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ABSTRACT 

Evaluation of Low-Temperature Fluoride Routes to Synthesize Actinide Nitrides 
and Oxide Solid Solutions 

by 

Gunanda Waduge Chinthaka Silva 

Dr. Kenneth R. Czerwinski, Examination Committee Chair 
Professor of Chemistry 

Head of the Department of Radiochemistry 
University of Nevada, Las Vegas 

Actinide mononitrides have been considered as a possible nuclear fuel for the 

Generation-IV nuclear reactor systems. In the process of evaluating these actinide 

mononitrides as nuclear fuel, it is important to study different chemical and physical 

characteristics of these compounds. Synthesis of the materials is thus important. 

Carbothermic reduction is one of the techniques that have been used to synthesize 

actinide mononitrides. In this method, a mixture of actinide oxide such as UO2 and excess 

carbon is heat treated at temperatures greater than 1700 °C under a nitrogen atmosphere. 

The technique is however not promising in synthesizing the actinide mononitrides due to 

a number of disadvantages the technique presents. Lack of phase purity due to secondary 

chemical phases with carbon and oxygen, need of high temperatures such as 2200 °C, 

and the low density of the final product compared to theoretical density are some of the 

drawbacks that the researches have been encountered. Most of all this method is tiresome 

and difficult to handle in ordinary laboratories where the experimental setups and 
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conditions are inadequate to synthesize actinide mononitrides up to an acceptable quality 

for chemical characterizations. Therefore, it is important to explore different routes that 

can be used to synthesize such actinide nitrides and characterize them properly. 

A recent development of a low-temperature fluoride route in synthesizing UN2 at 

800 °C and UN at 1100 °C, proposed a further investigation of this particular chemical 

route in synthesizing other nitrides of the actinide series. Thus, the possibility of making 

nitrides of thorium, neptunium, and mixed uranium-thorium by the above mentioned 

method was suggested. Mechanisms and kinetics involved in separate reactions were 

studied. Chemical characterizations of the as-synthesized materials were also completed 

using different techniques reported in Chapter 2. 

Optimization of this low-temperature process to minimize the formation of secondary 

phases such as UO2 was also examined in a typical experimental setup by exploring the 

uranium system. With the thorium, however, only ThNF could be synthesized up to a 

temperature of 1100 °C. Addition of lithium amide (LiNlrk) into the reactants in 

synthesizing ThNx produced TI12N3 with some Th02 impurities. This finding is 

controversial and will discuss the relevant issues in the corresponding chapter. 

Characterization of Th2N3/Th02 samples revealed an interchangeable formation of TI1O2 

in TI12N3 and vise versa suggesting a possible reason for the high susceptibility of ThNx 

toward oxygen as general. 

Evaluation of the neptunium system revealed 6 new compounds with isomorphous 

crystal structures to that of uranium with similar chemical compositions. XRD powder 

refinements could be used in solving these crystal structures. NpN was synthesized at 

900 °C and further experiments are required to check the lower temperatures for making 
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the mononitride. However, further experiments will be necessary to optimize the heating 

time. Microscopic characterization of NpNx compounds was also conducted with SEM 

and TEM. Nanostructural studies conducted on these samples displayed high 

crystallographic order in their structures. 

Uranium and thorium mixed system was also examined with an eye towards 

synthesizing uranium-thorium mixed nitrides. Less than 1 wt% thorium solubility was 

identified in the UN2 with XRD and microscopic studies. Further application of the 

technique on oxides was explored and a novel route in synthesizing (U, Th)02 solid 

solutions at temperatures of 1100 °C or less, depending on the chemical composition of 

the oxide solid solution, was established. Moreover, this novel route itself proposes a new 

and easy to use low-temperature path to fabricate actinide oxide solid solutions from 

initial, separate oxide starting phases. 
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CHAPTER 1 

INTRODUCTION 

1.1 Actinide Nitrides as a Nuclear Fuel 

The need of alternate sources for electricity is growing as the use of fossil fuel such as 

coal and oil are being consumed in a rapid speed and most of all the risk of global 

warming caused by greenhouse gasses are of major concerns [1]. The alternate power 

sources therefore have to be clean like in the case of wind, hydro, and solar energy. 

However, all these sources have their own limitations with respect to the amount of 

energy they can produce. Nuclear power on the other hand can meet the energy needs at 

global scale. Moreover, it has been used for decades and research that has been conducted 

to improve the quality of using nuclear power significantly. At present, many new 

research projects are ongoing to find novel and sustainable energy while minimizing the 

waste produced by the nuclear power plants. Determination of the usage of nitride fuels is 

one such field of experiments scientists all over the world are developing. The current 

study also focused on the nitride fuels fabrication and characterization to support such 

efforts by providing valuable information on the chemistry of actinide nitrides. 

At present, a wide variety of nuclear fuel concepts are under consideration for the 

advanced fuel cycle. The fundamental compositions include metals, oxides and nitrides. 

These can be in form of solid solutions or composite material. The materials comprise 

CERCER (ceramic-ceramic), CERMET (ceramic-metal) or METMET (metal-metal). On 
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the other hand, nitride fuels are the proposed fuel matrix for a number of advanced 

reactor designs and are an attractive option for the transmutation of Pu and other minor 

actinides [2] due to their advantageous neutronic and thermal properties together with 

many other unique chemical characteristics such as high solid phase solubilities for the 

early actinides. 

Table 1.1 Comparison on actinide oxide, carbide, and nitride properties. 
Property 

Theoretical density (g/cm ) 

Metal density (g/cm3) 

Metal fraction (%) 

Melting point (°C) 

(Uo.8PUo.2)Oi.98 

11.06 

9.8 

88.10 

2700 

(U0.8Puo.2)C 

13.62 

12.96 

95.20 

2475 

(U0.8Puo.2)N 

14.30 

13.50 

94.45 

2800 

Thermal conductivity (W/cm. °C) 

700 °C 

1200 °C 

1700 °C 

0.035 

0.027 

0.019 

0.188 

0.206 

0.212 

0.158 

0.180 

0.201 

Uranium mononitride (UN) has many favorable nuclear fuel properties such as high 

fissile atom density, high melting point comparable to that of the oxide fuel, and high 

thermal conductivity similar to that of metal fuel [3]. A comparison of properties for the 

oxide, carbide, and nitride of a mixed uranium and plutonium composition are provided 

in Table 1.1 [4]. Of the ceramic fuel matrices, the nitride fuels have the highest 

theoretical density, metal density, and melting point. The metal fraction of the nitride is 
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only slightly lower than that of the carbide. The thermal conductivity is slightly lower 

than the carbide but significantly higher than the oxide. 

Figure 1.1 Fuel cross sections of UC (a) and UN (b) type K fuel after 0.5 at% burnup 
irradiated at 75 kW/m and 76 kW, respectively. 

A comparative study on radiation damage shows that swelling of UC fuels at their 

burnup is faster than UN (UC ~ 0.5 atom%; UN ~ 2 to 3 at%) [5]. Figure 1.1 shows fuel 

cross sections of UC and UN reported in this study by H. Blank and his coworkers. 

Radiation damage studies on UN single crystals showed that U diffuses in it to counteract 

the damage and recover. In this process, U atom mobility is lower than any other 

advanced ceramic fuel and therefore UN is known as the "cold" fuel. These data indicate 

the suitability of nitrides as fuels over a number of other fuels being used or considered 

for advanced fuels. 
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1.2 Crystallography of Actinide Nitrides 

1.2.1 Uranium Nitride System 

There is a number of uranium nitrides of the general composition UxNy have been 

identified in the literature. Among them, UN2, U2N3, and UN are common (Figure 1.2) 

[6]. Table 1.2 summarizes the crystal structure information of these three uranium 

nitrides. The UN2 has a CaF2-type face-centered cubic lattice with a range of 

compositions described as UNX where 2.0 > x > 1.75 [7]. A theoretical value of 0.521 nm 

as the cubic lattice parameter of UN2 with a Fmhm space group was given [8] where as 

an experimental lattice parameter of 0.530(1) could be found for a composition of UN1.9 

[9]. Rundle et al. [10], also gives a value of 0.531(1) nm for the composition of UN2 

based on their experiments conducted on a number of different compounds. 

Table 1.2 Crystallography of uranium nitrides. 
Compound 

UN2 

U2N3 

UN 

Crystal system 

Face-centered cubic 

Body-centered cubic 

Face-centered cubic 

Space group 

Fmhm 

Ia3 

Fm3m 

Lattice parameter (nm) 

0.531(1) 

1.0678(5) 

0.48880(1) 

U2N3 owns a body-centered cubic Mn203-type structure with a lab space group and a 

lattice parameter of 1.0678(5) nm [10]. A range of stoichiometries for the U2N3 

compound was also reported. This range varies as 1.5 < x < 1.75 for a general 

composition of UNX [11, 12]. In fact, UN2 and U2N3 forms solid solutions [13] at 

chemical compositions UNX where 1.5 < x < 2.0 and are therefore difficult to differentiate 
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with X-ray diffraction studies when U2N3 chemical phase quantities are low. The 

mononitride, UN, is a NaCl-type face-centered cubic lattice of Fmbm space group with a 

0.48880(1) nm lattice parameter when pure [14]. 

(c) 

Figure 1.2 Unit cell models of (a) UN2, (b) U2N3, and (c) UN. 
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1.2.2 Thorium Nitride System 

TI13N4 and ThN are the most common thorium nitrides compared to a third chemical 

composition of Th2N3 according to the literature (Figure 1.3 and Table 1.3). Benz, et al. 

[15] reported a rhombohedral lattice with a = 0.9398 (2) nm and a = 23.78 (1)° for Th3N4 

crystal structure using XRD powder pattern. The space group of the compound is R3mR . 

Thorium nitride of the chemical composition TI12N3 (thorium sesquinitride) is a 

controversial because of the expected oxidation state in Th is 4.5+ and it cannot have a 

value more than 4+ due to noble gas electronic configuration. The compound has a La2C>3 

type structure with a space group of P3m\ and hexagonal unit cell dimensions of a = 

0.3875 (2) nm and c = 0.6175 (4) nm [16]. Chiotti also reported a chemical composition 

close to TI12N3 with lattice parameters of a = 0.387 nm and c = 0.616 nm [17]. The 

current work also reports the TI12N3 compound in § 4.6. There are a number of reports 

discussing the crystallography and physical/chemical properties of ThN. This compound 

has the rock-salt structure as in the case of UN. Space group and the cubic unit cell 

parameters of ThN are Fm3m and a = 0.51666 (4) nm [18], respectively. 

Compound 

Th2N3 

TI13N4 

ThN 

Table 1.3 Crystallography oft 
Crystal system 

Hexagonal 

Rhombohedral 

Face-centered cubic 

Space group 

P3ml 

R3mR 

Fm3m 

lorium nitrides. 
Lattice parameters (nm) 

a = 0.3875 (2) and c = 0.6175 (4) 

0.9398(2) 

0.48880(1) 
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Figure 1.3 Unit cells of (a) TI12N3, (b) TI13N4, and (c) ThN compounds. 

1.2.3 Neptunium Nitride System 

NpN (Figure 1.4) is the only stoichiometric nitride of neptunium that has ever been 

reported to date. It has an isomorphous crystallography to that of UN [19]. Lattice 

parameter of the cubic unit cell of NpN is 0.48987 (5) nm with a Fm3m space group [20]. 

This same article reports that neptunium forms only NpN, similar to the plutonium 
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system, but our research work has identified two other neptunium nitrides, NpN2 and 

NP2N3, which are reported in § 5.3.4 of this report. 

Figure 1.4 Cubic unit cell of NpN. 

1.3 Carbothermic Reduction 

Uranium oxides are generally the starting point for UN as well as UC synthesis. 

Oxides are fabricated using a precipitation method. An example of a precipitation process 

consists of dissolving and mixing the chloride or nitrate salts in purified water and then 

creating a precipitate with NH4OH or oxalic acid. The precipitate is washed with acetone 

and purified water, milled, and dried at 90 °C. The dried precipitate is milled again and 

redried at 150 °C for 2-3 hours. It is milled again and then calcined at 750 °C for 1 hour. 
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The calcined powder is milled and then cold pressed into 13 or 7 mm diameter pellets for 

2 minutes before being sintered under a mixture of argon and 4% hydrogen for four hours 

at 1500 °C. Nitride ceramics are produced using the carbothermic reduction process [21]. 

In this process, carbon is added in excess to actinide oxides. Heating under an inert gas 

such as Ar will form carbides. If the carbon/An02 mixtures are heated in the range of 

1500 - 1800 °C under a stream of N2 gas, N2-H2 or Nt^-Ar then carbon monoxide is 

liberated and the intermediate actinide carbide is converted to the nitride as follows [22]: 

An02(s) + 2C(s) + 0.5N2(g) -> AnN(s) + 2CO (1.1) 

The carbon monoxide concentration in the outgas is used to monitor the extent of the 

reaction. Unfortunately, this current synthesis route can carry significant levels of 

impurities into the final products as shown in the reaction below: 

U 0 2 + 2 C A ' " C ° 2 >U(OxC!_x) A ' N 2 >U(0,C,N) ( 1 2 ) 

The presence of these impurities limits the utility of nitride fuels in advanced fuel 

cycles because they can affect the chemical and physical properties of the mononitrides. 

The presence of oxygen and other impurities in nitride fuels can lead to the formation of 

phases with different properties from the bulk material including the formation of 

secondary phases [23]. Oxygen present in the nitride can form oxides with fission 

products, altering the expected behavior of them. This limits the ability to fully develop 

nitride fuels for advanced reactors. Even small amount of oxygen in the nitride fuel can 

reduce thermal conductivity by 10 % [24]. Because the carbothermic reduction [25, 26] 

relies on the conversion of the uranium oxide and graphite to carbon monoxide and 
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uranium nitride at elevated temperatures such as 1800 °C, unfortunate side effect of 

volatilizing low vapor-pressure actinides, particularly americium element [27], leading to 

potentially difficult contamination control problems. 

While UN has many properties that make it an excellent reactor fuel, it has thus far 

failed to make the leap to practical systems due to the difficulty in its synthesis. In 

particular, the inclusion of carbon from the currently favored carbothermic reduction 

routes to UN is a major issue in the production of UN with favorable fuel properties [28, 

29]. Therefore, it is important to identify alternate routes that could minimize these 

problems in synthesizing actinide nitrides. Given that a versatile route is found to 

synthesize AnN at general laboratory conditions without carbide impurities and with 

minimum oxide contaminations, it will provide the opportunity to study the chemistry of 

these compounds and fill some of the areas lacking chemical details. 

1.4 Low-Temperature Fluoride Route 

There are a number of previous techniques that have been used to remedy the 

difficulties encountered with the carbothermic reduction in synthesizing the actinide 

nitrides. Reaction of the metal hydride or metal with nitrogen gas [30] and the 

ammonolysis of the metal or metal carbide to the nitride [31] are two of those examples 

that could be found. However, these methods also consist of some disadvantages 

including the difficulty of making the reactants and the impurity levels of the final 

products. Use of AnC>2 as the precursor would, therefore, make it easy to deal with the 

reaction compared with the metal or the metal carbide. The conversion of actinide oxides 

to nitrides through a low-temperature fluorination route may address these issues [32]. In 
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this method, the metal oxides serve as the precursor compound to fabricate actinide 

mononitrides via three steps is presented. The method is based upon an initial reaction of 

oxide starting materials with a fluorinating agent. The resulting fluoride species is then 

further reacted to produce the nitrides, eventually yielding the mononitride species. 

An02 (s) + NH4HF2 (s) RJJheal > (NH4)xAnFy(s) (1.3) 

(NH4)xAnFy(s) *-m>(8) >AnNz(,s) (1.4) 

AnNz (s) A'Mg) >AnN (s) (1.5) 

Here, the first step involves mixing the oxide with excess ammonium bifluoride 

(equation 1.3). AnC"2 and NH4HF2 solids were first ground in a mortar and pestle. Once 

they are ground well, the powders were weighed and mixed in the mortar and pestle for 

10 to 15 minutes. The first step for both uranium and thorium compounds were done in 

this manner. The neptunium compounds were ground and mixed in a polyvinyl vial 

inside a gloveless glove box. Here, the NpC>2(s) was first weighted and added into the vial 

(Figure 1.5). Excess ground NH4HF2 was then added into the same vial and mixed for 10 

min with the spatula. In the case of mixed uranium-thorium system, the two compounds 

were first added together and mixed for 10-15 min to make them powdered. The ground 

NH4HF2 was then admixed with the sample. More details on thorium, neptunium, and 

uranium-thorium mixed systems are given in Chapters 4, 5, and 6, respectively. The first 

step for the uranium system was not performed in this current work because another 

group under the supervision of same PI did the study on this step [33]. However, 

ammonium uranium fluorides were synthesized as a collaborative work with the above 
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mentioned group and UF4 was used as the reactant for the second step in process of 

synthesizing UN. 

Figure 1.5 NPO2/NH4HF2 solid mixture in the polyvinyl vial. 

Reaction progress of this first step was checked with X-ray powder diffraction. 

Uranium system displayed fast reaction while thorium and neptunium took weeks 

depending on the sample size and/or the temperature used to complete the reaction 

described in equation 3. For example, NpC>2 reaction with NH4HF2 was fast at 100 °C. 

More details are discussed in the relevant chapter. In the second step, the resulting 

ammonium-actinide-fluoride {(NH4)xAnFy} was heat treated under ammonia gas 

(equation 1.4). Depending on the actinide been evaluated, a 2 to 50 mg quantity of the 

powder sample was added on to a Pt sheet and placed inside a two open end quartz tube. 
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The quartz tube was then placed inside a tube furnace as demonstrated in Figure 2.1 in 

Chapter 2. Ammonia gas was purged and flowed continuously while heating the sample 

with the expected temperature (typically 800°C). Gas flow was stopped when the sample 

was ready to remove from the reaction chamber. 

Once the second step of the reaction was completed, the sample was removed and 

tested for chemical phases with XRD. Further heating of the product at elevated 

temperatures up to 1100 °C was performed under an inert atmosphere to decompose the 

higher actinide nitrides into the mononitride in the third step (equation 1.5). 1100 °C was 

typical for the UNX decompositions to produce UN, but the temperatures for Th and Np 

systems were different. Because the terminal product of this step was ThNF for the 

thorium system, further heating at greater temperatures than 1100 °C may be needed to 

remove the extra fluorine and force Th4+ to reduce into Th3+ making the ThN. On the 

other hand, 900 °C was enough for the NpNx decompositions. Detailed information on 

the experimental procedures can further be found in Chapter 2. 

This process is particularly of interest due to the low temperatures required to convert 

the metal oxides to the nitride compared to the carbothermic reduction route. Research 

showed that the use of actinide fluorides such as UF4 can also be used as the reactants 

which are heated under NHa(g) to obtain the nitrides [34]. Synthesis and its related issues 

have been discussed in detail in C. B. Yeamans's Ph.D. thesis [33]. Here, the 

optimization of the experimental conditions of making UN was performed and Chapter 3 

discusses these results. Furthermore, a detailed study on the decomposition kinetics of 

UNX into UN in an inert atmosphere is also presented. Scanning (SEM) and transmission 

electron microscopy (TEM) were utilized in revealing the morphology and 

13 



micro/nanostructures of UN2, U2N3, and UN. All these results on UNX are discussed in 

Chapter 3. The optimized experimental conditions found for UN synthesis were further 

used in discovering the feasibility of making thorium and neptunium nitrides. 

Chapter 4 consists of two major parts. The first part provides details on the products 

formed applying the fluoride route to thorium system. Th02 reaction with NH4HF2 

together with the detailed characterization of ThNF, which was the terminal product of 

the ammonolysis step, is presented in this section. Second part of the chapter 

demonstrates a new method of synthesizing Th2N3 in a solid state reaction. Moreover, 

microscopic characterization of this compound to answer the question of why or where 

the Th02 secondary chemical phase was formed in the TI12N3 samples was performed and 

given in this section. 

Complete discussion of the work performed on neptunium system using the fluoride 

route is presented in Chapter 5. Again, two main parts in the results section can be found 

in this chapter too. The reaction of NPO2-NH4HF2 solid compounds were determined to 

be slower than uranium system. One new compound of the ammonium neptunium 

fluoride system was identified in this reaction. Using the knowledge of this new 

compound a reaction mechanism was proposed for the production of the terminal 

ammonium neptunium fluoride. The first part of the chapter is thus consisted of 

characterization of the new compound {(NH^NpFg} and the terminal product 

{(NH4)2NpF6}. Final part of the chapter provides a thorough investigation of the 

reactions and products involved in the ammonolysis of these ammonium neptunium 

fluorides. This involves complete characterization of neptunium compounds of five novel 

chemical compositions. 
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Modifications to the method in synthesizing mixed actinide oxides together with 

remediation of the problems encountered in each system when synthesizing the oxide 

solid solutions of uranium and thorium are also presented in this work. Chapter 6 

provides these investigations. Feasibility of making mixed U-Th-Nitrides is also 

discussed in the same chapter. The final chapter concludes the most important findings of 

each system. Thus, the final goal of the thesis work is to determine the feasibility of the 

low-temperature fluoride route in synthesizing the mononitrides and mixed oxides/solid 

solutions of actinides along with the characterization of these compounds to promote the 

field of actinide chemistry. Use of actinide mononitrides in the next generation reactor 

systems, on the other hand, needs to be supported by studying the chemistry of these 

compounds at laboratories. Because the use of carbothermic reduction is challenging at 

laboratories without a considerable effort on the experimental setups, it is mandatory to 

study novel techniques to synthesize the actinide nitrides to study their chemistries. This 

thesis is an effort to support these causes. 
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CHAPTER 2 

METHODOLOGY AND INSTRUMENTATION 

2.1 Introduction 

This Chapter consists of information on the chemicals and experimental methods 

used. A brief introduction to the each instrumentation used in analyzing the samples will 

also be included. Section 2.2 consists of details on the reagents and the cover gases used 

in this research. A description on the general experimental procedure employed in the 

following chapters is given in section 2.3. Further details on using the procedure for each 

system (U, Th, Np, and U-Th mixture) are given in separate chapters 3, 4, 5, and 6. Final 

sections starting from §2.4 include introductions on each analytical method used to 

characterize samples synthesized. 

2.2 Reagents 

Table 2.1 Cover gases used for the experiments 
Gas 

Ar 

NH-, 

N2/H2(8%) 

Purity (%) 

99.999 

99.999 

99.999 

Manufacturer 

Praxair 

Praxair 

Praxair 
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Table 2.2 Chemicals used in the research work. 
Solid chemical 

U02 

UF4 

Th02 

ThF4 

Np02 

NH4HF2 

Manufacturer 

International Bio-Analytical Industries, Inc. 

International Bio-Analytical Industries, Inc. 

STREM Chemicals, 99.99 % 

STREM Chemicals, 99.99 % 

Argonne National Laboratory 

Fisher Scientific, 99.99 % 

2.3 Experimental Procedures 

2.3.1 Synthesis of ammonium actinide fluorides 

Four and 10 to 20% excess moles of powdered NH4HF2 was added into the actinide 

oxide and mixed for 10 to 15 minutes in a polyvinyl or a Teflon vial. Depending on the 

actinide that was being used, the mixture was heated up to 100 °C for a week or higher. 

Further details on each actinide system are also presented in each relevant chapter of this 

report. 

2.3.2 Synthesis of Actinide Nitrides 

Ammonolysis of the resulting ammonium actinide fluorides was performed in this 

step of the reaction. Actinide fluorides such as UF4 and TI1F4 were also used and are 

reported in each chapter. First, the actinide fluorides were loaded in a quartz boat 

wrapped with platinum foil or placed on a platinum sheet and placed inside a 25.4 mm 

diameter quartz tube. The quartz tube was capped with 25 mm Solv-Seal fittings 

(Andrews Glass Co., Inc.) at the both ends. In order to produce a controlled atmospheric 

condition for the reaction, the quartz tube was sealed with Pyrex Solv-Seal caps fitted 
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with 15 mm high-vacuum Teflon stopcocks. The quartz tube was then placed inside a 

tube furnace (Figure 2.1). Cover gas was introduced for 5 to 10 min to obtain the 

expected atmosphere and the furnace was ramped up to the temperature required. The 

cover gas was flowed through (1 atm) the sample over the entire time period of the 

synthesis. The sample was held at the selected temperature for the required time period 

before cooling down. Furnace door was opened for fast cooling during the process and it 

took about 90 min for a temperature of 1100 °C to come down to room temperature. 

These thermal treatments were performed under NH3, Ar, or N2/H2(8 %) covering gases. 

The NH3 gas was used in the first step of the heat treatments to make the starting actinide 

nitrides for the final actinide mononitride. The Ar(g) and N2/H2(8%) cover gases were 

used in the second step of the heat treatments to make mononitrides or to determine the 

reaction mechanism of higher actinide nitride decomposition. 

Figure 2.1 Experimental setup used to heat the samples. 

2.4 X-ray Powder Diffraction (XRD) 

2.4.1 Introduction and Sample Analysis with X-ray Powder Diffraction 

When a compound is irradiated with X-rays (or with any other electromagnetic 

radiation), the electrons around atoms of the compound interact with the electric field of 
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the X-rays [1]. These interactions accelerate or decelerate the electron. If the electron is 

accelerated, the extra energy imparted to it can be reradiated. This scattering phenomenon 

is known to be coherent when none of the energy is transferred to the electron. 

Diffraction occurs when these coherent scatterings from a periodic array of objects make 

constructive interference at specific angles. X-rays will be diffracted in a number of 

different directions when they interact with a crystal containing three-dimensional 

periodic relationships between atoms (atomic planes) that compose it. However, only 

specific reflections from these planes can have constructive interferences (Figure 2.2). 

According to the Bragg's equation (equation 2.1) the atomic planes having 0 angle to the 

incident beam will have this condition. 

nA, = 2dhkiSin0 (2.1) 

Figure 2.2 Bragg's Law reflection. 

A powder sample or a polycrystalline aggregate can be a ground particle, a solid 

block of a metal, ceramic, polymer, glass or can even be a thin film or a liquid sample 
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and they consist of billions of tiny crystallites. These crystallites are randomly oriented 

and therefore all possible interatomic planes will be seen if the experimental angle of the 

X-ray diffractometer (20) is changed so that the characteristic diffraction angle (0) of the 

planes hkl is compensated. 

In this study, a slurry was made by applying few drops of ethyl alcohol onto the X-

ray sample holder containing powder to be analyzed. The sample was then placed inside 

the powder X-ray diffractometer (Philips PANalytical X'Pert Pro). The diffractometer 

was operated using a 40 mA current and a 40 kV tension. The X-ray generated in the 

instrument is from Cu K« (1.54 A) radiation separated out from the Kp radiation using a 

Ni filter. The powder pattern was then analyzed against ICDD (International Centre for 

Diffraction Data) database files using X'Pert HighScore Plus software. XRD powder 

pattern refinements were done utilizing Rietveld method [2] for structure parameter 

refinement and for phase content determination. Pattern calculation was done assuming 

the chemical phase details identified with X'Pert HighScore Plus. Academic version of 

the TOP AS was used in these refinements. 

2.4.2 Powder XRD Analysis Software: TOP AS 

The software named 'TOPAS' is a XRD powder pattern refinement program. It uses 

Rietveld refinement to determine structures from powder data. Most importantly, 

structure determination does not include any methods that require integrated intensity 

extraction because it is done in direct space using step intensity data. Structure 

determination is done in TOPAS by estimating the cell parameters, using a rough 

knowledge about the cell content, and deducing the space group of the structure [3]. If the 

structural details of the compound are known, crystallographic databases such as ICDD 
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and ICSD (Inorganic Crystal Structure Database) can be used in finding these details for 

the refinement. Most of the compounds synthesized in the current work have been 

characterized and the single crystal data are present in the crystallographic databases. 

Therefore, these available details were used in structure refinements using TOP AS. 

In the process of these analyses, first fit was calculated assuming these 

crystallographic data available and further calculations were made by refining different 

variables including lattice parameters. Chemical phases present in the samples were also 

calculated refining the XRD powder patterns applying the Rietveld method in TOP AS. 

As another function of the program, it selects the best refinement result when bond 

lengths and bond angles are to be calculated. 

2.4.3 Application of Electron Density Maps 

For new compounds synthesized, electron density maps were also used to confirm the 

crystallography. Powder XRD patterns were first refined with the software Jana2000 [4] 

which uses the Le Bail fit [5] when a structure model is not present. The LeBail fit 

assigns an optimal value to the intensity of each reflection found in the experimental 

diffraction pattern, and the lattice parameters and profile parameters will be refined. As 

the first step of calculating electron density maps of the sample, Le Bail decomposition 

was used to extract the individual observed structure factor amplitudes (F0bs) in Jana2000. 

These observed structure factors were then used to calculate the electron density maps of 

the compound by the charge-flipping algorithm [6] using Superflip [7] program. The 

calculated electron density maps were visualized using UCSF Chimera [8]. Electron 

density map obtained from the UCSF Chimera website [9] is presented in Figure 2.3. 
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Figure 2.3 Example of an electron density map obtained from UCSF Chimera website. 

2.5 Transmission Electron Microscopy (TEM) 

2.5.1 Introduction to TEM and Instrumentation 

Transmission electron microscopy is an important technique because of its different 

uses in various fields of science. It can be used to study morphology [10, 11], 

microstructure [12], and as well as nanostructures [13] of compounds. With the use of 

high resolution TEM (HRTEM) and selected area electron diffraction (SAED) difficult 
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structures can be solved [14]. Electron energy-loss spectrometry (EELS) is another mode 

of TEM that is being used to answer questions in science [15]. Another useful technique 

to solve unknown atomic structures is the scanning transmission electron microscopy 

(STEM) [16]. In this study, bright-field (BF) TEM, HRTEM, SAED, STEM/X-ray 

energy dispersive spectrometry (XEDS), and EELS mapping were used. Applications of 

each of these modes are described below. TEM studies were performed in all the samples 

synthesized here. However, the modes of the TEM used in samples were different 

depending on what type of information was needed to answer a particular question. The 

following chapters present and discuss these matters in detail for each case. 

In TEM, a beam of electrons is focused on the specimen, and the transmitted beam is 

used in image forming. In this process, a TEM instrument uses a number of lenses to 

focus the incident beam on to the sample and the diffracted beam on to the screen or to 

the detector (Figure 2.4) [17]. There are two basic TEM imaging operations; bright-field 

(BF) and dark-field (DF) imaging. BF imaging uses the direct beam which passes through 

the specimen to make the image while DF utilizes the scattered beam. Therefore, the 

intensity of the image is high in BF while the contrast is high in DF. Also, BF and DF 

imaging are complementary to each other while both give similar information in most 

cases. Moreover, TEM imaging is easier with BF than with the DF mode both at low and 

high resolutions. The BF mode of energy-filtered transmission electron microscopy 

(EFTEM) was used in this study. TEM BF is useful in studying morphology, any 

impurity-phase related dislocations or other defects, and microstructure of the samples. 

BF TEM was also used to identify interesting locations for further investigations using 

high resolution mode (HRTEM). 
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Figure 2.4 Diagrams displaying the two basic operations of the TEM: (A) viewing 
diffraction pattern and (B) viewing image. 

Other than the BF and DF, TEM includes a number of important modes that have 

been mentioned before. One of such modes is the HRTEM. At high resolution, the 

nanostructures were studied in detail. Orientations and the interatomic planes relate to 

lattice fringes in HRTEM images were determined by the use of crystallographic details 

of the compounds being investigated. First, the spacing between lattice fringes in 

HRTEM images was correlated with the interplaner ^-spacing of the structure. SAED or 

local Fast Fourier Transformed (FFT) patterns were also used in the above process of 

determining orientations and the interatomic planes present in the HRTEM images. 
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Calculated HRTEM images (Bloch Wave presentations) were applied in some of the 

analyses to confirm the nanostructural properties identified at high resolution. Bloch 

Wave simulated images were calculated using EMAPS software package [18] and an 

example is given in Figure 2.5. 

Figure 2.5 Calculated HRTEM image of UO2 correspond to (10-1) planes along [111] 
zone axis. 

As a supporting method, SAED can be used to observe the diffraction pattern of a 

sample. It also helps to identify crystalline particles of the sample being investigated. In 

TEM operation, objective lens takes diffracted electrons from the sample to disperse 

them into a diffraction pattern and to recombine them into an image. This diffraction 

pattern is not useful since it contains electrons from the whole area of the specimen. 

However, it can be used by reducing the intensity of the diffracted pattern by selecting an 
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area of the specimen which is of interest. For this reason, SAED is the diffraction pattern 

of the sample in TEM. Furthermore, SAED facilitates shorting out the presence of 

impurity phases. SAED will contain strong spots for primary chemical phase (Figure 

2.6a) while extra diffraction spots represent secondary phases or sometimes grain 

boundaries with diverse orientations. Such a grain boundary can be separated out by 

tilting the TEM specimen few degrees from its original position (Figure 2.6b). If a sample 

is polycrystalline, rings will be formed in a diffraction pattern. 

Figure 2.6 Tilting effect on SAED patterns (NpFs): (a) strong diffraction spots for a 
single crystalline chemical phase and (b) after tilting the sample 20°. 

XEDS and EELS mapping were some other modes of TEM that have been applied in 

sample characterization in this work. For XEDS, the sample image was obtained under 

STEM mode first and the electron beam was focused on the particle which is needed to 

be analyzed. The resulting spectrum gives information on the elements that the sample 

possesses. The spectrum gives peaks (Figure 2.7) and their relative intensities can be used 

to quantify elements of the sample. EELS mapping is also important in some cases where 
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the elemental distribution of a complete set of particles is required. XEDS give elemental 

distribution of one point whereas EELS mapping analyze the whole particle area. 

Therefore, sometimes the EELS mapping is more useful than XEDS. Figure 2.7 displays 

the difference of these two techniques. 

600 

U map 

5000 110* 1.5 10* 
Energy (eV) 

F map 

210* 

1 urn 1 |jm 

Figure 2.7 Comparison of XEDS and EELS mapping of UF4. 

The TEM instrument (Figure 2.8) used in the current research uses a Tecnai-G -F30 

super-twin (S-TWIN) transmission electron microscope system with a 300 keV Schottky 

field emission gun. A Tecnai-G -F30 S-TWIN is a powerful instrument for high 

resolution imaging, and it can go up to 1,000,000 times magnifications. Spherical and 

chromatic aberrations of the instrument are 1.2 and 1.4 mm, respectively. At high 
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resolution, the atomic scale details could be obtained with a 0.20 nm point-to-point 

resolution. The highest line resolution can be obtained is 0.10 nm. All TEM images were 

recorded using a slow scan CCD camera attached to a Gatan GIF 2000 energy filter. 

Figure 2.8 A picture of the TEM instrument used in this study [19]. 
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2.5.2 Sample Preparation 

Sample preparation involves several steps for TEM analysis because of the thickness 

required for specimens. Since a beam of electron has to go through the specimen, less 

than a 100 nm thickness is required. Three different sample preparation techniques were 

therefore tested with two selected for the current research project. Low-angle ion milling 

and polishing was tested for zirconium-based nitrides. In this method, sample was first 

made out of 3 mm diameter disk. This disk was then polished up to a thickness less than 

150 urn. The center of the sample disk was then dimpled using a dimpler. Once a 

thickness less than 10 urn was achieved at the center of the sample, it was ion-milled up 

to a thickness of about 100 to 10 nm using a low-angle (-15°) ion milling and polishing 

system. Though, this method was not used here as it involves a number of steps that are 

difficult to use in radioactive sample preparations. 

The primary method used for TEM sample preparation here is solution-drop method. 

In this method, the sample was first ground and a small amount (-0.5 mg) was added 

into a 5 mL solution of ethyl alcohol. The suspension was homogenized in an 

ultrasonicator for 5 minutes. Two to four drops of the solution were placed on a TEM 

sample holder (3 mm diameter copper grids of carbon type-B with 300 mesh size from 

TED Pella, Inc.), and the sample dried at ambient conditions before inserting in the TEM. 

While the solution drop was the primary sample preparation technique applied here, 

microtome cutting method was occasionally used. In microtome cutting, the sample was 

first embedded in a hard spurr-resin (Table 2.3) and dried at 60 °C overnight. The sample 

embedded in the resin was cut into slices with a thickness of 20 to 50 nm using a Leica 

EM UC6rt microtome. The resulting samples were loaded onto a 3mm copper grid for 
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TEM analysis. With solution-drop method, bulk morphology of the particles can be 

observed while microtome cutting is important for cross sectional view. At high 

resolutions, sometimes it was difficult to examine bulk particle areas away from the 

edges due to thickness variances and high scattering effects from high-Z actinides. In 

such cases, microtome cutting was applied in specimen preparations [20]. 

Table 2.3 Chemical composition of hard Spurr-resin 
Chemical component 

ERL 4206 

DER 736 

NSA 

DMAE 

Mass (g) 

10.0 

4.0 

26.0 

0.4 

2.6 Scanning Electron Microscopy (SEM) 

2.6.1 Introduction 

Scanning electron microscopy and the corresponding energy dispersive spectroscopy 

(EDS) were used extensively in this research project to characterize samples with respect 

to their morphology and elemental analyses, respectively. In SEM, an electron beam is 

focused on to a spot of the sample using electromagnetic lenses. Depending on the 

acceleration voltage, atomic number of the material and angle of the incident beam, the 

interaction volume (spot size) will vary from about 10A to couple of jam [21] (usually 3 

f̂ m). Once the electron beam strikes the sample, it can emit photon and electron signals. 

These signals include X-rays, Auger electrons, primary backscattered electrons, and 

secondary electrons (Figure 2.9). 
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Figure 2.9 Various reactions occur in electron interactions with specimen. 

If the X-rays are detected, elemental distribution of the sample can be semi-

quantitatively determined (EDS). The primary backscattered electrons and secondary 

electrons will give information about the surface of the sample (topography) [22]. Use of 

backscattering electrons in SEM however has an advantage over the use of secondary 

electrons. The secondary electrons have low energy, 5eV, and therefore can only be used 

to examine the topography of the sample. On the other hand, backscattered SEM mode 

can be used to differentiate elements with different average atomic numbers since the 

backscattered electrons depend on atomic number of the specimen. Therefore, elements 

with higher atomic numbers will be brighter than low atomic numbered elements in the 

backscattered mode of SEM. Figure 2.10 shows a typical example of difference in 

information that can be gathered using SE and BE modes [23]. The SEM BE image gives 

more information on the different phases present in the sample than by SE. 
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Figure 2.10 Comparison of SE and BE SEM images of (U4Th2Zrc))Hi.5 sample. 

2.6.2 Instrumentation 

The SEM imaging was performed on a JEOL scanning electron microscope model 

JSM-5610 (Figure 2.11a) equipped with secondary electron (SE) and backscattered 

electron (BE) detectors and an Oxford ISIS EDS (energy dispersive spectrometer) system 

with an acceleration voltage of 15 kV [24]. Gold-coated powder samples mounted on 

double-sided carbon tapes were used to investigate the bulk particle morphology of the 

samples using SE imaging mode of SEM. 

2.7 Electron Microprobe Analysis 

Electron microprobe can be used to both qualitatively and quantitatively analyze 

elements distributed in a solid sample. It has accuracy up to ±1% for the quantitative 

measurements and about 1 urn spatial resolution in the line profiles or two-dimensional 

maps of the samples [25]. The sample has to be well-polished after embedding it with 

epoxy and should contain an evolution area of 1 to 3 urn. In electron microprobe, a high 
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energy (usually 15 keV) electron beam is impinged on the sample and the constituted 

elements will ionize after absorbing the correct energy. Electrons of inner shells will 

release the extra energy as characteristic X-ray of the element being detected. Depending 

on the wavelength of the X-ray, the element can be identified. Quantitative measurement 

of the element could be performed using the intensity of the characteristic wavelength 

and with the help of calibration plots of standard materials [26]. For the current study, a 

JEOL electron probe micro-analyzer model JXA-8900 (Figure 2.11b) equipped with 4 

wavelength dispersive X-ray spectrometers (WDS) and an EDS was used to 

quantitatively analyze the elemental distributions in the samples. 

Figure 2.11 (a) SEM and (b) EMPA instruments. 
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CHAPTER 3 

SYNTHESIS AND CHARACTERIZATION OF URANIUM NITRIDES 

3.1 Introduction 

This chapter includes the synthesis of UNX using UF4 as the precursor compound, 

optimization of experimental conditions to decrease secondary impurity phases of the 

final UN samples, kinetics studies of the decomposition of UN2/U2N3 under an inert 

atmosphere, and the characterization of each uranium nitride chemical phase using 

microscopic techniques. The relative concentration of uranium species in the solids were 

determined by Rietveld method [1] of the X-ray powder diffraction patterns. 

Even though the presence of uranium nitrides of different compositions is reported 

under different experimental conditions, there is little information available on the 

reaction kinetics associated with the formation of UN from UN2 or GC-U2N3. UN is the 

lowest-stoichiometry nitride of the U-N solid system (UN2, U2N3, and UN) [2], and the 

following reactions could be used to represent the decomposition of higher nitrides 

towards the mononitride: 

2 UN2 -» U2N3 + V2 N2 (3.1) 

U2N3 -» 2 UN + lA N2 (3.2) 
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The research work that has been performed here focuses on confirming the above 

reaction mechanism and optimizing the reaction conditions to decrease the formation of 

impurity chemical phases such as UO2. Formation temperatures of OC-U2N3 and UN were 

identified by carefully decomposing UN2 at various temperatures under an inert argon 

atmosphere. Determination of the relevant kinetic parameters and activation energies, 

which were calculated assuming a pseudo-first-order model and Arrhenius plots, will also 

be presented in this chapter. 

Previous analyses by X-ray powder diffraction [3], neutron powder diffraction [4], 

nuclear magnetic resonance [5], transmission electron microscopy [6, 7], and x-ray 

photoelectron spectroscopy [8] can be found on uranium nitrides at different scales. 

However, the microscopy studies [6, 7, 9] have focused primarily on sintered pellets of 

UN and no microscopic studies on UN2 and U2N3 were reported other than the current 

work [10]. Because microcrystalline properties influence the sinterability of UN, and 

because a fuel-quality sintered UN pellet is the ultimate goal of any nitride fabrication 

process for nuclear fuel, it is important to characterize the starting nitride material in 

sufficient detail. The work of Le et al., [6] and Sole and Van der Walt [7] reports the 

TEM characterization of UN specimen prepared using ion-thinning and electropolishing. 

In the current study, a solution-drop method and microtome cutting method, which can 

produce samples less than 25 nm thick [11] were used in sample preparations for the 

TEM analysis. Microtome cutting has been found to produce high quality TEM sample 

specimens in observing the cross-sectional as well as microstructural characterization 

[11]. 

39 



3.2 Experimental details 

3.2.1 Synthesis of Uranium Nitrides 

The direct ammonolysis of UF4 was used to synthesize UN2 as described in Chapter 2 

section 2.3.2. About 500.0 mg batches of UF4 were heated at 800 °C for 60 minutes under 

ammonia gas to make the UN2 samples required for the study. Different batches of the 

synthesized UN2 were heat treated under an inert atmosphere (ultra-high purity argon, 

99.9999%, Praxair) at temperatures ranging from 500 through 1100 °C (Table 3.1) for 

different time periods to study reaction mechanism, kinetics, and to optimize the 

experimental conditions for high phase purities of the final UN product. A batch of U2N3 

was also synthesized by heating UN2 at 700 °C under Ar(g) for the decomposition studies 

of the compound to synthesize UN. 

3.2.2 Characterization Methods 

X-ray powder diffraction (XRD) patterns were obtained using Cu-Ka radiation. Phase 

composition and lattice parameter refinements were done assuming the crystallographic 

information of ICDD database for the Rietveld method: UN2 (01-073-1713), U2N3 (01-

073-1712), UN (00-032-1397), and U02 (00-041-1422). An internal LaB6 standard from 

NIST (SRM 660a) was admixed with the uranium nitride samples to allow for precise 

lattice parameter refinement and to optimize the quality of each Rietveld analysis as 

performed. The morphology of the nitride samples was studied by SEM and TEM. 

Electron probe micro-analysis was also performed to determine elemental distributions in 

the samples. Both techniques described in §2.5.2 were used for TEM specimen 

preparation: solution-drop and microtome cutting. The solution-drop method was utilized 
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to explore the morphology of the nitrides samples. Microtome cutting was used to 

prepare samples for cross-section analysis and HRTEM imaging. 

3.3 Mechanism and Kinetics of UN2 Decomposition 

3.3.1 UN2 Decomposition Mechanism and Chemical Phase Characterization by XRD 

XRD powder pattern refinement of the as-synthesized UN2 sample is shown in Figure 

3.1. The observed (top continuous line) and the calculated (highlighted continuous line 

for UN2) patterns for the XRD powder refinement are shown. The lower curve is for the 

difference between the observed and calculated patterns. Allowed line positions for the 

UN2 and LaB6 are marked as vertical lines at the bottom. Square root of counts was used 

as the scale of Y-axis for proper display. 

LaB6SRM660a41.02% 
UN2 Fm-3m 58.98 % 

60 80 
2Th Degrees 

Figure 3.1 XRD powder pattern of UN2 together with the calculated patterns. 
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Table 3.1 Lattice parameters and X-ray phase densities of the uranium nitrides calculated 
from experimental patterns using Rietveld analysis. 

Sample 

UN2 

U2N3 

UN 

Lattice parameter (nm) 

Calculated 

0.53027(1) 

1.06691(1) 

0.48899(1) 

Reference 

0.531(1)lJJ 

1.0678-1.0580(5) [i'Ui 

0.48899(2)llJJ 

X-ray phase density (g cm'3) 

Calculated 

11.8516(2) 

11.3340(2) 

14.3175(5) 

Reference LJJ 

11.73 

11.24 

14.32 

The lattice parameters refined show a good match with the values reported 

previously. These values are presented in Table 3.1. The XRD pattern consists of narrow, 

well-defined, high intensity peaks indicating the sample to be crystalline [14]. The 

observed pattern matches the calculated pattern for UN2 with a relatively reasonable 

weighted pattern residual error (Rwp) of 10.8%, considering the impurity peaks found in 

the experimental pattern. Based on the other UN2 samples prepared varying the amount 

of UF4 used, the as-synthesized UN2 samples consisted of 0.5 to 1.0 (3) wt % secondary 

oxide phase. The impurity peaks are significant at positions such as 20.2° and 36.1° 

2theta values (Figure 3.1), and the peaks have some resemblance to the peaks identified 

in the U2N3 XRD pattern (Figure 3.2), but are not accounted for by the UN2 structure. In 

order to investigate these peaks further, another UN2 sample was synthesized under the 

same NH3(g) atmosphere and temperature (800 °C) for 390 minutes. 
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LaB6SRM660a46.15% 
U2N3 la-3 52.73 % 
Urarsinite C 1.13% 

20 30 40 60 70 80 
2Th Degrees 

90 100 110 

Figure 3.2 Rietveld refinement of U2N3 sample. The displayed patterns are as of UN2 in 
Figure 3.1. Calculated pattern of U2N3 is highlighted. UO2 impurity phase content of 2.1 

(1) wt.% was identified and the Rwp = 9.6%. 

The Rietveld analyses of the sample held at this temperature for 60 minutes and the 

sample held for 390 minutes are shown in Figure 3.3a and 3.3b, respectively. The peaks 

at 20.2° and 36.1° 2theta values have been disappeared for the sample made after heating 

for 390 minutes. Incomplete conversion, with the material still slightly sub-stoichiometric 

UN2, could account for these peaks since UN2 and U2N3 are known to have wide range of 

continuous stoichiometry [12, 15] and the supersymmetries that cause weak reflections to 

show in the XRD pattern. Thermal behavior of UN2 in an inert atmosphere was studied 

by heating three UN2 samples of approximately 50 mg of each at 500, 700, and 1100 °C 

under flowing high-purity argon (99.999 %) for 30 minutes. Heating the first sample at 

500 °C resulted in no measurable decomposition of the UN2. At 700 °C, UN2 was 

completely converted to U2N3 (Figure 3.2). After heating at 1100 °C for 30 min, the only 

uranium nitride phase identified in the sample was UN. 
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Figure 3.3 Observed patterns of UN2 samples showing the impurity peaks in the low 
2theta angles: (a) synthesized by heating UF4 at 800 °C for lhour; (b) synthesized by 

heating at 800 °C for 6.5 hours. Calculated pattern or UO2 is highlighted. 

LaB6SRM 660a 42.86% 
UNFm-3m 54.13% 
Uraninite C 3.01 % 

50 60 70 80 
2Th Degrees 

90 100 110 

Figure 3.4 XRD powder refinement of the as-synthesized UN sample using Rietveld 
method. Highlighted is the calculated pattern of UN. Rwp = 8.6%. 

The UN sample was determined to consist of two chemical phases, the primary UN 

phase and a 5.3 (1) weight percent UO2 impurity phase (Figure 3.4), most likely due to 

trace oxygen contamination attributable to the experimental setup. Table 3.1 further 

shows the cubic lattice parameters determined for U2N3 and UN using Rietveld 
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refinement and the X-ray densities of each nitride calculated from the experimental XRD 

patterns. Lattice parameters of U2N3 and UN2 have a reasonable match to the literature 

values, but UN has a much better match to that of literature value comparatively. The 

variable stoichiometry of the UNi.5<x<2 phase likely lead to the departure from the pure 

compound lattice parameter and density for synthesized U2N3 and UN2. 

Table 3.2 Elemental compositions determined by electron microprobe studies. 

Sample 

UN2 

U2N3 

UN 

Elemental % 

U 

89.02 ±1.72 

90.77 ±1.64 

93.17 ±1.94 

N 

10.68 ±0.20 

8.26 ±0.10 

5.14±0.13 

O 

0.29 ±0.38 

0.97 ± 0.30 

1.69 ±0.41 

Chemical analysis performed on these three samples with electron microprobe 

showed that there are considerable amounts of oxygen impurities in U2N3 and UN (Table 

3.2) samples confirming the presence of UO2 secondary phase. The oxygen level is 

highest in UN and lowest in UN2. The error in the oxygen quantity measurement for UN2 

sample is large because the oxygen level is near the lower detectable limit of this 

technique. 

Further experiments were carried out in order to optimize the time of thermal 

decomposition of UN2 at 1100 °C to increase the phase purity of UN. Experiments were 

performed from 1 min to 30 min time periods and the results are displayed in Figure 3.5. 

Thermal decomposition of UN2 performed at 1100 °C for 23 min under Ar(g) produced a 
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UN sample of 97 wt% phase purity with the help of Zr-sponges as an oxygen getter. 

These experimental conditions were then further used for additional UN sample synthesis 

for characterization purposes. 

100 h 
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-•— U2N3 wt.% 

~ k « U 0 2 w t . % 
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10 15 20 
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Figure 3.5 Decomposition of UN2 under Ar(g) at 1100 °C as a function of time. 

Subsequent experiments were conducted in two different temperature ranges, viz., 

500 - 700 °C and 700 - 1100 °C (Table 3.3) in order to refine the temperature ranges in 
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which the decomposition reactions in equations (1) and (2) occur. At each of these 

temperatures, the reactants were heated for 30 min initially to determine where the 

decomposition reactions occur. These experiments showed that the UN2 decomposition to 

U2N3 starts at about 675 °C, and the second decomposition to UN begins at about 975 °C. 

Therefore, the decompositions at the temperatures 650 and 950 °C were studied further 

with up to 60 min of heating. These two experiments showed neither formation of U2N3 

at 650 °C nor formation of UN at 950 °C. Heating of UN2 at 600 and 900 °C was also 

conducted for up to 240 min to see how the time of heating would affect the UN2 

decomposition. At 600 °C, no U2N3 formation occurred. Likewise, no UN formation was 

seen at 900 °C. Also, over the temperature range from 975 °C to 1100 °C, both U2N3 and 

UN were observed in the product depending on the time of heating. 

Another sample was synthesized to check the presence of any other intermediate 

chemical phases of the formation or the decomposition of UN2. A sample of UF4 was heat 

treated up to 1000 °C for 30 min under NHs(g) and the temperature was raised to 1100 °C 

in 10 min time period after changing the covering gas to Ar(g). Sample heating at 1100 

°C was done for another 30 min. Ammonolysis was done at 1000 °C in order to complete 

the UN2 formation under a reduced time period (30 min instead of 60 min at 800 °C). 

This experiment show that the UF4 undergoes a reaction with NH3(g) to form UN2 via an 

intermediate phase, UNF, which was not identified with previous experiments conducted 

here. Figure 3.6 shows the XRD powder pattern observed for this sample with the UNF 

calculated pattern being highlighted. A complete formation of UN2 and decomposition 

into UN was not observed in this sample because the UF4 amount used here was large 
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(close to lg) so that the sample surface exposed to NH3 was decreased reducing the 

reaction kinetics. 

Table 3.3 Products observed after heating UN2 at different temperatures and time 
intervals under argon atmosphere. 

Temperature/ °C 

500 

600 

650 

675 

700 

750 

800 

900 

950 

975 

1000 

1050 

1100 

Time of heating (min) 

30 

30 

240 

30 

60 

30 

30 

30 

30 

30 

240 

30 

60 

30 

30 

30 

30 

Products observed 

UN2 

UN2 

UN2 

UN2 

UN2 

U2N3 

U2N3 

U2N3 

U2N3 

U2N3 

U2N3 

U2N3 

U2N3 

U2N3, U N 

U2N3, U N 

U2N3, U N 

UN 
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Figure 3.6 Observed XRD powder pattern of UF4 after heating 30 min at 1000 °C and 
1100 °C under NH3(g) and Ar(g), respectively. Only the calculated pattern for UNF is 

highlighted for clarity (Rwp = 11.1%). 

Linear change of the refined lattice parameters of UN2 and U2N3 as a function of 

temperature was also observed (Figure 3.7). The slope of U2N3 lattice parameter change 

in Figure 3.7 is larger than that of the UN2 indicating a larger lattice parameter change in 

the intermediate chemical phase compared to the precursor compound. Further analysis 

showed that there is a 10-fold increase in the U2N3 lattice parameter change compared to 

the change of the UN2. Furthermore, the N/U molar ratios of these UNX samples were 

estimated by correlation plots for UN2 and U2N3 as depicted in Figure 3.8 [3, 12, 15, 16, 

17, 18, 19, 20, 21, 22]. A value of 0.521 ran was taken as the lattice parameter of the 

stoichiometric UN2 by assuming behavior analogous to that of Am02 [12]. The lattice 

parameter values of the UN2 samples synthesized and annealed up to 650 °C correlated 

with those found for samples with N/U molar ratios of 1.75 to 1.8. However, a lack of 

data for the UNX system in the 1.8 < x < 2.0 region of the plot in Figure 3.8 may imply a 
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higher error in the N/U molar ratio estimates compared to the 1.45 < x < 1.75 region. 

Lattice parameters of U2N3 samples synthesized in this study show variations comparable 

to that seen by other authors as shown in Figure 3.8. 
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Figure 3.7 Lattice parameters of UN2 and 01-U2N3 as a function of the temperature used 
for decomposition. 

A number of additional UN samples were synthesized by decomposing UNX at 

different temperatures. Secondary chemical phases, including a UO2 impurity phase (<10 

wt %) and the incompletely-decomposed U2N3 phase were observed in these samples. 

The UN samples prepared by decomposition of the UN2 at 1050 and 1100 °C showed 

greater phase content than the samples made at 975 and 1000 °C temperatures due to the 

presence of larger amounts of incompletely decomposed U2N3 phase at the lower 

temperatures. The UO2 phase impurity was typically less than 5 wt % at 1100 °C (Figure 

3.5). A plot of the lattice parameters of these UN samples as a function of temperature is 
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shown in Figure 3.9, and reveals a distribution of the UN lattice parameter over a 

considerably wide range even at one particular temperature, as was reported elsewhere 

[12]. Another experiment showed that heating UN2 under a N2-H2 mixture (8% H2) for 30 

min at 1100 °C, for an effective nitrogen pressure of about 92 kPa, produced U2N3 with 

no trace of UN. 
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Figure 3.8 Change in the lattice parameter of the UN2/0C-U2N3 system with respect to the 
N/U molar ratio. 
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Figure 3.9 Lattice parameter of UN as a function of the temperature used for UNX 

decomposition. 

3.3.2 Kinetics of UN2 decomposition 

UN2 decomposition studies revealed that U2N3 formed at temperatures between 675 

°C and 975 °C. Due to the solid solution behavior of UN2 and U2N3 and overlapping 

peaks in the XRD, the kinetics of the decomposition of UN2 to U2N3 reaction could not 

be determined. For the conversion of UN2/U2N3 to UN, the reaction kinetics were 

evaluated at temperatures of 1000, 1050, and 1100 °C. The kinetic data associated with 

this unimolecular reaction at 1050 °C is shown in Figure 3.10a, and shows an 

approximate match between the growth of UN and the decay of U2N3. The slight 

deviation observed in this comparison is due to the formation of the secondary UO2 

chemical phase. These observations are consistent with an intermediate chemical phase of 
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U2N3-X, likely having the uranium-rich boundary composition of UN1.54 that reaches a 

steady-state concentration close to zero. Similar behavior was found for the samples 

decomposed at 1000 and 1100 °C. Figure 3.10b displays the Arrhenius plot for this 

decomposition reaction, for which an activation energy of 423.8 ± 0.3 kJ/mol was 

determined. Table 3.4 summarizes the rate constants determined in the experiment. 

Table 3.4 Rate constants of the UNX decomposition reaction at 1000,1050, and 1100 °C 
temperatures. 

Temperature/ °C 

1000 

1050 

1100 

Rate constant (s"1 x 10"3) 

0.07 ±0.01 

0.21 ±0.02 

1.3 ±0.3 
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Figure 3.10 Pseudo-first-order kinetics of UNX decomposition at 1050 °C (a) and the 
Arrhenius plot for the reaction (b). 
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3.4 Microscopic Evaluation of UNX 

3.4.1 Microscopy of UN2 

SEM micrographs in Figure 3.11 show significant morphological changes between 

the reactant (UF4) and the product (UN2). SEM micrographs of commercial and 

synthesized UF4 have particles of agglomerated grains with less crystallinity without any 

particle shape. On the other hand UN2 particles show grains with some discrete flat faces. 

The observed particle characteristic length distribution ranges from 0.1 to 6 um, with 

incompletely-crystallized particle faces making it difficult to measure the particle sizes 

accurately. However, the morphological comparison indicates a definite chemical phase 

change in the product compared to the reactant. 

HRTEM image of a well-crystallized particle area of the cross-section in the inset of 

Figure 3.12 (BF) is displayed in Figure 3.12. The fringe details of the image shows that 

the beam direction corresponds to the image is [111]. Image implies a high crystallinity 

of the sample at the nanoscale. The sample used in this imaging was prepared by 

microtome cutting of 50 nm thickness. Figure 3.13 shows the TEM imaging of two other 

UN2 particles prepared using solution-drop method. The BF image (inset) in Figure 3.13a 

displays a set of scattered particles where as the BF image in Figure 3.13b shows a well-

packed single particle. Also, the sharp particle edges in the inset of Figure 3.13b imply a 

higher crystallinity of the particle than the particles in Figure 3.13a. However, the 

HRTEM imaging of this sharp-edged particle could only be obtained at the thin edge 

areas due to high thickness of the particle at the middle. HRTEM in Figures 3.13a and 

3.13b show some domains with two-directional fringe details, but some amorphous 

characteristics are also observable in both images. Especially, the amorphous 
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characteristics found in the sample (Figure 3.13a) other than particle surfaces (Figure 

3.13b) suggest incomplete crystallization of some of the UN2 particles. 

Figure 3.11 SE-SEM micrographs of UF4 {(a) commercial; (b) as-synthesized} and (c) 
as-synthesized UN2. 
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Figure 3.12 HRTEM image of UN2 in [111] beam direction. Two insets are the FFT of 
the image and the BF image of the particle used to obtain the HRTEM image. 

Figure 3.13 HRTEM images of two UN2 particles (insets) prepared using solution-drop 
method. 

56 



3.4.2 Microscopy of U2N3 

SE-SEM image and a line scan across the BF image (inset of Figure 3.14b) of U2N3 

sample are shown in Figure 3.14. The morphology of the sample is similar to that of the 

UN2 sample. Particles have irregular shapes with incompletely-crystallized faces (Figure 

3.14a). The particle sizes range from 0.1 to 6 urn, also similar to the UN2 sample. The 

line scan was obtained to determine how the oxygen distributes throughout the sample. 

At each position, when the beam hits a sample particle, a prominent peak for U element 

can be detected. By observing the U peak, therefore, elemental distribution of the UN2 

across the sample with respect N, O, and as well as U can be qualitatively analyzed. The 

line scan graph in Figure 3.14b shows that N distribution throughout the sample is 

uniform, but the O distribution is random depending on the particle which is being 

scanned. This property is prominent in particles at about 8 and 54 urn distances. Also, the 

O peak intensities are close to that of the background intensities. These observations 

imply a minor O contamination as well as a random oxidation of the sample particles 

probably due to environmental oxygen. 

Figure 3.14 SE-SEM micrograph (left) and the line scan across A - B (right) of U2N3. 
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Figure 3.15 TEM images of U2N3: (a) TEM BF image; (b) SAD pattern in [111] zone 
axis; (c) HRTEM image. 

The TEM BF image of a microtome cut U2N3 sample is shown in Figure 3.15a. The 

black spots in this image are due to mass contrast contributed by multiple overlapping 

U2N3 particle layers. Because of these layers, most of the region in the bulk of the TEM 

BF image is too dense to see a clear picture of U2N3 morphology. However, the thickness 

decreases at the edge of the sample, which allows for quality imaging. No secondary 

phase-precipitates or defects in U2N3 are visible in these thin edge areas. The SAD 

pattern shown in Figure 3.15b shows the zone axis is along [111]. The weak diffraction 

spots, as well as some stronger spots possibly corresponding to double diffractions 

(circled in the image), are due to minor secondary phases (UO2) and grain overlapping. 

Grain boundaries can also be observed in the HRTEM image (Figure 3.15c), which 

shows lattice fringes in different orientations correspond to (220) and (422) diffracting 

planes. 
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3.4.3 Microscopy of UN 

A similar size distribution to that of UN2 and U2N3 samples can be seen for UN 

samples as well (Figure 3.16a). However, the UN particle faces appear noticeably less 

sharp. While the higher nitride samples show a majority of the larger particles having 

discrete-sharp faces, very few of the similarly-sized UN particles have observable flat 

sharp faces. This observation suggests that either the image is out-of-focus a little or the 

UN sample is less crystalline than the higher nitride precursor species. SE-SEM image in 

Figure 3.16b is from a UN sample embedded in a spur resin, and the line scan in Figure 

3.16c was obtained by scanning across this image. The O and N distributions throughout 

the UN sample are more discrete than that of the U2N3 in Figure 3.14b. The O 

distribution though has a similar distribution to that of U2N3, especially of the particles at 

about 38 and 48 um distances. 

The TEM BF micrograph in Figure 3.17a shows several UN particles prepared for 

imaging by the solution drop method. Magnified TEM BF images focused on two thin 

edges, B and C, of one UN particle are shown in Figure 3.17b and 3.17c, respectively. 

The particles shown in this image range from 100 to 150 nm in length, which is in the 

lower end of the particle size distribution observed in the SEM image. The lack of 

contrast in the bright field image caused by the high electron scattering factor of UN 

tends to suppress the detailed structure information, making it difficult to detect the 

presence of any secondary phases in the BF mode image shown in Figure 3.17a. 

However, the magnified images of the selected particles in Figure 3.17b and 3.17c show 

no indication of morphological changes corresponding to a secondary phase. The same 
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two particles in Figure 3.17b and 3.17c were used to obtain the HRTEM images shown in 

Figure 3.18 and Figure 3.19, respectively. 
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Figure 3.16 (a), (b) SE-SEM images of UN, and the line scan across the image in (b). 

60 



(a) 

Figure 3.17 (a) TEM BF image of UN particles embedded on a C-Cu grid using solution-
drop method, (b) and (c) are the magnified particle images corresponding to areas B and 

C in Figure (a), respectively. Highlighted areas in Figure (b) and (c) are used in obtaining 
the HRTEM images in Figure 3.18 and 3.19, respectively. 
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Figure 3.18 HRTEM image of the highlighted area of the particle in Figure 8b. 

HRTEM image in Figure 3.18 shows a major grain boundary on another grain 

beneath it. This grain resides on the main particle from a distance of 10 - 20 nm from the 

edge of the particle. UO2 fringe formation could be determined at the surface of this 

particle. The UO2 fringes extend up to about 20 nm from the edge of the grain. At this 

distance a thin layer (indicated by lines in the figure) of amorphous characteristics are 
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found. The presence of UN fringes can be seen after this amorphous layer. This UN 

phase is disrupted at the top of the grain at which the particle edge is seen. The fringes 

are affected by the formation of UO2 (circled area) making them larger than the fringes 

found at the area of the UN phase. 

Figure 3.19 (a) HRTEM image of the particle shown in Figure 3.14c in [111] 
direction and (b) FFT micrograph. Figures (c), (d), and (e) indicate the intensity profiles 

of three different regions shown in (a) denoted by the lines AB, CD, and EF, respectively. 
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The HRTEM image shown in Figure 3.19 was obtained by focusing on a thin area of 

the middle of the particle in Figure 3.17c highlighted with a box. This image shows no 

indication of the presence of UO2 as a secondary phase in this area, supporting the 

hypothesis that the oxide present in the sample is due to environmental oxidation at the 

particle surface rather than UO2 inclusions nucleated within the bulk of the UN phase. On 

the other hand, this figure shows that lattice fringes of UN parallel to the (111) planes are 

continuously grown farther way from the particle edge. These lattice fringes show a long-

range order with different multiplicities of tunnel rows. There are three different tunnel 

rows; two, three, and four-fold. The experimental intensity profiles shown in Figure 

3.19c, 3.19d, and 3.19e were obtained along the lattice fringes normal to line segments 

AB, CD, and EF, respectively. These profiles confirm the tunnel multiplicities (2, 3, and 

4-fold) of the long-range order in the lattice fringes. The FFT micrograph (Figure 3.19b) 

also indicates the presence of well resolved lattice fringes. 

Microtome cut UN sample of 25 nm thick was also used in studying the nanostructure 

of UN. A cross-sectional TEM BF image of a UN particle is shown in Figure 3.20 

together with the HRTEM images of two particle areas as donated in the TEM BF image. 

In the inset HRTEM image, the well-crystallized UN lattice fringes can be identified 

along [Oil] direction. This grain is also surrounded by few more grains in which the 

lattice fringes of UO2 are prominent at the surfaces of those grains. One such grain, 

which is displayed with 0.335 nm fringe spacing, can be seen in the inset HRTEM image. 

HRTEM image on the background of Figure 3.20 consists of UN lattice fringes at bulk, 

but the circled particle area is disrupted by the UO2 formed around most of the grains as 

described before. These observations further confirm the formation of UO2 as a 
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secondary phase due to the oxidation of UN from the environmental oxygen impurity 

after it was made. 

Figure 3.20 HRTEM images of two thin areas of a 25 nm thick UN nano particle 
(cross-sectional TEM BF image is shown) prepared using the microtome cutting method. 
In HRTEM image, the area indicated by A shows both sets of reflections due to (200) UN 
planes. Lattice fringe spacing (0.335 nm) due to UO2 phase was found at one edge of the 

particle as indicated. 

3.5 Discussion 

The terminal product of the ammonolysis of UF4 was identified to be UN2. Further 

heating of UN2 under a nitrogen environment did not produce any UN except a chemical 
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composition (U2N3) of lower nitrogen concentration than UN2. The results observed on 

the ammonolysis of UF4 using different experimental conditions further suggested the 

following reaction mechanism 

UF4(s) + 4NH3(g) -> UNF(s) + 3NH4F(s) 

UNF(s) + 2NH3(g) -> UN2(s) + NH4F(s) + H2(g) 

Decomposition of UN2 under inert atmosphere conditions forms U2N3 and UN. XRD 

patterns obtained for UN2 and U2N3 showed high phase purity of the product, with 

possible contaminations of UN2-X incompletely crystallized impurities plus a minimal 

secondary UO2 phase. Although the XRD patterns indicated the presence of impurity 

phases in minimal quantities, impurity levels were below those observable by either TEM 

BF or HRTEM imaging. It was also found that some of the peaks in UN2 XRD pattern 

can be reduced by heating for longer time periods under NH3 atmosphere. However, the 

longer heating time increased the oxide contamination levels, which in turn would affect 

the phase purity of the final UN sample. Based on the results obtained through this work, 

the production of high-purity UN does not appear to require reacting the fluoride starting 

material past the point at which it is fully converted to a uranium nitride, even though the 

intermediate UN2 product may be slightly hyper-stoichiometric. 

The UN product, however, showed significant phase impurities, with secondary phase 

levels of UO2 up to 10 wt %. Depending on the decomposition time and conditions, UNX 

phases, due to incomplete decomposition, were also present, up to 80 wt %. Given a time 

of heating of at least 30 min and up to 240 min, three primary temperature stability 
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regions for the UNX were identified. UN2 is the only phase present at temperatures below 

675 °C. In the second temperature region, 675-975 °C, UN2 quickly decomposes to a-

U2N3. Between 975 and 1100 °C, both UN and U2N3 were detected depending on the 

temperature and time of heating, with UN being the stable phase in this temperature 

region. 

Above 675 °C, the lattice parameter in the UNX system changes rapidly. Stated 

another way, the reduction of the N/U ratio through decomposition of the UNX system is 

kinetically-favorable at elevated temperatures. The effect is large enough that even 

though UN is thermodynamically favorable at a lower temperature, higher-composition 

UNX phases are kinetically stable up to 675 °C. A linear increase of the lattice parameters 

of both UN2 and U2N3 as a function of reaction temperature was observed. This indicates 

a continuous removal of nitrogen from the UNX system, lowering the N/U molar ratio per 

the correlation reported in Figure 3.7. Heating UN2 under N2-8% H2 for 30 min, even at 

1100 °C, produces only U2N3, with no formation of UN, further supporting the reaction 

model presented in Equations 1 and 2. 

In contrast to the U2N3/UN2 samples, UN showed no variation in lattice parameter as 

a function of reaction temperature. This is consistent with the knowledge that UN has a 

very narrow range of compositions at temperatures below 1200 °C [23]. Also, 

considerable levels of uranium oxide impurity (up to about 10 wt %) had only a small 

effect on the lattice parameter of the UN phase. Because oxide phases are known to have 

a very low solubility in UN [24], this consistency in the lattice parameter supports the 

conclusion that lattice parameter of UN will not vary significantly as a function of oxide 

impurity levels across a large composition range of the UN/UO2 system. 
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The activation energy for the formation of UN under argon atmosphere starting from 

UNX with a composition of UNi.go was determined to be 423.8 ± 0.3 kJ/mol. A theoretical 

study reported -504.2 kJ/mol as the amount of stabilizing energy for nitrogen atom 

occupying a lattice site in CI-U2N3 with a 1.75 N/U molar ratio [25], indicating about 

504.2 kJ/mol activation energy requirement to decompose the material into UN according 

to the equation 2, provided the freeing of nitrogen from the lattice and the creation of a 

vacancy is the rate-determining step. This result provides reasonable agreement with the 

activation energy calculated for the decomposition of the higher nitrides to UN (423.8 ± 

0.3 kJ/mol) determined in this study. 

HRTEM analysis of the UN samples confirmed that the bulk of the particle consist of 

UN, as suggested from the XRD pattern, with a UO2 secondary phase forming on the 

surface of particles observed (Figure 3.18 and 3.20). The large interior region of the UN 

lattice fringes, corresponding to the (200) plane (Figure 3.20), is uninterrupted by UO2 

inclusions. This supports the conclusion that oxide impurities are likely to be formed by a 

diffusive process from the synthetic environment, and thus are also likely to form along 

particle surface. Given the high reactivity of UN in any environment not completely 

devoid of oxygen, contamination from the experimental apparatus is likely to be the 

source of these oxide impurities. Subsequent analysis of the UN sample after it had been 

allowed to age for three months shows the ingrowth of oxide contamination, lending 

support to this initial hypothesis. The quantitative analysis performed on the XRD 

patterns of both these samples showed that the UO2 level increases from 5.0 (1) to 14.8 

(1) wt % over this time period [10]. In fact, the determination of oxygen levels in the 
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samples by line scans also confirmed the presence of UO2 at minimal quantities in U2N3 

and UN. 

The stoichiometry between uranium and nitrogen in uranium nitrides is known to be a 

continuous variable from UN1.75 to UN2.0 for UN2 and UN1.45 to UN1.75 for U2N3 [13, 16]. 

However, for the lower nitrides the stoichiometry range is smaller, UN0.995-UN0.999, than 

that of the higher nitrides. The refined lattice parameters of UN2 and U2N3 synthesized 

samples show a match to the reference values only up to the second decimal point (Table 

3.1). The X-ray densities of these two nitrides also vary accordingly. However, the lattice 

parameter and x-ray density of the synthesized UN matches with the reference value 

within the confidence intervals reported. Thus the lattice parameter variance in the higher 

uranium nitrides (UN2 and U2N3) likely indicates the vast range of stoichiometry 

identified by other authors. The absence of variance in the lattice parameter for the 

synthesized UN confirms its phase-purity to expectations, given the narrow range of 

stoichiometry reported for UN. 

As-synthesized uranium mononitride particles appeared to fall within a particle size 

distribution of 0.1-6 um. Furthermore, the particle sizes estimated by SEM were verified 

by TEM. This particle size range is consistent with the previously reported microscopic 

data [26], and it is similar to the particle size distribution observed for the UN2 and U2N3 

precursor phases. The surface area measurements of the nitride species also show no 

significant change as the UN2 is converted to the U2N3 and UN products, suggesting that 

the conversion of the higher nitrides to the mononitride does not significantly impact 

particle size or morphology. 
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3.6 Conclusions 

Uranium nitrides synthesized using the oxidative ammonolysis of UF4 were 

successfully characterized by means of XRD and electron microscopy. Formation of UN 

was identified to be occurring through first forming UNF. Further ammonolysis produced 

and UN2 as found before. UN2 decomposes into UN via U2N3. The UN samples could be 

synthesized from UN2 up to a 97 (1) weight percent phase purity. The decomposition of 

UN2 samples progressed slowly below 675 °C, but showed a rapid rate increase above 

that temperature. An intermediate U2N3 phase was seen at temperatures greater than or 

equal to 675 °C under inert atmosphere with a negligible nitrogen pressure. UN was 

formed at 975 °C and above. A continuous removal of nitrogen was observed in the UN2 

decomposition process to U2N3 and to UN with continues crystal structure changes from 

fee to bec and from bec to fee. The complete decomposition of about 50 mg of UNX 

sample to pure UN could be completed in less than 30 minutes at 1100 °C. The lattice 

parameter of UN did not vary significantly with changing reaction temperature or purity 

of the bulk sample. The activation energy for the formation of UN via U2N3 

decomposition under inert atmospheric conditions was determined to be 423.8 ± 0.3 

kJ/mol. 

The TEM observations of this UN sample showed that UN has long-range order in its 

microstructure. Furthermore, the HRTEM images of microparticle surface and cross-

section made by solution-drop and microtome-cutting methods respectively showed the 

secondary oxide phase formed primarily on the UN particle surface. Given the absence of 

an oxide phase in the UN2 and U2N3 samples in large quantities, the oxide contamination 

appears to form during the final stage of the process, most likely due to oxygen 
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contamination in the experimental system used for this synthesis. Observed increases in 

uranium oxide levels in UN after long term exposure to air support the conclusion. Better 

oxygen control during the final decomposition reaction, such as replacement of the quartz 

furnace tube and the addition of oxygen getters for the cover gas, may be sufficient to 

reduce the oxide levels within the UN product, as well as storage of the UN samples 

under inert atmosphere. 
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CHAPTER 4 

EVALUATION OF THORIUM SYSTEM 

4.1 Introduction 

Compared to the UNX system, only a few thorium nitrides have been reported and 

studied. Among them, ThsN4 is the most common nitride of thorium [1, 2]. TI13N4 has 

been synthesized using a number of routes: heating thorium metal [3], heating thorium 

hydride [4, 5] under ammonia or nitrogen, or reacting TI1CI4 with UNH2 in liquid 

ammonia and then heating under nitrogen gas [6]. Two other common thorium nitrides 

that have been reported are TI12N3 [4, 7] and ThN [3, 4]. Synthesis of thorium 

mononitride (ThN) is achieved by thermally decomposing higher thorium nitrides such as 

TI12N3 [3, 4] and ThaN4 [1, 5, 7, 8]. The phase purity of ThN depends on a number of 

factors such as heating atmosphere, temperature, and time [5, 8]. If the temperature is not 

high enough decomposition of TI13N4 will not be completed, resulting in ThN with 

secondary chemical phases. At high temperatures, at which TI13N4 can be completely 

decomposed, other secondary chemical phases like TI1O2 and Th2N20 form in addition to 

ThN. Formation of these secondary phases, especially TI1O2, has also been found in 

synthetic routes of higher thorium nitrides (ThxNy) [3]. Formation of a TI1O2 

contaminated phase in TI13N4 at room temperature is also reported [5]. The presence of 

TI1O2 could also lead part of the ThN to covert into Th2N20, reducing the phase-purity of 

ThN even under inert atmospheric conditions [5]. Some of these issues have been 
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investigated in kinematical and as well as thermodynamic aspects [5, 8]. However, only 

very few microscopic studies have been conducted and reported to explain the phase-

purity issues found in all these thorium nitrides. 

Chiotti et al reported the formation of TI12N3 when the thorium metal is heated up to 

750 °C under NH3. Synthesis of the same compound was also reported in 1965 by 

thermally decomposing thorium hydride at temperatures below 1500 °C under nitrogen or 

ammonia [4]. Identification of TI12N3 in the late nineties was controversial due to its 

crystallographic structure resemblance to TI12N2O compound. R. Benz et al., [9] reported 

TI12N3 to be equivalent to Th2N20 which was synthesized by reacting ThN with TI1O2 at 

1700 °C under nitrogen atmosphere. Another study reports TI12N3 to be unstable at 

temperatures higher than 1500 °C under nitrogen or ammonia atmospheres [4]. Therefore, 

these TI12N3 and Th2N20 can be considered as two separate compounds. Although there 

are few publications related to the chemistry of these two compounds to the best of our 

knowledge, microscopy has never been used to confirm the chemical structure 

determined by crystallography or to investigate the secondary phase contamination 

problems found in these thorium nitrides. 

In this chapter, evaluation of the low-temperature fluoride route in producing ThNx is 

presented. It was found that the desired ThNx was not produced from the initial 

ammonium-thorium-fluoride starting material. However, the reactions and intermediate 

species in the formation of ThNF from TI1O2 using the described experimental conditions 

are provided. A complete study on the thermal behavior of ThNF up to 1400 °C under 

different environmental conditions is also presented. In addition, a possible reaction 

mechanism for the formation of ThNF from TI1F4 under ammonia gas is proposed. 
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Microscopy is used to characterize the morphological and nanostructural changes 

occurring during the complete reaction. Structural details are used in explaining the 

kinetics of different reactions and their final product formations. 

Furthermore, a new method is presented to synthesize TI12N3 under NH3 with a 

secondary oxide phase using a simple experimental setup after making some changes to 

the fluoride route. Identification of TI12N3 naturally leads questioning the oxidation state 

of Th in the compound. Because the electronic configuration of Th is [Rn] 6d2 7s2, it has 

a stable tetravalent state. In the Th2N3 compound, with a nominal oxidation state of 4.5+, 

implies a mixture of tetravalent and pentavalent oxidation states. The reliance on the 

identification of the compound as Th2N3 is based on existing literature. The microscopic 

studies of this material synthesized here showed no oxygen in the nitrogen rich areas of 

the sample particles that could lead to the formation of Th2N20, where tetravalent Th 

would be expected. Further details on this system are discussed in the results section (4.6), 

in discussion (4.7), and also be discussed in Chapter 7 as future work. Reactions of 

different thorium fluorides with lithium amide (LiNF^) under NH3 were studied, and the 

sample synthesized with the lowest impurity was used for the characterization. Electron 

microscopy was used to study the morphology and microstructure of TI12N3. These 

microscopic observations were included in this study to discuss how the morphological 

and nanostructural characteristics of Th2N3 induce the formation of a ThC>2 impurity 

phase which is common in all the nitride systems of thorium. The general goal of this 

chapter is thus to shed light on the chemistry of thorium nitride systems by means of 

characterization of the underlying crystal structure and nanostructure. 
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4.2 Experimental Details and Characterization Methods 

4.2.1 Synthesis of Ammonium Thorium Fluoride 

A solid state reaction was utilized in synthesizing ammonium thorium fluorides. Two 

batches of ThC>2 of weights 100 mg and 1000 mg were used in these experiments. The 

Th02 (STREM Chemicals, 99.99 %) powder was added into a polyethylene vial with 

ground NH4HF2 (Fisher Scientific, 99.99 %) in a 1:4 molar ratio with 10 mol. % excess 

NH4HF2. The sample was then mixed with a spatula for about 10 min. The reaction was 

allowed to progress in the closed vial at room temperature until completion. Reaction 

progress was evaluated time to time by removing a small amount from the mixture for X-

ray diffraction. 

4.2.2 Ammonolysis of (NFL^ThFg and Heating of ThNF. 

The resulting (NFL^ThFg product was added onto a sheet of platinum and the 

platinum sheet with the sample was inserted into a 25 mm diameter quartz-glass tube. 

The tube was closed on either end with a 25 mm quartz Solv-Seal (Andrews Glass Co., 

Inc.), and sealed using Pyrex Solv-Seal caps fitted with 15 mm high vacuum Teflon 

stopcocks. Ammonia gas (high-purity 99.999%, Praxair) was flushed through the tube for 

5 minutes to cover the inside of the tube with NH3 gas. Then the system was heated to 

800 °C under a constant flow of ammonia gas at 1 atm. The gas flow was constant 

throughout the experiment and was used as a cover gas. Total heating time was varied up 

to a maximum of 5 hours and then cooled to room temperature. Once the samples cooled, 

the ammonia gas flow was terminated and the product was removed for analysis. The 

reaction was also performed at 1000 °C for 45 minutes and at 1100 °C for 15 minutes. 

All other heating of the products were done under high-purity (99.999%) Ar, A1M2 (5%), 
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N2, and N2/H2 (5%). Zr-sponge was also used as a getter in some experiments where 

elevated temperatures such as 1100 °C were used. 

4.2.3 Synthesis and heat-treatment of TI12N3 

Reactions involving three thorium fluorides were tested in synthesizing TI12N3. These 

fluorides were (NH^ThFg, TI1F4, and ThNF, which can be synthesized at low-

temperatures as described in above sections. Each of these thorium compounds of 25-50 

mg batches were mixed with LiNFb (95%, Alfa Aesar) at 1:1 or 1:4 molar ratio. The 

mixed sample was added on to an open platinum foil and placed inside a quartz tube. The 

mixture was then heated at 800 °C for 30 min under a flowing NH3 gas. Studies of the 

thermal behavior of the as-synthesized Th2N3 samples were performed under inert 

atmosphere (high-purity argon). These thermal studies were done at four different 

temperatures (800, 900, 1000, and 1100 °C) for 30 min each. Th2N3 was initially 

identified with X-ray powder diffraction and its refinement was performed by using the 

ICSD pattern number 76467. 

4.2.4 Characterization Methods 

X-ray powder diffraction was used to identify phase distributions of the synthesized 

samples using Cu-Ka radiation. Morphological studies of the samples were done using 

SEM and TEM. Energy dispersive spectrometry (EDS) was used to determine the 

elemental distributions. The conventional bright field (BF) diffraction contrast mode and 

the high resolution (HR) TEM modes coupled with selected area electron diffraction 

(SAD) patterns were utilized to characterize the samples. 
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4.3 Synthesis and Characterization of (NH^ThFg 

The XRD patterns of the samples showed that the terminal product of the reaction of 

NH4HF2 with ThCh is (NFL^ThFg with a triclinic unit cell and PI space group. Further 

analysis confirmed the formation of an intermediate (NH4)3ThF7 chemical phase of an 

orthorhombic unit cell and Prima space group in the reaction. Figure 4.1 is a graphical 

view of the kinetics of Th02 (100 mg batch) solid state reaction with NH4HF2 at room 

temperature. After one day of mixing the two reactants, a new chemical phase was 

formed according to the XRD pattern in Figure 4.1. This XRD pattern has some 

similarities to the pattern of the terminal (NH^ThFg chemical phase even though 

refinement assuming similar crystallography was not successful. The intermediate 

chemical phase which was identified as (NFLOsThF? was formed after two days. The 

XRD pattern of the sample after 5 days displays some of the peaks correspond to 

(NH4)3ThF7 as indicated by arrows. These peaks start to diminish with the formation of 

new set of peaks at 26 values of 12.6, 15.1, and 15.5°. The XRD pattern formed with 

these peaks was prominent and was believed to be another intermediate phase that was 

not identifiable as the known ammonium fluorides of thorium or any other actinides such 

as uranium and neptunium. This new and unknown chemical phase remained until it 

completely changed into the terminal (NH^ThFg chemical phase after 22 days at room 

temperature. 

Wani et al [10] describes the reaction of solid TI1O2 with solid NH4HF2 at room 

temperature to be quick (two hours) in forming (NH^ThFg. However, they reported an 

absence of the reflection at d = 0.815 nm in the XRD pattern of this product. Furthermore, 

they did not identify or matched their XRD pattern to (NFLOsThF? which has some 
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similar reflections to that of (NH^ThFg with the absence of the peak at d = 0.815 nm 

(Figure 4.2). Further comparison on this work cannot be done because the experimental 

parameters such as reactant weights or XRD patterns of the products are not reported in 

their article. 
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Figure 4.1 XRD patterns indicating the reaction progress of TI1O2 mixed with excess 
NH4HF2. Only a part of the XRD patterns are shown for clarity of the comparison. 

The observed and the calculated patterns of (NFL^ThFs and a sample containing 

(NH4)3ThF7 phase are shown in Figure 4.2a and 4.2b, respectively. The patterns of both 

(NFL^ThFg and (NH^ThF? matched well with the reference patterns in the ICSD of 

numbers 9889 and 14128, respectively. Few impurity peaks in both samples were 

identified especially at about 0.68 nm d-spacing value in (NFL^ThFs sample. These 
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impurity peaks together with the amorphous characteristics of the samples can be 

accounted for the excess NH4F/NH4HF2 salts. The refined triclinic unit cell parameters of 

(NH4)4ThF8 compound after applying Rietveld method are a = 8.5041 (7), b = 8.3667 (7), 

and c = 7.3372 (6) A. Lattice parameters of orthorhombic (NFLOsThFy with a space group 

of Pnma were refined to be a = 0.3952(9), b = 0.7932(5), and c = 0.70462(5) nm. 

Peak at 0.815 nin 

LaB6 SRM 660a 39.88 % 
(NH4)4ThF8 60.12 % 

Figure 4.2 XRD powder refinements of (a) (NH^ThFs and (b) (NH^ThFy samples. 
Calculated patterns of both (NFL^ThFg and (NFL^ThFg are highlighted in the 

corresponding figure. X-axes are in 10"1 nm units. 
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The secondary electron SEM image of the (NH4)4ThF8 sample (Figure 4.3a) indicates 

well-crystallized sample particles with an acicular shape (Figure 4.3a) compared to the 

plate-like shape of the reactant, ThC>2, (Figure 4.3c). Furthermore, the acicular crystals 

that Penneman et al [11] described can also be clearly seen in this figure. The elemental 

distribution of the (NFL^ThFg sample obtained using the EDS (Figure 4.3b) also shows 

the presence of the expected components in the sample. 

Figure 4.3 Secondary-electron SEM image (a) and the corresponding EDS spectrum (b) 
of the synthesized (NH^ThFg and the SEM image of ThC>2 (c). 
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Figure 4.4 (a) TEM BF image, (b) [111] electron diffraction pattern, and (c) HRTEM 
image of (NFL^ThFg ground particle. 
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TEM BF image of the (NH^ThFg particles from a ground sample is shown in Figure 

4.4a. The SAD pattern in Figure 4.4b was obtained by focusing on an area of the large 

particle seen in the bottom half of Figure 4.4a, and this pattern is in [111] zone axis. 

Figure 4.4c is a HRTEM image of the same particle displaying lattice fringes in several 

different orientations as indicated in the image. Some of these domains have high point 

resolution in two directions while others exhibit either one or none directional fringe 

properties. This observation suggests that the (NFU^ThFg obtained is a polycrystalline 

material. 

Figure 4.5 (a) TEM BF image of another ground (NH4)4ThF8 particle, (b) The HRTEM 
image of the circled area of (a) and (c) the corresponding FFT. 
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On the other hand, Figure 4.5b shows a well-oriented set of lattice fringes of 

(NH^ThFg corresponding to (1-11) lattice plane distributed in a larger area than in the 

nanocrystalline areas found in Figure 4.4c. This set of lattice fringes are also disturbed 

though by another set of similar sized nanoparticle domain which has being grown from 

the other side of the particle as indicated by an arrow. This feature further implies a 

polycrystalline characteristic of the sample even though this area consists of 

comparatively large nanoparticles. 

4.4 Synthesis and Characterization of ThNF 

Ammonolysis of (NFL^ThFg or the heat-treatment of the sample under ammonia 

atmosphere at three different temperatures up to 1100 °C (Table 4.1) showed that the 

final product of this reaction step is ThNF. At 800 °C, 300 minutes were required to 

synthesize this terminal product. Increasing the reaction temperature resulted in a 

significant decrease in reaction time, with sample heating at 1100 °C for 15 minutes 

optimal for synthesis of ThNF. 

Table 4.1 1 
Temperature/ °C 

800 

1000 

1100 

remperature < 
Time/ min 

300 

45 

15 

effect on the ammonolysis of (NH^ThFg. 
Products 

1 ° phase 

ThNF 

ThNF 

ThNF 

Weight % 

79.0(6) 

100 

100 

2° phase 

Th02 

-

-

Weight % 

21.0(6) 

-

-
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LaB6 SRM 660a 27.54 % 
ThNF 72.46 % 

20 60 80 
2Th Degrees 
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Figure 4.6 XRD powder refinement of ThNF synthesized by heating (NFL^ThFg at 
1100°C for 15 min under NH3. 

The XRD pattern of the ThNF sample synthesized by ammonolysis of (NFL^ThFg at 

1100 °C for 15 minutes (Figure 4.6) confirms the sample is single-phased. The refined 

lattice parameter of the rhombohedral unit cell was 0.71312 (5) nm which agrees well 

with the literature value of 0.7130 (3) nm [12]. The phase density of ThNF was 

calculated to be 9.369 (2) g/cm3. 

The secondary SEM image of ThNF sample (Figure 4.7a) shows plate-like particle 

shapes. The 15,000 times magnified SEM image (Figure 4.7b) further displays pitted and 

porous characteristics of the ThNF particle surface. Size of these pore spaces vary from 

about 50 to 200 nm in width. Furthermore, the corresponding EDS spectrum (Figure 

4.7c) of this sample confirms the presence of thorium, fluorine, and nitrogen. The 

nitrogen peak partially overlaps with the background peak from carbon tape that was 

used to mount the sample. SEM image of TI1F4 is also shown in Figure 4.7d for the 

comparison purposes. 
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Figure 4.7 Secondary electron SEM images of the ThNF sample, (a) showing the 
morphology at x5,000 magnification and (b) at x 15,000 magnification, (c) the 

corresponding EDS spectrum of ThNF, (d) and the SEM image of TI1F4. 

Table 4.2 Elemental analysis of the as-synthesized ThNF by EDS. 

Element 

NK(±1.25) 

FK(±1.26) 

ThK(±1.47) 

Th:N:F molar ratio 

Averaged atom percentages (%) 

39.0 

21.6 

39.4 

1:0.99:0.60 

The elemental analysis of this sample determined by EDS is shown in Table 4.2. The 

Th:N:F molar ratio of the compound is approximately 1:1:0.6. Based on the error 
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associated with the EDS on quantification and because EDS is considered a semi­

quantitative method, the stoichiometry of the compound can be considered close to 1:1:1 

(ThNF). In the sample heated for 300 minutes at 800 °C, a secondary ThCh phase was 

identified due to prolonged exposure to minute oxygen impurities in the system. 

A 50 ran thick sample of ThNF was microtome cut for the TEM imaging. Figure 4.8a 

shows a low resolution TEM BF image of few ThNF particles thus prepared. Since the 

microtome cutting was applied for the specimen preparation, the cross sectional view of 

the sample at HRTEM is supposed to show a uniform intensity across a focused area. 

However, most of the areas investigated showed intensity variance of the images at high-

resolution. HRTEM of one such area is shown in Figure 4.8b. The area in this image 

shows a continuous set of lattice fringes of ThNF correspond to (0-11) planes under [100] 

beam. Most of the area displays lattice fringes only in one direction except for some 

lattice fringes in the area depicted by B - C. A line scan across the image on a randomly 

selected lattice fringe from A through D (Figure 4.8d) showed that the intensity of the 

image changes considerable. The intensities from A to B do not vary much, but it is 

highest in the region denoted by B - C. From C to D, the intensities start to change 

abruptly and approach a minimum at the end of the line. This observation suggests a 

thickness variance across the scanned area forming a thinner region of about 6 ran long 

given the length of the line scanned to be 36 ran. The pore spaces of the ThNF particles 

detected by SEM imaging were 50 to 200 nm in width. This implies a continuation of the 

pore spaces up to nano-scale of the ThNF compound. 
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Figure 4.8 (a) TEM BF of a microtome cut ThNF sample, (b) HRTEM image, (c) FFT of 
HRTEM, and (d) experimental intensity profile along A - B in HRTEM. 
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Figure 4.9 (a) HRTEM of another area of the particle in Figure 4.8a. (b) Enlarged image 
of area denoted by letter A with a rectangle. The area B denoted by a rounded rectangle is 

used in Figure 4.10. Onsets of each image are the corresponding FFT micrographs. 

HRTEM of another area of the same particle in Figure 4.8a is displayed in Figure 4.9. 

Two rectangle areas of Figure 4.9 were enlarged using a smooth spatial filter to obtain 

HRTEM images in Figure 4.9b and Figure 4.10. The beam direction of these HRTEM 

images is [110]. Lattice fringes in Figure 4.9b provide a width of 0.265 nm for a single 

layer of fringes corresponding to a reflection plane of (221). Intensity difference between 

areas A and B reveals more intuitive structural detail of ThNF as depicted in Figure 4.10. 

Thickness variance as identified previously is the probable reason for such a difference in 
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intensities of two areas within 30 nm. Lattice fringes in area B as shown in Figure 4.10 

show more details than area A. Spacing between two layers of lattice fringes in Figure 

4.10 is 0.225 nm which is close to the d-spacing of (333) lattice plane of ThNF. 

Furthermore, this spacing is less than the width of a single layer of lattice fringes in area 

A (0.265 nm) demonstrating a shift in the planes that attribute to the lattice fringes of the 

HRTEM images. 

Figure 4.10 HRTEM of the particle area denoted by letter B in Figure 4.9. Inset to the 
upper right side is the electron density map calculated by ThNF XRD pattern using 

charge flipping. A model of the molecule in (111) direction is also inserted. 
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The electron density map, which is the inset of Figure 4.10, of ThNF calculated from 

XRD pattern utilizing charge flipping also confirms the structural details observed with 

HRTEM imaging. Electron density map indicated a high electron density at locations 

where Th atoms reside within the crystal structure of ThNF. Therefore, the HRTEM 

imaging will only show the intensities due to Th atoms. Repetition of such structural 

units will give a well-ordered nanostructure as in Figure 4.10. Atomic resolution of the 

hexagonal-like order of atoms in the HRTEM image is different from point-to-point as 

indicated by circles in the image. The atomic planes in (111) direction of the packed 

rhombohedral unit cells are in and out of plane slightly such that the depth of the imaging 

can change as indicated in the inset of the Figure 4.10. All these observations confirm the 

presence of single-phased ThNF in the sample. 

4.5 Ammonolysis of TI1F4 and the Thermal Behavior of ThNF 

Heating of the (NH^ThFg sample at 800 °C for 60 min formed TI1F4 in agreement 

with the work done by Wani et al [10]. The XRD powder pattern together with the 

Rietveld analysis of ThF4 chemical phase identified is shown in Figure 4.11. The lattice 

parameters, a = 13.049 (3), b = 11.120 (2), c = 8.538 (2) published by G. Benner and B. 

G. Mueller [13] for the monoclinic ThF4 agree fairly well with the refined lattice 

parameters, a = 13.0444 (7), b = 11.0118 (6), c = 8.5343 (5) of the ThF4 sample 

synthesized here. 

After identifying TI1F4 as an intermediate of the conversion of (NH^ThFs into ThNF, 

ThF4 was heated under varying experimental conditions (Table 4.3) to determine the 

reaction mechanism. Removal of fluorine atoms from the ThF4 and incorporation of 

91 



nitrogen to fill those vacant sites can be observed as the low-stoichiometric chemical 

phases of thorium nitride fluorides start to appear in the samples (Table 4.3). 
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Figure 4.11 XRD refinement of the sample synthesized heating (NH4)4ThF8 at 800 °C for 
60 min under NH3. 
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Ai 1 ^111 1 1 ^ 1 tti in ii^iH i,tt 1 1—imfflî irfhiti 11 inn iflA.rafaAjiftjtaoLAfrftAAui 

20 40 60 80 100 
2Th Degrees 

Figure 4.12 XRD powder refinement of the TI1F4 sample after the ammonolysis at 
800 °C for 1 hour. 
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Table 4.3 Ammonolysis of ThF4. 
Temp./ °C 

800 

800 

800 

800 

1000 

1000 

1100 

Time/ min 

60 

240 

300 

600 

45 

75 

15 

Product 

Primary phase 

ThN0.79F1.63 

ThNF 

ThNF 

ThNF 

ThNF 

ThNF 

ThNF 

Weight % 

73.6(2) 

79.0(1) 

79.0(6) 

100 

100 

82.4 (6) 

100 

Secondary phase 

Unreacted TI1F4 

ThNo.9Fu 

TI1N0.9F13 

-

-

Th02 

-

Weight % 

26.4(2) 

21.0(1) 

21.0(6) 

-

-

17.6(7) 

-

Figure 4.12 shows the XRD powder pattern refinement of the ThN0.79F1.63 sample 

which was synthesized by heating ThF4 at 800 °C for 60 min. Heating ThF4 for 300 min 

under NH3 further removed the fluorine content from the reactant producing ThNF (79 

wt%) and some ThN0.79F1.63 (21 wt%). XRD powder refinement of this sample is 

displayed in Figure 4.13 with highlighting the calculated pattern for ThN0.79F1.63. A 

complete formation of ThNF was observed after 600 min with no TI1O2 impurities 

(Figure 4.14a). However, a 17.6(7) wt% ThC>2 secondary phase was detected on heating 

TI1F4 at 1000 °C for 75 min (Figure 14b) whereas a 45 min heating did not show any 

impurity phase. These three observations suggest that prolong heating at elevated 

temperatures form a TI1O2 secondary chemical phase due to the oxygen partial pressure 

produced by quartz tube used to insert the sample for the experiment. 
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Figure 4.13 XRD powder refinement of the TI1F4 after the ammonolysis at 800 °C 
300 min. 
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Figure 4.14 XRD powder refinements of ThF4 after the ammonolysis at 800 °C for 600 
min (a) and at 1000 °C for 75 min (b). Square root of counts was used as the scale of Y-

axis for proper display of the calculated patterns. 

Thermal stability of ThNF under different atmospheres was tested as well, and the 

results are summarized in Table 4.4. Under high-purity argon (99.999 %) at 1100 °C, 

ThNF decomposes into ThN0.79F1.63 with a formation of a minor secondary TI1O2 phase 

probably due to minor oxygen impurities formed in the experimental setup at 1100 °C. 

94 

http://ThN0.79F1.63


Under N2 and N2-H2 (5 %) environments, ThNF decomposed into another low-

stoichiometric thorium-nitride-fluoride (ThN0.90F1.30). 

Table 4.4 Thermal behavior oi 
Atmosphere 

Ar 

Ar-H2 (5%) 

N2 

N2-H2 (5%) 

N2-H2 (5%) 

Temperature/ °C 

1100 

1100 

1100 

1100 

1100 

'ThNF under different atmospheric conditions. 
Time/ min 

60 

60 

60 

60 

120 

Product 

ThN0.79F1.63 

Th02 

ThOo.90F1.30 

ThN0.90F1.30 

Th02 

Secondary phases 

Th02 

-

ThNF, Th02 

Th02 

-

4.6 Synthesis and Characterization of TI12N3 

Table 4.5 summarizes some of the products observed after heating different thorium 

fluorides under NH3 after mixing with LiNH2. These temperatures were randomly 

selected and 800 °C was found to be sufficient to make TI12N3. At low temperatures, ThF4 

was observed as the major chemical species. At elevated temperatures, three chemical 

phases were identified in the sample made from (NFLt^ThFg, while only two phases were 

identified in the samples made from ThF4 and ThNF. The sample which contained LiF 

was made by mixing TI1F4 and LiNH2 at 1:4 molar ratio. All the samples made at 

elevated temperatures contain TI1O2 as the major second phase and the Th2N3. A few 

more samples were made by heating ThNF/LiNH2 mixture at 800 °C under NH3 for 30 

min and then by consecutive heating of the sample under N2 and N2/H2 (5%) up to 

900 °C for 30 min. Further heating under different atmospheres did not change the 

chemical phase even though the weight percentages of each phase seem to change. 
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Further heat-treatment of TI12N3 samples at different temperatures under high-purity 

argon atmosphere is shown in Table 4.6. At 800 and 900 °C, TI12N3 phase was almost 

diminished, while at 1000 and 1100 °C a complete oxidation of the compound could be 

identified. 

Table 4.5 Results obtained after heating different thorium fluorides with LiNH2 under 
ammonia. 

Sample 

(NH4)4ThF8 

(NH4)4ThF8 

ThF4 

ThF4 

ThF4 

ThNF 

Temperature/ °C 

100 

900 

100 

800 

800 

800 

Time/ min 

60 

60 

60 

30 

60 

30 

Products 

ThF4 

TI12N3 

ThF4 

Th2N3 

Th2N3 

Th2N3 

-

Th02 

-

Th02 

Th02 

Th02 

-

Impurities due to ThFxOy 

-

LiF 

-

-

Table 4.6 Results obtained after heating Th2N3/Th02 sample at different temperatures 
under high-purity argon for 30 min. 

Temp. /°C 

800 

900 

1000 & 1100 

Products 

Primary 

Th02 

Th02 

Th02 

Wt. % 

97.16 

97.74 

100 

Secondary 

Th2N3 

Th2N3 

-

Wt. % 

2.84 

2.26 

-
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Figure 4.15 Crystal unit cell of TI12N3 with La203-type hexagonal P3m\ structure. 

The Th2N3 phase investigated in this study crystallizes in the La2C>3-type hexagonal 

system (Figure 4.15) with P3m\ space group symmetry [9]. Figure 4.16a shows the XRD 

pattern of the TI12N3 sample synthesized by heating a mixture of ThNF/LiNF^ at 800 °C 

for 30 min under NH3. The refined lattice parameters of the hexagonal TI12N3 are a = b = 

3.8843(1) and c = 6.1853(3) A {pia = 1.59238). These values have a match up to the third 

decimal point of the lattice parameter values of TI12N3 of the ICSD pattern number 76637 

which is calculated from Zachariasen et al [9] and the lattice parameters reported by 

Chiotti et al [3]. Interatomic distances of the crystal unit cell refined by XRD pattern of 

the TI12N3 are summarized in Table 4.7. 
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Table 4.7 Interatomic distances for Th2N3 with La203-type hexagonal P3m\ crystal 
structure. 

22,000 
20,000 
18,000 
16,000 
14,000 
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§ 10,0001 
Q 8,000] 

6.0001 

Bonds 
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N(l)-Th(l) 
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Distances (A) 
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Figure 4.16 XRD powder refinement using Rietveld method. The calculated TI12N3 
pattern is highlighted. Inset is the corresponding Fourier map of TI12N3. The sample 

contains 56 wt% TI1O2 as a second chemical phase. 

SEM micrographs presented in Figure 4.17 show the morphology of TI12N3 sample 

the TI1O2 source sample used to synthesize fluorides of thorium. Thin-square particles of 

about 10 urn in length can be seen in TI1O2 (Figure 4.17b). Particles of incompletely 

crystallized faces can be observed for the sample synthesized (Figure 4.17a). 
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Multibranched characteristics of TI12N3 particles are also visible in Figure 4.17a. These 

dendrites contain bulk areas (anhedrals) agglomerated with subhedral (Figure 4.18b) and 

needlelike (Figure 4.18c) grains. The EDS spectrum in Figure 4.18a shows Th, N, and O 

present in the sample. Figure 4.18a also reveals that the sample consists of some F 

impurities. Quantitative analysis in Table 4.8 further shows that F represents the lowest 

elemental distribution in the sample. Absence of any ThF4, ThNF, or any other crystalline 

fluoride chemical phases in the XRD pattern indicates that the fluorine is in an 

amorphous phase of the sample. 

Figure 4.17 SEM micrographs of the (a) synthesized TI12N3 sample and (b) ThC>2. 

Table 4.8 Elemental distribution of the as-synthesized TI12N3 sample 
Element Wt. % Error % 

N 

O 

Th 

6.28 

11.19 

4.04 

78.49 

0.86 

0.59 

0.56 

1.02 
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Figure 4.18 (a) EDS spectrum and (b), (c) SEM micrographs of the TI12N3 sample at 
different area of the sample. C and Au are from the tape used to mount the sample and 

gold coating, respectively. 

EELS elemental mapping of a cluster of reasonably separated particles (Figure 4.19a) 

of the synthesized sample are shown in Figure 4.19b through 4.19e. Distribution of 

thorium (Figure 4.19b) is most likely uniform throughout the grain edges where thickness 

is less. Figure 4.19c shows the amount of nitrogen distributed in two particle areas (bright 

white) is higher than in all other regions. Therefore, the region to the left bottom was 

further focused in obtaining HRTEM in Figure 4.20. On the other hand, a uniform 

distribution of oxygen can be observed throughout all the particles in Figure 4.19d. 
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Oxygen is also deficient in particles where nitrogen is rich. Such large particle area is 

highlighted with a circle in Figure 4.19c and 4.19d. Similar characteristics can be seen on 

the fluorine map in Figure 4.19e, except for one bright area with more amorphous 

characteristics (highlighted in Figure 4.19a and 4.19e) than other particle areas. This 

observation explains the presence of F in amorphous particles mainly. 

Figure 4.19 EELS elemental maps of Th2N3 sample, (a) Zero energy-loss image, (b) Th 
map, (c) N map, (d) O map, and (e) F map. 

HRTEM images of the TI12N3 particle in Figure 4.20a and 4.20b indicate that 

these lattice fringes are from (100) plane reflections aligned in [010] beam direction. 

Most of the areas in Figure 4.20a do not contain lattice fringe details clearly due to 

thickness contrast of the particle. However, the magnified area in Figure 4.20b consists of 

2-directional lattice fringes corresponding to (100) reflections. This area also shows to 

contain amorphous domains of < 2 nm length. Furthermore, some of the lattice fringes 

(along AB) display disorientations in their atomic distributions. Corresponding 
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experimental intensity profiles within one set of lattice fringes normal to [100] direction 

indicate a disruption of atomic positioning along AB at point C at which the atomic layer 

starts continuing along CB after about 0.1 nm shift normal to AB. 

Figure 4.20 (a) HRTEM image of TI12N3 sample, (b) magnified image of the square area 
in (a), (c) FFT of (b), (d) and (e) are the experimental intensity profiles of the HRTEM 

image in (b) along AB. 
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Figure 4.21 (a) HRTEM and (b), (c) the corresponding FFT micrographs of the 
synthesized TI12N3 sample. FFT in (a) and (b) are corresponding to the areas A and B, 

respectively. 

The HRTEM image of another sample area in Figure 4.21a contains lattice fringe 

details of TI12N3 (area A) as well as of TI1O2 (area B). The corresponding localized FFT 

micrographs of the areas A and B in HRTEM are also shown in Figure 4.21a and 4.21b, 

respectively. These FFT micrographs and the lattice fringe details show that area A 

corresponds to the (003) reflections of TI12N3 and area B corresponds to the (200) 

reflections of TI1O2 phase in [010] beam direction. HRTEM image of the particle imaged 
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in Figure 4.21a also consists of amorphous domains (areas C, D, and E), confirming the 

findings of XRD and SEM. 

Figure 4.22 HRTEM image of another particle area of TI12N3 sample. 

HRTEM image of another nitrogen rich particle area of the as-synthesized Th2N3 

sample is shown in Figure 4.22. The region with detailed lattice fringes and the 

corresponding FFT micrograph displayed that the particle exhibits lattice fringes due to 

(100) lattice planes of TI12N3 in [001] beam direction. This HRTEM image also contains 

some distorted areas with speckled diffraction patterns. In another area, which is 

indicated by a circle, close to the well-oriented lattice fringes contains one-directional 
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lattice fringes of abrupt distortions. Furthermore, this particle area is accumulated with 

another grain which is displayed by lines. This new grain however blended with the first 

grain quite well although some regions are affected by lattice fringe twisting. 

4.7 Discussion 

The terminal product of TI1O2 reaction with NH4HF2 at ambient conditions was 

(NH^ThFg as was reported earlier [10]. We found that this reaction proceeds through an 

intermediate chemical phase (NFLt^ThFy that was formed after few hours of mixing ThC>2 

with NH4HF2. Further reaction of the unreacted ThC>2 with NH4HF2/NH4F and the 

transformation of (NFLOsThFy into the terminal (NH^ThFg took up to two months at 

room temperature. Warn et al reported that (NF^ThFg to be formed after two hours based 

on the XRD pattern they obtained for the sample. They also did not report the size of the 

sample because the sample size might also affect the kinetics of terminal product 

formation. However, they mentioned that this XRD pattern did not include the peak at 

about d = 0.815 nm which determines the chemical composition of the sample to be 

(NH4)3ThF7 or (NFLj^ThFg. In this current work, we found that (NFL^ThF? forms 

quickly after mixing TI1O2 and NH4HF2 whereas (NFL^ThFg takes up to few months 

depending on the sample size. 

Ammonolysis of (Nt^ThFg at 800 °C produced ThNF through TI1F4. Therefore, 

further studies of the thorium system was performed using TI1F4. Heat treatment of ThF4 

under NH3 at different temperatures demonstrated a TI1F4 decomposition through 

removing some of the fluorine atoms in the crystal system. Nitrogen incorporation into 

those vacant cites of the ThF4_x, resulting in new phases with the chemical formula of 
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ThNi.xF4-y. Removal of fluorine and the incorporation of nitrogen to those vacancies 

stopped after the Th:N:F molar ratio of ThNi.xF4.y chemical phases reached 1:1:1, 

resulting a ThNF terminal product. Further heating of ThNF up to 1100 °C under 

ammonia and other atmospheres examined in this work resulted only in the formation of 

low-stoichiometric thorium nitride fluorides and an impurity phase TI1O2 due to minor 

oxygen pressure coming from the quartz tubing used in the experiment at elevated 

temperatures. In each of these experiments the cover gas used was high purity of 

99.999%. Therefore, formation of Th02 was probably due to minute quantities of oxygen 

present in the cover gas and the experimental setup or due to the decomposition of ThNF 

under these experimental conditions. Although variation of the experimental conditions 

impacted the stoichiometry of ThNF, no conditions yielded a pure thorium nitride (ThNx) 

phase under these experimental conditions. Observation of all these thorium-nitrogen-

fluorides however inferred a possible reaction mechanism for the formation of ThNF 

starting from TI1O2 as shown below: 

Th02 + NH4HF2
 RT- > (NH4)4ThF8 + H20, via (NH4)3ThF7 

(NH4)4ThF8
 m°c'NHi > ThF4 

T h F 4 ^C,NH3 ) T h N o 7 9 F l 6 3 MO-CAM, > ThNo.9F,.3 8 0 0 ° c ^ ) ThNF 

SEM imaging showed that the morphology of the samples involved in the reactions 

changed considerably. Plate-like morphology of the starting Th02 turned into an acicular 

particle shape upon conversion to (NH4)4ThF8. The acicular (NFL^ThFs particles became 

flat and agglomerated with partially crystallized facets upon thermal decomposition to 
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ThF4. Particles of ThNF produced by the ammonolysis of ThF4 consist of plate-like 

particles with porous surfaces. The average particle size and shape of (NFL^ThFg shown 

in the SEM image (Figure 4.3) are much different than that of the starting ThC^, implying 

a difficulty in ThC>2 conversion to (NFLt^ThFg at room temperature. Formation of ThF4, 

on the other hand, was reasonable based on the high gap in the crystalline character 

between (NFL^ThFg and ThNF according to SEM imaging. Morphology of TI1F4 is at an 

intermediate position with respect to the change of acicular shape of (NF^ThFg to a thin 

plate-like particle shape of ThNF. The porous characteristics of the ThNF particles have 

relatively large surface areas. This increase is likely the explanation for ThNF reactions 

with minute oxygen content in the experimental setup. A longer exposure of ThNF to 

minute quantities of oxygen at elevated temperatures such as 1100 °C thus produces the 

TI1O2 contaminant. 

Transmission electron microscopy also showed some prominent differences in the 

nanostrutures of (NFL^ThFg and ThNF. Bulk area of the micro particles of (NFL^ThFg 

exhibited polycrystalline characteristics with nano-scale crystalline patches. Some of 

these patches had fringe details in two directions while others showed fringe details either 

in one direction or none, showing the bulk of the particle to be low in crystallinity. Even 

in areas of high crystallinity, continuation of such crystallinity was disturbed by other 

polycrystalline characteristics. Therefore, the (NHL^ThFg with its low-ordered crystal 

structure is vulnerable for attacks by other agents and is easy to decompose into other 

compounds given the enough energy to break the bonds. 

In the case of ThNF, most of the microparticle areas imaged showed well-oriented 

fringes with two-directional details implying a high crystallinity. The porous 
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characteristics identified from SEM imaging were also found at nanoscale. The 

nanostructure of ThNF was observed well with the HRTEM and the crystal structure 

could also be confirmed. ThNF consisted with high-ordered nanostructure. Therefore, 

even at elevated temperatures it was difficult to change the chemical properties of the 

well-crystallized low-energy stable chemical phase. This is the likely reason for the 

difficulty of removing further fluorine from ThNF to produce ThNx. However, the overall 

thermodynamic favorability of the oxide phase may still drive the ThNF susceptible to 

oxygen to form other crystalline chemical phases such as TI1O2. 

Heating of thorium fluorides like (NFLt^ThFs, TI1F4, and ThNF after mixing with 

L1NH2 under NH3 produced TI12N3 of a unit cell with lattice parameters of a = b = 

3.8843(1) and c = 6.1853(3) A. However, ThF4 and ThNF seem to be more suitable in 

synthesizing TI12N3 under the experimental conditions examined. Synthesis of single-

phased TI12N3 is difficult according to the XRD results due to the formation of secondary 

ThC>2. TI12N3 was identified based on the XRD powder patterns of the samples based on 

results in the literture. However, the same XRD pattern could be matched with Th2N20. 

One of the experimental and calculated XRD patterns of TI12N2O and TI12N3 are shown in 

Figure 14.23a and 14.23b, respectively. These refinements do not include the TI1O2 

pattern for the clarity. The calculated patterns using both TI12N2O and TI12N3 

crystallographic data match quite well with the experimental XRD. In both these 

compounds, the two Th atoms reside in (1/3 2/3 0.235) position. Two N atoms in TI12N3 

are in (000) and (1/3 2/3 0.631) positions. O and N atoms have similar positions in 

Th2N20, i.e. (000) and (1/3 2/3 0.631) causing similar diffraction pattern to that of Th2N3 

[10]. 
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Figure 4.23 XRD powder refinements of the sample synthesized by heating a mixture 
of ThNF and LiNH2 at 800° 30min under NH3. (a) Using only Th2N20 and (b) using 

only TI12N3 crystal data. TI1O2 (peaks highlighted with arrows) was not used in the 
refinement for clarity. 
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Morphological evaluations completed on the as-synthesized samples showed that 

TI12N3 was highly susceptible to oxygen because Th02 forms within TI12N3 particles and 

not as a separate chemical phase or after the synthesis due to oxygen contamination from 

air like in the case of UN. Possible oxygen contamination of LiNFb due to its high 

reactivity [14] with moisture can also be another reason for oxide formation. The 

presence of another amorphous chemical species was also suspected since fluorine was 

detected in the sample by EDS studies. Fluorine was present in the sample up to 4 wt% 

with about 6 wt% of nitrogen. This observation could be explained by the presence of 

bulk amorphous particle areas in the sample as detected in the SEM images. Furthermore, 

the fluorine could be present as an amorphous LiF phase since crystallized LiF was seen 

in one sample where TI1F4 was mixed with LiNF^ of 4 molar ratio (Table 4.5). 

Elemental mapping showed that nitrogen is distributed throughout the sample 

although a few N-rich areas also exist. Oxygen distribution was uniform suggesting a 

surface driven reaction of minute quantities of oxygen with TI12N3 particles. This is 

because thickness of the particles did not affect the elemental mapping results obtained 

for oxygen like in the case of thorium and nitrogen in Figure 4.19b and 4.19c, 

respectively. These N rich areas of large particle showed no O suggesting an absence of 

TI12N2O and presence of TI12N3. The nitrogen rich areas of the sample showed single-

phased TI12N3 characteristics according to HRTEM even though amorphous patches 

could be found within the imaged particle area. Also, the crystallization of these areas 

was affected by randomly distributed disorientations of the atomic layers of lattices. 

These observations indicate a disruption of the TI12N3 formation by amorphous 

characteristics and TI1O2 which is trying to form within TI12N3 grains. Figure 4.21 is 
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another example of TI1O2 interferences on TI12N3 crystallization. Here, ThC>2 seems to be 

the major phase while TI12N3 plays the secondary phase characteristics. Successful 

formation of TI1O2 crystals within the crystalline TI12N3 grains and thus in majority of 

particles was also detected by HRTEM (Figure 4.22). These observations further show 

that TI12N3 and TI1O2 are interchangeably formed in the nanostructure of each species, 

and thus unraveling the failure to dominate strong ionic bonding of Th2N3 in the 

increment of its stability. 

Heat treatments of TI12N3 at temperatures > 800 °C under inert atmosphere showed 

TI12N3 is unstable at these temperatures. Tli2N3 converted completely into TI1O2 on 

sufficient heating even under inert atmosphere of high-purity Ar(g) of 99.999% and a 

getter (Zr sponge). Presence of TI1O2 within the TI12N3 crystallized particles could be a 

dominant reason for this conversion. However, the initial formation of TI1O2 in the TI12N3 

sample even under NH3, which is a nitrogen agent at elevated temperatures, confirms the 

fact that the complete conversion of TI12N3 into ThC«2 is due to its oxygen scavenging 

property. Presence of TI1O2 within the TI12N3 particles and the uniform distribution of 

oxygen on the particle surfaces can be related as the main reasons for Th2N3 to be easily 

affected by oxygen. These observations further explain why the thorium nitrides as 

general always consist with a TI1O2 secondary phase. 

4.8 Conclusions 

Solid-state reaction of ThC>2 with NH4HF2 at room temperature showed to form two 

products: (NH^ThF? and (NH^ThFg. The first compound was produced quickly while 

the second formed slowly over time. The (NFLĵ ThFg was the terminal product of the 
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overall reaction. The final product of the ammonolysis of (NFL^ThFg at temperatures 

ranging from 800 to 1100 °C was found to be ThNF. Attempting to further react the 

material under NH3, N2, or N2/H2 (5%) to produce ThNx chemical phases instead resulted 

in the formation of low-stoichiometric ThNF chemical phases with minor ThC>2 phase. 

Formation of TI1O2 was most likely due to the trace oxygen in the experimental system, 

often formed at elevated temperatures over common laboratory equipment materials like 

the quartz. Thermal decomposition of (NH^ThFs to ThNF occurred through a ThF4 

intermediate and following a slow nitridization of TI1F4 under NH3 through low-

stoichiometric thorium-nitrogen-fluoride ternary chemical phases. Thermal behavior of 

ThNF under different chemical environments confirmed that the stoichiometric thorium 

nitrogen fluoride (ThNF) is the preferable chemical composition of all thorium nitride 

fluorides produced during the (NFL^ThFg ammonolysis above 800 °C. 

Distinct morphologies of the starting materials and final products of the reactions 

studied confirmed the chemical transformations identified by XRD. Polycrystalline 

characteristics were identified in the nanostructure of the (NFL^ThFs where as in ThNF, 

long-ranged single crystal characteristics were observed over a wide range of the particles. 

Despite the appearance of the larger particles shown by SE SEM, HRTEM demonstrated 

the final ThNF product to be more crystalline than its precursors explaining the high 

stability of ThNF towards substitution of fluorine with nitrogen. 

Synthesis of TI12N3 was possible by heating a solid mixture of thorium 

fluorides/LiNH2 under NH3 at 800 °C temperature. Formation of a secondary ThC>2 

chemical phase was identified in the synthetic process. Further heating of TI12N3 samples 

produced ThC>2 by converting TI12N3 completely or partially depending on the 
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temperature and time of heating. Powder XRD revealed each TI12N3 sample synthesized 

contain TI1O2 phase up to > 50 wt%. SEM images showed that the morphology of TI1O2 

is dominant with respect to the bulk of the sample even though the particles showed less 

crystallinity than the TI1O2 crystalline particles. TEM imaging also indicated Th02 

morphology to be more prominent in the isolated particle clusters of small size. 

Multibranched grains seen in SEM imaging and the presence of lattice fringes 

correspond to both TI12N3 and Th02 together with amorphous patches in HRTEM 

indicated that the TI12N3 particles are not present as a separated chemical phase in most of 

the areas but as a chemical phase branched with TI1O2 especially at micro-scale. These 

observations infer that the TI12N3 is difficult to synthesize as a single-phased compound 

by this particular method. Furthermore, the TI12N3 reactivity with oxygen could be 

reasoned by microscopic evaluation of the morphology and microstructure of the samples. 

These microscopic observations could also be used to explain why other thorium nitrides 

such as TI13N4 and ThN are susceptible to oxygen as observed in the literature. 
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CHAPTER 5 

SYNTHESIS AND CHARACTERIZATION OF NEPTUNIUM NITRIDES 

5.1 Introduction 

As previously described (section 1.1), actinide mononitrides have preferable 

properties for fast reactors when compared to oxides [1]. Mononitrides have also been 

considered as using a fuel for reactors to burn minor actinides [2]. For this reason most of 

the studies on actinide nitrides have focused on aspects related to nuclear reactors. For 

NpN few reports are available describing physical and chemical properties of the material 

[3-5]. In fact, there are no publications on microscopic evaluation of the NpN system. 

Synthesis and characterization of neptunium mononitride along with information on a 

number of related neptunium-based compounds are presented in this chapter. 

Synthesis of NpN have been reported by several authors using a range of methods. 

NpN can be synthesized by reacting Np metal with N2/H2(0.5%) gas mixture at 600 °C 

[6]. However, this process involves further heating of the product to 1500 °C in order to 

remove any unreacted Np metal and to decompose produced NpH3. Also, the production 

of the Np metal and avoidance of oxidized involves effort. Therefore, this route is 

difficult to follow as a common laboratory procedure. Irving et al [7] reported the 

synthesis of NpN using NpH3 with NH3 vapor. The reaction was conducted at 750 -

775 °C. They further reported the NpN to be isostructural to UN and PuN. Another 

attempt to produce NpN utilizing a reaction of NpCU with NH3(g) by the same group was 
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failed and instead formed NpCl3. The reaction was repeated up to a temperature of 

1000 °C. The most commonly used method to fabricate actinide mononitrides is the 

carbothermic reduction [8], and it has been used to synthesize NpN [3]. Using 

carbothermic reduction of NpC>2, NpN could be synthesized after heating to 1550 °C for 

lOhrs. 

The fluoride route, which is described in this work, has fewer difficulties in forming 

NpN compared to the methods using Np metal or its hydrides as starting materials. The 

temperatures used in the carbothermic reduction are often too high, resulting in secondary 

chemical phases without specific methods in place. The fluoride route to fabricate NpN 

and other neptunium-based compounds presented in this chapter was examined to 

overcome issues related to the high temperature from the carbothermic reduction. 

Synthesis of NpN at 900 °C was successful. It is expected lower temperatures, such as 

700 to 800 °C, should also form the desired product. 

X-ray powder diffraction together with electron density maps are used to determine 

chemical phases of both novel and known compositions. Powder diffraction refinement 

was used successfully to describe the crystallography of these new compounds. Section 

5.3.1 through 5.3.3 consists of the characterization of ammonium neptunium fluorides. 

Structure refinement and microscopic evaluation of two distinct compounds are presented. 

One of the compounds is reported here for the first time. Even though the other 

compound has a known crystallography [9], a new crystal system was introduced with an 

accurate refinement. 

Section 5.3.4 describes the reactions and products involved in the heat treatment of 

ammonium neptunium fluorides in two different atmospheres (NH3 and Ar). Compounds 
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identified for the first time were characterized using XRD and were refined using 

Rietveld method using proposed crystal systems. Further characterization of the 

compounds was carried out using electron microscopy in Section 5.3.5. Moreover, the 

morphological observations coupled with nanostructural evaluation of the neptunium 

system are reported for the first time. Presence of secondary oxide chemical phase such 

as NpC>2 is always a problem due to the oxidation potential of nitride compounds. 

Therefore, the kinetics involved in the NpN reaction with oxygen in air is also presented. 

Nanostructural characterization was used to answer the question of why or how the 

oxidation of NpN occurs, producing the secondary NpC«2 chemical phase. The 

optimization of the experimental conditions was done only up to a point at which the 

phase purity of NpN is adequate for microscopic characterization. Future work on the 

synthesis of NpN with the experimental conditions reported here are suggested under 

high purity conditions such as in a glove box of inert atmosphere. 

5.2 Experimental Details and Characterization Methods 

5.2.1 Synthesis of Ammonium Neptunium Fluorides ((NH4)xNpFy) 

Five batches of ammonium neptunium fluorides were made for the ammonolysis of 

the step to synthesize NpN. All the powder manipulations were performed inside a glove 

box. NpC>2 powder masses used in these batches were 132, 11, 78, 113, and 28 mg. In the 

preparation of ammonium neptunium fluorides, first the NpC>2 solid was added to a 

polyvinyl vial with solid NH4HF2. The mixture was then ground with a spatula for 10 min. 

The polyvinyl vial was then sealed with a cap and left at room temperature for about two 

months. Because no known chemical composition was identified in the sample with 
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initial XRD, the sample was heated at 80 °C in an oven. After 4 months of heating the 

first known compound was identified in the sample. Another sample with similar mass 

ratio of NpC>2 and NH4HF2 was heated in the oven for a week at 100 °C to evaluate 

kinetics. A third sample with same mass ratio was prepared, but the sample was kept at 

ambient conditions to check the feasibility of formation of a second compound of the 

chemical composition (NFL^NpFg at room temperature. 

5.2.2 Ammonolysis of (NFLOxNpFy 

Samples containing (NH^NpFe, (NH^NpFs, or a mixture of both were heated in the 

quartz tube as described in section 2.3.2 under NHs(g). Because of the high activities of 

the neptunium bearing samples and the limited quantities available, a mass of 2 to 30 mg 

of the (NFLOxNpFy sample was used in each of these experiments. A few experiments 

were performed at the beginning of the evaluation of neptunium system with a covered 

platinum sheet used to hold the sample. An opened sheet of platinum was used after 

determining proportionality between the reaction rates and sample exposure to the cover 

gas. 

5.2.3 Heat Treatment of the Resulting NpNx under an Inert Atmosphere 

The resulting products from the ammonolysis of (NFLOxNpFy were further heated to 

an elevated temperature such as 1100 °C under argon atmosphere (99.999 % purity). 

Some of the samples were first ammonolyzed and the covering gas was changed to Ar(g) 

when further heating was performed to decompose the higher neptunium nitrides such as 

NpN2 and NP2N3 into the final product; NpN. 
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5.2.4 Characterization Methods 

Identification of the chemical phases in the synthesized samples was done by XRD 

powder patterns. Rietveld method was used in the structure refinements. Le Bail 

decomposition was also utilized in solving the structures of (NH4)xNpFy samples with 

Charge Flipping technique. Initial estimates of the structures of (NFL^NpFe and 

(NFL^NpFg was performed using isomorphous structure parameters of (NFL^CeFe 

(ICSD # 9890) and (NH4)4UF8 (ICSD # 9913), respectively. SEM and TEM were also 

used in characterizing the samples with respect to their morphology and nanostructures. 

5.3 Results and Discussion 

5.3.1 Structure Solutions of (NH^NpFe and (NH4)4NpF8 

Solid state reaction of Np02 with NFL1HF2 at 80 °C produced (NH4)2NpF6, which is 

isostructural with orthorhombic (NH4)2CeF6 of Pbcn space group, after a 8 months (4 

months at room temperature and another 4 months at 80 °C) time period. Profile fit of the 

X-ray powder diffraction of the sample is shown in Figure 5.1 and the refined lattice 

parameters are given in Table 5.1. 

Table 5.1 Refined lattice parameters of (NH4)2NpF6 and (NH4)4NpFg structures. 
Compound 

(NH4)2NpF6 

(NH4)4NpF8 

Space group 

Pbcn 

C2/c 

Refined lattice parameters 

a (A) 

7.079(3) 

13.054(4) 

b(A) 

12.133(5) 

6.681(2) 

c(A) 

7.518(3) 

13.676(5) 

a 

90 

90 

P 

90 

121 

V 

645.8(4) 

1020.9(6) 
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Figure 5.1 Profile fit to the (NH^NpFe XRD powder pattern using jana2000. Observed 
intensities are in dots, the overlapping continuous line is the calculated profile, and the 

continuous line at the bottom is the difference. Inset of the figure is a graphical 
interpretation of the unit cell of the compound. 

Table 5.2 Structure parameters of (N 

Nl 

Npl 

Fl 

F2 

F3 

N 

Np+4 

F-l 

F-l 

F-l 

X 

0.0168 

0 

0.2089 

0.1885 

0.9538 

y 

0.343 

0.0414 

0.4816 

0.1868 

0.0979 

z 

0.4976 

0.25 

0.2019 

0.2867 

0.5444 

HU)2NpF6. 
g B 

-0.2672 

-0.10(45) 

13.6866 

7.1237 

20 
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Figure 5.2 Profile fit to the (NH4)4NpF8 XRD powder pattern using TOP AS. Inset of the 
figure is a graphical interpretation of a Fourier map of the compound. 

Table 5.3 Structure parameters of (N 

Nl 

N2 

Npl 

Fl 

F2 

F3 

F4 

N 

N 

Np+4 

F 

F 

F 

F 

X 

0.3824 

0.2115 

0 

0.0243 

0.1597 

0.1599 

0.0784 

y 

0.1531 

0.1111 

0.1682 

0.0071 

-0.0317 

0.3237 

0.3952 

z 

0.3921 

0.0836 

0.25 

0.1166 

0.358 

0.2528 

0.3921 

H4)4NpF8. 
g B 

-6.00(95) 

-5.9(10) 

-2.96(60) 

4.9(14) 

-0.7(11) 

-2.20(89) 

-1.1(10) 
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The structure parameters are also provided in Table 5.2. When the NpC>2 and NH4HF2 

mixture was heated at 100 °C for a week, a new compound of neptunium was observed. 

This new compound was isostructural with monoclinic (NH^UFg of the space group 

C2/c. Figure 5.2 displays the profile fit of the XRD powder pattern of the sample and a 

figure indicating the Fourier map calculated from the pattern. Refined crystallographic 

data of these two compounds are given in Table 5.1 and Table 5.3. 

Figure 5.3 A structure fitting of (NH^NpFe using the electron density map calculated 
using charge flipping of the powder diffraction and a model of the crystal structure in 

[001] direction. Insets in left and right are the electron density map and a structural model, 
respectively. 
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Figure 5.4 Structure fitting of (NH^NpFg using an electron density map (inset to left) 
and a model (inset to right) of the crystal structure in [010] direction. 

Crystal structure fitting of the two ammonium neptunium fluorides was also done 

using the experimental electron density maps calculated by performing the charge 

flipping on the XRD powder patterns of of (NFL^NpFe and (NFL^NpFg (Figure 5.3 and 

5.4). The calculated experimental electron densities of each compound were fitted against 

a model of the crystal structure in a particular direction. Both figures indicate high 
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electron densities at the Np sites of the crystal structures as expected. Thus, these electron 

densities confirm the crystallography of the structures used to perform the full profile fits 

of the XRD powder patterns in Figures 5.1 and 5.2. 

LaB6SRM 660a 11.09% 
(NH4)4NpF8 5.14 % 
Np02 Fm3m 2.41 % 
NH4HF2 79.78 % 
NH4F 1.57% 
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Figure 5.5 Profile fits of the XRD powder patterns of the NpC>2 and NH4HF2 mixture 
after 2 days at room temperature (a) and before completion of the conversion of 

(NH4)4NpF8 into (NH4)2NpF6 at 80 °C (b). 
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5.3.2 Reaction Mechanism of NpC>2 and NH4HF2 

The sample prepared at room temperature to test the slow reaction of the NpC>2 

together with NH4HF2 contain a small amount of (NFL^NpFg after two days (Figure 

5.5a) A mixture of (NH^NpFs and (NH4)2NpF6 was also found in one of the samples 

after heating the NpC>2 and NH4HF2 mixture at 80 °C for about 3 months (Figure 5.5b). 

These observations suggest a possible reaction mechanism/sequence of NpC>2 and 

NH4HF2 as follows: 

Np02 + 4NH4HF2
 RT ) (NH4)4NpF8 + 2H20 (5.1) 

(NH4)4NpF8 —^-> (NH4)2NpF6 + 2NH4F (5.2) 

5.3.3 Microscopic Study of (NFLOxNpFy Samples 

SEM images of (NFL^NpFg and (NH4)2NpF6 samples in Figures 5.6a and 5.6b show 

different morphological characteristics. Even though both samples consist of 

agglomerated particles, (NFL^NpFs show sharp edged particle characteristics (inset of 

Figure 5.6a) whereas (NH4)2NpF6 showed no such sharp edged particles. Moreover, 

(NH4)2NpF6 consists of particles of incompletely crystallized flat surfaces. Particle sizes 

of (NFL^NpFg range from 2 to 50 um depending on how well they are separated. This 

range varies from 1 to 20 um in the case of (NFLj^NpFe sample. The chemical analyses 

of both samples are displayed in Table 5.4. These values were obtained by the 

corresponding EDS spectra of the SEM imaging. Experimental chemical analyses differ 

considerably from that of the theoretical amounts due to the errors relate to the EDS 

(semi-quantitative) method. 
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Figure 5.6 SEM images of (a) (NH^NpFg and (b) (NH^NpFe. Insets of (a) and (b) are a 
sharp edged particle of (NH^NpFg and a magnified image of (NH^NpFe. 
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Table 5.4 Chemical analyses of (NH^NpFe and (NH^NpFg samples. Standard 
deviations (S.D.) of each experimental value are also given. 

Element 

N 

F 

Np 

H 

Total 

Weight % 

(NH4)4NpF8 

Theoretical 

12.1 

33.0 

51.4 

3.5 

100.0 

Experimental 

6.08 

37.21 

56.71 

-

100.00 

S.D. 

2.03 

5.57 

7.09 

-

(NH4)2NpF6 

Theoretical 

7.2 

29.5 

61.2 

2.1 

100.0 

Experimental 

6.55 

33.93 

59.52 

-

100.00 

S.D. 

1.38 

4.52 

5.57 

-

HRTEM imaging of both ammonium neptunium fluoride samples showed they have 

particle areas of different crystallinity. Figure 5.7 shows HRTEM of two particle areas of 

(NFL^NpFs. Particle in Figure 5.7a has crystalline domains of different orientations and 

the corresponding FFT (Fast Fourier Transformed) in Figure 5.7b of the whole image 

verifies the polycrystallinity of this particle area. This compound also consists of single 

crystal areas such as shown in Figure 5.7c. In this area, two grains of single crystal 

characteristics were identified. 

(NH4)2NpF6 also displayed similar nanostructural properties as shown in Figure 5.8. 

Particle in Figure 5.8a consists of crystalline domains whereas the particle in Figure 5.8c 

displays single crystals. Particle in Figure 5.8c has three single crystals of similar 

orientation. These three grains are overlapped on each other (dashed -lines) as observed 

by the corresponding FFT in Figure 5.8d. Thus, both samples have polycrystalline 

characteristics and as well as single crystal characteristics of large domain areas. 
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Furthermore, the corresponding FFT micrographs (Figure 5.7b and Figure 5.8b) of the 

polycrystalline particles of both compounds show that they have a similar discrete-like 

spots making rings implying a similar grain sizes. 

Figure 5.7 HRTEM image of (NH4)4NpF8. (a) HRTEM showing polycrystalline character 
of the particle, (b) FFT of image (a), and (c) HRTEM of another area of two grains of 

single crystal. 
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Figure 5.8 HRTEM of (NH^NpFe. (a) HRTEM of a particle showing polycrystalline 
characteristics, (b) FFT of HRTEM in (a), (c) HRTEM of another particle area with three 

layers of single crystal, and (d) FFT of image in (c). 

Figure 5.9 is a HRTEM image of the mixed (NH^xNpFy sample mentioned earlier. In 

this area, a phase boundary was identified where the nanostructures of both (NH^NpFg 

and (NH4)2NpF6 are observed. The FFT micrographs of the complete area and the areas 

where the phase boundary was seen are presented as insets of the figure. FFT of the phase 

boundary area represents a collection of spots of the two other FFTs of the separate 

chemical phases at the two sides of the phase boundary. Lattice fringes correspond to 

(NH^NpFg and (NH^NpFe phases are due to (110) and (112) lattice planes of the 
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compounds, respectively. These observations further confirm the identification of both 

compounds in the sample with XRD. 

Figure 5.9 HRTEM of the mixed (NH4)xNpFy sample displaying a phase boundary of two 
chemical phases. 
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Figure 5.10 HRTEM images of (a) (NH4)4NpF8 and (b) (NH^NpFg. Lattice fringes of 
both compounds are found to be due to (111) lattice planes. 

Lattice fringes of both (NH4)xNpFy compounds were studied using HRTEM and 

Figure 5.10 displays these images. The distance between two lattice fringes of 

(NH4)4NpFg was determined to be 0.464 nm. This value is close to the interplanar 

distance of dm (0.468 nm) of the refined crystal structure of (NH4)4NpFg. The FFT (inset 

of Figure 5.10a) also confirmed the lattice fringe orientation correspond to dm along 

[011] beam direction. A lattice fringe distance of 0.476 nm in Figure 5.10b and the 

corresponding FFT pattern (inset) also indicated the (111) lattice reflections of 

(NIL;)2NpF6 in a beam of [101]. Thus, the HRTEM imaging also confirmed the 

crystallography of the two compounds synthesized. 

5.3.4 Heat Treatment of (NH4)xNpFy under NH3(g) and Ar(g) 

Heat treatment of solid (NH4)xNpFy under ammonia atmosphere was performed at 

different temperatures. Table 5.5 summarizes the products formed during these heat 

treatments of (NH4)4NpF8 sample. At 250 °C, formation of (NH^NpFe was observed 
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together with some minor peaks that correspond to NFLjNpFs (Figure 5.11a). The major 

peak at 12.6° 29 value is prominent of NH4NPF5 and all other peaks are negligible 

because of the amorphous character of the sample. NFLjNpFs isostructural with 

monoclinic NH4UF5 (ICSD #2138) with a space group of P 1 217c 1. The refined lattice 

parameters of the compound are a = 0.7764(7), b = 7.071(7), c = 8.758(8) run, and (3 = 

115.72(6)°. 

Table 5.5 Heat treatment of 
Temperature (°C) 

250 

400 

450 

500 

800 

800 

800 

800 

1000-1100 

Time (min) 

60 

60 

60 

30 

60 

90 

90 

120 

3 0 - 7 5 

ammonium neptunium 
Products 

Primary 

(NH4)2NpF6 

NH4NP3F13 

Np02 

NpF3 

NpNxFy 

NpNxFy 

Np2N3 

Np02 

Np02 

Wt.% 

66(1) 

93(2) 

-

69(4) 

96.2(2) 

72(3) 

57.0(6) 

57(1) 

76.5(3) 

luorides under NH3(g) 

Secondary 

NH4NpF5 

Np02 

Impurities 

Np02 

NpF3 

NpN2, Np02 

Np02 

NpN2 

Np2N3 

Wt.% 

33(1) 

6(2) 

-

30(4) 

3.8(2) 

15(2), 11(3) 

43.0(6) 

42(1) 

23.5(3) 
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(NH4)2NpF6 66.73 % 
NH4NpF5 33.27 % 
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Figure 5.11 XRD patterns of the products obtained after heating (NH^NpFg at 250 °C 
(a) and 400 °C (b) for 60 min under NH3(g). 

When the temperature was increased to 400 °C, another ammonium neptunium 

fluoride was observed. The XRD pattern of the compound was analogous to NH4U3F13 

(ICSD # 16480). The NH4U3F13 crystallizes in an orthorhombic unit cell with a space 

group of Pm21b and a = 0.7969(4), b = 0.8406(5), andc = 0.7312 (4) nm lattice 

parameters. These two samples show a removal of NH4F from the reactants increasing 
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the neptunium concentration as the temperature increases. Another sample which was 

made by heating a (NH^NpFg sample at 450 °C showed only the presence of NpC<2 and 

some impurity peaks in its XRD pattern. 

However, the formations of NpF3 and NpNxFy compositions (Figure 5.12) were 

observed at these temperatures 500 and 800 °C, respectively. At 500 °C, about 2 mg 

batch of (NH4)2NpF6 was transformed into NpF3 as the primary chemical phase with a 

secondary NpC>2 phase (Figure 5.12a). Refined lattice parameters of hexagonal NpF3 unit 

cell are a = 0.4117(2) and c = 0.7287(3) nm. Its space group isP31c. Some impurity 

peaks at about 21.3°, 22.7°, and 24.1° 20 values can be detected in the experimental XRD 

pattern. The first three peaks could be matched with the NpF4 crystal structure. However, 

the refinement of NpF4 was not included in the pattern in Figure 5.12a due to insufficient 

peak intensities in other 20 values found for the ICSD (# 31672) file as indicated by an 

inset of Figure 5.12a. The impurity peak found at 30.2° was not identified with any 

known neptunium or uranium compounds. Formation of NpF3 at 500 °C further confirms 

the release of NH4F by (NH4)xNpFy reactants forming neptunium rich compounds. On the 

other hand, formation of NpNxFy (Figure 5.12b) at 800 °C suggests the reaction of 

neptunium fluorides such as NpF4 or NpF3 with N2(g) due to its partial pressure from the 

decomposition of NH3(g) at elevated temperatures. NpNxFy structure identified in this 

sample is isomorphous to that of tetragonal UN0.95F1.2 with a space group of P4/nmmS 

[ICSD #21027]. The lattice parameters of the compound were refined and are a = 

0.3917(2), b = 0.5676(3) nm. A model of the unit cell of NpNxFy identified in this study 

is presented in Figure 5.13. 
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Figure 5.12 XRD patterns of the products formed after heating (NFL^NpFs at 500°C for 
30min (a) and 800 °C for 60 min (b) under NH3. The highlighted patterns are the 

calculated patterns for NpF3 and NpNxFy in (a) and (b), respectively. Some peaks for 
NpF4 identified are also displayed together with an inset of a database (ICSD) powder 

pattern of the NpF4 crystal structure in (a). 
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Figure 5.13 Unit cell of NpNxFy determined in this study. 

Heating of (NFLOxNpFy at 800 °C for 90 min was done using two different methods. 

The first sample was made by heating the reactant wrapped in the Pt sheet. The second 

sample was made without wrapping the sample assuming it to have more reactivity with 

the cover gas than the first closed sample. These two samples led to the discovery of two 

new neptunium compounds of similar crystallography to UN2 and U2N3. Figure 5.14 

displays the observed XRD patterns of these two samples together with the calculated 

patterns of the corresponding compounds. The first sample showed to contain NpNxFy as 

the major chemical phase with some NpC>2 impurity and a new compound NpN2 (Figure 

5.14a) which has an analogous XRD pattern to the cubic UN2 structure with a space 

group of Fm3m (ICSD #24222). Its lattice parameter was refined to be 0.5331(6) nm. A 
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model of the NpN2 unit cell obtained from the refined crystallography is shown in Figure 

5.15. 
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Figure 5.14 XRD patterns of the products formed after heating NF^-Np-F at 800°C for 
90min using a closed Pt sheet (a) and an open Pt sheet (b). 
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Figure 5.15 Unit cell of the newly discovered NpN2. 

The second sample, which was heated in an opened Pt sheet, contained another new 

neptunium bearing chemical phase identified to be NP2N3 (Figure 5.14b), similar to the 

crystallographic parameters of U2N3 (ICSD #60415). The refined lattice parameter of this 

new compound was 1.0657(6) nm and the unit cell of the compound is shown in Figure 

5.16. The N:Np molar ratio of NpN2 and NP2N3 are 2 and 1.5, respectively. Once the 

NpN2 is formed, further heating can remove some of the nitrogen from the compound 

forcing it to form nitrogen deficient chemical compositions such as NP2N3. Thus, the 

open sample reacted with the covering gas quickly to form NpN2 and decomposing it to 

NP2N3 within 90 min while the closed sample was able to perform only the first step 

(forming NpN2) in the same time period. Moreover, the faster reaction has also promoted 

the formation of the impurity NpC>2 chemical phase. 
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A longer heating (120 min) of the (NFL^NpFg sample at 800 °C however produced 

NpN2 with NpC>2 as the primary phase. Increased heating time of NpNx under NH3(g) 

thus did not remove further nitrogen from NpNx system but it stabilized the NpN2 

chemical composition due to the nitrogen partial pressure. Heat treatments of (NH4)xNpFy 

samples at temperatures in the range of 1000 - 1100 °C also produced only NpNx 

suggesting a subsequent heating of these NpNx samples under an inert atmosphere such 

as argon to form neptunium mononitride. 

Figure 5.16 Unit cell of NP2N3. 
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The neptunium mononitride sample was synthesized after continuously heating NpNx, 

which was formed by heating (NH4)xNpFy at 800 °C for 90 min under NH3(g). The NpNx 

was treated under high-purity argon atmosphere at 1100 °C for 30 min (Figure 5.17). 

This sample contained only 15.03(1) wt% NpN while NpC>2 was identified as the major 

phase. This sample had a color of gold/yellow. NpN is known to be black in color. The 

gold/yellow color was probably due to the majority chemical phase (Np02). Formation of 

Np02 as the major phase in the sample is due to two factors, susceptibility of NpNx 

compounds to oxygen impurities from the atmosphere and from the minute quantities 

forming in the quartz tubing at elevated temperatures. 
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Figure 5.17 Observed and the calculated XRD patterns of the NpN sample synthesized by 
heating (NH4)xNpFy for 90 min at 800 °C under NH3 and a continuous heating at 1100 °C 
for 30 min under high-purity argon. Peaks at 46° and 67.5° 2Theta values are due to the 

sample holder because of the kapton tape used to contain sample. 

To minimize the amount of NpC>2 formation in the NpN synthesis, few samples were 

synthesized at temperatures 800 and 900 °C. A sample of (NFL^NpFg was heated at 
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800 °C under NH3 and the gas flow was changed into Ar after 90 min heating. Further 

heating of the sample was maintained for an additional 60 minutes under Ar(g). The 

resulting sample consisted of 46 wt% NpNxFy and a small amount (0.6 wt%) of NpN2. 

The remainder of the sample was NpC>2. Since the temperature and the time of heating are 

not sufficient to produce NpN, another synthesis attempts was made by heating 

(NH4)4NpF8 at 900 °C. Heating under NH3(g) for 30 min and under Ar(g) for another 60 

min made NpN with majority of the sample being Np(>2 (73 wt%). Therefore, the sample 

heating at 900 °C under Ar(g) was reduced to 30 min and found it was not enough to 

transform all the higher neptunium nitrides to the mononitride. This sample contained 38 

wt% NpNxFy and 24 wt% NpN with a 38 wt% NpC>2 phase. The final sample was 

therefore made by heating (NFL^NpFg at 900 °C for 30 min under NH3(g) and 45 min 

under Ar(g) with a Zr sponge as a O2 getter. Figure 5.18a displays the observed and 

calculated XRD patterns of the sample immediately after synthesis. XRD powder 

refinement showed a 62.70(1) wt% of NpN and a decrease of the phase to a 61.9 wt% 

after three days (Figure 5.18b). 

Reaction of atmospheric oxygen with NpN was studied at room temperature. An NpN 

powder was placed on a XRD sample holder and obtained XRD patterns of the sample as 

a function of time. The powder refinement was performed for each XRD pattern to 

evaluate the amount of NpN and NpC>2 at different stages. Figure 5.19 displays the 

transformation kinetics of NpN determined by such a series of XRD powder pattern 

refinements. The fit obtained by first order exponential decay was also indicated and the 

rate constant was determined to be 1.6 x 10" s" . The data could also be fitted to a second 

7 1 

order reaction kinetics and the rate constant was 2.5 x 10" s" . These data display a high 
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degree of oxidation of NpN with atmospheric oxygen further explaining the difficulty of 

making phase-pure NpN under ambient conditions. 
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Figure 5.18 Observed and the calculated XRD patterns of the NpN sample synthesized by 
heating (NFLOxNpFy for 30 min under NH3 and a continuous heating for another 30 min 

under high-purity argon at 900 °C. XRD pattern of the sample immediately after 
synthesis (a) and after three days (b). 
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Figure 5.19 Decay kinetics of NpN at ambient conditions as a function of time due to 
NpN transformation into NpC>2. 

5.3.5 Microscopic Characterization of NpNx 

5.3.5.1 Microscopic Characterization of NpN2 

Morphological observation of NpN2 using SEM imaging showed that majority of it 

contains particles of needle shape (Figure 5.20). These particles have a width of 

approximately 0.2 urn whereas some particles elongate up to about 1 \xm changing in to a 

flat shape. The inset of the figure consists of a cluster of particles of different morphology. 

The bulk of these particles have flat shapes, indicating a presence of a second phase 

(NpC^) as found by XRD. Corresponding EDS also showed the presence of different 

nitrogen and oxygen weight percentages depending on the particle shapes analyzed 

(Table 5.6). EDS analyses done on different particles therefore suggest the NpN2 particle 

expansion due to the formation or binding of NpC«2 grains within phase boundaries. 
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Figure 5.20 SEM images of NpN2. Inset is the SEM of another area containing a cluster 

of particles. 

HRTEM images shown in Figure 5.21 confirmed the formation of NpN2 at the 

nanoscale. Furthermore, each of these images shows a high crystallinity of the samples at 

this scale. Lattice fringes formed attributed to (002) interplanar ^-spacing are found to be 

displayed in both images. Lattice plane reflections of the compound in Figure 5.21a are 

indicated by bright spots that congregate to form hexagonal-shaped image. In Figure 

5.21b, on the other hand, each dark color spot is surrounded by bright, six membered 

rings suggesting an array of NpN2 unit cells along [110] direction. These observations 

designate a high order in nanocrystals of the as-synthesized NpN2 sample. 
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Table 5.6 Quantitative analysis of NpN2 sample with respect to the particle shape. 
Approximate error percentage is 1%. 

Particle shape 

Flat 

Needle 

Average 

Element wt. % 

N 

10.2 

17.9 

14.0 

0 

10.1 

-

5.1 

Np 

79.7 

82.1 

80.9 

-(a) ""* 

Fifure 5.21 HRTEM images of two NpN2 nanoparticle areas. 

5.3.5.2 Microscopic Characterization of NP2N3 

The bulk morphological characteristics identified in NpN2 have been changed when it 

was transformed into NP2N3. Most of the particles of NP2N3 are plate like with elongated 

boundaries in different directions (Figure 5.22b). Clusters of particles can also be seen in 

some of the areas of the sample (Figure 5.22a). EDS analyses showed that most of the 

particles consist both oxygen (7.8 ± 0.8) and nitrogen (8.1 ± 0.8) representing a mixture 
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of NP2N3 and Np02 compounds. Figure 5.23 is the HRTEM of a well-crystallized NP2N3 

nanoparticle. Lattice fringes of the image correspond to (022) lattice planes of the 

compound. 

lB" i ^BB IMI L5kU X l ! > 0 6 0 

Figure 5.22 SEM micrographs of NP2N3 showing a cluster of particles (a) and a flat area 
containing some separated particles (b). 

Figure 5.23 HRTEM image of Np2N3. 
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5.3.5.3 Microscopic Characterization of NpN 

SEM imaging and EDS analyses of two NpN samples were performed. The NpN 

sample with large NpC«2 content showed to contain separately formed NpC«2 particles 

(Figure 5.24a). SEM micrograph of the other sample containing NpN is displayed in 

Figure 5.24b. According to this image, morphology of the as-synthesized NpN sample is 

distinctively different from both NpN2 and NP2N3. The NpN particles (Figure 5.24b) 

appear to be large compared to the other two NpNx. The circled particles in Figure 5.24a 

match to NpN compared to particles in Figure 5.24b and subsequent EDS analysis. Table 

5.7 summarizes the chemical analysis of the sample containing 62.7(1) wt% NpN. The 

experimental weight percentages are deviated from the expected values due to the 

secondary chemical phase and errors associated with the technique. 

Figure 5.24 SEM micrographs of NpN samples, (a) NpN sample with a 15.03(1) wt% 
mononitride (Figure 5.17) and (b) the sample containing 62.70(1) wt% NpN (Figure 

5.18). 
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'able 5.7 Chemical analysis 
Element 

NK 

OK 

NpM 

Totals 

of NpN sample 
Weight % 

Measured 

5.07 ±0.85 

3.16±0.56 

91.76 ±0.98 

100.00 

Theoretical 

5.6 

-

94.4 

100 

TEM was also utilized to characterize the synthesized NpN samples. Figure 5.25 

display a set of particles of the 15.03(1) wt% NpN sample with XEDS spectra of two 

areas. One of these areas contained both nitrogen and oxygen whereas only oxygen was 

determined in the other area. Other particles shown in the TEM BF and STEM images 

were also evaluated with XEDS and found both N and O. Similar analyses were done on 

the sample containing 62.70(1) wt% NpN. Figure 5.26 shows one area where only 

nitrogen was detected in this sample. HRTEM images shown in Figure 5.27 were 

obtained by focusing on the N rich areas of the two samples. This figure represents 

nanostructure of NpN in a similar manner which was identified for NpN2 in Figure 5.21. 

High crystallinity of the N rich areas and as well as the high ordered crystal structure can 

be observed. In addition, the crystallography of the as-synthesized sample was confirmed 

by the lattice fringe orientations. 
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Figure 5.25 TEM BF and STEM images of few particles of NpN sample with a 15.03(1) 
wt% mononitride. XEDS profiles of two points rich with nitrogen and oxygen are also 

displayed. 
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Figure 5.26 STEM and TEM BF images of the NpN sample containing 62.70(1) wt% 
NpN. XEDS spectrum of the particle highlighted in the STEM image is also displayed. 
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Figure 5.27 HRTEM images of NpN samples, (a) Particles from 15.03(1) and (b) 
62.70(1) wt% NpN samples. Both images contain lattice fringes from (111) planes of 

NpN. 
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Figure 5.28 HTEM of the N rich a particle as shown in Figure 5.25. 
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Figure 5.29 HRTEM of 15.03(1) wt% NpN sample, (a) Nitrogen rich and (b) oxygen 
rich areas. Area focused in (a) is about 40 nm into the particle from the edge of it. 
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Figure 5.28 and 5.29 are HRTEM images of NpN sample in Figure 5.25. Nitrogen 

rich areas showed to contain lattice fringes correspond to NpN (Figure 5.28c). 

Observation of other areas even with high N concentrations shows an oxidation at 

particle edges forming Np02 domains. Figure 5.28b indicates such area with NpC«2 

present. Corresponding FFT micrographs of the two areas highlighted in Figure 5.28 

confirm the formation of another phase. The FFT of the area with two phases display few 

ring patterns different from the FFT of the NpN area. Another area of the same sample 

(Figure 5.29a) contained lattice fringes from NpN crystals, but some deformations at the 

edge of the particle (highlighted with a rectangle) is observed, again suggesting a possible 

interference of a secondary phase. Figure 5.29b represents a well-formed single crystal of 

Np02 in an O rich area of the sample. 

The area denoted by a circle and a letter A in Figure 5.26 TEM BF image was also 

used to obtain the HRTEM images of the sample containing 62.70(1) wt% NpN. The 

bulk of the area observed with HRTEM contained lattice fringes of NpN. In one area, 

however, a partially crystallized NpC>2 domain was identified. Figure 5.30 shows this 

observation in detail. This NpC>2 (highlighted) domain was detected about 36 nm from the 

edge of the particle from the right-bottom of the figure. Also, this domain has a length of 

about 22 nm from the starting point to the end where NpN (200) phase was found. Also 

another open area can be seen from bottom left of the figure. Therefore, formation of this 

NpC>2 domain can probably be due to the reaction of sample edge with oxygen in air. 

These observations further indicate that NpC>2 acts as a secondary chemical phase of the 

NpN particles after it is made and as a major chemical phase due to the oxygen 
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contaminations in the experimental setup at elevated temperatures. Further details of 

these observations are discussed in section 5.4 (Discussion). 

Figure 5.30 HRTEM of the area A displayed in Figure 5.26 TEM BF image. 
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5.4 Conclusions 

The current work found six new neptunium compounds ((NH^NpFg, NtL^NpFs, 

NH4NP3F13, NpNxFy, NpN2, and NP2N3). Use of the fluoride route in the synthesis of 

NpN led to discover new compounds and a great deal of knowledge involved in their 

chemistry. Np02(s) reaction with excess NH4HF2(s) did not lead to any known 

compounds of ammonium neptunium fluorides after aging the mixture for about 4 

months at room temperature. This observation directed to check the reaction between 

NpC>2 and NFI4HF2 at a higher temperature than of the room (22 °C). Therefore, the 

mixed sample was heated at 80 °C and found no known compounds for another 3 months. 

Chemical phase determination which was done using powder XRD finally showed the 

formation of (NFL^NpFe in the fourth month of heating at 80 °C. 

The calculated XRD pattern of (NH&NpFe of the ICSD # 034-1367 showed some 

resemblance to the pattern of the above sample. However, the database pattern was 

calculated using a cubic crystal system. The sample XRD pattern was also tried by 

refining against a similar crystallography of (NH^UFe after Abazli et al [9], but the 

attempt failed because of the incorrect space group. (NFL^CeFe compound has an 

orthorhombic crystal system with a Pbcn space group, and the compound the current 

study synthesized had similar crystallography. Therefore, an orthorhombic (NFL^NpFe 

with a Pbcn space group and lattice parameters as shown in Table 5.1 is reported here as 

the terminal product of the NpC"2 and NH4HF2 solid-state reaction at 80 °C. The Np02(s) 

and NH4HF2(s) reaction at 100 °C was also evaluated and a new compound of 

ammonium neptunium fluoride was identified after 7 days. Further evaluation of the 

reaction showed that the compound can be made at room temperature as well. The new 
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compound, (NH^NpFg, was isostructural to that of (NFLOUFg with a monoclinic unit cell 

and C2/c space group. Lattice parameters of the compound are presented in Table 5.1. 

The formation of (NtLONpFg was rapid at 100 °C and it can also be made at room 

temperature. The terminal product of the Np02(s) and NH4HF2(s) reaction at room 

temperature for 4 months and 80 °C for another 4 months was (NFL^NpFe, the reaction 

mechanism was defined in equations 5.1 and 5.2. 

Heat treatment of the ammonium neptunium fluorides under NH3(g) at different 

temperatures demonstrated a formation of series of neptunium compounds together with 

some new species identified for the first time. As Table 5.5 summarizes, NH4NP3F0 was 

the first compound to identify at lower temperatures than 800 °C. NH4NPF5 was also 

identified in the same sample. NH4NPF5 isostructural with monoclinic NH4UF5 with a 

space group of P 1 217c 1 while NH4NP3F13 was had similar crystallography to NH4U3F13 

with an orthorhombic unit cell with a space group of Pm21b. NpF3 was the next 

compound to be identified in the reaction sequence. Some peaks in the XRD pattern of 

the sample contained probably due to some incompletely crystallized NpF4 (Figure 5.12a). 

When the reaction temperature was increased beyond 800 °C, the XRD patterns of the 

powder samples matched with three more new compounds: NpNxFy, NpN2, and NP2N3. 

XRD pattern of NpNxFy compound was analogous to the tetragonal UN0.95F1.2 with a 

space group of P4/nmmS. NpN2 and NP2N3 were isotructural to UN2 and U2N3 

compounds, respectively. 

Heating the (NHOxNpFy up to temperatures such as 1000 or 1100 °C, however, did 

not produce any NpN by the decomposition of higher neptunium nitrides identified. 

Further heating of the NpNx samples under an inert atmospheric conditions produced 
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NpN. Heating the NpNx at 1100 °C produced NpN but with large amounts of Np02 

(Figure 5.17). Nevertheless, heating at 900 °C under Ar(g) produced NpN with 

reasonable purity (Figure 5.18). Given the amount of neptunium sample being heated is 

small ( 4 - 1 0 mg) and the high susceptibility of NpN to oxygen in the air (Figure 5.18 

and 5.19), a 100 % phase purity was not able to achieved. The suggested reaction 

sequence for the formation of the different Np species is shown in Table 5.8. 

Table 5.8 Reactions and products identify in the neptunium system. 
Reaction 

Reactant 

(NH4)4NpF8 {Np+4} 

(NH4)2NpF6 {Np+4} 

NH4Np3Fi3 {Np+4} 

NpF3{Np+J}/orNpF4 {Np+4} 

NpNxFy {Np+4} 

NpN2 {Np+6} 

Np2N3{Np+4andNp+:>} 

Exp. Conditions 

80-250°C 

400°C,NH3(g) 

500°C,NH3(g) 

< 800 °C, NH3(g) 

> 800 °C, NH3(g) 

>800°C,Ar(g)/NH3(g) 

> 800 °C, Ar(g) 

Products 

(NH4)2NpF6 {Np+4}/ or 

NH4NpF5 {Np+4} 

NH4Np3Fn {Np+4} 

NpF3{Np+J}/orNpF4 {Np+4} 

NpNxFy {Np+4} 

NpN2 {Np+b} 

Np2N3{Np+4andNp+b} 

NpN {Np+J} 

Microscopic observations of (NH4)4NpFg and (NH4)2NpF6 showed the bulk of the 

particles of them have incompletely crystallized flat surface morphologies. HRTEM 

could be used to confirm the crystal structure details of these two compounds even 

though some differences such as crystallinity of the nanostructures were found. Slow 

crystal formation of (NH4)2NpF6 was also detected with HRTEM imaging of a sample 
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containing mixture of both compounds. Morphology of NpNx also displayed some 

differences. Especially, the NpN had significant morphological differences with respect 

to the morphology of NpN2 and NP2N3. A majority of the NpN2 particles was needle-

shaped with some particles being larger than others. The plate-like characteristics of the 

particles of Np2N3 and NpN were prominent. NpN had the largest particle sizes compared 

to other NpNx compounds studied here. 

Table 5.9 Microscopic observations of neptunium compounds. 
Compound 

(NH4)4NpF8 

(NH4)2NpF6 

NpN2 

Np2N3 

NpN 

Microscopic observation 

Morphology 

Incompletely crystallized flat 

surface 

Incompletely crystallized flat 

surface 

Needle-shaped with some large 

particles 

Plate-like particles 

Plate-like particles larger than 

that of NpN2 and Np2N3 

Nanostructure 

Polycrystalline with crystalline domains 

Polycrystalline with crystalline domains 

High lattice fringe order 

High lattice fringe order 

High lattice fringe order with some 

defects in lattice fringes due to Np02 

Single crystal areas with high lattice fringe orders were observed in all NpNx samples 

by HRTEM. Np02 phase could be identified at edges (Figure 5.28) and as well as 

complete crystals (Figure 5.29b) in NpN samples. These observations suggested that the 

oxidation of NpN can occurred due to the reaction of oxygen of two sources. Because 
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only a small amount of sample were used to synthesize NpN and the partial pressure of 

the oxygen generated inside the furnace/quartz tube is high enough to react with bulk of 

the NpN produced at elevated temperatures, conversion of NpN into Np02 is possible at 

the time the sample synthesis. This is why well-crystallized NpC>2 were found at 

nanoscales (Figure 5.29b). The second source of oxygen is the environmental oxygen 

which can readily react with the synthesized NpN as determined by XRD (Figure 5.19). 

This is the source that led some of the NpN particle edges or surfaces to become oxidized 

making Np02 at those locations (Figure 5.30). 
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CHAPTER 6 

EVALUATION OF URANIUM-THORIUM MIXED SYSTEM 

6.1 Introduction 

Current research work reported in the early chapters has shown that ammonium 

bifluoride can be used to convert uranium and thorium oxides to ammonium actinide 

fluorides. Conversion of each of these ammonium actinide fluorides into their actinide 

nitrides (UN2) or to the nitride fluoride (ThNF) suggested an exploration of making 

mixed nitrides by the ammonolysis of mixed ammonium actinide fluorides. This chapter 

presents and discusses the feasibility of making (U, Th)N2 and (U, Th)02 solid solutions 

as an added application of the low-temperature fluoride route used to investigate the 

synthesis of actinide nitrides. 

Actinide oxide solid solutions of thorium and/or uranium with the higher actinides 

offer a number of advantages for the nuclear fuel cycle. Potential plutonium burning 

capability [1] and analogous crystal structures to other tetravalent actinide oxides make 

thoria-based oxide fuels to be considered as a potential fuel type. Direct disposal of the 

irradiated thoria-based oxide fuels due to high resistance to aqueous corrosion [2, 3] and 

reducing ability of the leaching rates under oxidizing conditions [4] are few other 

advantages of these thoria-based nuclear fuels. 
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Current synthetic routes for actinide oxide solid-solutions require significant time and 

effort to produce a well homogenized mixed oxide product. Two synthetic routes are 

commonly used for the synthesis of actinide oxide solid-solutions: the dry method and 

the wet method. In the dry method, the separate actinide oxides are mixed and heated at 

elevated temperatures such as 1700 °C or higher under reducing atmospheric (hydrogen 

or argon/hydrogen) conditions [5, 6] for up to 48 hours or more. The resulting products, 

even after these prolonged sintering efforts, often fail to meet the required degree of 

homogeneity, requiring that the product to be milled or ground and re-sintered, some 

times more than once, to produce a final product that meets the requirement. In the wet 

method, the actinides are dissolved in an aqueous system and co-precipitated. The 

resulting precipitate is then converted to the oxide at an elevated temperature (1650 °C) 

under reducing atmosphere in order to get the final oxide solid-solution [7]. An 

alternative approach to the co-precipitation method is the sol-gel wet method. In sol-gel 

methods, a number of steps such as sol preparation, gelation, washing, drying, heat-

treatment at 300 °C for 3 hours, humidification, pelletization, and sintering at 1100 °C in 

Ar/H2 atmosphere for another couple of hours (2-3 hrs) are involved in order to obtain the 

final oxide solid solution [8]. The sol-gel method requires lower sintering temperatures 

that either the dry method or co-precipitation method uses. However, the production of 

oxide solid solutions by the sol-gel method requires significant additional effort to 

produce a quality product. Furthermore, to produce homogenous samples with near-

theoretical densities, additional sintering at high temperatures is often required [9]. It is 

therefore of great interest to investigate other possible routes to synthesize oxide solid 

solutions. 
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Recent efforts to synthesize actinide nitrides [10] have suggested that a low-

temperature fluorination-defluorination synthetic route may have the potential to address 

a number of concerns with the current techniques for producing solid solutions of 

actinide oxides. Wani, et al [11] has demonstrated the conversion of uranium ammonium 

fluoride to UF4 at 400 °C in air. The use of electrolysis to synthesize UO2 by 

electroreduction of UO2F2 which can be made by UF4 as the starting material [12], and 

the synthesis of UO2 from ammonium diuranate, (NFLt^l^O?, which is an intermediate 

product of the decomposition of (NH^UFg [13] are important findings that have also 

been reported. 

The first part of the chapter discusses the synthesis of the ammonium uranium-

thorium fluorides ((NFL^Ui-xThxFg) and the second part discusses the mixed uranium-

thorium nitride system. A versatile low-temperature route for actinide oxide solid 

solutions is presented at the end of the chapter. Furthermore, the method developed and 

tested for the (U, Th)02 solid solution is suggested for extending to include the higher 

actinides such as neptunium and plutonium as future work. 

6.2 Experimental Methods 

6.2.1. Synthesis of Ammonium Uranium- Thorium Fluorides ((NFL^Ui.xThxFg) 

UO2 and TI1O2 powders (International Bio-Analytical Industries, Inc.) were mixed 

using different mass ratios as indicated in Table 6.1. NH4HF2 was added to the U/Th 

oxide powder in a 4-to-l molar ratio, with a 10% excess of NH4HF2, and mixed in a 

mortar and pestle for approximately 10 minutes. The resulting mixtures were transferred 

into polyethylene vials and sealed for two days in order to ensure that the conversion of 
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the oxide to the ammonium fluoride salt is complete before using the samples for the next 

step. 

Table 6.1 Sample ' composil 
Sample 

UT1 

UT2 

UT3 

UT4 

UT5 

UT6 

UT7 

UT8 

UT9 

tions an dthep 
Weight % 

Th02 

10 

20 

30 

40 

50 

60 

70 

80 

90 

uo2 

90 

80 

70 

60 

50 

40 

30 

20 

10 

roducts formed after reacti 
Terminal products 

(NH4)4Uo.9Tho.iF8 

(NH4)4Uo.8Tho.2F8 

(NH4)4Uo.7Tho.3F8 

(NH4)4U0.6Th0.4F8 

(NH4)4Uo.5Th0.5F8 

(NFLO4Uo.4Tho.6F8 

(NH4)4UF8/ (NH4)4ThF8 

(NH4)4UF8/ (NH4)4ThF8 

(NH4)4UF8/ (NH4)4ThF8 

6.2.2. Heat Treatment of the Ammonium Uranium-Thorium Fluorides 

Heat-treatment of the resulting ammonium fluorides of mixed uranium and thorium 

was performed by three different experimental conditions. 

6.2.2.1 Heating under NH3(g) 

The mixed ammonium fluorides of uranium and thorium were heated under flowing 

NH3 gas to determine the feasibility of making (U, Th)N2 and thereafter the mixed 

mononitrides. A number of different temperatures starting from 150 °C were used to 

study the reactions. 
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6.2.2.2 Heating under Flowing Air 

Samples are first placed on a platinum foil inside the reacting quartz tube. The quartz 

tube with the sample was the heated in a tube furnace. Compressed air (Industrial grade) 

flow was started before the sample heating. The covering gas was passed into a water 

container and the heating was done up to 1100 °C. 

6.2.2.3 Heating in a Box Furnace under Static Air 

Some of the experiments were also performed in a box furnace under ambient 

conditions. No inert cover gas was used for these experiments. Heating was done again 

up to 1100 °C. 

6.2.2.4 Heating under Argon 

Sample heating was done in a similar manner described in section 2.2.1 except the 

argon was purged through the quartz tube for 10 min before heating. For the experiments 

in which argon flow was started after reaching a particular temperature, however, this 

was not the case. Here, the sample was heated up to 600 to 700 °C temperature first and 

started flowing argon from that point. The maximum temperature used in the experiments 

was 1100 °C. 

6.3 Characterization methods 

X-ray powder diffraction (XRD) patterns were obtained Cu-Ka radiation filtered with 

a Ni filter. The current and tension used were 40 mA and 40 kV, respectively. A LaB6 

SRM 660a internal standard was admixed with the samples before acquisition of the 

XRD powder patterns in order to perform Rietveld refinement with high accuracy. 

Lattice parameters were refined by Rietveld method. The morphology of the samples was 
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studied by scanning electron microscopy (SEM) and transmission electron microscopy 

(TEM). Samples were prepared for SEM imaging by mounting the powder on double-

sided carbon tape prior to gold-coating. Bulk particle morphology of the samples was 

examined using SE imaging mode of SEM. Particle morphology was analyzed using the 

conventional bright field (BF) mode and lattice structure was analyzed using the high 

resolution TEM (HRTEM) mode. 

6.4 Results and Discussion 

6.4.1 Characterization of (NFL^Ui-xThxFg 

The product phase composition of the mixed oxide starting systems is shown in Table 

6.1. For samples containing up to 60 wt% TI1O2, powder XRD patterns of the product 

ammonium actinide fluoride showed that they contain (NH4)4Ui_xThxFg solid solution 

with some impurity peaks at 12.6°, 16.2°, and 17.2° 2theta values (Figure 6.1c). Drying at 

80 °C for one week seems to remove most of these impurity peaks (Figure 6.1b), 

suggesting that they were due to ammonium fluoride and/or unreacted ammonium 

bifluoride residue in the samples. For samples containing 70 wt% to 90 wt% ThC>2, the 

product is observed to contain two separated ammonium actinide fluoride chemical 

phases. 

For the single phase systems, the impact of initial ThCh wt% on the lattice parameter 

of the product ammonium actinide fluoride is shown in Figure 6.2. All of a, b, and c 

lattice parameters increase linearly with respect to the increase in thorium level. 

Therefore, according to Vegard's law these six samples contain ammonium actinide 

fluoride solid solutions of chemical composition (NFL^Ui-xThxFg. 
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LaB6SRM660a 10.62% 
(NH4)4UD.4Tri0.6F8 89.38 % 
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(NH4)4U0.4Th0.6F8 89.64 % 
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Figure 6.1 Drying effect on the sample phase purity: (a) XRD powder refinement of UT6 
as-synthesized, (b) UT6 sample after dried at 80 °C for 7 days, and (c) enlarged powder 

pattern of as-synthesized UT6. 

The SEM micrographs of samples UT1, UT6, and UT8 are shown in Figure 6.3. 

These images show that the product appears to consist of incompletely crystallized 

particle surfaces with similar grain morphology in all samples (including those not shown 

here). Elemental distribution (inset of Figure 6.4) confirms the presence of U/Th, F, and 

N elements in these samples. The Th-N edge starts to show a prominent peak as the Th 

wt% of the sample increases. In UT1, a well oriented single peak for U can be seen 
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(Figure 6.4). In UT6 and UT8, the Th peak separates out from U peak suggesting a phase 

separation especially for the UT8 sample as seen in XRD. 
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Figure 6.2 Lattice parameter variation of the monoclinic (space group of C2/c) 
(NFL^UFg as a function of TI1O2 wt.% in the first six samples: (a) variation in a; (b) 

variation in b; (c) variation in c. 
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Figure 6.3 Secondary electron SEM micrographs of three as-synthesized samples: (a) 
UTl;(b)UT6;(c)UT8. 
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Figure 6.4 A comparison of the Th and U N-edge areas in EDS spectra of UT1, UT6, and 
UT8. Inset is the full spectra. 

6.4.2 Ammonolysis of (NH4)4Ui.xThxF8 

In order to further investigate the feasibility of making U-Th mixed nitrides, one of 

the (NH4)4(U, Th)Fg samples containing 10 wt% thorium was selected. This particular 

sample was tested because it was the first sample and has the lowest thorium level. Heat 

treatment of this sample was performed at different temperatures as shown in Table 6.2. 

At 150 °C, the original sample did not decompose into other compounds. Starting from 

450 °C, formation of other compounds was seen. This temperature was also identified to 

at which the fluorides start to form. Complete decomposition of the ammonium fluoride 

into the nitride happened at 725 °C (Figure 6.5). The sample made by heating the 

ammonium fluoride at 725 °C for 5 min consisted of UN2 and 3.08 wt % UO2, but with 
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some impurity peaks in the XRD pattern of the sample. To examine the reaction kinetics, 

additional experiments were performed in which the reaction time at temperature was 

varied. Longer heating showed a decrease of these unknown minor peaks in the XRD 

patterns together with a Th02 phase separation from UN2 phase. At 800 °C, a similar 

behavior was seen in the samples synthesized. Sometimes, the Th02 level in these 

samples was more than 10 wt % probably due to some UO2 phase solubility in the TI1O2 

phase. 

Table 6.2 Proc 

Temperature 

*150 

450 

550 

650 

725 

725 

725 

725 

750 

800 

800 

* 100% 

ucts observed for the heat treatment c 

Time/min 

10 

5 

5 

5 

5 

10 

14 

15 

5 

5 

60 

(NH4)4(U, T 

»f(NH4) 
Products and wt. % 

UF4 

-

92.88 

83.46 

45.265 

-

-

-

-

-

-

-

h)F8. 

U02 

-

7.12 

6.35 

8.298 

3.08 

1.26 

1.23 

16.5 

4.188 

-

-

UN2 

-

-

10.19 

46.44 

96.92 

83.83 

88.94 

73.5 

84.75 

88.17 

88.27 

Th02 

-

-

-

-

-

10.3 

9.83 

10 

11.06 

11.83 

11.73 

4Uo.9Tho.1Fg under NH3 gas. 

Unknown peaks in XRD 

-

-

-

-

Yes 

Yes 

Yes 

-

-

-

-
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Figure 6.5 XRD powder pattern refinement of sample synthesized by heating UT1 at 
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Figure 6.6 SEM micrographs of (a) UN2 and (b) (U, Th)N2/Th02 samples. 

These two SEM micrographs in Figure 6.6 show that morphologies of UN2 and U-Th-

Nitride samples are different. Figure 6.6b displays smaller particles than of Figure 6.6a. 

U-Th-Nitride also shows more amorphous characteristics than the UN2 suggesting an 

amorphization effect from Th incorporation. 
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Figure 6.7 XEDS of the as-synthesized sample by heating (NFLt̂ Uo.ciTho.iFg under NH3 
gas at 725 °C for 10 min. Inset is the STEM image. TEM BF and the EELS maps of U 

and Th re also displayed. 

The XEDS spectra of the particles of nitride/oxide mixed sample synthesized by 

heating (NH^Uo.ciTho.iFg under NH3 gas at 725 °C for 10 min are shown in Figure 6.7. 

The N and O distribution in (U, Th)N2/Th02 sample is random depending on the particle 

being analyzed (top left inset of Figure 6.7). Particle areas denoted by points A and B 

mainly contain nitrogen and uranium. The EELS maps also revealed these two areas to 

contain mostly U and some Th. These observations suggest incorporation of Th into the 
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UN2 matrix. Also, presence of oxygen without any nitrogen at point C demonstrates a 

oxide formation at the surface of the particles. 

Figure 6.8 (a) TEM BF image, (b) U map, and (c) Th map of (U, Th)N2/U-Th02. 

Figure 6.8 displays a TEM BF image and U and Th maps of another set of particles. 

The HRTEM image of the particle denoted by a circle is shown in Figure 6.9. This area 

was chosen because of the high concentrations of U and Th that have been observed in 

Figures 6.8b and 6.8c. Figure 6.10 represents HRTEM images of two nanoparticle areas 

of the single particle in Figure 6.8a (rounded rectangle). 
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Figure 6.9 A HRTEM image of the circled particle area in Figure 6.8. 

The HRTEM image in Figure 6.9 displays a large area containing lattice fringes of 

UN2 due to (220) planes. At first, it looks like a single crystal area. However, detailed 

analysis showed the presence of another lattice fringe orientation as indicated by top left 

arrow. This second set of lattice fringes oriented slightly different to that of bulk of this 

area causing extra diffraction spots in FFT inserted at top left. This disorientation and the 

formation of extra spots in the corresponding FFT indicate a possible incorporation of Th 

in UN2 matrix in its nanostructure. 
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Figure 6.10 HRTEM images of two areas of the single particle shown in Figure 6.9. 

HRTEM of two areas of the single particle (Figure 6.8a) shown in Figure 6.10. Both 

these particle areas contain lattice fringe details due to UN2. In Figure 6.10a, lattice 

fringes of (111) plane are present. This area consists of disoriented lattice fringes at 

number of locations as indicated by arrows. Small areas within the particle containing 

fewer details can also be detected (area A). Figure 6.10b shows the reflections of (200) 

planes of UN2 mostly. These reflections start changing when going from B through D 

forming different type of lattice fringes with closer spacing from C to D than from the 

original (C to B and beyond). The corresponding FFT micrograph (inset of Figure 6.10b) 

also consists of extra diffraction spots confirming this observation. Incorporation of a 

second phase is probably the reason for both these observations. Given the secondary 

oxide phases form mostly at the surface of the uranium nitride particles, it can be 

concluded that Th is incorporated into UN2 matrix. 
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Table 6.3 Observed reaction products for the heating of (NH4)4(U, Th)Fg for 1 through 4 
wt% of thorium under NH3. There is up to a 1% error in the wt% values. 

Th02 

wt% 

1 

2 

3 

4 

* Lattice 

Temp. /°C 

725 

725 

725 

725 

; parameters oi 

Time/ 

min 

15 

12 

10 

10 

the U02 

Product wt% and lattice parameters (A) 

UN2 

89.2 

84.2 

87.4 

91.5 

and Th( 

L.P. 

5.3059 (3) 

5.3072 (1) 

5.3063 (2) 

5.3077(2) 

)2 source sami 

Th02 

7.84 

5.26 

9.36 

3.8 

pies are ( 

L.P. 

5.586 (5) 

5.584 (2) 

5.589(1) 

5.5927(5) 

'ref value: 5/ 

U02 

2.97 

10.5 

3.2 

4.7 

L.P. 

5.4686 (4) 

5.4702 (3) 

5.465 (2) 

5.462 (2) 

1682) and 5.5982(3), 
respectively. 

Since less than 10 wt% of Th solubility in the UN2 phase was seen from the TEM 

studies, four more (NH4)4(U,Th)Fg samples were synthesized with Th contents from 1 to 

4 wt%. These four samples were subjected to heat treatment at 725 °C under NH3. The 

725 °C temperature was selected because it was the lowest temperature at which the 

(NH4)4(U, Th)Fg decomposition was completed forming UN2 (Table 6.2). 

The results obtained for these four samples are shown in Table 6.3. The oxide levels 

are greater than 10 wt% in the first three samples. However, the differences in the lattice 

parameters of U0 2 and Th02 phases of these samples compared to the source compounds 

indicate a mutual solubility of these two chemical phases. Therefore, it can be concluded 

that there is a very small amount of Th solubility in UN2 matrix. 

6.4.3 Thermal behavior of (NFL^Ui.xThxFg under flowing air 

Table 6.4 shows the impact of reaction temperature on the conversion of the 

(NFL^Uo^Tho.iFg sample under air. At 550 and 800 °C, the conversion of the ammonium 

fluorides to the oxide is not completed after heating for 30 or 60 minutes. Complete 
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conversion to the oxide phase was seen starting from 900 °C temperature with minimal 

impurity peaks in the XRD patterns. 

Table 6.4 Results obtained for the heating of the (NH^Up.gTho.iFs under air. 
Temp./°C 

550 

800 

900 

1000 

1100 

Time (min) 

30 

60 

30 

30 

30 

Products 

Primary 

UF4 

ThF4 

U308 

U308 

SS 

Secondary 

U02F2, U308 

U308, *SS, Th02 

SS, Th02 

SS, Th02 

-

Impurity peaks 

-

-

yes 

yes 

-

*SS: oxide solid-solution 

13,000 
12,000 
11,000̂  
10,000J 

9,000-
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° 4,000 
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1,000 

0-
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Figure 6.11 XRD powder pattern refinement and the Fourier map (inset) of Uo.9Tho.1O2 
solid solution synthesized at 1100 °C. 
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Increasing the reaction temperature to 1100 °C results in a single-phased Uo.9Tho.1O2 

solid-solution (SS) (Figure 6.11) after 30 minutes. During these experiments, however, 

significant weight loss (> 70 %) was observed, most likely due to the rapid reaction of 

fluorides under a continuous flow of air. 

6.4.4 Heat treatment of (NH^Ui.xThxFs under static air 

Table 6.5 Heat treatment of the samples at 1100 °C for 30 minutes under air. 
Sample 

UT1 

UT2 

UT3 

UT4 

UT5 

UT6 

UT7 

UT8 

UT9 

Th wt % 

10 

20 

30 

40 

50 

60 

70 

80 

90 

Products 

Primary 

SS 

SS 

SS 

SS 

SS 

SS 

SS 

SS 

SS 

Secondary 

U308 

U308, Th02 

U308, Th02 

U308, Th02 

U308, Th02 

-

u3o8 

U308, U02 (25.084) 

-

U308 wt % 

83.736 

61.075 

48.839 

34.177 

22.124 

-

0.900 

1.080 

-

Since an oxide solid solution was obtained by heating (NH^Uo.gTho.iFs at 1100 °C 

for 30 min under a stream of air, the same temperature and time was used for the other 

samples. To minimize sample loss by entrainment in the flowing air stream, the reaction 

was performed in a box furnace that is open to the atmosphere. Table 6.5 summarizes the 

results obtained for each sample. Under these experimental conditions, the first five 

samples containing 10-50 wt % thorium formed oxide solid-solutions together with some 
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secondary phases (TI1O2 and U3O8). Samples of 60, 70, and 90 wt % thorium produced 

the expected oxide solid-solutions without any secondary chemical phases. However, the 

sample at 80 wt % thorium behaved slightly different. This sample contained a small 

amount of U3O8 as a secondary phase, but there was a -25 wt % UO2 chemical phase. 

This result was checked by repeating the experiment two times and the results were 

approximately the same (Figure 6.12). Thus the 80 wt % thorium can be inferred as an 

outlier of the (U, Th)02 solid-solutions containing > 60 wt% thorium under these 

experimental conditions. 

U 8 6 SRM 660a 9.24 % 
Thorianite 67.01 % 
Uraninite C 22.77 % 
0303 0.98 % 

20 25 30 3S 4D 45 SO 55 60 65 70 75 

2Th Degrees 

160 
170 
160 
150 
140 
130 
120 

t o 110 
"g 100 
= SO 

o 8D 

O- 60 
CO SO 

40 
3D 
20 
10 

-10 

(b) 

S N , * * * 1 ^ y 

UB6 SRM 660a 2.33 % 
(U,Thp2 SS 64.09 % 
Uraninite C 26.41 % 
U30B 5.16% 

i i ' i ' ' i ' ' i i ' •' ' i ' i 

30 SO 60 70 

2Th Degrees 

Figure 6.12 Refined XRD powder patterns of Uo.2Tho.8Fs synthesized by heating 
(NH4)4(Uo.2Tho.8)F8 at 1100 °C for 30 min: (a) first time; (b) second time. 
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Reduction of the U3O8 product phase was attempted using sample UT2 by heating 

under NH3 at 650 °C for 1 hour [14]. This reaction produced two separated oxide phases 

(Figure 6.13). Given the difficulties in producing solid-solution samples from the dry 

mixing of actinide oxide powders [5, 6] this result is not unexpected as no additional 

homogenization of the intermediate products in this synthesis was performed. 

4U,UUl> 

35,000 

30,000 

25,000 

c 2 0 ^ 

<j 15,000 

10,000 

5,000 

oi 

LaB6SRM 660a 13.64% 
Uraninite C 53.94 % 
Thorianite 32.43 % 

JU 
<4»"&*V-

J/U_A_~A/V_ 

20 30 40 50 
2Th Degrees 

60 70 

Figure 6.13 XRD refinement of (U, Th)02/U308 after reduced in NH3 at 650 °C for 1 hr. 
6.4.5 Heat treatment of (NH^Ui-xThxFg under argon 

As the conversion of (NH4)4Ui.xThxF8 under air was not successful in synthesizing 

oxide solid solutions with a single phase for 0.1 < x < 0.5, the reaction was studied under 

argon at the same temperature for 30 min. Heating of UT1 sample under these 

experimental conditions resulted in Uo.9Tho.1O2 solid solution single phase. Initial 

experiments under flowing argon showed the same weight loss as for the flowing air 

system. Measurements of the residues in the quartz tube downstream of the sample 

confirmed the initial hypothesis that the rapid reaction of the fluoride at temperature 

results in significant entrainment in the gas stream. To reduce this entrainment problem, a 
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two-step reaction path was developed (Table 6.6). In phase 1, samples are heated in the 

air-filled quartz tube under static flow conditions to a target temperature. Once the target 

temperature is reached, argon flow over the sample is initiated and maintained throughout 

the remainder of the conversion. 

Table 6.6 Two-Stage Conversion of 40 wt% Th sample under static air / flowing argon. 
Ar flow initiation 

temperature (°C) 

Chemical phases in the product 

Primary Secondary 

Weight loss % 

870 U02 Th02 47.9 

820 Th02 U02 and U308 48.1 

710 SS 63.4 

610 SS 57.9 

To further reduce the weight loss from the samples due to rapid reaction and 

entrainment in the cover gas, the heating rate of the furnace was reduced from 50 °C/min 

to 9 °C/min. Using this two-step heating process, the mass loss was reduced to near 

theoretical values. For example, for the UT3 sample the mass loss from the two-step 

heating process was 45.7%, just above the theoretical weight loss (42 wt% for (NFLOUFg 

to U02 reaction) for this reaction, when the argon cover gas flow was initiated at 610 °C. 

The one-stage method, heating to 1100 °C under a continual argon cover gas flow from 

the beginning of the heating, resulted in a mass loss of 84.8 wt%. These mass losses may 

have some variations even after using the optimum experimental conditions due to the 

extra weights of the excess NH4HF2 as well as residual NH4F impurities in the 

ammonium actinide fluorides. Argon flow was started at 610 °C because U3O8 formation 
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starts at 400-610 °C [13, 15] temperature range and the fluorides decomposition occurs at 

a high temperature as shown in Table 6.4. These experimental conditions resulted in the 

formation of a single-phased oxide solid-solution of the uranium and thorium for the 

complete series of the samples varying thorium from 10 to 90 wt %. The lattice 

parameters of these samples vary linearly with respect to the increase in Th wt % (Figure 

6.14) obeying the Vegard's law [16]. This further confirms the formation of a series of (U, 

Th)02 solid solutions [5]. 

40 60 

Th wt % 
100 

Figure 6.14 Lattice parameter variation of the (U, Th)C>2 solid-solutions as a function of 
the Th wt % used. 
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6.4.6 Microscopic characterization of (U, Th)02 solid-solutions 

Figure 6.15 shows SEM micrographs of four different oxide solid solution samples 

synthesized under argon. These images show that the product appears to consist of 

incompletely crystallized particle surfaces with somewhat similar grain morphology. All 

these samples also consist of particles of randomly distributed morphology. Some areas 

of the samples contain partially crystallized particles where as some other areas consist of 

particles without any crystallite facets. 

Figure 6.15 Secondary electron SEM micrographs of (U, Th)02 solid solutions as a 
function of Th amounts: (a) 10 wt %; (b) 30 wt %; (c) 50 wt %; (d) 70 wt %. 
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These random distributions of the particle morphology suggest the samples are not 

homogeneously distributed. Sintering would probably diminish these characteristics 

making the samples more crystalline and more organized. Bulk particles of 10 and 30 

wt% Th samples are larger than that of 70 and 90 wt% because the agglomerated UO2 

particles are larger than the ThC>2 particles. The 30 wt% Th sample also displays some 

pore spaces within its particles. Particles in Figure 6.15c and 15d indicate a more round 

shape compared to that in Figure 6.15a and 15b. This observation indicates a more 

crystalline character in 50 and 70 wt% Th samples than in the other two. Table 6.7 shows 

elemental distribution of two samples (60 and 90 wt% Th) with accurate expected 

element percentages. 

Table 6.7 Elemental analysis of oxide solid solutions of 60 and 90 wt 
Sample 

60 wt% 

90 wt% 

Average element % 

U 

30.10 

7.35 

Th 

47.05 

66.65 

O 

22.85 

26.00 

U/Th ratio 

Experimental 

0.64 

0.11 

Theoretical 

0.67 

0.11 

% Th. 

HRTEM of Uo.9Tho.1O2 sample particle is shown in Figure 6.16a. The whole area 

displayed in the figure contains well-crystallized character with lattice fringes correspond 

to (220) planes. The Bloch simulation in Figure 6.16 b also confirms the crystal structure 

of the sample. Experimental lattice fringes match well with the simulated images of 0 to -

12 mm defocus and 5 to 145 nm thickness values. 
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Figure 6.16 (a) HRTEM image of a well-crystallized particle area of Uo.9Tho.1O2 solid 
solution and (b) Bloch simulation of the oxide correspond to (220) reflection along [001]. 

Some areas of the same sample were identified to consist with grains of different 

sizes as displayed in Figure 6.17. The magnified image in Figure 6.17b demonstrates that 

some of these grains contain two directional lattice fringes without any defects. Figure 

6.17c shows mainly two directional lattice fringes but with some specific patterns in 

some of the nanosclae areas within the grain. The arrow pointed along c-o direction 

represents the lattice fringes directional to that orientation while the three arrows (1,2, 

and 3) along o-a direction point the "Z" shape orientations. These nanoscale changes in 

the oxide lattice fringe orientations suggest an incorporation of thorium into the UO2 

matrix. 
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Figure 6.17 HRTEM of another Uo.9Tho.1O2 particle area, (a) Grain boundaries, (b) 
magnified image of area B, and (c) magnified image of area A. 
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Figure 6.18 (a) HRTEM image and experimental intensity profiles along (b) AB and (c) 
CD. Magnified image of the area in between AB and CD lines (d) and the Bloch 

simulation of UO2 due to (111) planes along [101] zone axis. 
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Uo.9Tho.1O2 sample also contain particle areas where lattice fringes show more 

compact space filling than expected. Figure 6.18 shows a detailed HRTEM analysis of 

such as a particle area. A grain boundary displaying a separation of two grains with one 

elongated grain towards the other is shown in Figure 6.18a. The experimental intensity 

profiles along AB (Figures 6.18b) and CD (Figure 6.18c) reveal that the atomic layers in 

these two areas have 2-fold and 1-fold order in space filling. The second grain (top left 

side of the image) however does not have lattice fringe orientation that can cause such 

space filling. Figure 6.18d shows a magnified image of the area in between AB and CD 

lines. Bloch simulations (Figure 6.18e) obtained for (111) planes of the compound along 
« 

[101] zone axis also confirm that defocus or thickness variance of the compound cannot 

be the reason for such nanostructural behavior. Lattice fringes circled in Figures 6.18d 

and 6.18e matches up to a certain level, and the change in defocus or the thickness could 

cause their formation like the ones highlighted by rectangles in Figure 6.18e. Therefore, 

the 2-fold order found here can be considered as due to thorium incorporation into the 

UO2 matrix. 

The HRTEM/intensity profiles shown in Figure 6.19 are from a sample of as-

synthesized Uo.4Tho.6O2 oxide solid solution. This figure shows three different layers of 

grains. The first and last layers have high intensity as shown in experimental intensity 

profiles. The middle layer consisted of less intensity and it spreads throughout the 

focused area. At the two boundaries (areas B and C) where the middle layer interacts with 

others, lattice fringe orientations of the two layers can be observed interchangeably. This 

indicates that the middle layer acts as bridge to mix the other two together. 
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Figure 6.19 HRTEM of Uo.4Tho.6O2 oxide solid solution. Intensity profiles along A 
through D are also presented. 
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Figure 6.20 HRTEM of two particle areas of Uo.2Tho.8O2 solid solution sample. 

Uo.2Tho.8O2 also demonstrated to contain high crystalline characteristics in its 

nanostrutucre. Figure 6.20a shows few particles without any defects in their lattice 

fringes. Within these particles some localized grains of high lattice fringe order can also 

be observed as in Figure 6.20b. 

Even in this sample, particle areas of some defects could be identified. Figure 6.21 

represents an example. This figure shows a considerably large area containing single 

crystal characteristics, but the direction of the lattice fringes along AB changes at B/C 

positions as indicated by an arrow. The fringe formation is then progressed up to the edge 

of the particle (position D). These lattice fringes also start to show some missing 

information (circles) within approximately 2nm range. These observations suggest 

possible crystallization inhibitions due to incorporation of the minor oxide (UO2) in the 

TI1O2, which is dominant at 80 wt% Th, of the solid solution. 
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Figure 6.21 Single crystal area of Uo.2Tho.sO2 solid solution with minor defects. 

Again crystalline domains oriented along different directions are present in 

Uo.1Tho.9O2 as well (Figure 6.22a). HRTEM in Figure 6.22b was obtained by focusing the 

particle about 20 nm from the bottom of area in Figure 6.22a. This figure indicates some 

deformed lattice fringes possibly oxide solid solution formation. Twin boundary of the 

same sample was also seen as depicted in Figure 6.23. This figure further shows a high 

crystalline order of the lattice fringes correspond to (111) planes of the oxide. Bloch 

simulation further verifies the six-member atomic rings formed along the direction. 
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Figure 6.22 HRTEM images of the as-synthesized Uo.2Tho.8O2 sample. 
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Figure 6.23 HRTEM image showing a twin boundary of the as-synthesized Uo.2Tho.8O2 
sample. Insets are the calculated Bloch images and the FFT. 
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6.5 Conclusions 

Experiments conducted on the (NHO^U, Th)F8 samples containing 10 wt% Th displayed a 

oxide chemical phase separation from the UN2 matrix. Further characterizations of these samples 

by TEM techniques, however, revealed an incorporation of Th into the UN2 nanostructure. 

Further experiments performed on four (NFLO^U, Th)Fs samples of different Th levels up to 4 

wt% showed a very small amount (<1 wt%) of Th incorporation into UN2 according to the mutual 

solubility of U02 and Th02 in each other. 

Synthesis of (U, Th)02 solid solutions from the actinide oxides by a low-temperature 

fluoride route was investigated. In this process, an (NFLt̂ Ui-xThxFg intermediate phase 

was synthesized by mixing UO2 and TI1O2 with NH4HF2. (NFL^Ui-xThxFg solid-solutions 

were formed up to x = 0.6. At higher thorium content (x > 0.7), two separate phases, 

(NFL^UFg and (NFL^ThFg, were formed. The intermediate ammonium actinide fluoride 

phase was then subsequently heated under different atmospheres to check the feasibility 

of making (U, Th)02 solid solutions. 

First sets of experiments performed under a stream of air and static air showed a 

complete conversion of the ammonium fluorides of some compositions into the 

corresponding oxide solid solutions after heating them up to a maximum temperature of 

1100 °C for 30 min. Heat treatment of the ammonium fluorides under an air flow 

produced (U, Th)02 solid solutions with some minor impurity phases. Also, unexpected 

high weight losses were identified in these experiments mostly due to entrainment of the 

sample with the cover gas. Therefore, heating the fluorides under a static environment 

was performed. These conditions however produced single-phased (U, Th)02 solid 

solutions only when the thorium content is greater than 50 wt %. Samples of other 

compositions showed to contain considerable amounts of a secondary U3O8 chemical 
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phase explaining why samples of Th > 50 wt% resulted the oxide solid solutions. Heating 

the ammonium fluorides under argon flow also produced (U, Th)02 solid solutions but 

with high weight losses. Theoretically expected weight losses with the single-phased 

characteristics were obtained by a two-phased heating. At first, samples were heated in an 

air-filled quartz tube under static flow conditions to a target temperature of 610 °C and 

then the argon flow over the sample was initiated and maintained throughout the 

remainder of the heat treatment. Argon flow at the second stage was necessary to hinder 

further oxidation of the tetravalent actinide oxide solid solutions into U3O8. With these 

optimized experimental conditions, a complete series of Ui_xThx02 solid-solutions for 0.1 

< x < 0.9 was synthesized. 

Microscopic studies showed the oxide solid-solutions to have much similar 

morphology at bulk level. A high degree of crystallinity was observed in some areas of 

the oxide solid solutions at nanoscale. Particle containing different orientations and grain 

boundaries were observed in these oxides. Bridging effects of particle layers and some 

deformations in the lattice fringe formations were also found due possibly due to the 

incorporation of second oxide phase into the major oxide matrix. Compact space filling in 

nanostructures was also found to be observant in these oxide solid solutions. 
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CHAPTER 7 

CONCLUSIONS AND RECOMMENDATIONS 

7.1 Uranium System 

Use of the fluorite route was successful in synthesizing UN. Optimum experimental 

conditions for the synthesis of UN with 97 wt% phase purity were determined. Further 

experimentation of the uranium system was performed to study reaction mechanism and 

kinetics. Decomposition of UN2 in an inert atmosphere resulted in forming UNX where 1 

< x < 2. U2N3 and UNF were found to be the intermediate stoichiometric compositions 

between UN2 and UN and UF4 and UN2, respectively. Lattice parameters of both UN2 

and U2N3 displayed a linear increase with respect to the temperature used to synthesize 

the samples. The lattice parameter of UN did not show any special relationship to the 

temperature been used to synthesize it although it showed to have range of values even at 

one particular temperature. Kinetics involved in the UN2 decomposition was also studied 

at three different temperatures. Rate constants of the UN2 to UN reaction at 1000, 1050, 

and 1100 °C were determined to be 0.07 ± 0.01, 0.21 ± 0.02, and 1.3 ± 0.3 s"1 x 103, 

respectively. Activation energy of the reaction was calculated to be 423.8 ± 0.3 kJ/mol 

based on the Pseudo-first-order kinetics. 

Microscopy was used extensively to study the morphology and nanostructures. Bulk 

particles of UN2, U2N3, and UN demonstrated a similar morphology. Only a slight 

morphology difference was observed in the UN particles with respect the extent of 
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crystallization at their discrete faces. A high crystallinity in these UNX nanostructures was 

also observed with HRTEM. A high-ordered lattice fringes with multiple channels of UN 

was detected in some nano particle areas. Also, UN2 and U2N3 had well-packed high 

order in their lattice fringe orientations. These microscopic evaluations further explained 

the UO2 phase formation in UN particles. UN was more susceptible to oxygen in air than 

UN2 or U2N3. However, the oxygen reaction with UN was comparatively slow (about 5 

wt% increase of the UO2 content in three months). Discovery of UO2 formation mainly 

on the particle surfaces or edges explained the slow rates of UN reactivity with oxygen. 

7.2 Thorium System 

The fluoride route used to synthesize UNX was not successful in synthesizing ThNx 

using similar experimental conditions. However, new findings related to the Th system 

were reported. Solid state reaction of TI1O2 and NH4HF2 at room temperature proved to 

consists of one known and two unknown intermediate chemical phases with a terminal 

product of (NFLt^ThFg composition. The known intermediate was found to be 

(NH4)3ThF7 with stability up to few months in the reaction mixture containing unreacted 

TI1O2 and excess NH4HF2. The terminal product of the ammonolysis of ammonium 

thorium fluoride up to 1100°C was found to be ThNF. Thermal decomposition of this 

compound to make ThNx was not successful under Ar, Ar/H2(5%), N2, or N2/H2(5%) 

atmospheres up to the same temperature. It is recommended to try temperatures greater 

than 1100 °C in decomposing ThNF further to check the feasibility of making ThNx. 

These decompositions will have to be done in a furnace of very high pure inert 

atmosphere to avoid formation of TI1O2. Finding a series of low stoichiometric ThNxFy 
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compositions however helped proposing a possible mechanism to this reaction as 

discussed in the corresponding chapter. Microscopic evaluation showed that particles of 

(NH^ThFg had well-crystallized acicular shape while ThNF exhibited plate-like 

character with some pore spaces. Nanostructures of the (NFL^ThFg and ThNF illustrated 

polycrystalline and single crystal characteristics, respectively. Single crystal areas were 

found in (NH^ThFg compound mainly of small domains. High crystalline order of the 

ThNF nanostructure was also observed. 

Introduction of LiNH2 into the reaction media at the ammonolysis step of the fluoride 

route induced formation of ThNx resulting TI12N3. However, the oxidation state of Th in 

TI12N3 has not been previously investigated earlier. Thorium cannot have mixed 

tetravalent and pentavelent state as necessitated by the stoichiometry of TI12N3 assuming 

an N3" oxidation state. Elemental distribution of the as-synthesized TI12N3 samples also 

showed that TI12N2O is not the chemical phase in these samples even though the XRD 

pattern of it matches with the sesquinitride. Tetravalent zirconium is a suitable Th 

homolog for the nitrides system. Similar electronic configuration of Zr in the valence 

shells to that of Th leads one to believe the difficulty in forming the necessary mixed 

oxidation state given nitrogen has 3- oxidation state in a ZrNx chemical composition. 

Nevertheless, zirconium based research works in early nineties report the observation of 

Zr2N3 [1]. The same study showed that Z^N3 also oxidizes very easily in air. Presence of 

colloidal Zr2N3 has also found [2]. Another study reported the identification of Z^N4 and 

not the Zr2N3 chemical composition [3]. This work also described the formation of a 

series of amides as a result of decomposition of Zr(NH3)Cl4. These compounds contained 

chemical compositions of Zr(NH2)4 and Zr(NH)2. The nitride, Z^Nj, was obtained 
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heating Zr(NH)2 at 350 °C. The final compound produced by decomposing Zr(NH)2 was 

Zr3N. These observations suggest a possibility of NH group involvement in the Zr2N3 if 

it is to be present. Therefore, Tli2N2(NH) chemical phase, which preserves the 4+ 

oxidation state for thorium, can be suggested to be contained in the prepared Th samples 

in this work. Since the L1NH2 used in the synthesis is a logical source of NH ligand, this 

idea can further be supported. Further experimentations on identifying the presence of 

NH by FTIR studies are suggested. Another observation of these samples were the 

presence of TI1O2 as the impurity phase even though the cover gases used had the same 

purity levels as for uranium system. Microscopic characterization of these samples 

showed that TI1O2 probably have been formed interchangeably with TI12N3 due to high 

susceptibility of thorium nitrides as a general observation towards oxygen. 

7.3 Neptunium System 

Synthesis of neptunium nitrides was the most difficult of all compounds that have 

been used in this research work. Only small amounts were used and the handling of these 

materials was difficult due to high radioactivity of the samples. Synthesis of the reactants 

(the ammonium neptunium fluorides) was performed at 80 - 100 °C temperatures 

because of the slow kinetics of the Np02(s) with NH4HF2(s). The fluoride route was 

however usable to synthesize NpN. Two ammonium neptunium fluorides were identified 

from the reaction of Np02(s) with solid NH4HF2(s). The reaction at 100 °C took less than 

7 days to produce (NH^NpFg which could be transformed into (NH^NpFe after heating 

it for less than 2 months at 80 °C. (NH^NpFg has never been reported before, and it has a 

crystal structure similar to that of monoclinic (NHOUFg with a C2/c space group. The 
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second compound, (NH^NpFs, found to have an orthorhombic unit cell and a Pbcn 

space group. This (NH^NpFe can also be made by heating (NFLONpFg at a temperature 

of 250 °C under Nltyg). Five more new compounds of neptunium were identified in the 

ammonolysis step of the ammonium neptunium fluorides. Compound names and their 

structural details are summarized in Table 7.1. 

Table 7.1 New compounds identified in the ammonolysis of (NH4)xNpFy 

Compound 

NH4NpF5 

NH4Np3F 13 

NpNxFy 

NpN2 

NP2N3 

Structure details 

Crystal system 

Monoclinic 

Orthorhombic 

Tetragonal 

Cubic 

Cubic 

Unit cell 

P1 21/cl 

Pm21b 

P4/nmmS 

Fm3m 

la 3 

Ammonolysis followed by heating the resulting products (NpN2 or NP2N3) in an inert 

atmosphere such as high purity argon could used to make NpN as in the case of UN. 

NpC<2 secondary phase contaminations were greater at 1100 °C than at 900 °C. Using Zr 

sponge as an oxygen getter, a reasonable high purity NpN could be synthesized for the 

chemical characterizations. Kinetics study on the reactivity of NpN with oxygen at 

ambient conditions showed that the reaction is fast at the beginning and comes to a 

steady-state condition after about 60 days. SEM images of NpN2 and NP2N3 showed 

some morphological similarities with respect to their particle shape and sizes. NpN 
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however displayed to have different morphology. Nanostructures of both higher nitrides 

(NpN2 and NP2N3) were of high ordered and crystalline. Similar characteristics were 

identified in NpN nanostructure at particle areas without secondary phases. TEM analysis 

performed on NpN samples containing large amounts of Np02 showed that separate 

particles of each phase were present in them. Nanoscale single crystals of NpC>2 were 

observed in some areas of high oxygen contents. Particles containing only nitrogen or 

both nitrogen and some oxygen showed that mostly the particle surfaces of NpN were 

affected by NpC>2 crystallizations. NpN oxidations when it was synthesized and after the 

synthesis were thus confirmed. Use of lower temperatures than 900 °C and the use of a 

glove box containing inert atmospheric conditions are recommended for the synthesis of 

NpN for high phase purity. 

7.4 Uranium and Thorium Mixed System 

Use of the fluoride route on mixed actinide systems up to 1100 °C was also tested in 

this research project. Uranium and thorium system was tested varying the thorium 

content from 10 to 90 wt%. General chemical composition of the ammonium fluorides of 

uranium and thorium mixed systems can be given as (NFL^Ui-xThxFg. A single phase 

was identified up to 60 wt% thorium. Change in the lattice parameters of these as-

synthesized compounds with respect to the change in thorium weight percentages 

confirmed a solid solution behavior. From 70 to 90 wt%, the samples produced consisted 

of separate (NFL^UFg and (NFL^ThFg chemical phases. EDS studies showed a 

separation of the thorium energy peak in the spectra starting form 60 wt% thorium 
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sample confirming the XRD results. These compounds appear to consist of incompletely 

crystallized particle surfaces of similar morphology. 

Ammonolysis of these samples containing a single solid solution or two separated 

compounds produced UN2 as expected. A UO2/TI1O2 chemical phase always separated 

out from the main nitride. The fluoride route was not thus successful in synthesizing (U, 

Th)N2 solid solutions at large thorium concentrations. However, microscopic studies such 

as SEM, EDS, and XEDS showed a small amount of thorium to be incorporated into the 

UN2 matrix. Further evaluation of nanostructures of these as-synthesized WSb/Th-U-Ch 

samples with HRTEM also confirmed this observation. Experiments performed on 

samples containing from 1 to 4 wt% thorium also displayed separation of Th/U02 

chemical phases. These observations demonstrated an unsuccessful use of the low-

temperature fluoride route to synthesize (U, Th)N2 and hence the (U, Th)N compounds. 

Probable reason for this finding would be the preference of thorium element's oxidation 

state (4+). 

After failing to synthesize (U, Th)Nx with these compositions, further 

experimentations on the system were done to check making (U, Th)C>2 solid solutions at a 

temperature of 1100 °C. Initial experiments on heating the (NFL^Ui-xThxFg samples in 

air or argon produced (U, Th)C>2 solid solutions with some limitations. After optimizing 

the experimental conditions however produced the expected oxide solid solutions for the 

complete series of thorium. This novel route used to synthesize (U, Th)02 solid solution 

is proposed for mixed actinide oxide synthesis. 
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