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ABSTRACT 

 

Electrochemistry of Technetium Analogs Rhenium and Molybdenum in Room 

Temperature Ionic Liquid 

 

by 

 

Pauline N. Serrano 

 

Dr. David Hatchett, Examination Committee Chair 

Professor of Analytical Chemistry 

University of Nevada, Las Vegas 

 

Rhenium was used as an analog for Technetium to study the electrochemical 

redox properties because the two elements share the same stable oxidation states in 

aqueous solutions.  However, Tc-99 is radioactive and is not readily available for 

experimentation purposes.  Molybdenum is also of interest because when Mo-99 is 

irradiated, the decay products are Tc-99m and Tc-99. Approximately 30% Tc-99m is 

eluted from the Mo columns for radiopharmaceutical use with the remaining Mo-99 

source decaying to Tc-99 which is discarded as radioactive hospital waste.  Currently 

there are no viable procedures for the reclamation of the radioactive Tc-99 from either 

fission streams or from the hospital waste.  Investigating the electrochemical properties 

of Re and Mo are important for developing methodologies to increase the percent elution 

of Tc-99m, and ultimately improve reclamation procedures of the waste Tc-99.  In this 

study RTIL solutions are utilized in place of aqueous solutions for the electrochemical 

analysis and deposition of both Re and Mo. In these studies the RTIL was used to 

eliminate the competitive side reactions associated with water, remove the acid 

dependence associated with the reduction of Re and Mo species, and extend the negative 

potential window such that reduction of the species to metal was achieved. The 

electrochemical and SEM results indicate that Re and Mo were reduced and deposited 



iv 

onto working electrodes.  With the growing stores of hazardous technetium from the 

medical industry and nuclear fuel reprocessing, mechanisms for deposition and recovery 

are increasingly important.  The studies outlined in this thesis defense increase our 

understanding of the electrochemistry of stable analogues, Re and Mo and in turn 

increase our understanding suggesting that the target recovery of Tc can be achieved 

using RTIL solutions.  
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CHAPTER 1 

INTRODUCTION 

1.1 Background and PUREX Process 

The PUREX (Plutonium/Uranium Extraction) process is the industrial procedure for 

recycling used nuclear fuel (UNF), where fission products are removed and useable 

uranium (U(VI)) and plutonium (Pu(IV)) are then recovered [1-4]. At the beginning of 

the PUREX process the used fuel is chopped into small pieces and dissolved in 3 M – 4 

M nitric acid.  Once fully dissolved, the uranium and plutonium species are extracted by 

30% tri-n-butyl-phosphate (TBP) dissolved into 70% dodecane (or kerosene).  U(VI) and 

Pu(IV) are separated as UO2(NO3)2.2TBP and Pu(NO3)4.2TBP from the raffinate 

containing all the fission products and purified in multi-stage extraction cycles.  The 

remaining liquid after plutonium and uranium removed is high-level waste, containing 

about 3% of used fuel in the form of fission products and minor actinides [5].  It is highly 

radioactive and generates a significant amount of heat. 

 

 

 

Figure 1.1: Extraction Principle for PUREX [6] 
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Due to the specific nature of the extractant TBP, species such as Strontium (Sr-90), 

Cesium (Cs-137), and Technetium (Tc-99) are not extracted and remain in the first 

aqueous raffinate.  The raffinate is the liquid stream, which remains after the extraction 

with the immiscible liquid, removes solutes from the original liquor.  The small activity 

of Tc-99 relative to other fission products, like Cs-137 or Sr-90, and its long half-life (t1/2 

= 2.1 x 10
5
 years), makes it one of the key isotopes for analysis in radioactive liquid 

waste streams for reprocessing industry [3, 4].  The presence of Tc-99 in real effluent is 

problematic because it favors its more thermodynamically stable anionic form, 

pertechnetate TcO4
-
, which is highly mobile species, making it challenging for safe 

disposal.   

Currently methods to directly separate Tc-99 from the PUREX process are still in the 

R&D mode because of the nature of the extractant as well as the medium [7-9].  A 

promising method for the separation and recovery of Tc-99 is based on the potential 

dependent electrochemical deposition of technetium from the reprocessing solution 

targeting TcO4
-
.  Alternatively the extraction of TcO4

-
 into room temperature ionic liquid 

(RTIL) can be envisioned for electrochemical recovery from non-aqueous environments.  

Room temperature ionic liquid can be defined as a molten salt that is liquid at low 

temperatures, wholly composed of ions [10-12].  This may be accomplished by mixing 

known amounts of TcO4
-
, which is already dissolved in HNO3, into acidified RTIL [13-

15].  The interactions between the cations of the RTIL and the TcO4
-
 allow for solvation.  

This mixture separates and the RTIL remains intact.  This process can also be used with 

similar species such as ReO4
-
, MoO2, and MoO4

2-
.  Reclamation from aqueous or non-

aqueous solutions using electrochemical methods is an attractive method because it is 
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clean, efficient, and inexpensive relative to using other extraction methods.  RTIL may 

also be envisioned as a complementary technique for new advanced separation 

technologies such as the COEX
TM

(co-extraction) process where U(VI) and Pu(IV) are co-

extracted by 30% tri-n-butylphosphate, 70% dodecane and co-precipitated as a mixed 

oxide (MOX) fuel(Pu,U)O2 [16, 17].MOX fuel is a nuclear fuel that contains more than 

one oxide or fissile materials.  Usually referring to a blend of oxides of plutonium and 

natural uranium, reprocessed uranium, or depleted uranium, which behave similarly to 

low enriched uranium (LEU) oxide fuel. MOX fuel is an alternative to LEU fuel used in 

light water reactors.  The precipitation of U(VI) or Pu(IV) or both is performed by adding 

oxalic acid to the solution, resulting in an oxalate precipitate.  This precipitate is 

calcinated to 400
o
C – 600

o
C to form MOX. 

The PUREX process was originally designed to purify plutonium for weapon 

purposes the COEX process (co-extraction) does not separate pure plutonium at any point 

in the recycling plant [18].  
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Figure 1.2: Proposed Recycling at AREVA Based on a New Integrated Co-extraction (COEX) 

Process [19] 

 

 

An additional attraction of MOX fuel is that it provides a way to dispose of surplus 

weapon grade plutonium in the current U.S. fleet of conventional light water reactors 

(LWR’s).  It is conditioned by calcining and incorporating the dry material into vitrified 

solid, pending for disposal [19, 20]. 

1.1.1 Technetium 

 Tc-99 is unstable and only minute traces occur as a spontaneous fission product in 

uranium ores [21, 22].  Among the long-lived technetium isotope the only beta emitter is 

Tc-99 and it is obtained in small amounts either by extended neutron irradiation of highly 

purified molybdenum or by induced fission of U-235, making it the most common and 

most readily available Tc isotope (others include Tc-98 and Tc-97).  A kilogram of 

uranium contains an estimated 1 nanogram of technetium [23].  The fission of a gram of 

U-235 in nuclear reactors yields 27mg of Tc-99[23].  Other fissile isotopes also produce 

similar yields of Tc, 4.9% from U-233 and 6.21% Pu-239 [23]. 

The long half-life of Tc-99and its ability to form anionic species such as TcO4
-
 makes 

it a major concern for long-term disposal of radioactive waste and separation [24].  Many 

of the processes designed to remove fission products in reprocessing plants target cationic 

species that do not favor the retention of Tc in the treatment process.  Current French and 

Japanese disposal favors burial of the waste encapsulated in glass designed for deep, 

underground repositories or in geologically stable rock.  Therefore, the use of anionic 

forms of high activity fission materials such as TcO4
-
 is problematic in current disposal 
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processes.  In a dry repository there are no expected chemical changes to the glass waste, 

because no oxidizing agents can be found.  However, if the container encounters any 

contact with aqueous environmental solutions the vitrified waste may be altered by 

initiating chemical reactions depending on the composition of the solution, pH, redox 

potential, and temperature.  In the presence of water and oxygen, TcO2 will be readily 

oxidized to soluble TcO4
-
.   

 

 

 

Figure 1.3: Vitrification of Raffinate [6] 

 

 

1.1.2. Metastable- Technetium and Molybdenum  

Another isotope of Tc-99 worth mentioning is technetium-metastable (Tc-99m).  The 

short-lived Tc-99m is used as an organ radioisotope or radioactive tracer in 

radiopharmaceuticals in nuclear medicine [25, 26].  Tc-99m decays by gamma-emission 
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in 6.0 hours to Tc-99g ground state, limiting radiation dose to the patient.  Tc-99m is 

obtained from the decay product of Mo-99, as illustrated in the flow chart below: 

 

 

 

Figure 1.4: Generation and Decay of Tc-99m and Tc-99g [23] 

 

 

Tc-99m, is used in about two-thirds of all diagnostic medical isotope procedures in 

the U.S.  Tc-99m is currently produced through a multistep process that begins with the 

neutron irradiation of fissile U-235 contained in High Enriched Uranium (HEU) or Low 

Enriched Uranium (LEU) targets in a nuclear reactor. The irradiation of U-235 causes 

fission and production of a variety of products which contain appreciable amounts of Mo-

99, I-131 and Xe-133. These fission products are obtained in the same proportions 

independent of whether HEU or LEU targets are used. Following irradiation, the targets 

are dissolved and chemically processed to separate Mo-99 from the other fission 

products. If desired, other fission products of interest for medical applications such as 

Xe-133 and I-131 could be recovered separately as well. A solution containing the 
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separated Mo-99 is passed through an alumina (Al2O3) column with the majority of the 

Mo-99 adsorbed on the column.  The process is not efficient with approximately 30% of 

molybdenum being lost during the process. The columns are then shipped to hospitals in 

radiation-shielded cartridges for use as technetium generators [4, 27]. 

The Mo-99 contained in the generators, decays with about a 66 hour half-life to Tc-

99m. Tc-99m is typically recovered by passing a saline solution through the alumina 

column in the generator, a process known as eluting the generator. The saline removes 

the Tc-99m daughter, but leaves the Mo-99 mother in place [27].   

In 2006 the demand for Mo-99 in the U.S. ranged from 5,000 and 7,000 6-day curies 

per week. The demand for Mo-99/Tc-99m in the U.S. is projected to grow between 1 to 5 

percent over the next 5 years, however based on the current use will likely continue to 

grow at a rate of 3 to 5 percent per year [27].  The problem arose because of 

miscalculation of challenges building nuclear reactors.   

There are preexisting technologies being tested to target the manufacturing of Mo-99 

from Mo-98 by neutron capture instead of solely from U-235 fission, but there are many 

concerns with this method of synthesis [26, 27].  The electrochemical methods developed 

in this thesis may be used to potentially recover and separate then purify Mo-99 to obtain 

Tc-99m.The basis of this application is that Tc-99m which only emits γ-rays and decays 

to Tc-99 in 6.01 hours limiting the overall radioactive dosage in the patient [23].  In 

addition, ligand functionalization of Tc-99m is possible and there are at least 31 

commonly used radiopharmaceuticals that have been developed for imaging and 

functional studies of the brain, myocardium, thyroid, lungs, liver, gallbladder, kidneys, 

skeleton, blood and tumors [23]. 
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The impending Mo-99 shortage has physicians exploring innovative and restoring old 

techniques; for example thallium imaging and the use of software and endoscopic 

cameras.  However, there is a risk of decreasing accuracy which may occur because of a 

lower the dose of Tc-99m that can lead to false negatives and positives.  Alternative 

thallium protocols are being investigated for replacement yet it would be used a 

preliminary imaging test which would be coupled with Tc-99m if the results were not 

conclusive.  When using Tc-99m a lesion of 3mm can be detected.   

1.2 Perrhenate and Pertechnetate Analogues 

For many years most of the chemistry of Tc complexes was predicted on the basis of 

the knowledge of Re analogues.  Now Tc chemistry is better known and in many cases 

the behavior of Re radiopharmaceuticals is predicted taking into account the reactivity of 

Tc labeled molecules.  However, obtaining working quantities of Tc-99 is challenging 

based on the ability to reclaim these materials from extraction. However, perrhenate 

(ReO4
-
) is an analogous material that can be utilized to approximate the properties of 

TcO4
-
.  In addition, the perrhenate can be used as an equivalent model for Tc under 

identical solution parameters encountered for processing used nuclear fuel.  For example, 

the oxidation/reduction of ReO4
-
 in an aqueous solution has been studied at platinum and 

gold working electrodes.  These studies have yielded useful electrochemical potential 

data that is summarized in the following Table for the electrodeposition of rhenium 

species from aqueous solution: 

 

 

Table 1.1: Electrochemical deposition of Rhenium species from Perrhenate Solutions at Platinum 

and Gold working electrodes [28] 
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 Electrodeposited species Method used to determine oxidation state 

Pt ReO2 Voltammetric charge calculations 

Pt ReO2 Voltammetric charge calculations 

Pt ReO2 Kinetic studies 

Pt, Au ReOx Radiometric and voltammetric calculations 

Pt ReO2, ReO3, Re2O5 Comparison of voltammetric behavior with pure oxides 

Au Re SEM-EDS* 

Pt ReO3 SEM-EDS 

Au Re SEM-EDS 

*SEM-EDS- Scanning Electron Microscope-Energy Dispersive X-ray Spectroscopy 

 

 

At neutral pH solutions Tc complexes are slightly more unstable than those of Re, 

decomposing to TcO4
-
 and TcO2.  In acidic pH, where [MO(OH)L2]

2+
 cations are 

predominant, the stability of Re complexes does not change, while Tc complexes 

decompose very quickly.  A redox process is involved in this decomposition, making 

TcO4
-
 and TcO2 final products.  Differences in reactivity may be due to either kinetic or 

thermodynamic factors.  With all complexes having central atoms in the same oxidation 

state, a dominant thermodynamic effect is highly probable.  Where relative rates of 

electron transfer to and from analogous Tc and Re complexes are likely to be governed 

primarily by differences in redox potentials [29].   

The main objective of the research presented in this thesis is to: 
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1- Evaluate the aqueous parameters for rhenium and molybdenum electrochemistry, 

specifically pH, solution matrix and potential window. 

2- Electrochemically reduction Re(VII) to Re(0) in room temperature ionic liquid as 

an analogue for technetium recovery 

3- Investigate electrochemical behavior of Mo(VI) and Mo(IV) in aqueous and non-

aqueous environments for targeted Mo metal deposition. 
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Chapter 2 

Electrochemical Methods 

2.1 Background and Motivation 

Electrochemistry is the branch of chemistry concerned with the oxidation/reduction of 

chemical species and the corresponding rate of electron transfer.  A large part of this field 

deals with the study of chemical changes caused by the passage of an electric current and 

the production of electrical energy through controlled chemical reactions.  The field of 

electrochemistry encompasses a huge array of different phenomena (electrophoresis and 

corrosion), devices (electrochromic displays, electroanalytical sensors, batteries, and fuel 

cells), and technologies (electroplating of metals and the large-scale production of 

aluminum and chlorine).  In addition, the reclamation of select chemical species from 

aqueous or non-aqueous solutions using electrochemical methods is an attractive method 

because it is clean, efficient, and inexpensive relative to other methods including 

extraction, sorption, and refining [30].   

2.1.1 Overview of electrode processes 

Electrochemical systems are concerned with the processes and factors that affect the 

transport of charge across the interface between two distinct chemical species or phases.  

For our studies the interactions are defined based on a stationary electronic conductor (an 

electrode) and a chemical species within an electrolyte matrix.  The electrode interface is 

critical and it directly influences charge transport and electron transfer between the 

chemical species and electrode surface. 

Electrode materials include solid metals (Pt, Au…), liquid metals (Hg, amalgams), 

carbon (graphite), and semiconductors (indium tin oxide, Si).  In the aqueous/non-
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aqueous phase, the solution conductivity is influenced by the concentration of the 

supporting electrolyte or inherent concentrations of ions.  The most frequently used 

electrolytes are liquid solutions containing ionic species (e.g.: H
+
, Na

+
, Cl

-
) in either 

water or aqueous/non-aqueous solvents.  To be useful in an electrochemical cell the 

solvent/electrolyte system must have sufficiently low resistance for electrochemical 

response to be observed.  Less conventional electrolytes including fused salts (e.g.: 

molten NaCl-KCl eutectic, room temperature ionic liquids) and ionic conductive 

polymers (e.g.: Nafion) rely on the inherent ionic conductivity in charge transfer 

reactions [30].   

Electrochemistry does not occur at a single interface, because most experiments do 

not occur within such an isolated boundary.  Instead, there is set of interfaces called 

electrochemical cells and these systems are defined generally as two electrodes separated 

by a least one electrolyte phase.  The difference in electric potential is typically measured 

between the electrodes in an electrochemical cell with a high impedance voltmeter or 

potentiostat.  The cell potential, is measured in volts (V), where 1 V = I joule/coulomb 

(J/C), is a measure of the energy available to drive charge externally between the 

electrodes.  It is a collection of the measured differences in electric potential between all 

of the various phases in the cell.  The transition in electric potential in crossing from one 

conducting phase to another usually occurs almost entirely at the interface.  The 

sharpness of the transition implies that a very high electric field exists at the interface, 

and it is expected to exert those effects on the behavior of charge carriers (electrons or 

ions) in the interfacial regions.  Also the magnitude of the potential difference at an 

interface affects the relative energies of the carriers in the two phases; it controls the 
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direction and rate of charge transfer.  Therefore the measurement and control of cell 

potential is one of the most important aspects of electrochemistry and the driving force 

for controlled electrochemical reactions.   

The overall chemical reaction that takes place in a cell is made up of two independent 

half-cell reactions which describe the real chemical changes that are occurring at the two 

electrodes (working and counter electrodes).  Each half-reaction responds to the 

interfacial potential difference at the corresponding electrode because the chemical 

composition of the system near the electrodes is different. Usually only one reaction is of 

interest and the electrode at which it occurs is called the working electrode.  In our 

electrochemical system of interest the following reactions were of interest: 

 

 

Table 2.1: Redox Couples, Half Reaction, and Standard Potentials for the Possible Reactions 

Occurring in Solution for Rhenium [31] 

Redox Couple Half Reaction        

    
         

                    0.34 

    
           

                       0.51 

                             0.252 

    
           

                    0.422 

                                0.2 

                    0.3 

                 0.0-0.05 

                 0.05-0.38 

   
     

     
             

       0.01 

 

 

Table2.2 Redox Couples, Half Reaction, and Standard Potentials for the possible Reaction Occurring 

in Solution for Molybdenum [31] 
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Redox Couple Half Reaction       

                                   -0.008 

    
                

                 n/a 

                             -0.152 

                    -0.2 

 

 

Therefore to focus on the reaction at a single working electrode a reference electrode was 

used to standardize the other half cell.  This electrode is made up of phases having 

essentially constant composition and potential.  The normal hydrogen electrode (NHE) is 

the historical reference that is used in literature but is not very convenient experimentally.  

Similarly the saturated calomel electrode (SCE) which uses Hg/Hg2Cl2/KCl (saturated in 

water) is not commonly used due to the environmental concerns regarding mercury.  For 

all aqueous measurements performed the silver-silver chloride electrode, Ag/AgCl/KCl 

(saturated in water) was used. 

The fixed potential at the reference electrode is predicated on the composition of the 

electrode not changing as reactions take place at the working electrode.  A third 

electrode, a Pt counter electrode is used to ensure that the potential of the reference 

electrode does not change as reactions occur at the working electrode.  The counter 

electrode acts as an electron donator and acceptor during the electrochemical reaction 

without changing the composition of the reference. Therefore, the potential of the 

working electrode can poised versus the reference electrode influencing the energy of the 

electrons and reactivity at the electrode surface.  Oxidation/reduction at the working 

electrode occurs as the energy of the working electrode is raised or lowered as a function 
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of the applied potential.  When the energy of the working electrode is sufficiently 

negative of the reduction potential of the chemical species is reduced.  When the energy 

of the working electrode is sufficiently positive of the oxidation potential of the chemical 

species, the species is oxidized.  The critical potentials at which these processes occur are 

related to the standard potential, E
o
, of the chemical species in solution.   

 

 

 

Figure2.1: Schematic Diagram of the Electrochemical Cell [30] 

 

 

When considering the overall electrode, reaction:        defines the conversion 

of the dissolved oxidized species, O, to a reduced form R, the electrode reaction rate is 

typically governed by the following: 

1. Mass transfer (e.g.: of O from the bulk solution to the electrode surface). 

2. Electron transfer at the electrode surface 

3. Chemical reactions preceding or following the electron transfer, which might be 

homogeneous processes or heterogeneous ones on the electrode surface. 
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4. Other surface reactions, such as adsorption, desorption, or crystallization. 

The rate constants for some of these processes (e.g.: electron transfer at the electrode 

surface or adsorption) are dependent upon the applied potential [30]. 

The simplest reactions involve only mass transfer of a reactant to the electrode, 

heterogeneous electron transfer involving non-adsorbed species and mass transfer of the 

product to the bulk solution.  In our case the bulk solutions for our system used H
+
 and 

RTIL as electrolyte.  More complex reaction sequences involving a series of electron 

transfers and protonation, branching mechanisms, parallel paths, or modifications of the 

electrode surface are quite common.  For our systems, this is the path that is predicted for 

the electrochemical reduction of the Re/Mo species.  When a steady-state current is 

obtained the rates of all reactions steps in a series are the same.  The rate determining step 

determines the extent the current is limited by the inherent inhibition of one or more 

reactions.  More thermodynamically favorable reactions have reduced rates due to kinetic 

limitations associated with the rate-determining step.   

2.2 Cyclic Voltammetry Technique 

Basic electrochemical behavior of a system can be obtained through a series of steps 

to different potentials and recording the current-time curves.  While potential step 

methods are useful, more information can be gathered by sweeping the potential as a 

function of time while recording the current.  The potential is usually varied linearly with 

time at sweep rates (ν) ranging from 10mV/s to 1000mV/s with conventional electrodes.  

When the potential is scanned in only “on” direction and the current is measured, the 

technique is referred to as linear potential sweep chronoamperometry, or more commonly 

as linear sweep voltammetry (LSV) [30].  Cyclic voltammetry implies that both the 
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forward and reverse potential scans are conducted and the current is measured.  The 

technique allows both oxidation and reduction processes to be measured for the system 

because the polarization of the electrode is reversed on the reverse scan [30].  This 

approach is designed to provide a direct observation of a reduced species after the more 

oxidized state is generated in solution.  This is useful for evaluating the reduced species 

participation in chemical reactions on electrochemical time scales [30].  

2.3 Underpotential deposition 

Bulk electrolysis techniques can be classified by a controlled parameter (E or i) and 

by the quantities actually measured or by the process carried out.  In controlled-potential 

techniques the potential of the working electrode is maintained above the standard 

potential for a given chemical reaction and continued over the course of the process.  The 

driving force for the chemical reaction is the applied potential at the working electrode 

which controls the rate of the electrolytic process.  The technique is the preferred method 

for bulk electrolysis.  The method requires potentiostats with large output current and 

voltage capabilities and the need of a stable reference electrode, carefully placed in 

proximity to the working electrode to minimize uncompensated resistance.  Placement of 

the auxiliary electrode is also important to provide a uniform current distribution across 

the surface of the working electrode [30].   

In controlled current techniques, the current passing through the cell is held constant 

and programmed to change with time.  These techniques involve simpler instrumentation 

however they do require either a special set of chemical conditions in the cell or specific 

detection methods to signal completion of the electrolysis and to ensure current 

efficiency.  Measures need to be taken to ensure that the electrode potential does not 
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move into a region where undesirable side reactions will occur (i.e. H2(g) evolution, 

water oxidation, and metal oxidation) [30].  Therefore, any electrochemical reaction is 

bound by hydrogen evolution at negative potentials and water oxidation at positive 

potentials, limiting the potential window that can be utilized. 

2.5 Quartz Crystal Microbalance 

In many electrochemical experiments, mass changes occur as material is either 

deposited on or lost from the electrode.  The reduction process results in deposition, 

while oxidation initiates dissolution.  Cyclic voltammetry can be used to evaluate the 

surface processes but is often convoluted by solution based oxidation/reduction 

processes.  Electrochemical quartz crystal microbalance (EQCM) is a method that allows 

surface and solution processes to discern these changes simultaneously.  The quartz 

crystal has a resonance frequency of oscillation that can be used to measure the mass 

deposited at an electrode on the surface of the material.  The bare quartz crystal resonant 

mode depends upon its size thickness and oscillates at a frequency, f0.  The frequency of 

oscillation is sensitive to mass changes on the crystal surface as expressed by the 

Sauerbrey equation: 

    
     

    
 

 ⁄
      

where   is the frequency change caused by addition of a mass per unit area, m, to the 

crystal surface, n is the harmonic number of the oscillation, μ is the shear modulus of 

quartz, and ρ is the density of quartz.  The constants are usually lumped together to yield 

a single constant, the sensitivity factor, Cf.  However the behavior depends on the 

medium in which the crystal is operating, because the medium couples (or “loads”) to the 

crystal surface and the affects the shear mode.  Thus, f0 and Cf values in liquids are lower 
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than those in air or vacuum.  The frequency of oscillation is also a function of 

temperature.  The density and viscosity of a solution in which the crystal is operating can 

also affect the frequency [30].  When external stimuli are minimized the frequency 

change is proportional to the mass deposited which can be related to the charge passed 

from the voltammetric response. 

2.4.1 Electrochemical Quartz Crystal Microbalance Apparatus 

A schematic diagram of the apparatus for QCM in an electrochemical experiment is 

given below in Figure 2.2. 

 

 

 

Figure2.2: Schematic Diagram of Cell and Apparatus for Electrochemical QCM Studies 

 

 

The quartz crystal is frequently clamped in an appropriate O-ring joint to expose only 

one of the contacts to the solution.  This contact (usually Au or Pt) is also the working 

electrode and is part of both the potentiostats and oscillator circuits.  The crystal is driven 
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by a broadband oscillator circuit that tracks the resonant frequency of a crystal, measured 

with a commercial frequency counter, during electrochemically-induced mass changes on 

the electrode surface.   

The QCM has been used in many types of electrochemical studies involving mass 

changes on electrodes, including the underpotential deposition of metals, 

adsorption/desorption [30].   

2.5 Scanning Electron Microscope 

The Scanning Electron Microscope (SEM) is a non-contact microscopy technique that 

scans the surface of a sample with a narrow, highly-collimated beam of high-energy 

electrons.  The electron interaction with the atoms that make up the sample produce 

signals that contain information about the sample’s surface, composition, and other 

properties such as electrical conductivity.  The types of interactions between this beam 

and the sample’s surface cause secondary electrons due to inelastic scattering, which are 

then detected by an electron detector. This technique is sometimes referred to as 

Secondary Electron Microscopy because of the secondary electron emission mechanism 

[32, 33]. 

2.5.1 Energy-dispersive X-ray Spectroscopy (EDS) 

EDS is an analytical technique used for the elemental analysis or chemical 

characterization of a sample.  It relies on the investigation of a sample through 

interactions between electromagnetic radiation and matter, and the analyzing X-rays 

emitted by the matter in response to being hit with charged particles.  Its characterization 

capabilities are due in large part to the fundamental principle that each element has a 

unique atomic structure allowing the x-rays that are characteristic of an element’s atomic 
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structure to be identified uniquely from one another.  To stimulate the emission of 

characteristic x-rays from a specimen, a high-energy beam of charged particles 

(electrons) is focused into the sample being studied.  At rest, an atom within the sample 

contains ground state electrons in discrete energy levels bound to the nucleus.  The 

incident beam excites an electron in an inner shell, ejecting it from the shell while 

creating an electron where the electron was.  An electron from an outer, higher-energy 

shell then fills the hold, and the difference in energy between the higher-energy shell and 

the lower energy shell are released in the form of an x-ray.  The number and energy of 

the x-rays emitted from a specimen can be measured by an energy-dispersive 

spectrometer.  The energy of the x-rays are characteristic of the difference in energy 

between the two shells, and of the atomic structure of the element, from which they were 

emitted, allowing the elemental composition of the specimen to be measured [32, 34]. 

The experimental and instrumental techniques described will be utilized to analyze 

the electrochemical reduction of Rhenium and Molybdenum in aqueous and non-aqueous 

systems.  
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CHAPTER 3 

CHARACTERIZATION OF ELECTROCHEMICAL AND AQUEOUS 

SOLUTION PARAMETERS 

3.1 INTRODUCTION/ MOTIVATION 

Rhenium has been used in the experiments presented in this chapter to model the 

properties of technetium due to its scarcity and radioactivity.  Rhenium and technetium 

behave as analogous materials under similar chemical conditions which allow us to 

model the properties of technetium using a material that is easy to obtain with no 

radioactivity [29].  The experiments with rhenium are performed using solution 

conditions that mimic those for technetium obtained from used nuclear fuel processes 

(dissolved in a 1.0 - 3.0 M HNO3 solution) to ensure that the electrochemistry 

experimentation with rhenium are consistent with those that would be used for 

comparable technetium experiments.  It is also important to discuss molybdenum which 

is relevant because it is directly linked to the derivation of Tc-99m; the radioactive 

isotope is predominantly used for medical imaging applications.   

Evaluating the oxidation/reduction properties of perrhenate, and molybdenum is 

important because recovering the target species from aqueous solutions as metals or 

metal oxides may be possible using electrochemical methods.  Previous studies have 

examined the influence of acidity and pH on the electrochemical deposition of Re at Pt 

and Au surfaces from solution containing perrhenate [28, 35, 36].  In this chapter we 

explore the electrochemistry of Re and Mo in protic aqueous solution expanding on 

previous work to include pH dependence, supporting electrolyte solution composition, 

and the electrode composition in the recovery of rhenium and molybdenum. 
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3.2. Re Electrochemistry: pH and solution composition at Pt and Au surface. 

The pH of aqueous systems plays an integral role in the electrodeposition of any 

rhenium species from a ReO4
-
 solution [37].  Although the pH is a critical parameter in 

Re deposition, the solution conditions and composition have not been extensively studied 

or articulated in literature.  For example, one study demonstrates that pH plays an 

essential part in the electrodeposition of ReO4
-
[28].  However, Re oxide was the final 

product where the end goal was the deposition of Re metal [28, 38].  Our experiments 

further examine the dependence of pH and solution conditions that are suitable for Re 

metal deposition from a perrhenate solution.   

The electrochemistry of ReO4
-
 was examined in solutions containing high acidity 

(low pH).  For example, an initial solution contained 4.0 mL of an aqueous solution 

containing 89 mM ReO4
-
.  The pH of the solution was adjusted through the addition of 

500 µL of 1.0 M HNO3 aliquots with the initial pH of 0.30 was lowered to a final pH of 

0.02.  Cyclic voltammetry (CV) measurements were obtained after each addition of 

HNO3 in the potential range of 1.0 V to 0.0 V vs. Ag/AgCl reference electrode with a Pt 

working electrode.   Electrochemical activity for Re was not observed regardless of the 

scan rate or potential range utilized for these preliminary studies.  It is difficult to 

conclude whether these results are consistent with previous finding because the previous 

measurements utilized other acids that may have influenced the electrochemical 

processes (i.e.: HClO4, H2SO4) [28].  Moreover, the electrochemical reduction of ReO4
-
 

may not occur in solution because the species required for reduction were not present at 

the pH values utilized (i.e.: ReO2, Re
3+

) [28]. 



24 

The pH of the aqueous solution was increased to determine if the deposition of Re 

could be observed under less acidic conditions, Figure 3.1(a).  A change in the initial 

solution was made by dissolving the ReO4
-
 in 1.0 M HNO3 instead of H2O.  That initial 

solution contained 89 mM ReO4
-
 dissolved in 1.0 M HNO3 (with a pH of 0.17).  The 

electrochemical response was obtained for this solution and after sequential additions of 

100 µL aliquots of 1.0 M NaOH with the pH = 0.34 after 200 µL of 1.0 M NaOH was 

added. Significant electrochemical activity was observed at this pH as shown from Figure 

3.1(b).  Finally, the electrochemical response was again significantly diminished after the 

addition of an additional 200 µL of NaOH (increasing the pH to 0.41), Figure3.1(c). 

 

 

 

Figure 3.1: Cyclic Voltammetric Response of a Pt Electrode as a Function of pH in a Solution 

Containing 0.089 M ReO4
-
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It is evident that the pH range is extremely narrow, providing a limited 

thermodynamically stable electrochemical window for Re deposition.  The narrow pH 

range associated with the deposition of Re demonstrates the importance of pH on the 

reduction of Re(VII) to Re(0) in aqueous solution.  The possible reactions that govern the 

reduction process are provided below: 

    
                    

    
                       

                     

The relevant half-cell reactions in aqueous solution are presented in Table 3.1: 

 

 

Table 3.1: Redox Couples, Half Reaction, and Standard Potentials for the Possible Reactions 

Occurring in Solution[31] 

Redox Couple Half Reaction        

    
         

                    0.34 

    
           

                       0.51 

                             0.252 

    
           

                    0.422 

                                0.2 

                    0.3 

                 0.0-0.05 

                 0.05-0.38 

   
     

     
             

       0.01 
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The reactions suggest, that the solution composition and mole ratios of the Re species 

may be critical in determining the feasibility of reducing the initial speciesReO4
-
 to Re 

metal in aqueous solutions.  In addition, the reactions suggest the role of proton in the 

reduction processes cannot be neglected.  

It has been postulated that reduction of ReO4
-
 is aided by adsorption of Had at the 

surface of the electrode or through the formation of ReO2, which can function as reducing 

agent on the electrode surface [28].  The reduction of ReO4
-
 is strongly influenced by 

proton adsorption at the surface because in an aprotic medium, such as acetonitrile, no 

reduction current was observed, even at potentials as negative as - 2.2 V; with typical 

reduction potentials of ~ 0.2 V. The nature of the reducing agent in the electrochemical 

reduction of ReO4
-
 is an important factor with proton adsorption at the electrode surface 

playing a critical role.  For example, ReO4
-
 reduction can be accomplished through direct 

electron transfer from the electrode or with the participation of Had.  The reduction of 

ReO4
-
is not achieved in aprotic medium suggesting that Had acts as reducing agent for 

ReO4
-
 on the Pt surface. In addition, Had also participates in the formation of sub-

monolayer quantities of ReO2.  Therefore the solution pH and composition are important 

because of the species that needs to be present in order for the reduction of ReO4
-
.   

The composition of the electrolyte in the electrochemical system is another factor 

important in the kinetics and the ability to deposit Re species onto working electrodes 

(i.e.: Pt, Au, or GC).  The rate of the electrodeposition of any Re species at a given 

potential strongly depends on the nature of the anion(s) present in the supporting 

electrolyte.  Rhenium was dissolved in 1.0 M HNO3 because the solution parameters 

need to be similar to those in which TcO4
-
 is found from used nuclear fuel.  For each of 
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the electrodes studied, the electrochemical reduction of Re species take place at 

thermodynamic potentials that are close to the potentials for H2(g)evolution and water 

hydrolysis with the following reactions: 

           

                

The H2(g) evolution occurring at potentials lower than 0.0 V and water oxidation at 

more positive potentials.  Therefore, surface pH changes are possible at the electrode as 

H2(g) evolves or as H
+
 is consumed or produced during electrolysis [31].  These side 

reactions can lower the bulk pH, the concentration of species at the electrodes surface, 

increasing the acidity in the vicinity of the electrode, influencing the rate of NO3
-
 

reduction and other side reactions. 

          

   
             

       

For example, in previous studies it was found that the reduction of HClO4 interfered 

with the reduction of ReO4
-
because the Re adsorbed layers became catalysts and reduced 

ClO4
-
to Cl

-
 at potentials more negative than 0.3 V [28].  The reduction of ReO4

-
 became a 

competitive surface reaction therefore it was important to ensure that the NO3
-
/NO2

-
 

species did not interfere with the reduction of ReO4
-
.  A background voltammogram for a 

Pt electrode immersed in a solution containing 1.0 M HNO3 is compared to the 

voltammetric response of a Pt electrode immersed in a solution containing ReO4
-
, 

Figure3.2. 
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Figure3.2: Cyclic Voltammetric Response of 89 mM ReO4
-
 dissolved in 1.0 M HNO3 with 200 µL of 

1.0 M NaOH on a Pt Working Electrode Compared to the Background of 1.0 M HNO3 with Pt 

Working Electrode at a pH of 0.34 

 

 

From Figure3.2 we can see that the reduction of HNO3 occurs at a different potential 

than the Re species obtained from the perrhenate solution.  In addition, the sharp 

reduction waves associated with the initial reduction of ReO4
-
 at 0.1 V are not observed 

when HNO3 is present.  Although no inhibition was observed with this system, it is 

important to minimize any possible interferences to ensure that the deposition of Re at 

electrode surfaces is optimized.   

 In conclusion the ideal pH range and solution parameters were found which allow for 

the examination of Re electrochemistry at Pt and Au substrate metals.  Furthermore these 

principles can be applied to the electrochemical reduction of Mo at Pt and Au substrates 

as well.  The combined studies should provide information that will allow the targeted 

1
.1

0
.9

0
.7

0
.5

0
.3

0
.1

-0
.1

-0
.3

-0
.5

-0
.7

C
u

rr
e

n
t

Potential (V)

10. mA

HNO3

ReO4




29 

electrochemical reduction and reclamation of Tc species derived from fission products or 

from the use in pharmaceutical applications. 

3.3 The Electrochemistry of Rhenium at Gold and Platinum Electrodes 

Electrochemical reactions that occur at platinum and gold substrates are influenced by 

similar solution and chemical parameters.  For example, both electrodes have competing 

reactions (H2 evolution and water hydrolysis) that limit the potential window which can 

be utilized for electrochemical measurements in aqueous solution.  However, the 

reactions which define the potential window are influenced by electrode kinetics and do 

not occur at the same potentials for the Au and Pt electrodes.  For example, hydrogen gas 

evolution at the Pt electrode occurs at potentials more negative than 0.0 V which inhibits 

the electrochemical reduction occurring at the surface.  Hydrogen evolution is more 

prominent at the Pt electrode with measureable current at potentials negative of 0.0 V, 

under the same conditions H2(g) is not observed at the Au working electrode.  The 

evolution of H2(g) disrupts the electrochemical reduction of the target species, however 

the Had aides in the reduction.  The difference in potentials for the Pt working electrode is 

~ 0.05 V which is very narrow potential window and the reduction of Re is minimized 

due to the competing reaction.  Below in Figure 3.3, is a schematic of what occurs at the 

Pt electrode surface with Had versus H2(g):   
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Figure 3.3: Schematic of the Had vs. H2(g) Evolution Occurring at the Pt Working Electrode 

 

 

The potential window for Au is slightly larger, with H2 evolution occurring at 

potentials negative of – 0.3 V.  Ideally, the potentials windows for Pt and Au are 1.0 V – 

0.0 V and 1.0 V - -0.1V, respectively.  The solution to measure ideal potential windows 

for each metal (Pt, Au) is at their optimal solution parameters (pH 0.34).  To illustrate the 

importance of potential windows, Au and Pt were both run at the potential window for 

Au.  Figure 3.4 shows the H2(g) evolution while none occurs at the Au electrode. 
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Figure 3.4: Cyclic Voltammetric Response of 89 mM ReO4
-
 Dissolved in 1.0 M HNO3 Analyte 

Solution at Target pH of 0.34: Comparing the Potential Window of Platinum and Gold Working 

Electrodes 

 

 

The potential window for Pt and Au in these solution conditions is 1.0 V to 0.0 V and 

1.0 V to -0.1 V, respectively.  The potential window for platinum is purposely wide to 

illustrate the historesis associated with hydrogen evolution ~0.0 V, which can be seen in 

Figure 3.4.  The electrochemical limitations for Au and Pt metals in aqueous solution are 

primarily based on hydrogen evolution at reducing potentials.  

           

If the reduction process is studied under identical solution and electrochemical 

conditions the reduction processes for Pt and Au electrodes are very different, Figure 3.5.  

Reduce reduction of ReO4
-
 is observed at Au because the adsorption of H

+
 is diminished 

relative to the Pt electrode surface.   
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Figure 3.5: Cyclic Voltammetric Response in 3.f0 mL of M HNO3, 2.5 mL of 0.089 M ReO4
-
, and 200 

μL of 1.0 M NaOH at a Scan rate of 10mV/s 

 

 

Therefore, proton sorption at the Pt electrode is enhanced relative to Au and the 

contribution from the surface adsorption of this species in the reduction processes 

associated with Re cannot be neglected [28].  Optimization of ReO4
-
 reduction at each 

substrate metal is required to optimize the processes relative to the working electrode 

utilized.  With these parameters defined, experiments can be run based on the potential 

window, pH and solution conditions that optimize recovery at a given electrochemical 

interface in aqueous solution 

3.3.1 Electrochemistry of Rhenium on Platinum Working Electrode 

A more in depth analysis of Re electrochemistry was warranted after identifying the 

solution parameters that resolve the electrochemical deposition of rhenium at Pt surface.  

In Figure 3.6, is the electrochemical reduction of ReO4
-
 in ideal solution conditions on a 
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Pt working electrode are presented based on solution parameters defined in the previous 

section. 

 

 

 

Figure3.6: Cyclic Voltammetry of a Platinum Working Electrode Immersed in a Solution Containing 

3.0 mL of 1.0 M HNO3Mixed with 2.5 mL of 0.089 M ReO4
-
Titrated to a pH of 0.34 with 1.0 M 

NaOH. 

 

 

Previously researchers have postulated that a two-step reduction mechanism for 

ReO4
-
 results in the deposition of Re metal at the Pt working electrode, with the 

adsorption occurring at the broad peak at potentials 0.4 V – 0.15 V [28].  The process 

involves the formation of an intermediate species, or a submonolayer of ReO2 which is 

the peak ~ 0.1 V.  The ReO2 deposited on the surface acts as a reducing agent in the 

assisted reduction of various Re oxide species at the electrode surface (ReO3, Re2O5, 

etc…) to produce metallic Re which corresponds to the second reduction peak at 0.05 V.  

The following general reduction mechanism has been proposed:  
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The concentration of the oxides and metallic Re is dependent on the driving force 

associated with the applied potentials E1 and E2 as shown in the above mechanism and 

the corresponding reaction rates which are influenced by the kinetics of the reduction 

processes[28].  Specifically, rhenium oxides are deposited at potentials lower than 0.20 V 

on platinum electrodes, while reduction to metallic rhenium occurs at potentials lower 

than 0.10 V with the adsorption of H
+
 at the electrode surface (Had).   

The electrochemistry occuring at Pt electrodes can be evaluated further to determine 

if the voltammetry is based on surface or solution process.  The previous mechanism 

suggests that the process is dependent on the surface adsorption of Re species followed 

by the reduction of these species to metal.  The scan rate dependence of the peak currents 

can be utilized to distinguish surface and solution based processes.  Specifically for 

solution based process a plot of the square root of scan rate (      versus peak current 

(  ) will produce a linear response indicating that solution diffusion is key.  In contrast if 

the peak current is proportional to the scan rate it is surface process, in which Had is 

adsorbed.  The corresponding equations for peak current are provided below for diffusion 

related process:  

        (
  

  
)

   

       
   

  
      

At 25
o
C, for A is the area of the electrode surface (cm

2
), Do is diffusion coefficient 

(cm
2
/s),   

  is the bulk concentration (mol/cm
3
), and   is the scan rate in V/s, ipin amperes 

is: 
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These reactions are for reversible electron transfers and are useful for analyzing 

electrochemical reversible systems [30].  Deviations from linearity are indicative of either 

complications with the kinetics of the observed electron transfer or the result of chemical 

changes which occur as a result of the electron transfer.  In our case the deviation occurs 

from the chemical change occuring at the surface of the electrode (i.e.: Had/ReOxad) 

which corresponds to this equation: 

   
    

   
    

                  
  

n is the number of electrons transferred,    
 is the moles of adsorbed O on the 

electrode surface; this is where the peak current (  ) is proportional to ν, in contrast to the 

v
1/2

 dependence shown for the current responses for diffusing species[30].  The 

electrochemical reduction of Re species at Pt surfaces was examined as a function of scan 

rate in Figure 3.7.  The peaks in the anodic response showed very little shift in the peak 

potential and the current is plotted as a funciton of scan rate in Figure 3.8.  Linear 

regession provides a correlation of           and the linear dependence of the peak 

current, ip, on the scan rate, ν, indicates the electrochemistry is governed by surface 

adsorption.  The cathodic current was treated in same manner providing a linear response 

when ip is plotted versus the scan rate, ν.   
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Figure 3.7: Cyclic Voltammetry Response at a Platinum Working Electrode as a Function of Scan 

Rate in a Solution containing 0.089 M ReO4
-
 at pH of 0.34 

 

 

 

Figure 3.8: Plot of ip vs ν for the Anodic and Cathodic Current for the Cyclic Voltammetry Scans 

from Figure 3.7. 

 

 

The plots  in Figure 3.8 are indicative from the linear regression line describing that 

what is occurring at the surface of the Pt electrode is indeed adsorption, and that the 

adsorbates are interacting with each other suggesting that the sub-monolayers of 
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ReO2(ad) aid in the reduction to Re metal.  This can be confirmed calculating the area of 

the monolayer at the surface of the electrode for the peak at 0.1. V which is       

         

   ; which falls in the range of values for typical adsorbate coverage:   

                  

   [30]. 

From these results it was deduced that Had are electrochemically formed on the 

electrode surface and subsequently reduce the ReO4
-
 ions through a chemical reaction.  

The nature of the rhenium ad-layer is dependent on the adsorption potential (Ead) and 

when Ead< 0 V, metallic Re would be electrodeposited.  It was also suggested that ReO2 

adsorption with a submonolayer is formed, followed by bulk phase ReO2•xH2O that shifts 

towards values more positive than those corresponding to the oxidation of the ReO2 

submonolayer, due to the positive potentials at which the Pt is cycled through.   

The result obtained with H-adsorbing metals (Pt vs. Au) emphasizes the participation 

of Had in the reduction of ReO4
-
.  In this case for Pt, the initial amount of ReO2 is formed 

by direct electron transfer; due to the adsorption of perrhenate on the electrode surface 

followed by a reduction reaction assisted through the participation of Had to yield 

adsorbed ReO2.  The amount of adsorbed ReO2 depends on the surface coverage by the 

adsorbed perrhenate.  It is important to note that the presence of Had atoms present on the 

electrode surface to make the following reaction feasible, which is followed by the 

catalytic reduction of ReO4
-
 with the aid of pre-adsorbed H atoms: 

                

        
                                

Once a submonolayer of ReO2(ad) is formed, then following redox couple is 

established near the electrode surface: 
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Although Had are needed to reduce ReO4
-
, once ReO2 is formed the electrochemical 

reduction by direct electron transfer takes place at the surface based on the following 

reaction[28]: 

                                 

3.3.2 Electrochemistry of Rhenium on Gold Working Electrode 

The electrochemical behavior of aqueous ReO4
-
 containing solutions on Au provides 

an interesting feature to be compared with Pt, due to the negligible amounts of Had atoms 

that can be absorbed on the surface of Au.  This changes the mechanism for rhenium 

deposition.  Below is a CV of the ReO4
-
 optimal solution at a gold working electrode. 

 

 

 

Figure 3.9: 0.089 M ReO4
-
 in 1.0 M HNO3 and 200 µL of 1.0 M NaOH on Au Working Electrode 

 

 

1.1 0.9 0.7 0.5 0.3 0.1 -0.1

C
u
rr

e
n
t 

Potential (V)

20A



39 

The gold electrode has a larger potential window (-0.1 V- 1.0 V) because of the lack 

of Had.  

The electroreduction of ReO4
-
 in aqueous acid on Au takes place at potentials lower 

than 0.05 V, suggesting that on Au there is competitive deposition of ReO2 and Re taking 

place.  The extent of each process depends upon the potential and the time of adsorption.  

There is an initial formation of H2(g) followed by metallic Re electrodeposition taking 

place.  The sequence of both reduction reactions, the formation of H2(g) followed by the 

electrodeposition of metallic Re, explains the presence of obstructed H2(g) arranged 

between the electrodeposited Re and the Au substrate [28]. The oxidation occurs at ~0.2 

V and ~0.8 V, which suggests that there is competitive deposition of both ReO2 and Re 

that is taking place on the Au surface.  Both processes are dependent on the chemical 

composition of species at the surface at a given applied potential which are:  

    
                    

    
                       

                     

A reduction sequence has been proposed involving an adsorption of ReO4
-
, taking 

place at 0.6 V or downward.  This process may include a partial charge transfer to the 

surface.  At the same time, H2(g) is evolved at E < 0.05 V according to the equation 

which then reduces the adsorbed perrhenate to         ,  

                         

then further reduced to metallic Re at           according to: 
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The initial formation of           does not imply a significant increase of the Au 

electrode mass, while the formation of metallic Re is accompanied by the mass increase 

detected from the EQCM.  These experiments confirm those data for which the presence 

of H2 occluded in the deposit of metallic Re was established [28].   

3.4. Introduction to Molybdenum 

Molybdenum reduction is important because of its relevance to medical imaging and 

reclamation as Tc-99 in hospital waste[39].  The electrochemical reduction of 

molybdenum is studied in the same manner as rhenium, and targeted for molybdenum 

metal deposition.  However, there is not much information about molybdenum redox or 

half-cell electrochemistry.  The scheme for the reduction pathway for Mo is depicted in 

Figure 3.10. 

 

 

 

Figure 3.10: Molybdenum Oxidation State Flow Chart 

 

 

It is important to note that Mo(VI) cannot be reduced below Mo(III) in an aqueous 

system.  Under that assumption, there is an understanding that the reduction and 

deposition of Mo would be in the MoOx form.  The experimental parameters for Mo were 
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similar to the manner in which Re was treated.  The same principles for optimizing the 

solution conditions previously discussed were applied for the Mo electrochemical 

reduction using Mo(IV) as MoO2 and Mo(VI) in the form of the MoO4
2-

.  Since the 

experimental conditions involve a low pH, acid hydrolysis provide additional species 

including Mo7O24
6-

 and Mo8O26
4-

 in solutions with a pH range of 6 - 1.  In aqueous 

solutions with a pH less than 1 the following complexes may be formed: Mo36O112
8-

, 

[HMoO3]
-
, [H2Mo2O6]

2+
, and [H3Mo2O6]

3+
[31].   

3.4.1 Electrochemistry of Molybdenum 

The overall reduction of the molybdenate ion occurs through a two steps mechanism 

where:  

                    [31] 

The first experiments for the Mo series involved finding the ideal solution conditions 

for MoOx deposition on target substrate metals (Pt or Au).  This involved adding aliquots 

of 100 µL of 1.0 M NaOH to a 89mM MoO4
2-

solution until resolved electrochemical 

reduction was seen, shown in Figure 3.11. 
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Figure 3.11: Cyclic Voltammetric Response of a Pt Working Electrode in Solutions Containing 0.01 

M MoO4
2-

with Increasing Aliquots of 1.0 M NaOH at a Scan Rate of 100 mV/s.  

 

 

The CV (Figure 3.11(a)) has 0 µL NaOH which shows a small response (pH 0.11), 

compared to Figure 3.11(b) which is more resolved containing 200 µL NaOH and at a pH 

of 0.18.  In Figure 3.11(b) there is an emergence of 2 peaks that are not visible in Figure 

3.11(a), increasing the base concentration facilitates the reduction of MoO4
2-

.  The 

resolution of the reduction peaks is lost as more NaOH was added, Figure3.11(c).   

The Mo series of experiments were optimized by dissolving them in 1.0 M HNO3 and 

adjusting the pH to 0.18 by adding 1.0 M NaOH.  It is important to note that the solutions 

containing MoO4
2-

 that were dissolved in 1.0 M HNO3 were made new before running 

each experiments because Mo(VI) transitions to a more stable form, Mo(IV) in the form 

of a precipitate, which is not sensitive toward air or aqueous oxidation.  A color change 

from a soluble metallic gray to a white precipitate in the solution of MoO4
2-

signaled this 

change after the solutions were left to sit overnight.  Mo(IV) does not undergo 
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disproportionation in aqueous solution and is stable toward air oxidation.  At lower 

acidity an insoluble hydroxide Mo(IV) precipitates, which is why low concentrations (89 

mM MoO4
2-

) were used. 

The reduction of                     involves highly negative potentials 

with the conversion of MoO2 to Mo metal observed at - 0.980 V, provided in the 

following table: 

 

 

Table 3.2: Table of Molybdenum Redox Reactions [31] 

Redox Couple Half Reaction       

                                   -0.008 

    
                

                 -0.780 

                             -0.152 

                    -0.2 

 

 

In aqueous solutions the negative potentials cannot be attained without the side 

reactions associated with H2(g) dominating the electrode processes.  Metallic 

molybdenum can only be electrodeposited from aqueous solution as an alloy with Fe, Co, 

or Ni indicating that MoOx was deposited onto our substrate surfaces [31].  The 

Figure3.12, below is the CV’s of MoO4
2-

 on a Pt working electrode at a scan rate of 200 

mV/s with the pH adjusted to 0.18. 
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Figure3.12: 0.1 M MoO4
2-

Dissolved in 1.0 M HNO3 and Adjusted to a pH of 0.18 @ 200mV/s on a Pt 

Working Electrode 

 

 

From the figure above there is an emergence of a peak at ~ 0.2 V may be associated 

with an adsorption process with the second peak ~ 0.1 V being an adsorbed layer.  Since 

there might be some Mo(IV) in the solution, it may be a mixture of oxides in the 

adsorbed layer.  Below are the following reactions that may be occurring at the platinum 

electrode surface: 

        
                 

                         

                     

            

Since MoO4
2-

will convert to MoO2 in aqueous solution, the electrochemical responses 

of MoO2 were examined.  Below is the optimization treatment of the solution parameters: 
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Figure 3.13: 0.01 M MoO2 Dissolved in 1.0 M HNO3 with Increasing Aliquots of 1.0 M NaOH on Au 

Working Electrode at a Scan Rate of 100 mV/s 

 

 

In Figure 3.13 the potential window is slightly more negative.  This may allow for 

further reduction of Mo species that are adsorbed on the surface of the electrode.  Figure 

3.12(a) has 0 µL of NaOH and there are reduction peaks ~ 0.3V, 0.2V and 0.09V, along 

with one large oxidation peak at 0.25V. As the aliquots increase there is resolution 

between the peaks, until the Figure 3.13(c) with 400 µL.  In Figure 3.13(b) there is most 

resolution in the reduction peaks.  It is important to note the increased resolution of the 

reduction peaks before 0.0 V.  This resolution is increased, compared to those scans for 

Pt, because the H2(g) reaction is not present in this response.   

The electrochemistry of Mo(VI) and (IV) has not been widely studied, however, these 

CV’s are a good beginning to understanding the reduction mechanism.  It can be 
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concluded that there various limitations for depositing Re(0) and Mo(0) from an aqueous 

system, namely pH, solution conditions, and potential range of the substrate metals.  In 

the following chapter these parameters will be further examined with a non-aqueous 

system, eliminating the limiting parameters encountered in this chapter.   



47 

CHAPTER 4:  

ELECTROCHEMISTRY OF RHENIUM AND MOLYBDENUM IN ROOM 

TEMPERATURE IONIC LIQUID 

4.1 MOTIVATIONAND INTRODUCTION 

The role of solution pH and electrode composition, aqueous potential window, and 

side reactions in resolving the electrochemistry of Re and Mo was examined in the 

previous chapter.  This chapter expands the electrochemical studies to include purely 

ionic, non-aqueous solutions to minimize the limitations associated with the reduction of 

Re and Mo in aqueous solution.  The goal of these studies is to expand the 

electrochemical analysis into systems that minimize the role of pH and aqueous side 

reactions to achieve the reduction of oxidized forms of Re and Mo to metal.  Specifically, 

room temperature ionic liquid (RTIL) will be utilized in these studies because the system 

does not require supporting electrolyte and has very little water that can influence the 

reduction of either Re or Mo species. The RTIL utilized in these studies will refer to the 

n-trimethyl-n-propylammnonium cation and the bis(trifluoromethanesulfonyl) imide 

anion, unless the specific cation [Me3NPr
+
] or anion [TFSI

-
] is discussed.   

 

 

 

Figure 4.1: Cation/Anion for RTIL, n-trimethyl-n-propylammonium bis-(trifluoromethanesulfonyl) 

imide. 
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The solution parameters for the aqueous system were limited by the side reactions 

including H2(g) evolution and water oxidation.  The inherent physical properties 

associated with the reduction of the [Me3N
+
Pr] cation and oxidation of TFSI

-
 anion 

defines the potential window for the RTIL system.  The potential window for 

electrochemical experiments is expanded relative to water because the 

oxidation/reduction reactions in aqueous solutions are eliminated and the reduction of the 

cation and oxidation of the anion occur at great negative and positive potentials, 

respectively.  The more negative potentials that can be attained are well within the 

potential range for the reduction of both rhenium and molybdenum to metal.  

Furthermore, in this chapter there will be a discussion expanding on the concept of pH 

and acidity in RTIL with respect to the electrochemical reduction of rhenium and 

molybdenum.  This discussion is required because the concept of pH in RTIL is not 

clearly defined or understood relative to the concept of solvation, hydration, and activity 

aqueous solution. 

4.1.1 RTIL Composition and Acidity 

It has been established that in our system pH is an integral part of the reduction of 

ReO4
-
, however in RTIL pH cannot be defined because the activity or concentration of 

H
+
 is not defined in purely ionic solution.  In aqueous systems the basic definition of pH 

is the negative logarithm of the H
+
 concentration.   

pH ≈             

More specifically, the real definition of pH involves the measurement of activity of H
+
: 
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When pH is measured using a pH meter, the negative logarithm of the hydrogen ion 

activity is measured rather than the concentration [40].  Typically experiments are 

conducted such that the activity coefficient of a given species is unity so the measurement 

can be related directly to the concentration of H
+
.  The coefficient, can be calculated 

using the Debye-Hückel equation using the ionic strength, , and the hydration sphere, , 

for a given ion with charge, z: 

     
       

√ 

  
 √ 

   

 @ 25
o
C

 

This equation is valid in aqueous solution of ionic strength µ ≤ 0.1 M.  If the size 

parameter is not known then the Davies equation may be used: 

            (
√ 

  √ 
     )        

This equation is applicable for ionic strength at or below 0.5 M, in our system the ionic 

strength of the RTIL is 3.77 M.  In order to find activity coefficients for ionic strengths 

above 0.5 M the Pitzer equations may be considered.  However, this equation is for 

aqueous solutions and has not been considered for RTIL solutions: 

       [
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In this equation, y is the solute fraction of the solute,    is the Debye –Hückel parameter, 

  
   

and   
   

 are the two parameters related to the short-range forces between 

cations/anions, and I is the ionic strength [40, 41].  However, the equations again used an 

estimate for the activity coefficient. Furthermore, in our system the ionic strength for the 

RTIL is 2.147 (using the Davies equation), so it becomes difficult to use any of the 
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conventional equations that define pH and ionic strength.  For solutions with high 

activities solvation of proton or hydroxyl ion are categorized as non-ideal media, for 

which the Debye-Hückel equation is no longer valid.  For example, values of         

    have been reported for organic systems[42].  In other cases of high acidity systems 

Hammet Functions have been used. These functions are based on concentrations of 

protonated/unprotonated forms of the species in solution.  The measurement of 

concentration is from specific “Hammet indicators” that allow for spectroscopic 

measurement to determination of concentration. These values are obtained under the 

assumption that the ratio of their activity coefficients remains constant.  This is important 

because the spectroscopic measurements determine concentration rather than activities 

and can be applied to different acidity functions[42]. 

4.2Introduction of Electrochemistry in RTIL 

Background CVs must be obtained for the RTIL using the different working 

electrodes that will be utilized in the studies so that reduction processes for Re and Mo 

can be identified.  For example, the voltammetric responses for Pt, Au, and glassy carbon 

(GC) electrodes in RTIL are provided in Figure 4.2.  
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Figure 4.2: Cyclic Voltammetry for Pt, Au, and Glassy Carbon (GC) Electrodes in RTIL. 

 

 

The voltammetry in Figure 4.2 is significantly different for each different working 

electrode indicative of cation/anion reactivity at the different materials.   For Pt the 

oxidation and reduction of RTIL at the electrode is significantly detailed relative to either 

Au or GC.  However, oxidation/reduction at Au is also observed possibly due to 

formation of AuOx at the electrode surface.  The oxidation/reduction of the RTIL 

significantly diminished for GC in comparison to the metal electrodes because the 

electrode does not form oxides. The electrochemical window is expanded for all 

electrode studied in RTIL when compared to aqueous system.  This is specifically 

attributed to a lack of side reactions associated with water and the formation of oxides at 

the metal electrode surfaces.  As a consequence, the potential window is expanded to 

sufficiently negative potentials that encompass the reduction of Re and Mo to metal. 
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The potential window associated with each working electrode in RTIL is summarized 

in Table 4.1. 

 

 

Table 4.1: Potential Windows for Pt, Au, GCE Electrodes for Aqueous and RTIL Systems 

Substrate Metal Aqueous Potential Window Non-Aqueous Potential Window 

Platinum 1.0 V – 0.0 V 1.7 V – (-2.4 V) 

Gold 1.0 – (-0.1 V) 1.9 V – (-2.7 V) 

Glassy Carbon N/A 2.6 V – (-2.7 V) 

 

 

The role of proton adsorption at the Pt working electrode was important for the reduction 

of Re based on the schematic present below where perrhenate is reduced through Re 

oxide to metal.  We found that in aqueous solutions the surface deposit was 

predominantly the oxide with no measurable Re metal on the surface of the electrode, 

which is verified by previous studies to ensure that H
+
 is available in the RTIL system the 

acid form of the anion (HTFSI) is directly dissolved in the RTIL. 

    
 

  
         

  
    

The reduction of ReO4
-
 in RTIL may follow the same mechanism established in 

aqueous solution.  The following electrochemical half-cell reactions for Re and Mo are 

provided for reference: 
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In addition, the water dissociation reaction is included because there is a small 

amount of water in the RTIL (200 ppm) that may provide H
+
.  In contrast to the aqueous 

electrochemistry where the pH could be controlled and measured precisely, the trace 

amounts of H2O in the RTIL may dissociate and provide the H
+
 needed to initiate the 

reduction of Re and Mo.  However, the concentration is small and may not be sufficient 

to sustain the electrochemical reduction of Re and Mo in the RTIL without the addition 

of HTFSI.  Therefore, the electrochemical reduction Re and Mo in RTIL will be 

conducted with and without the addition of acid HTFSI.   

4.2.1 Rhenium Electrochemistry in RTIL 

The electrochemical response of a Pt electrode in RTIL solution containing 89 mM 

ReO4
-
 without additional acid is provided in Figure 4.3.  The solutions were sonicated to 

ensure the complete dissolution of the Re in RTIL.  The RTIL background is plotted with 

the cyclic voltammetry of ReO4
-
 for clarity.   
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Figure 4.3: Voltammetric Response of a Pt Working Electrode in Solution Containing 89 mM ReO4
-

Dissolved in RTIL. Scan rate = 100 mV/s. 

 

 

The background cyclic voltammetry is obtained using the potential window 

between+1.7 V and -2.4 V.  The cyclic voltammetry for the Pt electrode in 89 mM ReO4
-
 

in RTIL is significantly different.  Specifically, the reduction at ~-0.7 and between -1.5 

and 2.4 is diminished relative to the background.  The electrochemistry changes due to 

the fact that the reduction of Re is more favorable than reduction of the RTIL cation at 

the Pt surface.  Thus, the voltammetry for the reduction of the cation is significantly 

diminished.  In addition, the voltammetry may be influenced by the reduction of Re at the 

electrode surface, changing the composition and diminishing the reduction of the cation.  

The negative potentials utilized to obtain the cyclic voltammetry allow the reduction of 

ReO4
-
 to Re metal.  There are three reduction waves at -0.5 V, - 1.35 V, and - 2.0 V.  The 

voltammetric wave at – 0.5 V may be attributed to the uptake of H
+
 at the Pt surface from 

residual water.  However, this potential is the reduction peak at -1.35 V can likely be 
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attributed to the reduction of ReO4
-
 to for the ReO2 intermediate on the Pt surface.  The 

peak at – 2.0 V would then be associated with the reduction of the ReO2 to Re metal on 

the Pt surface.   

Similar voltammetry is obtained when examining the reduction of ReO4
-
 at the gold 

electrode surface.  The cyclic voltammetric response on a gold working electrode is 

presented for a solution containing 89 mM ReO4
-
 in RTIL.   

 

 

 

Figure 4.4: Voltammetric Response of a Au Working Electrode in Solution Containing 89 mM ReO4
-

Dissolved in RTIL. Scan rate = 100 mV/s. 

 

 

There are again three reduction peaks that occur at - 1.35 V, -2.0 V, and -2.4 V.  The 

current for the reduction of ReO4
-
 at the gold working electrode was enhanced relative to 

Pt in RTIL.  The trend was reversed in aqueous solution with the reduction of ReO4
-
 

significantly enhanced relative to Au based on the adsorption of proton and the 
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subsequent use of Hads as a reducing agent in aqueous solution.  Although it is likely that 

the reduction of ReO4
-
is tied to proton concentration in RTIL the adsorption of H

+
 at the 

electrode surface does not dominate or enhance the reduction processes.  The reduction 

likely occurs through the same process observed at the Pt electrode.  However, additional 

reduction processes are possible provided there is sufficient water and proton available in 

the RTIL based on the following reactions: 

    
                                

    
                                   

 Finally, the electrochemistry on a glassy carbon is provided for comparison to both 

Au and Pt.  The use of GC is important because it is not metallic and compared to both Pt 

and Au it is catalytically inert further minimizing the oxidation/reduction of the 

anion/cation of the RTIL, respectively.  The voltammetric response of the GC electrode 

in a solution containing 89 mM ReO4
-
 dissolved in RTIL is presented in Figure 4.5.   
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Figure 4.5: Voltammetric response of a GC Working Electrode in Solution Containing 89 mM ReO4
-

Dissolved in RTIL. Scan rate = 100 mV/s. 

 

 

The potential window for GC is significantly larger than Pt and Au.  The GC 

electrode is inert relative to Pt and Au and there is a reduction wave at - 1.2 V followed 

by broad reduction more negative of -2.0 V.  The voltammetry is consistent with the 

reduction of Re to metal without resolution of the reduction of intermediate species such 

as ReO2.  The voltammetry for all three electrodes studies suggest that the reduction of 

ReO4
-
 occurs without additional H

+
 in the RTIL solutions.  The question remains whether 

the voltammetry is still tied to the proton adsorption at Pt and Au that would be available 

from the dissociation from residual water in the RTIL. 

4.2.2 Electrochemistry of ReO4
-
in RTIL containing HTFSI 

The importance of acidity of the solution has been established as being a crucial 

component for the targeted ReO4
-
 reduction in aqueous solution at Pt and Au electrodes.  

Introducing protons in the non-aqueous system is achieved using HTFSI, the acid anion 

of the RTIL.  The experiments were conducted in the same manner as the aqueous 

solutions.  Specifically, aliquots of the HTFSI (which will be referred to as Ac-RTIL) 

were added to the RTIL solution containing ReO4
-
 until the electrochemistry was 

resolved and optimized.  This treatment is shown for only Au but first will be the 

discussion of the electrochemistry with the Ac-RTIL treatment for the platinum working 

electrode, Figure 4.6. 
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Figure 4.6Voltammetric Response of a Platinum Working Electrode in Solution Containing 89 mM 

ReO4
-
Dissolved in RTIL with 4.0 mL of 1.0 M HTFSI. Scan rate = 100 mV/s. 

 

 

The cyclic voltammetric responses for the Ac-RTIL and ReO4
-
 RTIL/Ac-RTIL are 

very different, compared to the CVs obtained in pure RTIL.  There are multiple reduction 

peaks that are observed at – 0.6 V, - 1.5 V, - 1.7 V.  These reduction peaks can be 

associated with the reduction of ReO4
-
 to the intermediate of ReO2, and then Re.  The CV 

response with Ac-RTIL is greater than that with none added.  This increase of response 

could be due to the addition of H
+
; which can lead to greater Had on the surface of the Pt 

working electrode.  Another possibility to the increase in response could be because of 

the half-cell reactions, which require H
+
 to occur: 
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However, the response on Pt is still larger than that of Au, which can be seen below.  

The cyclic voltammetry below examines the influence of increasing acid HTFSI on the 

reduction of ReO4
-
 in RTIL at the gold working electrode.  The goal is to determine the 

concentration range where the largest relative reduction of Re can be observed. 

 

 

 

Figure 4.7: Voltammetric Response of a Gold Working Electrode in Solution Containing 89 mM 

ReO4
-
Dissolved in RTIL. Scan rate = 100 mV/s. 

 

 

It is clear in Figure 4.7 that as the concentration of the Ac-RTIL increases there is a 

loss resolution of the voltammetric response.  The electrochemistry for the reduction of 

Re without acid is shown in Figure 4.7a for comparison.  The voltammetry shows 

reduction starting at -1.0 V with resolved peaks at ~ -2.4 V.  The peak at ~ -2.4 V is 

significantly diminished once an acid concentration of 0.5 M in RTIL is reached (Figure 

4.7c). There is also a slight loss in the resolution of the two peaks at – 1.0 V and – 1.4 V 
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when the concentration of acid is 0.33 M (Figure 4.7 b).  However, the overall magnitude 

of the current is the highest at the concentration of acid.  The data suggests that acid 

concentration is again critical in the reduction of the Re species at the Au electrode.  

The evolution of the cyclic voltammetry for the reduction of ReO4
-
 is shown in Figure 

4.8.   The first scan (red) shows the initial reduction of Re at the Au surface.  With each 

additional scan the current is slightly diminished due to electrochemical deposition of Re.  

The large peak at – 2.7 V looks similar to the bulk deposition peaks found in aqueous 

systems and can be attributed to the reduction of ReO4
-
 to ReO2 and possibly Re(0).  The 

final CV scan is graphed as the purple scan, taken at steady state.  Without graphing the 

preceding CV scans it would difficult to observe the progression of the changes due to 

the reduction of Re. 

 

 

 

Figure 4.8: Voltammetric Response of a Gold Working Electrode in Solution Containing 89 mM 

ReO4
-
Dissolved in RTIL with 0.33 M HTFSI. Scan rate = 100 mV/s. 
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The SEM image shows the Re aggregates from the electrochemical reduction of ReO4
-
.   

 

 

 

Figure 4.9:  SEM Data of Au Deposited from 0.089 M ReO4
-
 dissolved in RTIL with 4.0 mL of HTFSI 

 

 

Chemical analysis using EDS was obtained for the deposits shown in the image 

(Figure 4.9) with the areas of interest shown below in Figure 4.10. 
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Figure 4.10: SEM Picture of the Area of Interest Scanned for EDS Data  

 

 

All of the EDS data collected for sites shown confirm the deposition of Re on the 

surface of the gold electrode.  A representative EDS spectrum is provided in Figure 4.11. 

 

 

 

Figure 4.11: EDS for the Corresponding SEM Data: 1 
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The spectra indicates that the presence of Re on the surface.  Also, it indicates that 

oxygen was present.  The source of oxygen may be from exposure to normal atmosphere 

forming a surface oxide on Re.  However, the source may also be an unreduced ad-layer 

of ReO2 present at the electrode surface.  Further studies are required to determine if the 

all of the Re deposited can be fully reduced to metal.  However, the concentration of 

oxygen from EDS is sufficiently small relative to the Re concentrations to infer that some 

of Re is in metallic form. 

Finally a voltammetric response was taken with the glassy carbon working electrode, 

which is shown below (Figure 4.12).  The reduction of Re at the GC electrode is 

significantly different than both the Pt and Au electrodes.  The voltammetry is diminished 

relative to the more noble metal electrodes utilized.  However, the potential window for 

GC is significantly larger than both Au and Pt.   

 

 

 

Figure: 4.12 Voltammetric Response of a GC Working Electrode in Solution Containing 89 mM 

ReO4
-
Dissolved in RTIL with 4.0 mL of 1.0 M HTFSI. Scan rate = 100 mV/s. 
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There is also minimum activity associated with the reaction of the RTIL at the GC 

electrode at negative potentials which allows the voltammetry associated with the 

reduction of Re to be clearly observed.  The mechanism for the reduction of Re at GC is 

not well understood because the adsorption of H
+
 at the GC surface is not prominent.  

Therefore, the role it plays in the reduction is questionable. Therefore, the role of Had 

adsorbed on the surface will not aid in the reduction of Re precursors to Re(0).   

The role of acid is clearly distinguished in the voltammetry at Pt and Au electrodes.  

Increasing the acid in the RTIL provides enhanced current responses associated with the 

reduction of Re at both of these electrode surfaces.  However, diminished voltammetry 

was observed indicating there is a limit associated with increasing acid. The data again 

supports the role of acid in the reduction of ReO4
-
 within certain concentrations limits.  In 

addition, it suggests that the reduction is a multi-step process that is strongly dependent 

on the available acid in the RTIL.  In contrast to aqueous solution the evolution of 

hydrogen gas in RTIL is not observed which suggests that the Pt and Au surface may get 

blocked by adsorbed Hads on the surface of the electrode, minimizing the further reduction 

of Re at higher acid concentrations. 

4.3 Electrochemistry of Molybdenum in RTIL Solution. 

4.3.1 Introduction 

 The information gathered from analyzing the electrochemical reduction of Mo could 

be used in conjunction with the perrhenate studies to define technetium recovery using 

RTIL solutions.  However, there are few examples that provide details regarding the 
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electrochemical behavior of molybdenum in either aqueous or non-aqueous solutions.  

The half-cell reactions of known reduction pathways for Mo are reported from aqueous 

environments are provided in Table 4.2 and it is assumed that the species will behave 

similarly in non-aqueous system including RTIL: 

 

 

Table 4.2: Redox Couples, Half-Cell Reactions, and E
o
 for Molybdenum [31] 

Redox Couple Half Reaction       

                                   -0.008 

    
                

                 -0.780 

                             -0.980 

                    -0.2 

MoO4
2-

/Mo     
                   -0.913 

 

 

In addition, the following oxidation/reduction flow chart for possible Mo in aqueous 

solution is provided for clarity: 
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Figure4.13: Molybdenum Oxidation State Flow Chart  

 

 

The Mo species analyzed in this work were in the form of MoO4
2-

 and MoO2to 

provide the two different oxidations states (Mo
6+

 and Mo
4+

) of the species in RTIL.  In 

the previous chapter it was mentioned that in aqueous solutions, Mo forms various 

complexes depending on the species in the solution and the acidity (pH).  In contrast to 

the dissolution of MoO4
2-

 and MoO2which changed colors due to complexation and 

chemical change in aqueous solution, when Mo species were dissolved in RTIL there was 

an increase in solubility and the solutions did not undergo color change.  The data 

suggests that Mo species dissolved in the RTIL do not form complexes that change the 

overall chemistry of the species.  Solutions were allowed to sit for a week and replicate 

measurements were taken over this period of time to confirm the stability of the solution 

species. 

4.3.2 Electrochemical Reduction of MoO4
2-

 and MoO2 in RTIL 

The electrochemical reduction of MoO4
2-

 was studied under the same conditions as 

perrhenate, with a starting solution of89 mM MoO4
2-

 dissolved in RTIL.  Voltammetric 

responses were obtained using Pt, Au, and GC working electrodes.  The voltammetric 
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responses for the MoO4
2-

 and MoO2 dissolved in RTIL solution are shown for a platinum 

working electrode below in Figure 4.14. 

 

 

(a) (b)      

(c) (d)  

Figure 4.14 (a, b): Voltammetric response of a platinum working electrode in solution containing 89 

mM MoO4
2-

 dissolved in RTIL. Scan rate = 100 mV/s. A, is the RTIL background with steady state 

scan for Mo(VI) in RTIL.  B is the progression scans for Mo(VI).  Figure 4.14 c, d : Cyclic 

voltammetric response of platinum working electrode in a solution containing  89 mM 

MoO2dissolved in RTIL; C, is the RTIL background and the steady state scan of Mo(IV) in RTIL.  D 

is the progression scan of Mo(IV) in RTIL. 
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The voltammetry associated with MoO4
2-

 is significantly different from the 

background associated with the RTIL (Figure 4.14a).  Specifically the reduction of the 

cation is suppressed for Mo(VI) in comparison to pure RTIL.  The data suggests that the 

reduction of Mo(VI) is more thermodynamically favorable in comparison to the RTIL 

cation.  The emergence of a reduction peaks ~0.1 V and ~ -1.2 V for MoO4
2-

 are 

observed, in both 14.4a, b.  The voltammetry associated with the reduction of Mo(VI) is 

reduced relative to Re indicating that the relative reactivity of the species is diminished at 

the Pt electrode. The response gradually decreases until a steady state is reached (4.14a).  

The decrease in reduction may be associated with the deposition of Mo on the Pt surface.  

The initial scans are shown, 4.14c, and the steady state 4.14d.  Similarly to MoO4
2-

, the 

voltammetric response is diminishes as the scans progress.  This indicates that there are 

changes occurring on the surface of the electrode.  The surface adsorption of proton may 

minimize the reduction of Mo because hydrogen gas is not evolved under the 

electrochemical conditions utilized in these studies.  The half-cell potentials for Mo 

indicate that reduction will occur at very negative potentials (~ -0.9 V).  It is most likely 

that Mo(VI) is being reduced through the following reactions: 

        
                               

                                      

                               ) 
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The reduction to Mo metal could not be achieved in aqueous solution because the 

negative potentials could not be attained before the hydrogen evolution dominates other 

possible reactions at the electrochemical surface.  In contrast, the expanded negative 

potentials associated with RTIL solutions allows the reduction of Mo(IV) to metal.   

For comparison the electrochemistry is analyzed for MoO4
2-

at a gold working 

electrode shown in Figure 4.15. 
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(c)  

Figure 4.15 a, b: Cyclic voltammetric response of gold working electrode in a solution containing 89 

mM MoO4
2-

 in RTIL.  Figure 4.15a: is the RTIL background with Mo(VI) steady state scan.  Figure 

4.15b: progression scans for Mo(VI) in RTIL.  Figure 4.15c: Voltammetric response of gold working 

electrode in a solution containing 89 mM MoO2dissolved in RTIL. 

 

 

The steady state scan 4.15a shows a loss of response from the initial scans (Figure 

4.15b).  This loss of voltammetric response may again be due to a change of the gold 

electrode as Mo is reduced onto the surface.  There are reduction peaks that are absent in 

the RTIL background, at – 0.9 V and – 1.3 V.  These two reduction peaks are likely 

associated with the reduction of Mo based on the reactions below: 

        
                                

                                 

    
                                

The cyclic voltammetry in Figure 4.15 does not utilize the maximum potential 

window in order to minimize the formation of gold oxide at positive potentials.  In 

addition, the potential window utilized minimizes the possible re-oxidation of the Mo 
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deposits after the reduction processes are completed.  When the scans were run at their 

maximum potential window, there was very large oxidation peak in the positive scan that 

is eliminated using the modified potential window.  Moreover, production of gold oxide 

could also inhibit the reduction of the Mo species at negative potentials if it remained un-

reduced.   

The voltammetric response for MoO2 is lower in comparison to the same 

concentration of MoO4
2-

 at the gold electrode in Figures 4.15 a, b, and c.  It is possible 

that the reduction of Mo(VI) is more thermodynamically favorable which suggests that 

the intermediate species may not be Mo(IV).  Thus the reduction of Mo(VI) to Mo(0) is 

easier to achieve than Mo(IV) to Mo(0).  The reduction potential for Mo(VI) is - 0.913 V 

and -0.980 V for Mo(IV) which supports the assignments based on the thermodynamics 

associated with reduction of the two species in aqueous solutions.  

In addition, the electrochemical response for both Mo species is diminished when 

compared with Re at the same concentration and at the same electrode.  The decrease in 

response may be due to the various Mo species in the RTIL solution during the reduction 

processes.  The oxidized/reduced forms of Mo in RTIL might be sufficiently stable that 

reduction is reduced due to kinetic limitations.  In the case of Re, the intermediate surface 

species ReO2 aides in the reduction to metal.  The formation of intermediate surface 

species of Mo has not been established in ionic liquid solutions.   Furthermore, the half-

cell potentials for Mo are more negative than those of Re. 

 Finally the cyclic voltammetric response for a GC electrode was obtained in the same 

RTIL solution containing 89 mM MoO4
2-

. 
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(a) (b)  

(c)  

Figure 4.16a: Voltammetric response of a GC working electrode in a solution containing 89 mM 

MoO4
2-

dissolved in RTIL.  Figure 4.16b: Voltammetric response of GC working electrode in a 

solution containing 89 mM MoO2dissolved in RTIL.  

 

 

The response of Mo(VI/IV) is discernable to the RTIL background for Figures 4.16a 

and 4.16b.  The response for Mo(VI) is greater than the background and less for 

Mo(IV)indicating the thermodynamic properties are different for each Mo species.  For 

2.75 1.75 0.75 -0.25 -1.25 -2.25 -3.25

C
u

rr
e

n
t

Potential (V)

50A
RTIL  Background

Mo(VI) / RTIL

2.5 1.5 0.5 -0.5 -1.5 -2.5 -3.5

C
u

rr
e
n
t

Potential (V)

10A

Mo IV( ) RTIL

2.5 1.5 0.5 -0.5 -1.5 -2.5 -3.5

C
u
rr

e
n
t

Potential (V)

RTIL Background

10A



73 

Mo(VI) there is only one reduction peak for the negative scan.  In contrast, there are 3 

different reduction peaks for Mo(IV).  This indicates that the reduction process for 

Mo(VI) is much simpler compared to Mo(IV).  The reduction of Mo(IV) may involve 

other intermediates that are not present in the reduction pathway associated with Mo(VI).  

Moreover the direct reduction of Mo(VI) to Mo(0) is more thermodynamically favorable  

in comparison to the reduction of Mo(IV) to Mo(0) in RTIL.  This agrees favorably with 

the reduction potential observed in aqueous solution which indicates the direct reduction 

of Mo(VI) to Mo(0) occurs at - 0.913 V compared to the reduction of Mo(IV) to Mo(0) at 

- 0.980 V. 

The half-cell reactions indicate that proton is needed for the reduction of the Mo 

species.  The residual water in the RTIL becomes the only source of the H
+
 which may 

inhibit the reduction of the species at the electrode surface  In the following section 

introduction of HTFS will be examined and the role of H
+
 addition will be assessed for 

the reduction of Mo(VI) and Mo(IV). 

4.3.3 Electrochemical Reduction of MoO4
2-

 MoO2 in RTIL Containing HTFSI 

From the aqueous studies the acidity of the supporting electrolyte was established as 

an important factor which enhanced the reduction of Re.  Therefore H
+
 was introduced to 

the RTIL solution.  This resulted in an increase in the solubility of the Mo species and the 

ultimate concentration that could be achieved in RTIL relative to aqueous solution.  

However, for the studies presented the concentration of Mo was maintained at 89 mM for 

direct comparison to previous voltammetry.  The CV response for MoO4
2-

and MoO2in 

RTIL containing 0.3 M HTFSI for a platinum working electrode is shown in Figure 4.17. 
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(a) (b)  

Figure 4.17a. Voltammetric response of Pt working electrode in solution containing 89 mM MoO4
2-

 

dissolved in RTIL with 0.5 M HTFSI.  Figure 4.17b: Voltammetric response of a Pt working 

electrode in a solution containing 89 mM MoO2dissolved in RTIL with 0.5 M HTFSI. 

 

 

In Figure 4.17athere is an emergence of a reduction peak ~0.01 V and -1.55 V. The 

addition of HTFSI with the Pt working electrode resolved the electrochemistry in the 

MoO4
2-

 reduction, when compared to the CV with no HTFSI.   

The CV response of MoO2 is more resolved as H
+
 is added, compared to the CV with 

no additional H
+
 in the RTIL.  There are reduction peaks0.0 V and ~ - 1.4 V.  The peak at 

~ 0.0 V indicates that the reduction of Mo(IV) to Mo(0) may be occurring through 

sequential reductions through a Mo(III) intermediate: 
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The second reduction peak can be attributed to the reduction of this species to Mo(0).  

Oxidation of Mo species is also observed consistent with the oxidation of surface Mo 

species and the possible oxidation of Mo(IV) to Mo(VI) at ~ - 0.3 V.  This voltammetric 

wave observed in the response for Mo(VI) suggests that the reduction of Mo(IV) occurs 

through a very different mechanism.  The addition of H
+
 to the RTIL solution helps the 

reduction of Mo by suppressing the background reduction of the cation of the ionic 

liquid.  The reduction mechanism may not be the same for the gold working electrode.  

The cyclic voltammetric scans for MoO4
2-

solution dissolved in RTIL with the HTFSI 

concentration of 0.3 M on a gold working electrode is show in Figure 4.18. 
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(c) (d)  

Figure 4.18a, b: 89 mM MoO4
2-

 Dissolved in RTIL with 2.0 mL of 1.0 M HTFSI on a gold Working 

Electrode.  Figure 4.18a: is the Ac-RTIL background with Mo(VI) steady state.  Figure 4.18b is the 

progression scans.  Figure 4.18c, d: Voltammetric response of gold working electrode in a solution 

containing 89 mM MoO2 in 0.5 M HTFSI background and steady state scan.  Figure 4.18d is the 

progression scan for Mo(IV) in HTFSI. 

 

 

For CV in Figure 4.18 a, b there are reduction peaks at ~ – 0.4 V and~– 1.25 V.  The 

first reduction peak may be associated with the reduction of Mo(VI) to Mo(IV) and the 

second peak to Mo(0).  The addition of acid does not significantly enhance the 

voltammetry associated with the reduction of Mo but it does diminish the reduction of the 

RTIL cation.   

For Figure 4.18 c, d, the reduction peaks at – 0.7 V and – 1.25 V are much more 

resolved compared to the CV of MoO4
2-

.  From the Figure, there is an additional peak at 

– 0.75 V that emerges, which could correspond to another intermediate hat is not present 

for MoO4
2-

; possibly through these reactions: 
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SEM images were taken but were not well resolved however, the EDS data from the 

Au deposition was taken, there was Mo confirmed at the surface of the gold electrode, for 

both Mo(VI) and Mo(IV). 

 

 

(a)  
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(b)  

Figure 4.19 a, b: EDS Data for Mo(VI) in HTFSI and Mo(IV) in 0.5 M HTFSI. 

 

 

The EDS elemental analysis confirms that there is Mo deposited onto the gold 

surface.  There was also an indication of oxygen on the surface, where the scan was 

taken.  The presence of oxygen may be due to the atmospheric exposure, between the 

time of the experiment and measurements taken.  Another source of oxygen may that 

there was a mixture of Mo metal and Mo oxide deposited onto the gold surface.  

However, the composition is such that the oxygen content is significantly diminished 

indicating that there is appreciable Mo metal on the electrodes.    

The following Figure (Figure 4.20) is for MoO4
2-

 dissolved in RTIL with 0.3 M 

HTFSI in solution on a GC working electrode. 
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(a) (b)  

(c) (d)  

Figure 4.20a, b: Voltammetric response of GC working electrode in solution containing 89 mM 

MoO4
2-

 dissolved in RTIL with 0.5 M HTFSI.  Figure 4.20a: is the Ac-RTIL background and steady 

state for Mo(VI) .  Figure 4.20b is the progression scans.  Figure 4.20c, d: Voltammetric response of 

GC electrode in a solution containing 89 mM MoO2 with 0.5  M HTFSI background and steady state.  

Figure 4.20d is the progression scans of Mo(IV). 

 

 

In the initial scans (4.20b) there is a broad reduction peak that appears at ~ -2.5 V.  

This peak is diminished by the time steady state (4.20a) is reached.  The addition of H
+
 to 

3 2 1 0 -1 -2 -3 -4

C
u
rr

e
n
t

Potential (V)

50A

Ac RTIL

Mo(VI) / Ac RTIL

3 2 1 0 -1 -2 -3 -4

C
u
rr

e
n
t

Potential (V)

50A

3 2 1 0 -1 -2 -3 -4

C
u
rr

e
n
t

Potential (V)

50A
Ac RTIL

Mo(IV) / Ac RTIL

3 2 1 0 -1 -2 -3 -4

C
u

rr
e

n
t

Potential (V)

50A



80 

the solution for GC improved the voltammetric response.  This means adding H
+
 aides in 

the reduction of Mo(VI).   

There is a big change in the response between the initial scans (4.20d) and the steady 

state (4.20c).  In the initial scans there are two reduction peaks that emerge at – 1.0 V and 

a broad peak at – 2.5 V.  In the steady state scan the second reduction peak is diminished, 

which would indicate that there was a change at the GC surface.  However, there is an 

emergence of broad peak at - 1.9 V.  The occurrence of the new peak at the steady state 

could be a result to the change of the surface of the electrode, because if there was no 

change, then the voltammetric response would stay the same.  For the GC electrode the 

CV with the addition of H
+
 (Figure 4.20c) compared to the CV with no HTFSI (Figure 

4.16b) has higher electrochemical response with the same concentration of Mo.  This 

would indicate that addition of H
+
 into the system for MoO2, helps the reduction at the 

GC surface.   

Since the mechanism for the electrochemistry occurring at the GC is unknown, the 

inferences made are based on the electrochemistry for Pt and Au.  Since GC is so inert, 

the possibility of Had being adsorbed onto the surface is not likely.  Therefore, the 

electrochemical reduction is attributed to the very negative potentials that the GC 

working electrode can reach.  Since there was a change in the voltammetric response, this 

indicates that there was a change that occurred at the surface of the GC electrode.  In 

these CV’s the full potential window was not used, because when it was scanned its 

maximum window there was no significant electrochemical response.   

When analyzing the reduction of MoO4
2-

 and MoO2 in RTIL on the different working 

electrodes there many differences attributed to the working electrode and the solution 
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composition.  Working in a non-aqueous system stabilized both MoO4
2-

 and MoO2 

relative to the same species in aqueous solution.  The addition of HTFSI in RTIL 

influences the electrochemical reduction of Mo at Pt, Au, and GC surfaces.  In some 

cases the addition of H
+
 increased the electrochemical response for the reduction of Mo 

species while inhibiting the reduction of cations from the RTIL.  Although the exact 

reduction/deposition mechanisms were not established in these studies, clear changes to 

the electrochemistry where observed with the introduction of H
+
 in the RTIL.  

Furthermore, in contrast to aqueous system the electrochemical processes associated with 

the reduction and deposition of Mo was achieved using RTIL. 
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CHAPTER 5 

CONCLUSIONS AND FUTURE WORK 

5.1 CONCLUSIONS 

For the experiments performed in this thesis rhenium was used in place of Tc because 

of its analogous chemical properties and the lack of available Tc for experimentation.  In 

addition, Re and Tc share the same stable oxidation states which are relevant in the 

electrochemical analysis and comparison of both species.  The reduction mechanisms for 

the analogous element Re are crucial in understanding the possible reduction mechanisms 

and recovery of Tc.  The solution parameters utilized in these studies were similar to 

those found in used nuclear fuel containing Tc to ensure continuity and provide real 

solution parameters.  In addition, using solution conditions which typically exist 

eliminates variability and will aid in future efforts to recover Tc using the methods 

developed in this thesis. 

Developing an understanding the reduction/oxidation of molybdenum is also critical 

because Tc-99m is obtained from the decay of Mo-99.  Approximately 30% Tc-99m is 

obtained from irradiated Mo-99, while the remainder decays to Tc-99.  The residual Tc-

99m and eventually Tc-99 remains in the column unused and is discarded as radioactive 

medical waste.  Currently there is no viable procedure in place for increasing the percent 

elution of Tc-99m from the stream or for the recovery of the Tc-99 from the Mo-99 

column.  Consequently, understanding the reduction/oxidation of Mo is vital for 

reclamation purposes.  

Prior studies regarding the electrochemical properties of Rhenium investigated the 

changes secondary to solution parameters including the conjugate bases of acids 



83 

including H2SO4 and HClO4 with Pt and Au working electrodes.   Previous studies 

indicated that the pH for Re reduction is important; however no definitive study of the 

influence pH on the reduction mechanism was reported [28].  In addition these studies 

identified that certain anions (i.e. ClO4
-
, SO4

2-
) in solution inhibited the reduction of Re. 

In addition, it was suggested that the electrochemical reduction of Re at the Pt working 

electrode is a surface process where surface adsorbed H
+
 produces a reducing agent H2 

which enhances the process [28].  These studies also investigated the electrochemical 

reduction at the Au working electrode. However, Re reduction at Au was not facilitated 

by the generation of H2 at the electrode surface and the reduction potential alone was the 

sole determining factor in the deposition processes.   

The pH and solution composition at Pt and Au working electrodes for perrhenate and 

molybdenum solutions were further investigated in chapter 3 to determine the most 

efficient method to reduce Re and Mo.  The pH of the system was investigated by adding 

aliquots of NaOH to the ReO4
-
 acidic solution.  This allowed for the analysis of the 

changes of pH in targeted Re and Mo reduction.  From the experiments performed the pH 

range for Re reduction was found to be narrow (0.30 to 0.41) and the target pH should be 

0.34, shown in Figure 3.1.  Furthermore the electrolyte matrix containing NO3
-
 did not 

inhibit the reduction of Re in the solution (i.e. ClO4
-
 competitive reduction) as their 

reduction potentials are different.  The pH range for observing the reduction of Re was 

identified the electrochemical deposition of both species was observed.  However, the 

electrochemical reduction of the species to metal was not achieved in aqueous solution 

because of competitive reactions in the aqueous environment.  Finding the optimum 

potential window for the Pt working electrode is important for accurate Re reduction.  If 
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the potential E
o
< 0.0 V, then H2 is evolved, inhibiting the reduction of the target species.  

The potential window for the Au working electrode is more negative than that of Pt.  

Below in Table 5.1 are summarized the potential windows for the aqueous and non-

aqueous potential windows for Pt, Au, and GC electrodes.   

 

 

Table 5.1: Summary of the Potential Windows for Pt, Au, GC in Aqueous and Non-Aqueous 

Solutions. 

 

 

The molybdenum electrochemistry has not been widely studied in aqueous and non-

aqueous solutions.  Previous studies have suggested that in aqueous solutions Mo(VI) 

cannot be reduced below Mo(III).  In aqueous solutions Mo(VI) becomes Mo(IV) which 

is its most stable oxidation state inhibiting further reduction.  Both Mo(VI) and Mo(IV) 

form complexes at low pH values, which may influence the electrochemistry and final 

oxidation state.  The deposition of metallic Mo was not achieved using aqueous solutions 

suggesting that the deposit was in the form of an oxide, MoOx.   

In this thesis, Mo was evaluated with respect to pH, solution conditions and the 

potential window afforded by the solution and electrode materials utilized.  The range of 

Substrate Metal Aqueous Potential Window Non-Aqueous Potential Window 

Platinum 1.0 V – 0.0 V 1.7 V – (-2.4 V) 

Gold 1.0 – (-0.1 V) 1.9 V – (-2.7 V) 

Glassy Carbon N/A 2.6 V – (-2.7 V) 
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pH suitable to resolve the reduction of Mo was found to be between 0.11 to 0.38.  From 

the thermodynamic and half-cell potentials, the reduction likely proceeds through MoO4
2-

 

forming MoO2 consistent with previous studies. At the Pt electrode, the Had plays the 

same role in the reduction observed for Re.  Likewise, at the Au electrode hydrogen 

evolution is minimized requiring more negative potentials for the reduction of Mo.   

 The reduction/oxidation chemistry for Re and Mo were investigated in non-aqueous 

solutions, RTIL.  The RTIL eliminated the confounding side reactions (H2 and 

water/metal oxidation). As a consequence of eliminating the side reactions, the potential 

windows were expanded in order to reach theoretical reduction potentials of Re and Mo.  

Obtaining the theoretical reduction potentials is vital to reducing Re/Mo/Tc to metal for 

reclamation purposes, as summarized in Table 5.1.  The expansion of the potential 

window also eliminated the need for H2 to act as a complimentary reducing agent in the 

process.  The reduction of both Re and Mo at both the Pt and Au working electrode was 

achieved suggesting that RTIL solutions may be utilized in the reclamation of these 

species and possibly Tc.  These deposits were confirmed by EDS data and found to be 

reproducibly formed using well defined electrochemical and solutions parameter.  These 

results represent the first targeted reduction of Re and Mo metal from RTIL.  The studies 

presented in this thesis provide the methods and mechanism for the target recovery of Re 

and Mo.  With this knowledge the recovery of Tc from used nuclear fuel and biomedical 

waste streams can be envisioned. 

5.2: Future Work 

After the preliminary electrochemical studies Re and Mo reduction and deposition 

from RTIL solutions very specific questions remain.  For example, the concept of “pH” 
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remains undefined for RTIL solutions.  The concept of solvating a proton in ionic liquids 

is not easily translated into the activity of the species.  The definitions that exist for 

aqueous solutions do not adequately describe or quantify the true value of pH in RTIL.  

Additional experiments are required to try to define the concept of pH in RTIL.  These 

studies would involve measuring the pH of the RTIL, adding water to the system, 

sonicating the mixture and allowing the layers to separate, and measuring the pH change 

in water and RTIL.  The change in pH of the water can then be attributed to the H
+
 

concentration solvated from the RTIL.  The decrease in pH of RTIL can then be 

compared.  The changes in pH for both solutions can be plotted and compared to try to 

elucidate the concept of pH in RTIL solutions.   

Additional studies on Re/Mo could involve changing the potential window after the 

first layers of deposition.  The surface of the electrodes change which could result in 

changes in the electrochemical response, because the potentials windows are optimized 

for the working electrode not the target species deposited.  Finally, taking all of the 

information gathered from the Re and Mo studies, Tc experiments could be targeted and 

designed specifically for recovery from used nuclear fuel.  A preliminary solubility test 

was done on a Tc species (tetra-butyl ammonium (TBA)-TcO4
-
) which was fully soluble 

in the RTIL used.  Using all of the information gathered can increase the success rate of 

recovery and minimize radioactive waste.   
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APPENDIX A 

Ac-RTIL………………………………………Acidified Room Temperature Ionic Liquid 

Al2O3………………………………………………………………………...…….Alumina 

Au………………………………………………………………………….…………..Gold 

AuOx…………….……………………………………………………………..Gold Oxide 

COEX………………………………………………………………………..Co-Extraction 

CV…………………………………………………………………….Cyclic Voltammetry 

E
o
…………………………………………………..……………………Standard Potential 

EDS………………………...……………………..Energy Dispersive X-ray Spectroscopy 

EQCM………………………….………….Electrochemical Quartz Crystal Microbalance 

FP…………………………………………………………..……………..Fission Products 

GC…………………………………………………………………………..Glassy Carbon 

Had…………………………………………...…………………………………Adsorbed H 

HEU……………………………………………………………….High Enriched Uranium 

HTFSI………………………………………………………………..……Pronotated TFSI 

LEU……………………………………………….….……………Low Enriched Uranium 

LWR…………………………………………………………………Light Water Reactors 

Me3NPr
+
………………………………………….………n-trimethyl-n-propylammonium 

Mo…………………….………………………….…………………………..Molybdenum 

MOX…………………………………………….………………………Mixed Oxide Fuel 

Pt………………………………………………………………………………….Platinum 

PUREX……………………………………………..……..Plutonium/Uranium Extraction 

Re…………………………………………………………………………………Rhenium 

ReO4
-
…………………………………………………………………………….Perrhenate 

ReOxad……………………..……..….…….……………………Adsorbed Rhenium Oxide 

RTIL……………….…………………………………..…Room Temperature Ionic Liquid 

SEM………………………………………………………..Scanning Electron Microscope 

SCE.………………………………………………...………..Saturated Calomel Electrode 

Tc………………………………………………………………………………Technetium 

Tc-99…………………………………………………………………..Technetium Isotope 

Tc-99m…………………………………………………………….Metastable Technetium 

TcO4
-
…………………………………………….……………………..……..Pertechnetate 

TFSI
-
………………………………………………….bis(trifluoromethanesulfonyl) imide 

TBP…………………………………………………………………..tri-n-butyl-phosphate 

UNF……………………..………………………………………………Used Nuclear Fuel 

WE………………………………………………...……………………Working Electrode 

 

 

 

 

 



88 

BIBLIOGRAPHY 

1. Benedict, M., Nuclear Chemical Engineering. Second ed, ed. T.H. Pigford, Levi, 

H. 1981: McGraw Hill. 

2. Paviet-Hartmann, P., Lineberry, M., Benedict, R., Chap 11: Nuclear Fuel 

Reprocessing. Nuclear Engineering Handbook, ed. K. Kok. 2009: CRS Press. 

3. Choppin, G., Chemical separations in nuclear waste management, the state of the 

art and alook to the future,. Institute for the International Cooperative 

Environmental Research, ed. M.K. Khankhasayev, Plendl, H. S. 2002: Florida 

State University. 

4. NEA, Actinide separation chemistry in nuclear waste streams and materials. 

1997, NEA/NSC/DOC(97)19, NEA/OECD publication. 

5. Sayre, E.D., Technetium-99. 1964. 

6. Pansters, D. A Look at La Hague.  1998 2007 [cited; 

http://www.ricin.com/nuke/bg/lahague.html]. 

7. Paviet-Hartmann, P., Application of crown ethers of technetium 99, iodine 129, 

and cesium 135 in effluents, in Chemistry. 1992, Université Paris XI: Orsay. 

8. Burns, C., Bryan, J., Cotton, F., Ott, K., Kubas, G., Haefner, S., Barrera, J., Hall, 

K., and Burrell, A., Technetium Chemistry, in LANL Report. 1996, LANL. 

9. Paviet-Hartmann, P., Horkley, J., Pak, J., Brown, E., Todd, T., Resorcinarenes 

and aza-crowns as new extractants for the separation of Technetium-99, in 

Scientific Basis for Nuclear Waste Management XXXII MRS Proceedings, R.B. 

Rebak, Hyatt, N. C., Pickett, D. A., Editor. 

10. Audrieth, L.F., Long, A., Edwards, R. E.,, Fused Onium Salts as Acids. Reactions 

in Fused Pyridinium Hydrochloride. J. Am. Chem. Soc., 1936. 58(3): p. 428. 

11. Crosthwaite, J.M., Muldoon, M. J., Dixon, J. K., Anderson, J. L., and Brennecke, 

J. F., Phase transition and decomposition temperatures, heat capacities and 

viscosities of pyridinium ionic liquids. J. Chem. Thermodyn., 2005. 37(6): p. 559-

568. 

12. MacFarlane, D.R., Golding, J., Forsyth, S., and Deacon, G.B., Low Viscosity ionic 

liquids based on organic salts of the dicynamide anion. Chem. Commun., 2001. 

16: p. 1430. 

13. Zhang, S., Lu, X., Zhou, Q., Li, X., Ionic Liquids = physiochemical properties. 

2009: Elsevier. 

14. Plieth, W., Electrochemistry for materials science. 2008: Elsevier. 

15. Rogers, R., Seddon, K., Ionic liquids- Solvents of the future. 2003. 31: p. 792-793. 

16. Senentz, G., Drain, F., Baganz, C., COEX 
TM

 Recycling Plant: A New Standard 

for An Integrated Plant, Proceedings Global. 2009: Paris, France, Sept 6-11, 

2009. 

17. Drain, F., Emin, J. L., Vinoche, R., Baron, P., COEX Proces: Cross bredding 

etween innovation and industrial experience, Proceedings Waste Management 

2008. 2008: Phoenix, AZ, Feb 2008. 

18. Gray, L.W., From separations to reconstitution- A short history of plutonium in 

the U.S. and Russia, in LLNL report. 1999. UCRL-JC-133802. 

19. Hylko, J.M. How to Solve the Used Nuclear Fuel Storage Problem. 

[http://www.usnuclearenergy.org/HYLKO.htm] 2008 . 

http://www.ricin.com/nuke/bg/lahague.html%5d
http://www.usnuclearenergy.org/HYLKO.htm


89 

20. Nelson, T.O., James, C. A., Kolman, D. G., The United States Pit Disassembly 

and conversion project meeting the MOX fuel Specification, in LANL Report. 

1998. LAUR-98-2936. 

21. Yoshihara, K. and T. Omori, Technetium in the environment, in Technetium and 

Rhenium Their Chemistry and Its Applications. 1996, Springer Berlin / 

Heidelberg. p. 17-35. 

22. Anders, E., The radiochemistry of technetium, in Nuclear Science Series. 1960, 

National Academy of Sciences. 

23. Schwochau, K., Technetium and Radiopharmaceutical Applications. 2000: 

Wiley-VCH. 

24. Fried, S., Jaffey, A.H., Hall, N.F., Glendenin, L.E., Half-Life of the Long Lived 

Tc-99. Physical Review, 1951. 81(5): p. 741-747. 

25. Emsley, J., Nature's Building Blocks: An A-Z Guide to the Elements. 2001, 

Oxford, England: Oxford University Press. 

26. Thomas, G., Maddahi, J., The Technetium Shortage. Journal of Nuclear 

Cardiology, 2010. 

27. National Research Council of the National Academies, Medical Isotope 

Production Without Highly Enriched Uranium. 2009, Washington, D.C.: The 

National Academies Press. 

28. Mendez, E.C., Maria; Luna, Ana; Zinola, Carlos; Kremer, Carlos; Martins, 

Maria., Electrochemical behavior of aqueous acid perrhenate-containing 

solutions on noble metals: critical review and new experimental evidence. Journal 

of Colloid and Interface Science, 2003. 263: p. 119-132. 

29. Kremer, C., Dominguez, S., Perez-Sanchez, M., Mederos, A., Kremer, E., 

Comparative Electrochemistry of Technetium (V) and Rhenium (V) Dioxo 

Complexes. J.Radioanal. Nucl. Chem., Letters, 1996. 213(4): p. 263-274. 

30. Bard, A., Faulkner, Electrochemical Methods: Fundamentals and Applications, 

ed. Harris. 2001: John Wiley & Sons, Inc.: pp. 5, 23-26, 227, 231, 419, 581, 591 

31. Bard, A.J., Parsons, Roger; Jordan, Joseph, Standard Potentials in Aqueous 

Solution. 1985, New York: Marcel Kekker, Inc. 

32. Goldstein, J., Newbury, D., Joy, D., Lyman, C., Achlin, P., Lifshin, E., Sawyer, 

L., and Michael, J. Scanning Electron Microscopy and X-Ray Microanalysis. 

2003: Springer.: pp. 21-22, 195-197 

33. Verhoeven, J., Scanning Electron Microscopy. 1986. ASM Handbook. Vol. 10  

34. Bell, D.C., Garratt, A. J., Energy dispersive X-ray analysis in the electron 

microscope. Microscopy Handbooks. 2003: BIOS Scientific Publishers, Ltd. 

35. Kikuchi, S., Electrodeposition of Rhenium from Perchloric Acid Solution. Journal 

of the Nation Chemical Laboratory for Industry, 1986. 81(9): p. 473-476. 

36. Kremer, C., Dominguez, S., Perez-Sanchez, M., Mederos, A., Kremer, E., 

Comparative Electrochemistry of Technetium (V) and Rhenium (V) Dioxo 

Complexes. J.Radioanal. Nucl. Chem., Letters, 1996. 213(4): p. 263-274. 

37. Kikuchi, S., Electrodeposition of Rhenium from Perchloric Acid Solution. Journal 

of the National Chemical Laboratory for Industry, 1986. 81(9): p. 473-476. 

38. Han, B.M., Alan; Stevenson, Keith, Electrochemical Deposition and 

Characterization of Mixed-Valent Rhenium Oxide Films Prepared from a 

Perrhenate Solution. American Chemical Society, 2007. 23: p. 10837-10845. 



90 

39. Atkins, H.L., Radiopharmaceuticals kits, in report BNL. 1973 NEED REPORT 

NUMBER. 

40. Harris, D., Quantitative Chemical Analysis. 6th ed. 2003: W.H. Freeman & Co.: 

pp. 145-145, 147, 254. 

41. Pitzer, K., Peiper, J. C., Activity Coefficient of Aqueous NaHCO3. Journal Of 

Phys. Chem., 1979(84): p. 2396-2398. 

42. Janata, J., Zuman, P., Electrochemical Acidity Functions. Collect. Czech. Chem. 

Commun., 2010. 74: p. 1635-1646. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



91 

VITA 

 

Graduate College 

University of Nevada, Las Vegas 

 

Pauline N. Serrano 

 

Degree: 

     Bachelor of Science, Biochemistry, 2005 

     University of Nevada, Las Vegas 

 

Special Honors and Awards: 

     Chemistry Representative – UNLV College of Sciences Graduate Council 

     Chemistry Representative – Dean’s College of Sciences Undergraduate Committee 

     Member – Gold Key International Honor Society 

 

Thesis Title:     Electrochemistry of Technetium Analogues Rhenium and Molybdenum 

in Room Temperature Ionic Liquid 

 

Thesis Examination Committee: 

     Chairperson, David Hatchett, Ph.D. 

     Committee Member, Dong-Chan Lee, Ph.D. 

     Committee Member, Patricia Paviet-Hartmann, Ph.D. 

     Graduate Faculty Representative, Jaci Batista, Ph.D. 


