7 3.07 5.10 8270 

80 W18X86 86.0 25.3 18.4 11.1 0.480 0.770 7.20 33.4 1530 186 166 7.77 175 48.4 31.6 2.63 4.10 13600 

81 W27X84 84.0 24.7 26.7 10.0 0.460 0.640 7.78 52.7 2850 244 213 10.7 106 33.2 21.2 2.07 2.81 17900 

82 W24X84 84.0 24.7 24.1 9.02 0.470 0.770 5.86 45.9 2370 224 196 9.79 94.4 32.6 20.9 1.95 3.70 12800 

83 W21X83 83.0 24.4 21.4 8.36 0.515 0.835 5.00 36.4 1830 196 171 8.67 81.4 30.5 19.5 1.83 4.34 8630 

84 W14X82 82.0 24.0 14.3 10.1 0.510 0.855 5.92 22.4 881 139 123 6.05 148 44.8 29.3 2.48 5.07 6710 

85 W12X79 79.0 23.2 12.4 12.1 0.470 0.735 8.22 20.7 662 119 107 5.34 216 54.3 35.8 3.05 3.84 7330 

86 W10X77 77.0 22.7 10.6 10.2 0.530 0.870 5.86 14.8 455 97.6 85.9 4.49 154 45.9 30.1 2.60 5.11 3630 

87 W16X77 77.0 22.6 16.5 10.3 0.455 0.760 6.77 31.2 1110 150 134 7.00 138 41.1 26.9 2.47 3.57 8590 

88 W24X76 76.0 22.4 23.9 8.99 0.440 0.680 6.61 49.0 2100 200 176 9.69 82.5 28.6 18.4 1.92 2.68 11100 

89 W18X76 76.0 22.3 18.2 11.0 0.425 0.680 8.11 37.8 1330 163 146 7.73 152 42.2 27.6 2.61 2.83 11700 

90 W14X74 74.0 21.8 14.2 10.1 0.450 0.785 6.41 25.4 795 126 112 6.04 134 40.5 26.6 2.48 3.87 5990 

91 W21X73 73.0 21.5 21.2 8.30 0.455 0.740 5.60 41.2 1600 172 151 8.64 70.6 26.6 17.0 1.81 3.02 7410 

92 W12X72 72.0 21.1 12.3 12.0 0.430 0.670 8.99 22.6 597 108 97.4 5.31 195 49.2 32.4 3.04 2.93 6540 

93 W18X71 71.0 20.9 18.5 7.64 0.495 0.810 4.71 32.4 1170 146 127 7.50 60.3 24.7 15.8 1.70 3.49 4700 

94 W24X68 68.0 20.1 23.7 8.97 0.415 0.585 7.66 52.0 1830 177 154 9.55 70.4 24.5 15.7 1.87 1.87 9430 

95 W21X68 68.0 20.0 21.1 8.27 0.430 0.685 6.04 43.6 1480 160 140 8.60 64.7 24.4 15.7 1.80 2.45 6760 

96 W14X68 68.0 20.0 14.0 10.0 0.415 0.720 6.97 27.5 722 115 103 6.01 121 36.9 24.2 2.46 3.01 5380 

97 W10X68 68.0 19.9 10.4 10.1 0.470 0.770 6.58 16.7 394 85.3 75.7 4.44 134 40.1 26.4 2.59 3.56 3100 

98 W8X67 67.0 19.7 9.00 8.28 0.570 0.935 4.43 11.1 272 70.1 60.4 3.72 88.6 32.7 21.4 2.12 5.05 1440 

99 W16X67 67.0 19.6 16.3 10.2 0.395 0.665 7.70 35.9 954 130 117 6.96 119 35.5 23.2 2.46 2.39 7300 

100 W18X65 65.0 19.1 18.4 7.59 0.450 0.750 5.06 35.7 1070 133 117 7.49 54.8 22.5 14.4 1.69 2.73 4240 

101 W12X65 65.0 19.1 12.1 12.0 0.390 0.605 9.92 24.9 533 96.8 87.9 5.28 174 44.1 29.1 3.02 2.18 5780 

102 W21X62 62.0 18.3 21.0 8.24 0.400 0.615 6.70 46.9 1330 144 127 8.54 57.5 21.7 14.0 1.77 1.83 5960 

103 W24X62 62.0 18.2 23.7 7.04 0.430 0.590 5.97 50.1 1550 153 131 9.23 34.5 15.7 9.80 1.38 1.71 4620 

104 W14X61 61.0 17.9 13.9 10.0 0.375 0.645 7.75 30.4 640 102 92.1 5.98 107 32.8 21.5 2.45 2.19 4710 

105 W10X60 60.0 17.7 10.2 10.1 0.420 0.680 7.41 18.7 341 74.6 66.7 4.39 116 35.0 23.0 2.57 2.48 2640 

106 W18X60 60.0 17.6 18.2 7.56 0.415 0.695 5.44 38.7 984 123 108 7.47 50.1 20.6 13.3 1.68 2.17 3850 

107 W8X58 58.0 17.1 8.75 8.22 0.510 0.810 5.07 12.4 228 59.8 52.0 3.65 75.1 27.9 18.3 2.10 3.33 1180 

108 W12X58 58.0 17.0 12.2 10.0 0.360 0.640 7.82 27.0 475 86.4 78.0 5.28 107 32.5 21.4 2.51 2.10 3570 

109 W16X57 57.0 16.8 16.4 7.12 0.430 0.715 4.98 33.0 758 105 92.2 6.72 43.1 18.9 12.1 1.60 2.22 2660 

110 W21X57 57.0 16.7 21.1 6.56 0.405 0.650 5.04 46.3 1170 129 111 8.36 30.6 14.8 9.35 1.35 1.77 3190 

111 W24X55 55.0 16.2 23.6 7.01 0.395 0.505 6.94 54.6 1350 134 114 9.11 29.1 13.3 8.30 1.34 1.18 3870 

112 W21X55 55.0 16.2 20.8 8.22 0.375 0.522 7.87 50.0 1140 126 110 8.40 48.4 18.4 11.8 1.73 1.24 4980 

113 W18X55 55.0 16.2 18.1 7.53 0.390 0.630 5.98 41.1 890 112 98.3 7.41 44.9 18.5 11.9 1.67 1.66 3430 

114 W10X54 54.0 15.8 10.1 10.0 0.370 0.615 8.15 21.2 303 66.6 60.0 4.37 103 31.3 20.6 2.56 1.82 2320 
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115 W14X53 53.0 15.6 13.9 8.06 0.370 0.660 6.11 30.9 541 87.1 77.8 5.89 57.7 22.0 14.3 1.92 1.94 2540 

116 W12X53 53.0 15.6 12.1 10.0 0.345 0.575 8.69 28.1 425 77.9 70.6 5.23 95.8 29.1 19.2 2.48 1.58 3160 

117 W21X50 50.0 14.7 20.8 6.53 0.380 0.535 6.10 49.4 984 110 94.5 8.18 24.9 12.2 7.64 1.30 1.14 2570 

118 W18X50 50.0 14.7 18.0 7.50 0.355 0.570 6.57 45.2 800 101 88.9 7.38 40.1 16.6 10.7 1.65 1.24 3040 

119 W16X50 50.0 14.7 16.3 7.07 0.380 0.630 5.61 37.4 659 92.0 81.0 6.68 37.2 16.3 10.5 1.59 1.52 2270 

120 W12X50 50.0 14.6 12.2 8.08 0.370 0.640 6.31 26.8 391 71.9 64.2 5.18 56.3 21.3 13.9 1.96 1.71 1880 

121 W10X49 49.0 14.4 10.0 10.0 0.340 0.560 8.93 23.1 272 60.4 54.6 4.35 93.4 28.3 18.7 2.54 1.39 2070 

122 W21X48 48.0 14.1 20.6 8.14 0.350 0.430 9.47 53.6 959 107 93.0 8.24 38.7 14.9 9.52 1.66 0.803 3950 

123 W14X48 48.0 14.1 13.8 8.03 0.340 0.595 6.75 33.6 484 78.4 70.2 5.85 51.4 19.6 12.8 1.91 1.45 2240 

124 W8X48 48.0 14.1 8.50 8.11 0.400 0.685 5.92 15.9 184 49.0 43.2 3.61 60.9 22.9 15.0 2.08 1.96 931 

125 W18X46 46.0 13.5 18.1 6.06 0.360 0.605 5.01 44.6 712 90.7 78.8 7.25 22.5 11.7 7.43 1.29 1.22 1720 

126 W16X45 45.0 13.3 16.1 7.04 0.345 0.565 6.23 41.1 586 82.3 72.7 6.65 32.8 14.5 9.34 1.57 1.11 1990 

127 W10X45 45.0 13.3 10.1 8.02 0.350 0.620 6.47 22.5 248 54.9 49.1 4.32 53.4 20.3 13.3 2.01 1.51 1200 

128 W12X45 45.0 13.1 12.1 8.05 0.335 0.575 7.00 29.6 348 64.2 57.7 5.15 50.0 19.0 12.4 1.95 1.26 1650 

129 W21X44 44.0 13.0 20.7 6.50 0.350 0.450 7.22 53.6 843 95.4 81.6 8.06 20.7 10.2 6.37 1.26 0.770 2110 

130 W14X43 43.0 12.6 13.7 8.00 0.305 0.530 7.54 37.4 428 69.6 62.6 5.82 45.2 17.3 11.3 1.89 1.05 1950 

131 W18X40 40.0 11.8 17.9 6.02 0.315 0.525 5.73 50.9 612 78.4 68.4 7.21 19.1 10.0 6.35 1.27 0.810 1440 

132 W16X40 40.0 11.8 16.0 7.00 0.305 0.505 6.93 46.5 518 73.0 64.7 6.63 28.9 12.7 8.25 1.57 0.794 1730 

133 W12X40 40.0 11.7 11.9 8.01 0.295 0.515 7.77 33.6 307 57.0 51.5 5.13 44.1 16.8 11.0 1.94 0.906 1440 

134 W8X40 40.0 11.7 8.25 8.07 0.360 0.560 7.21 17.6 146 39.8 35.5 3.53 49.1 18.5 12.2 2.04 1.12 726 

135 W10X39 39.0 11.5 9.92 7.99 0.315 0.530 7.53 25.0 209 46.8 42.1 4.27 45.0 17.2 11.3 1.98 0.976 992 

136 W14X38 38.0 11.2 14.1 6.77 0.310 0.515 6.57 39.6 385 61.5 54.6 5.87 26.7 12.1 7.88 1.55 0.798 1230 

137 W16X36 36.0 10.6 15.9 6.99 0.295 0.430 8.12 48.1 448 64.0 56.5 6.51 24.5 10.8 7.00 1.52 0.545 1460 

138 W18X35 35.0 10.3 17.7 6.00 0.300 0.425 7.06 53.5 510 66.5 57.6 7.04 15.3 8.06 5.12 1.22 0.506 1140 

139 W12X35 35.0 10.3 12.5 6.56 0.300 0.520 6.31 36.2 285 51.2 45.6 5.25 24.5 11.5 7.47 1.54 0.741 879 

140 W8X35 35.0 10.3 8.12 8.02 0.310 0.495 8.10 20.5 127 34.7 31.2 3.51 42.6 16.1 10.6 2.03 0.769 619 

141 W14X34 34.0 10.0 14.0 6.75 0.285 0.455 7.41 43.1 340 54.6 48.6 5.83 23.3 10.6 6.91 1.53 0.569 1070 

142 W10X33 33.0 9.71 9.73 7.96 0.290 0.435 9.15 27.1 171 38.8 35.0 4.19 36.6 14.0 9.20 1.94 0.583 791 

143 W16X31 31.0 9.13 15.9 5.53 0.275 0.440 6.28 51.6 375 54.0 47.2 6.41 12.4 7.03 4.49 1.17 0.461 739 

144 W8X31 31.0 9.13 8.00 8.00 0.285 0.435 9.19 22.3 110 30.4 27.5 3.47 37.1 14.1 9.27 2.02 0.536 530 

145 W14X30 30.0 8.85 13.8 6.73 0.270 0.385 8.74 45.4 291 47.3 42.0 5.73 19.6 8.99 5.82 1.49 0.380 887 

146 W10X30 30.0 8.84 10.5 5.81 0.300 0.510 5.70 29.5 170 36.6 32.4 4.38 16.7 8.84 5.75 1.37 0.622 414 

147 W12X30 30.0 8.79 12.3 6.52 0.260 0.440 7.41 41.8 238 43.1 38.6 5.21 20.3 9.56 6.24 1.52 0.457 720 

148 W8X28 28.0 8.25 8.06 6.54 0.285 0.465 7.03 22.3 98.0 27.2 24.3 3.45 21.7 10.1 6.63 1.62 0.537 312 

149 W14X26 26.0 7.69 13.9 5.03 0.255 0.420 5.98 48.1 245 40.2 35.3 5.65 8.91 5.54 3.55 1.08 0.358 405 

150 W16X26 26.0 7.68 15.7 5.50 0.250 0.345 7.97 56.8 301 44.2 38.4 6.26 9.59 5.48 3.49 1.12 0.262 565 

151 W12X26 26.0 7.65 12.2 6.49 0.230 0.380 8.54 47.2 204 37.2 33.4 5.17 17.3 8.17 5.34 1.51 0.300 607 

152 W10X26 26.0 7.61 10.3 5.77 0.260 0.440 6.56 34.0 144 31.3 27.9 4.35 14.1 7.50 4.89 1.36 0.402 345 

153 W8X24 24.0 7.08 7.93 6.50 0.245 0.400 8.12 25.9 82.7 23.1 20.9 3.42 18.3 8.57 5.63 1.61 0.346 259 
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154 W14X22 22.0 6.49 13.7 5.00 0.230 0.335 7.46 53.3 199 33.2 29.0 5.54 7.00 4.39 2.80 1.04 0.208 314 

155 W10X22 22.0 6.49 10.2 5.75 0.240 0.360 7.99 36.9 118 26.0 23.2 4.27 11.4 6.10 3.97 1.33 0.239 275 

156 W12X22 22.0 6.48 12.3 4.03 0.260 0.425 4.74 41.8 156 29.3 25.4 4.91 4.66 3.66 2.31 0.848 0.293 164 

157 W8X21 21.0 6.16 8.28 5.27 0.250 0.400 6.59 27.5 75.3 20.4 18.2 3.49 9.77 5.69 3.71 1.26 0.282 152 

158 W10X19 19.0 5.62 10.2 4.02 0.250 0.395 5.09 35.4 96.3 21.6 18.8 4.14 4.29 3.35 2.14 0.874 0.233 104 

159 W12X19 19.0 5.57 12.2 4.01 0.235 0.350 5.72 46.2 130 24.7 21.3 4.82 3.76 2.98 1.88 0.822 0.180 131 

160 W8X18 18.0 5.26 8.14 5.25 0.230 0.330 7.95 29.9 61.9 17.0 15.2 3.43 7.97 4.66 3.04 1.23 0.172 122 

161 W10X17 17.0 4.99 10.1 4.01 0.240 0.330 6.08 36.9 81.9 18.7 16.2 4.05 3.56 2.80 1.78 0.845 0.156 85.1 

162 W12X16 16.0 4.71 12.0 3.99 0.220 0.265 7.53 49.4 103 20.1 17.1 4.67 2.82 2.26 1.41 0.773 0.103 96.9 

163 W8X15 15.0 4.44 8.11 4.02 0.245 0.315 6.37 28.1 48.0 13.6 11.8 3.29 3.41 2.67 1.70 0.876 0.137 51.8 

164 W10X15 15.0 4.41 9.99 4.00 0.230 0.270 7.41 38.5 68.9 16.0 13.8 3.95 2.89 2.30 1.45 0.810 0.104 68.3 

165 W12X14 14.0 4.16 11.9 3.97 0.200 0.225 8.82 54.3 88.6 17.4 14.9 4.62 2.36 1.90 1.19 0.753 0.0704 80.4 

166 W8X13 13.0 3.84 7.99 4.00 0.230 0.255 7.84 29.9 39.6 11.4 9.91 3.21 2.73 2.15 1.37 0.843 0.0871 40.8 

167 W10X12 12.0 3.54 9.87 3.96 0.190 0.210 9.43 46.6 53.8 12.6 10.9 3.90 2.18 1.74 1.10 0.785 0.0547 50.9 

168 W8X10 10.0 2.96 7.89 3.94 0.170 0.205 9.61 40.5 30.8 8.87 7.81 3.22 2.09 1.66 1.06 0.841 0.0426 30.9 
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Appendix B - Harmony Search Sample Frame MATLAB Optimization Code 

clear all; clc; close all; 
tic; 
[numerics, strings]=xlsread('Full Catalog Section'); 
FCS=numerics(:,3:20); 
IbeamStr=strings(2:169,1); 

  
NVAR=7;                     % number of variables 
NG=36;                      % number of ineguality constraints 
NH=0;                       % number of eguality constraints 
MaxItr=8000;                % maximum number of iterations 
HMS=25;                     % harmony memory size 
HMCR=0.9;                   % harmony consideration rate  0< HMCR <1 
PAR=0.45;                   % minumum pitch adjusting rate                  

  

  
ro=0.28359924220274; %density of steel lb/in3 
for kk=1:10 
% initialize random HM 
for i=1:HMS 
    for j=1:NVAR; 
        k=randi(length(IbeamStr)); 
        HM(i,j)=IbeamStr(k); 
    end 
    for j=1:NVAR 
        Z=strcmp(IbeamStr,HM(i,j)); 
        [r,c]=find(Z); 
    end 
    for j=1:NVAR; 
    Z=strcmp(IbeamStr,HM(i,j)); 
    [r,c]=find(Z); 
    HMnew(i,j)=r; 
    end 
    

area=[FCS(HMnew(i,1),2);FCS(HMnew(i,2),2);FCS(HMnew(i,3),2);FCS(HMnew(

i,4),2);FCS(HMnew(i,5),2);FCS(HMnew(i,6),2);FCS(HMnew(i,7),2)]; 
    

depth=[FCS(HMnew(i,1),3);FCS(HMnew(i,2),3);FCS(HMnew(i,3),3);FCS(HMnew

(i,4),3);FCS(HMnew(i,5),3);FCS(HMnew(i,6),3);FCS(HMnew(i,7),3)]; 
    

flange_width=[FCS(HMnew(i,1),4);FCS(HMnew(i,2),4);FCS(HMnew(i,3),4);FC

S(HMnew(i,4),4);FCS(HMnew(i,5),4);FCS(HMnew(i,6),4);FCS(HMnew(i,7),4)]

; 
    

web_thickness=[FCS(HMnew(i,1),5);FCS(HMnew(i,2),5);FCS(HMnew(i,3),5);F

CS(HMnew(i,4),5);FCS(HMnew(i,5),5);FCS(HMnew(i,6),5);FCS(HMnew(i,7),5)

]; 
    

flange_thickness=[FCS(HMnew(i,1),6);FCS(HMnew(i,2),6);FCS(HMnew(i,3),6
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);FCS(HMnew(i,4),6);FCS(HMnew(i,5),6);FCS(HMnew(i,6),6);FCS(HMnew(i,7)

,6)]; 
    

inertia=[FCS(HMnew(i,1),9);FCS(HMnew(i,2),9);FCS(HMnew(i,3),9);FCS(HMn

ew(i,4),9);FCS(HMnew(i,5),9);FCS(HMnew(i,6),9);FCS(HMnew(i,7),9)]; 
    [D,A,Max,Ma,Mb,Mc]=NLstiffness(area,inertia,depth,web_thickness); 
    

[C]=constraint(depth,web_thickness,flange_width,flange_thickness,Max,M

a,Mb,Mc,D,A,inertia); 
    

score(i)=fitness(FCS(HMnew(i,1),2),FCS(HMnew(i,2),2),FCS(HMnew(i,3),2)

,FCS(HMnew(i,4),2),FCS(HMnew(i,5),2),FCS(HMnew(i,6),2),FCS(HMnew(i,7),

2),ro,C);     
end 

  
[worstcost worst]=max(score); 
HM 
score' 
% MainHarmony 

  
for t=1:MaxItr; 
    %countt=t 
        for i=1:NVAR; 
            ran1=rand(1); 
            if (ran1 < HMCR); 
                index = randi(HMS,1); 
                NCHV(i) = HM(index,i); 
                ran2=rand(1); 
                if (ran2 < PAR); 
                    NCHV=NCHV; 
                    if(ran2 < 0.5); 
                        Z=strcmp(IbeamStr,NCHV(i)); 
                        [r,c]=find(Z); 
                            if (r < 168)  ; 
                                NCHV(i)=IbeamStr(r+1); 
                            elseif (r < 167) 
                                NCHV(i)=IbeamStr(r+2); 
                            else 
                                NCHV(i)=IbeamStr(r); 
                            end 
                    else 
                        Z=strcmp(IbeamStr,NCHV(i)); 
                        [r,c]=find(Z); 
                            if (r > 1)   
                                NCHV(i)=IbeamStr(r-1); 
                            elseif (r > 2) 
                                NCHV(i)=IbeamStr(r-2);   
                            else 
                                NCHV(i)=IbeamStr(r); 
                            end 
                    end 
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                end 
            else 
                k=randi(length(IbeamStr)); 
                NCHV(i)=IbeamStr(k); 
            end 
        end 

  

  
    for g=1:NVAR 
        Z=strcmp(IbeamStr,NCHV(g)); 
            [r,c]=find(Z); 
            NCHVnew(g)=r; 
    end 
    

area1=[FCS(NCHVnew(1),2);FCS(NCHVnew(2),2);FCS(NCHVnew(3),2);FCS(NCHVn

ew(4),2);FCS(NCHVnew(5),2);FCS(NCHVnew(6),2);FCS(NCHVnew(7),2)]; 
    

depth1=[FCS(NCHVnew(1),3);FCS(NCHVnew(2),3);FCS(NCHVnew(3),3);FCS(NCHV

new(4),3);FCS(NCHVnew(5),3);FCS(NCHVnew(6),3);FCS(NCHVnew(7),3)]; 
    

flange_width1=[FCS(NCHVnew(1),4);FCS(NCHVnew(2),4);FCS(NCHVnew(3),4);F

CS(NCHVnew(4),4);FCS(NCHVnew(5),4);FCS(NCHVnew(6),4);FCS(NCHVnew(7),4)

]; 
    

web_thickness1=[FCS(NCHVnew(1),5);FCS(NCHVnew(2),5);FCS(NCHVnew(3),5);

FCS(NCHVnew(4),5);FCS(NCHVnew(5),5);FCS(NCHVnew(6),5);FCS(NCHVnew(7),5

)]; 
    

flange_thickness1=[FCS(NCHVnew(1),6);FCS(NCHVnew(2),6);FCS(NCHVnew(3),

6);FCS(NCHVnew(4),6);FCS(NCHVnew(5),6);FCS(NCHVnew(6),6);FCS(NCHVnew(7

),6)]; 
    

inertia1=[FCS(NCHVnew(1),9);FCS(NCHVnew(2),9);FCS(NCHVnew(3),9);FCS(NC

HVnew(4),9);FCS(NCHVnew(5),9);FCS(NCHVnew(6),9);FCS(NCHVnew(7),9)]; 
    

[D1,A1,Max1,Ma1,Mb1,Mc1]=NLstiffness(area1,inertia1,depth1,web_thickne

ss1); 
    

[C1]=constraint(depth1,web_thickness1,flange_width1,flange_thickness1,

Max1,Ma1,Mb1,Mc1,D1,A1,inertia1); 
           

NEWfit=fitness(FCS(NCHVnew(1),2),FCS(NCHVnew(2),2),FCS(NCHVnew(3),2),F

CS(NCHVnew(4),2),FCS(NCHVnew(5),2),FCS(NCHVnew(6),2),FCS(NCHVnew(7),2)

,ro,C1); 
    if NEWfit < worstcost 
       HM(worst,:)=NCHV; 
       score(worst)=NEWfit; 
    end 
    [worstcost worst]=max(score);     
    [a b]=min(score); 
    xmin=HM(b,:); 
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    fmin=score(b); 
    cc(t)=fmin; 
end 
[x y]=min(score); 
HMmin=HM(y,:) 
for g=1:NVAR 
    Z=strcmp(IbeamStr,HMmin(g)); 
    [r,c]=find(Z); 
    HMminNUM(g)=r; 
end 
    

area2=[FCS(HMminNUM(1),2);FCS(HMminNUM(2),2);FCS(HMminNUM(3),2);FCS(HM

minNUM(4),2);FCS(HMminNUM(5),2);FCS(HMminNUM(6),2);FCS(HMminNUM(7),2)]

; 
    

depth2=[FCS(HMminNUM(1),3);FCS(HMminNUM(2),3);FCS(HMminNUM(3),3);FCS(H

MminNUM(4),3);FCS(HMminNUM(5),3);FCS(HMminNUM(6),3);FCS(HMminNUM(7),3)

]; 
    

flange_width2=[FCS(HMminNUM(1),4);FCS(HMminNUM(2),4);FCS(HMminNUM(3),4

);FCS(HMminNUM(4),4);FCS(HMminNUM(5),4);FCS(HMminNUM(6),4);FCS(HMminNU

M(7),4)]; 
    

web_thickness2=[FCS(HMminNUM(1),5);FCS(HMminNUM(2),5);FCS(HMminNUM(3),

5);FCS(HMminNUM(4),5);FCS(HMminNUM(5),5);FCS(HMminNUM(6),5);FCS(HMminN

UM(7),5)]; 
    

flange_thickness2=[FCS(HMminNUM(1),6);FCS(HMminNUM(2),6);FCS(HMminNUM(

3),6);FCS(HMminNUM(4),6);FCS(HMminNUM(5),6);FCS(HMminNUM(6),6);FCS(HMm

inNUM(7),6)]; 
    

inertia2=[FCS(HMminNUM(1),9);FCS(HMminNUM(2),9);FCS(HMminNUM(3),9);FCS

(HMminNUM(4),9);FCS(HMminNUM(5),9);FCS(HMminNUM(6),9);FCS(HMminNUM(7),

9)]; 
    

[D2,A2,Max2,Ma2,Mb2,Mc2]=NLstiffness(area2,inertia2,depth2,web_thickne

ss2); 
    

[C2]=constraint(depth2,web_thickness2,flange_width2,flange_thickness2,

Max2,Ma2,Mb2,Mc2,D2,A2,inertia2); 
    SCOREmin=score(y) 
    D2(160) 
    plot(cc); 
    toc 
end 
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Appendix C - Nonlinear Stiffness MATLAB Code 

function [Displacementi,Forces,TotalForces,StiffnessMatrix] = 

StiffnessNONlin(Displacement,pe,area,inertia,depth,web) 

  
nel=60;              %number of elmenets 
nnel=2;              %number of nodes per element 
ndof=3;              %number of DOFs per node 
edof=nnel*ndof;      %number of DOFs per element 
nnode=57;            %total number of nodes in system 
sdof=nnode*ndof; 

  

  
% Member Coords 
MC=[ 0     0     0    36;   240     0   240    36;   480     0   480    

36;     0    36     0    72;   240    36   240    72;   480    36   

480    72;     0    72     0   108;   240    72   240   108;   480    

72   480   108;    0   108     0   144;  240   108   240   144;  480   

108   480   144;0   144    60   144; 60   144   120   144;120   144   

180   144;180   144   240   144;240   144   300   144;300   144   360   

144;360   144   420   144;420   144   480   144;0   144     0   

180;240   144   240   180;480   144   480   180;0   180     0   

216;240   180   240   216;480   180   480   216;0   216     0   

252;240   216   240   252;480   216   480   252;0   252     0   

288;240   252   240   288;480   252   480   288;0   288    60   288;60   

288   120   288;120   288   180   288;180   288   240   288;240   288   

300   288;300   288   360   288;360   288   420   288;420   288   480   

288;0   288     0   324;240   288   240   324;480   288   480   324;0   

324     0   360;240   324   240   360;480   324   480   360;0   360     

0   396;240   360   240   396;480   360   480   396;0   396     0   

432;240   396   240   432;480   396   480   432;0   432    60   432;60   

432   120   432;120   432   180   432;180   432   240   432;240   432   

300   432;300   432   360   432;360   432   420   432;   420   432   

480   432]; 
% Member Nodal Connectivity  
nodes=[55     1;56     2;57     3;1     4;2     5;3     6;4     7;5     

8;6     9;7    10;8    14;9    18;10    11;11    12;12    13;13    

14;14    15;15    16;16    17;17    18;10    19;14    20;18    21;19    

22;20    23;21    24;22    25;23    26;24    27;25    28;26    32;27    

36;28    29;29    30;30    31;31    32;32    33;33    34;34    35;35    

36;28    37;32    38;36    39;37    40;38    41;39    42;40    43;41    

44;42    45;43    46;44    50;45    54;46    47;47    48;48    49;49    

50;50    51;51    52;52    53;53    54]; 
E=30000; 
A=[area(1) area(2) area(1) area(1) area(2) area(1) area(1) area(2) 

area(1) area(1) area(2) area(1) area(7) area(7) area(7) area(7) 

area(7) area(7) area(7) area(7) area(3) area(4) area(3) area(3) 

area(4) area(3) area(3) area(4) area(3) area(3) area(4) area(3) 

area(7) area(7) area(7) area(7) area(7) area(7) area(7) area(7) 

area(5) area(6) area(5) area(5) area(6) area(5) area(5) area(6) 
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area(5) area(5) area(6) area(5) area(7) area(7) area(7) area(7) 

area(7) area(7) area(7) area(7)]; 
I=[inertia(1) inertia(2) inertia(1) inertia(1) inertia(2) inertia(1) 

inertia(1) inertia(2) inertia(1) inertia(1) inertia(2) inertia(1) 

inertia(7) inertia(7) inertia(7) inertia(7) inertia(7) inertia(7) 

inertia(7) inertia(7) inertia(3) inertia(4) inertia(3) inertia(3) 

inertia(4) inertia(3) inertia(3) inertia(4) inertia(3) inertia(3) 

inertia(4) inertia(3) inertia(7) inertia(7) inertia(7) inertia(7) 

inertia(7) inertia(7) inertia(7) inertia(7) inertia(5) inertia(6) 

inertia(5) inertia(5) inertia(6) inertia(5) inertia(5) inertia(6) 

inertia(5) inertia(5) inertia(6) inertia(5) inertia(7) inertia(7) 

inertia(7) inertia(7) inertia(7) inertia(7) inertia(7) inertia(7)]; 
d=[depth(1) depth(2) depth(1) depth(1) depth(2) depth(1) depth(1) 

depth(2) depth(1) depth(1) depth(2) depth(1) depth(7) depth(7) 

depth(7) depth(7) depth(7) depth(7) depth(7) depth(7) depth(3) 

depth(4) depth(3) depth(3) depth(4) depth(3) depth(3) depth(4) 

depth(3) depth(3) depth(4) depth(3) depth(7) depth(7) depth(7) 

depth(7) depth(7) depth(7) depth(7) depth(7) depth(5) depth(6) 

depth(5) depth(5) depth(6) depth(5) depth(5) depth(6) depth(5) 

depth(5) depth(6) depth(5) depth(7) depth(7) depth(7) depth(7) 

depth(7) depth(7) depth(7) depth(7)]; 
M=[pe(3,13) pe(6,16) pe(3,17) pe(6,20) pe(3,33) pe(6,36) pe(3,37) 

pe(6,40) pe(3,53) pe(6,56) pe(3,57) pe(6,60)]; 
N=[pe(4,:)]; 

  

  
C1=1.83*10^-3; 
C2=1.04*10^-4; 
C3=6.38*10^-6; 
tp=0.685; 
dg=[depth(7)+6]; 
tf=1; 
Kcon1=(dg^-2.4)*(tp^-0.4)*(tf^-1.5); 
Kcon2=(dg^-2.4)*(tp^-0.4)*(tf^-1.5); 
Kcon3=(dg^-2.4)*(tp^-0.4)*(tf^-1.5); 
Kcon4=(dg^-2.4)*(tp^-0.4)*(tf^-1.5); 
Kcon5=(dg^-2.4)*(tp^-0.4)*(tf^-1.5); 
Kcon6=(dg^-2.4)*(tp^-0.4)*(tf^-1.5); 
Theta1=C1*(Kcon1*M(1))^1+C2*(Kcon1*M(1))^3+C3*(Kcon1*M(1))^5; 
Theta2=C1*(Kcon2*M(2))^1+C2*(Kcon2*M(2))^3+C3*(Kcon2*M(2))^5; 
Theta3=C1*(Kcon2*M(3))^1+C2*(Kcon2*M(3))^3+C3*(Kcon2*M(3))^5; 
Theta4=C1*(Kcon1*M(4))^1+C2*(Kcon1*M(4))^3+C3*(Kcon1*M(4))^5; 
Theta5=C1*(Kcon3*M(5))^1+C2*(Kcon3*M(5))^3+C3*(Kcon3*M(5))^5; 
Theta6=C1*(Kcon4*M(6))^1+C2*(Kcon4*M(6))^3+C3*(Kcon4*M(6))^5; 
Theta7=C1*(Kcon4*M(7))^1+C2*(Kcon4*M(7))^3+C3*(Kcon4*M(7))^5; 
Theta8=C1*(Kcon3*M(8))^1+C2*(Kcon3*M(8))^3+C3*(Kcon3*M(8))^5; 
Theta9=C1*(Kcon5*M(9))^1+C2*(Kcon5*M(9))^3+C3*(Kcon5*M(9))^5; 
Theta10=C1*(Kcon6*M(10))^1+C2*(Kcon6*M(10))^3+C3*(Kcon6*M(10))^5; 
Theta11=C1*(Kcon6*M(11))^1+C2*(Kcon6*M(11))^3+C3*(Kcon6*M(11))^5; 
Theta12=C1*(Kcon5*M(12))^1+C2*(Kcon5*M(12))^3+C3*(Kcon5*M(12))^5; 
R1=M(1)/Theta1; 
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R2=M(2)/Theta2; 
R3=M(3)/Theta3; 
R4=M(4)/Theta4; 
R5=M(5)/Theta5; 
R6=M(6)/Theta6; 
R7=M(7)/Theta7; 
R8=M(8)/Theta8; 
R9=M(9)/Theta9; 
R10=M(10)/Theta10; 
R11=M(11)/Theta11; 
R12=M(12)/Theta12; 
r=ones(60,2); 
r(13,1)=1/(1+((3*E*I(7))/(R1*60))); 
r(16,2)=1/(1+((3*E*I(7))/(R2*60))); 
r(17,1)=1/(1+((3*E*I(7))/(R3*60))); 
r(20,2)=1/(1+((3*E*I(7))/(R4*60))); 
r(33,1)=1/(1+((3*E*I(7))/(R5*60))); 
r(36,2)=1/(1+((3*E*I(7))/(R6*60))); 
r(37,1)=1/(1+((3*E*I(7))/(R7*60))); 
r(40,2)=1/(1+((3*E*I(7))/(R8*60))); 
r(53,1)=1/(1+((3*E*I(7))/(R9*60))); 
r(56,2)=1/(1+((3*E*I(7))/(R10*60))); 
r(57,1)=1/(1+((3*E*I(7))/(R11*60))); 
r(60,2)=1/(1+((3*E*I(7))/(R12*60))); 

  

  
L=zeros(60,1); 
% Member 1 
i=1; 
r1(i)=r(i,1); 
r2(i)=r(i,2); 
N(i)=pe(4,i); 
L(i) = sqrt((MC(i,3)-MC(i,1))^2 +(MC(i,4)-MC(i,2))^2); 
te(:,:,i) = Te(MC(i,1),MC(i,2),MC(i,3),MC(i,4)); 
si(:,:,i) = Si(E,A(i),L(i),I(i)); 
cei(:,:,i)= Cei(r1(i),r2(i),L(i)); 
gi(:,:,i) = Gi(N(i),L(i)); 
cgi(:,:,i)= Cgi(r1(i),r2(i),L(i)); 
ki(:,:,i)=si(:,:,i)*cei(:,:,i)+gi(:,:,i)*cgi(:,:,i); 
k(:,:,i)=te(:,:,i)'*ki(:,:,i)*te(:,:,i); 
nd(1)=nodes(i,1); 
nd(2)=nodes(i,2); 
index=feeldof(nd,nnel,ndof).'; 
LocM(:,:,i) = zeros(6,(3*nnode)); 
    for j = 1:3*nnode; 
        for g = 1:6; 
            if index(g) == j; 
                LocM(g,j,i) = 1; 
            end  
        end 
    end 
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K(:,:,i)=LocM(:,:,i)'*k(:,:,i)*LocM(:,:,i); 
% Member 2   
    i=2; 
    r1(i)=r(i,1); 
r2(i)=r(i,2); 
N(i)=pe(4,i); 
L(i) = sqrt((MC(i,3)-MC(i,1))^2 +(MC(i,4)-MC(i,2))^2); 
te(:,:,i) = Te(MC(i,1),MC(i,2),MC(i,3),MC(i,4)); 
si(:,:,i) = Si(E,A(i),L(i),I(i)); 
cei(:,:,i)= Cei(r1(i),r2(i),L(i)); 
gi(:,:,i) = Gi(N(i),L(i)); 
cgi(:,:,i)= Cgi(r1(i),r2(i),L(i)); 
ki(:,:,i)=si(:,:,i)*cei(:,:,i)+gi(:,:,i)*cgi(:,:,i); 
k(:,:,i)=te(:,:,i)'*ki(:,:,i)*te(:,:,i); 
nd(1)=nodes(i,1); 
nd(2)=nodes(i,2); 
index=feeldof(nd,nnel,ndof).'; 
LocM(:,:,i) = zeros(6,(3*nnode)); 
    for j = 1:3*nnode; 
        for g = 1:6; 
            if index(g) == j; 
                LocM(g,j,i) = 1; 
            end  
        end 
    end 
K(:,:,i)=LocM(:,:,i)'*k(:,:,i)*LocM(:,:,i); 
% Member 3   
    i=3; 
    r1(i)=r(i,1); 
r2(i)=r(i,2); 
N(i)=pe(4,i); 
L(i) = sqrt((MC(i,3)-MC(i,1))^2 +(MC(i,4)-MC(i,2))^2); 
te(:,:,i) = Te(MC(i,1),MC(i,2),MC(i,3),MC(i,4)); 
si(:,:,i) = Si(E,A(i),L(i),I(i)); 
cei(:,:,i)= Cei(r1(i),r2(i),L(i)); 
gi(:,:,i) = Gi(N(i),L(i)); 
cgi(:,:,i)= Cgi(r1(i),r2(i),L(i)); 
ki(:,:,i)=si(:,:,i)*cei(:,:,i)+gi(:,:,i)*cgi(:,:,i); 
k(:,:,i)=te(:,:,i)'*ki(:,:,i)*te(:,:,i); 
nd(1)=nodes(i,1); 
nd(2)=nodes(i,2); 
index=feeldof(nd,nnel,ndof).'; 
LocM(:,:,i) = zeros(6,(3*nnode)); 
    for j = 1:3*nnode; 
        for g = 1:6; 
            if index(g) == j; 
                LocM(g,j,i) = 1; 
            end  
        end 
    end 
K(:,:,i)=LocM(:,:,i)'*k(:,:,i)*LocM(:,:,i); 
% Member 4   
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    i=4;r1(i)=r(i,1); 
r2(i)=r(i,2); 
N(i)=pe(4,i); 
L(i) = sqrt((MC(i,3)-MC(i,1))^2 +(MC(i,4)-MC(i,2))^2); 
te(:,:,i) = Te(MC(i,1),MC(i,2),MC(i,3),MC(i,4)); 
si(:,:,i) = Si(E,A(i),L(i),I(i)); 
cei(:,:,i)= Cei(r1(i),r2(i),L(i)); 
gi(:,:,i) = Gi(N(i),L(i)); 
cgi(:,:,i)= Cgi(r1(i),r2(i),L(i)); 
ki(:,:,i)=si(:,:,i)*cei(:,:,i)+gi(:,:,i)*cgi(:,:,i); 
k(:,:,i)=te(:,:,i)'*ki(:,:,i)*te(:,:,i); 
nd(1)=nodes(i,1); 
nd(2)=nodes(i,2); 
index=feeldof(nd,nnel,ndof).'; 
LocM(:,:,i) = zeros(6,(3*nnode)); 
    for j = 1:3*nnode; 
        for g = 1:6; 
            if index(g) == j; 
                LocM(g,j,i) = 1; 
            end  
        end 
    end 
K(:,:,i)=LocM(:,:,i)'*k(:,:,i)*LocM(:,:,i); 
% Member 5   
    i=5; 
    r1(i)=r(i,1); 
r2(i)=r(i,2); 
N(i)=pe(4,i); 
L(i) = sqrt((MC(i,3)-MC(i,1))^2 +(MC(i,4)-MC(i,2))^2); 
te(:,:,i) = Te(MC(i,1),MC(i,2),MC(i,3),MC(i,4)); 
si(:,:,i) = Si(E,A(i),L(i),I(i)); 
cei(:,:,i)= Cei(r1(i),r2(i),L(i)); 
gi(:,:,i) = Gi(N(i),L(i)); 
cgi(:,:,i)= Cgi(r1(i),r2(i),L(i)); 
ki(:,:,i)=si(:,:,i)*cei(:,:,i)+gi(:,:,i)*cgi(:,:,i); 
k(:,:,i)=te(:,:,i)'*ki(:,:,i)*te(:,:,i); 
nd(1)=nodes(i,1); 
nd(2)=nodes(i,2); 
index=feeldof(nd,nnel,ndof).'; 
LocM(:,:,i) = zeros(6,(3*nnode)); 
    for j = 1:3*nnode; 
        for g = 1:6; 
            if index(g) == j; 
                LocM(g,j,i) = 1; 
            end  
        end 
    end 
K(:,:,i)=LocM(:,:,i)'*k(:,:,i)*LocM(:,:,i); 
% Member 6   
    i=6; 
    r1(i)=r(i,1); 
r2(i)=r(i,2); 
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N(i)=pe(4,i); 
L(i) = sqrt((MC(i,3)-MC(i,1))^2 +(MC(i,4)-MC(i,2))^2); 
te(:,:,i) = Te(MC(i,1),MC(i,2),MC(i,3),MC(i,4)); 
si(:,:,i) = Si(E,A(i),L(i),I(i)); 
cei(:,:,i)= Cei(r1(i),r2(i),L(i)); 
gi(:,:,i) = Gi(N(i),L(i)); 
cgi(:,:,i)= Cgi(r1(i),r2(i),L(i)); 
ki(:,:,i)=si(:,:,i)*cei(:,:,i)+gi(:,:,i)*cgi(:,:,i); 
k(:,:,i)=te(:,:,i)'*ki(:,:,i)*te(:,:,i); 
nd(1)=nodes(i,1); 
nd(2)=nodes(i,2); 
index=feeldof(nd,nnel,ndof).'; 
LocM(:,:,i) = zeros(6,(3*nnode)); 
    for j = 1:3*nnode; 
        for g = 1:6; 
            if index(g) == j; 
                LocM(g,j,i) = 1; 
            end  
        end 
    end 
K(:,:,i)=LocM(:,:,i)'*k(:,:,i)*LocM(:,:,i); 
% Member 7   
    i=7; 
    r1(i)=r(i,1); 
r2(i)=r(i,2); 
N(i)=pe(4,i); 
L(i) = sqrt((MC(i,3)-MC(i,1))^2 +(MC(i,4)-MC(i,2))^2); 
te(:,:,i) = Te(MC(i,1),MC(i,2),MC(i,3),MC(i,4)); 
si(:,:,i) = Si(E,A(i),L(i),I(i)); 
cei(:,:,i)= Cei(r1(i),r2(i),L(i)); 
gi(:,:,i) = Gi(N(i),L(i)); 
cgi(:,:,i)= Cgi(r1(i),r2(i),L(i)); 
ki(:,:,i)=si(:,:,i)*cei(:,:,i)+gi(:,:,i)*cgi(:,:,i); 
k(:,:,i)=te(:,:,i)'*ki(:,:,i)*te(:,:,i); 
nd(1)=nodes(i,1); 
nd(2)=nodes(i,2); 
index=feeldof(nd,nnel,ndof).'; 
LocM(:,:,i) = zeros(6,(3*nnode)); 
    for j = 1:3*nnode; 
        for g = 1:6; 
            if index(g) == j; 
                LocM(g,j,i) = 1; 
            end  
        end 
    end 
K(:,:,i)=LocM(:,:,i)'*k(:,:,i)*LocM(:,:,i); 
% Member 8   
    i=8; 
    r1(i)=r(i,1); 
r2(i)=r(i,2); 
N(i)=pe(4,i); 
L(i) = sqrt((MC(i,3)-MC(i,1))^2 +(MC(i,4)-MC(i,2))^2); 
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te(:,:,i) = Te(MC(i,1),MC(i,2),MC(i,3),MC(i,4)); 
si(:,:,i) = Si(E,A(i),L(i),I(i)); 
cei(:,:,i)= Cei(r1(i),r2(i),L(i)); 
gi(:,:,i) = Gi(N(i),L(i)); 
cgi(:,:,i)= Cgi(r1(i),r2(i),L(i)); 
ki(:,:,i)=si(:,:,i)*cei(:,:,i)+gi(:,:,i)*cgi(:,:,i); 
k(:,:,i)=te(:,:,i)'*ki(:,:,i)*te(:,:,i); 
nd(1)=nodes(i,1); 
nd(2)=nodes(i,2); 
index=feeldof(nd,nnel,ndof).'; 
LocM(:,:,i) = zeros(6,(3*nnode)); 
    for j = 1:3*nnode; 
        for g = 1:6; 
            if index(g) == j; 
                LocM(g,j,i) = 1; 
            end  
        end 
    end 
K(:,:,i)=LocM(:,:,i)'*k(:,:,i)*LocM(:,:,i); 
% Member 9   
    i=9; 
    r1(i)=r(i,1); 
r2(i)=r(i,2); 
N(i)=pe(4,i); 
L(i) = sqrt((MC(i,3)-MC(i,1))^2 +(MC(i,4)-MC(i,2))^2); 
te(:,:,i) = Te(MC(i,1),MC(i,2),MC(i,3),MC(i,4)); 
si(:,:,i) = Si(E,A(i),L(i),I(i)); 
cei(:,:,i)= Cei(r1(i),r2(i),L(i)); 
gi(:,:,i) = Gi(N(i),L(i)); 
cgi(:,:,i)= Cgi(r1(i),r2(i),L(i)); 
ki(:,:,i)=si(:,:,i)*cei(:,:,i)+gi(:,:,i)*cgi(:,:,i); 
k(:,:,i)=te(:,:,i)'*ki(:,:,i)*te(:,:,i); 
nd(1)=nodes(i,1); 
nd(2)=nodes(i,2); 
index=feeldof(nd,nnel,ndof).'; 
LocM(:,:,i) = zeros(6,(3*nnode)); 
    for j = 1:3*nnode; 
        for g = 1:6; 
            if index(g) == j; 
                LocM(g,j,i) = 1; 
            end  
        end 
    end 
K(:,:,i)=LocM(:,:,i)'*k(:,:,i)*LocM(:,:,i); 
% Member 10  
    i=10; 
    r1(i)=r(i,1); 
r2(i)=r(i,2); 
N(i)=pe(4,i); 
L(i) = sqrt((MC(i,3)-MC(i,1))^2 +(MC(i,4)-MC(i,2))^2); 
te(:,:,i) = Te(MC(i,1),MC(i,2),MC(i,3),MC(i,4)); 
si(:,:,i) = Si(E,A(i),L(i),I(i)); 
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cei(:,:,i)= Cei(r1(i),r2(i),L(i)); 
gi(:,:,i) = Gi(N(i),L(i)); 
cgi(:,:,i)= Cgi(r1(i),r2(i),L(i)); 
ki(:,:,i)=si(:,:,i)*cei(:,:,i)+gi(:,:,i)*cgi(:,:,i); 
k(:,:,i)=te(:,:,i)'*ki(:,:,i)*te(:,:,i); 
nd(1)=nodes(i,1); 
nd(2)=nodes(i,2); 
index=feeldof(nd,nnel,ndof).'; 
LocM(:,:,i) = zeros(6,(3*nnode)); 
    for j = 1:3*nnode; 
        for g = 1:6; 
            if index(g) == j; 
                LocM(g,j,i) = 1; 
            end  
        end 
    end 
K(:,:,i)=LocM(:,:,i)'*k(:,:,i)*LocM(:,:,i); 
% Member 11  
    i=11; 
    r1(i)=r(i,1); 
r2(i)=r(i,2); 
N(i)=pe(4,i); 
L(i) = sqrt((MC(i,3)-MC(i,1))^2 +(MC(i,4)-MC(i,2))^2); 
te(:,:,i) = Te(MC(i,1),MC(i,2),MC(i,3),MC(i,4)); 
si(:,:,i) = Si(E,A(i),L(i),I(i)); 
cei(:,:,i)= Cei(r1(i),r2(i),L(i)); 
gi(:,:,i) = Gi(N(i),L(i)); 
cgi(:,:,i)= Cgi(r1(i),r2(i),L(i)); 
ki(:,:,i)=si(:,:,i)*cei(:,:,i)+gi(:,:,i)*cgi(:,:,i); 
k(:,:,i)=te(:,:,i)'*ki(:,:,i)*te(:,:,i); 
nd(1)=nodes(i,1); 
nd(2)=nodes(i,2); 
index=feeldof(nd,nnel,ndof).'; 
LocM(:,:,i) = zeros(6,(3*nnode)); 
    for j = 1:3*nnode; 
        for g = 1:6; 
            if index(g) == j; 
                LocM(g,j,i) = 1; 
            end  
        end 
    end 
K(:,:,i)=LocM(:,:,i)'*k(:,:,i)*LocM(:,:,i); 
% Member 12  
    i=12; 
    r1(i)=r(i,1); 
r2(i)=r(i,2); 
N(i)=pe(4,i); 
L(i) = sqrt((MC(i,3)-MC(i,1))^2 +(MC(i,4)-MC(i,2))^2); 
te(:,:,i) = Te(MC(i,1),MC(i,2),MC(i,3),MC(i,4)); 
si(:,:,i) = Si(E,A(i),L(i),I(i)); 
cei(:,:,i)= Cei(r1(i),r2(i),L(i)); 
gi(:,:,i) = Gi(N(i),L(i)); 
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cgi(:,:,i)= Cgi(r1(i),r2(i),L(i)); 
ki(:,:,i)=si(:,:,i)*cei(:,:,i)+gi(:,:,i)*cgi(:,:,i); 
k(:,:,i)=te(:,:,i)'*ki(:,:,i)*te(:,:,i); 
nd(1)=nodes(i,1); 
nd(2)=nodes(i,2); 
index=feeldof(nd,nnel,ndof).'; 
LocM(:,:,i) = zeros(6,(3*nnode)); 
    for j = 1:3*nnode; 
        for g = 1:6; 
            if index(g) == j; 
                LocM(g,j,i) = 1; 
            end  
        end 
    end 
K(:,:,i)=LocM(:,:,i)'*k(:,:,i)*LocM(:,:,i); 
% Member 13  
    i=13; 
    r1(i)=r(i,1); 
r2(i)=r(i,2); 
N(i)=pe(4,i); 
L(i) = sqrt((MC(i,3)-MC(i,1))^2 +(MC(i,4)-MC(i,2))^2); 
te(:,:,i) = Te(MC(i,1),MC(i,2),MC(i,3),MC(i,4)); 
si(:,:,i) = Si(E,A(i),L(i),I(i)); 
cei(:,:,i)= Cei(r1(i),r2(i),L(i)); 
gi(:,:,i) = Gi(N(i),L(i)); 
cgi(:,:,i)= Cgi(r1(i),r2(i),L(i)); 
ki(:,:,i)=si(:,:,i)*cei(:,:,i)+gi(:,:,i)*cgi(:,:,i); 
k(:,:,i)=te(:,:,i)'*ki(:,:,i)*te(:,:,i); 
nd(1)=nodes(i,1); 
nd(2)=nodes(i,2); 
index=feeldof(nd,nnel,ndof).'; 
LocM(:,:,i) = zeros(6,(3*nnode)); 
    for j = 1:3*nnode; 
        for g = 1:6; 
            if index(g) == j; 
                LocM(g,j,i) = 1; 
            end  
        end 
    end 
K(:,:,i)=LocM(:,:,i)'*k(:,:,i)*LocM(:,:,i); 
% Member 14  
    i=14; 
    r1(i)=r(i,1); 
r2(i)=r(i,2); 
N(i)=pe(4,i); 
L(i) = sqrt((MC(i,3)-MC(i,1))^2 +(MC(i,4)-MC(i,2))^2); 
te(:,:,i) = Te(MC(i,1),MC(i,2),MC(i,3),MC(i,4)); 
si(:,:,i) = Si(E,A(i),L(i),I(i)); 
cei(:,:,i)= Cei(r1(i),r2(i),L(i)); 
gi(:,:,i) = Gi(N(i),L(i)); 
cgi(:,:,i)= Cgi(r1(i),r2(i),L(i)); 
ki(:,:,i)=si(:,:,i)*cei(:,:,i)+gi(:,:,i)*cgi(:,:,i); 
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k(:,:,i)=te(:,:,i)'*ki(:,:,i)*te(:,:,i); 
nd(1)=nodes(i,1); 
nd(2)=nodes(i,2); 
index=feeldof(nd,nnel,ndof).'; 
LocM(:,:,i) = zeros(6,(3*nnode)); 
    for j = 1:3*nnode; 
        for g = 1:6; 
            if index(g) == j; 
                LocM(g,j,i) = 1; 
            end  
        end 
    end 
K(:,:,i)=LocM(:,:,i)'*k(:,:,i)*LocM(:,:,i); 
% Member 15  
    i=15; 
    r1(i)=r(i,1); 
r2(i)=r(i,2); 
N(i)=pe(4,i); 
L(i) = sqrt((MC(i,3)-MC(i,1))^2 +(MC(i,4)-MC(i,2))^2); 
te(:,:,i) = Te(MC(i,1),MC(i,2),MC(i,3),MC(i,4)); 
si(:,:,i) = Si(E,A(i),L(i),I(i)); 
cei(:,:,i)= Cei(r1(i),r2(i),L(i)); 
gi(:,:,i) = Gi(N(i),L(i)); 
cgi(:,:,i)= Cgi(r1(i),r2(i),L(i)); 
ki(:,:,i)=si(:,:,i)*cei(:,:,i)+gi(:,:,i)*cgi(:,:,i); 
k(:,:,i)=te(:,:,i)'*ki(:,:,i)*te(:,:,i); 
nd(1)=nodes(i,1); 
nd(2)=nodes(i,2); 
index=feeldof(nd,nnel,ndof).'; 
LocM(:,:,i) = zeros(6,(3*nnode)); 
    for j = 1:3*nnode; 
        for g = 1:6; 
            if index(g) == j; 
                LocM(g,j,i) = 1; 
            end  
        end 
    end 
K(:,:,i)=LocM(:,:,i)'*k(:,:,i)*LocM(:,:,i); 
% Member 16  
    i=16; 
    r1(i)=r(i,1); 
r2(i)=r(i,2); 
N(i)=pe(4,i); 
L(i) = sqrt((MC(i,3)-MC(i,1))^2 +(MC(i,4)-MC(i,2))^2); 
te(:,:,i) = Te(MC(i,1),MC(i,2),MC(i,3),MC(i,4)); 
si(:,:,i) = Si(E,A(i),L(i),I(i)); 
cei(:,:,i)= Cei(r1(i),r2(i),L(i)); 
gi(:,:,i) = Gi(N(i),L(i)); 
cgi(:,:,i)= Cgi(r1(i),r2(i),L(i)); 
ki(:,:,i)=si(:,:,i)*cei(:,:,i)+gi(:,:,i)*cgi(:,:,i); 
k(:,:,i)=te(:,:,i)'*ki(:,:,i)*te(:,:,i); 
nd(1)=nodes(i,1); 
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nd(2)=nodes(i,2); 
index=feeldof(nd,nnel,ndof).'; 
LocM(:,:,i) = zeros(6,(3*nnode)); 
    for j = 1:3*nnode; 
        for g = 1:6; 
            if index(g) == j; 
                LocM(g,j,i) = 1; 
            end  
        end 
    end 
K(:,:,i)=LocM(:,:,i)'*k(:,:,i)*LocM(:,:,i); 
% Member 17  
    i=17; 
    r1(i)=r(i,1); 
r2(i)=r(i,2); 
N(i)=pe(4,i); 
L(i) = sqrt((MC(i,3)-MC(i,1))^2 +(MC(i,4)-MC(i,2))^2); 
te(:,:,i) = Te(MC(i,1),MC(i,2),MC(i,3),MC(i,4)); 
si(:,:,i) = Si(E,A(i),L(i),I(i)); 
cei(:,:,i)= Cei(r1(i),r2(i),L(i)); 
gi(:,:,i) = Gi(N(i),L(i)); 
cgi(:,:,i)= Cgi(r1(i),r2(i),L(i)); 
ki(:,:,i)=si(:,:,i)*cei(:,:,i)+gi(:,:,i)*cgi(:,:,i); 
k(:,:,i)=te(:,:,i)'*ki(:,:,i)*te(:,:,i); 
nd(1)=nodes(i,1); 
nd(2)=nodes(i,2); 
index=feeldof(nd,nnel,ndof).'; 
LocM(:,:,i) = zeros(6,(3*nnode)); 
    for j = 1:3*nnode; 
        for g = 1:6; 
            if index(g) == j; 
                LocM(g,j,i) = 1; 
            end  
        end 
    end 
K(:,:,i)=LocM(:,:,i)'*k(:,:,i)*LocM(:,:,i); 
% Member 18  
    i=18; 
    r1(i)=r(i,1); 
r2(i)=r(i,2); 
N(i)=pe(4,i); 
L(i) = sqrt((MC(i,3)-MC(i,1))^2 +(MC(i,4)-MC(i,2))^2); 
te(:,:,i) = Te(MC(i,1),MC(i,2),MC(i,3),MC(i,4)); 
si(:,:,i) = Si(E,A(i),L(i),I(i)); 
cei(:,:,i)= Cei(r1(i),r2(i),L(i)); 
gi(:,:,i) = Gi(N(i),L(i)); 
cgi(:,:,i)= Cgi(r1(i),r2(i),L(i)); 
ki(:,:,i)=si(:,:,i)*cei(:,:,i)+gi(:,:,i)*cgi(:,:,i); 
k(:,:,i)=te(:,:,i)'*ki(:,:,i)*te(:,:,i); 
nd(1)=nodes(i,1); 
nd(2)=nodes(i,2); 
index=feeldof(nd,nnel,ndof).'; 
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LocM(:,:,i) = zeros(6,(3*nnode)); 
    for j = 1:3*nnode; 
        for g = 1:6; 
            if index(g) == j; 
                LocM(g,j,i) = 1; 
            end  
        end 
    end 
K(:,:,i)=LocM(:,:,i)'*k(:,:,i)*LocM(:,:,i); 
% Member 19  
    i=19; 
    r1(i)=r(i,1); 
r2(i)=r(i,2); 
N(i)=pe(4,i); 
L(i) = sqrt((MC(i,3)-MC(i,1))^2 +(MC(i,4)-MC(i,2))^2); 
te(:,:,i) = Te(MC(i,1),MC(i,2),MC(i,3),MC(i,4)); 
si(:,:,i) = Si(E,A(i),L(i),I(i)); 
cei(:,:,i)= Cei(r1(i),r2(i),L(i)); 
gi(:,:,i) = Gi(N(i),L(i)); 
cgi(:,:,i)= Cgi(r1(i),r2(i),L(i)); 
ki(:,:,i)=si(:,:,i)*cei(:,:,i)+gi(:,:,i)*cgi(:,:,i); 
k(:,:,i)=te(:,:,i)'*ki(:,:,i)*te(:,:,i); 
nd(1)=nodes(i,1); 
nd(2)=nodes(i,2); 
index=feeldof(nd,nnel,ndof).'; 
LocM(:,:,i) = zeros(6,(3*nnode)); 
    for j = 1:3*nnode; 
        for g = 1:6; 
            if index(g) == j; 
                LocM(g,j,i) = 1; 
            end  
        end 
    end 
K(:,:,i)=LocM(:,:,i)'*k(:,:,i)*LocM(:,:,i); 
% Member 20  
    i=20; 
    r1(i)=r(i,1); 
r2(i)=r(i,2); 
N(i)=pe(4,i); 
L(i) = sqrt((MC(i,3)-MC(i,1))^2 +(MC(i,4)-MC(i,2))^2); 
te(:,:,i) = Te(MC(i,1),MC(i,2),MC(i,3),MC(i,4)); 
si(:,:,i) = Si(E,A(i),L(i),I(i)); 
cei(:,:,i)= Cei(r1(i),r2(i),L(i)); 
gi(:,:,i) = Gi(N(i),L(i)); 
cgi(:,:,i)= Cgi(r1(i),r2(i),L(i)); 
ki(:,:,i)=si(:,:,i)*cei(:,:,i)+gi(:,:,i)*cgi(:,:,i); 
k(:,:,i)=te(:,:,i)'*ki(:,:,i)*te(:,:,i); 
nd(1)=nodes(i,1); 
nd(2)=nodes(i,2); 
index=feeldof(nd,nnel,ndof).'; 
LocM(:,:,i) = zeros(6,(3*nnode)); 
    for j = 1:3*nnode; 
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        for g = 1:6; 
            if index(g) == j; 
                LocM(g,j,i) = 1; 
            end  
        end 
    end 
K(:,:,i)=LocM(:,:,i)'*k(:,:,i)*LocM(:,:,i); 
% Member 21  
    i=21; 
    r1(i)=r(i,1); 
r2(i)=r(i,2); 
N(i)=pe(4,i); 
L(i) = sqrt((MC(i,3)-MC(i,1))^2 +(MC(i,4)-MC(i,2))^2); 
te(:,:,i) = Te(MC(i,1),MC(i,2),MC(i,3),MC(i,4)); 
si(:,:,i) = Si(E,A(i),L(i),I(i)); 
cei(:,:,i)= Cei(r1(i),r2(i),L(i)); 
gi(:,:,i) = Gi(N(i),L(i)); 
cgi(:,:,i)= Cgi(r1(i),r2(i),L(i)); 
ki(:,:,i)=si(:,:,i)*cei(:,:,i)+gi(:,:,i)*cgi(:,:,i); 
k(:,:,i)=te(:,:,i)'*ki(:,:,i)*te(:,:,i); 
nd(1)=nodes(i,1); 
nd(2)=nodes(i,2); 
index=feeldof(nd,nnel,ndof).'; 
LocM(:,:,i) = zeros(6,(3*nnode)); 
    for j = 1:3*nnode; 
        for g = 1:6; 
            if index(g) == j; 
                LocM(g,j,i) = 1; 
            end  
        end 
    end 
K(:,:,i)=LocM(:,:,i)'*k(:,:,i)*LocM(:,:,i); 
% Member 22  
    i=22; 
    r1(i)=r(i,1); 
r2(i)=r(i,2); 
N(i)=pe(4,i); 
L(i) = sqrt((MC(i,3)-MC(i,1))^2 +(MC(i,4)-MC(i,2))^2); 
te(:,:,i) = Te(MC(i,1),MC(i,2),MC(i,3),MC(i,4)); 
si(:,:,i) = Si(E,A(i),L(i),I(i)); 
cei(:,:,i)= Cei(r1(i),r2(i),L(i)); 
gi(:,:,i) = Gi(N(i),L(i)); 
cgi(:,:,i)= Cgi(r1(i),r2(i),L(i)); 
ki(:,:,i)=si(:,:,i)*cei(:,:,i)+gi(:,:,i)*cgi(:,:,i); 
k(:,:,i)=te(:,:,i)'*ki(:,:,i)*te(:,:,i); 
nd(1)=nodes(i,1); 
nd(2)=nodes(i,2); 
index=feeldof(nd,nnel,ndof).'; 
LocM(:,:,i) = zeros(6,(3*nnode)); 
    for j = 1:3*nnode; 
        for g = 1:6; 
            if index(g) == j; 
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                LocM(g,j,i) = 1; 
            end  
        end 
    end 
K(:,:,i)=LocM(:,:,i)'*k(:,:,i)*LocM(:,:,i); 
% Member 23  
    i=23; 
    r1(i)=r(i,1); 
r2(i)=r(i,2); 
N(i)=pe(4,i); 
L(i) = sqrt((MC(i,3)-MC(i,1))^2 +(MC(i,4)-MC(i,2))^2); 
te(:,:,i) = Te(MC(i,1),MC(i,2),MC(i,3),MC(i,4)); 
si(:,:,i) = Si(E,A(i),L(i),I(i)); 
cei(:,:,i)= Cei(r1(i),r2(i),L(i)); 
gi(:,:,i) = Gi(N(i),L(i)); 
cgi(:,:,i)= Cgi(r1(i),r2(i),L(i)); 
ki(:,:,i)=si(:,:,i)*cei(:,:,i)+gi(:,:,i)*cgi(:,:,i); 
k(:,:,i)=te(:,:,i)'*ki(:,:,i)*te(:,:,i); 
nd(1)=nodes(i,1); 
nd(2)=nodes(i,2); 
index=feeldof(nd,nnel,ndof).'; 
LocM(:,:,i) = zeros(6,(3*nnode)); 
    for j = 1:3*nnode; 
        for g = 1:6; 
            if index(g) == j; 
                LocM(g,j,i) = 1; 
            end  
        end 
    end 
K(:,:,i)=LocM(:,:,i)'*k(:,:,i)*LocM(:,:,i); 
% Member 24  
    i=24; 
    r1(i)=r(i,1); 
r2(i)=r(i,2); 
N(i)=pe(4,i); 
L(i) = sqrt((MC(i,3)-MC(i,1))^2 +(MC(i,4)-MC(i,2))^2); 
te(:,:,i) = Te(MC(i,1),MC(i,2),MC(i,3),MC(i,4)); 
si(:,:,i) = Si(E,A(i),L(i),I(i)); 
cei(:,:,i)= Cei(r1(i),r2(i),L(i)); 
gi(:,:,i) = Gi(N(i),L(i)); 
cgi(:,:,i)= Cgi(r1(i),r2(i),L(i)); 
ki(:,:,i)=si(:,:,i)*cei(:,:,i)+gi(:,:,i)*cgi(:,:,i); 
k(:,:,i)=te(:,:,i)'*ki(:,:,i)*te(:,:,i); 
nd(1)=nodes(i,1); 
nd(2)=nodes(i,2); 
index=feeldof(nd,nnel,ndof).'; 
LocM(:,:,i) = zeros(6,(3*nnode)); 
    for j = 1:3*nnode; 
        for g = 1:6; 
            if index(g) == j; 
                LocM(g,j,i) = 1; 
            end  
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        end 
    end 
K(:,:,i)=LocM(:,:,i)'*k(:,:,i)*LocM(:,:,i); 
% Member 25  
    i=25; 
    r1(i)=r(i,1); 
r2(i)=r(i,2); 
N(i)=pe(4,i); 
L(i) = sqrt((MC(i,3)-MC(i,1))^2 +(MC(i,4)-MC(i,2))^2); 
te(:,:,i) = Te(MC(i,1),MC(i,2),MC(i,3),MC(i,4)); 
si(:,:,i) = Si(E,A(i),L(i),I(i)); 
cei(:,:,i)= Cei(r1(i),r2(i),L(i)); 
gi(:,:,i) = Gi(N(i),L(i)); 
cgi(:,:,i)= Cgi(r1(i),r2(i),L(i)); 
ki(:,:,i)=si(:,:,i)*cei(:,:,i)+gi(:,:,i)*cgi(:,:,i); 
k(:,:,i)=te(:,:,i)'*ki(:,:,i)*te(:,:,i); 
nd(1)=nodes(i,1); 
nd(2)=nodes(i,2); 
index=feeldof(nd,nnel,ndof).'; 
LocM(:,:,i) = zeros(6,(3*nnode)); 
    for j = 1:3*nnode; 
        for g = 1:6; 
            if index(g) == j; 
                LocM(g,j,i) = 1; 
            end  
        end 
    end 
K(:,:,i)=LocM(:,:,i)'*k(:,:,i)*LocM(:,:,i); 
% Member 26  
    i=26; 
    r1(i)=r(i,1); 
r2(i)=r(i,2); 
N(i)=pe(4,i); 
L(i) = sqrt((MC(i,3)-MC(i,1))^2 +(MC(i,4)-MC(i,2))^2); 
te(:,:,i) = Te(MC(i,1),MC(i,2),MC(i,3),MC(i,4)); 
si(:,:,i) = Si(E,A(i),L(i),I(i)); 
cei(:,:,i)= Cei(r1(i),r2(i),L(i)); 
gi(:,:,i) = Gi(N(i),L(i)); 
cgi(:,:,i)= Cgi(r1(i),r2(i),L(i)); 
ki(:,:,i)=si(:,:,i)*cei(:,:,i)+gi(:,:,i)*cgi(:,:,i); 
k(:,:,i)=te(:,:,i)'*ki(:,:,i)*te(:,:,i); 
nd(1)=nodes(i,1); 
nd(2)=nodes(i,2); 
index=feeldof(nd,nnel,ndof).'; 
LocM(:,:,i) = zeros(6,(3*nnode)); 
    for j = 1:3*nnode; 
        for g = 1:6; 
            if index(g) == j; 
                LocM(g,j,i) = 1; 
            end  
        end 
    end 



121 

 

K(:,:,i)=LocM(:,:,i)'*k(:,:,i)*LocM(:,:,i); 
% Member 27  
    i=27; 
    r1(i)=r(i,1); 
r2(i)=r(i,2); 
N(i)=pe(4,i); 
L(i) = sqrt((MC(i,3)-MC(i,1))^2 +(MC(i,4)-MC(i,2))^2); 
te(:,:,i) = Te(MC(i,1),MC(i,2),MC(i,3),MC(i,4)); 
si(:,:,i) = Si(E,A(i),L(i),I(i)); 
cei(:,:,i)= Cei(r1(i),r2(i),L(i)); 
gi(:,:,i) = Gi(N(i),L(i)); 
cgi(:,:,i)= Cgi(r1(i),r2(i),L(i)); 
ki(:,:,i)=si(:,:,i)*cei(:,:,i)+gi(:,:,i)*cgi(:,:,i); 
k(:,:,i)=te(:,:,i)'*ki(:,:,i)*te(:,:,i); 
nd(1)=nodes(i,1); 
nd(2)=nodes(i,2); 
index=feeldof(nd,nnel,ndof).'; 
LocM(:,:,i) = zeros(6,(3*nnode)); 
    for j = 1:3*nnode; 
        for g = 1:6; 
            if index(g) == j; 
                LocM(g,j,i) = 1; 
            end  
        end 
    end 
K(:,:,i)=LocM(:,:,i)'*k(:,:,i)*LocM(:,:,i); 
% Member 28  
    i=28; 
    r1(i)=r(i,1); 
r2(i)=r(i,2); 
N(i)=pe(4,i); 
L(i) = sqrt((MC(i,3)-MC(i,1))^2 +(MC(i,4)-MC(i,2))^2); 
te(:,:,i) = Te(MC(i,1),MC(i,2),MC(i,3),MC(i,4)); 
si(:,:,i) = Si(E,A(i),L(i),I(i)); 
cei(:,:,i)= Cei(r1(i),r2(i),L(i)); 
gi(:,:,i) = Gi(N(i),L(i)); 
cgi(:,:,i)= Cgi(r1(i),r2(i),L(i)); 
ki(:,:,i)=si(:,:,i)*cei(:,:,i)+gi(:,:,i)*cgi(:,:,i); 
k(:,:,i)=te(:,:,i)'*ki(:,:,i)*te(:,:,i); 
nd(1)=nodes(i,1); 
nd(2)=nodes(i,2); 
index=feeldof(nd,nnel,ndof).'; 
LocM(:,:,i) = zeros(6,(3*nnode)); 
    for j = 1:3*nnode; 
        for g = 1:6; 
            if index(g) == j; 
                LocM(g,j,i) = 1; 
            end  
        end 
    end 
K(:,:,i)=LocM(:,:,i)'*k(:,:,i)*LocM(:,:,i); 
% Member 29  
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    i=29; 
    r1(i)=r(i,1); 
r2(i)=r(i,2); 
N(i)=pe(4,i); 
L(i) = sqrt((MC(i,3)-MC(i,1))^2 +(MC(i,4)-MC(i,2))^2); 
te(:,:,i) = Te(MC(i,1),MC(i,2),MC(i,3),MC(i,4)); 
si(:,:,i) = Si(E,A(i),L(i),I(i)); 
cei(:,:,i)= Cei(r1(i),r2(i),L(i)); 
gi(:,:,i) = Gi(N(i),L(i)); 
cgi(:,:,i)= Cgi(r1(i),r2(i),L(i)); 
ki(:,:,i)=si(:,:,i)*cei(:,:,i)+gi(:,:,i)*cgi(:,:,i); 
k(:,:,i)=te(:,:,i)'*ki(:,:,i)*te(:,:,i); 
nd(1)=nodes(i,1); 
nd(2)=nodes(i,2); 
index=feeldof(nd,nnel,ndof).'; 
LocM(:,:,i) = zeros(6,(3*nnode)); 
    for j = 1:3*nnode; 
        for g = 1:6; 
            if index(g) == j; 
                LocM(g,j,i) = 1; 
            end  
        end 
    end 
K(:,:,i)=LocM(:,:,i)'*k(:,:,i)*LocM(:,:,i); 
% Member 30  
    i=30; 
    r1(i)=r(i,1); 
r2(i)=r(i,2); 
N(i)=pe(4,i); 
L(i) = sqrt((MC(i,3)-MC(i,1))^2 +(MC(i,4)-MC(i,2))^2); 
te(:,:,i) = Te(MC(i,1),MC(i,2),MC(i,3),MC(i,4)); 
si(:,:,i) = Si(E,A(i),L(i),I(i)); 
cei(:,:,i)= Cei(r1(i),r2(i),L(i)); 
gi(:,:,i) = Gi(N(i),L(i)); 
cgi(:,:,i)= Cgi(r1(i),r2(i),L(i)); 
ki(:,:,i)=si(:,:,i)*cei(:,:,i)+gi(:,:,i)*cgi(:,:,i); 
k(:,:,i)=te(:,:,i)'*ki(:,:,i)*te(:,:,i); 
nd(1)=nodes(i,1); 
nd(2)=nodes(i,2); 
index=feeldof(nd,nnel,ndof).'; 
LocM(:,:,i) = zeros(6,(3*nnode)); 
    for j = 1:3*nnode; 
        for g = 1:6; 
            if index(g) == j; 
                LocM(g,j,i) = 1; 
            end  
        end 
    end 
K(:,:,i)=LocM(:,:,i)'*k(:,:,i)*LocM(:,:,i); 
% Member 31  
    i=31; 
    r1(i)=r(i,1); 
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r2(i)=r(i,2); 
N(i)=pe(4,i); 
L(i) = sqrt((MC(i,3)-MC(i,1))^2 +(MC(i,4)-MC(i,2))^2); 
te(:,:,i) = Te(MC(i,1),MC(i,2),MC(i,3),MC(i,4)); 
si(:,:,i) = Si(E,A(i),L(i),I(i)); 
cei(:,:,i)= Cei(r1(i),r2(i),L(i)); 
gi(:,:,i) = Gi(N(i),L(i)); 
cgi(:,:,i)= Cgi(r1(i),r2(i),L(i)); 
ki(:,:,i)=si(:,:,i)*cei(:,:,i)+gi(:,:,i)*cgi(:,:,i); 
k(:,:,i)=te(:,:,i)'*ki(:,:,i)*te(:,:,i); 
nd(1)=nodes(i,1); 
nd(2)=nodes(i,2); 
index=feeldof(nd,nnel,ndof).'; 
LocM(:,:,i) = zeros(6,(3*nnode)); 
    for j = 1:3*nnode; 
        for g = 1:6; 
            if index(g) == j; 
                LocM(g,j,i) = 1; 
            end  
        end 
    end 
K(:,:,i)=LocM(:,:,i)'*k(:,:,i)*LocM(:,:,i); 
% Member 32  
    i=32; 
    r1(i)=r(i,1); 
r2(i)=r(i,2); 
N(i)=pe(4,i); 
L(i) = sqrt((MC(i,3)-MC(i,1))^2 +(MC(i,4)-MC(i,2))^2); 
te(:,:,i) = Te(MC(i,1),MC(i,2),MC(i,3),MC(i,4)); 
si(:,:,i) = Si(E,A(i),L(i),I(i)); 
cei(:,:,i)= Cei(r1(i),r2(i),L(i)); 
gi(:,:,i) = Gi(N(i),L(i)); 
cgi(:,:,i)= Cgi(r1(i),r2(i),L(i)); 
ki(:,:,i)=si(:,:,i)*cei(:,:,i)+gi(:,:,i)*cgi(:,:,i); 
k(:,:,i)=te(:,:,i)'*ki(:,:,i)*te(:,:,i); 
nd(1)=nodes(i,1); 
nd(2)=nodes(i,2); 
index=feeldof(nd,nnel,ndof).'; 
LocM(:,:,i) = zeros(6,(3*nnode)); 
    for j = 1:3*nnode; 
        for g = 1:6; 
            if index(g) == j; 
                LocM(g,j,i) = 1; 
            end  
        end 
    end 
K(:,:,i)=LocM(:,:,i)'*k(:,:,i)*LocM(:,:,i); 
% Member 33  
    i=33; 
    r1(i)=r(i,1); 
r2(i)=r(i,2); 
N(i)=pe(4,i); 
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L(i) = sqrt((MC(i,3)-MC(i,1))^2 +(MC(i,4)-MC(i,2))^2); 
te(:,:,i) = Te(MC(i,1),MC(i,2),MC(i,3),MC(i,4)); 
si(:,:,i) = Si(E,A(i),L(i),I(i)); 
cei(:,:,i)= Cei(r1(i),r2(i),L(i)); 
gi(:,:,i) = Gi(N(i),L(i)); 
cgi(:,:,i)= Cgi(r1(i),r2(i),L(i)); 
ki(:,:,i)=si(:,:,i)*cei(:,:,i)+gi(:,:,i)*cgi(:,:,i); 
k(:,:,i)=te(:,:,i)'*ki(:,:,i)*te(:,:,i); 
nd(1)=nodes(i,1); 
nd(2)=nodes(i,2); 
index=feeldof(nd,nnel,ndof).'; 
LocM(:,:,i) = zeros(6,(3*nnode)); 
    for j = 1:3*nnode; 
        for g = 1:6; 
            if index(g) == j; 
                LocM(g,j,i) = 1; 
            end  
        end 
    end 
K(:,:,i)=LocM(:,:,i)'*k(:,:,i)*LocM(:,:,i); 
% Member 34  
    i=34; 
    r1(i)=r(i,1); 
r2(i)=r(i,2); 
N(i)=pe(4,i); 
L(i) = sqrt((MC(i,3)-MC(i,1))^2 +(MC(i,4)-MC(i,2))^2); 
te(:,:,i) = Te(MC(i,1),MC(i,2),MC(i,3),MC(i,4)); 
si(:,:,i) = Si(E,A(i),L(i),I(i)); 
cei(:,:,i)= Cei(r1(i),r2(i),L(i)); 
gi(:,:,i) = Gi(N(i),L(i)); 
cgi(:,:,i)= Cgi(r1(i),r2(i),L(i)); 
ki(:,:,i)=si(:,:,i)*cei(:,:,i)+gi(:,:,i)*cgi(:,:,i); 
k(:,:,i)=te(:,:,i)'*ki(:,:,i)*te(:,:,i); 
nd(1)=nodes(i,1); 
nd(2)=nodes(i,2); 
index=feeldof(nd,nnel,ndof).'; 
LocM(:,:,i) = zeros(6,(3*nnode)); 
    for j = 1:3*nnode; 
        for g = 1:6; 
            if index(g) == j; 
                LocM(g,j,i) = 1; 
            end  
        end 
    end 
K(:,:,i)=LocM(:,:,i)'*k(:,:,i)*LocM(:,:,i); 
% Member 35  
    i=35; 
    r1(i)=r(i,1); 
r2(i)=r(i,2); 
N(i)=pe(4,i); 
L(i) = sqrt((MC(i,3)-MC(i,1))^2 +(MC(i,4)-MC(i,2))^2); 
te(:,:,i) = Te(MC(i,1),MC(i,2),MC(i,3),MC(i,4)); 
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si(:,:,i) = Si(E,A(i),L(i),I(i)); 
cei(:,:,i)= Cei(r1(i),r2(i),L(i)); 
gi(:,:,i) = Gi(N(i),L(i)); 
cgi(:,:,i)= Cgi(r1(i),r2(i),L(i)); 
ki(:,:,i)=si(:,:,i)*cei(:,:,i)+gi(:,:,i)*cgi(:,:,i); 
k(:,:,i)=te(:,:,i)'*ki(:,:,i)*te(:,:,i); 
nd(1)=nodes(i,1); 
nd(2)=nodes(i,2); 
index=feeldof(nd,nnel,ndof).'; 
LocM(:,:,i) = zeros(6,(3*nnode)); 
    for j = 1:3*nnode; 
        for g = 1:6; 
            if index(g) == j; 
                LocM(g,j,i) = 1; 
            end  
        end 
    end 
K(:,:,i)=LocM(:,:,i)'*k(:,:,i)*LocM(:,:,i); 
% Member 36  
    i=36; 
    r1(i)=r(i,1); 
r2(i)=r(i,2); 
N(i)=pe(4,i); 
L(i) = sqrt((MC(i,3)-MC(i,1))^2 +(MC(i,4)-MC(i,2))^2); 
te(:,:,i) = Te(MC(i,1),MC(i,2),MC(i,3),MC(i,4)); 
si(:,:,i) = Si(E,A(i),L(i),I(i)); 
cei(:,:,i)= Cei(r1(i),r2(i),L(i)); 
gi(:,:,i) = Gi(N(i),L(i)); 
cgi(:,:,i)= Cgi(r1(i),r2(i),L(i)); 
ki(:,:,i)=si(:,:,i)*cei(:,:,i)+gi(:,:,i)*cgi(:,:,i); 
k(:,:,i)=te(:,:,i)'*ki(:,:,i)*te(:,:,i); 
nd(1)=nodes(i,1); 
nd(2)=nodes(i,2); 
index=feeldof(nd,nnel,ndof).'; 
LocM(:,:,i) = zeros(6,(3*nnode)); 
    for j = 1:3*nnode; 
        for g = 1:6; 
            if index(g) == j; 
                LocM(g,j,i) = 1; 
            end  
        end 
    end 
K(:,:,i)=LocM(:,:,i)'*k(:,:,i)*LocM(:,:,i); 
% Member 37  
    i=37; 
    r1(i)=r(i,1); 
r2(i)=r(i,2); 
N(i)=pe(4,i); 
L(i) = sqrt((MC(i,3)-MC(i,1))^2 +(MC(i,4)-MC(i,2))^2); 
te(:,:,i) = Te(MC(i,1),MC(i,2),MC(i,3),MC(i,4)); 
si(:,:,i) = Si(E,A(i),L(i),I(i)); 
cei(:,:,i)= Cei(r1(i),r2(i),L(i)); 
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gi(:,:,i) = Gi(N(i),L(i)); 
cgi(:,:,i)= Cgi(r1(i),r2(i),L(i)); 
ki(:,:,i)=si(:,:,i)*cei(:,:,i)+gi(:,:,i)*cgi(:,:,i); 
k(:,:,i)=te(:,:,i)'*ki(:,:,i)*te(:,:,i); 
nd(1)=nodes(i,1); 
nd(2)=nodes(i,2); 
index=feeldof(nd,nnel,ndof).'; 
LocM(:,:,i) = zeros(6,(3*nnode)); 
    for j = 1:3*nnode; 
        for g = 1:6; 
            if index(g) == j; 
                LocM(g,j,i) = 1; 
            end  
        end 
    end 
K(:,:,i)=LocM(:,:,i)'*k(:,:,i)*LocM(:,:,i); 
% Member 38  
    i=38; 
    r1(i)=r(i,1); 
r2(i)=r(i,2); 
N(i)=pe(4,i); 
L(i) = sqrt((MC(i,3)-MC(i,1))^2 +(MC(i,4)-MC(i,2))^2); 
te(:,:,i) = Te(MC(i,1),MC(i,2),MC(i,3),MC(i,4)); 
si(:,:,i) = Si(E,A(i),L(i),I(i)); 
cei(:,:,i)= Cei(r1(i),r2(i),L(i)); 
gi(:,:,i) = Gi(N(i),L(i)); 
cgi(:,:,i)= Cgi(r1(i),r2(i),L(i)); 
ki(:,:,i)=si(:,:,i)*cei(:,:,i)+gi(:,:,i)*cgi(:,:,i); 
k(:,:,i)=te(:,:,i)'*ki(:,:,i)*te(:,:,i); 
nd(1)=nodes(i,1); 
nd(2)=nodes(i,2); 
index=feeldof(nd,nnel,ndof).'; 
LocM(:,:,i) = zeros(6,(3*nnode)); 
    for j = 1:3*nnode; 
        for g = 1:6; 
            if index(g) == j; 
                LocM(g,j,i) = 1; 
            end  
        end 
    end 
K(:,:,i)=LocM(:,:,i)'*k(:,:,i)*LocM(:,:,i); 
% Member 39  
    i=39; 
    r1(i)=r(i,1); 
r2(i)=r(i,2); 
N(i)=pe(4,i); 
L(i) = sqrt((MC(i,3)-MC(i,1))^2 +(MC(i,4)-MC(i,2))^2); 
te(:,:,i) = Te(MC(i,1),MC(i,2),MC(i,3),MC(i,4)); 
si(:,:,i) = Si(E,A(i),L(i),I(i)); 
cei(:,:,i)= Cei(r1(i),r2(i),L(i)); 
gi(:,:,i) = Gi(N(i),L(i)); 
cgi(:,:,i)= Cgi(r1(i),r2(i),L(i)); 
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ki(:,:,i)=si(:,:,i)*cei(:,:,i)+gi(:,:,i)*cgi(:,:,i); 
k(:,:,i)=te(:,:,i)'*ki(:,:,i)*te(:,:,i); 
nd(1)=nodes(i,1); 
nd(2)=nodes(i,2); 
index=feeldof(nd,nnel,ndof).'; 
LocM(:,:,i) = zeros(6,(3*nnode)); 
    for j = 1:3*nnode; 
        for g = 1:6; 
            if index(g) == j; 
                LocM(g,j,i) = 1; 
            end  
        end 
    end 
K(:,:,i)=LocM(:,:,i)'*k(:,:,i)*LocM(:,:,i); 
% Member 40  
    i=40; 
    r1(i)=r(i,1); 
r2(i)=r(i,2); 
N(i)=pe(4,i); 
L(i) = sqrt((MC(i,3)-MC(i,1))^2 +(MC(i,4)-MC(i,2))^2); 
te(:,:,i) = Te(MC(i,1),MC(i,2),MC(i,3),MC(i,4)); 
si(:,:,i) = Si(E,A(i),L(i),I(i)); 
cei(:,:,i)= Cei(r1(i),r2(i),L(i)); 
gi(:,:,i) = Gi(N(i),L(i)); 
cgi(:,:,i)= Cgi(r1(i),r2(i),L(i)); 
ki(:,:,i)=si(:,:,i)*cei(:,:,i)+gi(:,:,i)*cgi(:,:,i); 
k(:,:,i)=te(:,:,i)'*ki(:,:,i)*te(:,:,i); 
nd(1)=nodes(i,1); 
nd(2)=nodes(i,2); 
index=feeldof(nd,nnel,ndof).'; 
LocM(:,:,i) = zeros(6,(3*nnode)); 
    for j = 1:3*nnode; 
        for g = 1:6; 
            if index(g) == j; 
                LocM(g,j,i) = 1; 
            end  
        end 
    end 
K(:,:,i)=LocM(:,:,i)'*k(:,:,i)*LocM(:,:,i); 
% Member 41  
    i=41; 
    r1(i)=r(i,1); 
r2(i)=r(i,2); 
N(i)=pe(4,i); 
L(i) = sqrt((MC(i,3)-MC(i,1))^2 +(MC(i,4)-MC(i,2))^2); 
te(:,:,i) = Te(MC(i,1),MC(i,2),MC(i,3),MC(i,4)); 
si(:,:,i) = Si(E,A(i),L(i),I(i)); 
cei(:,:,i)= Cei(r1(i),r2(i),L(i)); 
gi(:,:,i) = Gi(N(i),L(i)); 
cgi(:,:,i)= Cgi(r1(i),r2(i),L(i)); 
ki(:,:,i)=si(:,:,i)*cei(:,:,i)+gi(:,:,i)*cgi(:,:,i); 
k(:,:,i)=te(:,:,i)'*ki(:,:,i)*te(:,:,i); 
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nd(1)=nodes(i,1); 
nd(2)=nodes(i,2); 
index=feeldof(nd,nnel,ndof).'; 
LocM(:,:,i) = zeros(6,(3*nnode)); 
    for j = 1:3*nnode; 
        for g = 1:6; 
            if index(g) == j; 
                LocM(g,j,i) = 1; 
            end  
        end 
    end 
K(:,:,i)=LocM(:,:,i)'*k(:,:,i)*LocM(:,:,i); 
% Member 42  
    i=42; 
    r1(i)=r(i,1); 
r2(i)=r(i,2); 
N(i)=pe(4,i); 
L(i) = sqrt((MC(i,3)-MC(i,1))^2 +(MC(i,4)-MC(i,2))^2); 
te(:,:,i) = Te(MC(i,1),MC(i,2),MC(i,3),MC(i,4)); 
si(:,:,i) = Si(E,A(i),L(i),I(i)); 
cei(:,:,i)= Cei(r1(i),r2(i),L(i)); 
gi(:,:,i) = Gi(N(i),L(i)); 
cgi(:,:,i)= Cgi(r1(i),r2(i),L(i)); 
ki(:,:,i)=si(:,:,i)*cei(:,:,i)+gi(:,:,i)*cgi(:,:,i); 
k(:,:,i)=te(:,:,i)'*ki(:,:,i)*te(:,:,i); 
nd(1)=nodes(i,1); 
nd(2)=nodes(i,2); 
index=feeldof(nd,nnel,ndof).'; 
LocM(:,:,i) = zeros(6,(3*nnode)); 
    for j = 1:3*nnode; 
        for g = 1:6; 
            if index(g) == j; 
                LocM(g,j,i) = 1; 
            end  
        end 
    end 
K(:,:,i)=LocM(:,:,i)'*k(:,:,i)*LocM(:,:,i); 
% Member 43  
    i=43; 
    r1(i)=r(i,1); 
r2(i)=r(i,2); 
N(i)=pe(4,i); 
L(i) = sqrt((MC(i,3)-MC(i,1))^2 +(MC(i,4)-MC(i,2))^2); 
te(:,:,i) = Te(MC(i,1),MC(i,2),MC(i,3),MC(i,4)); 
si(:,:,i) = Si(E,A(i),L(i),I(i)); 
cei(:,:,i)= Cei(r1(i),r2(i),L(i)); 
gi(:,:,i) = Gi(N(i),L(i)); 
cgi(:,:,i)= Cgi(r1(i),r2(i),L(i)); 
ki(:,:,i)=si(:,:,i)*cei(:,:,i)+gi(:,:,i)*cgi(:,:,i); 
k(:,:,i)=te(:,:,i)'*ki(:,:,i)*te(:,:,i); 
nd(1)=nodes(i,1); 
nd(2)=nodes(i,2); 
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index=feeldof(nd,nnel,ndof).'; 
LocM(:,:,i) = zeros(6,(3*nnode)); 
    for j = 1:3*nnode; 
        for g = 1:6; 
            if index(g) == j; 
                LocM(g,j,i) = 1; 
            end  
        end 
    end 
K(:,:,i)=LocM(:,:,i)'*k(:,:,i)*LocM(:,:,i); 
% Member 44  
    i=44; 
    r1(i)=r(i,1); 
r2(i)=r(i,2); 
N(i)=pe(4,i); 
L(i) = sqrt((MC(i,3)-MC(i,1))^2 +(MC(i,4)-MC(i,2))^2); 
te(:,:,i) = Te(MC(i,1),MC(i,2),MC(i,3),MC(i,4)); 
si(:,:,i) = Si(E,A(i),L(i),I(i)); 
cei(:,:,i)= Cei(r1(i),r2(i),L(i)); 
gi(:,:,i) = Gi(N(i),L(i)); 
cgi(:,:,i)= Cgi(r1(i),r2(i),L(i)); 
ki(:,:,i)=si(:,:,i)*cei(:,:,i)+gi(:,:,i)*cgi(:,:,i); 
k(:,:,i)=te(:,:,i)'*ki(:,:,i)*te(:,:,i); 
nd(1)=nodes(i,1); 
nd(2)=nodes(i,2); 
index=feeldof(nd,nnel,ndof).'; 
LocM(:,:,i) = zeros(6,(3*nnode)); 
    for j = 1:3*nnode; 
        for g = 1:6; 
            if index(g) == j; 
                LocM(g,j,i) = 1; 
            end  
        end 
    end 
K(:,:,i)=LocM(:,:,i)'*k(:,:,i)*LocM(:,:,i); 
% Member 45  
    i=45; 
    r1(i)=r(i,1); 
r2(i)=r(i,2); 
N(i)=pe(4,i); 
L(i) = sqrt((MC(i,3)-MC(i,1))^2 +(MC(i,4)-MC(i,2))^2); 
te(:,:,i) = Te(MC(i,1),MC(i,2),MC(i,3),MC(i,4)); 
si(:,:,i) = Si(E,A(i),L(i),I(i)); 
cei(:,:,i)= Cei(r1(i),r2(i),L(i)); 
gi(:,:,i) = Gi(N(i),L(i)); 
cgi(:,:,i)= Cgi(r1(i),r2(i),L(i)); 
ki(:,:,i)=si(:,:,i)*cei(:,:,i)+gi(:,:,i)*cgi(:,:,i); 
k(:,:,i)=te(:,:,i)'*ki(:,:,i)*te(:,:,i); 
nd(1)=nodes(i,1); 
nd(2)=nodes(i,2); 
index=feeldof(nd,nnel,ndof).'; 
LocM(:,:,i) = zeros(6,(3*nnode)); 



130 

 

    for j = 1:3*nnode; 
        for g = 1:6; 
            if index(g) == j; 
                LocM(g,j,i) = 1; 
            end  
        end 
    end 
K(:,:,i)=LocM(:,:,i)'*k(:,:,i)*LocM(:,:,i); 
% Member 46  
    i=46; 
    r1(i)=r(i,1); 
r2(i)=r(i,2); 
N(i)=pe(4,i); 
L(i) = sqrt((MC(i,3)-MC(i,1))^2 +(MC(i,4)-MC(i,2))^2); 
te(:,:,i) = Te(MC(i,1),MC(i,2),MC(i,3),MC(i,4)); 
si(:,:,i) = Si(E,A(i),L(i),I(i)); 
cei(:,:,i)= Cei(r1(i),r2(i),L(i)); 
gi(:,:,i) = Gi(N(i),L(i)); 
cgi(:,:,i)= Cgi(r1(i),r2(i),L(i)); 
ki(:,:,i)=si(:,:,i)*cei(:,:,i)+gi(:,:,i)*cgi(:,:,i); 
k(:,:,i)=te(:,:,i)'*ki(:,:,i)*te(:,:,i); 
nd(1)=nodes(i,1); 
nd(2)=nodes(i,2); 
index=feeldof(nd,nnel,ndof).'; 
LocM(:,:,i) = zeros(6,(3*nnode)); 
    for j = 1:3*nnode; 
        for g = 1:6; 
            if index(g) == j; 
                LocM(g,j,i) = 1; 
            end  
        end 
    end 
K(:,:,i)=LocM(:,:,i)'*k(:,:,i)*LocM(:,:,i); 
% Member 47  
    i=47; 
    r1(i)=r(i,1); 
r2(i)=r(i,2); 
N(i)=pe(4,i); 
L(i) = sqrt((MC(i,3)-MC(i,1))^2 +(MC(i,4)-MC(i,2))^2); 
te(:,:,i) = Te(MC(i,1),MC(i,2),MC(i,3),MC(i,4)); 
si(:,:,i) = Si(E,A(i),L(i),I(i)); 
cei(:,:,i)= Cei(r1(i),r2(i),L(i)); 
gi(:,:,i) = Gi(N(i),L(i)); 
cgi(:,:,i)= Cgi(r1(i),r2(i),L(i)); 
ki(:,:,i)=si(:,:,i)*cei(:,:,i)+gi(:,:,i)*cgi(:,:,i); 
k(:,:,i)=te(:,:,i)'*ki(:,:,i)*te(:,:,i); 
nd(1)=nodes(i,1); 
nd(2)=nodes(i,2); 
index=feeldof(nd,nnel,ndof).'; 
LocM(:,:,i) = zeros(6,(3*nnode)); 
    for j = 1:3*nnode; 
        for g = 1:6; 
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            if index(g) == j; 
                LocM(g,j,i) = 1; 
            end  
        end 
    end 
K(:,:,i)=LocM(:,:,i)'*k(:,:,i)*LocM(:,:,i); 
% Member 48  
    i=48; 
    r1(i)=r(i,1); 
r2(i)=r(i,2); 
N(i)=pe(4,i); 
L(i) = sqrt((MC(i,3)-MC(i,1))^2 +(MC(i,4)-MC(i,2))^2); 
te(:,:,i) = Te(MC(i,1),MC(i,2),MC(i,3),MC(i,4)); 
si(:,:,i) = Si(E,A(i),L(i),I(i)); 
cei(:,:,i)= Cei(r1(i),r2(i),L(i)); 
gi(:,:,i) = Gi(N(i),L(i)); 
cgi(:,:,i)= Cgi(r1(i),r2(i),L(i)); 
ki(:,:,i)=si(:,:,i)*cei(:,:,i)+gi(:,:,i)*cgi(:,:,i); 
k(:,:,i)=te(:,:,i)'*ki(:,:,i)*te(:,:,i); 
nd(1)=nodes(i,1); 
nd(2)=nodes(i,2); 
index=feeldof(nd,nnel,ndof).'; 
LocM(:,:,i) = zeros(6,(3*nnode)); 
    for j = 1:3*nnode; 
        for g = 1:6; 
            if index(g) == j; 
                LocM(g,j,i) = 1; 
            end  
        end 
    end 
K(:,:,i)=LocM(:,:,i)'*k(:,:,i)*LocM(:,:,i); 
% Member 49  
    i=49; 
    r1(i)=r(i,1); 
r2(i)=r(i,2); 
N(i)=pe(4,i); 
L(i) = sqrt((MC(i,3)-MC(i,1))^2 +(MC(i,4)-MC(i,2))^2); 
te(:,:,i) = Te(MC(i,1),MC(i,2),MC(i,3),MC(i,4)); 
si(:,:,i) = Si(E,A(i),L(i),I(i)); 
cei(:,:,i)= Cei(r1(i),r2(i),L(i)); 
gi(:,:,i) = Gi(N(i),L(i)); 
cgi(:,:,i)= Cgi(r1(i),r2(i),L(i)); 
ki(:,:,i)=si(:,:,i)*cei(:,:,i)+gi(:,:,i)*cgi(:,:,i); 
k(:,:,i)=te(:,:,i)'*ki(:,:,i)*te(:,:,i); 
nd(1)=nodes(i,1); 
nd(2)=nodes(i,2); 
index=feeldof(nd,nnel,ndof).'; 
LocM(:,:,i) = zeros(6,(3*nnode)); 
    for j = 1:3*nnode; 
        for g = 1:6; 
            if index(g) == j; 
                LocM(g,j,i) = 1; 
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            end  
        end 
    end 
K(:,:,i)=LocM(:,:,i)'*k(:,:,i)*LocM(:,:,i); 
% Member 50  
    i=50; 
    r1(i)=r(i,1); 
r2(i)=r(i,2); 
N(i)=pe(4,i); 
L(i) = sqrt((MC(i,3)-MC(i,1))^2 +(MC(i,4)-MC(i,2))^2); 
te(:,:,i) = Te(MC(i,1),MC(i,2),MC(i,3),MC(i,4)); 
si(:,:,i) = Si(E,A(i),L(i),I(i)); 
cei(:,:,i)= Cei(r1(i),r2(i),L(i)); 
gi(:,:,i) = Gi(N(i),L(i)); 
cgi(:,:,i)= Cgi(r1(i),r2(i),L(i)); 
ki(:,:,i)=si(:,:,i)*cei(:,:,i)+gi(:,:,i)*cgi(:,:,i); 
k(:,:,i)=te(:,:,i)'*ki(:,:,i)*te(:,:,i); 
nd(1)=nodes(i,1); 
nd(2)=nodes(i,2); 
index=feeldof(nd,nnel,ndof).'; 
LocM(:,:,i) = zeros(6,(3*nnode)); 
    for j = 1:3*nnode; 
        for g = 1:6; 
            if index(g) == j; 
                LocM(g,j,i) = 1; 
            end  
        end 
    end 
K(:,:,i)=LocM(:,:,i)'*k(:,:,i)*LocM(:,:,i); 
% Member 51  
    i=51; 
    r1(i)=r(i,1); 
r2(i)=r(i,2); 
N(i)=pe(4,i); 
L(i) = sqrt((MC(i,3)-MC(i,1))^2 +(MC(i,4)-MC(i,2))^2); 
te(:,:,i) = Te(MC(i,1),MC(i,2),MC(i,3),MC(i,4)); 
si(:,:,i) = Si(E,A(i),L(i),I(i)); 
cei(:,:,i)= Cei(r1(i),r2(i),L(i)); 
gi(:,:,i) = Gi(N(i),L(i)); 
cgi(:,:,i)= Cgi(r1(i),r2(i),L(i)); 
ki(:,:,i)=si(:,:,i)*cei(:,:,i)+gi(:,:,i)*cgi(:,:,i); 
k(:,:,i)=te(:,:,i)'*ki(:,:,i)*te(:,:,i); 
nd(1)=nodes(i,1); 
nd(2)=nodes(i,2); 
index=feeldof(nd,nnel,ndof).'; 
LocM(:,:,i) = zeros(6,(3*nnode)); 
    for j = 1:3*nnode; 
        for g = 1:6; 
            if index(g) == j; 
                LocM(g,j,i) = 1; 
            end  
        end 
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    end 
K(:,:,i)=LocM(:,:,i)'*k(:,:,i)*LocM(:,:,i); 
% Member 52  
    i=52; 
    r1(i)=r(i,1); 
r2(i)=r(i,2); 
N(i)=pe(4,i); 
L(i) = sqrt((MC(i,3)-MC(i,1))^2 +(MC(i,4)-MC(i,2))^2); 
te(:,:,i) = Te(MC(i,1),MC(i,2),MC(i,3),MC(i,4)); 
si(:,:,i) = Si(E,A(i),L(i),I(i)); 
cei(:,:,i)= Cei(r1(i),r2(i),L(i)); 
gi(:,:,i) = Gi(N(i),L(i)); 
cgi(:,:,i)= Cgi(r1(i),r2(i),L(i)); 
ki(:,:,i)=si(:,:,i)*cei(:,:,i)+gi(:,:,i)*cgi(:,:,i); 
k(:,:,i)=te(:,:,i)'*ki(:,:,i)*te(:,:,i); 
nd(1)=nodes(i,1); 
nd(2)=nodes(i,2); 
index=feeldof(nd,nnel,ndof).'; 
LocM(:,:,i) = zeros(6,(3*nnode)); 
    for j = 1:3*nnode; 
        for g = 1:6; 
            if index(g) == j; 
                LocM(g,j,i) = 1; 
            end  
        end 
    end 
K(:,:,i)=LocM(:,:,i)'*k(:,:,i)*LocM(:,:,i); 
% Member 53  
    i=53; 
    r1(i)=r(i,1); 
r2(i)=r(i,2); 
N(i)=pe(4,i); 
L(i) = sqrt((MC(i,3)-MC(i,1))^2 +(MC(i,4)-MC(i,2))^2); 
te(:,:,i) = Te(MC(i,1),MC(i,2),MC(i,3),MC(i,4)); 
si(:,:,i) = Si(E,A(i),L(i),I(i)); 
cei(:,:,i)= Cei(r1(i),r2(i),L(i)); 
gi(:,:,i) = Gi(N(i),L(i)); 
cgi(:,:,i)= Cgi(r1(i),r2(i),L(i)); 
ki(:,:,i)=si(:,:,i)*cei(:,:,i)+gi(:,:,i)*cgi(:,:,i); 
k(:,:,i)=te(:,:,i)'*ki(:,:,i)*te(:,:,i); 
nd(1)=nodes(i,1); 
nd(2)=nodes(i,2); 
index=feeldof(nd,nnel,ndof).'; 
LocM(:,:,i) = zeros(6,(3*nnode)); 
    for j = 1:3*nnode; 
        for g = 1:6; 
            if index(g) == j; 
                LocM(g,j,i) = 1; 
            end  
        end 
    end 
K(:,:,i)=LocM(:,:,i)'*k(:,:,i)*LocM(:,:,i); 
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% Member 54  
    i=54; 
    r1(i)=r(i,1); 
r2(i)=r(i,2); 
N(i)=pe(4,i); 
L(i) = sqrt((MC(i,3)-MC(i,1))^2 +(MC(i,4)-MC(i,2))^2); 
te(:,:,i) = Te(MC(i,1),MC(i,2),MC(i,3),MC(i,4)); 
si(:,:,i) = Si(E,A(i),L(i),I(i)); 
cei(:,:,i)= Cei(r1(i),r2(i),L(i)); 
gi(:,:,i) = Gi(N(i),L(i)); 
cgi(:,:,i)= Cgi(r1(i),r2(i),L(i)); 
ki(:,:,i)=si(:,:,i)*cei(:,:,i)+gi(:,:,i)*cgi(:,:,i); 
k(:,:,i)=te(:,:,i)'*ki(:,:,i)*te(:,:,i); 
nd(1)=nodes(i,1); 
nd(2)=nodes(i,2); 
index=feeldof(nd,nnel,ndof).'; 
LocM(:,:,i) = zeros(6,(3*nnode)); 
    for j = 1:3*nnode; 
        for g = 1:6; 
            if index(g) == j; 
                LocM(g,j,i) = 1; 
            end  
        end 
    end 
K(:,:,i)=LocM(:,:,i)'*k(:,:,i)*LocM(:,:,i); 
% Member 55  
    i=55; 
    r1(i)=r(i,1); 
r2(i)=r(i,2); 
N(i)=pe(4,i); 
L(i) = sqrt((MC(i,3)-MC(i,1))^2 +(MC(i,4)-MC(i,2))^2); 
te(:,:,i) = Te(MC(i,1),MC(i,2),MC(i,3),MC(i,4)); 
si(:,:,i) = Si(E,A(i),L(i),I(i)); 
cei(:,:,i)= Cei(r1(i),r2(i),L(i)); 
gi(:,:,i) = Gi(N(i),L(i)); 
cgi(:,:,i)= Cgi(r1(i),r2(i),L(i)); 
ki(:,:,i)=si(:,:,i)*cei(:,:,i)+gi(:,:,i)*cgi(:,:,i); 
k(:,:,i)=te(:,:,i)'*ki(:,:,i)*te(:,:,i); 
nd(1)=nodes(i,1); 
nd(2)=nodes(i,2); 
index=feeldof(nd,nnel,ndof).'; 
LocM(:,:,i) = zeros(6,(3*nnode)); 
    for j = 1:3*nnode; 
        for g = 1:6; 
            if index(g) == j; 
                LocM(g,j,i) = 1; 
            end  
        end 
    end 
K(:,:,i)=LocM(:,:,i)'*k(:,:,i)*LocM(:,:,i); 
% Member 56  
    i=56; 
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    r1(i)=r(i,1); 
r2(i)=r(i,2); 
N(i)=pe(4,i); 
L(i) = sqrt((MC(i,3)-MC(i,1))^2 +(MC(i,4)-MC(i,2))^2); 
te(:,:,i) = Te(MC(i,1),MC(i,2),MC(i,3),MC(i,4)); 
si(:,:,i) = Si(E,A(i),L(i),I(i)); 
cei(:,:,i)= Cei(r1(i),r2(i),L(i)); 
gi(:,:,i) = Gi(N(i),L(i)); 
cgi(:,:,i)= Cgi(r1(i),r2(i),L(i)); 
ki(:,:,i)=si(:,:,i)*cei(:,:,i)+gi(:,:,i)*cgi(:,:,i); 
k(:,:,i)=te(:,:,i)'*ki(:,:,i)*te(:,:,i); 
nd(1)=nodes(i,1); 
nd(2)=nodes(i,2); 
index=feeldof(nd,nnel,ndof).'; 
LocM(:,:,i) = zeros(6,(3*nnode)); 
    for j = 1:3*nnode; 
        for g = 1:6; 
            if index(g) == j; 
                LocM(g,j,i) = 1; 
            end  
        end 
    end 
K(:,:,i)=LocM(:,:,i)'*k(:,:,i)*LocM(:,:,i); 
% Member 57  
    i=57; 
    r1(i)=r(i,1); 
r2(i)=r(i,2); 
N(i)=pe(4,i); 
L(i) = sqrt((MC(i,3)-MC(i,1))^2 +(MC(i,4)-MC(i,2))^2); 
te(:,:,i) = Te(MC(i,1),MC(i,2),MC(i,3),MC(i,4)); 
si(:,:,i) = Si(E,A(i),L(i),I(i)); 
cei(:,:,i)= Cei(r1(i),r2(i),L(i)); 
gi(:,:,i) = Gi(N(i),L(i)); 
cgi(:,:,i)= Cgi(r1(i),r2(i),L(i)); 
ki(:,:,i)=si(:,:,i)*cei(:,:,i)+gi(:,:,i)*cgi(:,:,i); 
k(:,:,i)=te(:,:,i)'*ki(:,:,i)*te(:,:,i); 
nd(1)=nodes(i,1); 
nd(2)=nodes(i,2); 
index=feeldof(nd,nnel,ndof).'; 
LocM(:,:,i) = zeros(6,(3*nnode)); 
    for j = 1:3*nnode; 
        for g = 1:6; 
            if index(g) == j; 
                LocM(g,j,i) = 1; 
            end  
        end 
    end 
K(:,:,i)=LocM(:,:,i)'*k(:,:,i)*LocM(:,:,i); 
% Member 58  
    i=58; 
    r1(i)=r(i,1); 
r2(i)=r(i,2); 
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N(i)=pe(4,i); 
L(i) = sqrt((MC(i,3)-MC(i,1))^2 +(MC(i,4)-MC(i,2))^2); 
te(:,:,i) = Te(MC(i,1),MC(i,2),MC(i,3),MC(i,4)); 
si(:,:,i) = Si(E,A(i),L(i),I(i)); 
cei(:,:,i)= Cei(r1(i),r2(i),L(i)); 
gi(:,:,i) = Gi(N(i),L(i)); 
cgi(:,:,i)= Cgi(r1(i),r2(i),L(i)); 
ki(:,:,i)=si(:,:,i)*cei(:,:,i)+gi(:,:,i)*cgi(:,:,i); 
k(:,:,i)=te(:,:,i)'*ki(:,:,i)*te(:,:,i); 
nd(1)=nodes(i,1); 
nd(2)=nodes(i,2); 
index=feeldof(nd,nnel,ndof).'; 
LocM(:,:,i) = zeros(6,(3*nnode)); 
    for j = 1:3*nnode; 
        for g = 1:6; 
            if index(g) == j; 
                LocM(g,j,i) = 1; 
            end  
        end 
    end 
K(:,:,i)=LocM(:,:,i)'*k(:,:,i)*LocM(:,:,i); 
% Member 59  
    i=59; 
    r1(i)=r(i,1); 
r2(i)=r(i,2); 
N(i)=pe(4,i); 
L(i) = sqrt((MC(i,3)-MC(i,1))^2 +(MC(i,4)-MC(i,2))^2); 
te(:,:,i) = Te(MC(i,1),MC(i,2),MC(i,3),MC(i,4)); 
si(:,:,i) = Si(E,A(i),L(i),I(i)); 
cei(:,:,i)= Cei(r1(i),r2(i),L(i)); 
gi(:,:,i) = Gi(N(i),L(i)); 
cgi(:,:,i)= Cgi(r1(i),r2(i),L(i)); 
ki(:,:,i)=si(:,:,i)*cei(:,:,i)+gi(:,:,i)*cgi(:,:,i); 
k(:,:,i)=te(:,:,i)'*ki(:,:,i)*te(:,:,i); 
nd(1)=nodes(i,1); 
nd(2)=nodes(i,2); 
index=feeldof(nd,nnel,ndof).'; 
LocM(:,:,i) = zeros(6,(3*nnode)); 
    for j = 1:3*nnode; 
        for g = 1:6; 
            if index(g) == j; 
                LocM(g,j,i) = 1; 
            end  
        end 
    end 
K(:,:,i)=LocM(:,:,i)'*k(:,:,i)*LocM(:,:,i); 
% Member 60  
    i=60; 
    r1(i)=r(i,1); 
r2(i)=r(i,2); 
N(i)=pe(4,i); 
L(i) = sqrt((MC(i,3)-MC(i,1))^2 +(MC(i,4)-MC(i,2))^2); 
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te(:,:,i) = Te(MC(i,1),MC(i,2),MC(i,3),MC(i,4)); 
si(:,:,i) = Si(E,A(i),L(i),I(i)); 
cei(:,:,i)= Cei(r1(i),r2(i),L(i)); 
gi(:,:,i) = Gi(N(i),L(i)); 
cgi(:,:,i)= Cgi(r1(i),r2(i),L(i)); 
ki(:,:,i)=si(:,:,i)*cei(:,:,i)+gi(:,:,i)*cgi(:,:,i); 
k(:,:,i)=te(:,:,i)'*ki(:,:,i)*te(:,:,i); 
nd(1)=nodes(i,1); 
nd(2)=nodes(i,2); 
index=feeldof(nd,nnel,ndof).'; 
LocM(:,:,i) = zeros(6,(3*nnode)); 
    for j = 1:3*nnode; 
        for g = 1:6; 
            if index(g) == j; 
                LocM(g,j,i) = 1; 
            end  
        end 
    end 
K(:,:,i)=LocM(:,:,i)'*k(:,:,i)*LocM(:,:,i); 

  

  
StiffnessMatrix=K(:,:,1)+K(:,:,2)+K(:,:,3)+K(:,:,4)+K(:,:,5)+K(:,:,6)+

K(:,:,7)+K(:,:,8)+K(:,:,9)+K(:,:,10)+K(:,:,11)+K(:,:,12)+K(:,:,13)+K(:

,:,14)+K(:,:,15)+K(:,:,16)+K(:,:,17)+K(:,:,18)+K(:,:,19)+K(:,:,20)+K(:

,:,21)+K(:,:,22)+K(:,:,23)+K(:,:,24)+K(:,:,25)+K(:,:,26)+K(:,:,27)+K(:

,:,28)+K(:,:,29)+K(:,:,30)+K(:,:,31)+K(:,:,32)+K(:,:,33)+K(:,:,34)+K(:

,:,35)+K(:,:,36)+K(:,:,37)+K(:,:,38)+K(:,:,39)+K(:,:,40)+K(:,:,41)+K(:

,:,42)+K(:,:,43)+K(:,:,44)+K(:,:,45)+K(:,:,46)+K(:,:,47)+K(:,:,48)+K(:

,:,49)+K(:,:,50)+K(:,:,51)+K(:,:,52)+K(:,:,53)+K(:,:,54)+K(:,:,55)+K(:

,:,56)+K(:,:,57)+K(:,:,58)+K(:,:,59)+K(:,:,60); 
Kcc=StiffnessMatrix(163:171,163:171); 
Kcu=StiffnessMatrix(163:171,1:162); 
Kuc=StiffnessMatrix(1:162,163:171); 
Kuu=StiffnessMatrix(1:162,1:162); 

  
ff=(zeros(sdof,1)); 
ff(28)=(1/10)*8; 
ff(82)=(1/10)*8;  
ff(136)=(1/10)*4; 

  
Pfef=zeros(6,60); 
M11=(((1/10)*0.22*60^2)/12)*(3*r(13,1)*(2-r(13,2))/(4-

r(13,1)*r(13,2))); 
M12=(((1/10)*0.22*60^2)/12)*(3*r(13,2)*(2-r(13,1))/(4-

r(13,1)*r(13,2))); 
M21=(((1/10)*0.22*60^2)/12)*(3*r(16,1)*(2-r(16,2))/(4-

r(16,1)*r(16,2))); 
M22=(((1/10)*0.22*60^2)/12)*(3*r(16,2)*(2-r(16,1))/(4-

r(16,1)*r(16,2))); 
M31=(((1/10)*0.22*60^2)/12)*(3*r(17,1)*(2-r(17,2))/(4-

r(17,1)*r(17,2))); 
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M32=(((1/10)*0.22*60^2)/12)*(3*r(17,2)*(2-r(17,1))/(4-

r(17,1)*r(17,2))); 
M41=(((1/10)*0.22*60^2)/12)*(3*r(20,1)*(2-r(20,2))/(4-

r(20,1)*r(20,2))); 
M42=(((1/10)*0.22*60^2)/12)*(3*r(20,2)*(2-r(20,1))/(4-

r(20,1)*r(20,2))); 
M51=(((1/10)*0.22*60^2)/12)*(3*r(33,1)*(2-r(33,2))/(4-

r(33,1)*r(33,2))); 
M52=(((1/10)*0.22*60^2)/12)*(3*r(33,2)*(2-r(33,1))/(4-

r(33,1)*r(33,2))); 
M61=(((1/10)*0.22*60^2)/12)*(3*r(36,1)*(2-r(36,2))/(4-

r(36,1)*r(36,2))); 
M62=(((1/10)*0.22*60^2)/12)*(3*r(36,2)*(2-r(36,1))/(4-

r(36,1)*r(36,2))); 
M71=(((1/10)*0.22*60^2)/12)*(3*r(37,1)*(2-r(37,2))/(4-

r(37,1)*r(37,2))); 
M72=(((1/10)*0.22*60^2)/12)*(3*r(37,2)*(2-r(37,1))/(4-

r(37,1)*r(37,2))); 
M81=(((1/10)*0.22*60^2)/12)*(3*r(40,1)*(2-r(40,2))/(4-

r(40,1)*r(40,2))); 
M82=(((1/10)*0.22*60^2)/12)*(3*r(40,2)*(2-r(40,1))/(4-

r(40,1)*r(40,2))); 
M91=(((1/10)*0.17*60^2)/12)*(3*r(53,1)*(2-r(53,2))/(4-

r(53,1)*r(53,2))); 
M92=(((1/10)*0.17*60^2)/12)*(3*r(53,2)*(2-r(53,1))/(4-

r(53,1)*r(53,2))); 
M101=(((1/10)*0.17*60^2)/12)*(3*r(56,1)*(2-r(56,2))/(4-

r(56,1)*r(56,2))); 
M102=(((1/10)*0.17*60^2)/12)*(3*r(56,2)*(2-r(56,1))/(4-

r(56,1)*r(56,2))); 
M111=(((1/10)*0.17*60^2)/12)*(3*r(57,1)*(2-r(57,2))/(4-

r(57,1)*r(57,2))); 
M112=(((1/10)*0.17*60^2)/12)*(3*r(57,2)*(2-r(57,1))/(4-

r(57,1)*r(57,2))); 
M121=(((1/10)*0.17*60^2)/12)*(3*r(60,1)*(2-r(60,2))/(4-

r(60,1)*r(60,2))); 
M122=(((1/10)*0.17*60^2)/12)*(3*r(60,2)*(2-r(60,1))/(4-

r(60,1)*r(60,2))); 

  
V11=(((1/10)*0.22*60)/2)+(M11+M12)/60; 
V12=(((1/10)*0.22*60)/2)+-(M11+M12)/60; 
V21=(((1/10)*0.22*60)/2)+(M21+M22)/60; 
V22=(((1/10)*0.22*60)/2)+-(M21+M22)/60; 
V31=(((1/10)*0.22*60)/2)+(M31+M32)/60; 
V32=(((1/10)*0.22*60)/2)+-(M31+M32)/60; 
V41=(((1/10)*0.22*60)/2)+(M41+M42)/60; 
V42=(((1/10)*0.22*60)/2)+-(M41+M42)/60; 
V51=(((1/10)*0.22*60)/2)+(M51+M52)/60; 
V52=(((1/10)*0.22*60)/2)+-(M51+M52)/60; 
V61=(((1/10)*0.22*60)/2)+(M61+M62)/60; 
V62=(((1/10)*0.22*60)/2)+-(M61+M62)/60; 
V71=(((1/10)*0.22*60)/2)+(M71+M72)/60; 
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V72=(((1/10)*0.22*60)/2)+-(M71+M72)/60; 
V81=(((1/10)*0.22*60)/2)+(M81+M82)/60; 
V82=(((1/10)*0.22*60)/2)+-(M81+M82)/60; 
V91=(((1/10)*0.17*60)/2)+(M91+M92)/60; 
V92=(((1/10)*0.17*60)/2)+-(M91+M92)/60; 
V101=(((1/10)*0.17*60)/2)+(M101+M102)/60; 
V102=(((1/10)*0.17*60)/2)+-(M101+M102)/60; 
V111=(((1/10)*0.17*60)/2)+(M111+M112)/60; 
V112=(((1/10)*0.17*60)/2)+-(M111+M112)/60; 
V121=(((1/10)*0.17*60)/2)+(M121+M122)/60; 
V122=(((1/10)*0.17*60)/2)+-(M121+M122)/60; 

  
Mw22=(((1/10)*0.22*60^2)/12); 
Mw17=(((1/10)*0.17*60^2)/12); 
Vw22=(((1/10)*0.22*60)/2); 
Vw17=(((1/10)*0.17*60)/2); 

  
w_22=[0;Vw22;Mw22;0;Vw22;-Mw22]; 
w_17=[0;Vw17;Mw17;0;Vw17;-Mw17]; 

  
NF1=[0;V11;M11;0;V12;-M12]; 
NF2=[0;V21;M21;0;V22;-M22]; 
NF3=[0;V31;M31;0;V32;-M32]; 
NF4=[0;V41;M41;0;V42;-M42]; 
NF5=[0;V51;M51;0;V52;-M52]; 
NF6=[0;V61;M61;0;V62;-M62]; 
NF7=[0;V71;M71;0;V72;-M72]; 
NF8=[0;V81;M81;0;V82;-M82]; 
NF9=[0;V91;M91;0;V92;-M92]; 
NF10=[0;V101;M101;0;V102;-M102]; 
NF11=[0;V111;M111;0;V112;-M112]; 
NF12=[0;V121;M121;0;V122;-M122]; 

  
Pfef(:,13)=NF1; 
Pfef(:,14)=w_22; 
Pfef(:,15)=w_22; 
Pfef(:,16)=NF2; 
Pfef(:,17)=NF3; 
Pfef(:,18)=w_22; 
Pfef(:,19)=w_22; 
Pfef(:,20)=NF4; 
Pfef(:,33)=NF5; 
Pfef(:,34)=w_22; 
Pfef(:,35)=w_22; 
Pfef(:,36)=NF6; 
Pfef(:,37)=NF7; 
Pfef(:,38)=w_22; 
Pfef(:,39)=w_22; 
Pfef(:,40)=NF8; 
Pfef(:,53)=NF9; 
Pfef(:,54)=w_17; 
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Pfef(:,55)=w_17; 
Pfef(:,56)=NF10; 
Pfef(:,57)=NF11; 
Pfef(:,58)=w_17; 
Pfef(:,59)=w_17; 
Pfef(:,60)=NF12; 

  
for i = 1:60 
    pf=transpose(te(:,:,i))*Pfef(:,i); 
    QQ=transpose(LocM(:,:,i))*pf; 
    pfi(:,i)=QQ; 
end 

  

  
Pf=sum(pfi,2); 
Pu=ff-Pf; 
Uc=ff(163:171); 
Uu=Kuu^-1*(Pu(1:162)-Kuc*Uc); 
D1=(zeros(171,1)); 
D1(163:171,1)=Uc; 
D1(1:162,1)=Uu; 
Displace=D1; 
Reactions=Kcu*Uu+Kcc*Uc; 
R=Reactions; 

  
for j = 1:60 
    u=LocM(:,:,j)*D1; 
    ue=te(:,:,j)*u; 
    p=(ki(:,:,j)*ue)+Pfef(:,j); 
    p(6)=p(6)*-1; 
    pei(:,j)=p; 
end 

  
Displacementi=Displace+Displacement; 
Forces=pei; 
TotalForces=pei+pe; 

  
end 

 


