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Abstract 

The aim of this thesis is to develop a method for reliability analysis of truss 

structures that is appropriate for numerical calculation. A new method that quantifies 

truss structural reliability is established. Reliability of component is evaluated by 

computer simulation methods. The accuracy of Monte Carlo simulation (MCS) and 

the perturbation method have been used. However, since the MCS method provides 

more accurate results, it has been used to calculate component reliability.  

With the information about component reliability, a methodology to calculate 

the time-variant system reliability is established based on Markov Chain theory. The 

long term behavior of a truss structural system can be modeled by a Markov chain 

process. Finally, a Matlab program has been written based on the methods mentioned 

above, and two case studies have been presented to evaluate the time-variant 

reliability of two different ten-bar truss structures.  
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Chapter 1  

 

Introduction 

 

 Trusses have been widely used because of their simplicity and efficiency. A 

truss is usually composed of straight bar members whose ends are connected at joints 

with hinges referred to as nodes. External loads act only on nodes so that a bar 

component is either under conditions of compression or tension. By combining bar 

components in different patterns and orientations, it is easy to form different types of 

trusses.  

 Structural failure modes are identified by the associated limit state equations. 

In order to achieve the final goal to quantify reliability, a truss structure is regarded as 

a combination of subsystems which contain relatively small groups of bar components. 

The overall system reliability is calculated based on the reliabilities of each subsystem, 

which are governed by the corresponding limit state equations [1]. A significant 

feature of truss structures is that they have multiple interdependent failure modes. 

 The fast development of computational technology enables civil engineers to 

analyze large scale reliability problems by numerical methods [2]. Because of its 

simplicity, the matrix analysis method becomes one of the most fundamental 

numerical methods for structural analysis. The overall structure stiffness matrix is 

generated by superimposing the stiffness matrices of each component 

[𝑲][𝒅] = [𝒇]                                                            (1.1) 

where [𝑲] is the global stiffness matrix, [𝒇] is the vector of external loads, and [𝒅] is 

the nodal displacement vector. This method not only provides displacements at each 

node and deformations in each bar component, but offers a criterion to identify the 
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failure conditions [3]. However, as mentioned by Murotsu [3], in case of the statically 

indeterminate trusses, there are too many failure modes. Hence, the system failure 

probability is estimated by calculating its lower and upper bounds. The limitation of 

this method is that it only provides an estimated interval for system reliability, which 

is bounded by the upper and lower bounds.  

 In this thesis, a new method that quantifies truss structure reliability is 

established. This new method is based on matrix analysis and the theory of Markov 

chain.  

 The working condition of a truss structure at a certain point in time is a 

function of a set of variables, such as the cross section areas (𝐴𝑖(𝑡)) of each bar 

component. These variables span a continuous sample space. A continuous sample 

space can be discretized into a finite state space. That is to say, at a certain point in 

time, all the possible working conditions of a truss structure can be represented by a 

finite set of states, which are named as system states.  Additionally, a truss structural 

system can move from one system state to another over a period of time T, and the 

associated transition probability can be evaluated by numerical simulation. Two states 

are connected by a transition probability, so a map connecting all the states can be 

generated. This kind of map indicates the long-term behavior of a truss structure over 

its lifetime.  

 There are three benefits of this method. Firstly, this method is suitable for the 

reliability analysis of a truss that has a large number of components. Secondly, this 

method is computational efficient. Finally, this method not only evaluates truss 

system reliability, but also provides detailed data which reveals the evolution of the 

truss structural system over its lifetime. 
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1.1 Objectives 

 The primary objective of this study is to develop a reliability analysis 

procedure for trusses. Bar components are the most fundamental structural units of a 

truss. Hence, a computational affordable simulation method is needed to quantify the 

reliabilities of each component. The possible working conditions of a truss structure at 

a certain point in time are defined as system states, and the system can move from one 

state to another. Knowing component reliabilities, a graph which describes probability 

transitions among system states is established based on the theory of Markov chain, 

and the system reliability is calculated based on this Markov process. 

1.2 Research approach 

 In order to achieve the objectives presented in section 1.1, the research 

approach consists of the following steps: 

1. Clarify basic concepts of uncertainties in engineering problems  

2. Clarify basic concepts of component reliability and system reliability 

3. Clarify basic concepts of Markov chain theory 

4. Establish a computer simulation method to quantify the reliabilities of truss 

members  

5. Test Monte Carlo simulation and perturbation method, and then decide which one 

is more applicable for calculation of component reliability.  

6. Establish a procedure to model the working conditions of a truss structure and 

quantify the transition probabilities among the system states.  

7. Calculate system reliability of the truss structure by the Markov chain procedure. 

8. With all the methods established, write a computer program to perform reliability 

analysis for a truss structure. 
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1.3 Organization of this study 

 This study is organized into seven chapters. Chapter 1 is a basic introduction 

about this study. Chapter 2 introduces basic concepts about the theory of probability, 

the theory of reliability, and the theory of Markov chain. Chapter 3 discusses the 

topics of component reliability. Chapter 4 establishes a method to calculate system 

reliability. Chapter 5 introduces a method to model corrosion of a truss structure. 

Finally, Chapter 6 presents two case studies, and Chapter 7 states the conclusions of 

this study. 
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Chapter 2 

Basic concepts  

2.1 Randomness in engineering problems 

 Uncertainties are unavoidable in real world problems. There are different 

sources of uncertainties. For example, steel is a mixture of iron and carbon, so it has 

different values of Young’s modulus at different points. Secondly, steel components 

are fabricated by a set of complex processes such as bending, cutting or rolling. 

Uncertainties tend to accumulate after each process. Thirdly, the external environment 

of a structure is unpredictable. Environmental loads, such as the wind load and the 

snow load may vary with time randomly, and most of the natural disasters are 

unpredictable as well. The long period deteriorations, such as corrosion, are also 

unpredictable.  

 For these reasons, the long term behavior of a truss structure is uncertain. 

Therefore, the random behavior of a truss structure can be described by the theory of 

probability. 

2.2 Basic concepts of the probability theory 

 According to the probability theory, there are basically two different types of 

uncertainties [4]. The first type of uncertainty is identified as aleatory uncertainty. For 

example, Hess and Ayyub tested the Young’s modulus of a certain kind of steel 

component in 1997 and their results are presented in Figure 1 [5].  
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Figure 1 Test Results of Modulus of Elasticity by Hess and Ayyub (1997) [5]   

This figure is a histogram of the Young’s modulus of the test components. It indicates 

the distribution of the Young’s modulus for the tested bar components. Generally 

speaking, for a certain type of component, this kind of histograms tends to follow a 

certain type of distribution. Another kind of uncertainty is identified as the epistemic 

uncertainty, which is caused by the imperfect knowledge [4].  

 Probability is defined as follows [9]: Given a measurable space  (𝛺, 𝛢) , a 

function 𝑃: 𝐴 → 𝑅 is called a probability measure and (𝛺, 𝛢, 𝑃) is called a probability 

space if P satisfies the Kolmogorov axioms. Here the 𝛺  is a sample space. The 

uncertain properties of a component such as the cross section area, the ultimate stress 

and the Young’s modulus can be described as random variables satisfying certain 

types of distribution. Figure 2 shows a probability density function (PDF) of a random 

variable. 
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Figure 2 PDF of a random variable 

In Figure 2, on the horizontal axis,  𝜇  stands for the mean value of this random 

variable. The dispersion of this random variable is commonly described by the 

standard deviation σ.  

2.3 Basic concepts of reliability analysis 

 Traditionally, the fundamental design goal is to achieve a structural capacity 

that meets the worst demand condition [4]. However, both the demand and the 

capacity are functions of random variables such as cross section areas and material 

properties, so they are random variables themselves. Hence, the reliability analysis is 

employed.  

 Reliability is defined as the probability that an item will adequately perform its 

specified purpose for a specified period of time under specified environmental 

conditions [4]. The word “item” in this definition means the object to study [4]. When 

analyzing the reliability of a component, the “item” stands for each bar component. 

On the other hand, when analyzing the reliability of the system, “item” here 

represents the whole truss structure. Probability theory is the foundation of reliability 

analysis.  

 Here we define the following random variables: 
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                                          X = Capacity of a structure                                             (2.1) 

Y = Demand on a structure                                              (2.2) 

Thus the probability of failure [4] is  

𝑝𝐹 = 𝑃(𝑋 < 𝑌)                                                            (2.3)                                                          

and the associated probability of safety can be defined as [4]: 

𝑝𝑆 = 1 − 𝑝𝐹                                                                       (2.4) 

For discrete system [4],    

               𝑝𝐹 = ∑ 𝑃(𝑌 = 𝑦)𝑒𝑎𝑐ℎ 𝑦 P(X < Y|Y = y)                              (2.5)                               

And for continuous system [4], 

 𝑝𝐹 = ∫ 𝐹𝑥(𝑦)𝑓𝑌(𝑦)
∞

0
𝑑𝑦                                              (2.6)                     

𝐹𝑥 and  𝐹𝑦 are the probability distribution functions of random variable X and Y. 𝑓𝑥 

and 𝑓𝑦 are PDFs for random variable X and Y.  

 

Figure 3 PDF functions of capacity(X) and demand(Y)  

In Figure 3, there are 2 PDF curves. One of them is the demand PDF curve (𝑓𝑌) and 

the other one is the PDF for the capacity (𝑓𝑋). If these two curves move toward each 
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other, the overlap area will increase and the system reliability will decrease. The 

relative position of  𝑓𝑋  and 𝑓𝑌  can be described by [4]: 

𝜇𝑋/𝜇𝑌                                                                    (2.7)                                                       

which is named as the “central safety factor” [4]. Because the shape of the PDF curve 

will also influence the system reliability, the central safety factor is not enough to 

quantify the system reliability.  

 Suppose X and Y are statistically independent random variables and their joint 

PDF is defined as 𝑓𝑋𝑌 (𝑥, 𝑦). A better way to look at this capacity-demand problem is 

to define a new random variable [4]: 

𝑀 = 𝑋 − 𝑌                                                                   (2.8)                 

Generally, 𝑀 is named as “safety margin” [4]. PDF of 𝑀 is 𝑓𝑀 (𝑚). The probability of 

failure is [4]: 

𝑝𝐹 = ∫  𝑓
𝑀 
(𝑚)𝑑𝑚                                                          (2.9) 

0

−∞

 

The PDF of 𝑀 is shown in Figure 4, and the area under PDF curve on the left side of 

the vertical axis equals the probability of failure. 

 

Figure 4 PDF of margin of safety 

Probability of failure 
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 Assume X and Y are normally distributed. Their mean values and standard 

deviations are 𝜇𝑋 and 𝜎𝑋 for X, and 𝜇𝑌 , 𝜎𝑌 for Y. And then: 

𝑝𝑆 = Φ(
𝜇𝑀
𝜎𝑀
)                                                     (2.10) 

Because: 

𝜇𝑀 = 𝜇𝑋 − 𝜇𝑌                                                    (2.11) 

And: 

𝜎𝑀
2 = 𝜎𝑋

2 + 𝜎𝑌
2                                                (2.12) 

We have: 

𝑝𝑆 = Φ(
𝜇𝑋 − 𝜇𝑌

√𝜎𝑋2 + 𝜎𝑌2
)                                            (2.13) 

                          

Finally, the ratio  
𝜇𝑀

𝜎𝑀
 is defined as the reliability index, and it is expressed as  [4]: 

β =
𝜇𝑀
𝜎𝑀

=
𝜇𝑋 − 𝜇𝑌

√𝜎𝑋2 + 𝜎𝑌2
                                                    (2.14) 

 In reality, random variables may not be normally distributed. So the reduced 

variables are defined as [4]: 

𝑋′ =
𝑋 − 𝜇𝑋
𝜎𝑋

                                                     (2.15) 

𝑌′ =
𝑌 − 𝜇𝑌
𝜎𝑌

                                                     (2.16) 

So, 

𝑋 = 𝜎𝑋𝑋
′ + 𝜇𝑋                                                (2.17) 

𝑌 = 𝜎𝑌𝑌
′ + 𝜇𝑌                                                 (2.18) 
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Recall: 

𝑀 = 𝑋 − 𝑌                                                    (2.19) 

Therefore: 

𝑀 = 𝜎𝑋𝑋
′ − 𝜎𝑌𝑌

′ + 𝜇𝑋 − 𝜇𝑌                                          (2.20) 

In Figure 5, the distance from the origin to line M = 0 is 

d =
𝜇𝑋 − 𝜇𝑌

√𝜎𝑋
2 + 𝜎𝑌

2
                                                   (2.21) 

which is β, the reliability index. 

 

Figure 5 Safety Margin in reduced variable space [4] 

 In reality, reliability problems are usually associated with several different 

random variables. Thus, in order to generalize reliability problems, a performance 

function should be defined as [4]: 

𝑓(𝑿) = 𝑓(𝑋1, 𝑋2, … , 𝑋𝑛)                                          (2.22)                                              

where: 
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𝑿 = [

𝑋1
𝑋2
⋮
𝑋𝑛

]                                                        (2.23) 

 The function above is also named as the state function. It’s a function of all the 

random variables involved in a particular reliability problem. The limit state of system 

is defined as [4]: 

𝑓(𝑿) = 0                                                                  (2.24) 

 So the safe state and failure state are identified by 

[𝑓(𝑿) > 0] = safe state                                          (2.25) 

[𝑓(𝑿) < 0] = failure state                                     (2.26)                                            

 Thus: 

𝑝𝑓 = 𝑃(𝑓(𝑿) < 0)                                                  (2.27) 

𝑝𝑠 =  𝑃(𝑓(𝑿) > 0)                                                 (2.28)                                                     

Each random variable can be transformed into a new space as: 

𝑋𝑖
′ =

𝑋𝑖 − 𝜇𝑋𝑖
𝜎𝑋𝑖

                                          (2.29) 

 These random variables are called reduced variables. So the system limit state 

function can be written as: 

𝑓(𝑿) = 𝑔(𝑋1, 𝑋2, … , 𝑋𝑛)                                  (2.30) 

= 𝑓(𝑋𝑖
′𝜎𝑋𝑖 + 𝜇𝑋𝑖 , 𝑋𝑖

′𝜎𝑋𝑖 + 𝜇𝑋𝑖 , … , 𝑋𝑖
′𝜎𝑋𝑖 + 𝜇𝑋𝑖) = 0                                                      

Supposed there is a point X′ on failure surface g(𝐗) = 0, the distance D should be: 

𝐷 = √𝑋1
′2 + 𝑋2

′ 2 +⋯+ 𝑋𝑛′
2 = √𝑋′𝑇𝑋′                                 (2.31) 
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Thus the reliability is the distance from the origin to limit state surface [4]. 

2.4 Basic concepts of Markov chain 

 In 1907, A. A. Markov began the study of an important type of process. In this 

process, the outcome of a given experiment can affect the outcome of the next 

experiment. This type of process is called Markov chain [6]. The probabilities that the 

system is at in certain state are represented by a vector  𝑆 = {𝑝1, 𝑝2, … , 𝑝𝑟} . The 

system can move from one state to another after a period of time. The probability to 

move from current state i to another state j is defined as the transition probability 

which is denoted as  𝑝𝑖𝑗[6]. The probability that the system remains at the same state 

is denoted as 𝑝𝑖𝑖 . The figure below shows a system which has only three possible 

states A, B and C.  

 

Figure 6 Transition among state A, state B and state C 

The associated probabilities for each step are listed in the matrix below.  

𝑷 = [
0.5 0.4 0.6
0.23 0.1 0.1
0.27 0.5 0.3

]                                               
(2.32) 

For example, in this matrix  [6] 

𝑝11 = 𝑃(𝑠𝑦𝑠𝑡𝑒𝑚 𝑠𝑡𝑎𝑦𝑠 𝑎𝑡 𝑠𝑡𝑎𝑡𝑒 𝐴)                                 (2.33) 

A       B        C 
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𝑝12 = 𝑃(𝑚𝑜𝑣𝑒 𝑓𝑟𝑜𝑚 𝑠𝑡𝑎𝑡𝑒 𝐴 𝑡𝑜 𝑠𝑡𝑎𝑡𝑒 𝐵)                     (2.34) 

𝑝13 = 𝑃(𝑚𝑜𝑣𝑒 𝑓𝑟𝑜𝑚 𝑠𝑡𝑎𝑡𝑒 𝐴 𝑡𝑜 𝑠𝑡𝑎𝑡𝑒 𝐶)                     (2.35) 

This matrix is named as transition matrix for a Markov chain. Assume that initially 

the probability that the system is in state A is 𝑝0𝐴 , the probability that system is in 

state B is 𝑝0𝐵 and the probability for state C is 𝑝0𝐶. Thus, at the end of one transition, 

the probabilities for each state are: 

𝑝1𝐴 =  𝑝11𝑝0𝐴 + 𝑝12𝑝0𝐵 + 𝑝13𝑝0𝐶                                (2.36) 

𝑝1𝐵 = 𝑝21𝑝0𝐴 + 𝑝22𝑝0𝐵 + 𝑝23𝑝0𝐶                                  (2.37) 

𝑝1𝐶 = 𝑝31𝑝0𝐴 + 𝑝32𝑝0𝐵 + 𝑝33𝑝0𝐶                                  (2.38) 

written in a matrix form: 

[

𝑝1𝐴
𝑝1𝐵
𝑝1𝐶

] = [

𝑝11 𝑝12 𝑝13
𝑝21 𝑝22 𝑝23
𝑝31 𝑝32 𝑝33

] [

𝑝0𝐴
𝑝0𝐵
𝑝0𝐶

]                                         (2.39)  

The vector 𝑺(𝑛) that contains probabilities for every state after n transitions is name 

as the state distribution vector. Generally speaking,  

𝑺(𝑛) = 𝑷 𝑺(𝑛 − 1)                                               (2.40)  

Notice that, 

∑ 𝑝𝑖𝑗

𝑛

𝑖=1

= 1                                                     (2.41) 

And, 

 𝑝𝑖𝑗 < 1                                                        (2.42) 
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for all i and j. This transition matrix 𝑷 always has an eigenvalue of 1, and all the other 

eigenvalues are smaller than 1 [6]. Assume that the eigenvector matrix is denoted as 𝑽 

and the eigenvalue matrix is denoted as 𝑫, so [6] 

𝑷 = 𝑽𝑫𝑽−𝟏                                                  (2.43) 

𝑫 is a diagonal matrix, thus [6]: 

𝑺(𝑛) = 𝑷𝒏 𝑺(0)                                                             

= (𝑽𝑫𝑽−1)𝑛 𝑺(0)                                              

= 𝑽𝑫𝑛𝑽−1 𝑺(0)                                   (2.44)  

When 𝑛 → ∞, 𝑫 is tending to be a zero matrix except for the term 1. Thus [6] 

lim
𝑛→∞

𝑺(𝑛) = 𝑺𝑠𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑟𝑦                                        (2.45) 

That is to say, when 𝑛 → ∞, the state distribution vector is infinitely approaching a 

certain vector, which is name as the stationary vector. This stationary vector is also a 

measurement of the performance of a truss structure.  

 The states of a truss structure over its lifetime can be modeled by Markov 

chain, and this will be discussed in the following chapters. 

2.5 Basic concepts about system analysis  

 For a bar component i, its working condition is named as its state 𝑥𝑖, which 

has only two possible values: 0 and 1 [10]. 

𝑥𝑖 = {
0                 𝑖𝑓 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 𝑖 𝑖𝑠 𝑓𝑎𝑖𝑙𝑒𝑑  
1          𝑖𝑓 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 𝑖 𝑖𝑠 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑎𝑙

                 (2.46)               



16 

 

The states of n components form a vector   𝒙 = (𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑛) . The working 

condition of the overall truss structure can be functional or failed, which is determined 

by component states, so it is a function of vector 𝒙 [10].  

𝜙(𝒙) = {
0                   𝑖𝑓 𝑠𝑦𝑠𝑡𝑒𝑚 𝑖𝑠 𝑓𝑎𝑖𝑙𝑒𝑑
1          𝑖𝑓 𝑠𝑦𝑠𝑡𝑒𝑚 𝑖𝑠 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑎𝑙

                         (2.47)                

 For a system, there are two types of basic arrangements: the parallel 

arrangement and the series arrangement. Figure 7 shows the block diagram of a 

parallel system.  

 

Figure 7 Block diagram of parallel system [10] 

A parallel system will not fail until all of its components fail, while a series system 

will fail as soon as any one of its components fails. The block diagram of a series 

system is shown in the figure below. 

 

Figure 8 Block diagram of series system [10] 

For a series system, the system state function is [10]: 

𝜙(𝒙) = 1 − ∏ (1 − 𝑥𝑖)                                     (2.48)
𝑛
𝑖=1                             
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Correspondingly, for a parallel system [10]: 

𝜙(𝒙) = ∏ 𝑥𝑖                                                     (2.49)𝑛
𝑖=1                                     

 The probability that the component 𝑖 is functioning is 

𝑝𝑖 = 𝑃(𝑋𝑖 = 1)                                                   (2.50) 

Correspondingly, the system reliability is [10] 

𝒓 = 𝑃[𝜙(𝒙) = 1]                                                (2.51) 

2.7 Case study: reliability analysis of a 4-bar truss  

 Figure 9 shows a simple truss structure with four bar components. It is 

carrying only one external load. The components are labeled from one to four. The 

cross section areas, the material properties and the value of the load are all random 

variables. Their parameters are listed in Table 1.  

Table 1 Properties of 4-bar truss structure 

 

Item Mean Std.
Type of 

Distribution

A1(      ) 3.20E-04 3.00E-05 Lognormal

A2(      ) 3.20E-04 3.00E-05 Lognormal

A3(      ) 3.20E-04 3.00E-05 Lognormal

A4(      ) 4.80E-04 4.00E-05 Lognormal

E(Pa) 2.35E+08 2.35E+06 Lognormal

Load(N) 5.50E+04 5.50E+03 Lognormal

Ultimate Stress(Pa) 5.50E+04 5.50E+03 Lognormal

𝑚2

𝑚2

𝑚2

𝑚2
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Figure 9 A 4 bar truss 

This structure is statically determinate, so can be modeled as a series system 

(the structure will fail if any one of the four bar components fails).The block diagram 

of this truss structure is shown below: 

 

Figure 10 Block diagram of simple truss with no redundancy 

The limit state functions of the bar components are: 

𝑔1 = 𝜎𝑢𝑙𝑡𝑖𝑚𝑎𝑡𝑒1𝐴1                                                           (2.52) 

𝑔2 = 𝜎𝑢𝑙𝑡𝑖𝑚𝑎𝑡𝑒2𝐴2 − 𝑃                                                   (2.53) 

𝑔3 = 𝜎𝑢𝑙𝑡𝑖𝑚𝑎𝑡𝑒3𝐴3 − 𝑃                                                   (2.54) 

𝑔4 = 𝜎𝑢𝑙𝑡𝑖𝑚𝑎𝑡𝑒4𝐴4 − √2𝑃                                             (2.55) 

The results of component reliability analysis are listed in the table below. 

P 
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Table 2 Failure probabilities of 4-bar truss system 

 

 Figure 11 shows a 5-bar truss. Even if only one additional bar component is 

added to the original 4-bar truss structure, its complexity will increase a lot. The new 

truss will not fail until two of its five bar components fail, so it can be modeled as a 

combination of series sub-systems and parallel sub-systems. All of the possible two-

bar failure modes are listed in Table 4. 

 

Figure 11 A 5-bar truss system 

 

Component Probability of failure

1 0

2 0.0023

3 0.0023

4 0.0018

Item Mean Std.
Type of 

Distribution

A1(square m) 3.20E-04 3.00E-05 Normal

A2(square m) 3.20E-04 3.00E-05 Normal

A3(square m) 3.20E-04 3.00E-05 Normal

A4(square m) 4.80E-04 4.00E-05 Normal

A5(square m) 4.80E-04 4.00E-05 Normal

E(Pa) 2.00E+09 2.00E+07 Normal

Ultimate Stress(Ps) 2.35E+08 2.35E+06 Normal

Load(N) 5.00E+04 5.00E+03 Normal

P 
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Table 3 Properties of 5-bar truss structure 

 

 

Table 4 Failure sequence of the 5-bar truss structure 

 

Item Mean Std.
Type of 

Distribution

A1(      ) 3.20E-04 3.00E-05 Lognormal

A2(      ) 3.20E-04 3.00E-05 Lognormal

A3(      ) 3.20E-04 3.00E-05 Lognormal

A4(      ) 4.80E-04 4.00E-05 Lognormal

A5(      ) 4.80E-04 4.80E-05 Lognormal

E(Pa) 2.35E+08 2.35E+06 Lognormal

Ultimate Stress(Pa) 5.50E+04 5.50E+03 Lognormal

𝑚2

𝑚2

𝑚2

𝑚2

𝑚2

First failed component Second failed component

2

3

4

5

1

3

4

5

1

2

4

5

1

2

3

5

1

2

3

4

5

1

2

3

4
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The block diagram of this 5-bar truss system is shown in Figure 12. Compared with 

Figure 10, this new block diagram is much more complex even if only one bar 

component is added to the original 4-bar truss structure. In reality, a truss structure 

usually has more than 4 bar components. Hence, it is not easy to analyze the 

reliability of a truss structure that has a large number of bar components.  

 

Figure 12 Block diagram for structure with one degree of static indeterminacy 

2.6 Poisson process and exponential distribution  

 The Poisson process follows the following assumptions[4]: 

1. The event can occur randomly at any instant of time during a period of 

time 

2. The occurrence of an event in a given time interval is statistically 

independent of that in any other nonoverlapping interval. 

3. The probability of occurrence of an event in a small interval is 

proportional to the length of the interval 
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4. The probability of two or more occurrences in the small interval is 

negligible (of higher orders of time interval) 

The PMF of Poisson process is giving as [4]: 

𝑃(𝑋𝑡 = 𝑥) =
(𝑣𝑡)𝑥

𝑥!
𝑒−𝑣𝑡                                   (2.56) 

𝑋𝑡 is the number of occurrences in the time interval (0, 𝑡). 

For a Poisson process, assume 𝑇1 is the time till the first occurrence of an event. Thus 

the event ( 𝑇1 > t) [4] means that there is no occurrence of the event during time 

interval (0, 𝑡). Thus: 

𝑃( 𝑇1 > t) = 𝑃(𝑋𝑡 = 0) = 𝑒−𝑣𝑡                                   (2.57) 

so, the probability that the event will occur during time interval (0, 𝑡) is 

𝑃(𝑜𝑐𝑐𝑢𝑟) = 1 − 𝑒−𝑣𝑡                                   (2.58) 

where 𝑣 is the mean occurrence rate. 
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Chapter 3 

 

Component Reliability 

 

 Bar components are the most basic structural units for a truss structure. As 

discussed previously, system reliability is calculated based on component reliability. 

This chapter discusses the topics of component reliability.  

3.1 Matrix analysis and Monte Carlo simulation 

 Matrix analysis is a numerical method which has long been used for structural 

analysis. In this study, we assume that the nodes of each component can move in x 

and y directions, and all the external loads act only on nodes. We also assume that all 

the steel components are assumed to work in the linear elastic range. If the absolute 

value of the stress in a bar component exceeds the associated ultimate stress, this bar 

component will fail.  

For a truss structure like this, there exists a linear relation between external 

loads and nodal displacements. Element stiffness matrices that describe the relation 

between nodal displacements and nodal forces for each component are formulated by 

energy based methods. These element stiffness matrices are superimposed together to 

form the global stiffness matrix 𝑲, which describes the behavior of the overall truss 

structural system.  

𝒌𝒊
𝒈
= 𝑻𝑻𝒌𝒊𝐓                                                          (3.1) 

𝑲 =∑𝒌𝒊
𝒈
                                                           (3.2) 

Here 𝒌𝒊 is the element stiffness matrix under the local coordinate system.  𝒌𝒊
𝒈

 is the 

element stiffness matrix under the global coordinate and   𝑻  is the transformation 

matrix. The basic formulation of matrix analysis for truss structure is 
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𝑲𝒖 = 𝑭                                                           (3.3)      

 In equation (3.3), 𝑲 stands for the global stiffness matrix. 𝒖 represents the 

nodal displacements at each node. 𝑭 is the external loads acting on each degree of 

freedom, which is already known 

𝒖 = 𝑲−𝟏𝑭                                                      (3.4)                                                              

 By inverting global stiffness matrix and pre-multiplying it on both sides of 

equation (3.3), we get displacements of each node. Finally, deformations and stress 

distributions in each bar component are calculated based on nodal displacements.  

 The basic idea of Monte Carlo simulation is to simulate the stochastic 

experiments by numerical methods. For example, a computer program can generate a 

set of samples of a random variable which satisfies a certain type of distribution. 

These samples are plugged into the matrix analysis procedure which will generate 

samples of stress distributions in each component. The working condition of a bar 

component can be identified by checking its stress. If the absolute value of stress in a 

bar component exceeds the ultimate stress, that particular bar component is identified 

to be failed. During each loop, some components are identified to be failed while 

others are still functional. Hence, the survival probability of the bar component equals 

the number of failed samples divided by the total number of samples. As the total 

number of samples is increasing, the results are tending to approach the exact 

theoretic values.  

 The first step of the MCS procedure is to generate samples for each random 

variable. Once all the samples have been generated by Matlab code, the reliabilities of 

each component will be calculated. The component reliabilities of truss structure 
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shown in Figure 9 are calculated using Monte Carlo simulation procedure, and the 

results are listed in Table 5.  

 In Table 5, the second row shows the failure probabilities of each bar 

component in the 4-bar truss structure calculated by MCS method, and the third row 

contains exact values of failure probabilities as discussed in Chapter 2. These two sets 

of results match each other well. The results calculated by MCS method are good 

estimations of reliabilities of each bar component (with 10000 samples). Compared 

with limit state function method, Monte Carlo simulation is more suitable for 

automatic numerical calculation. The main disadvantage of this method is that during 

the simulation procedure, the global stiffness matrix 𝑲 is required to be inverted many 

times. Under the Matlab programming environment, inverting a large-sized matrix 

takes a very large computational effort.  

3.3 Perturbation method 

 The fundamental idea of the perturbation method is based on the Taylor 

expansion of the global stiffness matrix .The global stiffness matrix and the 

displacements are functions of random variables.  

𝑲(𝜶)𝒖(𝜶) = 𝑭                                                         (3.5)                                                          

In equation (3.5), 𝛂 represents the vector of all the random variables. Hence, equation 

(3.5) can be written as: 

(𝑲𝟎 +𝑲𝒊(𝛂))𝐮(𝛂) = 𝐅                                                     (3.6) 

Here 𝑲𝟎 is mean stiffness matrix, and matrix 𝐾𝑖(𝛂) is 

𝑲𝒊(𝛂) =  ∑𝛼𝑖
𝜕

𝜕𝛼𝑖

𝑁𝑟

𝑖=1

𝑲𝒊(𝛂)  
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+∑∑𝛼𝑖𝛼𝑗

𝑁𝑟

𝑗=1

𝑁𝑟

𝑖=1

𝜕2

𝜕𝛼𝑖𝜕𝛼𝑗
𝑲𝒊(𝛂)) + ⋯                               (3.7) 

For the same reason, 𝒖(𝜶) can be expressed as  

𝒖(𝛂) =  𝒖𝟎 +∑𝛼𝑖
𝜕

𝜕𝛼𝑖

𝑁𝑟

𝑖=1

𝒖(𝛂)  

+∑∑𝛼𝑖𝛼𝑗

𝑁𝑟

𝑗=1

𝑁𝑟

𝑖=1

𝜕2

𝜕𝛼𝑖𝜕𝛼𝑗
𝒖(𝛂)) + ⋯                               (3.8) 

With equation (3.6), (3.7) and (3.8), we have 

(𝒖𝟎 +∑𝛼𝑖
𝜕

𝜕𝛼𝑖

𝑁𝑟

𝑖=1

𝒖(𝛂) )(𝑲𝟎 +∑𝛼𝑖
𝜕

𝜕𝛼𝑖

𝑁𝑟

𝑖=1

𝑲𝒊(𝛂)) = 𝑭         (3.9) 

So 

𝑲𝟎𝒖𝟎 + (∑𝛼𝑖
𝜕

𝜕𝛼𝑖

𝑁𝑟

𝑖=1

𝑲𝒊(𝛂))𝒖𝟎 +𝑲𝟎 (∑𝛼𝑖
𝜕

𝜕𝛼𝑖

𝑁𝑟

𝑖=1

𝒖(𝛂))                                  

+ (∑𝛼𝑖
𝜕

𝜕𝛼𝑖

𝑁𝑟

𝑖=1

𝑲𝒊(𝛂))(∑𝛼𝑖
𝜕

𝜕𝛼𝑖

𝑁𝑟

𝑖=1

𝒖(𝛂)) = 𝑭                                 (3.10) 

For each 𝛼𝑖, 

𝑲𝟎 (∑𝛼𝑖
𝜕

𝜕𝛼𝑖

𝑁𝑟

𝑖=1

𝒖(𝛂)) + (∑𝛼𝑖
𝜕

𝜕𝛼𝑖

𝑁𝑟

𝑖=1

𝑲𝒊(𝛂))𝒖𝟎 = 𝟎           (3.11) 

Thus  

𝑲𝟎
𝜕

𝜕𝛼𝑖
𝒖(𝛂) +

𝜕

𝜕𝛼𝑖
𝑲(𝛂)𝒖𝟎 = 0                                    (3.12) 

and, 
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𝜕

𝜕𝛼𝑖
𝒖(𝛂) = −𝑲𝟎

−1 𝜕

𝜕𝛼𝑖
𝑲(𝛂)𝒖𝟎                                   (3.13) 

Finally,  

𝒖(𝛂) =  [𝐈 − (∑𝛼𝑖𝑲𝟎
−1

𝑁𝑟

𝑖=1

𝜕

𝜕𝛼𝑖
𝑲(𝛂))]𝒖𝟎                   (3.14) 

It is clear that in equation (3.14) the global stiffness matrix needs only to be inverted 

once, which makes numerical computation much faster.   

Table 5 Results of reliability analysis  

 

 The results calculated by perturbation method are listed in Table 5. From this 

table we can see that the Monte Carlo simulation may offer reliable results for 

probability problems, but its computational inefficiency is a disadvantage. On the 

other hand, the perturbation method is more computational efficient. However, it is 

not as accurate as MCS method. As a summary, the perturbation method is more 

suitable for a brief estimation, while MCS is good for comprehensive and accurate 

calculation.  

  

Bar Element 1 2 3 4

Probablity of failure by 

Perturbation  method
0 0.0019 0.0021 0.0015

Probablity of failure by 

MCS method
0 0.0023 0.0022 0.0017

Probablity of failure 

(exact value)
0 0.0023 0.0023 0.0018
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Chapter 4  

 

Time-variant reliability analysis of trusses 

 

4.1 Introduction  

 As mentioned in Chapter 3, there are only two possible states for a component: 

the failure state or the functional state. Thus the state for a bar component can be 

defined as a binary number  

𝐶𝑖 = {
1        𝑖𝑓 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 𝑖 𝑖𝑠 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑎𝑙 
0                  𝑖𝑓 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 𝑖 𝑖𝑠 𝑓𝑎𝑖𝑙𝑒𝑑

                          (4.1) 

  The example in Figure 13 illustrates the concept of component state in a truss 

structural system.  

 

Figure 13 An example of component state 

Table 6 Component state in each structure 

 

As discussed in Chapter 3, the probability of safety of a component can be calculated 

by numerical method, and it is denoted as: 

Index of 

component

Component state 

of structure (a)

Component state 

of structure (b)

Component state 

of structure (c)

1 1 0 0

2 1 1 1

3 1 0 1

4 1 1 1
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𝑝𝑠𝑜𝑖 = 𝑃(𝐶𝑖 = 1)                                                   (4.2) 

and the failure probability of component i is 

𝑝𝑓𝑜𝑖 = 𝑃(𝐶𝑖 = 0)                                                   (4.3) 

4.2 Poisson process and discretization of time 

Let’s consider only one bar component of a truss structure. This particular 

component may fail at any point in time. It is possible for this component to fail after 

one month, or it is also possible for it to fail after ten years. The time before the 

failure of the component is also a random variable. According to the theory of 

probability, this kind of random variable can be described by a Poisson process. 

Suppose there is a period of time 𝑇 which is discretized into n small time 

intervals 𝑡𝑖  (𝑖 = 1,2,3, … , 𝑛). In each of the small time intervals, an event may occur 

or may not occur. That is to say, there are only two possibilities, the occurrence of the 

event and the nonoccurrence of the event. Assume the occurrence in time interval 𝑡𝑖 

will not influence the occurrence in time interval  𝑡𝑗(𝑖 ≠ 𝑗) . Suppose that the 

probability of occurrence in each small time interval is a constant denoted as  𝑝𝑖 . 

During the total amount of time 𝑇, the probability that the event occurs 𝑥 times should 

be: [4] 

𝑃(𝑋 = 𝑥 𝑖𝑛 𝑇) = (
𝑛
𝑥
) 𝑝𝑖

𝑥(1 − 𝑝𝑖)
𝑛−𝑥                                  (4.4) 

This kind of distribution is named as Binomial distribution. 𝜆 is the mean occurrence 

time during time 𝑇. According to the assumptions above 

𝑝𝑖 =
𝜆

𝑛
                                                              (4.5)  

thus equation (4.4) becomes 
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𝑃(𝑋 = 𝑥 𝑖𝑛 𝑇) = (
𝑛
𝑥
)
𝜆

𝑛

𝑥

(1 −
𝜆

𝑛
)
𝑛−𝑥

                                  (4.6) 

We can refine the discretization of time period 𝑇 by increasing the total number of 

small time intervals 𝑡𝑖, that is to say 𝑛 → ∞. If so, 

𝑃(𝑋 = 𝑥 𝑖𝑛 𝑇) = lim
𝑛→∞

(
𝑛
𝑥
)
𝜆

𝑛

𝑥

(1 −
𝜆

𝑛
)
𝑛−𝑥

                                  (4.7) 

where 

(
𝑛
𝑥
)
𝜆

𝑛

𝑥

(1 −
𝜆

𝑛
)
𝑛−𝑥

 

=
𝑛

𝑛

(𝑛 − 1)

𝑛
…
(𝑛 − 𝑥 + 1)

𝑛

𝜆𝑛

𝑥!
(1 −

𝜆

𝑛
)
𝑛

(1 −
𝜆

𝑛
)
−𝑥

  (4.8) 

and 

lim
𝑛→∞

(1 −
𝜆

𝑛
)
𝑛

= 𝑒−𝜆                                         (4.9) 

and 

lim
𝑛→∞

(1 −
𝜆

𝑛
)
−𝑥

= 1                                         (4.10) 

so 

𝑃(𝑋 = 𝑥 𝑖𝑛 𝑇) = lim
𝑛→∞

(
𝑛
𝑥
)
𝜆

𝑛

𝑥

(1 −
𝜆

𝑛
)
𝑛−𝑥

= 
𝜆𝑛

𝑥!
𝑒−𝜆                (4.11) 

This kind of distribution is call Poisson distribution, and the process that satisfies the 

Poisson distribution is named Poisson process. For a Poisson process, the mean 

occurrence number during time 𝑇 is normally estimated based on observations, and it 

is often written as 

𝜆 = 𝜈𝑇                                                               (4.12) 
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where 𝜈 is the mean occurrence rate. 

 Assume the time before the first occurrence of the event is 𝑇1. Thus,  (𝑇1 > 𝑇) 

means that the event will not occur during the time period 𝑇. Hence, 

𝑃(𝑇1 > 𝑇) = 𝑃(𝑋 = 0 𝑖𝑛 𝑇) =  
0𝑛

0!
𝑒−𝜆 = 𝑒−𝜆                (4.13) 

so the probability that the event will occur during time period of  𝑇 is 

𝑃(𝑜𝑐𝑐𝑢𝑟 𝑖𝑛 𝑇) = 𝑃(𝑇1 ≤ 𝑇) = 1 − 𝑃(𝑇1 > 𝑇) =  1 − 𝑒−𝜆       (4.14) 

With (4.12) and (4.14), 

𝑃(𝑜𝑐𝑐𝑢𝑟 𝑖𝑛 𝑇) =  1 − 𝑒−𝜈𝑇                                 (4.15) 

Let’s consider the following example. Suppose there are many balls in a box. 

All the balls are in one of the two colors, yellow or blue. Assume that if we randomly 

pick a ball from the box 

𝑃(𝑏𝑎𝑙𝑙 𝑖𝑠 𝑏𝑙𝑢𝑒) = 𝑝𝑏                                               (4.16) 

𝑃(𝑏𝑎𝑙𝑙 𝑖𝑠 𝑦𝑒𝑙𝑙𝑜𝑤) = 1 − 𝑝𝑏                                           (4.17) 

During a time period of 𝑇𝑘, we may choose or may not choose a ball from the box. 

Let’s name the event of picking up a ball as event C. Thus, the occurrence of event C 

during the time period of 𝑇𝑘 can be modeled by equation (4.15). Therefore 

𝑃(𝑑𝑜 𝑝𝑖𝑐𝑘 𝑎 𝑏𝑎𝑙𝑙) =  1 − 𝑒−𝜈𝑇𝑘                                  (4.18) 

𝑃(𝑑𝑜 𝑛𝑜𝑡 𝑝𝑖𝑐𝑘 𝑎 𝑏𝑎𝑙𝑙) =  𝑒−𝜈𝑇𝑘                                  (4.19) 

Hence, all the possible realizations of this process are listed in Figure 14. 
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Figure 14 Sequence of random realizations over 𝑻𝒌  

Therefore, at the end of  𝑇𝑘, the probability that the ball is yellow is 

𝑃(𝑏𝑎𝑙𝑙 𝑖𝑠 𝑦𝑒𝑙𝑙𝑜 𝑤ℎ𝑒𝑛 𝑡 = 𝑇𝑘 ) =  (1 − 𝑒
−𝜈𝑇𝑘)(1 − 𝑝𝑏)            (4.20) 

and the probability that the ball is blue is 

𝑃(𝑏𝑎𝑙𝑙 𝑖𝑠 𝑏𝑙𝑢𝑒 𝑤ℎ𝑒𝑛 𝑡 = 𝑇𝑘 ) =  (1 − 𝑒
−𝜈𝑇𝑘) 𝑝𝑏                       (4.21) 

This process can be repeated after the time 𝑇𝑘. The mean occurrence rate 𝜈 remains 

the same. Looping this process 𝑛 times, we can get the probability that the ball is 

yellow at time 𝑛𝑇𝑘. 

 The process discussed above is an appropriate analogy of the behavior of the 

bar component. Assume the bar component is fully functional initially. During a time 

period of  𝑇𝑘 , the condition of damage of the bar component may or may not be 

satisfied. Then, if the damage occurs, the component may survive or may not survive. 

The diagram of this process is shown in Figure 15. 
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Figure 15 Sequence of random realizations over 𝑻𝒌 

 

Hence, after  𝑇𝑘, the probability that the component is at failure state is: 

𝑝𝑓𝑖 = (1 − 𝑒−𝜈𝑇𝑘)𝑝𝑓𝑜𝑖                                           (4.22) 

𝜈 is determined based on experience and it is a constant value. 𝑇𝑘 is the time period 

considered. The probability that the component will survive after 𝑇𝑘 is 

𝑝𝑠𝑖 = 1 − 𝑝𝑓𝑖                                                    (4.23) 

The mean occurrence rate of this process depends on both environment and 

the component itself. Therefore, for a certain type of truss structure under a certain 

kind of environment, (1 − 𝑒−𝜈𝑇𝑘)  is a constant. Herein the term (1 − 𝑒−𝜈𝑇𝑘)  is 

estimated to be 0.9. 

4.3 System states 

  The state of each component is defined as 𝐶𝑖. Hence, the states for all the 

components form the vector: 
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  (𝐶1,  𝐶2,  𝐶3,  𝐶4, … ,  𝐶𝑖)
𝑇                                          (4.24) 

Since there are only two possible values (0 and 1) for each 𝐶𝑖, by joining all the digits 

together, it forms a binary number B: 

 𝐵 = 𝐶1𝐶2𝐶3𝐶4…𝐶𝑖                                           (4.25) 

This binary number can be transformed to a decimal number as  

 𝐷𝑗
′ = 𝐶1 × 2

𝑖−1+𝐶2 × 2
𝑖−2 + 𝐶3 × 2

𝑖−3 + 𝐶4…+𝐶𝑖 × 2
𝑖−𝑖           (4.26) 

Since in Matlab index of a sequence starts from 1, so the jth system state is represented 

by 

𝐷𝑗 = 𝐷𝑗
′ + 1                                                    (4.27) 

 Here is an example of system state representation for a 5-bar truss structure: 

 

Figure 16 Example of system state representation  

Fully functional system 

state (a)

System with component 

2 failed (b)

System with component 

1 and 2 failed (c)

Truss structure

Binary 

Representation
11111 10111 00111

Decimal   D' 31 23 7

Decimal  

D=D'+1
32 24 8

System failed or 

not
No No YES

System 

condition
1 1 0
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 In Figure 16  (a), all the bar components are fully functional, so the component 

states are (1, 1, 1, 1, 1), and this system state can be represented by decimal number 

32. For the same reason, system state in Figure 16 (b) can be represented by decimal 

number 24 and system state in Figure 16 (c) can be represented by decimal number 8. 

There’s no bar component broken in structure (a), so it is fully functional. There is 

only one bar component failed in structure (b), so it is also functional. However, in 

structure (c), the failure of component 1 and component 2 makes the truss structure a 

mechanism.  

The survival probabilities of all the bar components after  𝑇𝑘 can be written in a vector 

form as 

(𝑝𝑠1, 𝑝𝑠2, 𝑝𝑠3, … , 𝑝𝑠𝑛)                                                    (4.28) 

and the corresponding failure probabilities can be written as 

(𝑝𝑓1, 𝑝𝑓2, 𝑝𝑓3, … , 𝑝𝑓𝑛)                                                  (4.29) 

where 

𝑝𝑓𝑖 = 1 − 𝑝𝑠𝑖                                                           (4.30) 

It is important to notice that the survival probabilities for a certain bar component in 

different system states are different.   

4.4 Transition probability  

After a period of time  𝑇𝑘, the system can move from one state to another. The 

probability that system moves from one state to another can be regarded as a 

connection between these two states. The transition among different system states can 

thus form a network.  
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Consider the 5-bar truss structural system in Figure 17 as an example. Figure 

17 demonstrates how the system states are connected. If the bar component 2 in state 

32 fails and all the other components are functional after a period of time, the system 

will move from state 32 to state 24. 

Recall that the survival probabilities of each bar component over 𝑇𝑘 are 

(𝑝𝑠1(32), 𝑝𝑠2(32), 𝑝𝑠3(32), 𝑝𝑠4(32), 𝑝𝑠5(32))                       (4.31)  

, and the failure probability of bar component 2 over 𝑇𝑘 is 

(1 − 𝑝𝑠2(32))                                                (4.32) 

 

Figure 17 Transition between system states  

Thus, assuming statistical independence among failure modes, the probability that 

connects system state 32 and system state 24 should be 

𝑃1 = 𝑃(32,24) = (1 − 𝑝𝑠2(32)) ∏ 𝑝𝑠𝑖
𝑖=1,3,4,5

(32)                                    (4.33)  

, and 

𝑃2 = 𝑃(32,8) = (1 − 𝑝𝑠1(32))(1 − 𝑝𝑠2(32)) ∏ 𝑝𝑠𝑖(32)

𝑖=3,4,5

            (4.34)  
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For the same reason, the survival probabilities of each bar component over 𝑇𝑘  for 

system state 24 are  

(𝑝𝑠1(24), 𝑝𝑠2(24), 𝑝𝑠3(24), 𝑝𝑠4(24), 𝑝𝑠5(24))                       (4.35)  

, so the transition probability from state 24 to state 8 is 

𝑃3 = 𝑃(24,8) = (1 − 𝑝𝑠𝑖(24)) ∏ 𝑝𝑠𝑖(24)

𝑖=3,4,5

                         (4.36) 

 The method illustrated above can be used to determine the transition 

probabilities from one state to another. Additionally, in Figure 17, there are two 

different paths to move from the state 32 to the state 8. The first one starts from state 

32, goes to state 24 and ends with state 8. The second path connects state 32 and state 

8 directly. Generally speaking, the path that connects state a and state b is defined as a 

path from a to b.  

 It is known that, for a truss system with n bar components, there are 2𝑛 

structural states. The states that can carry the external loads are defined to be 

functional states, while all the other states are failure states. It is easy to identify 

failure states and functional states by the matrix analysis method. A truss can no 

longer carry external loads safely when its global stiffness matrix is singular. 
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Figure 18 System states for a 5-bar truss 
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In Figure 18, all the possible system states for the 5-bar truss structural system 

are presented, and they are classified into five different layers based on the number of 

functional components. Generally speaking, the transition from layer i to layer j can 

be defined as “downward” movement if i > j, and the layers associated with fewer 

functional bar components are defined as lower layers. It is possible for a state in a 

high layer to move downward to a lower layer. However, on the other hand, a system 

state in a lower layer cannot move upward into a high layer if there’s not maintenance 

applied.  

4.5 Time-variant system reliability 

 Assume there are N bar components in a truss structural system, so at a certain 

time point 𝑛𝑇𝑘, the system has 𝑀 system states 

𝑀 = 2𝑁                                                               (4.37) 

Let 𝑃𝑠𝑡𝑒𝑝(𝑖,𝑗) represent the probability to move from system state i to its neighbor state 

j, thus 

𝑃𝑠𝑡𝑒𝑝(𝑖,𝑗) = ∏  𝑝𝑠𝑝(𝑖)

𝑝=𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑎𝑙 
𝑏𝑎𝑟 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠

∏ (1−  𝑝𝑠𝑞(𝑖))
𝑞=𝑓𝑎𝑖𝑙𝑒𝑑 𝑏𝑎𝑟 
𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠

            (4.38) 

There are two kinds of paths: (a) system moves directly from state i to state j, which 

contains only one step, and (b) there are multiple steps from state i to state j. For the 

first situation 

𝑃𝑝𝑎𝑡ℎ(𝑖,𝑗) =    𝑃𝑠𝑡𝑒𝑝(𝑖,𝑗)                                           (4.39) 

For the second situation 

𝑃𝑝𝑎𝑡ℎ(𝑖,𝑎,𝑏,…,𝑑,𝑗) = 𝑃𝑠𝑡𝑒𝑝(𝑖,𝑎)𝑃𝑠𝑡𝑒𝑝(𝑎,𝑏)𝑃𝑠𝑡𝑒𝑝(𝑏 ,… )…𝑃𝑠𝑡𝑒𝑝(… ,𝑑)𝑃𝑠𝑡𝑒𝑝(𝑑,𝑗)            (4.40) 
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Thus, the probability to move from state i to state j is: 

𝑃(𝑖,𝑗) = ∏ 𝑃𝑝𝑎𝑡ℎ(𝑖,… ,𝑗)
𝑎𝑙𝑙 𝑡ℎ𝑒 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 
𝑝𝑎𝑡ℎ𝑠 𝑓𝑟𝑜𝑚 𝑖 𝑡𝑜 𝑗

                           (4.41) 

 Assume that the system is initially in state i and the associated probability 

is 𝑃𝑖𝑛𝑖𝑡𝑖𝑎𝑙, so the probability that system is in state j at a period of time is: 

𝑃𝑗 = 𝑃𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑃(𝑖,𝑗)                                                  (4.42) 

 Since system states are mutually exclusive and collectively exhaustive, the 

summation of probabilities for all the states should be one.  
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4.6 Markov chain and reliability analysis  

 Figure 19 shows an example of transitions among six system states. This 

figure represents the probability map of a truss structure.  

 
Figure 19 A network of six system states 

 In Figure 19, there are 6 system states, and the probability to move from state i 

to its neighbor state j is represented by 𝑃𝑠𝑡𝑒𝑝(𝑖,𝑗). Suppose that the system is initially in 

state a, and the associated probability is  𝑝𝑖𝑛𝑖𝑡𝑖𝑎𝑙 . After a period of time  𝑇𝑘 , the 

probabilities that system is in a given state is      

𝑃𝑎(𝑇𝑘)    = 𝑃𝑖𝑛𝑖𝑡𝑖𝑎𝑙 × 𝑃𝑠𝑡𝑒𝑝(𝑎,𝑎)                                                  (4.43) 

𝑃𝑏(𝑇𝑘)    = 𝑃𝑖𝑛𝑖𝑡𝑖𝑎𝑙 × 𝑃𝑠𝑡𝑒𝑝(𝑎,𝑏)                                                  (4.44) 

𝑃𝑐(𝑇𝑘)    = 𝑃𝑖𝑛𝑖𝑡𝑖𝑎𝑙 × 𝑃𝑠𝑡𝑒𝑝(𝑎,𝑐)                                                  (4.45) 

𝑃𝑑(𝑇𝑘)    = 𝑃𝑖𝑛𝑖𝑡𝑖𝑎𝑙 × 𝑃𝑠𝑡𝑒𝑝(𝑎,𝑑)                                                  (4.46) 
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𝑃𝑒(𝑇𝑘)    = 𝑃𝑖𝑛𝑖𝑡𝑖𝑎𝑙 × 𝑃𝑠𝑡𝑒𝑝(𝑎,𝑒)                                                  (4.47) 

𝑃𝑓(𝑇𝑘)    = 𝑃𝑖𝑛𝑖𝑡𝑖𝑎𝑙 × 𝑃𝑠𝑡𝑒𝑝(𝑎,𝑓)                                                  (4.48) 

𝑃𝑠𝑡𝑒𝑝(𝑎,𝑎) represents that the system stays at the initial condition. So the probability of 

safety of the truss structure at the end time 𝑇𝑘is: 

𝑃(𝑠𝑎𝑓𝑒𝑡𝑦 𝑎𝑡 𝑇𝑘) =  𝑃𝑎(𝑇𝑘)+ 𝑃𝑏(𝑇𝑘)+ 𝑃𝑐(𝑇𝑘) + 𝑃𝑑(𝑇𝑘)                     (4.49)  

 After a period of time 2𝑇𝑘, each path should contain 2 steps. All the passible 

paths are listed in Table 9. The associated probabilities are 

𝑃𝑎(2𝑇𝑘)   = 𝑃𝑖𝑛𝑖𝑡𝑖𝑎𝑙  𝑃𝑠𝑡𝑒𝑝(𝑎,𝑎) 𝑃𝑠𝑡𝑒𝑝(𝑎,𝑎)                                                                                      

= 𝑃𝑎(𝑇𝑘) 𝑃𝑠𝑡𝑒𝑝(𝑎,𝑎)                                                                                            (4.50) 

 

𝑃𝑏(2𝑇𝑘)   = 𝑃𝑖𝑛𝑖𝑡𝑖𝑎𝑙(𝑃𝑠𝑡𝑒𝑝(𝑎,𝑎) 𝑃𝑠𝑡𝑒𝑝(𝑎,𝑏) +  𝑃𝑠𝑡𝑒𝑝(𝑎,𝑏) 𝑃𝑠𝑡𝑒𝑝(𝑏,𝑏))                                        

= 𝑃𝑏(𝑇𝑘)(𝑃𝑠𝑡𝑒𝑝(𝑎,𝑎) +  𝑃𝑠𝑡𝑒𝑝(𝑏,𝑏))                                                                (4.51) 

 

𝑃𝑐(2𝑇𝑘)   = 𝑃𝑖𝑛𝑖𝑡𝑖𝑎𝑙(𝑃𝑠𝑡𝑒𝑝(𝑎,𝑎) 𝑃𝑠𝑡𝑒𝑝(𝑎,𝑐) +  𝑃𝑠𝑡𝑒𝑝(𝑎,𝑐) 𝑃𝑠𝑡𝑒𝑝(𝑐,𝑐))                                          

= 𝑃𝑐(𝑇𝑘)(𝑝𝑠𝑡𝑒𝑝(𝑎,𝑎) +  𝑃𝑠𝑡𝑒𝑝(𝑐,𝑐))                                                                 (4.52) 

 

𝑃𝑑(2𝑇𝑘)   = 𝑃𝑖𝑛𝑖𝑡𝑖𝑎𝑙(𝑃𝑠𝑡𝑒𝑝(𝑎,𝑎) 𝑃𝑠𝑡𝑒𝑝(𝑎,𝑑) +  𝑃𝑠𝑡𝑒𝑝(𝑎,𝑑) 𝑃𝑠𝑡𝑒𝑝(𝑑,𝑑))                                        

= 𝑃𝑑(𝑇𝑘)(𝑃𝑠𝑡𝑒𝑝(𝑎,𝑎) +  𝑃𝑠𝑡𝑒𝑝(𝑑,𝑑))                                                               (4.53) 
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Table 7 All the possible 2-step paths at the end of 2Tk 

 

 

 

 

 𝑃𝑒(2𝑇𝑘)   

= 𝑃𝑖𝑛𝑖𝑡𝑖𝑎𝑙(𝑃𝑠𝑡𝑒𝑝(𝑎,𝑎) 𝑃𝑠𝑡𝑒𝑝(𝑎,𝑒) + 𝑃𝑠𝑡𝑒𝑝(𝑎,𝑒) 𝑃𝑠𝑡𝑒𝑝(𝑒,𝑒) + 𝑃𝑠𝑡𝑒𝑝(𝑎,𝑏)𝑃𝑠𝑡𝑒𝑝(𝑏,𝑒)
+ 𝑃𝑠𝑡𝑒𝑝(𝑎,𝑐) 𝑃𝑠𝑡𝑒𝑝(𝑐,𝑒)

+ 𝑃𝑠𝑡𝑒𝑝(𝑎,𝑑) 𝑃𝑠𝑡𝑒𝑝(𝑑,𝑒))                                                                                                               (4.54) 

 

 𝑃𝑓(2𝑇𝑘)   

= 𝑃𝑖𝑛𝑖𝑡𝑖𝑎𝑙(𝑃𝑠𝑡𝑒𝑝(𝑎,𝑎) 𝑃𝑠𝑡𝑒𝑝(𝑎,𝑓) + 𝑃𝑠𝑡𝑒𝑝(𝑎,𝑓) 𝑃𝑠𝑡𝑒𝑝(𝑓,𝑓) + 𝑃𝑠𝑡𝑒𝑝(𝑎,𝑏) 𝑃𝑠𝑡𝑒𝑝(𝑏,𝑓)
+ 𝑃𝑠𝑡𝑒𝑝(𝑎,𝑐) 𝑃𝑠𝑡𝑒𝑝(𝑐,𝑓)

+ 𝑃𝑠𝑡𝑒𝑝(𝑎,𝑑) 𝑃𝑠𝑡𝑒𝑝(𝑑,𝑓))                                                                                                               (4.55) 

 

initial state first step second step ending state

a-a a-a a

a-a a-b

a-b b-b

a-a a-c

a-c c-c

a-a a-d

a-d d-d

a-a a-e

a-e e-e

a-b b-e

a-c c-e

a-d d-e

a-a a-f

a-f f-f

a-b b-f

a-c c-f

a-d d-f

a

b

c

d

e

f



44 

 

Thus the probability of safety at the end of  2𝑇𝑘 is: 

𝑃(𝑠𝑎𝑓𝑒𝑡𝑦 𝑎𝑡 2𝑇𝑘) =  𝑃𝑎(2𝑇𝑘)+ 𝑃𝑏(2𝑇𝑘)+ 𝑃𝑐(2𝑇𝑘) + 𝑃𝑑(2𝑇𝑘)                (4.56) 

 Generally speaking, the analysis processes mentioned above can be 

summarized by the Markov chain theory. A matrix containing all the information of 

probability map can be formed as shown in Figure 20. 

 

Figure 20 Matrix form 

 In this example, the Markov transition matrix 𝑷 has 6 rows and 6 columns. 

Each element 𝑝𝑖,𝑗 in 𝑷 represents the probability of a step from state i to state j.  It is 

important to notice that a bar component cannot fix itself. For this reason, the 

probability of a step from a lower state to a higher state is zero. Assume that a bar 

component will not be repaired when it is not functional,  

𝑝𝑖,𝑗 = {
𝑃𝑆𝑡𝑒𝑝(𝑖,𝑗)                  𝑖 ≥ 𝑗

0                               𝑖 < 𝑗
                                        (4.57) 

𝑷𝑴 = [𝑝𝑖,𝑗]                                                           (4.58) 

 Thus for the system in Figure 19 
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(4.59) 

4.7 Conclusion and summary 

  Generally speaking, for an N-bar truss structural system, there are 𝑀 = 2𝑁 

system states at a certain point in time. After a period of time, the system can move 

from one state to another.  

  The system transition matrix is defined as 

𝑷𝑴 = [

𝑃𝑠𝑡𝑒𝑝(𝑎,𝑎) ⋯ 𝑃𝑠𝑡𝑒𝑝(𝑛,𝑎)
⋮ ⋱ ⋮

𝑃𝑠𝑡𝑒𝑝(𝑎,𝑛) ⋯ 𝑃𝑠𝑡𝑒𝑝(𝑛,𝑛)

]                                  (4.60) 

If the bar components are not repaired, the probability that the system move from a 

lower system state to a higher system state will be to zero. That is to say 

𝑝𝑖,𝑗 = {
𝑃𝑠𝑡𝑒𝑝(𝑖,𝑗)                  𝑖 ≥ 𝑗

0                               𝑖 < 𝑗
                                      (4.61) 

 Suppose that vector 𝒔(𝑛𝑇𝑘) the probabilities of each system state at time 𝑛𝑇𝑘,  

then initial state 𝒔(0) is  

𝒔(0) =  

[
 
 
 
 
𝑝𝑖𝑛𝑖𝑡𝑖𝑎𝑙(𝑎)
𝑝𝑖𝑛𝑖𝑡𝑖𝑎𝑙(𝑏)
𝑝𝑖𝑛𝑖𝑡𝑖𝑎𝑙(𝑐)

⋮
𝑝𝑖𝑛𝑖𝑡𝑖𝑎𝑙(𝑛)]

 
 
 
 

                                             (4.62) 

where 
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 𝑝𝑖𝑛𝑖𝑡𝑖𝑎𝑙(𝑖) is the probability that system is in state i initially. Notice that 

∑ 𝑝𝑖𝑛𝑖𝑡𝑖𝑎𝑙(𝑖) 

𝑀

𝑖=1

= 1                                          (4.63) 

∑𝑠(𝑛𝑇𝑘)𝑖

𝑀

𝑖=1

= 1                                        (4.64) 

Hence, as discussed above 

𝒔(𝑛𝑇𝑘) = 𝑷𝑴
𝑛 𝒔(0)                                             (4.65) 

, and 

𝒔((𝑛 + 1)𝑇𝑘) = 𝑷𝑴  𝒔(𝑛𝑇𝑘)                                           (4.66) 

Finally, the survival probability of the system at time 𝑛𝑇𝑘 is 

𝑃𝑠𝑦𝑡𝑒𝑚𝑠(𝑛𝑇𝑘) = ∑ 𝑠(𝑛𝑇𝑘)𝑖
𝑖=

𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑎𝑙 𝑠𝑡𝑎𝑡𝑒𝑠

                                             (4.67) 

 

The transition matrix 𝑷𝑴 has two important properties: (a) the summation of 

each column vector equals one, (b) every element in this matrix is smaller than one. 

These two properties guarantee the fact that that the  𝑷𝑴  matrix will have N 

eigenvalues. Among these eigenvalues, only one of them is one, and all the others are 

smaller than one. Assume that the eigenvalue matrix of  𝑷𝑴 is 𝑽, and eigenvector 

matrix of  𝑷𝑴 is 𝑫 

𝑷𝑴 = 𝑽
−𝟏𝑫𝑽                                                            (4.68) 

, where 𝑫 is a diagonal matrix. On the diagonal of matrix 𝑫, there is only one element 

that equals one (assume it is the kth element), and all the other elements are zeros. 

Since 
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𝑷𝑴
𝑛 = 𝑽−𝟏𝑫𝑛𝑽                                                            (4.69) 

 Plug equation 4.69 back to equation 4.65 

𝒔(𝑛𝑇) = 𝑽−𝟏𝑫𝑛𝑽𝒔(0)                                               (4.70) 

𝑽𝒔(𝑛𝑇) = 𝑫𝑛𝑽𝒔(0)                                                    (4.71) 

In matrix  𝑫, when 𝑛 → ∞, the diagonal elements which are smaller than one are 

infinitely approaching zero, and the kth diagonal element (which equal one)  is 

approaching 1. Thus 

lim
𝑛→∞

𝑫𝑛 = 𝑬𝑛                                                               (4.72) 

where 

𝑬𝑛(𝑖, 𝑗) = {
1                                     𝑖 = 𝑘, 𝑗 = 𝑘
0            𝑎𝑙𝑙 𝑡ℎ𝑒 𝑜𝑡ℎ𝑒𝑟 𝑠𝑖𝑡𝑢𝑎𝑡𝑖𝑜𝑛𝑠

   (4.73) 

Plug equation 4.73 back to 4.70 

lim
𝑛→∞

𝑫𝑛 = 𝑬𝑛                                                              (4.74) 

lim
𝑛→∞

𝑽−𝟏𝑫𝑛𝑽𝒔(0) =𝑽−𝟏𝑬𝑛𝑽𝒔(0) = 𝒔𝑠𝑡             (4.75) 

The vector  𝒔𝑠𝑡 is the stationary vector for matrix 𝑷𝑴.This stationary vector not only 

indicates the final probabilities of each state, but reveals the performance of the 

associated truss as well.  
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Chapter 5 

 

Life-cycle analysis of trusses  

 

 During its lifetime, a truss structure may experience different kinds of 

deterioration effects. Some of them will take place slowly and last a long period of 

time. As one of the long term deterioration effects, corrosion reduces the cross section 

area and thus makes the truss structure less reliable. Both the corrosion initiation time 

and the corrosion rate are uncertain. They can be modeled as random variables and 

can be simulated stochastically. One the other hand, maintenance can be applied to a 

truss structure. Both the corrosion effects and maintenance actions can be modeled 

stochastically. This is the main topic of this chapter. 

5.1 Modeling of corrosion 

 Corrosion may be one of most significant deterioration effects for truss 

structures. Corrosion always lasts a long period of time and happens randomly. A bar 

component suffering from corrosion will end up with reduced cross section area. 

 Albrecht and Naeemi [7] made a study about the corrosion speed of some steel 

members, and modeled the effect of corrosion by [7] 

𝐶(𝑡) = 𝐴𝑡𝐵                                                            (5.1) 

In the equation above, 𝐶(𝑡) is the average corrosion penetration, and 𝐴 and 𝐵 are two 

factors determined by environmental conditions. 

 In 2010, Frangopol and Kim developed a method to numerically simulate the 

corrosion [8]. In their paper, the corrosion initiation time is modeled as 
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𝑇𝑐𝑜𝑟𝑟 =
𝑥2

4𝐷 (𝑒𝑟𝑓𝑐−1 (
𝐶𝑡ℎ
𝐶0
))

                                    (5.2) 

Therefore, the cross section area at time t (years) is [8], 

𝐴𝑠(𝑡) =

{
 

 
𝜋𝑑𝑠𝑡0

2

4
𝜋[𝑑𝑠𝑡0 − 𝑟𝑐𝑜𝑟𝑟(𝑡 − 𝑇𝑐𝑜𝑟𝑟)]

2

4

                                  (5.3) 

where 𝑑𝑠𝑡0 is the initial diameter and 𝑟𝑐𝑜𝑟𝑟 is the corrosion rate. The simulated results 

of equation (5.3), based on the assumptions indicated in Table 8, are shown in Figure 

21. In this study, it is assumed that, for every bar component, corrosion starts at the 

same time and the corrosion rate is the same.  

Table 8 Random variables characterizing corrosion 

 

 The remaining cross sectional area of truss members under corrosion is shown 

in Figure 21 [8]. 

Variable Mean cov
Type of 

distribution

Corrosion Rate(initial 

corrosion)
5.82E-06 0.1 Lognormal

Corrosion Initiation Time 36 0.2 Lognormal

𝑟𝑐𝑜𝑟𝑟𝑖(𝑚𝑚/𝑚𝑜𝑛𝑡ℎ)

𝑇𝑐𝑜𝑟𝑟(𝑚𝑜𝑛𝑡ℎ)
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Figure 21 Remaining cross sectional area  [8] 

The line in Figure 21 represents the mean value of remaining cross section area at the 

end of each time period, and the vertical curves represent the PDFs of the remaining 

cross area. The area of cross section is decreasing while its dispersion is increasing. 

The ratio of reduction of cross section area is defined as 

 𝜌𝐴 =
𝐴𝑐𝑜𝑟𝑟
𝐴𝑖𝑛𝑖𝑡𝑖𝑎𝑙

                                                           (5.4) 

where 𝐴𝑐𝑜𝑟𝑟 is the corrosion area and 𝐴𝑖𝑛𝑖𝑡𝑖𝑎𝑙 is the initial area as shown in Figure 22. 
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Figure 22 Corrosion of cross section 

Corrosion of a truss structure can be classified into six stages. They are defined in the 

table below. 

Table 9 Classification of corrosion 

 

The probability that system moves from stage i corrosion to stage j corrosion over a 

time period 𝑇𝑘 is defined as 

𝑝𝑐𝑜𝑟𝑟(𝑖,𝑗) = 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑡𝑜 𝑚𝑜𝑣𝑒 𝑓𝑟𝑜𝑚 𝑠𝑡𝑎𝑔𝑒 𝑖 𝑡𝑜 𝑠𝑡𝑎𝑔𝑒 𝑗          (5.5) 

This probability can be quantified by the method indicated in [8]. For example, the 

system is at stage 1, and then the histogram of remaining area after a time period 𝑇𝑘 

can be simulated as indicated below. 

Corrosion stages Condition Corrosion ratio

stage 1 Nonecorrosion 0

stage 2 Slight corrosion ( 0 , 1%]

stage 3 Moderate Corrosion ( 1%, 3%]

stage 4 Heavy Corrosion (3%, 8%]

stage 5 Severe Corrosion (8%, 15%]

stage 6 Not functional >15%
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Figure 23 Histogram of remaining area after a time period of 𝑻𝒌 

The associated probabilities to move from the one corrosion stage to another 

corrosion stage can be simulated. It is important to notice that the probability to move 

from corrosion stage 1 to any other stage of corrosion varies with time because of 

initiation time of corrosion. Generally, the associated time of corrosion for 

𝑝𝑐𝑜𝑟𝑟(1,𝑗)(𝑛𝑇𝑘) is 

𝑇𝑐𝑜𝑟𝑟 − (𝑛 − 1)𝑇𝑘                                                (5.6) 

The probabilities to move from one corrosion stage to another one can be written as a 

matrix 

𝑷𝑐𝑜𝑟𝑟(𝑛𝑇𝑘)  

=

[
 
 
 
 
 
 
𝑝𝑐𝑜𝑟𝑟(1,1)(𝑛𝑇𝑘) 0 0

𝑝𝑐𝑜𝑟𝑟(1,2)(𝑛𝑇𝑘) 𝑝𝑐𝑜𝑟𝑟(2,2) 0

𝑝𝑐𝑜𝑟𝑟(1,3)(𝑛𝑇𝑘) 𝑝𝑐𝑜𝑟𝑟(2,3) 𝑝𝑐𝑜𝑟𝑟(3,2)

       0              0              0       
       0       0        0       
       0       0        0       

𝑝𝑐𝑜𝑟𝑟(1,4)(𝑛𝑇𝑘) 𝑝𝑐𝑜𝑟𝑟(2,4) 𝑝𝑐𝑜𝑟𝑟(3,3)
𝑝𝑐𝑜𝑟𝑟(1,5)(𝑛𝑇𝑘) 𝑝𝑐𝑜𝑟𝑟(2,5) 𝑝𝑐𝑜𝑟𝑟(3,4)
𝑝𝑐𝑜𝑟𝑟(1,6)(𝑛𝑇𝑘) 𝑝𝑐𝑜𝑟𝑟(2,6) 𝑝𝑐𝑜𝑟𝑟(3,5)

𝑝𝑐𝑜𝑟𝑟(4,4) 0 0

𝑝𝑐𝑜𝑟𝑟(4,5) 𝑝𝑐𝑜𝑟𝑟(5,5) 0
𝑝𝑐𝑜𝑟𝑟(4,6) 𝑝𝑐𝑜𝑟𝑟(5,6) 𝑝𝑐𝑜𝑟𝑟(6,6)

 

]
 
 
 
 
 
 

          (5.7) 

P
D

F
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𝑷𝑐𝑜𝑟𝑟(𝑛𝑇𝑘) can be simulated by the method discussed above. The parameters of this 

simulation are listed in Table 10. Here we assume that the time period equals one 

month (𝑇𝑘 = 1 month) and 𝑛 = 0,1,2,3, … ,720 (60 years). 

Table 10 Random variables  

 

Figure 24 shows the probabilities to move from corrosion stage 1 to all the other 

corrosion stages. Figure 25 shows the histogram of remaining cross section area at the 

end of year 5, year 10, year 30, and year 50. Notice that 

∑ 𝑝𝑐𝑜𝑟𝑟𝑜(𝛼,𝛽)
𝑓𝑜𝑟 𝑎𝑙𝑙 𝛽

= 1                                                          (5.8) 

 

 

 

 

 

 

Variables Mean cov
Type of 

distribution

Corrosion Rate(initial 

corrosion)
5.82E-06 0.1 Lognormal

Corrosion Rate 1.16E-05 0.1 Lognormal

Corrosion Initiation Time 36 0.2 Lognormal

𝑟𝑐𝑜𝑟𝑟𝑖(𝑚𝑚/𝑦𝑒𝑎𝑟)

𝑇𝑐𝑜𝑟𝑟(𝑚𝑜𝑛𝑡ℎ)

𝑟𝑐𝑜𝑟𝑟(𝑚𝑚/𝑦𝑒𝑎𝑟)
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Figure 24 Probabilities of transition from stage 1 to other stages 
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Figure 25 Histogram of remaining cross section area at the end of year 5, 10, 30 

and 50  
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Figure 26 The same structural state at different corrosion stages 

As shown in Figure 26, a truss can be at different corrosion stages, so a system state 

should be represented by two numbers as  

𝑠𝑡𝑎𝑡𝑒(𝑖, 𝑘)                                                       (5.9) 

Here  𝑖  represents the structural state, and  𝑘  represents the corrosion stage. The 

associated probability that the system is in one corrosion condition is calculated as  

𝑃(𝑠𝑦𝑠𝑡𝑒𝑚 𝑎𝑡 𝑠𝑡𝑎𝑡𝑒 (32,2)) 

= 𝑃(𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒 𝑠𝑡𝑎𝑡𝑒 = 32)𝑃(𝑐𝑜𝑟𝑟𝑜𝑠𝑖𝑜𝑛 𝑠𝑡𝑎𝑡𝑒 = 2)      (5.10) 

Generally speaking, at a certain point in time, for a truss structural system with N 

components, there are 2𝑁  structural states and 6 corrosion stages. Therefore, there 

are 6 × 2𝑁 different possible system states when corrosion effect is considered. The 

new system state vector is defined as 
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𝒔𝒄(𝑛𝑇𝑘) =

[
 
 
 
 
 
𝒔𝟏
𝒔𝟐
𝒔𝟑
𝒔𝟒
𝒔𝟓
𝒔𝟔]
 
 
 
 
 

                                                       (5.11) 

Here,  𝒔𝒌  represents the probabilities of a certain structural state associated with 

corrosion state k.   

𝒔𝒌 =

[
 
 
 
 
 
𝑃(𝑠𝑡𝑎𝑡𝑒(1, 𝑘))

𝑃(𝑠𝑡𝑎𝑡𝑒(2, 𝑘))

𝑃(𝑠𝑡𝑎𝑡𝑒(3, 𝑘))

⋮
𝑃(𝑠𝑡𝑎𝑡𝑒(𝑛, 𝑘))]

 
 
 
 
 

                                       (5.12) 

 Let 𝑷𝒔𝒌 represents transition matrix for system in corrosion stage k 

𝑷𝒔𝒌 = [

𝑝𝑘1,1 ⋯ 0

⋮ ⋱ ⋮
𝑝𝑘1,𝑁 ⋯ 𝑝𝑘𝑁,𝑁

]                                                           (5.13) 

where 

𝑝𝑘𝑖,𝑗 = {
𝑝𝑘(𝑖,𝑗)                  𝑖 ≥ 𝑗

0                        𝑖 < 𝑗
                                                    (5.14) 

Therefore, the overall Markov matrix should be 

𝑷𝑐(𝑛𝑇𝑘) =

[
 
 
 
 
 
 
𝑷𝒄𝟏,𝟏(𝑛𝑇𝑘) 0 0

𝑷𝒄𝟏,𝟐(𝑛𝑇𝑘) 𝑷𝒄𝟐,𝟐 0

𝑷𝒄𝟏,𝟑(𝑛𝑇𝑘) 𝑷𝒄𝟐,𝟑 𝑷𝒄𝟑,𝟑

    0        0        0      
  0      0        0      
  0      0        0      

𝑷𝒄𝟏,𝟒(𝑛𝑇𝑘) 𝑷𝒄𝟐,𝟒 𝑷𝒄𝟑,𝟒
𝑷𝒄𝟏,𝟓(𝑛𝑇𝑘) 𝑷𝒄𝟐,𝟓 𝑷𝒄𝟑,𝟓
𝑷𝒄𝟏,𝟔(𝑛𝑇𝑘) 𝑷𝒄𝟐,𝟔 𝑷𝒄𝟑,𝟔

𝑷𝒄𝟒,𝟒 0  0

𝑷𝒄𝟒,𝟓 𝑷𝒄𝟓,𝟓 0

𝑷𝒄𝟒,𝟔 𝑷𝒄𝟓,𝟔 𝑷𝒄𝟔,𝟔 ]
 
 
 
 
 
 

            (5.15) 
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where 

𝑷𝒄𝒊,𝒋 = 𝑝𝑐𝑜𝑟𝑟(𝑖,𝑗)𝑷𝒔𝒊                                              (5.16) 

Thus,  

𝒔𝒄(𝑛𝑇𝑘) = (∏𝑷𝑐(𝑖𝑇𝑘)

𝑛

𝑖=1

)𝒔𝒄(0)                                     (5.17) 

The system probability of safety over a certain period of time 𝑇𝑘 is 

𝑃𝑠𝑦𝑠(𝑛𝑇𝑘) = ∑ 𝑠𝑐(𝑛𝑇𝑘)𝑖
𝑖=𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑎𝑙 

𝑠𝑡𝑎𝑡𝑒𝑠

                                    (5.18) 

where 𝑠𝑐(𝑛𝑇𝑘)𝑖 is the ith element in 𝒔𝒄(𝑛𝑇𝑘).  

5.2 Modeling of maintenance  

 There are two types of maintenance. The first type of maintenance replaces the 

deteriorated components with new ones. The benefit of this type of maintenance is 

that it will improve system reliability significantly. The total cost of this type of 

maintenance is high. The main idea of the second type of maintenance is to prevent 

the truss structure from further deterioration. For example, painting or coating bar 

components can prevent truss structure from corrosion. Although this type of 

maintenance will not improve the system reliability, it can slow down the decrease of 

system reliability. 

 Recall the overall transition matrix without maintenance is 

𝑷𝑐(𝑛𝑇) =

[
 
 
 
 
 
 
𝑷𝒄𝟏,𝟏(𝑛𝑇) 0 0

𝑷𝒄𝟏,𝟐(𝑛𝑇) 𝑷𝒄𝟐,𝟐 0

𝑷𝒄𝟏,𝟑(𝑛𝑇) 𝑷𝒄𝟐,𝟑 𝑷𝒄𝟑,𝟑

    0        0        0      
  0      0        0      
  0      0        0      

𝑷𝒄𝟏,𝟒(𝑛𝑇) 𝑷𝒄𝟐,𝟒 𝑷𝒄𝟑,𝟒
𝑷𝒄𝟏,𝟓(𝑛𝑇) 𝑷𝒄𝟐,𝟓 𝑷𝒄𝟑,𝟓
𝑷𝒄𝟏,𝟔(𝑛𝑇) 𝑷𝒄𝟐,𝟔 𝑷𝒄𝟑,𝟔

𝑷𝒄𝟒,𝟒 0  0

𝑷𝒄𝟒,𝟓 𝑷𝒄𝟓,𝟓 0

𝑷𝒄𝟒,𝟔 𝑷𝒄𝟓,𝟔 𝑷𝒄𝟔,𝟔 ]
 
 
 
 
 
 

            (5.19) 
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Thus the transition matrix containing the probabilities of maintenance is 

𝑷𝑐𝑚(𝑛𝑇) =

[
 
 
 
 
 
 
𝑷𝒄𝟏,𝟏(𝑛𝑇) 𝑷𝒎𝟐,𝟏 𝑷𝒎𝟑,𝟏
𝑷𝒄𝟏,𝟐(𝑛𝑇) 𝑷𝒄𝟐,𝟐 𝑷𝒎𝟑,𝟐
𝑷𝒄𝟏,𝟑(𝑛𝑇) 𝑷𝒄𝟐,𝟑 𝑷𝒄𝟑,𝟑

𝑷𝒎𝟒,𝟏 𝑷𝒎𝟓,𝟏 𝑷𝒎𝟔,𝟏
𝑷𝒎𝟒,𝟐 𝑷𝒎𝟓,𝟐 𝑷𝒎𝟔,𝟐
𝑷𝒎𝟒,𝟑 𝑷𝒎𝟓,𝟑 𝑷𝒎𝟔,𝟑

𝑷𝒄𝟏,𝟒(𝑛𝑇) 𝑷𝒄𝟐,𝟒 𝑷𝒄𝟑,𝟒
𝑷𝒄𝟏,𝟓(𝑛𝑇) 𝑷𝒄𝟐,𝟓 𝑷𝒄𝟑,𝟓
𝑷𝒄𝟏,𝟔(𝑛𝑇) 𝑷𝒄𝟐,𝟔 𝑷𝒄𝟑,𝟔

𝑷𝒄𝟒,𝟒 𝑷𝒎𝟓,𝟒 𝑷𝒎𝟔,𝟒
𝑷𝒄𝟒,𝟓 𝑷𝒄𝟓,𝟓 𝑷𝒎𝟔,𝟓
𝑷𝒄𝟒,𝟔 𝑷𝒄𝟓,𝟔 𝑷𝒄𝟔,𝟔 ]

 
 
 
 
 
 

            (5.20) 

5.3 Performance analysis and conclusion  

 

 

Figure 27 System states at several points in time  

 Figure 27 illustrates a network of all system states at various points in time. In 

this network, each node stands for a system state at a certain point in time. The nodes 

are classified into different columns as shown in the figure, and each column stands 

for a time point. The connection between two nodes represents the probability of 

transition from one state to another.  

The most important information contained in this graph is the system 

reliability at each time point. At the time 𝑛𝑇𝑘, the truss structural system may be in 

any system state. Some of the system states are functional states, and others are failed 

states. Both corrosion and maintenance can be incorporated using the proposed 

approach. 

𝑇𝑘            2𝑇𝑘            3𝑇𝑘                       𝑛𝑇𝑘 
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 Each path in this probability map has a corresponding length. In the most 

probable system path, some steps may represent events of failure, and some steps may 

describe the events of corrosion or events of maintenance. This kind of probability 

map not only indicates the performance of a truss structure at a certain point in time, 

but reveals the evolution of a truss structure during its lifetime. 
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Chapter 6 

Case study  

 

The first part of this chapter will be an introduction to TRAP (Truss 

Reliability Analysis Program) and the second part of this chapter presents two case 

studies of two truss structures.  

6.1 Introduction to Truss Reliability Analysis Program 

The Truss Reliability Analysis Program (TRAP) is a general purpose 

reliability analysis computer program developed under Matlab environment. The 

basic purpose of this program is to quantify the time-variant reliability for any 2D 

truss structure. The algorithms that TRAP employed are discussed in the previous 

chapters.  

With all the parameters of a 2D truss structure, TRAP is able to provide the 

system reliability at each point in time. At each point in time, it can also provide the 

probabilities of each system state as well. Deterioration effects are modeled in the 

system as well.  

Figure 28 shows the flowchart of TRAP. Firstly, a graphical user interface 

(GUI) shown in Figure 29 allows user to model the truss structure. This user interface 

is designed to collect data about the truss structure, such as material properties, cross 

section areas and external loads. It collects mean value and standard deviation of each 

random variable.  

With all the parameters collected, the program will generate samples of each 

random variable. These samples are feed into the finite element solver for 

displacements at each node. Once all the displacements have been generated, the 
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program will simulate the failure probability of each bar component by the Monte 

Carlo simulation method. The transition matrix for Markov chain is then formed with 

the information of component reliabilities. The initial system is considered to be fully 

functional, and then the state distribution at each point in time is calculated. Finally, 

the time-variant system reliability is computed. 
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Figure 28 Flowchart of TRAP 
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Figure 30 shows the dialog box for node input. X and Y are the two 

coordinates of a node. 

 

Figure 29 Main Graphic User Interface window 

 

Figure 30 Input nodes 
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Figure 31 Input section properties 

 

 Figure 31 demonstrates the input dialog box for section properties. There are 

several options in this box, which are separated in different groups. Group “A”, group 

“E”, group “I” group “Ultimate Stress” each stands for cross section area, Young’s 

modulus, moment of inertia and ultimate stress of this type of bar component. In each 

group, user can input mean value (Mean), standard deviation (Std) and choose one of 

the two types of distribution.  



67 

 

 

Figure 32 Input of Load 

Figure 32 Input of Load shows the dialog box of load input. The “Node” input stands 

for the node on which acts the load. Notice that the direction of the load is in radians. 

 

Figure 33 Input of boundary condition 

 Figure 33 Input of boundary condition shows the dialog box of boundary 

condition input. The boundary nodes are fixed in both x and y directions.  
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Figure 34 Modeling of a ten bar truss structure 

 Finally, Figure 34 shows the modeling of a 10-bar truss structure.  

 TRAP is written as a collection of functions. The discriptions and datalists are 

listed below. 

 

 

1. Modeling 

 

 mwindow.m 

 

The mwindow.m defines a graphical user interface that is designed for user to build 

truss structure model. The data will be saved as below: 

 

 node  

 node: [(x) (y)] 

 noden: (index of node) 
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 section   

 section: 

[(section name) 

(mean of section A)  (std of section A)  (distribution)  

(mean of section E)  (std of section E)  (distribution) 

(mean of section  I)  (std of section  I)  (distribution) 

(mean of section sigm)  (std of section sigm)  (distribution) 

] 

sectionn: (number of sections) 

 

 fix node 

fx: (node) 

fxn: (index of fx) 

 

 load 

ld: [(node) (mean) (std) (distribution) (direction)] 

ldn: (index of member) 

 

 member 

 mem: [(node1) (node2) (section index)] 

 memn: (number of members) 

 

 samplen (total number of samples) 

 samplen: (number of samples) 

 

 Ecovp (correlation of E) 

 Ecovp:  (cov of E each member) 

 

 Acovp (correlation of A) 

 Acovp:  (cov of A each member) 

 

 Sgcovp (correlation of S) 

 Sgcovp:  (cov of Sg each member) 

 

“save” will save model data to ‘…/data/inputdata.mat’. Structure of inputdata.mat is 
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        .node 

        .noden  

        .section  

        .sectionn  

       . mem 

       . memn  

       . ld  

       . ldn  

       . fx  

       . fxn  

       . samplen  

       .Ecovp 

       .Acovp 

       .Sgcovp 

 

 

 

 

 

 

2. sampling 

 

 gnrtsample.m 

 

Sample generator is a function that will generate all the samples and save them in 

folder of sample data.  

 

Input: 

 discount ---- reduction of  EA 

 fdiscount ---- reduction of  external loading force 

 

Output: 

 Esample ---- sample of E 

Asample ---- sample of A 

 Fsample ---- sample of F 

 Sgsample ---- sample of ultimate stress 

 

Save: 

. EAsample 
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 . Fsample  

. Sgsample  

Save As： 

\data\sampledata’dis’’fdis’.mat 

 

 

3. solving 

 

 gstiff.m  

 

This function returns stiffness matrix K of choosing system state, with input E and A of 

each member. 

 

Input: 

 E ---- line vector, E of each member 

 A ---- line vector, A of each member 

 sst ---- line vector, represents system state.(If a certain member is functioning,

  it will be represented as “1”, otherwise “0”);] 

Output: 

 K ---- stiffness matrix of  a certain state 

 

 bdstiff 

 

This function will impose boundary condition to input matrix. 

 

Input: 

 Ko ----- input matrix 

Output: 

 K ---- matrix with boundary condition 

 

 gsst.m 

 

This function will generate all the system states according to total number of members. 

Also, it will generate the states that are not singular and save them in sstdata.nsst. 

The fsst and the failure modes will also be saved.  

 

Input: 

Output: 

Save: 

 .sst ----  all the system state 
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 .sigu ---- if a certain sst is singular or not 

 .nsst ---- all the modes that are non-singular 

 .fsst ---- all the failure modes developed from nsst 

Save as: 

 ‘…\data\sstdata.mat’, ‘sst’, ‘sigu’ 

 

 stress.m 

 

With results of displacements at each DOF, it will return stress in each member.  

 

Input: 

 ssti ---- state of system, live vector 

 u ---- displacement at each DOF 

Output: 

 stressn ---- stress in each member, line vector 

Save:  

 nan 

 

 pm.m 

 

This function finds structural reliability by Monte Carlo method. 

 

Input: 

  

Output: 

 

Save: 

 .K ---- stiffness of each sample, three dimensional matrix (m,n,sn) 

 .strs ---- stress in each member of each sample (sn,stresses) 

 .ff ---- fail or not state of structure in each sample (sn,state) 

 .pfail ---- probability of failure of each member(1,p of each member) 

Save as: 

 ‘…/output/pmdata.mat’  

 

 importancei.m 

 

This function calculate importance factor of member i as defined by Leemis Definition 

2.7 

 

Input: 

Output: 

Save: 

 .imp ---- importance factor of each member 

Save as: 
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 ‘/output/impidata.mat’, ‘imp’ 

 

 bghall.m 

 

This function will build system state graph. 

 

Save: 

 .A ---- graph matrix 

 .cA ---- connection between each states, under asst order 

 .asst ---- all the state, nsst and fsst together 

 .nfsst ---- number of failure states 

 .allsstxy ---- x and y of each state under asst order 

Save as: 

 ‘/output/bghdata.mat’, ‘A’ 

 

 sti.m 

 

This function generates the original stiffness matrix for each member 

 

Save: 

 .koi ----- k of each member with no boundary DOF 

Save as: 

 ‘/data/stidata.mat’ 

 

 

 meank.m 

 

This function will form the mean value stiffness matrix and its inverse of each 

nonsingular system state.  

 

Input: 

eE ----- mean of E of each member, line vector 

eA ----- mean of A of each member, line vector 

Output: 

 mK ---- stiffness matrix of each state, 3D, (:,:,i); 

 imK ---- inverse of mK, 3D, (:,:,i);  

 mKindex ---- system index of each mK, line vector; 

 gu.m 

 

This function returns mean value, cov and var of displacement at each DOF 

 

Input: 

 discount ----- reduction of  EA 

 f ----- external force 
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 ssti ----- certain system state 

Output: 

 eu ----- mean of displacement at each DOF 

 covu ----- cov of displacement at each DOF 

 varu ---- var of displacement at each DOF 

 

 gforce.m 

 

This function returns external loading force at each DOF with boundary condition 

Input: 

 discount ----- reduction of  f 

Outout: 

 df ------- loading force at each DOF 

 

 gpf.m 

 

This function returns probability of failure of each member of a certain state at 

certain kind of section  

 

Input: 

 discount ----- reduction of section properties 

 fdiscount ----- reduction of external force 

ssti ----- system state  

Output: 

 mempf ----- probability of failure of each member, if member not exist, return 

nan 

 

 grf.m 

 

This function generates and save mean, std and type of distribution of nodal force at 

each node. 

 

Input: 

Output: 

Save: 

 uf ----- mean value of f, matrix, each column represent nodal force by an 

external  force 

 stdf ---- std of nodal forces, (2noden x ldn) matrix 

 tf ---- type of distribution of f, line vector 

Save as:  

 ‘/data/grfdata.mat’ 

 

 lnag.m 
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This function generates length and angle of each member and save them. 

 

INOUT: 

OUTPUT: 

SAVE: 

 memlen ----- length of each member 

 memang ----- angle of each member 

 

 ‘/data/lnagdata.mat’ 

 

 gpA.m 

 

This function generates length and angle of each member and save them. 

 

Input: 

 discount ----- reduction of  of EA 

 fdiscount ---- reduction of  of force 

Output: 

 pA ---- probability transformation matrix 

Save: 

 memlen ----- length of each member 

 memang ----- angle of each member 

Save as: 

 ‘/data/lnagdata.mat’ 

 

 

 

All the data is save in .mat files. The structures of each .mat file are listed below. 

 

model data 

 

 inputdata.mat 

 

model information saved as: 

        .node 

        .noden  

        .section  

        .sectionn  

       . mem 

       . memn  

       . ld  
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       . ldn  

       . fx  

       . fxn 

       . samplen 

        . memcov 

 

 inputdatao.mat 

 

copy of inputdata.mat 

 

 inputdata_t.f 

 

Model information saved as .txt file 

 

 sampledata.mat 

 

Generated samples saved as: 

.A : sn x member 

.E : sn x membern 

.force : sn x forcen 

.sigma : sn x membern 

 

 

 

 sstdata.mat 

 

All the system state and singularity of each state saved as: 

.sst ----  all the system state 

 .sigu ---- if a certain sst is singular or not 

 .nsst ---- all the modes that are non singular 

 .fsst ---- all the failure modes developed from nsst 

 

 stidata.mat 

 

All original matrix of each member 

 .koi ------ original k of each member 

 

output data 

 

 pmdata.mat 
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Results generated by Monte Carlo simulation saved as: 

 

 .K ---- stiffness of each sample, three dimensional matrix (m,n,sn) 

 .strs ---- stress in each member of each sample (sn,stresses) 

 .ff ---- fail or not state of structure in each sample (sn,state) 

 .pfail ---- probability of failure of each member(1,p of each member) 

 

 impidata.mat 

 

Importance factor of each member saved as: 

 

.imp ---- importance factor of each member 

 

 

 bgh.mat 

 

system failure model graph 

 

.A ---- graph matrix 

.A ---- graph matrix 

.cA ---- connection between states, under asst order 

.asst ---- all the state, nsst and fsst together 

.nfsst ---- number of failure states 

.allsstxy ---- x and y of each state under asst order 

6.2 Case study 1: analysis of a ten-bar truss structure without corrosion  

 

 

Figure 35 10-bar truss structure 

 

Item Mean COV Type of Distribution

A1 (square meter) 4.80E-04 1.00E-01 Lognormal

A2 (square meter) 4.80E-04 1.00E-01 Lognormal

A3 (square meter) 4.80E-04 1.00E-01 Lognormal

A4 (square meter) 4.80E-04 1.00E-01 Lognormal

A5 (square meter) 3.20E-04 1.00E-01 Lognormal

A6 (square meter) 3.20E-04 1.00E-01 Lognormal

A7 (square meter) 4.80E-04 1.00E-01 Lognormal

A8 (square meter) 4.80E-04 1.00E-01 Lognormal

A9 (square meter) 3.20E-04 1.00E-01 Lognormal

A10 (square meter) 3.20E-04 1.00E-01 Lognormal

E (Pa) 2.00E+09 1.00E-02 Lognormal

Ultimate Stress (Pa) 2.35E+08 1.00E-02 Lognormal

Load (N) 5.30E+04 1.00E-01 Lognormal

1

2 3

4

5

6

7 8

9

10
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Table 11  Parameters of the 10 bar truss structure 

 

 Parameters of the ten-bar component truss structure are listed in Table 11. All 

random variables are considered to follow the lognormal distribution. There are two 

kinds of cross section. The component reliability is calculated by TRAP, and the 

results are listed in Table 12 and Table 13. Assume the time period is one month (𝑇𝑘 = 

1 month) and the ten-bar truss structure is at system 1024 initially. The “NAN” terms 

in Table 12 and Table 13 means that the corresponding bar component has already 

failed at that point in time.  

Figure 36 Probabilities of each system state at the end of each time period 

shows the probabilities of each system state at each point in time. The diameter of 

each circle equals the probability that system is at that state. The solid circles 

represent the functional states and the hollow circles represent the failed system states. 

The Y-axis indicates system states, from state 1 to state 1024 in this case.  X-axis in 

Figure 36 represents the time. The time increment is considered to be 1 month (𝑇𝑘 

=1month).  Structural state 1024, state 960, state 832, state 512, state 448, state 416, 

Item Mean COV Type of Distribution

A1 (square meter) 4.80E-04 1.00E-01 Lognormal

A2 (square meter) 4.80E-04 1.00E-01 Lognormal

A3 (square meter) 4.80E-04 1.00E-01 Lognormal

A4 (square meter) 4.80E-04 1.00E-01 Lognormal

A5 (square meter) 3.20E-04 1.00E-01 Lognormal

A6 (square meter) 3.20E-04 1.00E-01 Lognormal

A7 (square meter) 4.80E-04 1.00E-01 Lognormal

A8 (square meter) 4.80E-04 1.00E-01 Lognormal

A9 (square meter) 3.20E-04 1.00E-01 Lognormal

A10 (square meter) 3.20E-04 1.00E-01 Lognormal

E (Pa) 2.00E+09 1.00E-02 Lognormal

Ultimate Stress (Pa) 2.35E+08 1.00E-02 Lognormal

Load (N) 5.30E+04 1.00E-01 Lognormal

1

2 3

4

5

6

7 8

9

10
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state 320, state 288, state 192 and state 160 are the most significant states. Table 14 

shows the most significant states and the associated probabilities at the end of each 5 

years.  
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Table 12 Component reliability in each system state (a) 
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Table 13 Component reliability in each system state (b) 
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Figure 36 Probabilities of each system state at the end of each time period 
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Table 14 Most critical system states and the associated probabilities 
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Table 15 shows all the possible functional structural states.  

Table 15 Functional structural system states for the ten-bar truss structure 

 

 

 

 

Figure 37  Time-variant reliability 

 Figure 37 shows the time-variant system reliability over 600 months (50 

years).  
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4.2 second after knowing the Markov matrix. The second one is that, this method can 

generate all the probabilities for all the system states at the end of each time period. 

Thirdly, the probability map reveals the time evolution of the performance of ten-bar 

truss structural system and provides relevant information for decision making.  
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6.3 Case study 2: analysis of a ten-bar truss structure under corrosion effects  

 

Figure 38 10-bar truss structure 

 

Table 16 Case study 2: 10-bar truss with corrosion 

 

 According to [8], the random variables describing corrosion are listed in the 

table below. They are lognormally distributed.   

Item Mean COV Type of Distribution
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Load (N) 5.10E+04 1.00E-01 Lognormal
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Table 17 Random variables describing corrosion 

 

The results are shown in Figure 39. 

mean c.o.v

Corrosion rate 4.85e-7   (mm/month) 0.4

Corrosion initiation 36   (month, 3years) 0.2
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Figure 39 Probability of each system states  

0
2
0

4
0

6
0

8
0

1
0
0

1
2
0

0

1
0
0
0

2
0
0
0

3
0
0
0

4
0
0
0

5
0
0
0

6
0
0
0

7
0
0
0

T
im

e
,t

(m
o
n
th

)

System states

D
eg

re
e 

0
 C

o
rr

o
si

o
n

D
eg

re
e 

1
 C

o
rr

o
si

o
n

D
eg

re
e 

2
 C

o
rr

o
si

o
n

D
eg

re
e 

3
 C

o
rr

o
si

o
n

D
eg

re
e 

4
 C

o
rr

o
si

o
n

D
eg

re
e 

5
 C

o
rr

o
si

o
n

F
u

n
ct

io
n
al

 s
ta

te
 

F
ai

le
d

 s
ta

te
 

S
ta

g
e 

1
 c

o
rr

o
si

o
n

 

S
ta

g
e 

2
 c

o
rr

o
si

o
n
 

S
ta

g
e 

3
 c

o
rr

o
si

o
n
 

S
ta

g
e 

4
 c

o
rr

o
si

o
n
 

S
ta

g
e 

5
 c

o
rr

o
si

o
n
 

S
ta

g
e 

6
 c

o
rr

o
si

o
n
 

System state 



89 

 

 Figure 39 shows the probabilities of each system state at the end of every 12 

month period. The diameter of each circle represents the corresponding probability. 

Corrosion condition of truss structure is divided into six categories (from stage 1 to 

stage 6).  

 

Figure 40 Time-variant structure reliability (corrosion effect considered)  

 

 The curve in Figure 40 shows that around the 36 month, a significant drop of 

reliability happens.  The reason for this is that the mean value of corrosion initiation 

time is 36 months (3 years). As soon as the corrosion started, the reliability will drop 
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Chapter 7 

Conclusions 

 Due to the uncertainties in real world engineering problems, it’s more 

reasonable to design the truss structure based on its reliability. For a truss structure, its 

material and geometrical properties may vary with time. The long term deterioration 

effects such as corrosion may take place during its lifetime. For this reason, the 

reliability of a truss structure is also time-variant. This study has established a new 

way to quantify the time-variant reliability of a truss which has a large number of 

components. This method is appropriate for numerical computation. 

Bar components are the most fundamental structural units of a truss structure. 

In order to evaluate the reliability of the overall truss structure, the reliabilities of each 

component have to be evaluated first. That is done by MCS (Monte Carlo simulation) 

together with FEM (finite element method). MCS provides reliable and 

comprehensive results of component reliability, though its speed is slow. On the other 

hand, the perturbation method takes less computational effort but yields a less 

accurate result. Thus, the MCS method is more suitable for computer simulation to 

quantify the component reliability for truss structures.  

Markov chain is a strong mathematical tool to describe the long term behavior 

of a truss. As shown previously, based on the information of component reliability, 

the 600 month (50 years) reliability analysis can be computed in about 5 seconds (for 

the 10-bar truss without considering corrosion). By this method, not only the time-

variant reliability has been generated, but also the probabilities of each system states 

have been generated as well.  
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 There are three major advantages of this method. The first one is its time 

efficiency. The simulation of a deteriorating truss under corrosion over 600 months 

finishes in only about 5 seconds after knowing the Markov matrix. The second one is 

that, this method can generate all the probabilities of all the system states at the end of 

each time period. Thirdly, the probability map reveals the evolution of the truss 

structure and provides information for decision making. As mentioned in Chapter 5, it 

is also possible to model the maintenance of trusses by this method.     
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