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ABSTRACT  

Characterization of Plutonium Particles Originating from the BOMARC 
Accident - 1960 

 
by 

Richard Charles Gostic 

Dr. Kenneth R. Czerwinski, Examination Committee Chair 
Professor of Chemistry 

Chair of the Department of Radiochemistry 
University of Nevada, Las Vegas 

Within the U.S. arsenal, 32 accidents with nuclear weapons were reported 

between 1950 and 1980. One of these accidents occurred at McGuire AFB in 

1960. A BOMARC missile armed with a nuclear warhead caught on fire and as a 

result the warhead was destroyed. Sub-millimeter particles consisting of 

weapons grade plutonium (WGPu) produced by this accident were distributed 

around the site and remained in the environment for 47 years. 

Soil cores known to contain WGPu particles produced by this accident were 

obtained. The particles were localized and removed from the soil with the aid of 

high resolution computed tomography. The isotopic composition of the particles 

and the date of manufacture of the Pu were estimated using a combination of 

alpha and gamma spectroscopy. Scanning electron microscopy was used to 

study the surface morphology of the particles; energy dispersive spectroscopy 

and synchrotron based x-ray fluorescence were used to determine the 

composition and elemental distributions of the particles. The results of these 

experiments and their application to the field of nuclear forensic analysis are 

discussed in this thesis.  
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CHAPTER 1 

INTRODUCTION 

1.1 Justification of Work 

The work presented herein is the result of the study of weapons grade 

plutonium (WGPu) particles, commonly called ‘hot particles’ (1) and the soils that 

have contained these particles from a specific site. The particles were produced 

and dispersed by the accidental combustion of a nuclear weapon in 1960 and 

have provided an opportunity to advance both environmental science and 

nuclear forensic analysis through the development and refinement of analytical 

techniques focused on WGPu particle characterization.  

Accidents involving nuclear weapons and the dispersal of radioactive 

components are more common than imagined. Within the U.S. arsenal, 32 

accidents with nuclear weapons were reported between 1950 and 1980 (2). 

Fortunately less than half of the accidents produced any contamination by or 

dispersal of radioactive materials (2) and none have resulted in nuclear 

detonations. Above-ground intentional combustion or non-nuclear destruction of 

nuclear weapons, resulting in the creation and dispersion of WGPu and U has 

been carried out as part of weapons development programs and weapons safety 

testing. Both the United States, at the Johnston Atoll (1) and the British 

government at the Maralinga site in Australia (3) carried out these types of tests. 

Outside of the weapons handling and testing community, facilities involved with 

the production and handling of nuclear material have also accidentally produced 

and released Pu and U particles. The most famous example is the 1986 
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Chernobyl accident that produced 1-100 µm particles that contained U, Pu and 

fission products (4). The Rocky Flats Plant  near Golden, Co released WGPu 

particulates between 1952 and 1989 through several mechanisms including fire 

and windblown releases from outdoor waste storage (5). Uranium particles were 

released between 1952 and 1957 from two graphite-moderated, air-cooled 

reactors at Windscale, U.K. (6). 

 

1.2 A New Need: Nuclear Forensic Analysis 

The project was anticipated to proceed as a study of WGPu particles and 

their interaction with the near field environment. As the work progressed, it 

became clear that the study of these WGPu particles could fill a new need, the 

refinement and development of techniques that could be applied to pre-

detonation nuclear forensic analysis (7). Analysis of these particular WGPu 

particles could help to develop techniques that could be applied to samples 

originating from a radiological dispersive device (RDD). This is based on the 

formation conditions that may be very similar to those experienced by materials 

released by the detonation of a RDD. Thus, the research effort focused on 

forensic analysis to better fit the new ‘need’. 

As an example of meeting the forensic challenge, a new technique has been 

developed for forensic analysis is the imaging of WGPu particulates by CT 

(computed tomography) in soil cores (Chapter 3). This technique localizes the 

WGPu particles in soil cores with micrometer accuracy for easy removal and 

helps identify other materials, such as solder glass and ion exchange beads, that 
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would have been passed over by conventional radioanalytical technique. This 

technique has also benefited environmental work as the high precision images 

afforded by CT makes it possible to conduct precision microbiological studies on 

undisturbed soils immediately around the WGPu particle. 

 

1.3 The BOMARC Hot Particles: Overview 

1.3.1 The Accident 

On June 7, 1960 an accident occurred at the McGuire Air Force base in New 

Egypt, New Jersey involving a Boeing Michigan Aeronautical Research Center 

(BOMARC) air defense missile (Figure 1). A high pressure He tank that serviced 

the liquid fueling system of the missile exploded and led to the rupture of the 

primary fuel tank. The missile, though in ready storage condition (i.e. permitting 

launch in 2 minutes), caught fire and burned but the high explosives associated 

with the warhead did not detonate (2,8,9,10). 

Fire suppression began 30 minutes after the first explosion was heard and 

continued throughout the night. Large volumes of water were used to suppress 

the fire and decrease the risk of airborne contamination, which resulted in most 

of the on and off-site contamination (2). On June 8, 1960, steps were begun to 

mitigate the spread of contamination including the complete removal of the 

missile wreckage and the launcher. The interior and exterior walls of the shelter 

were covered in thick paint to fix contamination on low dose surfaces and the pit 

inside the shelter was back filled with dirt and cemented over. Additional asphalt 

and concrete were poured over the apron in front of the missile shelter and 
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around the drainage ditch that collected some of the contaminated water during 

fire suppression (11,12). An aerial picture of the site from 2002 is provided 

(Figure 2). 

 

 

Figure 1. Boeing Michigan Aeronautical Research Center (BOMARC) Missile 

 

 

The site remained active until 1972 and routine monitoring of well water and 

the integrity of the cement and asphalt controls were conducted on a regular 

basis. In 2002, a site remediation campaign began and almost 17,000 m3 of 

contaminated material was removed from the site (11). During this campaign, 

analyses of the excavated material determined the presence of WGPu hot 

particles and prompted additional soil excavation in 2007 (13). 
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Figure 2. Pre-2002 aerial view of the BOMARC site provided by Cabrera 

Services. Note the white patch in the upper left hand corner, the concrete poured 
to cover the affected area and shelter 204 (roof missing), the site of the fire. 

 

 

1.3.2 Material Released By The Accident 

The initial estimate of the amount of Pu and U released on the site (or that 

was unaccounted for) is provided (Table 1) (12). In a recently published report 

(11), the Air Force and Department of Energy (DOE) estimated that an upper 

limit of 300 g (post-remediation) of WGPu still remains on the site but no mention 

was made of remaining U levels. The original Pu isotopic composition of the 

weapon estimated by Los Alamos National Laboratory (LANL) is given as a 



6 
 

function of mass fraction (Table 1) for an estimated chemical separation date of 

1958 (14).  

 

Table 1. Plutonium isotopics of the BOMARC weapon material (14). 
 

Original Composition in 1958 Site Contamination 

 Mass (%) Activity (%) 
Half- Life 
(years)  

238Pu 0.000099 2.95 6.27E+07 

100 -1500 g released 
(300g remaining on site3) 

239Pu 0.937 10.10 2.15E+09 
240Pu 0.056 2.21 4.70E+08 
241Pu 0.0047 84.75 1.80E+10 
242Pu Negligible Negligible 

 241Am Not reported Not reported 0.00E+00 
 235U None reported 300 g unaccounted for 

238U None reported 300 g unaccounted for 

 

 

The major isotopic constituents by mass of the WGPu are 239Pu and 240Pu, 

with less than 7 % by mass of 240Pu. Due to the relatively long half lives of 239Pu 

and 240Pu, the radioactivity contribution from these isotopes is only 12.3 %. The 

primary source of radioactivity in the 1958 material was the relative short-lived 

beta emitter, 241Pu (Table 2). With knowledge of the half life for the radioactive 

decay of each of the parent isotopes, the decay modes and the half lives of the 

daughters, the build-up of the daughters and granddaughters can be modeled as 

a function of time using the Bateman equations (15). Using the 1958 mass 

fraction values as a starting point, the present-day mass fractions of the parent 

Pu isotopes and their associated daughters have been calculated and are 

presented (Table 2). The isotope 237Np, though not a daughter of the listed Pu 
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isotopes, is the granddaughter of 241Pu, from the decay of both 241Am and 237U, 

and does make a minor contribution to the mass fraction in 2009.  

 

Table 2. Mass fraction corrected for decay (51 years) and build up of Pu 
daughters. Half life and decay mode data are from (16). 
 

 
Mass Fraction 

2009 
Half Life 
(years) 

Primary Decay 
Mode 

Activity 
Fraction 2009 

238Pu 0.00007 87.7 Alpha 0.0089 
239Pu 0.937 24110 Alpha 0.457 
240Pu 0.0558 6561 Alpha 0.099 
241Pu 0.0004 14.290 Beta 0.324 
242Pu Negligible 3.75 E5 Alpha 0.0000 
241Am 0.0041 432.7 Alpha 0.110 

237U 0.0000 6.75 Beta 0.0000 
237Np 0.0002 2.16 E6 Alpha 0.0000 
236U 0.0003 2.342 E5 Alpha 0.0000 
235U 0.0014 7.04 E8 Alpha 0.0000 
234U 0.00003 2.46 E5 Alpha 0.0000 

 

 

1.3.3 On-site Collection 

On June 29, 2007 UNLV researchers traveled to the BOMARC site and with 

assistance from the onsite Cabrera Services staff and the United States Air 

Force, a set of samples were collected. This sample set consisted of 19 soil 

cores that were 25-34 cm in length and 5.1 cm in diameter, 18 small samples 

(each less than 50 cm3 of soil) that contained hot particles and 9 bulk soil 

samples (bagged) that contain elevated activity, but could not be collected as a 

core.  

Soil cores were collected from three areas on the site (Figure 3), outside the 

restroom facility (Figure 4), in a grassy field east of the firehouse and in a low 
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activity area south of the eastern missile shelter block. High gamma activity 

areas had been located from previous in-situ gamma site surveys and were 

marked with flags by Cabrera Services. Using the flagged areas as a guide, a 

field instrument for detection of low-energy radiations (FIDLER- Ludlum 2221) 

and a 51 mm steel pipe flange were used to pinpoint the gamma emissions 

produced by decay of 241Am. A more detailed explanation of the coring process 

is presented in Chapter 2.  

 

 

Figure 3. Areas sampled in 2007. Upper red square is the restroom facility, 

lower red square is the firehouse. The green square is the area where reference 
cores were taken. Aerial Image provided by Cabrera Services. 
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Figure 4. Outside the restroom facility. Notice the concrete apron and the 

orange flags designating areas of elevated activity 
 

 

1.4 Scope of Work 

Four primary tasks were undertaken to characterize the hot particles and the 

soils that contain them. 

 Separation of hot particles from soil cores (Chapters 3 and 4) 

 Characterization of the distribution of radioactivity in the soil cores 

containing hot particles (Chapter 4) 

 Radioanalytical characterization of the hot particles (Chapters 6 and 7) 

 Imaging of hot particles (Chapter 5) 

Summaries of each task and the analytical methods used to complete each task 

and the primary results are given below. Each task is described in more detail in 

subsequent chapters. 
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1.4.1 Separation of Hot Particles from Soil Cores 

The purpose of this task was to design a method to replace or improve the 

separation methods based on the sequential splitting of samples. The process of 

sequential splitting involves breaking a sample into progressively smaller 

sections until the segment containing the hot particle is reduced to a few grains. 

This technique requires substantial handling of the samples which can damage 

the hot particle, destroys all spatial information and increases the risk of 

contamination. This method may be required for loose samples or small hot 

particles, and its effectiveness has been greatly improved through the use of 2-D 

digital imaging (17). 

High-resolution X-ray computed tomography, a non-destructive imaging 

technique that can build three dimensional (3-D) data sets based on the 

differential attenuation of x-rays by materials of different atomic number (Z) and 

densities. It has been used to image the cores and create maps of high density, 

high Z materials within the core volume (18). Because hot particles contain high 

Z (92 - 95) elements relative to the soil (bulk Z < 26), they preferentially 

attenuate x-rays, making discrimination of hot particles from the surrounding soil 

possible providing the high Z particles occupy a sufficiently large volume. Five 

soil cores from a sample set collected in 2007 from the accident site were 

imaged using this technique and the primary hot particle in each core was 

located using the 3-D data set.  

With micron scale maps of the high Z materials, the soil cores can be 

disassembled and the hot particles removed while preserving spatial information. 
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Some of the benefits of this technique are minimizing material handling, reducing 

the possibility of damage to the hot particle and accidental contamination of the 

work area, and facilitating the sampling of undisturbed soils around the 

radioactive source for chemical and biological studies. The primary limitation of 

this method is the spatial resolution that can be achieved. In 51 mm soil cores 

only hot particles >100 m can be mapped. A more detailed description of the 

CT analysis studies is provided in Chapter 3. 

1.4.2 The Distribution of Radioactivity in Soil Cores Containing Hot Particles 

The purpose of this task was to profile depth, or characterize the distribution 

of 241Am along the vertical axis of the 5 soil cores imaged by CT. This task was 

accomplished by parsing the soil cores into 3.5 mm slices and then performing 

gamma spectroscopy on each slice. For these experiments, two high resolution 

planar thin window Canberra Broad Energy Germanium (BEGE) detectors were 

used to quantify the 59.5 keV gamma emission from 241Am in each slice. The 

data from each slice of a core was compiled into a data set representing the 

241Am concentration in the soil as a function of depth.  

Two distinct 241Am distribution patterns were observed in the cores. In some 

of the cores, 241Am was concentrated in the slice that contained the hot particle 

and the concentration dropped off exponentially as a function of depth. Other 

cores also exhibited high 241Am concentrations in the slice that contained the hot 

particle, but also presented concentration spikes in slices not associated with the 

hot particle. 
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To determine if the distribution of 241Am in these slices, was diffuse or 

particulate, gas proportional counting (GPC) was used. Gas proportional 

counting is a method primarily used for quantification of alpha and beta particles, 

based on their interaction with a gas in the presence of a high potential field. 

When a charged particle collides with the gas, ion pairs are produced that 

generate a current and the detectable signal. Alpha and beta particles emitted 

from the surface of the soil would detected by the GPC. Those emitted below the 

surface of the soil may be attenuated and not counted by the instrument. By 

changing the surface of the sample, or stirring the dirt, particles will be displaced 

throughout the soil volume. This process could be repeated several times and 

the alpha and beta signal from each experiment recorded. If a steady signal over 

many experiments was observed, the activity is diffuse in nature; however, if the 

signal varies, or exhibits spikes between experiments then the distribution is 

particulate in nature.  

It has been determined that the 241Am distributions within individual slices 

was due to both diffuse and particulate distributions, though the majority of the 

activity tended to be associated with particles. Both the gamma spectroscopy 

and gas proportional data indicate that the bulk of 241Am was not homogenously 

distributed in the soil at either the macro (core) or micro (slice) scales. A more 

detailed description of this work is provided in Chapter 4. 

1.4.3 Radioanalytical Characterizations of Hot Particles 

Characterization of hot particles removed from the soil cores and 18 

additional small samples collected from the accident site was performed using 
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alpha spectroscopy and gamma spectroscopy. Alpha spectroscopy is a 

technique used to identify the energy and quantity of alpha particles emitted by 

the decay of radioactive material. In many cases the energies and ratios of the 

emitted alpha particles are unique to individual isotopes and can be used to 

identify and quantify the amount of a specific isotope present in a sample. Unlike 

gamma spectroscopy, alpha spectroscopy must be performed in a vacuum and 

with thin samples to avoid attenuation of emitted particles. 

Alpha spectroscopy was performed on thick, intact hot particles As expected 

this technique provided poor spectra, but it was a useful tool for quickly (< 10 

min/sample) evaluating the 241Am + 238Pu:240,239Pu activity ratio in individual 

particles. It was found that the 241Am + 238Pu:240,239Pu activity ratio in individual 

particles ranged from 0.137 to 0.244 with a population (n=19) mean activity ratio 

of 0.196 ± 0.030. The mean activity ratio was in good agreement with the 

literature (11,19). None of the reported values matched the estimated activity 

ratio of 0.36 (1958-2009) (14). 

Gamma spectroscopy was performed on 25 hot particles. Various photon 

peaks were selected for 241Am, 239Pu and 235U analyses. The 241Am:239Pu activity 

ratios of the individual particles ranged from 0.15 - 0.25, with the population 

mean falling between 0.18-0.21. The expected 241Am:239Pu activity ratio was 

0.24, which was determined using the Bateman equations (15) and a 51 year 

decay period (1958-2009). 

An alternative method of dating the age of the material based on the decay of 

241Pu through the 237U decay chain was also developed. The photon peak at 204 
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keV contains signal from 239Pu, 241Am, and 235U. The photon with energy at 208 

keV reflect 241Am and 237U. The yields of the gamma emissions were known for 

each of these isotopes and the 239Pu and 235U activities were determined 

independently from measurements taken at 129 keV and 185 keV photon 

energies respectively. The activity of both 241Am and 237U were determined from 

a series of linear equations. From the present-day activity of 237U, an initial 241Pu 

concentration was calculated, giving an effective date of last chemical 

separation. A separation date of 1955 ± 3 years was calculated from the 

weighted average of 12 samples using three different sets of peaks. 

Substantial 235U was detected in some of the particles (185 keV), this was 

unexpected because the atomic ratio of 235U to 239Pu, due to the decay of 239Pu 

to 235U, should be 0.0014 for a 50 year decay period. These low atomic ratios of 

235U should be nearly undetectable at the modeled 239Pu activity. Particles were 

observed with 235U:239Pu atomic ratios ranging from 0.01 to 3.98, indicating that 

a 235U source must have been in the original weapon material. 

Direct analysis of hot particles by alpha spectroscopy and gamma 

spectroscopy are useful tools.  Alpha spectroscopy can rapidly define the 241Am 

+ 238Pu:239,240Pu activity ratios prior to sample dissolution and separation 

chemistry. Gamma spectroscopy provides 241Am:239Pu activity ratios, 235U 

concentrations and also provides an alternative method for dating the materials 

through the 241Pu to 237U decay chain. The key to using these tools is the 

understanding that each particle is unique and that its characteristics may not be 

representative of the whole population. To successfully interpret the data from 
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both alpha spectroscopy and gamma spectroscopy a population of particles 

must be analyzed. A detailed description of these experiments is provided in 

Chapters 6 and 7. 

1.4.4 Imaging of Hot Particles 

Hot particle imaging experiments can be broken into two general groups 

based on the hardware required to run the experiments; scanning electron 

microscopy (SEM), and elemental mapping by x-ray fluorescence using a 

synchrotron. Three types of scanning electron microscopy experiments were 

performed; secondary electron imaging experiments (SEI), backscatter 

experiments (BES), and energy dispersive x-ray analysis (EDS/EDX). 

Secondary electron imaging (SEI) uses the low energy electrons produced 

when the primary electron beam interacts with the sample surface. This 

produces secondary electrons and is used to study the morphology of the 

sample surface. Backscatter (BES) experiments make use of backscattered 

electrons from the primary electron beam. When the primary beam high energy 

electrons interact with material in the sample some are backscattered. The 

probability of back scatter increases with increasing Z, so high Z materials such 

as U, Pu, and Am will cause more backscatter events than low Z materials such 

as Si or Fe. Hot particles typically appear as bright spots when imaging a soil 

sample by BES, making them easy to identify. Energy dispersive x-ray 

spectroscopy (EDS/EDX) uses the primary electron beam to remove the inner 

shell electrons of the material being studied, resulting in the production of x-rays 

as outer shell electrons to fill the created holes. The energies of the x-rays 
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produced by this process are unique to specific elements and can be used as a 

qualitative tool to identify the material on the surface of a sample and as a semi 

quantitative tool to estimate elemental concentrations on the surface of the 

sample.  The utility of SEI, BES and EDS is that a properly equipped SEM can 

perform all three experiments on a 3-D sample with a minimal sample 

preparation. The SEM data collected for several hot particles is presented in 

Chapter 5. 

The synchrotron based x-ray fluorescence studies and elemental maps were 

conducted at Sector 10-IDB, MR-CAT at the Advanced Photon Source located at 

Argonne National Laboratory, Argonne, Illinois. These experiments require a 

sample with a flat, polished surface, and selection of the observed x-ray energies 

based on the scattering angle. This technique uses a monochromatic x-ray beam 

produced from a synchrotron light source to generate the x-ray fluorescence 

signal. This synchrotron-based system provides a constant, high flux and highly 

tunable x-ray beam to produce x-ray fluorescence. Because the conditions at a 

synchrotron can be optimized for specific elements and matrices, very precise 

and high resolution maps can be produced. The x-ray fluorescence data is 

presented in Chapter 5. 

The primary result of the imaging studies was the observation that the 

elements that make up the hot particle matrix were not homogenously distributed 

in the particles. Images collected by SEM/EDS showed discrete U/Pu structures, 

and microprobe and synchrotron studies illustrated the separation of Am, U and 

Pu in some, but not all of the hot particles studied. These data are supported by 
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the variable 235U concentrations and 241Am:239Pu activity ratios observed with 

gamma and alpha spectroscopy. 

 

1.5 Source Term Characterization 

The combined gamma, alpha, EDS and elemental mapping data provide 

information about the composition of the energetic materials, the configuration of 

the weapon and the conditions that formed the hot particles. An overview of the 

entire data set is presented in Chapter 8.  

Data interpretation was approached from two viewpoints. The first is 

presented without reference to the historical narrative associated with the 

weapon and accident. This interpretation of the data represents a typical forensic 

scenario where the unknown material needs to be analyzed with little or no 

information available about its point of origin and limited information available 

about its recent past. The use of the Pu age data as a reference point is omitted 

from this interpretation. A detailed discussion of why the Pu isotopic data may 

not be useful or even misleading is presented in the second interpretation of the 

data set which includes historical information associated with the accident and 

the U.S. weapons production data from 1955-1960. 
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CHAPTER 2 

SAMPLING AND CORING PROCESS 

2.1 Introduction 

The focus of this work was to characterize WGPu hot particles in terms of 

interactions with the near field environment and to develop novel techniques for 

nuclear forensic analysis. In the initial phase of this work, UNLV researchers 

traveled to the BOMARC accident site to collect soil cores and various samples 

that contained elevated activity levels due to the presence of hot particles. This 

chapter provides a brief overview of the site location and geologic conditions and 

the sampling techniques that were used to locate and collect samples of interest. 

 

2.2 Site Location and Geological Significance 

During the missile shelter fire, large volumes of water were used for fire 

suppression and it was recognized early on that water movement and human 

activity around the accident site resulted in conditions that aided the transport of 

Pu as both small pieces and as low levels of sub-granular particles (8). 

Contaminant mitigation in and around the burned missile shelter occurred soon 

after the accident, however, low levels of contamination were spread across the 

site. These areas of low contamination remained untouched until remediation 

efforts began in 2002. The samples that were collected by the UNLV team in 

2007 were in an area of interest that had been determined by in-situ gamma field 

measurements but were otherwise undisturbed. It is important to note that the 

WGPu hot particles studied in this work persisted in the surrounding soil 
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environment for over forty years and therefore, understanding the site conditions 

in terms of geological characteristics is important for understanding hot particle 

interactions with the near field environment.  

 

 

Figure 5. Map of New Jersey (20) with the BOMARC site highlighted by the red 

star. 
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The BOMARC accident site is located in the New Jersey Pine Barrens 

preserve (Figure 5). The soils in this area are composed of fine to coarse quartz 

sand and are slightly acidic (21). Daily temperatures vary from a normal 

minimum of -7°C in January to a normal maximum of 30°C in August, the state 

receives 1020-1270 mm of precipitation per year, and the frost line, or the depth 

at which ground water trapped in the soil may be frozen, is at 380-510 mm (22). 

The hot particles studied were found in the top 15 cm of soil, therefore it can be 

assumed that the particles were exposed to multiple freeze/thaw cycles.  

 

2.3 Hot Particle Localization and Sampling Procedure 

2.3.1 Soil Coring 

Soil cores were collected from three areas on the site, outside the restroom 

facility, in a grassy field east of the firehouse and in a low activity area south of 

the eastern missile shelter block (Figure 3). High gamma activity areas had been 

located prior to the UNLV team arrival and were marked with flags by Cabrera 

Services. Using the flagged areas as a guide, a field instrument for detection of 

low-energy radiations (FIDLER, Ludlum 2221) and a 51 mm steel pipe flange 

were used to pinpoint the gamma emissions (59.5 keV, 35.9 % yield) produced 

by decay of 241Am (Figure 6).  

The FIDLER was moved over the soil surface until the count rate was 

maximized (Step 1, Figure 6), then the pipe flange was placed between the 

FIDLER and soil surface (Step 2, Figure 6). The flange was then moved until the 

count rate on the FIDLER was maximized again. At this point the FIDLER could 
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be removed and a 51 mm diameter PVC pipe could be driven into the ground 

capturing the hot particle (Step 3, Figure 6 and Figure 7). This localization 

process was successful in 17 out of 19 attempts.  

 

 

Figure 6. Procedure for capturing a hot particle using a FIDLER survey 

instrument and a pipe flange. 
 

 

Position data was captured for each core using a handheld Garmin GPS 

(Rino 120) with 3 m accuracy. Once a core was pulled from the ground, a 

pressed-on steel cap was placed on the penetration end of the PVC tube to 

prevent the sample loss from the ‘bottom’ of the core. The outside of the tube 
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was wiped down and surveyed for residual activity using the FIDLER and a 

maximum count rate was determined to estimate the core activity for shipping 

purposes. The spatial integrity of the soil core inside the PVC pipe was secured 

for shipping purposes using a plastic cap, which was pressed down to the 

surface of the soil. The remaining head space between the cap and the end of 

the pipe was filled with a fast curing (< 1 hr) isocyanate catalyzed, closed cell 

polyurethane foam. The ‘top’ of the core was closed with a steel press-on cap 

(Figure 8).  

 

 

Figure 7. Obtaining a core containing a WGPu hot particle. The 51 mm diameter 

PVC tube was manually driven into the ground to collect the core. The FIDLER 
used to locate the 241Am signal from the hot particle is located in the background. 
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Figure 8. Picture of a typical core. The white material on the left side is 
expanding foam used to fill headspace prior to shipping. A plastic cap (red) is 
used to isolate the soil from the foam. Steel caps were used to seal both ends of 
the core. 

 

 

Core identification numbers and count rate data were marked on both the 

tube bodies and tube caps. A list of cores with locations, lengths and count rate 

data is given (Table 3). With the exception of cores Ref1 and Ref2, all of the 

cores collected are believed to contain at least one hot particle. Cores Ref1 and 

Ref2 were collected from the eastern side of the site in an area that was not 

impacted by the accident 
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Table 3. Location, length and count rate of BOMARC cores. The background 
count rate of the FIDLER was 4500±1000 cpm. Count rates are not background 
corrected. 

 
Core 

Number 
Location 
Lat/Long 

Description of 
Location 

Length 
(cm) 

Count Rate 
(CPM) 

1 
N 40O 02’ 1.3” 

W 74O 26’ 27.3” 
Outside Restroom 
by Concrete Pad 

34 110,000 

2 
N 40O 02’ 1.2” 

W 74O 26’ 27.4” 
Outside Restroom 
by Concrete Pad 

37 85,500 

3 
N 40O 02’ 1.1” 

W 74O 26’ 27.2” 
Outside Restroom 
by Concrete Pad 

37 202,000 

4 
N 40O 01’ 50.9” 
W 74O 26’ 26.0” 

Grassy Field East 
of Firehouse 

17 215,000 

5 
N 40O 01’ 50.8” 
W 74O 26’ 26.1” 

Grassy Field East 
of Firehouse 

26 38,000 

6 
N 40O 01’ 50.8” 
W 74O 26’ 25.8” 

Grassy Field East 
of Firehouse 

15 23,000 

7 
N 40O 01’ 50.6” 
W 74O 26’ 26.1” 

Grassy Field East 
of Firehouse 

30 385,000 

8 
N 40O 01’ 50.6” 
W 74O 26’ 25.9” 

Grassy Field East 
of Firehouse 

28 52,000 

9 
N 40O 01’ 50.5” 
W 74O 26’ 25.9” 

Grassy Field East 
of Firehouse 

20 41,500 

10 
N 40O 01’ 50.3” 
W 74O 26’ 25.9” 

Grassy Field East 
of Firehouse 

14 149,000 

11 
N 40O 01’ 50.4” 
W 74O 26’ 25.6” 

Grassy Field East 
of Firehouse 

18 43,500 

12 
N 40O 01’ 51.2” 
W 74O 26’ 25.5” 

Grassy Field East 
of Firehouse 

33 28,000 

13 
N 40O 01’ 51.2” 
W 74O 26’ 25.5” 

Grassy Field East 
of Firehouse 

25 14,500 

14 
N 40O 01’ 51.2” 
W 74O 26’ 25.5” 

Grassy Field East 
of Firehouse 

26 470,000 

23 
N 40O 01’ 51.1” 
W 74O 26’ 27.3” 

Grassy Field East 
of Firehouse 

14 15,000 

24 
N 40O 01’ 51.1” 
W 74O 26’ 25.8” 

Grassy Field East 
of Firehouse 

12.5 38,000 

25 
N 40O 01’ 50.4” 
W 74O 26’ 26.0” 

Grassy Field East 
of Firehouse 

30 290,000 

Ref 1 
N 40O 02’ 1.3” 

W 74O 26’ 25.2” 
Field South of 

Eastern Shelters 
26 3,500 

Ref 2 
N 40O 02’ 1.1” 

W 74O 26’ 24.7” 
Field South of 

Eastern Shelters 
18 5,200 
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2.3.2 Bulk Sampling 

In cases where a soil core could not be taken, soil was extracted using a 

small hand trowel and double bagged in PVC (6 mil) plastic bags. The outsides 

of the bags were wiped down with a towel, and the towel was surveyed with the 

FIDLER to check for contamination. The bags were then surveyed with the 

FIDLER to determine a maximum count rate and estimate an activity for shipping 

purposes. Nine samples ranging from 20 to 2500 g were collected (Table 4). 

Bulk sample 14a, was located adjacent to core sample 14. In this case, core 14 

was extracted with elevated activity but some activity remained in the soil. An 

attempt was made to capture the residual activity in a second core but the 

footing from the firehouse slab made extraction of a second core impossible. In 

this case a bulk soil sample was extracted and labeled 14a. The description of 

location for sample 17 is currently unreadable but will be visible when the seal on 

this sample is broken. Data for Bulk Sample 20 is not currently available 

because this sample is sealed in the top of Core-13 and Core-13 has not been 

disassembled. A bulk sample (6a) consisting of 190 g of grass clippings from the 

field east of the firehouse was also collected. This sample was labeled 6a 

because the grass collected was located directly above core 6.  

2.3.3 Particles Removed from Excavated Soil. 

Eighteen small samples (< 50 cm3 of soil per sample) each containing a hot 

particle were collected from soil excavated and being prepared for remediation 

by Cabrera Services. No site specific location data was available for these 
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samples. Detailed activity information for the individual hot particles extracted 

from the 18 small samples can be found in Chapters 6 and 7. 

 

Table 4. Location, mass and count rate of bulk samples by FIDLER. 
 

Bulk 
Sample 
Number 

Location 
Lat/Long 

Description of 
Location 

Mass 
(g) 

Count 
Rate 

(CPM) 

14a 
N 40O 01’ 51.2” 
W 74O 26’ 25.5” 

Firehouse next to 
concrete slab 

(East) 
1088 32,000 

15 
N 40O 01’ 51.2” 
W 74O 26’ 25.5” 

Firehouse next to 
concrete slab 

(East)  
21 12,000 

16 
N 40O 01’ 51.2” 
W 74O 26’ 25.5” 

Firehouse next to 
concrete slab 

(East)  
641 8,000 

17 
N 40O 01’ 51.2” 
W 74O 26’ 25.5” 

Not Available 627 180,000 

18 
N 40O 01’ 51.2” 
W 74O 26’ 25.5” 

Firehouse next to 
concrete slab 

(East) 
1096 10,000 

19 
N 40O 01’ 51.2” 
W 74O 26’ 25.5” 

Firehouse next to 
concrete slab 

(East) 
622 14,000 

20 
N 40O 01’ 51.3” 
W 74O 26’ 26.0” 

Not Available 
Not 

Available 
106,000 

21 
N 40O 01’ 50.8” 
W 74O 26’ 26.0” 

Moss From 
Firehouse 

Drainage Pit 
(East) 

1345 9,000 

22 
N 40O 01’ 50.8” 
W 74O 26’ 26.0” 

Soil from 
Firehouse 

Drainage Pit 
(East)  

2430 9,000 
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CHAPTER 3 

LOCALIZATION AND ISOLATION OF HOT PARTICLES BY COMPUTED 

TOMOGRAPHY 

3.1 Abstract 

Fate and transport of hot particles in the environment are a particular concern 

for environmental modeling and forensic analysis. Traditionally, particles are 

located with field deployable radiometric equipment and the surrounding soil is 

collected and sub-sampled for bulk analysis. The inherent problem with this 

approach is the loss of spatial information associated with the particle and the 

near field environment. The objective of this work was to determine if particles 

could be identified in soil cores with minimal disruption using high resolution 

computed tomography (CT). Data was collected for intact soil cores (n = 5) from 

the BOMARC site and then each core was segmented into vertical slices. 

Particles (≥ 0.006 mm3) were isolated from the relevant slices based on intensity 

mapping results. Other particles and debris of interest were also identified that 

would have been lost using traditional analytical methodologies. 

 

3.2 Introduction 

Traditionally, isolation of hot particles from kilograms of soil is performed 

using a sequential splitting technique (Figure 9) and successive radiometric 

analysis. This iterative process is time-consuming and limited to materials 

emitting radiation that can be externally detected. The introduction of real time 

digital imaging (17) has greatly reduced the time required to complete the last 
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steps of the separation process, but can only be applied to small sample masses 

(<1 mg). Sequential segmentation also destroys spatial information about the 

particle, which can be used to more fully understand fate and transport 

processes. As an example, particles have undergone both physical (shear or 

mechanical) and chemical degradation in simulated soil column studies (23,24). 

Smaller particles (or colloids) were formed under these conditions and were 

preferentially passing through the macropores of the soil column. This 

information is difficult to obtain in situ without knowing the exact location of the 

particle within the soil core and therefore, bulk characteristics are generally 

reported.  

 

 

Figure 9. Traditional hot particle separation process. 
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An ideal method to locate hot particles in a soil core would be non-

destructive, independent of decay processes and provide spatial information at 

the micron level without extensive handling of the core. Industrial CT, an x-ray 

based active imaging technique, meets these requirements and has been used 

in this work to image the BOMARC soil cores. 

 

3.3 Computed Tomography Overview 

Images collected by the CT scanner are produced by contrasting the x-ray 

attenuation characteristics, the atomic number Z, and density of the different 

materials present in the soil core. This concept can be quantified by Beer’s Law 

(Equation 1), regarding the attenuation of a mono-energetic x-ray beam by a 

homogeneous material (15,25): 

 𝐼 = 𝐼0𝑒
−𝜇𝑡  

Equation 1 

where I and I0 are the intensity of the attenuated and incident photon beams, 

respectively, µ is the linear attenuation coefficient in units of per cm, and t is the 

thickness of the material in cm. A compilation of materials expected to be 

present in the BOMARC cores is provided (Table 5). The data reported is based 

on a target thickness of 1 cm and incident x-ray energy of 210 keV. The material 

that constitutes the bulk of the sample mass, SiO2, has a calculated I/Io value five 

orders of magnitude greater than the particle matrix, PuO2. The relative 

extinction of the beam by the hot particle should be visible in a quartz sand 

matrix.  
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Table 5. Attenuation of a 210 keV x-ray beam by material that may be found in 
the BOMARC soil core. 

 

Material 
Mass Attenuation 
Coefficient (cm-1) 

(26) 

Density 
(g cm-3) 

Fraction of the beam 
passing through the 

material (I/Io) 

Air 0.1233 1.20E-03 0.999 

PVC 0.1308 1.38 0.834 

Fe (metal) 0.131 7.30 0.359 

FeO(OH) 0.128 4.27 0.561 

Fe2O3 0.128 5.26 0.491 

FeCO3 0.125 3.96 0.595 

SiO2 0.121 2.65 0.721 

Pb (metal) 0.832 11.37 4.03E-5 

Pu (metal) 1.170 19.82 0.000 

PuO2 1.040 11.46 3.0E-5 

U (metal) 1.090 19.10 0.000 

UO2 0.973 10.63 1.76E-5 

U3O8 0.941 8.30 2.48E-4 

 

 

3.3.1 CT Instrumentation 

A CT scanner consists of an x-ray source and a detector sitting in the same 

plane, arranged 180⁰ from each other. The sample is placed between the beam 

and the detector and a series of intensity measurements are acquired while the 

source and detector assembly are rotated along the central axis of the sample 

(25). Industrial scanners in use today typically employ a fan-type x-ray beam and 

a bank of detectors in a planar or arc configuration (Figure 10). The fan-type x-

ray beam and multi-detector array allow for faster data acquisition because a full 

view can be captured without having to move the x-ray source and detector 

assembly.   
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Figure 10. Configuration of a 3rd generation scanner using a fan type x-ray beam 

and arc shaped detector array 
 

 

3.3.2 Image Processing 

As the x-ray source and detector assembly is rotated around the sample, a 

series of projections are acquired. Each projection is converted to a function that 

is filtered in the spatial domain (convolution) or in the frequency domain (Fourier 

Transform) to reduce noise (27). The filtered signal or back-projections are then 

integrated across the steps producing a 2-D image that constitutes a single slice 

of the sample.   

Slices are collected along the vertical axis of the soil core and must be 

registered and normalized to be processed into a 3-D data set after collection. 

Registration and normalization are critical image processing steps. Registration 

corrects for poor sample placement and any uncontrolled movement in the 
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sample as it is being scanned while normalization corrects for drift in the average 

x-ray energy and intensity between scans. In this work, the wall of the PVC tube 

that contained the soil core was used as the normalizing signal.   

After registration and normalization have been completed, artifact removal 

may be performed on the image. Artifacts are undesirable components that can 

be introduced during the image acquisition or signal processing steps. For 

example, beam hardening may result in the edges of a sample appearing 

brighter than the center (25). This intensity shift is caused by the selective 

attenuation of low energy x-rays by the sample, but is undesirable for 

distinguishing different materials. Details on the treatment of artifacts are 

available in the literature (27). 

The final image processing step is the conversion of the data set to a file 

format suitable for data analysis. A lossless TIFF format is preferable to JPEG 

because the data will not be subject to potential errors introduced by a data 

compression algorithm. From a practical point of view the smaller size of the 

JPEG files (kilobytes) makes them easier to work with and analyze using a 

desktop PC than the TIFF files (megabytes). 

3.3.3 Dimensional Elements  

Images are parceled into dimensional elements, pixels and voxels. A pixel 

represents a single point in an array that makes up a 2-D image (27). A voxel or 

volume element (28) is the same as a pixel except a third dimension, usually 

depth, is associated with the point. For the CT imaging experiments, a single 

slice outside the context of the core, is treated as a 1024 x 1024 pixel image. 
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That same slice, when taken within the context of neighboring slices, has a 

defined spatial representation, 1024 x 1024 x 1 voxels or elements. Voxels help 

to determine volume and spatial information for objects that occupy multiple 

slices. Both picture elements are used for particle localization.  

 

3.4 Method Summary 

3.4.1 Core Preparation 

Five cores collected from the BOMARC site were selected for CT analysis. 

Specific details about the coring process are provided elsewhere (Chapter 2). A 

description of each core is provided (Table 6). Prior to imagining, the location of 

the maximum activity in each core was estimated (± 10 mm) using a shielded, 

collimated NaI detector. The cores were prepared for shipping by solvent 

welding polyvinyl chloride (PVC) plugs to the ends of the cores. Each core was 

vacuum sealed to provide secondary containment (Figure 11). 

 

Table 6. Description of cores analyzed. 
 

Core  
ID 

Total 
Length 

(cm) 

Soil 
Length 

(cm) 

Volume 
(cm3) 

Location of 
Activity Maximum  

(cm below surface) 

Total 
Activity 

kBq (uCi) 

Core 6 18.4 15.3 312 3.1 72 (2.0) 

Core 9 23.5 21.4 437 1.3 144 (3.9) 

Core 11 20.3 17.5 357 1.0 216 (5.9) 

Core 14 28.9 25.4 518 18.4 361 (9.8) 

Core 24 17.2 12.0 245 4.6 96.2 (2.6) 
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Figure 11. Soil core containment for shipping purposes.  

 

 

3.4.2 Image Acquisition 

Soil cores were imaged at the University of Texas High Resolution X-ray CT 

(UTCT) facility in Austin, Texas using an ultra-high resolution system (ACTIS, 

Bio-Imaging Research Inc). The acquisition parameters are provided (Table 7). 

Cores exceeding 20 cm in total length were imaged in two sections because they 

exceeded the length of travel along the vertical axis of the instrument. Image 

registration, normalization and artifact removal were performed by UTCT. An 

image of the cross sectional area of a core is provided (Figure 12). Dark objects 

correspond to materials that do not attenuate x-rays. Light or white objects 

correspond to materials that highly attenuated the x-rays and are referred to as 

blobs (27). 



35 
 

Table 7. Additional imaging parameters 
 

UTCT Image Acquisition Parameters 

Beam Energy (keV) 210 

Operational Current (mA) 0.15 

Views per rotation 1000 

Slice Thickness (μm) 74.3  

Pixel Size (μm) 63.5 x 63.5  

Pixels per Field of View 1024 x 1024 

Voxel Volume (mm3) 3.0E-4 

Total Slices (per core) 1300-2000 

Scan time (hrs) 1.5 – 2 hours 

Image Type 
JPEG (8 bit) 
TIFF (16 bit) 

Gray Scale Range  256 

File Size (MB) 25 - 45 

Process and Archiving Time (hrs) 3.25 – 4.5 

 

 

 

Figure 12. Digital image of the cross sectional area of a BOMARC soil core. 
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3.4.3 Image Analysis 

All image analysis was done using Matlab Version 7.4 (29) and BLOB3D (30) 

utilizing IDL Virtual Machine (31). Analysis of the core images is a four-step 

process: 

 Binary conversion of the gray scale image  

 Assembly of a 3-D array of binary images  

 Compression of the descriptive data (position, size and maximum 

intensity)  

 Data compilation for blob population analysis  

Image conversion is accomplished by setting a threshold intensity value. If the 

intensity value of a given pixel is less than the threshold value, it is assigned a 0. 

Pixel values equivalent to or greater than the threshold are assigned a 1. For 

core analysis, the threshold value was 0.152; therefore pixel intensity values < 

39 (256 X 0.152) were set to 0. The result is a binary image that only highlights 

blobs (Figure 13). 

After conversion, the binary images are stacked into a 3-D array, 

representing only the blobs in the core. Blob connectivity is checked using a 26 

voxel inspection process (Figure 14). This process combines blobs from multiple 

slices that represent a single 3-D object in the core. The position, dimensions 

and maximum intensity for each blob is calculated and compiled into a separate 

data set for further analysis.  
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Figure 13. Conversion of a 256 grayscale image (left) to a binary image (right). 

The red circle denotes the same feature in both images. 
 

 

 

Figure 14. Nearest neighbors, the 26 voxels surrounding the center (gray) pixel 
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3.4.4 Blob Population Analysis 

The spatial data for each blob was complied and the blob population was 

plotted in terms of intensity, volume and position. The highest intensity blobs 

were identified and were selected as objects of interest (potential hot particles) in 

the core. The cores were then disassembled (Chapter 4) to retrieve the objects 

of interest for further analysis (Chapter 6). Cores were portioned vertically into 

3.5 mm slices to retain spatial information, and particles were identified by 

gamma detection. The position data obtained during core disassembly was 

compared to the blob population analysis to correlate hot particle location and 

blob intensity.  

 

3.5 Results and Discussion 

3.5.1 Blob Populations 

An example of the processed core data is provided (Figure 15). The 

normalized blob intensity was plotted in terms of slice number and the 

corresponding vertical core depth. The blobs that are located above the core 

surface are experimental artifacts that are attributed to initial sample preparation. 

The top 1 – 2 cm of the core had a high organic content that may have been 

unevenly compressed during the coring process. As an example, a surface slope 

offset of 1 mm, would affect 13 slices in the imaging process. The expanding 

foam that was used to keep the core intact during shipping may have also 

incorporated foreign debris during the curing process (Figure 11). 
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Figure 15. Vertical blob distribution by maximum intensity for a soil core. 
 

 

The majority of the blob population had intensity values below 60 for all five 

cores (Figure 16). Hot particles were expected to have high intensity values 

based on attenuation characteristics (Table 5) therefore, blobs with values > 70 

were selected as potential objects of interest. This corresponded to 

approximately 1 - 2% of the total blob population.  

Additionally, the intensity should be highly localized for hot particles, i.e. the 

blob volume should be small (> 1 mm3) based on the isotopic information (Table 

1) and the initial activity estimation (Table 6). Volumes of the selected blobs 

were calculated based on a minimum voxel intensity of 39, which is twice the 

average voxel intensity (Figure 17). All nearby pixels with intensity >39 are 

associated with the brightest pixel to define the cross sectional area of the 

particle.   
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The bulk of the selected blobs were < 1 mm3 based on the selection criteria 

(Figure 18) with two exceptions. The largest blobs were later identified as a 

piece of leaded glass, material commonly used in vacuum tubes (32) and Pb 

shot. Blob population analysis provided likely candidates for hot particles based 

on intensity and volume thresholds that could be localized in the core by slice 

number and core depth.  
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Figure 16. Population distribution as a function of blob intensity for n = 5 soil 

cores. 
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Figure 17. Area selected to determine blob volume and cross-sectional area in 

2-D. 
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Figure 18. Maximum intensity versus volume for the selected blob population. 
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3.5.2 Particle Analysis 

Particles were localized by the spatial and morphological characteristics in 

the gray scale images during core disassembly. Each slice of interest was 

scanned with a NaI detector to isolate particles with elevated activity. Other non-

radioactive particles of interest were also isolated for additional analyses. The 

intensity and location information of hot particles that were removed from each 

core is provided (Table 8). Many of the particles that were initially identified 

based on the selected threshold values could not be located. This was attributed 

to the small particle size, similar morphology to the soil granules and the 

elevated background in the glovebox that was used for core disassembly. 

Several non-radioactive spherical white beads were identified (Figure 19). 

Energy dispersive spectroscopy (EDS) indicated that the bead matrix was 

primarily Ti and Ce, which would explain the high intensity values (Table 9).  

 

Table 8. Hot particles identified during core disassembly. 
 

Core 
ID 

Intensity Slice Number 
Depth 
(cm) 

Particle 
Location 

(cm) 

HP 
Activity 
(kBq) 

6 201 497 2.8 2.4 - 2.8 41 

9 89 463 0.7 0.7 – 1.0 60 

11 122 221 1.2 1.0 – 1.4 80 

14 199 2779 18 18-18.4 551 

24 86 1250 3.7 3.8 – 4.1 64 

 

 

The hot particles exhibited a larger maximum intensity to volume ratio than 

the other material found in the cores (Figure 20). An empirically fit line placed 
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through the hot particle data set outlines the region where hot particles would be 

expected to fall based on this preliminary data set. The expected hot particle limit 

of detection (LOD) for the current experimental set up is an intensity of 82 and a 

volume of 0.006 mm3. Some of the particles that could not be located share 

similar intensity and volume characteristics with the Ce/Ti beads that were 

recovered. It is possible that these particles were beads that were not identified.  

 

Table 9. Non-radioactive Ce/Ti beads removed from the soil cores. 
 

ID Depth (cm) 
Estimated Volume 

(mm3) 
Intensity 

Core-24-1 7.7 0.404 110 

Core-14-1 1.3 0.519 127 

Core-14-2 1.6 0.429 128 

Core-14-3 3.1 0.019 82 

Core-14-4 4.0 0.029 89 

Core-14-5 4.1 0.021 85 

Core-14-6 5.8 0.059 99 

Core-14-7 6.0 0.060 92 

 

 

 

Figure 19.  Image of an intact bead removed from Core 14, obtained by 

secondary electron microscopy (SEM). 
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The intensity values for particles with volumes under 0.1 mm3 are provided 

on an expanded scale (Figure 21). Many of the unknown particles have intensity 

values < 82. These could be representative of hot particles that fall below the 

LOD. Evidence of discrete micro-particles was determined by gamma and alpha 

analysis on the vertical distribution of 241Am in the soils (Chapter 4) after the 

primary hot particles were removed. Physical isolation of these micro-particles 

may be possible using technique similar to those discussed in the literature (17). 
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Figure 20. Blob intensity versus volume based on particle identification. 
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Figure 21. Maximum intensity distribution for particles with volumes < 0.1 mm3. 

 

 

3.6 Conclusions 

High resolution CT has been successfully applied to the precision localization 

of hot particles in a soil core and is non-destructive. Analysis by CT provides 

additional advantages for locating particles of interest that are high Z, but low in 

specific activity. As an example, a UO2 particle that is < 1 mm3, may not have 

sufficient counts for gamma detection, but can be identified using the current 

method. Hot particle analysis indicated that U was a separate component in 

close contact with the Pu. A few particles isolated from other soil samples were 

predominantly U. From attenuation values provided (Table 5), UO2 particles 

would have lower intensity values than PuO2 particles. It is possible that some of 

the unknowns (Figure 21) with high intensity values and small volumes were U 

based particles. Standards or reference materials that contain actinides must be 



46 
 

developed to determine if U and Pu particles can be differentiated based on 

intensity distributions. This would establish better background and threshold 

estimations for blob population analysis.  

The combination of CT and radiometric localization provide additional 

information about particle transport in the soil column. Particle driven 

physicochemical processes can be confirmed in situ once actinide particles can 

be localized with greater certainty. The blob population profiles (Figure 15) are 

similar to the activity distribution plots (Chapter 4), but more data will be required 

for direct comparison. 

In addition to locating hot particles, other non-radioactive objects were also 

isolated. The Ce/Ti beads and leaded glass could provide additional forensic 

evidence about the source term of the material or activities that were conducted 

on the site. These materials may have been missed using classical methods. 

Another utility that was not specifically discussed in this work is the opportunity 

to study microbe populations surrounding the hot particles. Microbial influence 

on actinide speciation and transport in the environment is of great concern (33) 

for remediation and repository management. Microbiology studies are currently 

being conducted in collaboration with the Dessert Research Institute (Las Vegas, 

Nevada) on BOMARC soil cores.  
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CHAPTER 4 

241AM DISTRIBUTION IN SOILS COLLECTED FROM THE BOMARC SITE 

4.1 Abstract 

The vertical distribution of 241Am in five soil cores (5 cm diameter by 15-30 

cm long), containing mixed actinide oxide particles (105-106 Bq/particle) have 

been characterized using high purity Ge (HPGE) gamma spectroscopy and 

alpha/beta gas flow proportional counting.  Although more than 95% of the 

activity present in each core is contained within a single particle, a residual 

amount of Am and Pu remains in the soil. This residual material provides a 

window into the mechanisms driving the dispersion of Am and Pu in the soil. For 

these experiments, each core was segmented into a series of 3.5 mm thick 

slices. The hot particles were manually removed from the relevant slice and the 

residual Am concentration in each slice was determined. Plutonium was 

identified in many of these slices but concentrations could not be determined. 

The results of this work indicate that the vertical distribution patterns of residual 

Am and Pu are highly core dependent and near field dispersion is being driven 

by a combination of sorption/desorption and particle transport processes. 

 

4.2 Introduction 

The presence of Pu particles in the environment is neither rare nor unique, 

but common and geographically well distributed (2,3,4,6). Each site where Pu 

particles have been dispersed provides an opportunity to study the interaction of 

Pu and its daughter products within a variety of environments and conditions. As 
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more is learned about the behavior of Pu, the level of understanding and ability 

to model the behavior of this material is improved.  

The soil cores from the BOMARC site provided an opportunity to study the 

distribution of material shed by Pu particles in an acidic fine quartz sand soil 

(21). The particles were located in the top 15 cm of the soil column and were 

affected by the seasonal freeze thaw cycles and the meter of precipitation this 

region experiences annually (22). This combination of environmental factors 

indicates that the particles have been subject to mechanical as well as chemical 

degradation processes during their residence in the soil. 

The distribution of material shed from the particles as a function of depth was 

determined by gamma spectroscopy using photons associated with the decay of 

241Am. The cores that were selected for non-destructive computed tomography 

(CT) imaging (Chapter 3) were disassembled as 3.5 mm slices post imaging to 

aid in removal of the Pu particle contained in each core. Unlike 241Am and Pu 

concentrations previously reported in surface samples (19), the results of these 

experiments quantify the 241Am concentrations both above and below the region 

from which the hot particles were isolated. 

 

4.3 Gamma Analysis of Pu Distributions Using 241Am as a Surrogate 

In this work, 241Am was used as a surrogate for the distribution of Pu in the 

soil core, because it is directly incorporated into the Pu matrix through the decay 

of the short-lived 241Pu.  This assumes that the surface area relative to the 

volume of the particle was small and that Pu and Am would be transported 
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together through the soil.  It should be noted that in materials where the matrix 

surface area relative to the total volume of the sample is large, Pu and Am may 

separate due to differences in their chemical behavior resulting in different 

transport properties. Because the exact physico-chemical composition of the hot 

particle was unknown at the time, it was important to be able to verify that the 

241Am and Pu were both present in the particle and soil sample. This was 

accomplished by high resolution gamma spectroscopy analysis. Though the 

WGPu particle matrix is dominated by 239Pu in both mass and activity, it yields 

few unique photons when it decays (Table 10), making direct detection of low 

concentrations difficult by gamma spectroscopy. However, the 59.5 keV photon 

associated with the decay of 241Am can be easily detected with the HPGE 

system.  

 

Table 10. Energy and yields of some of the photons associated with the decay of 
239Pu and 241Am (16).  

 

Radionuclide 
Energy  
(keV) 

Yield  
(%) 

BEGE Detector 
Efficiency (%) 

Relative Peak 
Area 

241Am 59.5409 35.9 25 1 
239Pu 38.661 0.01044 20 9.3E-4 
239Pu 51.624 0.02722 25 3.03E-3 

 

 

The relative isotopic composition of the hot particle matrix as a function of 

time can be determined using the information provided (Table 11) and the 

Bateman equations (15). Assuming a 50-year decay period the 241Am:239Pu 

activity ratio is estimated to be 0.24. Using high resolution gamma spectroscopy 
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for analysis and assigning the peak area due to the 241Am photon at 59.5 keV a 

value of 1, then the two most intense 239Pu peaks would have areas of 9.3E-4 

and 3.3E-3 of the 241Am peak after correcting for radiative yield and changes in 

the detector efficiency (Table 10). These signals are three orders of magnitude 

smaller than the 241Am signal observed at 59.5 keV. The 51.6 keV 239Pu photon 

sits on the Compton continuum generated by the interaction of the 241Am photon 

with the BEGE detector (Figure 22) making quantification of the Pu signal 

difficult.  

 

Table 11. Pu isotopic information for the BOMARC weapon estimated by LANL 
with a 1957/1958 separation date.  
 

Isotope 
Mass Fraction 

1958 
Half Life 
(t1/2, yrs) 

Primary Decay 
Mode 

Activity 
Fraction 1958 

238Pu 0.000099 87.7 Alpha 0.0295 
239Pu 0.937 24,110 Alpha 0.1010 
240Pu 0.056 65,61 Alpha 0.0221 
241Pu 0.0047 14.290 Beta 0.8475 
242Pu Negligible 3.75 E5 Alpha Negligible 

Mass fraction data and separation date are from (14), half life and decay modes 

are taken from (16). 

 

 

Even though quantification of the 239Pu concentration in the soil may not be 

possible, the presence of the Pu in the soil can be verified by the 38.7 and 51.6 

keV 239Pu photon peaks (Figure 22). This would indicate that both Am and Pu 

are present in the sample, The lack of peaks at 38.7 and 51.6 keV cannot be 

used to exclude the presence of Pu, as the activity concentration may be below 

detection limit of gamma spectroscopy for a 24 hour counting period, which for 
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the utilized system is 16 ± 5 Bq 239Pu. For the samples where 239Pu cannot be 

detected total dissolution of the soil followed by chemical separation of Am, U 

and Pu from the dissolved soil matrix must be conducted. Once chemically 

separated into U, Am and Pu aliquots, the concentration of each of these 

elements can be determined by liquid scintillation counting. If isotopic ratios are 

desired the separated aliquots can be measured by alpha or mass spectroscopy. 
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Figure 22. Low energy spectrum of 241Am and 239Pu in soil 
 

 

4.4 Hot Particle Extraction from Soil Cores 

The cores studied were 13-26 cm in length and 5 cm in diameter. The 

location of the hot particle in each core had been established by CT mapping 

studies (Chapter 3), and the hot particles were extracted from the soil prior to 

starting these experiments. The extracted particles consisted of a mixture of 
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WGPu, 241Am and 235U and ranged in activity from 5 to 66 kBq of 241Am as 

determined by gamma spectroscopy (Chapter 6). The results of these 

experiments are summarized (Table 12). The range of 235U relative to 239Pu over 

the hot particle population was broad, indicating that the weapon contained both 

Pu and U components (Chapters 6 and 8). 

 

Table 12. Activity ratios of selected WGPu hot particles isolated from the soil 
cores. Analysis is based on gamma spectroscopy analysis. 

 

Radionuclide Average Activity Ratio 

235U: 239Pu 
5.56E-5 ± 1.58E-4 

(0 to 6.62E-4) 

241Am: 239Pu 
0.22 ± 0.026 

(0.19 to 0.288) 

Sample Population n = 18 

 

 

4.5 Method Summary 

4.5.1 Soil Core Disassembly 

Each core was disassembled along its vertical axis, using a bottle jack jig 

(Figure 23) that displaced 3.5 ± 0.1 mm of soil with each pump. After the soil was 

raised with the bottle jack, the material extending past the lip of the PVC pipe 

was scraped into a second jig that fit over the PVC pipe and then placed in a 

sample cup. It was found that the sample volumes were kept relatively constant 

using this technique. The few large rocks and twigs transecting multiple slices 

were kept with the last slice that contained them. To minimize the impact of 

cross contamination between samples the soil retaining jig, upper section of the 



53 
 

core and the core lip were wiped down using a clean, damp kimwipe between 

each 3.5 mm soil slice. 

The volume of soil occupying each 3.5 mm slice was placed in a 120 mL 

plastic container (Figure 24). Larger rocks and twigs were removed from the 

sample and were checked using a hand held alpha detector (Ludlum 43-93 

probe and Ludlum 2224-1 scaler/ratemeter) but none of these materials were 

found to contain elevated activity. Each sample was dried at 20 °C in a hood for 

at least 24 hours and then the total mass was determined. The average mass 

across all 5 cores was 10.2 ± 2.6 g per 3.5 mm soil slice volume. The large 

standard deviation in the average sample mass was due to a change in soil 

characteristics between soil slices within a given core, such as shifts from 

organic layers to sandy layers and from samples that contained large rocks or 

numerous pebbles, thereby decreasing the volume of soil in the slice. 

 

 

Figure 23. The core disassembly unit. The bottle jack jig (left) displaced 3.5 mm 

of soil per pump. The soil retaining jig (right) captured the soil volume in each 3.5 
mm slice. 
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Figure 24. Illustration of sample container used for the soil volume from each 3.5 

mm slice. 
 

 

4.5.2 Gamma Analysis  

A Canberra BE3830 BEGE detector with a 63.5 mm diameter by 30 mm thick 

planar detector with a carbon composite window was used for all gamma 

measurements.  All samples (3.5 mm soil slice volume) were counted for 24 

hours with dead times below 0.5 %. The 241Am and 239Pu in the soil was 

quantified or identified through gamma decay (Table 10).  

Although the hot particles were removed from each slice, the physical 

distribution of the residual 241Am within each sample was not known. Therefore 

the efficiency of the HPGE detector had to be determined for the sample 

geometry used in this work. If the 241Am distribution was from particles with 

activity concentrations below the detection limit of the hand held device used to 

isolate the hot particles from the soil slices, then the relative position of the 

particle within the sample container will greatly affect the counting efficiency. To 
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illustrate this effect, an 241Am point source standard was used to determine the 

geometrical dependence on the counting efficiency of the detector. As the 

source was moved away from the center of the detector face, the efficiency 

dropped as much as 27% at the lateral edge of the sample container (Figure 25). 

All counting results were subject to this 27% relative uncertainty because the 

distribution of 241Am within each sample was not known. Because the samples 

were relatively thin (3.5 mm), and the point source was centered in a 6 mm thick 

epoxy button, the 0.5 mm difference in vertical displacement was not considered 

in these efficiency calculations. 

 

 

Figure 25. The influence of a point source (or particle) position on detector 

efficiency. 
 

 

4.5.3 Soil Particle Size Distribution Analysis 

 After each 3.5 mm slice was analyzed by HPGE gamma spectroscopy, 

several slices were selected for particle size distribution analysis as a function of 

core depth. For each core, every fifth sample, 1.75 cm vertical displacement was 
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passed through a series of five sieves; 1250 m, 500 m, 250 m, 125 m, 63 

m.  

4.5.4 Particle versus Diffuse Activity Analysis 

To determine if micro hot particles were present in these samples, a second 

set of experiments was devised. A soil sample that had been measured by 

gamma spectroscopy and had the large objects removed (> 1250 μm) was 

parsed into 8-10 sub samples of equal volume.  Each sample was placed on a 

3.81 cm (1.5 in) planchet and then counted on a Berthold α/β gas proportional 

counter for 1000 minutes. The sub samples were then stirred and returned to the 

same chamber and counted again for 1000 minutes. This process was repeated 

for multiple trials, effectively changing the surface of each sub sample for each 

trial. If micro hot particles were diffusely distributed, a continuous level of activity 

should be observed for each sub sample across all the trials. If particles or point 

sources were present, the count rate would change between trials, as the 

surface area of each sub sample was exchanged, covering or uncovering the 

particles. The alpha and beta plateaus for the α/β counter were configured using 

90Sr/90Y and 232Th calibration sources, respectively. 

 

4. 6 Results and Discussion 

4.6.1 Core Activity Distribution  

Activity distributions of 241Am as a function of depth for 5 cores were 

determined. The location and activity of the hot particles in each core are 

summarized (Table 13). Most of the hot particles were isolated in the top 5 cm of 
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soil and contained ≤ 10 KBq of 241Am activity. Core 14 was the exception, where 

the hot particle was more than 17 cm below the surface of the core and had six 

times the activity of the other particles. 

 

Table 13. Summary of the cores that were analyzed by HPGE gamma 
spectroscopy. 
  

Core ID 
1Total Residual 

Activity (Bq) 
Core Length 

(cm) 

2Hot Particle 
Activity (kBq) 

3Hot Particle 
Location (cm) 

6 78.8 ± 21.3 15 5.1 2.8 

9 126.9 ± 34.3 20 7.0 1 

11 21.1 ± 5.7 18 10 1.4 

14 2,641 ± 713 26 66 17.2 

24 44.0 ± 11.9 12 7.6 4.3 
1Residual core activity after removal of the hot particle. 
2The hot particle was removed from the surrounding soil prior to analysis and 

characterized separately (Chapters 6 and 7). Activity is based on the 59.5 
keV photon associated with the 241Am decay. 

3Hot particle location is relative to the surface (or top) of the core. 

 

 

Data for each core is presented in the horizontal bar graphs below. The x 

axis represents the activity concentration in Bq/g (log scale) of 241Am for soil 

particles smaller than 1250 m, the y axis represents the depth in cm below the 

surface of the soil from which each sample was originally isolated. The depth 

profile for Core 6 (Figure 26) indicated that the bulk of the residual 241Am 

remained in the soil layer that had contained the hot particle (2.8 cm vertical 

displacement) and the layers of soil immediately below the hot particle. The 

presence of 239Pu was qualitatively confirmed for these same samples using the 

photon peaks previously mentioned (Section 4.5.2). As soil depth increased, the 

average 241Am concentration was approximately 0.01 Bq/g of soil. At depths 
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greater than 11 cm below the surface the 241Am concentration began to 

decrease.  
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Figure 26. Core 6 241Am depth profile. 
 

 

The depth profile for Core 9 (Figure 27) also indicated an area of high 

residual 241Am activity associated with the layer of soil that contained the hot 

particle. The residual activity declined as the soil depth increased. Unlike Core 6, 

additional activity spikes occurred further down the core at 13, 15 and 18 cm. 

The 239Pu photon peak was observed with the 241Am activity spikes at 13 cm and 

15 cm as well as in the layer (1 cm) from which the hot particle was removed. It 

is possible that these spikes were from additional hot particles below the 

detection limits of both the CT imaging analysis (particle volume < 0 .006 mm3) 

and hand-held devices.  



59 
 

0.001 0.01 0.1 1 10

0.7

2.1

3.5

4.9

6.3

7.7

9.1

11

12

13

15

16

18

19

Bq/g of soil 
241

Am

D
e
p

th
 (

c
m

)

 

Figure 27. Core 9 241Am depth profile. 
 

 

The depth profile for Core 11 (Figure 28) shows areas of high residual 241Am 

concentrations found in the soil layer that contained the hot particle as well as in 

the soil layers immediately above the hot particle. Below the layer that contained 

the hot particle the residual 241Am concentration declined with increasing depth 

and then stabilizes at approximately 0.01 Bq/ g of soil. Small activity spikes were 

observed at 9.1 and 10.1 cm. Below 11 cm the 241Am concentration decreased 

again. The 239Pu photons were observed with the spike occurring at 1.4 cm (slice 

where hot particle was removed) but not in the lower slices with spiked 241Am 

activity.  
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Figure 28. Core 11 241Am depth profile. 
 

 

Considerable 241Am was found in the top soil layers of Core 14 (Figure 29). 

The highest activity spike occurred at 2.1 cm below the core surface. The region 

of elevated 241Am concentration extended down to 5.6 cm and 239Pu was also 

observed in these samples. At depths below 6 cm the 241Am concentration 

decreased. However several 241Am concentration spikes were observed 

between 9 and 13 cm. The 239Pu photons were observed for all of these activity 

spikes.  

For core 14 the hot particle was removed from a slice that was located 17.2 

cm below the surface. As with the other cores, the soil in the slice that contained 

the hot particle as well as several underlying soil slices contained high residual 

241Am concentrations. The 239Pu photon peaks were also observed in these 
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slices. Another activity spike was detected at 23 cm below the surface that 

contained both 241Am and 239Pu.  
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Figure 29. Core 14 241Am depth profile. 
 

 

It is likely that the hot particle identified 17.2 cm below the surface was found 

by accident, and that the signal identified during field sampling originated in the 

top 6 cm of the core. This assumption is based on the composition of the soil 

and Beer’s Law (18,34):  

 𝐼 = 𝐼0𝑒
−𝜇𝑡  Equation 2 

where I and I0 are the intensity of the attenuated and incident photon beams, 

respectively, µ is the linear attenuation coefficient in units of inverse cm, and t is 

the thickness of the material in cm.  If it is assumed for simplicity that the core 

consisted of mainly SiO2 where μ =0.601 cm-1 (26,35) and that the primary 

photon measured by the field instrumentation was the 59.5 keV from the decay 
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of 241Am, then approximately 2.7% of the photons emitted 6 cm below the soil 

surface will penetrate the surface, while only. 0.0036% of the photons escape at  

17 cm below the surface. The integrated activity in the top 6 cm of the core was 

measured to be 1,347 ± 364 Bq (241Am) while the hot particle removed from 17.2 

cm below the surface of the core had an evaluated activity of 93,402 ± 4670 Bq 

(241Am). 

The depth profile of Core 24 (Figure 30) was similar to Core 6. The 241Am 

concentration was elevated at the top of the core, above the layer that contained 

the hot particle. At 5.5 cm below the surface the 241Am concentration diminished. 

Several activity spikes were observed at 6.7, 7.4 and 11.6 cm. The presence of 

239Pu was verified at 6.7 and 11.6 cm. 
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Figure 30. Core 24 241Am depth profile. 
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Once activity distributions for each core were collected the total residual 

241Am activity was calculated by integrating each slice (Table 13). This data was 

combined with those for the isolated hot particles (Chapter 6) to determine if 

there was a correlation between residual activity and hot particle activity (Figure 

31). No trend relating hot particle activity to the amount of residual activity 

present in the soil was observed.  This indicates that hot particle activity is not a 

major factor driving the 241Am distribution in the soil.  
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Figure 31. The total 241Am activity found in each core compared to the 241Am 
activity of the hot particle removed from the corresponding core. 

 

 

These depth profile data sets exhibited 6 trends.  

(1) There was an elevated concentration of 241Am in the soil column 

directly above the hot particles.  
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(2) The 241Am concentration decreased in the soil immediately below the 

hot particle.  

(3) There were regions where the 241Am concentration was stable or 

remained constant with depth.  

(4) No clear relationship existed between hot particle activity and the 

residual activity found in each core.  

(5) There were discrete 241Am concentration spikes not associated with 

the isolated hot particle.  

(6) The presence of 239Pu was identified with most of the 241Am 

concentration spikes. 

The first three trends are indicative of surface area driven processes such as 

sorption and desorption, an exchange of material between the soil and the 

particle. With the assumption the hot particle was initially deposited on the 

surface of the soil, 241Am found above the particle would indicate that particle 

movement down into the soil column released 241Am.  This released 241Am 

sorbed to the soil and is now fixed in place or moving very slowly under the site 

conditions. The continuous decrease of 241Am concentrations to a fixed minimum 

concentration below the hot particle indicates that 241Am is shed from the particle 

at a rate greater than that at which the surrounding soil can sorb it. Sorption and 

desorption processes are expected to produce 241Am concentration gradients 

(36,37) based on the composition of the soil, the metal ion species present in the 

soil column, and the interaction of the metal ion species with the various 

exchange sites. Of greater interest is the discrete 241Am concentration spikes 
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found in the core samples, suggesting a particle-like behavior in the soil column. 

This is supported in the subsequent studies conducted by gross alpha/beta 

measurements that demonstrate spatial dependence of 241Am in small soil 

samples (Section 4.6.3). 

4.6.2 Soil Particle Size Distribution  

After gamma analysis, several slices from each core were sieved to 

determine the soil particle size distribution as a function of core depth. A typical 

particle size distribution is provided (Figure 32). The x axis is the percent of the 

sample by mass (% by mass) that was characterized by the indicated sieve, and 

the y axis refers to the depth or distance below the surface of the soil from which 

the sample originated. A significant portion of the core particles were greater 

than 250 µm in diameter. The size of the hot particles removed from the cores 

(which were identified by CT) ranged between 150 to 1000 µm along their 

longest axis. 

4.6.3 Particle versus Diffuse Activity Analysis 

Gross alpha/beta analysis was performed on four soil samples taken from 

two cores ranging in activity from 0.008 to 6.05 Bq/g 241Am (Table 14). These 

soil samples were split into 9 or 10 sub-samples of equal size prior to counting. 

The data from the gas proportional counter are reported as a gross alpha count 

rate in counts per minute (cpm) and cannot be directly reconciled with the activity 

concentrations determined by gamma spectroscopy. In this case the data from 

the gas proportional counter was exclusively used for trend analysis. The 

background signal was 0.07±0.12 cpm alpha and was not subtracted from the 
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reported results. Examples of the trend analysis for each the sample is provided 

(Figure 33 through Figure 36). 
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Figure 32. Particle size distribution as a function of depth for soil core (Core-14). 
 

 

Table 14. Summary of the core samples chosen for gross alpha/beta analysis. 

 

Core ID Core 14 Core 6 Core 6 Core 6 

Slice Number 15 16 17 18 

Sample Location (cm) 5.25  5.6 5.9 6.3 

Activity of Sample 
(Bq/g soil, 241Am) 

6.05 0.025 0.116 0.008 

Slice Mass (g) 6.4 6.8 9.4 6.2 

Sample Splitting  10 9 9 9 

Split Sample Mass (g) 0.6 0.8 1.0 0.6 

Number of Trials 11 5 5 6 

 

 

All four experiments exhibit the same trends. Some sub samples had 

consistent count rates that were independent of experimental trials, indicating a 
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homogenous or diffuse activity distribution. Other sub samples had variations in 

the count rate for separate trials, indicating localized regions of high surface-

area-specific activity (particles or disseminated activity). This data supports the 

observations made during gamma spectroscopy analysis, and suggests that 

transport is driven by both particle migration and sorption/desorption processes. 

Imaging analysis using Secondary Electron Microscopy (SEM) of the hot 

particles that were isolated from the cores discussed in this work provided 

physical evidence of the presence of micro hot particles sorbed to a soil 

substrate (Chapter 5). 
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Figure 33. Core 14 – Slice 15, gross alpha count rates for 10 sub samples and 

11 trials. Background signal for these experiments was 0.07±0.12 cpm α and 
was not subtracted from the reported results. 
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Figure 34. Core 6 – Slice 16, gross alpha count rates for 9 sub samples and 7 
trials. Error bars may be covered by the data point markers. The background 
count rate is identified by ‘B’. 
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Figure 35. Core 6 – Slice 17, gross alpha count rates for 9 sub samples and 5 

trials.  Error bars may be covered by the data point markers. The background 
count rate is identified by ‘B’. 
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Figure 36. Core 6 – Slice 18, gross alpha count rates for 9 sub samples and 6 

trials.  Error bars may be covered by the data point markers.  The background 
count rate is identified by ‘B’. 
 

 

4.7 Conclusions 

These experiments have shown that hot particles contribute 241Am and Pu to 

the near field environment, producing both heterogeneous, or particle-like, and 

homogenous distribution patterns. The presence of micro particles in the soil 

presents both opportunity and problems. The opportunity arises in the area of 

forensics. These particles contain a great deal of information about their source 

term, but can only be detected through the use of high resolution screening 

techniques such as gamma spectroscopy and SEM. Because they are difficult to 

detect, and their dispersion in the soil column appears to be random, it is unlikely 

that they could be completely removed from an area where this type of material 

may have been dispersed. The problem occurs with modeling of the long term 
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transport of Am and Pu in the environment when particles are present. 

Chemically controlled processes like sorption/desorption driven transport can be 

modeled using statistical methods (37) because of the large number of small, 

continuous interactions that occur over time. Particles do not behave this way. 

They appear to have discrete distributions that make large, localized impacts on 

the concentrations of Pu and Am. Particles may also be mobile, subject to 

transport by mechanical rather than chemical processes. The potential for 

transport of micro particles by mechanical factors resulting in resuspension of 

this material needs to be studied in greater detail. Imaging techniques such as 

SEM and EDS should be employed to determine if the micro particles can be 

identified as independent entities, and if they are, then particle size distributions 

should be developed.   
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CHAPTER 5 

IMAGING OF HOT PARTICLES 

5.1 Abstract 

Hot particles isolated from soils originating from the BOMARC site were 

imaged using scanning electron microscopy (SEM) coupled with energy 

dispersive spectroscopy (EDS), and synchrotron based x-ray fluorescence 

mapping (XRF). The two techniques are complimentary in that both surface and 

volume characteristics can be determined for the particles of interest. Analysis 

by SEM and EDS provided information about the morphology and elemental 

composition for each particle. Morphological differences were observed across 

the particle population and the elemental constituents were not homogenously 

distributed throughout the matrix. Five particles were selected for x-ray 

fluorescence mapping experiments. Fractionation of Pu, Am and U was 

observed in several of the particles and may be indicative of fire exposure during 

the accident. Several particles also contained Ga, a common dopant used for 

stabilizing δ-Pu (38).  

 

5.2 Introduction 

Hot particles from various nuclear events and accidents have been 

characterized by SEM and EDS (1,4,6,17,39-43). These methods provide 

surface morphology and composition data within several hours, require minimal 

sample preparation, and are non-destructive. Synchrotron based XRF imaging is 

complementary to SEM and has been previously used to characterize hot 
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particles from both the Palomares and Thule weapon accidents (40,42). The 

intensity and penetration depth of the x-rays that are generated permits 

elemental characterization of the matrix volume versus the near surface 

distribution sampled by the SEM based techniques. These volume based 

experiments provide additional information about the particle interaction with the 

environment. As an example, Am has built-up in the Pu matrix over time and 

gamma spectroscopy experiments have shown that it is distributed throughout 

the soil cores (Chapter 4). Mapping the Am distribution throughout the particle 

volume may determine if fractionation is occurring in the particle itself, or only at 

the surface. Another benefit of using a synchrotron-based mapping system is 

that the experimental setup can be easily modified to perform x-ray absorption 

fine structure (XAFS) experiments to characterize the oxidation state, speciation, 

and local structure of the matrix material.  

Imaging the BOMARC particles provides information that is subject to both 

forensic and environmental interpretation. Particles originating from the same 

source term and dispersal conditions (pre-detonation fire) may be expected to 

share some common morphological characteristics and should be similar in 

nature. However, these particles have persisted in the environment for 48 years, 

from 1960 to 2008, and have been subject to a variety of weathering effects 

(Chapter 2) that may have influenced their morphologies. These particles are 

therefore a link between the past and present, and the challenge is to determine 

what physical characteristics can be attributed to the source term and how 

environmental processes have affected them over time. A population of hot 
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particles was isolated from various soil samples for non-destructive analysis by 

SEM/EDS. Five particles were selected for XRF experiments. The distribution of 

Pu, Am, U and Ga is discussed for both sets of particles.  

 

5.3 Method Summary – XRF and SEM Experiments 

5.3.1 XRF Experimental Setup  

Hot particles were mounted in 25 mm epoxy pucks. The epoxy was then 

ground and polished, exposing a smooth surface of the particle. Optical and 

SEM images were taken of the polished particle surface for comparison with the 

XRF imaging experiments. The epoxy puck was cut to fit in the sample holder 

(Boyd Technologies, Manchester, CA), and fixed in place using a high 

temperature Si adhesive. A schematic of the sample containment is provided 

(Figure 37). 

 

 

Figure 37. Illustration of the cross section of an assembled sample cell. 
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The XRF experiments were conducted at the Advanced Photon Source 

(APS) facility (Sector 10-ID, MR-CAT) at Argonne National Laboratory. The 

experimental set up for the multiple element mapping system is provided (Figure 

38). The sample holder was mounted on a three axis staging platform at a 45⁰ 

angle to the incident beam. The beam was focused to a 3 x 3 μm spot and 

passed through an ionization chamber to normalize the intensity of the beam 

hitting the surface of the sample.  

 

 

Figure 38. The experimental configuration for XRF experiments. 
 

 

Elemental maps of the particle were created by incrementing the sample 

stage under the incident x-ray beam with 3 m steps in both the horizontal and 

vertical directions. The detector suite collected the fluorescence signal for 0.5 to 
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3 seconds per step and the process was repeated until the entire surface of the 

particle was mapped. The fluorescence signal generated while the sample 

holder was in motion was discarded. Multiple detectors were used during the 

XRF experiments for simultaneous acquisition of Pu, Am, U and Ga signals to 

accelerate the mapping process. The observed Lα transitions of these elements 

are provided (Table 15). Elemental maps were acquired at incident beam 

energies of 18,600 - 18,650 eV and 17,180 - 18,000 eV. These energies are 

above the Am L3 edge and below the Pu L3 edge, respectively. The Pu signal at 

the lower beam energy was used to monitor for scatter or other signals that may 

not be visible in the high energy scan. 

 

Table 15. Elements and the transitions observed during the mapping 
experiments (44). 

 

Element Edge 
Edge Energy 

(eV) 
Observed 
Transition 

Transition Energy 
(eV) 

Ga K 10,367 Kα1 (K-L3) 9,251 

U L3 17,166 Lα1 (L3-M5) 13,438 

Pu L3 18,057 Lα1 (L3-M5) 14,087 

Am L3 18,510 Lα1 (L3-M5) 14,414 

 

 

5.3.2 XRF Image Processing  

Images obtained from the mapping experiments were processed with Matlab 

Version 7.4 (29). The signal was normalized to the incident beam flux, to correct 

for drift (∆ = 10 – 15%), noise or other events that may have occurred during a 

mapping experiment. The filtered data sets were complied into a series of 2-D 
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arrays and plotted as 256 gray scale intensity maps. Image intensities were 

adjusted (45) and gamma corrected (27) to enhance the maps.  

5.3.3 SEM Experimental Setup  

Each hot particle was adhered to a 25 mm stainless steel planchet with a 

piece of double-sided carbon tape. Prior to imaging, the surface of the planchet 

was sputter-coated (Cressington 108) with Au for 30 seconds. The Au coating 

provides a conductive surface and has a minimal impact on electron interactions 

with the particle surface. Imaging experiments were performed on an SEM 

(JOEL 5610) equipped with an EDS (Oxford, 6587) controlled with INCA x-ray 

microanalysis (Oxford, version 4.11). The accelerating voltage ranged from 20 to 

30 kV to induce Lα transitions of the actinides of interest.  

Hot particles were located in backscatter mode under low magnification (18-

30X) by manually scanning the surface of the carbon tape. Using this technique, 

any material containing high Z components appeared as bright objects in the 

field of view. Only a few grains of material besides the hot particle were 

introduced to the surface of the carbon tape which reduced the probability that 

the hot particle could be obscured by material from the soil matrix. 

Particles located in backscatter mode were then imaged by secondary 

electron imaging (SEI) to produce high resolution images for morphological 

characterization. Both SEI and BES images were used to select regions of 

interest for EDS analysis. Several spectra were acquired at points across the 

particle surface to identify elemental composition, and elemental mapping 

analyses were also completed for selected areas. Point experiments produced 
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spectra based on the x-rays generated from the material incident to a fixed 

primary beam position and are collected in under 5 minutes. Elemental maps are 

created by rastering the primary beam over a region of interest and collecting the 

x-ray signal with position data. The mapping experiments can take several hours 

to perform and are very sensitive to sample morphology. In cases where the 

morphology of the particle is highly irregular, the electron beam or the x-ray 

detector’s field of view may be blocked by structures on the sample surface, 

preventing acquisition of the mapping data. 

 

5.4 Results and Discussions 

5.4.1 Volume Composition – XRF Analysis  

The Pu, Am, U and Ga distribution maps are provided in sequence and are 

numbered 2 – 5 respectively for each of the imaged particles. Brighter areas 

indicate high elemental concentrations while darker regions indicate lower 

elemental concentrations. Without reference materials for comparison the 

elemental intensities cannot be directly compared in terms of atom percent 

composition between particles. The outer boundary of the particle is outlined in 

each map and an optical image is included for comparison (top image, labeled 

1). The elemental distribution in Particle 1 (Figure 39) is homogeneous; with the 

exception of two bright spots on the edge of the U map (Image 4). These spots 

were confirmed in the maps obtained at the lower beam energy and are not likely 

artifacts. The bright streaks along some areas of the particle boundary were 
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assumed to be a by-product of the polishing process where fines were trapped at 

the interface between the epoxy and particle. 

The optical image of Particle 2 contains bright white regions distributed 

throughout the cross-sectional area (Figure 40) which corresponds to a band of 

Ga (Image 5) that cuts across the top half of the particle. Plutonium and Am are 

homogenously distributed throughout the particle; however, some bright regions 

were identified in the U map (Image 4). Plutonium and Ga intensities are 

homogenous in Particle 3 (Figure 41), but U and Am are unevenly distributed. 

The swirled pattern in the U map is similar to the morphological feature in the 

optical image. It is possible that separate U and Pu components fused during the 

accident, which would lead to the mixing pattern. This has been observed for 

other particles originating from a WGPu matrix (42). The Am was also more 

concentrated in the swirled region; however, the brightest Am spots are in areas 

where the U is depleted. Uranium and Ga are concentrated in the central region 

of Particle 4 (Figure 42), while Pu and Am are evenly distributed across most of 

the particle. The Ga and U distributions have the same shape and appear to fill 

the voids in both the Pu and Am maps.  

Plutonium and Ga intensities are homogenous in Particle 3 (Figure 41), but U 

and Am are unevenly distributed. The swirled pattern in the U map is similar to 

the morphological feature in the optical image. It is possible that separate U and 

Pu components fused during the accident, which would lead to the mixing 

pattern. This has been observed for other particles originating from a WGPu 

matrix (42). The Am was also more concentrated in the swirled region; however, 
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the brightest Am spots are in areas where the U is depleted. Uranium and Ga 

are concentrated in the central region of Particle 4 (Figure 42), while Pu and Am 

are evenly distributed across most of the particle. The Ga and U distributions 

have the same shape and appear to fill the voids in both the Pu and Am maps. 

The dominant feature of Particle 5 (Figure 43) is the undefined particle edge in 

the distribution maps (Images 2-5). This may be indicative of fines that were 

removed and embedded in the epoxy during the polishing process, which is 

more pronounced in this particle than others. The excessive sloughing indicates 

the mechanical properties of the particle are significantly different from the other 

particles. Within the boundaries established by the optical image, the U signal 

was concentrated in areas where Am and Pu were depleted. It is possible that U 

is layered on top of the Pu matrix, attenuating both the Am and Pu signals. This 

observation is supported by the layered characteristic of the particle surface in 

the optical image (Image 1). 
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Figure 39. Elemental distribution maps for Particle 1.  
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Figure 40. Elemental distribution maps for Particle 2. 
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Figure 41. Elemental distribution maps for Particle 3. 
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Figure 42. Elemental distribution maps for Particle 4. 
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Figure 43. Elemental distribution maps for Particle 5. 
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5.4.2 Particle Morphology and Surface Composition - SEI/EDS Analysis  

Images were acquired for the particle population (n = 16) between 100x and 

700x magnification depending on the particle size using SEI (Figure 44 and 

Figure 45). The morphological characteristics of each particle are unique, 

despite originating from the same incident. Limited information can be derived 

about the structural differences in the SEI images without reference material for 

comparison. It is unclear if these differences are from environmental processes 

or from the initial incident. Each particle was analyzed by EDS to confirm the 

presence of Pu and U and to identify other surface matrix constituents.  

An example of the spectral data and image files is provided (Figure 46). Two 

regions of interest were selected for point analysis on the particle. In the BES 

image they are the dark center region (labeled 1) and the brighter surrounding 

edges (labeled 2). The dark region implies that this material has a lower average 

Z value relative to the brighter surrounding material. The EDS spectra indicated 

that U was the primary constituent of the dark region (labeled 1) and the lighter 

regions were primarily Pu (labeled 2).  

Most particles analyzed by EDS contained a mixture of Pu and U, but the 

distribution was not homogenous across the population. Surface elemental 

mapping was completed for two particles (Figure 47 and Figure 48). The first 

particle contained U depleted regions relative to Pu (Figure 47). Plutonium and O 

were evenly distributed across the surface of the particle while U, Ga, Si and Al 

were concentrated in specific regions. The dark areas in the Pu map correlate 

with intense Al or Si signals and Ga was concentrated in O depleted regions.  
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Figure 44. Secondary electron images of 8 particles (set 1 of 2). 
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Figure 45. Secondary electron images of 8 particles (set 2 of 2). 
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Figure 46. The SEI (left) and BES (right) images for an isolated hot particle. The 

EDS spectra are for the two points highlighted in the image (lower right). 
 

 

The distribution of Pu and U in the second particle was homogeneous (Figure 

48). Aluminum and Si were detected in isolated regions of the particle, and the 

most intense O signal was associated with Al. Point spectra analysis of the 

particle population determined that Al, O and Si were present in most of the 

particle population. 

Data from the elemental maps can be used to correlate matrix composition 

and structure (Figure 49). The Pu and U signals from the elemental maps were 

averaged along the vertical axis (top to bottom) and plotted over the SEI image. 

The U signal decrease is consistent with changes in morphology, while the Pu 

signal remains unaffected. 
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Figure 47. Elemental maps of the region defined by the yellow square, from the 
top left and moving clockwise are Pu, U, Ga, Si, O and Al 
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Figure 48. Elemental maps of the region defined by the yellow rectangle, from 
the top left and moving clockwise are Pu, U, Fe, Si, O and Al 
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Figure 49. The result of signal averaging Pu and U maps along the vertical axis 

(top to bottom). 
 

 

5.5 Conclusions 

Rapid determination of hot particle morphology and surface composition can 

be accomplished by SEM and EDS. Once isolated, a hot particle can be 

mounted, imaged and mapped within several hours. The length of the 

experiment is dependent on the level of detail required, i.e. how much of the 

particle surface must be characterized. If there are no time or resource 
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constraints and damage to the sample is permissible, then synchrotron based 

XRF mapping experiments should be considered. They provide invaluable data 

about the distribution of elements within the volume of the sample  

The combined SEI, EDS and XRF data illustrates that particles originating 

from the same source under similar conditions can have different morphologies 

and elemental distributions. It cannot be assumed that a single isolated sample 

is representative of all particles dispersed during the accident. Extrapolated data 

from a small population should not be used to represent the source term unless 

the homogeneity of the particles can be confirmed. 

To fully leverage SEM as an analytical tool for nuclear forensic or 

environmental work, a more comprehensive approach to data analysis and 

collection needs to be taken. Data obtained by EDS should be referenced 

against well-characterized Pu and U standards so that relative distribution ratios 

can be quantified. These standards are not currently available, but should be 

developed and characterized for future particle studies. 

Ideally, imaging and analysis should be performed in parallel. An SEI image 

acquired would be processed simultaneously to identify regions on the particle 

surface that fit a set of pre-defined morphological characteristics. Then EDS 

spectra could be acquired in these regions to match morphology with 

composition data for each particle. The combined data set could then be 

referenced against an EDS/SEI database of particles both synthetic and 

environmental in origin. Synthetic particles would be especially useful because 
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the production conditions would be known and they could also be used as 

industrial standards for quality assurance purposes.  

A combined imaging, analysis and database system would help organize the 

large quantities of information that is available in these high resolution datasets. 

From an environmental perspective, the capability of associating the 

morphologies observed on the surface of the particles with a chemical structure 

could provide insight into degradation mechanisms and kinetics. From a nuclear 

forensic perspective, understanding the conditions required to form the surface 

morphologies could prove valuable in identifying the production mechanisms and 

source term of a particle. The utility of imaging will not be fully realized until an 

integrated imaging and analysis system is developed. 
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CHAPTER 6 

RADIOANALYTICAL CHARACTERIZATION OF HOT PARTICLES – GAMMA 

SPECTROSCOPY 

6.1 Abstract 

Hot particles were isolated from the BOMARC soil samples and analyzed by 

high resolution gamma spectroscopy. This non-destructive technique provides 

information about the isotopic constituents for the WGPu matrix, which can be 

used for source term identification and radiometric dating assuming single 

source origination. Particles were characterized using a planar broad energy 

spectrum germanium (BEGE) detector, for photons in the 0-520 keV region. 

Isotopic ratios for 241Am, 241Pu, 237U, and 235U relative to 239Pu were determined 

for each particle. A detailed description of the peak fitting parameters used for 

spectral analysis is presented along with the relative isotopic concentrations of 

the particle population (n = 20). 

 

6.2 Introduction 

Direct analysis of hot particles by gamma spectroscopy provides information 

for both environmental and forensic interpretation. The data collection process is 

straight forward, i.e. the particles are placed in some type of containment vessel 

for contamination control and reproducible counting geometry, and then placed 

in the detector shield and counted for a specified time interval. The challenge 

arises with spectral interpretation. An example of the WGPu hot particle gamma 

spectrum collected on a BEGE detector over 24 hours is provided (Figure 50).  
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Figure 50. Gamma spectrum of a WGPu hot particle using a BEGE detector and 

24 hour count time. 
 

 

The complex collection of overlapping peaks and the elevated background 

continuum are due to the similarities of the nuclear and electronic structures of 

the Pu isotopes and various daughter products that are present in the particle 

matrix. As an example, the prominent triplet of peaks centered at 100 keV 

(Figure 50) is from a collection of decay events (Table 16). These overlapping 

peak areas make quantification of individual isotopes difficult even when the 

matrix constituents are known. Analysis is therefore focused on photon peaks 

that are unique to individual isotopes, or sets of peaks in close proximity that 

have only two components. 

Peak selection is based on photon energy and yield, and the detection 

efficiency of the gamma system. Additionally, count times must be such that 

sufficient counts are collected for statistical purposes. Other factors of concern 
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include introduced noise such as X-ray escape peaks due to electron transitions 

in the detector material, sum peaks caused by two independent photons striking 

the detector within its resolving time, or rapid rises in the background continuum. 

 

Table 16. Photon energies of various Pu isotopes and progeny centered around 
100 keV (16). 

 

Radionuclide Energy (keV) Yield (%) 

238Pu 
98.434 
99.853 

9.25E-5 
7.29E-3 

239Pu 
98.434 
98.780 

103.060 

5.8E-3 
1.47E-3 
2.16E-4 

240Pu 
98.434 

104.234 
4.05E-5 
7.14E-3 

241Pu 98.434 
103.680 

4.99E-5 
1.01E-4 

242Pu 
98.434 
103.50 

2.89E-5 
2.55E-3 

234U 104.819 
105.604 

5.8E-4 
1.11E-3 

235U 
96.09 

104.819 
105.604 

0.091 
0.693 
1.32 

237U 
97.069 

101.059 
102.98 

15.4 
24.5 

6.4E-3 

241Am 
98.97 

101.059 
102.98 

0.0203 
1.81E-3 
0.0195 

 

 

Although absolute activities of individual isotopes can be calculated for each 

hot particle, it is best expressed as activity ratios generated from individual 

spectra. Direct comparison of absolute activity data is difficult because of the 

wide range of activity levels of individual hot particles, i.e. 3000 Bq to 500 kBq 
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239Pu, resulting in detector dead time values between 0.3% and 26.5%. Higher 

dead time can lead to undercounting of the peak signal, increased pulse pile up 

and/or summation peaks. Rather than recalibrating the instrument for each 

individual hot particle, a single calibration curve can be generated assuming that 

any shifts in the system efficiency would be reflected across most of the energy 

spectrum. It should be noted that efficiency will be affected by internal 

attenuation of the particles at lower energies, independent of dead time. 

Three isotopic ratios relative to 239Pu can be determined from a hot particle 

spectrum: 241Am, 235U, and 241Pu. The 241Am:239Pu ratio is useful in studying the 

environmental impact of the hot particles on surrounding soils. Hot particles were 

removed from the cored soil samples and gamma analysis was performed on 

vertically sectioned slices of the remaining soil (Chapter 4). By comparing the 

241Am:239Pu ratio in the soil to those observed in the hot particles, it can be 

determined if the hot particle matrix is being broken down by dissolution, 

physical processes, or a combination of both. The 235U:239Pu ratio helps define 

where the particle originated from within the weapon and how the weapon may 

have been assembled. Elevated levels of 235U in the particles indicate that highly 

enriched uranium (HEU) was also present in the weapon. The 241Pu:239Pu ratio 

can be used as a direct dating tool to define material production period, provided 

the original composition of the material is known (7, 46).  
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6.3 Methods and Materials 

6.3.1 Gamma Spectroscopy System Efficiency and Measurements 

Experiments were initiated with two HPGE detectors, a 59.5 mm closed end 

coaxial detector (GC3020, Canberra Industries) and a 69.5 mm diameter, 20 mm 

thick planar detector with a carbon composite window (BE 3820, Canberra 

Industries). A comparison of the full width half maximum (FWHM) and total 

system efficiencies of both detectors for the same sample set is given (Table 

17). The planar detector had superior total system efficiencies and peak 

resolution across a broad energy range; therefore, the experiments with the 

coaxial detector were abandoned. Two sources were used for detector 

calibration. An 241Am point source with an activity of 40952 Bq ± 5% was used 

for geometry calibration. A 239Pu disk source (25 mm diameter, 2396 Bq ± 5%) 

was used for energy calibration and to determine the relative efficiencies for the 

major 239Pu photons.  

Gamma spectra for n = 20 hot particles were acquired until sufficient counts 

were collected in the photon peaks of interest. Specific count times are provided 

with the data. Two sample geometries were used for these experiments. The hot 

particle was either fixed to a carbon tape disk and 25 mm steel planchet (sample 

preparation for imaging studies) or placed in the bottom of a capped 1.5 mL 

centrifuge tube (initial containment, post soil separation). The particles were 

centered on the detector face and elevated a maximum of 3 mm above the 

surface of the detector.  
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Table 17. FWHM and system efficiency values for a planar (BEGE) at various 
photon energies for selected hot particles. 

 

Detector Canberra BE 3820 – Planar 

Sample HP1 HP2 HP3 HP4 HP5 Avg 
System 

Efficiency 

Count 
Time 
(sec) 

74517 125193 120000 86400 70477 
  

59.5 keV 
FWHM 

0.714 0.712 0.706 0.716 0.708 
0.711±
0.003 

0.243 
±0.012 

129 keV 
FWHM 

0.828 0.81 0.82 0.816 0.815 
0.818±
0.005 

0.185 
±0.01 

414 keV 
FWHM 

1.196 1.21 1.223 1.175 1.199 
1.201±
0.015 

0.062 
±0.003 

Detector Canberra GC 3020 – Coaxial 

Sample HP1 HP2 HP3 HP4 HP5 Avg 
System 

Efficiency 

Count 
Time 
(sec) 

66000 17577 80158 85541 82057 
  

59.5 keV 
FWHM 

1.183 1.191 1.281 1.226 1.127 
1.202±
0.046 

0.027 
±0.001 

129 keV 
FWHM 

1.249 1.327 1.427 1.271 1.223 
1.299±
0.066 

0.167 
±0.084 

414 keV 
FWHM 

1.541 1.988 2.458 1.497 1.601 
1.817±
0.333 

0.067 
±0.003 

 

 

6.3.2 Gamma Analysis of Unprocessed WGPu Hot Particles: Peak Selection 

Both gamma systems utilized GENIE 2000 Gamma Acquisition & Analysis 

v3.1a software (Canberra Industries). Peak area analysis was performed using 

the standard manufacturer software and Interactive Peak Fit V1.2 (IPF, Canberra 

Industries). Peaks were initially located using the unidentified 2nd differential tool, 

and final area calculation made using IPF, with a sum/non-linear least square fit 

algorithm and a step function for continuum calculation. Screen shots of the IPF 
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peak fitting software are provided for both singlet and doublet peak analysis 

(Figure 51 and Figure 52). 

 

 

Figure 51. Screen shot of the IPF software used for singlet peak integration and 

background subtraction. 
 

 

 

Figure 52. Screen shot of the IPF software used for a doublet peak integration 
and background subtraction. 
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Table 18. Energy and yields of the photons associated with the peaks analyzed 
in these experiments (16). 

 

Radionuclide Energy (keV) Yield (%) 

Doublet 123-125 keV  
241Am 123.052 1E-3 
239Pu 123.228 1.6E-9 
239Pu 123.62 2.37E-5 
239Pu 124.51 6.81E-5 
239Pu 125.21 5.63E-5 
241Am 125.3 4.80E-3 

Singlet 129 keV 
239Pu 129.296 6.31E-3 

Singlet 148 keV 
241Pu 148.567 1.86E-4 

Singlet 185 keV 
235U 185.715 57.2 

Multiplet 203-208 keV 
239Pu 203.55 5.69E-4 
241Am 204.06 2.90E-6 
235U 205.311 5.01 
241Am 208.005 7.91E-4 
237U 208.01 21.2 

Doublet 335-336 keV 
241Am 335.37 4.96E-4 
239Pu 336.113 1.120E-4 

 

 

The primary photon peaks used for the ratio analysis are provided (Table 18). 

The singlet 239Pu peak was used for relative ratio analyses. This peak was 

selected because it is above the energy range where the background continuum 

rises rapidly, has good yield and is in a high efficiency area for the detector (18.4 

± 0.09%). The 123-125 keV doublet (Table 18) was selected for 241Am because 

a more accurate background subtraction could be performed at the upper and 

lower limits of this region. The 148 keV singlet and the 203-208 keV multiplet 
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were used to determine 241Pu activity (Figure 53). The 208 keV photon peak in 

the multiplet is from the decay of 237U, the minor alpha branch of the 241Pu decay 

chain (47). The 241Am contribution to this peak signal is minimal (Table 18) and 

can be subtracted using the rest of the peaks in the multiplet. The 185 keV 

singlet was used to determine 235U (Figure 53).  
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Figure 53. Example of a gamma spectrum of a hot particle in the 140-210 keV 
region. A-C are the peaks used for 235U, 241Pu and 237U analysis, respectively. 

 

 

6.4 Results and Discussion 

6.4.1. Qualification of Peak Fitting Analysis and Gamma System Calibration 

The quality of the peak fitting analyses and the energy/efficiency calibration 

was evaluated by determining the ratio of the estimated peak area (48) to the 

observed peak area (EOPA) at both 203 keV and 336 keV (Figure 54). The 

estimated peak area was determined from the decay corrected weapon 
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composition data (11). The average EOPA values were 0.952 ± 0.057 and 0.947 

± 0.107 for the 203 and 336 keV peaks, respectively. 
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Figure 54. Determination of the quality of the peak fitting analysis and gamma 
system calibration using the EOPA for the 203 and 336 keV photon peaks. 

 

 

The current gamma analysis protocol is fairly robust, but does underestimate 

the 239Pu and 241Am activities by 5%. The large degree of scatter across the 

particle population may be intrinsic to individual hot particles, a function of 

counting statistics, poor peak fitting, or a combination of these traits and others 

(e.g., a systematic problem with the nuclear data for one or both nuclides). 

These data can be used to define the characteristics of the population but an 

effort should be made to determine the source of these errors and minimize 

them. 
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6.4.2. 241Am:239Pu Activity and Relative Ratio Analysis 

The estimated 241Am and 239Pu activity and the relative ratios for each hot 

particle are provided (Table 19). The average 241Am:239Pu ratio for the particle 

population was 0.22 ± 0.03, which was slightly lower than the expected value of 

0.24 (14) but within one standard deviation. Over time, the majority of the 241Am 

has remained incorporated in the WGPu matrix.  

In the soil studies (Chapter 4), 241Am was distributed throughout the soil 

column, with elevated activity directly above the hot particle location and in 

discrete spikes not associated with the hot particle. It is assumed that the 

localized spots of 241Am (and 239Pu) in the soil are smaller hot particles that were 

missed during initial core fractionation. Particle mobilization was not specifically 

studied, but the gamma analysis of the core and isolated particle suggest that 

the particles are subject to shear stress and mechanical transport. As the particle 

sheds material by either physical or chemical mechanisms, smaller particles (or 

colloids) may be preferentially passing through the macropores of the soil 

column (23,24). 

6.4.3. 241Pu:239Pu Relative Ratio Analysis and Age Dating 

The 241Pu:239Pu activity ratios are provided for the particle population (Figure 

55). By direct measurement the 241Pu:239Pu could be determined for n = 17 hot 

particles. The remaining particles had insufficient counts in the 241Pu peak due to 

low activity levels. The 241Pu:239Pu activity ratios values ranged from 0.516 to 

0.913, with an average ratio of 0.729 ± 0.079, which was within 1σ of the 

theoretical value of 0.74 (11). 
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Table 19. Evaluated 241Am and 239Pu activities and relative ratios for the particle 
population. The error associated with the reported values is ± 5% unless 
specified. 

 

Particle 
239Pu 

Activity (Bq) 

241Am 
Activity (Bq) 

241Am:239Pu 
Count Time 

(Sec) 

10-F-7-B 95908.0 18972.0 0.20 86,400 

11-F-7-B 192067.0 50060.0 0.26 70,477 

12-F-6-C 46603.0 11223.0 0.24 74,517 

4-C-2-C 231227.0 66539.0 0.29 125,193 

5-F-4-C 339435.0 76803.0 0.23 12,109 

C6-HP 34047.0 7104.0 0.21 86,400 

C9-HP 49637.0 10657.0 0.21 83,460 

C11-HP 65119.0 14803.0 0.23 190,000 

C14-HP 455494.0 95090.0 0.21 76,156 

C24-HP 53306.0 10961.0 0.21 82,854 

HP-2 2826.0 726.0 0.26 190,000 

HP-4 211433.0 56342.0 0.27 129,734 

HP-11 48865.0 9756.0 0.20 84,985 

HP-12 178705.0 34418.0 0.19 86,400 

HP-13 100899.0 21272.0 0.21 156,865 

HP-14 4243.0 880.0 0.21 190,000 

HP-15 13374.0 2671.0 0.20 86,400 

HP-16 87726.0 19487.0 0.22 84,534 

HP-19 134646.0 25678.0 0.19 86,400 

Roots 240557.0 54478.0 0.23 161,328 

Average 241Am:239Pu Activity Ratio 0.22 ± 0.03 
 

 

 

An alternative route for quantification of 241Pu activity is measurement of the 

208 keV photon peak from 237U decay (Table 18). There is an interference from 

241Am at this energy, but the yield is very low. The Am is estimated from the 

activity measured for the more dominant peak (i.e. 59.5 keV) and is yield and 

efficiency corrected to determine the contribution to the 208 keV peak. It is 

assumed that 237U is in secular equilibrium with 241Pu, therefore the activities are 

equivalent. The 241Pu:239Pu ratio ranged from 0.501 to 0.875, with an average of 
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0.732 ± 0.090 for n = 18 particles. The value of this technique is that it provides 

an alternative ratio for age dating when 241Am is not completely separated from 

the Pu matrix during the manufacturing process (7). The estimated date of 

manufacture of the WGPu using the average 241Pu:239Pu ratio of the particle 

population and the WGPu isotopic data (Table 1) is 1958 ± 3 years. The 

calculated date of manufacture is in good agreement with the literature (14).  

In cases where the initial concentration of 241Pu is unknown, the 241Am:241Pu 

ratio can be used to estimate the age of the Pu matrix. This works under the 

assumption that the Am remains incorporated with the Pu matrix and that the 

initial concentration of Am was negligible at the time of manufacture. The 

average 241Am:241Pu ratio for the particle population was 0.31 ± 0.07, which 

correlates to a production date of 1959 ± 5 years. The population ratio of 

241Am:241Pu is within 1σ of the expected value of 0.33, but could possibly 

indicate depletion of Am in the WGPu matrix. This correlates with the trends 

observed for the 241Am:239Pu analysis. The majority of the 241Am remains 

incorporated with the WGPu matrix.  The loss of Am from the matrix needs to be 

identified. If the weapon was manufactured in 1958 and the BOMARC accident 

occurred in 1960, it is possible that the Am (0.003, relative to Pu in 1960) 

fractionated from the Pu matrix during the fire. This theory is discussed in greater 

detail in Chapter 8.  
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Figure 55. The 241Pu:239Pu activity ratios for the hot particle population.  
 

 

6.4.4. 235U:239Pu Relative Ratio Analysis  

The presence of 235U in the hot particles from the decay of 239Pu is expected 

to be minimal, i.e., the 235U:239Pu atomic ratio is 0.0014 based on the decay 

corrected literature values (11). The observed atomic ratios of the particle 

population are presented (Figure 56). Most of the particles (n = 19) contained at 

least one order of magnitude more 235U than expected for a pure Pu matrix. This 

would indicate that a composite of HEU and WGPu was used in the weapon (49) 

and that the two matrices were in close proximity during the fire. Elemental 

analysis studies (Chapter 5) confirmed that a single hot particle can contain 

mixed Pu/U regions, as well as depleted regions containing only Pu or U. 

Forensic interpretation of the 235U:239Pu ratio is provided in Chapter 8. 
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Figure 56. The 235U:239Pu activity ratios for the particle population.  

 

 

6.5 Conclusions 

Conventional high resolution gamma spectroscopy is a useful tool for the 

non-destructive analysis of hot particles and should be utilized before any 

destructive techniques are employed. The advantages of this technique include 

no extensive sample preparation (other than the initial isolation of the hot 

particles from the soil matrix), analytical versatility (it can be performed before or 

after other non-destructive techniques), and it is commonly available and 

relatively inexpensive. In this work various activity ratios of the minor isotopic 

components of the WGPu matrix were determined for a population of particles. 

The heterogeneous nature of the particle population emphasizes the importance 

of obtaining intact particles versus homogenized soil samples.  
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The majority of the 241Am that has built in from the decay of 241Pu has 

remained with the plutonium matrix for the BOMARC particle population. The 

gamma analysis of the fractionated soil cores with the primary hot particles 

removed (Chapter 4) suggested that hot particles contribute Am and Pu to the 

near field environment, producing both heterogeneous, or particle-like, and 

homogenous distribution patterns. Combined, these data sets suggest that Am 

and Pu are both mobile in the environment and that transport mechanisms are 

similar. Evidence of the presence of micro-particles (Chapter 4) from gross 

alpha/beta analysis would suggest a mechanical transport mechanism, but 

further study will be required to confirm this. 

From a forensic standpoint, gamma analysis of the particle population 

determined that 235U was present in the weapon as a separate component and 

has mixed with the Pu matrix most likely due to fire exposure. A more detailed 

discussion is provided in Chapter 8. In addition, the age of the WGPu matrix was 

determined using the 237U photon peak as a chronometer instead of 241Am, 

which can be present in significant concentrations in the original source matrix. 

The use of 237U is possible because of the high specific activity of the WGPu 

particles, the increased peak resolution of the detector, and the ability to analyze 

large data sets congruently.  
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CHAPTER 7 

RADIOANALYTICAL CHARACTERIZATION OF HOT PARTICLES – ALPHA 

SPECTROSCOPY 

7.1 Abstract 

Weapons grade Pu (WGPu) hot particles were isolated from soil cores that 

were collected from the BOMARC site and were characterized using minimally 

destructive techniques. The advantage of this type of analysis is that the primary 

information associated with the particle remains intact throughout the analysis 

process. Non-destructive radioanalysis is usually performed with gamma 

spectroscopy for isotopic information and by gas-flow proportional counting for 

gross alpha-beta activity determination. In this chapter, alpha spectroscopy is 

used on the unprocessed particle to rapidly determine the 241Am + 238Pu: 

239+240Pu ratio on the surface of the particles. The data obtained was in good 

agreement with the values presented in the literature for the BOMARC site. A 

comparison of surface measurements by alpha spectroscopy and bulk 

examination from gamma analysis (Chapter 6) is also provided. 

 

7.2 Introduction 

Alpha spectroscopy is a technique used to identify the energy and quantity of 

alpha particles emitted by the decay of radioactive material. In many cases the 

energies and ratios of the emitted alpha particles are unique to individual 

isotopes and can be used to identify and quantify the amount of a specific 
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isotope present in a sample. Alpha spectroscopy works by detecting the energy 

deposited when an alpha particle interacts with a thin silicon wafer. 

Alpha analysis usually requires some form of chemical pre-treatment to 

ensure various matrix and radionuclide interferences are removed prior to 

analysis. The ideal alpha spectroscopy sample is one in which the material of 

interest is deposited in a monolayer on a uniform sample backing. A thin 

deposition layer allows alpha particles to escape from the volume of the sample 

with minimal attenuation, producing high resolution, full energy peaks for 

analysis. A variety of methods exist for producing samples for alpha analysis 

including electrodeposition (50,51) and CeF3 precipitation (52,53). Both of these 

techniques require that the original sample be in an aqueous solution.  

For solid debris analysis, all of the morphological and crystallographic 

information contained in the sample is lost upon complete dissolution. Since this 

information may be as valuable as the isotopic information contained within the 

sample, chemical dissolution of the solid debris should be one of the last steps in 

any suite of analytical methods. To determine if any useful data could be 

extracted from the hot particles via alpha spectroscopy prior to dissolution, 15 

unaltered hot particles were analyzed by alpha spectroscopy. The results were 

compared to gamma data collected from the same particles. 

 

7.3 Alpha Spectroscopy – Thin versus Thick Sources 

Alpha spectra for a thin source (prepared by CeF3 precipitation) and a thick 

source (hot particle) are provided (Figure 57). The hot particle spectrum is step 
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Figure 57. Thin and thick source alpha spectra. The thin source was prepared 
by CeF3 precipitation after the hot particle was dissolved and has clearly defined 
peaks at 5.16 and 5.49 MeV alpha energies. The thick source is from an 
unprocessed hot particle and has two steps, which correspond to the primary 
alpha energies previously mentioned. 

 

 

shaped and dominated by low energy tailing while the CeF3 spectrum exhibits 

narrow, well-defined peaks with little tailing. The tailing observed in the hot 

particle spectrum is caused by the energy loss of alpha particles within the 

sample. Alpha particles produced on the surface of the particle can reach the 

detector at full energy and therefore produce the vertical lines on the leading 

edge of each step (5.157 and 5.486 MeV).  

Alpha particles that escape from the volume of the particle will have a range 

of kinetic energies which produces the broad tail behind the leading edge of 

each dominant alpha energy peak. The narrow peaks in the CeF3 sample can be 

used to identify specific alpha emissions and to quantify the isotopic content of a 
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sample through integration of the area under each peak and adjusting these data 

for detector efficiency and radiative yield values for the alpha particles of interest. 

A hot particle spectrum cannot be analyzed using this technique when more than 

one alpha emitting isotope is present because the alpha energies are spread 

across a continuum of values and cannot be individually integrated. 

Thick source analysis has been conducted in the past on hot particles in 

small soil volumes for gross activity determination and as a pre-selection 

criterion (54). Direct alpha analysis has been performed on various hot particles 

originating from both the Chernobyl and Thule nuclear accidents (55,56). A 

series of Monte Carlo simulations were run for these particles and deconvolution 

analysis was attempted to determine isotopic information. The utility of alpha 

analysis was limited, but when used in conjunction with information from other 

non-destructive analysis techniques such as high resolution gamma 

spectrometry and scanning electron microscopy (SEM), WGPu isotopic 

information was validated without destroying the particle.  

 

7.4 Advantages of Direct Alpha Analysis of Hot Particles 

Gamma analysis and SEM coupled with energy dispersive spectroscopy 

(EDS) provide information about the volume and surface elemental composition, 

respectively. The limitations of gamma analysis are with the counting efficiency 

and low radiation yield of gamma rays from the Pu isotopes of interest (a more 

detailed discussion is presented in Chapter 4). In this work, gamma spectra were 

collected over a 24 hour period to allow for adequate counts in the peaks 



114 
 

associated with Pu decay. Analysis by SEM/EDS can be completed in a short 

period of time, but isotopic information is not achievable. Acquisition time for 

alpha analysis of the hot particles was 10 minutes, which provided sufficient 

counts to determine the 241Am+238Pu:239+240Pu ratio. Under the auspices of a 

nuclear incident, early or rapid detection of the actinide matrix will be critical in 

the analysis chain of events.  

 

7.5 Methods and Materials 

7.5.1 Alpha Spectroscopy Measurements 

Isolated hot particles were centered and fixed to 25 mm (diameter) steel 

planchets with carbon tape. The instrument used for the measurements was a 

Canberra Alpha Analyst system, and the data were acquired with Genie 2000 

software. The samples were placed 16 mm from the surface of 450 mm2 

passivated implanted planar silicon (PIPS) detectors (Canberra A450-18AM) and 

counting was started when the chambers reached 1.5 torr (0.002 atm). All of the 

hot particles were counted for 600 seconds and data were acquired in 1024 

channel spectra covering an energy range of 1.4 – 8.4 MeV.  

7.5.2 Alpha Analysis of Unprocessed WGPu Hot Particles 

The particles discussed in this work were on the order of 0.1 to 0.5 mm in 

diameter, much larger than those investigated in the literature (diameter ~10 μm) 

and, as with the Thule and Chernobyl accidents (55,56), most of the historical 

information (i.e. type of weapon, Pu isotopic composition, etc.) was known 

(Table 1). The alpha emitting isotopes that were expected to be present in the 
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hot particle sample are provided (Table 20) along with the peak energy and 

intensity information.  

 

Table 20. Alpha decays from the hot particle matrix with intensities greater than 
1% and the peak to which they contribute in an alpha spectrum. 
 

Low Energy Step (< 5.168 MeV) High Energy Step (> 5.168 MeV) 

Energy 
(MeV) 

Intensity 
(%) 

Isotope 
Energy 
(MeV) 

Intensity 
(%) 

Isotope 

5.106 11.94 239Pu 5.388 1.66 241Am 

5.124 27.10 240Pu 5.443 13.10 241Am 
5.144 17.11 239Pu 5.456 28.98 238Pu 

5.157 70.77 239Pu 5.486 84.80 241Am 

5.168 72.80 240Pu 5.499 70.91 238Pu 

 

 

The 241Am is included because it becomes a major contributor to the alpha 

activity of the WGPu matrix as the material ages. Other Pu isotopes are not 

included for alpha analysis because of low alpha yields (241Pu) or trace 

concentrations in the WGPu matrix (242Pu). Daughter products of the primary 

constituents (Table 20) will also be present in older materials but their 

contributions to the total alpha emissions are less than 0.1% of total activity and 

are not discussed in this work. 

Using the data provided (Table 20), the high energy step (Figure 58) is the 

combination of signals from 238Pu and 241Am and the low energy step is the 

combined signal for 238, 239, 240Pu and 241Am. The ratio of 238Pu+241Am:239, 240Pu 

can be calculated using the following relationship: 

 
𝑃𝑢238 + 𝐴𝑚241

𝑃𝑢239 + 𝑃𝑢240 =
𝐵

𝐴 − 𝐵
 Equation 3 
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where A and B are the count signals integrated over a defined area with the high 

and low energy limits set in regions where the signal is stable (shaded region, 

Figure 58). Both areas A and B have the same energy/channel width. 

 

 

Figure 58. Major features of the hot particle alpha spectra and its isotopic 

contributions. Areas A-C were used to determine the 238Pu+241Am: 239, 
240Pu activity ratio. 

 

 

The 238Pu and 241Am contribution to Area A is subtracted producing Area C, 

the 239,240Pu signal (Figure 58). With the 239,240Pu signal resolved, the 

238Pu+241Am: 239,240Pu activity ratio can be calculated. This procedure relies on 

three assumptions. The first is that there is symmetry in the tailing behavior of 
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the high and low energy steps, if the lower energy alpha particles (239,240Pu) do 

not exhibit a rapid drop off in signal, it is unlikely that the higher energy alpha 

particles (238Pu and 241Am) will behave differently. The second assumption is that 

symmetrical regions of stable signal can be found on both the Iow and high 

energy steps (Area A and Area B in Figure 58). The third assumption is that the 

area of the high energy signal is much smaller than that of the low energy signal. 

When the magnitude of the high energy signal approaches that of the low energy 

signal, the error associated with fitting a step function to the data will increase 

due to the uncertainty of the contribution of the high energy tail to the lower 

energy step. These assumptions work for a WGPu matrix because the ratio of 

238Pu+241Am:239+240Pu will always be small and produce a step shaped spectrum. 

 

7.6 Results and Discussion 

The results of this analytical technique applied to 15 hot particles are 

provided (Figure 59). The grey box in the center of the graph outlines the area 

covered by the standard deviation of the average, and the counting error for 

individual particles is smaller than the area covered by the data marker. The 

241Am+238Pu:240,239Pu activity ratio for the particle population ranged from 0.137-

0.244, with a mean activity ratio of 0.196 (1σ = 0.030). This value is in good 

agreement with the published mean activity ratio of 0.19, based on the 

241Am:239,240Pu ratio determined by chemical separation and electroplating (11, 

19).  
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Figure 59. The 238Pu,241Am:239+240Pu ratios determined by alpha spectroscopy 
for each unprocessed hot particle. The count time was 10 minutes/particle. 

 

 

Although the ratio determined in this study incorporates 238Pu, the total alpha 

activity contribution is less than 1.3%, and is only 7.5% of the combined 241Am, 

238Pu activity based on a 51 year decay period and the isotopic information 

provided by LANL (14). In former studies, the activity ratios were highly variable 

(0.15-0.24) across individual samples (19) and the average was less than the 

expected activity ratio of 0.213 (14) but still within 1σ of the value. These findings 

were consistent with the hot particle data set. The combined data sets suggest 

that the shifts in the activity ratios are driven by the heterogeneous distribution of 

the Am in the particle matrix.  



119 
 

7.6.1 Comparison of Gamma and Alpha Spectroscopy of Hot Particles 

The utility of alpha spectroscopy as a rapid analysis method for unprocessed 

WGPu particles is evident when compared to high resolution gamma 

spectroscopy data of the same particle population. Alpha spectra were collected 

in 10 minutes versus the 24 hour count time required to obtain the 241Am:239Pu 

activity ratio by gamma spectroscopy (Chapter 6). The direct comparison of the 

alpha activity ratio (238Pu+241Am:239+240Pu) to the gamma activity ratio 

(241Am:239Pu) can be made for qualitative purposes. The contributions of the 

238Pu and 240Pu to the alpha activity ratio cannot be isolated from the 241Am and 

239Pu signals, respectively. Therefore, the alpha ratio should be approximately 

11.2% lower than the gamma ratio (14).  

The activity ratios determined by both alpha and gamma analysis are 

presented (Figure 60). The 241Am:239Pu activity ratio determined by gamma 

spectroscopy ranged from 0.191 to 0.261, with an average value of 0.223 (1σ = 

0.028). Similar to the alpha data, the average ratio is below the expected value 

of 0.24 predicted by the decay corrected LANL data (14), but within 1σ. When 

the average alpha ratio is compared to the average gamma ratio, the alpha ratio 

is 12.1% lower than the gamma ratio and is in good agreement with the 

theoretical value previously discussed. Variations observed in the isotopic 

activity ratios by alpha spectroscopy correlate with those present in the gamma 

data. This indicates that the variations in the isotopic ratios are not statistical 

phenomena but are real signals and that the depletion of 241Am is across the 

volume of the particle, not a surface phenomenon. This is also supported by 
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elemental mapping experiments of the hot particle population (Chapter 5) and 

may provide further insight into the formation conditions of the hot particles 

(Chapter 8).  

 

0.1

0.15

0.2

0.25

0.3

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Alpha Ratio

Gamma Ratio

A
lp

h
a

 a
n

d
 G

a
m

m
a

 R
a
ti
o

s

Hot Particle  

Figure 60. The 241Am:239Pu activity ratios by gamma and alpha spectroscopy are 
shown for individual hot particles.  

 

 

Another approach is to evaluate the average difference in the observed 

gamma and alpha activity ratios (Figure 61, Equation 4): 

 
𝑅𝑔𝑎𝑚𝑚𝑎 − 𝑅𝑎𝑙𝑝ℎ𝑎 =

𝐴𝑚241

𝑃𝑢239 −
𝑃𝑢 + 𝐴𝑚241238

𝑃𝑢239 + 𝑃𝑢240  Equation 4 

A positive difference value indicates that the surface concentration of 241Am is 

lower than the bulk concentration. A negative difference means that there is less 

Am distributed throughout the particle volume. This relationship is governed by 

the differences in depth penetration for gamma and alpha radiations. The 
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gamma ratio is unaffected by the particle dimensions, while the alpha ratio is 

only relevant to the surface layers of the matrix. The average difference in the 

observed gamma and alpha ratios is 0.029 ± 0.022, which is higher than the 

expected average difference of 0.027 but within error. The majority of the 

particles are clustered within the 1σ region; however, several particles have 

greater differences in alpha and gamma ratios. The cause of fractionation of Am 

from the particle matrix is difficult to determine. It is possible that Am is 

preferentially removed from the Pu matrix by environmental conditions, but no 

evidence of this has been reported for these materials. The heterogeneity of the 

ratio distributions would be expected to favor surface depletion of Am, or a 

positive difference value, if environmental fractionation was the primary 

influence. There is only one particle that exhibits a positive difference value 

greater than 1σ from the population value.  

Evaluation of the soils surrounding the hot particles by gamma spectroscopy 

and gross alpha/beta analysis (Chapter 4) have shown that hot particles 

contribute 241Am and Pu to the near field environment, producing both 

heterogeneous, or particle-like, and homogenous distribution patterns. The 

analyses provided in this study support heterogeneous distribution (mechanical); 

however, a larger population of particles must be evaluated. If it is assumed that 

the original WGPu matrix at the time of the accident was Pu metal, then it is 

possible that the Am depleted particles formed as a result of the accident. A 

more detailed discussion of this premise is provided in Chapter 8. 
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Figure 61. The difference in the gamma and alpha ratios, Rgamma and Ralpha 

across the hot particle population. The boxed region indicates the 1σ boundary. 
 

 

7.7 Conclusions 

Direct alpha spectroscopy of hot particles utilizing the analysis method 

previously outlined can be used to rapidly determine the 238Pu+241Am:239,240Pu 

ratio. These values are in good agreement with those reported in the literature 

for the BOMARC site (11,19). Combining hot particle alpha spectroscopy and 

gamma spectroscopy data provides a non-destructive method to verify shifts in 

the 241Am concentrations in individual particles that might otherwise be 

categorized as normal statistical variations using only one of the techniques. It 

has been shown through analysis of the combined gamma spectroscopy and 

alpha spectroscopy data sets that the variation in the 241Am concentrations found 

in individual particles was most likely produced by the fractionation of 241Am 
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during combustion of the weapon. The 241Am concentration is lower than 

expected in the population of hot particles when compared to theoretical values 

indicating that either the reported 241Pu concentration in the WGPu matrix is low 

or 241Am has been selectively removed. The selective removal of 241Am is the 

best explanation for the depressed 241Am concentrations based on direct 

comparison of the 241Am to 239Pu ratios as measured by alpha and gamma 

spectroscopy. This stems from the comparison of surface measurements by 

alpha spectroscopy and bulk examination from gamma analysis. 

  



124 
 

CHAPTER 8 

SOURCE TERM CHARACTERIZATION 

8.1 Interpretation of the Combined Data Sets 

The combined gamma, alpha, EDS and elemental mapping data provide 

information about the composition of the energetic materials, the configuration of 

the warhead and the conditions that formed the hot particles. Presented below is 

an overview of the data, excluding the relative plutonium isotopic ratios, that is 

useful in determining the warhead configuration and conditions that formed the 

hot particles. 

 Gamma and alpha spectroscopy data for 15 particles 

o 241Am:239Pu ratio is variable 

o 235U:239Pu ratio is variable 

 EDS analysis of U/Pu distribution for 15 particles 

o U:Pu ratio was not homogenous across the population of particles 

o U:Pu ratio was not homogenous across individual particles 

o Most particles contained a mixture of U and Pu, some surface regions 

consisted of pure Pu or U  

 EDS analysis of minor components for 15 particles 

o Si, O observed in all particles 

o Al observed in 14 of 15 particles 

o Fe observed in 13 of 15 particles 

o Ti observed in 12 of 15 particles 

o Ga observed in 5 of 15 particles 
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o Nb observed in 4 of 15 particles 

o Ni and Cr observed in 3 of 15 particles 

 SEM imaging 

o Each hot particle has a different shape, size and surface texture 

o The surface texture of individual hot particles is not uniform over the 

entire particle 

 Elemental Mapping observations 

o Patterns indicating mixing of U and Pu were observed 

o Patterns indicating layering of U and Pu were observed 

o Segregation of Ga from the Pu matrix was observed 

o Non-homogenous Am distribution was observed  

There are at least two ways to interpret this data set. The first to be 

presented is without reference to the historical narrative associated with the 

warhead and accident. This interpretation of the data would be representative of 

a forensic scenario; an unknown material needs to be analyzed with little or no 

information available about its point of origin and limited information available 

about its recent history. What is noticeably absent from the first discussion is the 

use of the Pu age data as a reference point. A detailed discussion of why these 

data may not be useful or even be misleading will be presented in the second 

interpretation of the data set. The second interpretation of these data involves 

coupling the analysis to the historical narrative associated with the accident and 

the U.S. weapons production data from 1955-1960.  
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8.2 First Interpretation – Analysis without the Historical Narrative  

Without reference to the background material and historical documents 

associated with the accident, several general conclusions about the warhead 

configuration can be made. The presence of enriched 235U in the hot particles 

(19 out of 20) at concentrations (0-92 at% 235U) several orders of magnitude 

greater than what would be expected from the decay of 239Pu supports the 

theory that the material did not originate from a pure Pu matrix but rather from a 

composite highly enriched U, WGPu design (49). The EDS data show that a 

single hot particle can contain regions with a mixed U/Pu matrix, a pure Pu 

matrix and a pure U matrix. Elemental maps of two of the hot particles show both 

mixing and isolated layering of U and Pu. Combined, the EDS and elemental 

mapping data show that U and Pu were in close contact at the time of the 

accident, making a strong case for a composite core design. 

There are two likely candidates for the arrangement of the U and Pu within a 

composite core, a U/Pu alloy or separate U and Pu metal components in close 

contact. The presence of Ga, indicated by both the EDS and elemental mapping 

data, eliminates the U/Pu alloy as a candidate for the composite core material. 

Gallium at low concentrations (1-2 wt%, 3.4-6.5 at%) is used to stabilize the Pu 

in the δ-phase and is used in most weapons because of its desirable mechanical 

characteristics (38,49,57). Uranium has limited solubility, 0.3 atom % U, in δ-Pu 

(38,58). It is unlikely that a U/Pu alloy could be fabricated with δ-Pu that could 

contain the 2-92 atom % 235U, which was found in 19 of the 20 hot particles. 
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A third, but unlikely candidate material for use in a composite core would be a 

solid UO2-PuO2 matrix. From a chemical stability standpoint the UO2-PuO2 

system would be a good choice of material because it is more chemically and 

thermally stable when compared to Pu or U metal (59,60,61) and can be formed 

into solid solutions from pure UO2 to pure PuO2, provided the stoichiometry of 

the system is controlled during fabrication (59). The negative aspects of these 

materials are low densities, 10.95 g/cm3 (62) for UO2 and 11.46 g/cm3 (63) for 

PuO2, and the 60-67 at% of oxygen incorporated into the lattice (59). Because of 

the low densities of these oxides and the presence of diluting oxygen atoms, a 

warhead designed around this material will require a larger mass and larger 

volume of material to achieve criticality relative to a metal in the same 

configuration (Table 21). The larger mass of metal oxide required for criticality 

and corresponding larger volume of material would require a larger and heavier 

package to contain the device reducing its desirability as a weapons material.  

 

Table 21. Comparison of the physical characteristics of U and Pu metals and 
metal oxides required to achieve a critical mass. 

 

Material 
(Ref) 

Isotopic 
Content 

Density 
(g/cm3) 

Critical Mass (kg) 
Unreflected 

Sphere 

Estimated 
Radius 

(cm) 

UO2 (64) 94 wt% 235U 10.95 110 13.4 

U (49) 93.2 wt% 235U 18.8 52 8.71 

PuO2 (64) Not Reported 11.46 35 9.00 

δPu (49) 
4.5wt% 240Pu,  

1 wt% Ga 
15.8 16.5 6.29 
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The combined gamma and alpha spectroscopy, EDS and elemental mapping 

data cannot conclusively eliminate a mixed UO2-PuO2 solid solution as the 

source term for the particles, but using the same argument based on the 

presence of Ga in the particles, it is unlikely that a mixed UO2-PuO2 system 

would be fabricated with Ga incorporated into the matrix.  

Working under the assumption that the particles originated from a composite 

core material that consisted of a U metal component and δ-Pu metal component, 

the mixing of U and Pu that is observed in the hot particles provides some insight 

into the process that may have formed them. The most likely explanation for the 

U and Pu distribution patterns observed in the particles is mixing of melted U and 

δ-Pu components. Melting of either metal component would imply that the 

weapon had to have been exposed to high temperatures. 

The spotty distribution pattern of Ga in the hot particles observed by EDS (5 

of 15 particles) and the Ga inclusions present in the elemental maps are also 

indicative of heating the Ga-stabilized δ-Pu to the liquid phase and then slowly 

cooling the material producing both Ga-poor and Ga-rich phases within the Pu 

metal (63). Heating followed by slow cooling of Pu metal is also supported by the 

cracked, flaking layers observed on the surface of the hot particles by SEM 

imaging. Plutonium metal is prone to producing this type of cracking and splitting 

behavior because of the stresses induced by large volume shifts that accompany 

phase transitions between 0 ⁰C and 600 ⁰C (65).  

The presence of Ga in the particles also provides an upper bound for the 

temperatures reached during the heating cycle. Although elemental Ga has the 
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unusually low melting point of 29.767 ⁰C (35) , its boiling point is 2204 ⁰C (35). 

Gallium in the presence of stoichiometric quantities of O2 will form Ga2O3 which 

has only a slightly higher boiling point of 2420 ⁰C (66). The presence of Ga metal 

or Ga2O3 trapped in the particles indicates that the hot particle matrix did not 

exceed 2420 ⁰C for an extended period of time.  In particles where no Ga was 

detected by EDS it is difficult to say if the temperature of the particle exceeded 

2420 ⁰C; Ga may still be present, but at concentrations not detectable by EDS. 

The Am present in the particles can also be used to identify the maximum 

temperature experienced by the material during heating and as an indicator of 

the amount of O2 present during the heating cycle. Americium metal has a 

calculated boiling point of 2067 ⁰C (67), while the oxide of Am formed during 

combustion in air, AmO2 (67) has a melting point estimated between 2100 ⁰C 

and 2200 ⁰C (68). If the Pu matrix is heated above 2067 ⁰C, without O2 present 

the Am would be expected to boil off depressing the 241Am:239Pu ratio in the hot 

particle. This phenomena has been observed with combustion of Pu metal and 

shown to reduce the Am:Pu ratio in large particles (>20 μm) while increasing the 

Am:Pu ratio in small particles (<3 μm) due to the re-condensation of vaporized 

Am (69). In the presence of excess O2 and at temperatures below 2067 ⁰C the 

Am oxide (m.p. 2100 ⁰C – 2200 ⁰C) would be expected to form. Rather than boil 

off like the Am metal, the Am oxide would remain with the Pu matrix and produce 

particles with consistent 241Am:239Pu ratios.  

Shifts in the 241Am:239Pu ratios are observed for individual hot particles by 

gamma and alpha spectroscopy, indicating that these particles were not formed 
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under or exposed to uniform conditions. Elemental maps of 4 of the 5 hot 

particles show Am homogenously distributed within the Pu matrix, while one hot 

particle exhibited a heterogeneous Am distribution, indicating that fractionation of 

Am did occur. Assuming that the original matrix was Pu metal, the population 

data for the 241Am:239Pu ratio, combined with the elemental mapping data, 

indicates that some particles were formed under conditions that would permit Am 

to fractionate from the Pu matrix. The most likely explanation of this behavior is 

that some of the Pu matrix melted prior to oxidation, boiling off the Am and 

producing particles with low 241Am concentrations. Pu metal at temperatures 

below 2067 ⁰C may have acted as 241Am sink, condensing the vaporized 241Am 

and elevating the 241Am:239Pu ratio. Although the particle size dependence is not 

observed, this type of behavior has been reported in (69). This mechanism has a 

lower temperature limit of 2067 ⁰C, the same temperature range as the boiling 

point of Ga.  

To make full use of the Ga and Am signatures within the hot particles, one 

critical set of data is missing: detailed information about the crystal structure of 

the solids that contain both Ga and Am. Oxidation state, coordination number, 

oxygen ratios and bond lengths, information that can be determined from both 

XANES and XAFS experiments  (70,71), would allow for identification of the final 

chemical states of both Am and Ga in the matrix.  With this information it would 

be possible to better answer questions about whether the source term material 

was a metal or an oxide, as well as describe the conditions that formed the 

particles such as oxygen concentrations and combustion temperatures. In both 
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cases XANES and XAFS experiments should be added to complete this data 

set.  

Qualitative analysis of the particles by EDS for matrix constituents besides U 

and Pu indicates that all of the particles contained Si and O, and most of the 

particles contained Al, Fe and Ti. A combined Ni and Cr signal was detected in 3 

of 15 particles and Nb was detected in 4 of 15 particles. It is important to 

remember that these EDS analyses were performed to determine the 

distributions of U and Pu, so no effort was made to quantitatively analyze the 

relative concentrations of these minor components. For reference, a general 

theoretical limit of detection by EDS is about 0.08 wt % (72), but will be 

dependent on the EDS system, the specific element being targeted and the 

matrix that contains it.  

Identification of the sources of Al, Si and Fe in the hot particles is of 

questionable value because it is difficult to determine whether these elements 

were incorporated into the original hot particle matrix or if these elements were 

introduced via environmental exposure because they are common to the soil 

from which the particles were removed (21,73). Separation of Si and Fe from the 

matrix and analysis of the isotopic composition of these elements by mass 

spectroscopy may provide more insight into their point of origin (i.e. Si has 3 

stable isotopes, Fe has 4). The presence of Ti, Nb, Ni and Cr in the hot particles 

cannot be easily explained by using an environmental contamination argument. 

Although no detailed data are available on the concentrations of Ti, Nb, Ni and 

Cr in the soil that contained the hot particles, the average concentration of these 
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metals in the earth’s crust is 1 to 3 orders of magnitude less than that of Fe (74), 

making observation by EDS of these elements at natural concentrations unlikely.  

The identification of Nb in the hot particle matrix is especially interesting 

because 6 wt % Nb can be alloyed with U to produce a U metal alloy that is less 

prone to oxidation then a pure U metal (75,76). The presence of Nb with U would 

indicate that the U in the hot particle was manufactured with the intent of 

stabilizing it against oxidation for long term storage. This infers that the U found 

in the hot particle was not initially fabricated for or by those working with 

improvised materials for immediate use.  

The Ni and Cr present in the matrix, when coupled with Fe or Ti, could be the 

remnants of stainless steel or nickel alloy components. Nickel may be present in 

the matrix because it is known to be used to plate finished Pu assemblies in an 

effort to control the spread of alpha (Pu) contamination during handling (77). No 

information specific to the use of Ti in a Pu matrix was identified, but Ti is 

commonly used in applications requiring high strength, light weight components 

or as an alloying agent with Fe or Ni. The results of the analysis without 

reference to the historical narrative are summarized below. 

 The original phase of the Pu present in these particles was most likely Ga 

stabilized δPu 

 The U present in the particles may have been alloyed with Nb 

 The use of U and Pu alloys designed to be chemically stable over long 

periods of time indicates that this material was designed for long term 

stability 
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 The U and Pu were fabricated as a composite material, consisting of 

separate but closely associated U and Pu components 

 The presence of the Pu and U alloys combined with a composite 

construction indicates that this material was produced using sophisticated 

manufacturing techniques 

 The presence of significant quantities of 235U with the Pu matrix indicates 

that the design of a warhead based on this material most likely consisted 

of a Pu trigger coupled to a U fuel 

 The Am and Ga distributions indicate that the hot particles are a product 

of heating and oxidation with temperatures in excess of 2000 ⁰C 

 Titanium, Ni and Cr are present in some of the hot particles above 

environmental concentrations indicating they may have been used in 

components that were in intimate contact with the Pu and U 

 

8.3 Second Interpretation – Analysis with the Historical Narrative 

As shown above, analysis of an unknown material outside of any historical 

context or background information limits the depth of analysis that can be 

performed.  If the preceding data set is taken with the historical context then a 

much more detailed description of the warhead can be produced. A summary of 

the facts and observations taken from the historical record that are relevant to 

the analysis of the hot particles are given. 

 The source of the Pu and U was a U.S. warhead mounted to a BOMARC 

missile (8) 
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 The warhead was destroyed on June-7-1960 (8) 

 The Pu used was produced in 1958 (estimated) (14) 

 The warhead was destroyed by the combustion of the high explosive 

charge contained within the weapon, not by the missile fire (9) 

 The high explosive surrounding the warhead was completely consumed 

by the fire (9) 

 The high explosive used in the warhead was Cyclotol (78) 

 Oralloy, enriched 235U was present in the warhead (9) 

 The Pu and U components in the warhead melted through the casing (9) 

 Pieces of slag, tentatively identified as Al, were co-located with the melted 

Pu and U on the floor of the missile shelter (9) 

 An intact tritium bottle attached to the warhead assembly was recovered 

(8) 

 The total length of the warhead assembly is estimated to be 30-90 cm 

from a series of redacted photographs from the accident site (8)  

The most obvious and extremely useful pieces of information are the 

identification of the material as the product of a U.S. warhead accident that 

occurred in 1960. This information provides an upper bound for the date of 

manufacture of the device, and more importantly it identifies the material as a 

product of weapon-manufacturing activities in the U.S. With this knowledge, 

consideration of all other potential sources for this material can be removed from 

the discussion and the focus can be squarely placed on U.S. manufacturing 

techniques and warhead designs used through 1960. 



135 
 

Considering the warhead design, the presence of the tritium bottle identifies 

this as either a fission-fusion or tritium boosted-fission device. The fact that all of 

the hot particles collected were either pure Pu or contained a mixture of Pu and 

U (Oralloy) indicates that this was most likely a tritium boosted fission device 

(49). The arrangement of Pu and U in this type of device typically consisted of 

two, hollow subcritical shells into which a deuterium-tritium gas mixture would be 

injected (49) and then the whole assembly would be imploded using a high 

explosive charge.  

The report that the tritium bottle was recovered intact and attached to the 

warhead assembly also gives a great deal of insight into the heating conditions 

to which the warhead was exposed during the missile fire. Data from a B53 

bomb, a weapon that utilized a tritium bottle that was designed during the same 

period, indicates that the tritium bottles were actuated using a small explosive 

charge that consisted of 25 mg of lead styphnate and 175 mg of ball powder 

(79). The lead styphnate is of interest because it has a detonation temperature of 

275 ⁰C (80). Assuming that the tritium bottle for this warhead and the B53 were 

of similar design, and that the tritium bottle was located within 90 cm of the Pu 

and U assembly, the fact that the tritium bottle was recovered without the 

explosive charge being fired indicates that the region surrounding the warhead 

was not subject to temperatures exceeding 275 ⁰C for an extended period of 

time. 

A temperature of 275 C⁰ will have little effect on the Pu or U components 

contained within the warhead (58,81,82) but the same cannot be said for the 
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high explosive charge surrounding the Pu and U shells.  Cyclotol, a mixture of 

RDX and TNT, typically in ratios of 50:50 or 75:25, was used as the high 

explosive charge in this warhead (78,83). RDX has a melting point of 204 ⁰C and 

a deflagration point of 230 ⁰C, TNT has a melting point of 81 ⁰C and a 

deflagration point of 300 C⁰ (84). The deflagration point of an explosive is the 

temperature at which a small sample of the explosive, without additional O2, 

bursts into flame, decomposes rapidly or detonates (83). 

The warhead must have experienced temperatures in excess of 204 ⁰C to 

ignite the RDX, but below 275 ⁰C to prevent the detonation of the lead styphnate 

charge in the tritium bottle. Once ignited, the flame temperature of RDX under 1 

atm pressure is reported to be between 2430 ⁰C and 2830 ⁰C (85) and fits well 

with the minimum temperature of 2000 ⁰C based on the Am and Ga distributions 

presented in the first data interpretation. The combustion products of RDX 

consist of H2, H2O, N2, CO, NO and CO2 (85) and indicate that there is a 

negative oxygen balance during combustion when no additional O2 is available 

(85). The TNT component of Cyclotol also exhibits a negative oxygen balance 

during combustion (83). Once ignited, the Cyclotol would produce temperatures 

capable of melting both the U and Pu components (81,82) potentially mixing the 

two (58) under O2-poor conditions. To further complicate matters, both Pu and U 

metals are known to oxidize upon heating under atmospheric conditions, with Pu 

capable of exhibiting a self-sustaining reaction in bulk metallic pieces 

(60,61,69,86,87,88). Even though the specific mechanism of heating and 

combustion will never be known, the products of Pu and U combusted under 
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these conditions could be a combination of pure or mixed metals in a variety of 

oxidation states.  

Though few data are available on the combustion products of Pu and U 

metals in the presence of an organic based fuel, the Vixen A trials (89) carried 

out by the British at the Maralinga test site in Australia could be representative of 

the conditions of the BOMARC accident. To determine the respirable release 

fraction of Pu in a fire, 200 g cylinders of Pu metal were burned outdoors in a 

petrol fire (89). Although the data from these tests are not available, it may be 

useful in the future to compare any data about particle morphology and 

composition from the Vixen A trials to the BOMARC data set. 

Combustion of Pu metal in the form of bulk metallic pieces in a flowing air 

column has been performed (61) and, although the intent of these experiments 

was to study the release of respirable Pu oxide particulates by the combustion of 

Pu metal, there are several observations in these studies that match the 

description of the BOMARC accident site. In the experiments the author 

observes that after ignition the oxide layer would crack and sometimes the entire 

mass of the sample would collapse, releasing molten Pu (61). At the BOMARC 

site, a melted mass of U and Pu was reported below the warhead support (9) 

and the cracked oxide layer observed by the author (61) may have served as the 

source of the particles identified at the BOMARC site. Unfortunately no particle 

size distribution data for particles formed above the respirable fraction (>10 μm) 

was reported, but the formation of particles up to 200 μm was acknowledged 

(61). The core temperature of the metal at ignition was reported to be between 
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375-520 ⁰C and at the time of Pu liquefaction, the core temperature of the metal 

was reported between 800-1000 ⁰C (61). 

When these data are combined a much clearer picture of the accident 

conditions can be created. Ignition of the high explosive charge initiated the 

combustion of the U and Pu components at temperatures above 2400 ⁰C, under 

potentially O2-poor conditions. Once ignited the Pu had to remain above 800 ⁰C 

to produce the Pu slag located on the floor of the shelter. These high 

temperature conditions would explain why the Am and Ga distributions found in 

the hot particles are not uniform, why the isotopic ratio of 241Am to 239Pu is 

variable from particle to particle and why the average 241Am:239Pu ratio for the 

population of hot particles is below the theoretical 241Am:239Pu ratio based on a 

production date of 1958 (14) matching the trend reported in (69). 

Particles with homogenous Am distributions, no Ga and small 241Am:239Pu 

ratios would be indicative of material that was exposed to high temperatures (> 

2200 ⁰C) long enough for both the Am and Ga to boil out of the Pu matrix prior to 

oxidation. Material exposed to the mid-temperature range, below 2200 ⁰C but 

above 640 ⁰C (90), between the boiling point of Ga and the melting point of the 

Pu matrix, would exhibit heterogeneous Am and Ga distributions. Particles from 

this material would be the most likely to exhibit elevated 241Am:239Pu ratios 

because of their proximity to the high temperature regions and their ability to act 

as condensation points for Am escaping from material exposed to high 

temperatures. Particles with homogenous Am and Ga distributions along with 

241Am:239Pu ratios that match the theoretical value would have experienced low 
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temperature conditions, <640 ⁰C (90) maintaining the Am and Ga in the Pu 

matrix while only undergoing oxidation.  

Formation of an oxide layer followed by cracking during combustion of the Pu 

and U was the most likely source of the particles collected on the site. Imaging of 

the surfaces of the particles revealed that many of them have highly cracked and 

fractured surfaces, matching the description of the oxide layer. The Al slag 

deposited on the floor of the missile shelter along with the U and Pu slag was 

likely the material from which the basic assembly casing of the warhead was 

manufactured, based on other weapon designs (90). Pure Al metal has a melting 

point of 660 ⁰C (91), but it is more likely one of the Al alloys was used to produce 

the casing because of their superior mechanical properties. Aluminum alloys 

generally have melting points of 500-700 ⁰C (91); this is well below the 

temperature range experienced by the internal components of the warhead 

during the accident, so melting of an Al casing would not be unexpected. 

Aluminum is commonly alloyed with Si, Fe, Ti, Cu, Ni, Cr, Ga etc., (91) at levels 

above the theoretical detection limit of 0.08 wt% for EDS (72). If the Al and its 

minor constituents could have mixed with the Pu and U during the melting 

process (92,93), this could explain the presence of these minor elements in the 

hot particles. It should be pointed out that this does not preclude environmental 

contamination or the use of these elements in other alloys or unidentified 

components as their primary source. A series of quantitative EDS mapping 

experiments may help clarify the origin of the minor components, and has the 

potential to identify the specific alloy of Al used in the warhead casing.   



140 
 

Additional information gathered about the BOMARC warhead and accident 

using the historical record is summarized below: 

 The total length of the warhead assembly is estimated to be 30-90 cm 

from a series of redacted photographs from the accident site (8)  

 The warhead was a tritium-boosted fission device 

 The high explosive used in the warhead was Cyclotol 

 The casing of the warhead was fabricated from Al or an Al alloy 

 The warhead was not exposed to temperatures above 275 ⁰C for an 

extended period of time, but was hotter than that for a brief period 

 The high explosive ignited at a temperature between 230 ⁰C and 275 ⁰C 

 The temperature range experienced by the Pu and U components was 

between 375 ⁰C and 2800 ⁰C 

 The Pu slag observed on the floor of the shelter formed at temperatures 

above 800 ⁰C 

 The Am distribution in the Pu matrix may be indicative of the temperature 

experienced by the material 

 Cracking of the oxide layer formed during Pu combustion could be the 

source of the hot particles 

 The minor elements found in the hot particle could have been introduced 

by the melting and mixing of the Al casing with the Pu and U components 
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8.4 Pu Isotopics within the Historical Narrative 

Analysis of the Pu isotopic distribution in the particle matrix material can be 

used to answer basic questions such as, whether the Pu is from a warhead or 

from nuclear reactor fuel, or much more specific questions such as the age of 

the Pu or the specific reactor type that produced it (7). From a purely technical 

point of view determination of the isotopic composition of a Pu matrix is a 

relatively straight forward task that can accomplished using a variety of 

techniques (7) including alpha and gamma spectroscopy, as presented in this 

work. Interpretation of these results is not nearly as simple a task. The following 

discussion of the U.S. Pu production history during the period preceding the 

BOMARC accident will illustrate how the knowledge of the production history of 

Pu can provide a context that makes it more difficult to interpret the Pu isotopic 

data.  

From the historical record, the BOMARC accident occurred in June 1960, 

setting a firm upper limit for the date of the Pu production. Los Alamos estimated 

a date of Pu production of 1958 (14) and analysis of the hot particles by gamma 

spectroscopy in this work places the date of Pu production between 1955 and 

1960, with a best estimate of late 1957. Based on a date of Pu production 

between 1955 and 1960 the technology available and facilities used to 

manufacture the Pu found in the hot particle matrix were identified.   

In the U.S., only two facilities have been involved in the large scale 

production of Pu for weapons, the Savannah River Site (14) and the Hanford 

Site (94). In 1958, both facilities were producing Pu for the U.S. weapons 
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program. In 1954 the Savannah River Site made its first Pu delivery, using heavy 

water moderated reactors and separating the Pu from the reactor fuel exclusively 

using the PUREX process (95). Hanford had been involved with Pu production 

since the days of the Manhattan Project, and produced Pu using water cooled, 

graphite moderated reactors (96). Chemical separation of the Pu from the 

reactor fuel at the Hanford Site had been performed using three processes; 

bismuth phosphate precipitation, REDOX and PUREX (97). By 1958, chemical 

separation of Pu at Hanford was only performed using REDOX and PUREX, with 

PUREX accounting for 79% of its annual Pu production (97). The final product of 

the PUREX process is a Pu nitrate solution from which the metal was 

synthesized by a process of fluorination followed by high temperature reduction 

to metallic Pu with calcium (77). Both the Savannah River site and Hanford site 

produced Pu metal using this technique (77,95). The metallic Pu was then 

available for fabrication into weapons components at either the Hanford site or at 

the Rocky Flats plant.  

Using the historical data, the Pu present in the hot particles was produced at 

either the Savannah River Site or the Hanford Site and the Pu was most likely 

chemically separated from the reactor fuel using the PUREX process. From this 

overview, identifying the source of the Pu based on the isotopic composition of 

the Pu should be a relatively simple; only two sites produced Pu, and each site 

used different reactor designs, therefore the Pu isotopic composition in the hot 

particles should match the isotopic signature of the production reactors from one 

of the sites (7).  
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Unfortunately, one factor that the historical Pu production data does not 

address in detail is the potential for recycling and mixing of Pu during weapons 

production. Through the mid-1950’s and continuing into the 1960’s there was a 

rapid growth of the U.S. nuclear weapons stockpile that included the retirement 

of older weapons (98). For example, in 1955, 806 new weapons were added to 

the U.S. stockpile with 87 retired; by 1960 the number of new weapons added 

had increased to 7,178, with 838 retired from the stockpile during the same year 

(98). To meet the high demand for Pu during this period (94), recycling of Pu 

from scraps, residue and retired weapons to meet production demands did occur 

(99).  

As an example of Pu recycling, at the Hanford site Pu was recovered from 

lathe turnings, casting skulls and Pu scraps from other processes in the 

RECUPLEX facility (77). The RECUPLEX facility recycled the Pu by dissolving 

the material and then passing it through a TBP-based solvent extraction process 

independent of the REDOX or PUREX facilities. The Pu nitrate solution from the 

RECUPLEX facility was then reintroduced to the Pu finishing process (77) along 

with the Pu from the REDOX and PUREX facilities. The mixing of Pu from the 

different process streams and different reactor fuel loads would result in a blend 

of Pu isotopics, effectively erasing the isotopic signatures of the original sources. 

Although Pu recycling of retired weapons was not reported at the Hanford site, 

the RECUPLEX plant demonstrates that this technology was available and how 

it could be employed. Rocky Flats, Los Alamos National Laboratory and the 

Savannah River Site also had Pu scrap and residue recycling programs, and 



144 
 

recycling of retired weapons components was reported to have occurred at 

Rocky Flats (99).  

In the period between 1955 and 1960 (98), assuming 100% recycling of Pu 

from retired weapons, and that the Pu from each retired weapon was recycled 

into a single weapon without further mixing of Pu, then 20-33% of the stockpile 

could contain recycled Pu that was from 0-10 years old at the time of weapon 

manufacture and could have originated from the Savannah River Site, Hanford 

Site or a combination of the two. In this context, interpretation of the Pu isotopics 

yields little concrete information about the source term of the Pu even though 

precise and accurate Pu isotopic measurements were made. 

 

8.5 Concluding Remarks 

These data sets demonstrate the utility of applying multiple techniques to 

forensic type analysis of nuclear materials. They also illustrate the limitations of 

this type of analysis when little or no background information is available about 

the material. Even if only basic knowledge of the manufacturing processes and 

purpose of the material can be combined with analytical data, a much more 

accurate description of the source of the material can be presented. The origin of 

trace contaminants can be defined with greater certainty and the conditions that 

formed the material can be described in greater detail leading to a better 

interpretation of the data. Whenever or not an unknown material is analyzed, as 

much effort as is put into the technical analysis should also be placed on building 

an accurate provenance.   
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