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ABSTRACT 

 

A PCI funded research effort was conducted to assess the fatigue resistance of welded 

flange to flange connections used in double tee precast concrete construction. The 

connection consists of steel connectors embedded in the edge of the precast flange welded 

to each other through the use of a steel jumper plate and fillet welds. Variations on this 

connection have been used for over 50 years with success. The strength limit states of this 

connection have been explored in detail but the stresses in the connection at service load 

levels are not well understood. The research effort was conducted specifically to quantify 

the fatigue resistance of these connections to the repeated loading typical of parking 

structure service demands. A two part series of articles are developed to summarize 

methods that can be used to accurately analyze and assess the fatigue life of these 

connections. This paper examines numerical methods that can be used to readily determine 

the state of stress in the weld under service loads using detailed 3D models of connector 

systems and shell element models of diaphragm systems. The ability to accurately 

determine the stresses in the weld can be combined with a vehicular load spectrum and a 

suitable fatigue life curve for the fillet weld detail to obtain a realistic assessment of the 

fatigue life of connections.  
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BACKGROUND AND INTRODUCTION 

For over 50 years, prestressed concrete double tee members have been the component of 

choice for parking structures throughout the United States.  The double tee members are 

laid side by side and typically span approximately 60 ft.  The 60 ft span is desirable because 

it provides a column free span over two drive aisle lanes flanked on both sides by parking 

stalls1. Double tee (DT) floor systems can be topped in the field with cast-in-place concrete 

or manufactured with the appropriate strength and surface conditions to eliminate the need 

for field placed topping.  These two types of systems are referred to as topped and untopped 

(or pre-topped) double tee diaphragms. Untopped systems are predominantly attached 

using welded mechanical connections. These connections provide integrity for the floor by 

providing shear and axial force transfer and allow for a means of achieving vertical 

alignment between adjacent tees. Some systems are developed with welded connections 

intended for shear only, or for tension in chord connections. These systems may include 

cast-in-place concrete strips (wet connections) or robust mechanical dry connections at the 

double tee ends for chords where higher strength or deformation demand are critical 

(Figure 1). 

To provide lateral continuity between pretopped double tees, away from ends, weld plate 

connections have typically been used. For pretopped double tees, earlier connections were 

plant-fabricated plates with headed studs, deformed bar anchors, or welded rebar for 

anchorage into the flange. The double tees were joined using a round bar or rectangular 

plate, also called a jumper plate, erection plate or slug, welded to the embedded flat plates 

(Figure 2a and b). Starting around 1976, proprietary connection hardware began to be 
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marketed and sold in the US (Figure 2c and d). The original proprietary connections were 

made from galvanized mild steel. Increasingly, in northern climates subject to road salts, 

the connections have been fabricated from stainless steel. Three common manufactured 

connectors used in the US today are illustrated in Figure 3. 

 

Figure 1: Precast double tee connections 

Manufactured flange connections all have similarities in that they all consist of a faceplate 

with integral legs that are embedded in the concrete and are connected by a jumper plate 

with a fillet weld on each side. The fillet weld is applied on the top surface of the jumper 

plate only and this configuration can result in bending stresses on the weld throat with the 

root of the weld in tension. The most common type of jumper plate is 0.375 in. thick, 2.5 

to 3.5 in. long, and 0.5 to 2 in. wide. Round slugs of similar dimensions are sometimes 

used instead of plates (Figure 2b). Jumper plate widths and slug diameters are adjusted to 

accommodate variable joint gaps between double tees, but are typically about 1 in. wide. 

Connections are usually spaced 5ft. to 8 ft. on center along the joint with closer spacing 
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sometimes used at the midspan of the double tees.  

 
Figure 2: Proprietary and non-proprietary flange connections 

 
Figure 3: Proprietary connectors currently available in the marketplace 

Significant amount of research has been conducted to assess the performance of DT flange 

connections under strength levels. Early testing was performed by Venuti2, Spencer and 

Neille3, and Aswad4 on non-proprietary connections and continued on manufactured 

connections by Pincheira et al.5, Oliva6, WJE7, Shaikh and Fiele8, Naito9, and Naito and 

Hendricks10. Testing consisted of in-plane shear and tension and out-of-plane shear forces 

across the joint. A large number of the studies are summarized in Ren and Naito11. The 

focus of the majority of these studies was to determine the capacity of the connections for 

design purposes. Research was also conducted to assess the stiffness and ductility to in-
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plane shear and axial loads to assess the response of these connections under seismic 

demands12,13. Due to the complexity of the load path through manufactured connections 

experimental testing is conventionally used over closed form calculations to determine 

connector strength limit states14. Consequently, detailed mechanics of the individual 

connectors is not well understood. At service level loading, research has been limited to 

studies by Klein and Lindenberg15 which explored the deformation levels generated in DT 

floor diaphragms due to thermal variations. While significant efforts have been conducted 

to ensure the performance of connections under strength and thermal limit states, 

assessment of fatigue limit states have not been examined.  

Cyclic connector loading arises from differential flange deflections caused by vehicles 

crossing the flange joints as shown in Figure 4. To properly assess the fatigue resistance of 

the connection requires a knowledge of: (1) the relationship between the applied vehicle 

load and the resulting stresses in the connection welds, (2) the expected vehicle demands 

and distributions in the structure over the expected service life, and (3) an S-N curve that 

is applicable for the weld being considered. With a proper understanding of these three 

pieces, any combination of connections and vehicle loads can be examined to assess the 

likelihood of fatigue induced fracture of connection welds. This paper focuses on the 

development and validation of a methodology for determination of weld stresses in 

connections due to applied vehicle loads. 

Connection Evaluation Methodology 

Simple approaches have been used in the past to approximate the strength of connections 

for design. The first edition of the PCI Connections Manual16 for example assumes that 
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vehicle loads impart only shear on the connection weld (eccentricity between welds are 

ignored). Other approaches attempt to incorporate both the shear and resulting flexure that 

is introduced across the jumper plates. This can range from the assumption that the jumper 

plate is rigid and all deformation takes place in the faceplate (Figure 4d) to a case where 

the faceplate of the connection is assumed rigid and all deformation takes place in the 

jumper plate (Figure 4e). Due to the relative flexibility of the faceplate, weld and jumper 

plate the actual response is much more complicated. As illustrated in the finite element 

analysis shown in Figure 4f, the stresses that arise in conventional connector systems due 

to vehicle loading vary in three dimensions and are beyond the scope of traditional hand 

analysis.  

 
Figure 4: Differential flange deflections due to vehicular loading 

Three dimensional finite element analysis of the entire diaphragm system provides the most 

accurate modeling approach for assessment of connector response. These models can be 

very complex and computationally expensive. In addition modeling all discrete 

connections of an entire diaprhagm does not lend itself to assessment of the wide variations 
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in diaphragm configuraions that are present in current construction. A simplified numerical 

method is proposed that can be used to accurately determine the stresses in flange to flange 

connections (Figure 5). As a first step the stiffness of the connection is determined from a 

detailed three dimensional (3D) finite element model of the local system. In the second 

step the connector stiffness is used in a shell model of a diaphgragm system with the 

connectors replaced by linear uncoupled springs to determine the connection deformation 

under loading. The final step consists of application of the differential displacements and 

rotations to the initial 3D FE model to determine the actual stresses in the weld under 

loading. These stresses can then be used with an appropriate S-N curve to determine the 

likelihood of fatigue induced fracture. The modeling approach proposed is validated by 

experimental data acquired from full scale connector component tests and welded 

connection double tee tests.  

 
Figure 5: Connection assessment methodology 

DEVELOPMENT AND VALIDATION OF 3D FINITE ELEMENT MODEL 

Development of an accurate 3D FE model is critical to the approach proposed. Many 

commercial codes are available for development of such a model, however due to the 

complexity of the model, validation is necessary. The 3D models utilized were developed 
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using ABAQUS version 6.1317. To examine the accuracy of the 3D modeling approach a 

series of component tests were conducted to measure the response of full scale connections.  

Component Tests on Full Scale Connections 

Single sided connector tests were performed with the goal of calibrating detailed 3D finite 

element models of the connectors. The connectors were loaded at an eccentricity of 1.0 in. 

from the face of the connector and applied load, vertical displacement, loading block 

rotation, and strains in at least three locations were recorded throughout the test. The 

connectors were loaded in force increments of 300 lbs. up to 1500 lbs. and then 

monotonically loaded to failure. Three cycles were applied at each force level with 

application at a quasi-static rate.  

The tests evaluated the response of connectors subjected to vertical shear. Half of the 

connection was evaluated, in that one embedded connector was tested with a slug and a 

loading fixture. The test setup is shown in Figure 6. A slug was attached to a single 

embedded connector. The slug was oversized to allow attachment to a loading head. The 

test fixture was manufactured such that the center of vertical shear was at 1.0 in. from the 

face of the connector. A series of strain gages were included on the face of the connector, 

vertical displacement was measured using a transducer attached to the loading head. 

Rotation of the loading head was also monitored using a tilt gage mounted to the loading 

head as illustrated in Figure 6.  
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Figure 6: Overall single connector test setup details 

The twelve tests were conducted on the three connector manufacturers identified as 

Manufacturer 1 (M1), Manufacturer 2 (M2) and Manufacturer 3 (M3) as illustrated in 

Figure 3. A carbon steel and stainless steel variation of each connector was evaluated. Each 

connector type was tested once in an upward direction (corresponding to tension at the root 

of the weld) and once in a downward direction (corresponding to closing of the gap 

between the slug and connector faceplate). These directions represent the general response 

that would occur on the left and right side of the jumper plate due to vertical loading (see 

Figure 4e). The test results are presented in Table 1. Concrete compression tests were 
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conducted prior to the start of the testing program and at the end of the testing program in 

accordance with ASTM C3918. The compressive strength ranged from 5700±380 psi to 

6230±50 psi for the carbon steel connection tests and 5510±420 psi to 5980±520 psi for 

the stainless steel connection tests. The concrete compressive strength for each connector 

test was linearly interpolated based on the age of the panel relative to the cylinder test dates 

and is included in Table 1. The strength of the connector in each direction is noted along 

with the associated deformation. Due to a varying initial stiffness the applied load at a 

deformation of 0.010 in. is reported over that of an initial stiffness.  

Table 1: Summary results 

Connector Direction 

Estimated 

compressive 

strength [psi] 

Applied 

Load at 

deformation 

of 0.010 in. 

[lbs] 

Max 

Strength 

[lbs] 

Deformation 

at Max 

Strength 

[in.] 

M1 Carbon 
Upward 5970 199 4418 0.119 

Downward 5980 398 7513 0.092 

M2 Carbon 
Upward 6550 1040 6270 1.225 

Downward 5900 195 6573 0.123 

M3 Carbon 
Upward 5900 294 7191 0.285 

Downward 5910 365 6828 0.118 

M1 Stainless 
Upward 5900 287 5084 0.121 

Downward 5940 143 6681 0.148 

M2 Stainless 
Upward 5800 259 8186 1.166 

Downward 5960 110 9174 0.564 

M3 Stainless 
Upward 5950 773 8241 0.274 

Downward 5950 597 7674 0.138 

The vertical load - deformation of the connections in the upward and downward directions 

for the carbon and stainless steel connection are summarized in Figure 7. For clarity upward 

direction is shown as positive and downward direction as negative. A detailed summary of 

each test is provided in Naito and Hendricks19. 
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Figure 7: Vertical response of connectors – elastic range 

3D Numerical Model Development 

The connectors were tested individually as noted previously and are initially modeled as 

single sided to verify the accuracy of the FE model. Based on observations of the elastic 

performance in the experiments the concrete remains undamaged under the loads of 

interest. Two model types were created to compare to the test data. A complete detail 

incorporating concrete embedment and contact was used for manufacturer 1 (Figure 8a) 

and a simplified approach was used to represent the embedment for manufacturer 2 (Figure 

8b). The simplified approach facilitates rapid assessment and requires less modeling time. 

The simple assembly consists of a 3D model of the connector (Figure 8b). Any locations 

where concrete embedment would be present are replaced with elastic supports. A rigid 

block is included to model the contact between the back of the connector face and the 

concrete. Nodal ties were used to join the weld to the connector face and to the jumper 

plate. “Hard” contact with no friction was used to model the contact between the connector 

and concrete and the slug and the connector face. In the second model, the 3D connector 

mesh is embedded in a 3D concrete mesh as shown in Figure 8a. The connectivity between 
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the concrete and steel elements was accomplished through nodal ties up to the point where 

the connector legs return to the face of the concrete. The contact between the slug and 

connector and connector faceplate and concrete was modeled using frictionless “hard” 

contact. All models were meshed with quadratic brick elements (C3D20) for the connector 

and slug geometry and quadratic tetrahedral elements (C3D10) for the concrete. All 

material properties used in the connector model were linear elastic with a modulus of 

elasticity of 29,000 ksi and Poisson’s ration of 0.3 used for the steel elements and an elastic 

modulus of 4,400 ksi and Poisson’s ratio of 0.15 used for the concrete elements. 

 
Figure 8: 3D FE model details (a) M1 connector, (b) M2 connector 

3D Numerical Model Validation 

The connection assemblies were modeled with load in upward and load in downward 

direction to match that of the experimental program. The measured vertical force versus 

measured vertical deflection are compared to the model results up to an applied vertical 

force of 525 lbs. The model shows good agreement for both Manufacturer 1 and 2 

connectors as illustrated in Figure 9. The measured strains for strain gages SG1, SG2 and 

SG3 (see Figure 6) versus measured vertical deflection are compared to the modeled values 

for vertical deflections for the same range of load. The strain measurements are compared 

to the models for manufacturer 1 in Figure 10 and manufacturer 2 in Figure 11. In general, 

data from strain gages SG1, SG2, and SG3 compare well between the model and the test 
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data. The accuracy of the model in computing both the global behavior and local strains 

validates the accuracy of both the simplified and complex modeling approaches. 

 
Figure 9: Comparison of numerical model with measured results for single sided loading 

 
Figure 10: Comparison of numerical model with strain-displacement experimental results 

Manufacturer 1 

 
Figure 11: Comparison of numerical model with strain-displacement experimental results 

Manufacturer 2  
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DETERMINATION OF CONNECTION STIFFNESS 

The FE models were extended from the single sided connection to the full flange to flange 

connection. The model was created by combining the upward and downward load models 

from Manufacturer 1 into a single assembly (Figure 12). The connector legs were 

embedded in a block with linear elastic concrete material properties. The connector was 

attached to the concrete by nodal ties along the embedded legs. Contact between the 

connector faceplate and concrete was modeled as “hard” frictionless contact. The element 

types used in the combined model were identical to those used in the M1 single sided model 

outlined above. To facilitate application of the nodal displacement and rotations obtained 

from the shell model of the diaphragm, the top and bottom surface nodes of the modeled 

concrete blocks were constrained to rigid body motion relative to a reference point at mid-

height of the block immediately adjacent to the connector. The displacements and rotations 

used to determine the connector stiffness were applied directly to the concrete block 

reference point.  

The stiffness components of the connector system were determined by subjecting the 

connector assemblies to the following load cases: Vertical shear deflection (K1), axial 

deflection (K2), and rotation about the weld longitudinal axis (K3). The physical 

interpretation of the stiffness components of the connector system is shown in Figure 13.  

The force or moment in the connection was plotted as a function of the deflection or 

rotation and were found to be linear for small deflections. The stiffness plots next to the 

corresponding deflected shape of the connector system are shown in Figure 14.  
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Figure 12: 3D FE model of connection in deformed position 

 
Figure 13: Uncoupled connection model 

 
Figure 14: Component stiffness and deformed shapes of the M1 connector system, a) 

shear, b) tension, c) flexure 

DEVELOPMENT AND VALIDATION OF 2D SHELL MODEL OF DIAPHRAGM 

The stiffness for each connector type obtained from the 3D FE models was used to 

represent the behavior of the connections in a shell model of the floor diaphragm. The 

stiffness was input as a linear uncoupled link at the location of each connection. SAP200020 

was used as the platform to create the shell model of the system. The model was created 
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using thin shell elements for both the double tee deck and legs. A 4 in. thick flange is used, 

typical of a pretopped double tee. The DT stem width was assumed as constant to simplify 

the model, with the width chosen to match the gross moment of inertia of the section. An 

illustration of the model of a three DT system using SAP2000 is illustrated in Figure 15.  

 
Figure 15: Overall View of SAP2000 shell/spring model 

Coupled Shell Model 3D FE Model Validation 

The final step of the proposed modeling approach imparts the vehicular loads to the shell 

model, measures the connector link deformations and applies these displacements to the 

3D FE model of the connection. To verify the accuracy of this approach the model is 

compared to experimental test results conducted on full scale DTs by Lucier et al.21. The 

experiment consisted of point load application to three double tee beams positioned side 

by side. The connectors from Manufacturer 1 and Manufacturer 2 were used in the test 

setup. The test setup was comprised of three 60 ft 12DT30 double tees with the connectors 

along one joint from Manufacturer 1 and the connectors along the other joint from 

Manufacturer 2. The double tee system was subjected to point loads placed at different 

locations to determine the system response. During each load case, global deflections were 

monitored in nine locations and the strain response of five locations on several connectors 
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was measured. Point loads up to 3,000 lbs were applied to the double tees on each side of 

and directly adjacent to each connector. The connectors on each side of the middle double 

tee were designated B and C, with M1 connectors on line B and M2 connectors on line C. 

Load cases were designated Bi, Bo, Ci, and Co where Bi represents loading on the inside 

of connector line B and Bo represents loading on the outside of connector line B.  

Connectors were also labeled by their location along the length along the double tee in feet. 

As an example, load case Bo-27.5 indicates that the load was applied on the outside of 

connector joint B at the connector 27.5 feet from the end of the double tee. The double tee 

layout and loading locations examined in this paper are illustrated in Figure 16. A 

photograph of the test setup is shown in Figure 17. Details of the test setup and results are 

presented in detail in Lucier et al.21 Data gleaned from the tests was used to develop and 

refine detailed finite element models and the iterative approach presented here.  

 
Figure 16: Full scale DT setup 
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Figure 17: Testing setup on full-scale DTs for load application Bi-7.5 

A shell model of the full-scale test was developed as illustrated in Figure 15. An isometric 

view of the un-deformed (a) and deformed model (c – scale factor 500), and connection 

spring detail (b) is shown. A modulus of elasticity of 4,400 ksi and Poisson’s ratio of 0.15 

were used for the concrete. The boundary conditions of the diaphragm included a 

longitudinal spring at bearing support with an axial stiffness of 107 kip/in. to match the 

restraints observed in elastic tests of the double tee. 

Determine Shear Force and Relative Deflections in Connections  

The shell element model of the test setup is compared to measured deformations for six 

load cases. A 1.5 kip point load was applied at six load patches to determine the estimated 

deformation across the joint adjacent to the load. A comparison of the model and measured 

deformations are summarized in Table 2. As noted, three load cycles were applied to the 

DT panels. Significant variation was observed in the test between each load application, 

however the model provides a comparable estimate of deformation. 
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Table 2: Connector forces and differential deflections from SAP2000 model 

Load 

Case 

Estimated 

connector force 

at load point 

[lbs.] 

Estimated 

differential 

deflection [in.] 

Measured differential 

deflection for three load cases 

and (average) [in.] 

Bo-17.5 610 0.003 0.004, 0.0040, 0.004 (0.004) 

Bi-17.5 590 0.004 0.006, 0.006, 0.007 (0.006) 

Bo-27.5 510 0.003 0.001, 0.003, 0.002 (0.002) 

Bi-27.5 520 0.004 0.006, 0.003, 0.005 (0.005) 

Bo-30.0 NA 0.009 0.007, 0.008, 0.008 (0.008) 

Bi-30.0 NA 0.010 0.014, 0.015, 0.015 (0.014) 

To further validate the model, the relative deformations from the diaphragm model were 

applied to the detailed 3D FE model of the connector system. The measured and modeled 

strains were compared for the Bo-27.5 load case. Five strain gages (SG1-SG5) were 

installed at the connections as illustrated in Figure 18. The comparison was made by 

bounding the measured strains from gages SG2, SG4 and SG5 between the nodal strains 

from the analysis taken in the region where the strain gages were applied (see Figure 19). 

As illustrated in the FEA contours the strain varies significantly over the length of the strain 

gage in these regions. Consequently the range of FE values in the region are compared to 

the measured strain gage data. The measured strains were mostly bounded by the finite 

element model which indicates that the modeling approach is an adequate representation 

of the mechanics of the real system.  
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Figure 18: Photograph of connector B27.5 and schematic of strain gauge locations 

  

  
Figure 19: Comparison of Measured and Modeled Strains for Load Case T-Bo-27.5 

DETERMINATION OF STRESS DISTRIBUTION IN CONNECTION 

The connection deformations determined from the shell model can be applied to the 3D FE 

model to assess the state of stress in the weld as a result of the applied loading on the 

diaphragm. The Von Mises stress at various components of the connection are illustrated 

in Figure 20 .The results indicate that under a point load application to the floor, the stress 
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distribution in the connection varies considerably along the length of the weld and along 

the weld throat. Note the variation in Von Mises stress on the vertical face of the weld. The 

root of the weld on the downward deflected side (left) has a tensile stress, while the root of 

the weld on the side with the slug in contact with the connector is in compression. The 

approach used in this study facilitates evaluation of the peak stresses in the connection 

which can be used to assess fatigue life. 

 
Figure 20: Von Mises stress distribution through connection 

CASE STUDIES 

To illustrate the application of the approach outlined in the paper two case studies are 

conducted. The first examines the effect of weld penetration on the stresses in the weld and 

the second examines the sensitivity of the connection to variations in double tee size. 

Influence of Weld Penetration on Weld Stress 

Proprietary connections are typically designed with a draft on the faceplate, with the top of 

the faceplate leaning back into the flange. This design detail creates a V-shape between 

adjacent connectors when the tees are installed.  The shape facilitates placement of jumper 

plates by minimizing the likelihood for the slug to drop-through to the floor below when 

installed for welding. The draft of the faceplate creates a gap between the top of the jumper 
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plate and the faceplate. During welding this gap may or may not be filled with molten weld 

material. Two sections removed from the full scale tests indicates that weld penetration is 

likely (see Figure 21). 

  
 

Figure 21: Weld penetration between jumper plate and faceplate on M1 connector (left) 

and M2 connector (right) 

To examine the sensitivity to weld penetration three 3D FE models are evaluated. The 

applied displacements and rotations were identical for all models, and the effects of weld 

penetration on the stiffness components of the connector were not examined. The welds in 

the previously modeled connections have been idealized as a triangular cross section. 

Actual field welding on connectors could be expected to have some penetration of weld 

metal into the gap between the jumper plate and connector face due to the draft of the 

connector faceplate. The effects of weld penetration would be expected to decrease the 

stresses at the root of the weld for the same applied load. To illustrate this effect the 

connection is modeled with three levels of penetration: No weld penetration (idealized 

triangular weld cross section), 0.0783 in. of penetration, and 0.1568 in. of penetration as 
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illustrated in Figure 22.  

Penetration of weld metal into the slug/faceplate gap increases the effective throat of the 

fillet weld and consequently reduces the stress levels in the weld. The maximum principal 

stress distribution along the weld at the centerline of the weld face are shown in Figure 

23a. The analysis indicates that the principal stress level at the mid-surface of the weld 

varies linearly as a function of the inverse of the effective throat length squared. Where the 

effective throat is measured as the distance from the bottom of the weld to the centerline 

of the face of the weld as shown in Figure 23b. A comparison of the strains recorded for 

SG3 (Figure 18) for load case Bo-27.5 show that increasing the level of weld penetration 

causes the modeled strain to more closely match that measured during the test (See Figure 

24) . For load case Bo-27.5, SG3 is on the side of the connection where the weld root is in 

tension (the gap between the connector face and slug is opening). SG1 is on the closing 

side of the connection and measured essentially no strain. This also correlates well with the 

model, which predicts less than 5 microstrain at the weld face regardless of the level of 

weld penetration. The correlation between lower weld stress levels and weld penetration is 

an important aspect in assessing the fatigue life of connections.   

 
Figure 22: Weld profiles with mesh with varying levels of weld penetration. The effective 

throat length is shown in red.  



24 

 
Figure 23: Variation of maximum principal stress at mid-face of weld with varying levels 

of weld penetration 

 
Figure 24: SG3 with comparison of modeled strains for varying levels of weld 

penetration 

Influence of Double Tee Size on Connections 

A case study was conducted to examine the effect of DT size on the relative connection 

forces and stresses. Three double tees were examined: 10DT34, 12DT30, and 15DT30. The 

connection spacing for each double tee matched that of the full scale tests (Lucier et al.21). 

The relative DT sizes are shown in Figure 25 (left). The model consisted of three side by 

side double tees with M1 connectors. The slug size was 3 in. x 1 in. x 3/8 in. and the mid-
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height of the slug was at the mid-height of the flange. The fillet weld size on both sides of 

the connection was ¼ in. and was 2.5 in. long as recommended by the connector 

manufacturer. This connector configurations corresponds to the connector component 

stiffness analysis shown in Figure 14.  

The applied load was developed from an EPA study on vehicle trends22. The average 2015 

production vehicle (average of all trucks and cars) was chosen. The average weight of the 

vehicle is 4035 lbs including a 300 lbs occupant load. The average footprint (wheel base 

by track width) was 49.4 ft2. Assuming a wheel base to track width ratio of approximately 

1.6 and averaging to the nearest inch resulted in four point loads placed at a track width of 

66 in. and wheel base of 105 in. Assuming an equal 50/50 ratio of wheel loads to the front 

and rear axle results in a 1009 lbs point load at each location. The vehicle was placed with 

the centerline of the wheels 3.0 in. from the joint with the vehicle straddling midspan of 

the double tee. This loading configuration puts the front wheels just outside the two 

connectors closest to the double tee mid-span and represents a near worst case loading 

scenario.  As illustrated the connection force magnitude is most sensitive to local bending 

of the free edge of the flange and varies as a function of the inverse cube of the free flange 

length (the distance between the double tee stem and the free edge of the flange, see Figure 

25 (right) and Figure 26. This conclusion is supported by the observation that as the 

moment of inertia increases from the 12DT30 to the 15DT30 the connection forces also 

increase. Furthermore, as the distance from the stem to the edge of the tee decreases from 

the 15DT30 to the 12DT30 and 10DT34 the local flange stiffness increases as demonstrated 

by the increase in both principal stress and connection force (see Figure 27 and Table 3). 
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This increase in local flange stiffness results in increased load being carried by global 

flexure of the loaded span with less force being transferred across all connections. Further 

parametric studies can be readily conducted with this method. 

 
Figure 25: Connection force distribution in shell model for different DT sizes 

 
Figure 26: Effect of free flange length on connection stress 

Table 3: Estimated response for case study 

DT Size 

Axial 

Deform

ation 

Shear 

Deform

ation 

Rotation 

on Load 

Side 

Rotation 

on 

Other 

Side 

Shear 

Force in 

Connect

ion Min Principal Stress 

 [in] [in] [rad] [rad] [lbf] [ksi] 

10DT34 0.00061 0.00260 0.00028 

-

0.00065 389 -13.9834 

12DT30 0.00040 0.00280 0.00040 

-

0.00085 422 -16.6855 

15DT30 0.00004 0.00300 0.00420 

-

0.00810 442 -17.8617 
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Figure 27: Midspan connection minimum principal stress variation along face of weld for 

different DT sizes 

CONCLUSIONS 

To properly assess the fatigue resistance of the connection requires a knowledge of: (1) the 

relationship between the applied vehicle load and the resulting stresses in the connection 

welds, (2) the expected vehicle demands and distributions in the structure over the expected 

service life, and (3) an S-N curve that is applicable for the weld being considered. A 

numerical and experimental study was conducted to examine part (1). An iterative 

numerical method is proposed that consists of detailed 3D FEA of the connection and 

surrounding embedment with a parallel shell element model of the diaphragm. Based on 

the work the following conclusions can be made: 

 The stress in the weld cannot be determined by simplified engineering assumptions and 

requires finite element analysis methods to accurately determine the magnitude and 

distribution. 

 The modeling methods are shown to accurately capture the complex mechanics of the 

connector system by comparison to test data.   

 The connector stresses are dependent on the specific connector configuration, including 

the connector type and slug and weld dimensions.   
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 The force level and corresponding stresses in connections are influenced by local 

bending of the double tee flange and varies as a function of the inverse cube of the free 

flange length and so modeling must account for the diaphragm system double tee 

properties, especially the free flange length. 

 The stresses in welds can vary significantly depending on the amount of weld metal 

penetration into the gap between the slug and connector. Weld penetration increases 

the effective throat length of the weld and the stress level varies with the square of the 

effective throat length. Failure to account for weld penetration will result in a 

significant over estimation of weld stresses.  

 The methods outlined here, when combined with an accurate vehicular loading 

spectrum and appropriate fatigue life curve for fillet welds subject to tension at the root, 

will allow for accurate fatigue life analysis of precast double tee systems.  
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