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ABSTRACT 

Zirconia-Magnesia Inert Matrix Fuel and Waste Form: 
Synthesis, Characterization and Chemical 
Performance in an Advanced Fuel Cycle 

by 

Kiel Steven Holliday 

Dr. Ken Czerwinski, Examination Committee Chair 
Professor of Chemistry 

Chair of the Department of Radiochemistry 
University of Nevada, Las Vegas 

 There is a significant buildup in plutonium stockpiles throughout the world, because 

of spent nuclear fuel and the dismantling of weapons.  The radiotoxicity of this material 

and proliferation risk has led to a desire for destroying excess plutonium.  To do this 

effectively, it must be fissioned in a reactor as part of a uranium free fuel to eliminate the 

generation of more plutonium.  This requires an inert matrix to volumetrically dilute the 

fissile plutonium.  Zirconia-magnesia dual phase ceramic has been demonstrated to be a 

favorable material for this task.  It is neutron transparent, zirconia is chemically robust, 

magnesia has good thermal conductivity and the ceramic has been calculated to conform 

to current economic and safety standards.  This dissertation contributes to the knowledge 

of zirconia-magnesia as an inert matrix fuel to establish behavior of the material 

containing a fissile component.  First, the zirconia-magnesia inert matrix is synthesized in 

a dual phase ceramic containing a fissile component and a burnable poison.  The 

chemical constitution of the ceramic is then determined.  Next, the material performance 

is assessed under conditions relevant to an advanced fuel cycle.  Reactor conditions were 

assessed with high temperature, high pressure water.  Various acid solutions were used in 

an effort to dissolve the material for reprocessing.  The ceramic was also tested as a waste 



iv 

 

form under environmental conditions, should it go directly to a repository as a spent fuel.  

The applicability of zirconia-magnesia as an inert matrix fuel and waste form was tested 

and found to be a promising material for such applications. 
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CHAPTER 1 

 

INTRODUCTION 

1.1 Inert matrix fuels: general description 

 Current nuclear power technology uses a small range of different fuels including 

uranium oxide based fuel (UOX), mixed oxide fuel (MOX) or metal fuel.  (1).  No matter 

what the fuel type, it is still based on the fissile material (235U or 239Pu) being 

volumetrically diluted by the most abundant uranium isotope, namely 238U.  This volume 

of 238U leads to the production of plutonium through neutron capture and the subsequent 

beta decay of 239U and 239Np (half lives of 23.47 minutes and 2.355 days, respectively) to 

239Pu with a half life of 24,100 years.  Because of this and the dismantling of nuclear 

weapons, there is a significant buildup of civil plutonium stockpiles (2).  It was found 

that at the end of 2003 the total amount of civil plutonium was about 1,600 tonnes (3).  It 

is estimated to be on the order of 1,800 tonnes today (2).   

 The current strategy for destroying plutonium is through fission in mixed oxide fuel.  

Present regulations allow for about 7 % plutonium (containing 65 % fissile plutonium 

isotopes) in MOX fuel.  This fuel composition puts the net plutonium consumption at 

unity and is only successful at altering the isotopics of the fuel (2).  It only addresses 

proliferation concerns and does nothing to reduce the radiotoxicity of the spent fuel, 

which is dominated by plutonium from ~102 to 105 years (2, 4).  To eliminate the 

production of plutonium over the life of the fuel, a uranium free fuel must be developed.  

In uranium free fuel the fissile component, typically Pu-239, is volumetrically diluted by 

a neutron transparent matrix.  This composite is known as an inert matrix fuel.  As can be 
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seen in Table 1, such a mixture using plutonium as the fissile component can have a net 

consumption of 142 kg/TWhe (2).   

 

Table 1: Comparison of the net plutonium and minor actinide (MA) consumption rate (in 

kg/TWhe) for different fuel loadings (2). 

Reactor type 
Net consumption 
rate (kg/TWhe) Reference 

  Pu  MA   

LWR, 100% UOX -25 -5 OECD/NEA (2002, p. 70) 

LWR, 30% MOX 1 -9 OECD/NEA (2002, p. 70) 
LWR, 100% MOX 62 -18 OECD/NEA (2002, p. 70-71) 

LWR, 100% Th/Pu core 115 -9 Phlippen et al. (2006) 

LWR, 100% Pu-IMF 142  -23 Akie et al. (1999) 

 

One study showed that 98 % of the Pu-239 could be burnt in an existing pressurized 

water reactor, while 73.24 % and 81.39 % of the total plutonium was fissioned for reactor 

grade and weapons grade plutonium, respectively (4) [Table 2]. 

 

Table 2: Plutonium isotopic balance in the inert matrix fuel by Lombardi and Mazzola 

(4). 

  Reactor Grade Pu   Weapons Grade Pu 
  BOL EOL Burnt %   BOL EOL Burnt % 

Pu-239 58 1.06 98.17 93 1.15 98.76 
Pu-240 24 10.26 57.25 6 7.51 - 
Pu-241 13 6.17 52.56 0.8 5.11 - 
Pu-242 5 9.27 - 0.2 4.83 - 

Fissile Pu 71 7.23 89.82 93.8 6.26 93.33 
Fertile Pu 29 19.53 32.64 6.2 12.34 - 
Total Pu 100 26.76 73.24 100 18.61 81.39 

Fiss./fert. Pu 2.45 0.37     15.13 0.51 
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The concept of an inert matrix fuel is not new, and research on the subject was first 

performed in the early sixties (5-7).  Due to the postponement and perhaps abandonment 

of fast breeder reactors as a means of plutonium disposal and the growing concerns of 

proliferation and waste radiotoxicity, inert matrix fuels have seen a renewed interest since 

the early nineties (5).  Inert matrix fuels have been identified as useful to three different 

applications with three different time scales.  The first application would be deployment 

in current pressurized light water reactors (PWRs).  This would enable the burning of 

plutonium with current technology making it the fastest way of utilizing inert matrix fuel.  

The second would be to burn plutonium via inert matrix fuel in fast reactors, which could 

be envisioned on an intermediate time scale.  Lastly, minor actinides could be fissioned in 

an inert matrix after separation by a recycling scheme.  This would incorporate various 

new technologies and would therefore be considered on the longest time scale (6).  The 

focus of the studies presented in this work will be to address the deployment of an inert 

matrix fuel in existing PWRs on the shortest time scale. 

 For an inert matrix fuel to be deployed in current PWRs it must conform to a series of 

guidelines, if it is to be used in the near future.  By definition the inert matrix fuel must 

be neutron transparent.  The material selected should also be easy to manufacture, have a 

widespread availability and a low cost of starting material.  The material also has to have 

favorable material properties.  This includes: high melting point, good thermal 

conductivity and an absence of phase changes and significant dissociation at high 

temperatures.  In addition nuclear fuel needs to be compatible with reactor components 

including cladding (Zircaloy or steel) and coolant (high temperature water).  A potential 
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inert matrix fuel needs to have good mechanical properties to provide mechanical 

stability in the harsh environment of a nuclear reactor.  Lastly, the material must exhibit 

good stability against radiation.  This will prevent it from crystal structure changes as 

well as swelling and other undesirable affects.  A detailed explanation of the 

requirements summarized here can be found in Matzke et. al. (5). 

 The process of directing research efforts to find an appropriate inert matrix fuel 

candidate is outlined in a paper by Degueldre and Paratte (7).  The first step is to identify 

material with appropriate neutronics properties through simple cell calculations.  This is 

done to characterize the reactivity of the inert matrix components, the fissile vector, and 

any burnable poison that is used to improve the neutronics.  Next the physico-chemical 

screening is performed to identify material with favorable thermodynamic, compatibility 

and solubility properties.  This is mainly done through literature review of material 

studied for both fuel and waste form applications.  Material that shows promise for 

application as an inert matrix fuel is then synthesized.  It should be noted that material 

used for this purpose typically has cerium oxide used as a plutonium oxide homolog.  The 

material is then characterized using X-ray diffraction to identify phases present and 

theoretical density, which is then compared with geometric density.  At the microscopic 

level, both optical and scanning electron microscopes are used to study pore space and 

grain structure.  The characterization is completed by irradiation studies via accelerators 

or research reactors.  These studies monitor such aspects as swelling, crystal structure, 

temperature and mechanical behavior.  The next step for potential material would be 

advanced nuclear engineering calculations based on the precept: “The new fuel must be 

conceived such as to be suitable for loading into present-day power reactors, without any 
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geometrical modifications of the core (7).”  This limits the reactor design, total power, 

length of cycles and safety restraints to the plant.  It does not limit how the fuel is loaded.  

Therefore, several concepts have been proposed including a homogenous IMF core, 

heterogeneous IMF and UO2 core or a homogenous (with respect to neutronic 

calculations) IMF and UO2.  Finally, these calculations are used to address issues specific 

to inert matrix fuel such as high burnup and core behavior with respect to accident and 

transient conditions.  One aspect of the fuel that needs to be determined is the fate of the 

spent fuel.  It can be sent directly to the repository in the case of a high burn-up fuel that 

is very chemically stable or to a reprocessing scheme in which the material is recycled 

mainly to reduce the radiotoxicity of the minor actinides and fission products produced.  

A more detailed discussion of the methodology discussed here can be found in the 

literature (7). 

 This methodology has been applied to inert matrix fuel for fast reactors and 

accelerator systems (8), but the most advanced has been for existing light water reactors.  

It has been shown that the life of an inert matrix fuel can be as much as 1,000 days with a 

loading of 20 % standard UO2 fuel with inert matrix fuel making up the other 80 % in 

current reactor designs (9).  The type of inert matrix can have little effect on certain 

aspects of the neutronics, such as criticality (10).  In such cases the thermal properties of 

the inert matrix become significant.  Studies have been performed in an attempt to 

identify such materials that have favorable thermal properties as described earlier (11).  

These thermal properties have been incorporated into detailed calculations with various 

inert matrix fuels to determine temperature coefficient, moderator coefficient and boron 

reactivity worth (12).  These calculations indicated that thermal conductivity and melting 

            5



 

 

point have drastic effects on accident performance related to reactivity induced and 

moderator void incidents.  Thorium oxide additives or burnable poisons such as erbium 

oxide were shown to greatly improve the performance of the inert matrix fuel under these 

scenarios (12).  The addition of thorium does drastically change the characteristics of an 

inert matrix fuel, as thorium is a fertile fuel [Figure 1].  Because this results in the 

production of U-233 it replaces one proliferation concern with another, even though this 

is mitigated through the presence of U-232.  The addition of a small amount (5-7 %) of 

natural uranium will virtually eliminate this proliferation risk with only a moderate 

decrease in burnup potential (13). 

 These studies have led to the identification of several potential inert matrix fuels that 

each have their own advantages, but without the identification of a perfect candidate.  

Metals have superior thermal conductivity, but tend to have higher corrosion rates and 

low compatibility with reactor components such as cladding (14).  Carbides have also 

been investigated, but have a low tolerance to radioactivity in aqueous media (15).  At 

high doses the carbide structure weakens making it more soluble in aqueous media.  

Nitrides were also explored as an option for inert matrix fuels, but manufacturing 
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Figure 1: Analogy in thorium and uranium fertilization (1). 

 

challenges have proven to be difficult to overcome (16).  Ordered fluorite derivatives 

such as spinel (MgAl2O4) (20, 21) and zirconium neodymium pyrochlore (Zr2Nd2O7) (17) 

have also been studied in great detail, but have been found to undergo structural changes 

and significant swelling due to radiation.  The mostly widely studied material, however, 

is cubic stabilized zirconium oxide or zirconia.  The research on this material in recent 

years has made this the most promising material for near term deployment in existing 

reactors (2). 
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1.2 Zirconia as an inert matrix fuel 

 More research has been done on cubic stabilized zirconia than on any other inert 

matrix material.  Because of this, its strengths and weakness are well studied and 

solutions to its shortcomings have been investigated to a greater degree than other 

matrices.  Burnup calculations have been performed with zirconia as the inert matrix 

specifically (18).  It was found that more than 95 % of the Pu-239 and more than 77 % of 

the total plutonium could be burnt in a zirconia matrix.  In addition to plutonium, 

americium and neptunium could also be fissioned to reduce their quantities by 75 % and 

85 % respectively (18).  The idea of burning minor actinides in addition to plutonium by 

a zirconia inert matrix fuel has also been investigated by others and shows promise on a 

longer time scale (19).  These burnup calculations were then verified by experimentation 

in reactor irradiation studies and showed reasonable agreement (20). 

 Next calculations were performed to determine the materials thermal properties under 

irradiation in a pressurized water reactor (26-28).  It was found through these calculations 

that the addition of plutonium, erbium, or yttrium in the zirconia solid solution did not 

affect the thermal properties of the matrix to a large extent.  This is true not only for the 

concentration of the substituting ions, but also for the distribution of the foreign atoms.  

What did, however, affect the thermal conductivity of the matrix were oxygen vacancies.  

As oxygen vacancies increased, the thermal conductivity of the material decreased (21).  

In this way, adding lower valent cations to the zirconia solid solution does lower the 

thermal conductivity, but only because of the influence on oxygen vacancy and not 

because of the cation itself.  Therefore, there should be no difference in thermal 

properties for the addition of tetravalent species and the choice of element given a 
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particular oxidation state should not affect thermal conductivity.  This lends itself to a 

greater flexibility in choice of stabilizer and burnable poison selection.  These 

calculations were verified by monitoring temperatures during reactor irradiations (30, 

31). 

 To perform these studies simulated inert matrix fuel was synthesized (22).  A 

significant amount of research was devoted to optimizing the synthesis for the desired 

properties such as density and microstructure (23).  Various synthesis methods have been 

employed to help improve materials properties including microwave synthesis (24), 

coprecipitation methods (25) and the use of heterogeneous pellets (26).  The density of 

the synthesized pellet is of particular importance and has been studied in depth (27).  In 

addition to physical properties, phase relationships were also examined for various 

components that could be incorporated into a zirconia based inert matrix fuel.  In one 

study the phase relationship between zirconia, thoria, and urania was examined (28).  It 

was found that zirconia and thoria were not mutually soluble while urania was distributed 

evenly throughout both phases.  The phase relationship between zirconia and plutonia 

was also examined and the cubic phase transition was examined in more detail (29).  The 

phase relationship between zirconia and various burnable poisons was also calculated 

(30).  In addition to various burnable poisons, these materials were then synthesized and 

characterized with various stabilizers including yttrium, lanthanum and praseodymium 

(31). 

 Once the material is synthesized to a suitable density, it can be characterized.  A 

review of material characterization studies summarizes a great deal of the work that has 

been performed on the physical properties of zirconia (32).  It was found that 
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microstructure has a large influence on the strength of the material and therefore the 

fabrication process is important as it is what dictates grain size through initial mixing and 

temperature and duration of sintering.  Zirconia was, however, found to be comparable to 

urania in strength and durability and is therefore not believed to deviate from experience 

gained with UO2 as a nuclear fuel.   

 After synthesis and characterization the simulated inert matrix fuel generally 

undergoes irradiation studies either in a reactor or with an accelerator driven system.  

Accelerator driven systems have the advantage of being able to impart a large dose to a 

sample over a relatively short time.  It is also possible to study the fission gas retention in 

an inert matrix with an accelerator system if a noble gas is used as the bombarding ion 

(33).  From this it was found that fission gases should not escape the fuel pellet.  They do 

have a higher mobility in zirconia than in urania because of higher operating temperature.  

Therefore, it should be noted that increasing the thermal conductivity of the material 

would correct this potential problem.  In terms of radiation damage single crystal zirconia 

bombarded by an accelerator driven system behaved similar to that of UO2 (34).  Because 

of its potential as a highly radiation resistant inert matrix fuel, zirconia has undergone 

several reactor irradiations to determine its radiation tolerance and performance in reactor 

conditions.  It was shown in irradiations that both calcium and yttrium stabilized zirconia 

exhibit stable and consistent irradiation behavior and that homogenous distribution of the 

fissile material was superior to a heterogeneous distribution (35).  A more recent paper on 

the irradiations also reports a higher fission gas mobility as compared to UO2 fuel due to 

the higher operating temperature as previously discussed (36).  That study still concludes 

that zirconia has a good radiation tolerance and has been shown to be chemically inert to 
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reactor components.  There is evidence of swelling due to irradiation in earlier studies, 

but only in samples synthesized by a dry synthesis route of mixing the oxide powders 

(37).  This suggests that it is a problem that may be overcome through better synthesis 

methods, such as coprecipitation.  A review on the irradiation of zirconia inert matrix fuel 

reports good radiation tolerance, low fission gas release comparable to MOX and 

excellent chemical inertness (38).  The only problems that have arisen are fission gas 

mobility and unfavorable reaction to accident conditions due to low thermal conductivity, 

which could be improved through the addition of a secondary phase with higher thermal 

conductivity (39).  Magnesium oxide has been proposed as a secondary phase to improve 

thermal conductivity could be magnesium oxide. 

 

1.3 Magnesium oxide as an inert matrix fuel 

 Magnesium oxide is another material well suited to be an inert matrix fuel for nuclear 

applications.  It is neutron transparent and has the potential for extremely high burnup, 

especially in the case of americium and curium (14).  This would indicate that if 

magnesium oxide were added to our inert matrix, it would not significantly change the 

neutronics characteristics from previous studies.  The neutronics calculation for MgO was 

performed to analyze the material in various accident scenarios and was found to behave 

as good as or better than UO2 (14).  Because of this potential, material was synthesized 

and the process for making magnesium oxide inert matrix fuel was optimized (40).  It 

was possible through the dry route synthesis of mixing oxide powders and the sol-gel 

process to synthesize simulated fuel pellets with suitable densities.   
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Samples were then irradiated in research reactors to assess their performance.  One 

such irradiation was performed to determine the ability of MgO to be used as an inert 

matrix for the burning of minor actinides, such as americium and curium (41).  It was 

determined that magnesium oxide was well suited for such a task.  It had a high radiation 

tolerance that was tested in multiple irradiation studies (42).  Even as a dual phase 

mixture with pyrochlore, magnesium oxide exhibited superior radiation resistance and 

excellent neutronic properties (43).  There was one negative result that was discovered in 

a particular irradiation involving MgO as an inert matrix for UO2.  In this case the UO2 

experienced volume swelling due to irradiation and cracked the magnesium oxide inert 

matrix (44).  This could be mitigated if the fissile material was incorporated into a solid 

solution such as zirconia.  In that case it would not undergo swelling and crack the 

magnesium oxide matrix.  Other than this single event, which had more to do with UO2 

than the magnesium oxide (several other potential inert matrix fuels also cracked under 

similar conditions) the irradiations have been successful.  In fact, it was shown that the 

magnesium oxide matrix exhibited less than 1 % volumetric swelling and less than 15 % 

fission gas release (45) and these were confirmed for as a dual phase inert matrix fuel in 

future irradiations (46).  These studies point to magnesium oxide as a suitable material in 

terms of radiation resistance and neutronic properties for an inert matrix fuel. 

The real advantage to magnesium oxide is not its radiation resistance or neutronic 

properties, but its thermal characteristics.  Magnesium oxide has a much higher thermal 

conductivity than standard UO2 or MOX fuel.  Because of this, it is possible to use 

magnesium oxide as a secondary phase to improve the thermal conductivity of a material 

(5).  Magnesium oxide has a low mutual solubility with the actinides and thereby retains 

            12



 

 

it superior heat transfer properties as a pure phase.  This concept was exploited in the 

case of MgO and Nd2Zr2O7 pyrochlore as a dual phase inert matrix fuel.  Molecular 

dynamics calculations were carried out to estimate the thermal conductivity of the 

simulated fuel and to determine its dependence on grain size and temperature (47).  It was 

found that the thermal conductivity of the material could be brought to similar values of 

existing fuels with the addition of magnesium oxide.  Magnesium oxide also exhibited 

acceptable mechanical behavior that was suitable to its use as a nuclear fuel (32). 

Magnesium oxide, as with other material, is not the perfect inert matrix fuel.  The 

problem is its compatibility with reactor components.  Specifically, with coolant water in 

the event of a cladding failure the magnesium oxide is hydrolyzed to magnesium 

hydroxide, which is then dissolved (40).  This results in releasing the fissile phase from 

the fuel and although it is not soluble, it leaves the fuel pin via coolant flow before 

settling in the reactor vessel.  To improve the corrosion resistance of the magnesium 

oxide a highly durable secondary phase such as zirconia could be added to retard the 

dissolution of the magnesia phase. 

 

1.4 Dual phase zirconia-magnesia inert matrix fuel 

 The zirconia-magnesia system has been under investigation for nearly a century.  The 

phase diagram that is currently in use was first proposed in an incomplete form in 1933 

by Ebert and Cohn (48).  Since then phase boundaries have been more accurately 

determined and more temperatures have been investigated.  In 1952, it was established 

that at 2000oC the range of a single phase of cubic solid solution existed between 5 and 

16 mol. % MgO (49).  It was also demonstrated that magnesia was adequate to stabilize 
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the cubic phase at high temperatures.  Later, these phase relationships were found to hold 

true at 1600oC (50).  Specifically, it was determined that the limit of isomorphic 

substitution for magnesium oxide in cubic zirconia at 1600oC was 16 mol %.  Studies 

were also performed on ternary systems by adding different components such as calcium 

and yttrium to the zirconia-magnesia system (60-61).  In addition to chemical properties, 

the physical properties such as hardness and fracture strength were also established for 

these materials (51). 

 Lately, this system has been investigated for its potential as an inert matrix fuel (52).  

A synthesis method was established for a dry route synthesis of mixing oxide powders to 

create a high density zirconia-magnesia ceramic that included erbium (53).  It was also 

determined that the addition of zirconia to magnesia resulted in an exponential decrease 

in the rate of mass loss due to corrosion by 300oC water (53).  It should be noted that the 

corrosion studies were done under static conditions.  The presence of boric acid also 

lowered the corrosion rate of the material through the formation of a magnesium hydrated 

borate by the equation shown below: 

1) MgO + H3BO3  Mg(OH)BO2 + H2O 

A scheme for the corrosion of magnesia in the presence of zirconia was also proposed.  

This scheme explains the increased corrosion resistance of magnesia in the presence of 

zirconia through the path that the corrosion takes.  It is proposed that in pure magnesia 

the corrosion progresses along grain boundaries resulting in swelling and cracking to 

remove entire grains that are subsequently dissolved.  In the presence of adequate 

amounts of zirconia (nearly 50 vol. %) it is proposed that the swelling is insufficient to 

break off entire grains and because of this the corrosion only propagates along the face of 
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the grain.  This mechanism progresses much slower (53).  A diagram of this proposed 

scheme in the presence of zirconia is shown in Figure 2. 

 

 

Figure 2: Schematic of the hydration process in zirconia-magnesia ceramics as proposed 

by Medvedev et. al. (53). 

 

 Once the hydration resistance was established, the second main issue to the feasibility 

of zirconia-magnesia inert matrix fuel was thermal conductivity.  Material was 

synthesized in the same manner described above incorporating erbium into a zirconia-

magnesia matrix and the thermal conductivity was determined for compositions with 40-

60 wt. % magnesium oxide (54).  It was found that all compositions that have greater 

than 40 wt. % magnesium oxide, regardless of the presence of erbium oxide, have a 

thermal conductivity greater than that of standard UO2 fuel as can be seen in Figure 3 and 

Figure 4. 
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Figure 3: Thermal conductivity calculated from experimental data on the binary system 

ZrO2-MgO as compared to UO2 (54). 

 

 

Figure 4: Thermal conductivity calculated from experimental data on the ternary 

system ZrO2-MgO-ErO1.5 as compared to UO2 (54). 
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 The feasibility of recycling the zirconia-magnesia inert matrix fuel was also explored 

by examining its solubility in nitric acid, which is the media of choice for current 

reprocessing schemes.  Ceramic samples were added to concentrated nitric acid and 

heated to 55 oC with stirring.  Analysis was done by mass throughout the experiment and 

samples were characterized by microscopy at the conclusion of the study (54).  It was 

found that all of the magnesia phase was soluble in nitric acid and dissolved throughout 

the volume of the pellet.  The zirconia phase was not soluble to any degree in the 

concentrated nitric acid.  This dissolution study resulted in no change in pellet dimension, 

but a drastic mass loss due to the dissolution of the magnesia, resulting in a porous 

zirconia ceramic (54).  These results would indicate that nitric acid alone is not suitable 

for dissolving this inert matrix fuel for reprocessing.  It should be noted that these 

samples did not contain a fissile component or fissile component homolog. 

 Samples were prepared in an effort to demonstrate the synthesis of zirconia-magnesia 

inert matrix fuel containing plutonium oxide as the fissile component (55).  The solid 

oxides of zirconium and magnesium were mixed, calcined, pressed, and ground to less 

that 250 µm before being mixed with plutonium oxide and pressed into pellets.  The 

green pellets were then sintered under air to 1700 oC for 7.5 hours.  This resulted in two 

dominant phases of pure cubic MgO (periclase) and a cubic zirconia solid solution of 

zirconium, magnesium and plutonium oxides.  There was, however, another minor phase 

of plutonium oxide inclusions as can be seen in Figure 5 (55).  These plutonium oxide 

inclusion contained some dissolved zirconium and magnesium oxide.  These results 

indicate that the synthesis method was inadequate at making a two phase mixture capable 
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of dissolving all of the fissile material and no attempt was made to incorporate a burnable 

poison into these samples. 

 

 

Figure 5: Key microstructural features identified in the sample are a two-phase matrix 

(a) and a PuO2-rich inclusion (b) (55). 

 

1.5 Research goals and objectives 

 From the previous studies it is possible to identify research needs in order to 

determine the feasibility of zirconia-magnesia inert matrix fuel.  First, it must be 

demonstrated that a dual phase zirconia-magnesia inert matrix fuel can be synthesized 

with both a fissile component and a burnable poison.  Secondly, the material dissolution 

behavior under environmental conditions must be investigated to assess its suitability as a 

waste form should this fuel be incorporated into a once through fuel cycle.  Third, a 

suitable means of dissolving the material must be engineered if reprocessing is going to 

be possible with this advanced fuel form.  Lastly, the irradiation behavior of this material 

should be investigated to confirm that there is no change in structure, so that dissolution 

studies and long term behavior are validated. 
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 The first objective, demonstrating that a dual phase zirconia-magnesia inert matrix 

fuel can be synthesized with a fissile component and burnable poison is addressed in 

Chapter 3.  This was done by utilizing a coprecipitation method to synthesize ceramics 

containing zirconium oxide, magnesium oxide, erbium oxide (as the burnable poison) and 

a fissile component.  Three elements were used as the fissile component.  Cerium oxide 

was first used as a plutonium oxide homolog, so that procedures could be established in 

the absence of radioactivity and to assess the suitability of cerium as a plutonium 

homolog.  Next, uranium oxide was used as a fissile component and plutonium homolog, 

which was believed to be more suitable because of its similar oxidation-reduction 

behavior to plutonium.  Lastly, plutonium was used to verify homolog studies and fulfill 

the objective by demonstrating a two phase inert matrix fuel of cubic zirconia solid 

solution and pure magnesia. 

 The second objective, determining the materials dissolution behavior under 

environmental conditions is addressed in Chapter 4.  There are two experiments that were 

designed to deal with this problem.  One was a corrosion study performed with a Soxhlet 

apparatus in which the sample was constantly contacted with, but never submerged in, 

hot water.  Corrosion was monitored by mass loss and samples were examined before and 

after the experiment by microscopy methods.  The other experiment designed to address 

this problem was to submerge samples of the material in environmental type solutions of 

deionized water, silicate-bicarbonate solution and brine for extended periods of time.  

Samples were taken from the solutions and analyzed for dissolved material by inductively 

coupled plasma – atomic emission spectroscopy.  Experiments were conducted with 

either cerium, uranium or plutonium oxide as the fissile component and compared.  
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Samples were also assessed for their dissolution behavior under reactor condition in this 

chapter in order to verify results from previous studies (53) and extend them to material 

that contains a fissile component. 

 The third objective of discovering a means to dissolve the ceramic in an effort to 

reprocess the material is discussed in Chapter 5.  This objective was assessed by 

submerging samples in acid contained in a round bottom flask with condenser so that 

samples could be heated to the boiling point of the acid.  Acids used for these 

experiments included nitric, sulfuric and a solution of nitric and hydrofluoric acid with 

peroxide.  Various concentrations and temperatures were used in this investigation.  

Samples containing cerium, uranium and plutonium oxide as the fissile component were 

used and compared to assess the accuracy of uranium and cerium as a plutonium 

homolog. 

 The fourth objective was to determine the irradiation behavior of the zirconia-

magnesia inert matrix fuel and is reported in Chapter 6.  This is important for two 

reasons.  First, the irradiation behavior alone is important to material performance.  

Secondly, if the material does not undergo significant change due to irradiation its 

dissolution behavior is likely to remain similar to the unirradiated sample.  The radiation 

tolerance of the material was determined by bombarding it with heavy ions via an 

accelerator.  Dose was calculated so that the irradiation could be compared to previous 

studies and material changes were determined by grazing incident X-ray diffraction. 

 These objectives were identified as gaps in the knowledge of zirconia-magnesia inert 

matrix fuel.  Addressed in this thesis is the synthesis and characterization of zirconia-

magnesia inert matrix containing a fissile component and erbium oxide as a burnable 
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poison.  The dissolution behavior of the material in aqueous media including reactor and 

environmental conditions is determined to assess its feasibility as a fuel and waste form.  

Possible means of dissolving the material so that it can be reprocessed have been 

identified.  The materials radiation tolerance has been established and compared to 

related structures.  This synthesis, characterization and dissolution behavior 

determination is to assess the feasibility of zirconia-magnesia as an inert matrix fuel and 

waste form.  
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CHAPTER 2 

 

INSTRUMENTATION AND METHODS 

2.1 Synthesis 

2.1.1 Precipitation 

Nitrate salt solutions of Pu, U, Zr, Mg, Ce, and Er were mixed with a stir rod in a 1L 

plastic beaker in the fume hood, on a tray as secondary containment.  All chemicals are 

reagent grade and obtained from Alpha Aesar with the exception of uranium and 

plutonium.  Uranium was obtained from J.T. Baker Laboratories and plutonium was 

obtained from Isotope Production Laboratories.  The metal ions were precipitated as oxy-

hydroxide by adding excess ammonium oxalate in concentrated ammonium hydroxide.  

This precipitate was then filtered in a designated Buchner funnel and transferred to a 

beaker.  The liquid filtrate was monitored by scintillation counting and disposed.  The 

precipitate contained in the beaker was placed in a secondary container and transferred to 

a dry-furnace.  The dried precipitate was then removed from the dry-furnace and placed 

in a designated sample preparation box (alpha-box without gloves), which allows one to 

retain dexterity, while working in a slight negative pressure with little air flow.  In the 

sample preparation box, the precipitate and a few drops of water were transferred into a 

grinding jar designated for radiological work.  The grinding jar was placed in the 

secondary container to be transported to the ball mill and the sample preparation box was 

monitored for potential contamination.  The grinding jar and the ball mill were surveyed 

before and after the milling.   
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2.1.2 Solid synthesis 

All chemicals are reagent grade and obtained from Alpha Aesar with the exception of 

uranium and plutonium.  Uranium was obtained from J.T. Baker Laboratories and 

plutonium was obtained from Isotope Production Laboratories.  Solid oxides of 

zirconium, magnesium, erbium and cerium or uranium were fired at 900oC.  After 

cooling they were weighed and placed in the sample preparation box where they were 

transferred to a grinding jar designated for radiological materials.  The grinding jar was 

placed in the secondary container, transported to the ball mill and the sample preparation 

box was monitored for potential contamination.  The grinding jar and ball mill were 

surveyed before and after the milling. 

2.1.3 Calcination 

The grinding jar was placed in the secondary container to be returned to the sample 

preparation box where the ground material was transferred to a large crucible.  The 

crucible was covered by a lid and placed in a secondary container that was transferred to 

the muffle furnace.  A label was posted for information on radionuclide and activity.  The 

sample preparation box was monitored for contamination after transferring material from 

grinding jar to crucible and furnace.   The material was calcined in a muffle furnace at 

700oC for four to twelve hours.  The crucible was removed from the furnace, covered, 

placed in a secondary container and taken to the sample preparation box.  

2.1.4 Pellet pressing 

In the sample preparation box the material was transferred to a press die designated 

for radiological work.  The die was doubly contained and transferred to the hydraulic 

press.  The press was surveyed before and after pressing.  The die was then transferred to 
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the sample preparation box and the pellet removed.  The pellet and remaining sample 

material was placed in properly labeled containers and stored.  The sample preparation 

box was surveyed for potential contamination. 

2.1.5 Sintering/annealing 

The pellets were placed in a sintering boat, the sintering boat covered with alumina 

foil, and transported from the sample preparation box to the high-temperature furnace 

using a tray as a secondary containment. The sintering boat was placed on a ceramic plate 

and inserted in the working tube of the high temperature furnace.  The furnace was sealed 

via two 40 mm water-cooled KF flanges with Viton O-rings.  The furnace atmosphere 

was controlled and purged by CO2, Ar, Ar/5%H2, N2, or N2/8%H2 gas, and the off-gasses 

were directed into a fume hood.  The maximum achievable furnace temperature is 

1750°C, however temperatures of >1700°C are not necessary during dry-chemical 

processing of oxide fuels. Annealing times of 8 to 24 hours were required with a ramp up 

and down of 5 K/min.  A label was placed close to the furnace to inform about 

radionuclide and activity inserted into the furnace.  The furnace temperature was 

programmed to decrease to 200°C and the boat with the sintered pellets was then 

removed from the working tube and temporarily placed on a ceramic plate. The sinter 

boat with pellets was covered with aluminum foil and transferred to the sample 

preparation box via a tray. The high-temperature furnace was surveyed before and after 

its use.    
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2.2 Thermal gravimetric analysis/differential scanning calorimetry 

Samples of 5 – 15 mg of precipitate were removed from the drying oven before they 

were completely dry.  These samples were placed in an alumina crucible and transferred 

via double containment to the TGA/DSC instrument.  Samples were analyzed by a 

Netzsch STA 449 C Jupiter TGA/DSC under Ar atmosphere and heated from 20oC to 

1000oC.  Thermal gravimetric analysis was used to quantify mass loss over a range of 

temperature.  Differential scanning calorimetry was used to determine the temperature at 

which reactions take place by monitoring energy absorbed or evolved from the sample 

over a temperature range. 

 

2.3 X-ray fluorescence 

The preparation of standards for x-ray fluorescence was performed by mixing the 

oxide powders of zirconium, magnesium, uranium and erbium after they had been ashed 

at 1000oC and massed.  This mixture was mechanically mixed for 1 hour in a Retsch 

PM100 ball mill at 500 rpm then pressed at 500 to 600 MPa with a SPEX Carver 

hydraulic press in a SPEX 13mm die to produce pellets.  These pellets were then sintered 

as previously described. 

Standards and samples were then ground to a powder via mortar and pestle and 

diluted 1:1 by mass with ground quartz.  This mixture was ball milled for one hour as 

previously described to achieve a homogeneous mixture.  One gram of this mixture was 

mechanically stirred into 6 grams lithium tetraborate and poured into a carbon crucible.  

The sample was then placed in a Barnstead/Thermolyne F48000 muffle furnace at 

1050oC for 30 minutes, stirring every five minutes to create a glass disc that can be used 
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for x-ray fluorescence.  X-ray fluorescence was done using a PANalytical Axios 

instrument.  This was used to quantify the amount of each element within the bulk sample 

by the intensity of the characteristic x-rays emitted from the sample. 

 

2.4 X-ray diffraction 

Sintered pellets were ground to a powder and 10 mg were mixed with 2-4 mg of LaB6 

standard (NIST SRM 660a) as an internal line standard. The internal standard allows for 

correcting the sample displacement and goniometer off-set.  This mixture was spread in a 

thin layer over a low-background sample holder (single crystal silicon wafer) with the aid 

of methanol.  The analysis was performed on a PANalytical X’pert Pro diffractometer, 

which uses a Cu anode with Ni filter (wavelength Kα1 at 0.1540598 nm and Kα2 at 

0.1544426 nm) and a fast multiple-Si-strip solid state detector (X’Celerator).  Patterns 

were taken using 40 mV and 40 mA from 10 to 120 o2θ with a step size of 0.0083556 o2θ 

and 50.165 seconds per step.  Phases were identified using PANalytical X’pert High 

Score Plus.  Bruker-AXS TOPAS2 was then used to perform the least-square lattice 

parameter refinement and Rietveld analysis.  Structure input parameters were taken from 

Inorganic Crystal Structure Database (ICSD).  Instrument parameter inputs were as 

follows: primary radius (mm) 240, secondary radius (mm) 240, receiving slit width (mm) 

0.1, divergence angle (°) 1, filament length (mm) 10, sample length (mm) 20, receiving 

slit length (mm) 30, primary sollers (°) 2.3, and secondary sollers (°) 2.3. 

 Plutonium samples were analyzed by grinding the sample to a powder and spreading 

it in a thin layer over a low-background sample holder (single crystal silicon wafer) with 

the aid of methanol.  XRD patterns were collected on a Bruker D8 Advance 
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diffractometer, which uses a Cu anode with monochrometer (wavelength Kα1 at 

0.1540598 nm).  Patterns were taken using 40 mV and 40 mA from 10 to 120 o2θ with a 

step size of 0.01 o2θ and 4 seconds per step.  Phases were identified using Bruker-AXS 

EVA.  Bruker-AXS TOPAS3 was then used to fit the diffracted intensities and to perform 

least-square and Rietveld analysis.  Structure input parameters were taken from Inorganic 

Crystal Structure Database.  Instrument parameter inputs were as follows: primary radius 

(mm) 435, secondary radius (mm) 435, receiving slit width (mm) 0.1, divergence angle 

(°) 1, filament length (mm) 12, sample length (mm) 8, receiving slit length (mm) 12, 

primary sollers (°) 2.3 and Lorenz polarization factor was set to 26.6. 

 

2.5 Optical Microscopy 

Pellets were vacuum mounted with Struers Epofix resin.  Sample mounts were then 

ground and polished to a mirrored finish (1 micron) using a Struers TegraPol-15.  Pellets 

were imaged using a Leica DM inverted reflectance microscope equipped with a digital 

Leica DFC 480 camera or a Leica 2500P microscope with a DFC 295 camera.  Images 

were analyzed using Leica Application Suite 3.3.0.  These microscopes are capable of 

10x to 1000x magnification. 

 

2.6 Secondary electron microscopy and electron probe microanalysis 

A Joel 5600 secondary electron microscope equipped with energy dispersive 

spectroscopy was used to evaluate microstructure evolution and to determine 

stoiciometry of phases for plutonium containing samples.  It was run at 20 keV at a 

working distance of 20 mm and a spot size of 30.  Spot size is a Joel unit proportional to 
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current.  Samples were either set in resin or fixed to carbon tape and carbon coated.  They 

were then imaged and semi-quantitative analysis was used to determine the 

concentrations of each element within each phase.  With well characterized standards this 

method has proven to be accurate within 1 wt. %.  For unknown samples such as the ones 

used in this study it is estimated to be accurate to 5 wt. %.  Mounted pellets were carbon 

coated and analyzed with a Joel JXA 8900R electron probe microanalyzer.  Elemental 

mapping was done up to 9 mm2 at 15 keV and 100 nanoamps.  Quantitative 

measurements were performed at 15 keV and 30 nanoamps. 

 

2.7 X-ray absorption fine structure / X-ray absorption near edge spectroscopy 

Samples were prepared by 1:10 dilution of sample to boron nitride by mass, so that 

total uranium concentration was 0.5% (wt/wt).  Uranium LIII edge (17,166 eV) and 

zirconium K edge (17,663 eV) x-ray absorption spectra were collected at the Advanced 

Photon Source at Argonne National Lab (BESSERC-CAT Beamline 12) using a Si (1, 1, 

1) double crystal monochromator.  Spectra were recorded in transmission geometry using 

Ar filled ionization chamber and in fluorescence using a 13 element detector.  Energy 

calibration was done using an yttrium foil (K edge = 17,998 eV). 

For each sample, several EXAFS spectra were recorded up to 13 Å-1 and averaged.  

The background contribution was removed using Autobk software and data analysis was 

performed using WINXAS.  For the fitting procedure, amplitude and phase shift 

functions were calculated by FEFF8.2.  The feff.inp files were generated by ATOMS 

using crystallographic structures taken from literature in the Inorganic Crystal Structure 

Database (ICSD).  The adjustments of EXAFS spectra were performed under the 
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constraints So
2 = 0.9, a single value of energy shift ΔEo was used for all scattering, and 

coordination number was fixed at the values given by literature. 

 

2.8 Pressure vessel dissolution 

To mimic fuel behavior under reactor conditions, a pressure vessel was assembled to 

determine solubility and corrosion of the ceramic fuel pellets at temperatures exceeding 

300oC and at pressures over 10.3 MPa (1500 psi).  The setup allows in-situ sampling 

throughout the experiment and samples were analyzed by ICP-AES.  The sample and 

deionized water were placed inside the pressure vessel and the integrity of the vessel was 

confirmed by high pressure argon gas.  The temperature was set and stirrer initiated.  

Once at temperature samples were obtained by opening a valve allowing the pressurized 

water to fill a side arm attached to the vessel.  The valve was closed sealing the pressure 

vessel.  A second valve further down the line was then opened to evacuate the side arm 

and obtain the sample. 

 

2.9 Acid dissolution 

Acid dissolution studies were carried out to determine solubility of the matrix in 

various media.  Samples were either pelletized where surface area was determined by 

geometric methods or ground to a coarse powder and surface area determined by gas 

sorption techniques.  Samples were placed in 250 mL round bottom flasks that were 

equipped with a condenser and positioned in a heating mantle.  The acid (nitric acid or 

sulfuric acid) was added to the round bottom flask in an amount of either 150 mL or 200 

mL.  Samples were taken by pipette and diluted to 1 % acid by volume to facilitate 
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analysis by ICP-AES.  Samples that were exposed to hydrofluoric acid were handled in 

the same way but in a Teflon vessel without heating. 

 

2.10 Pulse flow environmental dissolution 

Teflon vessels with air tight screw lids were filled with 50 mL of solution to be used 

for environmental dissolution studies.  A 5 mm diameter pellet was then placed in the 

solution.  Three different compositions were used.  They are as follows: 

Zr0.625Mg0.3U0.05Er0.025O1.7, Zr0.475Mg0.45U0.05Er0.025O1.5, and Zr0.325Mg0.6U0.05Er0.025O1.4.  

Three different solutions were used for the dissolutions.  They are as follows: deionized 

water, silicate water made by dissolving 0.179 g NaHCO3 and 0.058 g SiO2 as silicic acid 

in 1 L of water and adjusting the pH to 7.5, and brine prepared by dissolving 48.2 g KCl, 

90 g NaCl, and 116 g MgCl2 in 1 L of water and adjusting the pH to 6.5.  The lid was 

screwed on tightly and total mass of container, water and sample was determined and 

labeled to assess loss of solution.  Samples were then placed in an oven capable of 

maintaining 90oC.  The lid was retightened at one hour and every 24 hours to ensure a 

good seal for the first three days.  The bulk of the samples were collected every two 

weeks.  However, a duplicate sample was obtained at one week and another at three 

weeks to assess any differences due to sampling time.  Samples were taken by removing 

the vessel from the oven and letting it cool for one hour.  Then a 5 mL aliquot was 

removed from the vessel.  The vessel was then brought back to original volume with 

appropriate solution by mass of total solution, sample, and vessel to account for losses 

due to evaporation.  Each combination of sample and solution was run in triplicate with a 
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single blank of solution without sample.  Elemental concentrations were analyzed by 

ICP-AES. 

 

2.11 Soxhlet corrosion study 

To determine the corrosion resistance of the ceramics, samples were placed via a 

cellulose thimble in a Soxhlet apparatus, and the pellets were continuously contacted with 

distilled hot water (65-70oC).  To evaluation this type of experiments, the specific mass 

loss was determined over an extended time period, typically 2,000 hrs. The specific mass 

loss was characterized by a first order reaction and allows the extrapolation of long-term 

behavior.  

 

2.12 Inductively coupled plasma – atomic emission spectroscopy 

Samples from dissolution studies were analyzed by inductively coupled plasma – 

atomic emission spectroscopy (ICP-AES) on a Thermo iCAP 6000 with iTEVA software.  

The instrument was run at 1150 watts and the following lines were used to analyze the 

elements of interest: Er at 337.271 nm, Mg at 202.582 nm, U at 367.007 nm, and Zr at 

343.823 nm.  A seven point calibration was used, samples were measured in triplicate, 

and a calibration check was performed every 50 samples. 

 

2.13 Scintillation counting 

A Perkin Elmer model 3100TR liquid scintillation counter was used to determine 

plutonium dissolution from the zirconia – magnesia matrix.  Background was subtracted 

manually by counting a blank sample.  Counting time was determined by setting the 2 
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sigma terminator at 2 %.  Counts greater than three times background were considered 

significant.  Samples in concentrated acids were diluted to eliminate quenching concerns. 

 

2.14 Transmission electron microscopy 

 A TECNAI-G2-F30 Supertwin transmission electron microscope with a 300 keV 

field emission gun was used to study the material at high magnification.  Bright-field 

mode (TEM-BF) was used to study the morphology of samples, while high resolution 

mode (HRTEM) in combination with selected area diffraction (SAD) was used to 

characterize microstructure.  TEM images were recorded using a slowscan CCD camera 

attached on a Gatan GIF 2000 (Gatan Image Filter).  Elemental composition and 

distribution were investigated by STEM and the corresponding XEDS. 

 

2.15 Irradiation studies 

Ion irradiations were performed at cryogenic temperature (~100 K) in the Ion-Beam 

Materials Laboratory at Los Alamos National Laboratory, using a Varian ion implanter 

operating at 150 kV. About 300 keV Kr++ ions were implanted at normal incidence using 

a dose rate of 1 x 1016 Kr/m2 s to fluencies ranging from 0.5 to 2 x 1020 Kr/m2.  Irradiated 

samples were analyzed using both grazing incidence X-ray diffraction (GIXRD) and 

transmission electron microscopy (TEM). GIXRD measurements were performed using a 

Bruker AXS D8 Advanced X-ray diffractometer at a gracing incidence angle of a = 0.25o. 

Irradiated samples were prepared in cross-sectional geometry for TEM examination using 

a focused-ion-beam (FIB) apparatus. TEM investigations were performed using a Philips 

CM-30 instrument operating at 300 kV. 
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CHAPTER 3 

 

SYNTHESIS AND CHARACTERIZATION 

3.1 Synthesis with cerium as a plutonium homolog 

Zironia-magnesia inert matrix ceramic containing cerium oxide as a plutonium oxide 

homolog and erbium oxide as a burnable poison was synthesized using the precipitation 

method described in Section 2.1.  Cerium oxide is believed to be a suitable structural 

homolog for plutonium oxide because it can occupy the tetravalent oxidation state in 

which plutonium is expected to be in under these conditions and it is a similar size (38).  

The atomic radii of cerium is 185 pm while plutonium is 175 pm.  Cerium is however 

expected to be a poor chemical homolog for plutonium due to the limited number of 

oxidation states accessible to cerium when compared to plutonium.  Because of this, 

future studies were performed with uranium as a plutonium chemical homolog and final 

studies were conducted with plutonium. 

 To monitor the calcination process and establish suitable temperatures and times for 

sintering, a sample was analyzed by thermal gravimetric analysis and differential 

scanning calorimetry (TGA/DSC) according to the procedure described in Section 2.2.  

The TGA/DSC analysis shows that the oxy-hydroxide precipitate is converted to the 

oxide at 262oC by an exothermic reaction and solid solution formation begins with a 

phase transition at 510oC as evident by an exothermic reaction corresponding to constant 

mass [Figure 6].  This was confirmed to be the monoclinic to tetragonal phase transition 

of zirconium oxide by X-ray diffraction.  The calcinations process at 700oC for eight 

hours promotes complete solid solution formation which is also confirmed by X-ray 
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diffraction (56).  This isomorphic substitution is diffusion controlled.  This shows solid 

solution formation at less severe temperatures and durations than the corresponding dry 

synthesis route described in Section 2.1.2. 

 

 

Figure 6: Thermal gravimetric analysis and differential scanning calorimetry of 

Zr0.943Ce0.035Er0.022O1.95 

 

Cerium oxide, as CeO2, content in the ceramics varied from 3.5-10.5% (wt/wt) as this 

is the likely range of fissile material to be incorporated into an inert matrix fuel (57).  

Neutronic calculations have shown an optimal volume ratio of burnable poison to be half 

of the fissile phase (57).  Because of this, the erbium oxide (ErO1.5) content was varied 

from 2.2-6.6% (wt/wt).  The inert matrix was varied from only zirconium oxide to being 

completely magnesium oxide over ten compositions [Table 3]. 
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Table 3: Oxide concentration synthesized with cerium as a plutonium homolog (wt. %) 

sample # % ZrO2 % MgO % CeO2 % ErO1.5 

1 94.3 0.0 3.5 2.2 

2 90.7 3.2 3.8 2.3 

3 86.5 6.9 4.1 2.5 

4 81.4 11.3 4.4 2.8 

5 75.4 16.7 4.9 3.1 

6 67.9 23.2 5.5 3.4 

7 58.6 31.4 6.2 3.9 

8 46.5 42.0 7.1 4.4 

9 30.3 56.3 8.3 5.2 

10 0.0 82.9 10.5 6.6 

 

3.2 Synthesis with uranium as a plutonium homolog 

 Zironia-magnesia inert matrix fuel containing uranium oxide as fissile component and 

plutonium oxide homolog and erbium oxide as a burnable poison was synthesized using 

the precipitation method described in Section 2.1.  Uranium oxide content in the ceramics 

was held constant at 5% (wt/wt) as this is around the minimum of the likely range of 

fissile material to be incorporated into an inert matrix fuel for thermal reactor 

applications (57).  Neutronic calculations have shown an optimal volume ratio of 

burnable poison to be half that of the fissile phase (57).  Because of this, the erbium oxide 

content was held at 2.5% (wt/wt).  The inert matrix was composed of zirconium oxide 
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and magnesium oxide and was varied from being exclusively zirconium oxide to being 

completely magnesium oxide over ten compositions listed in Table 4. 

 

Table 4: Oxide concentration synthesized with uranium as a plutonium homolog (wt. %) 

Sample # % ZrO2 % MgO % UO2 % ErO1.5 

1 92.5 0 5 2.5 

2 87.5 5 5 2.5 

3 82.5 10 5 2.5 

4 77.5 15 5 2.5 

5 72.5 20 5 2.5 

6 62.5 30 5 2.5 

7 47.5 45 5 2.5 

8 32.5 60 5 2.5 

9 17.5 75 5 2.5 

10 0 92.5 5 2.5 

 

The synthesis of the uranium containing inert matrix fuel progressed as expected from 

previous studies using cerium as a plutonium homolog (Section 3.1).  One notable 

difference was in the higher oxidation states accessible to uranium.  The uranium 

precipitated as the oxy-hydroxide in the hexavalent oxidation state to form a bright 

yellow solid.  As this is calcined and subsequently converted to oxide (UO3) it develops a 

deeper orange color [Figure 7].  This compound is then sintered under Ar/H2 to reduce 

the uranium to the tetravalent oxidation state, giving the ceramic pellet a brown to black 
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color after sintering (58).  X-ray fluorescence spectroscopy was used to verify elemental 

concentrations within the synthesized ceramics as described in Section 2.3.  All quantities 

were within expected values with standard deviations averaging 2-5 %.  XRF has verified 

that coprecipitation can be used to reliably synthesize inert matrix ceramics at consistent 

concentrations. 

 

 

Figure 7: Precipitated oxy-hydroxide (right) and calcined oxide (left) precursors of 

uranium containing zirconia-magnesia inert matrix fuel 

 

3.3 Synthesis with plutonium 

 Zironia-magnesia inert matrix fuel containing plutonium oxide as the fissile material 

and erbium oxide as a burnable poison was synthesized using the precipitation method 

described in Section 2.1.  However, due to the high solubility of magnesium it was found 

that a large portion of this element remained in the filtrate.  This became evident in this 

study because of mass and volume reduction in the synthesis from several grams to 

around 100 mg due to the high radiological activity of plutonium (59).  The small 
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differences in solubility of the cations after precipitation manifests as fluctuations in the 

concentrations within the solid.  Most notably the high solubility of magnesium results in 

a drop in magnesium oxide concentration in the solid.  To avoid this loss the precipitate 

was not filtered but heated to dryness to synthesize the samples with high magnesium 

oxide concentrations.  Since the nitrate and chloride counter ions are volatile it was 

possible to avoid any loss of material without the incorporation of impurities.  In a larger 

scale production this should not be necessary as the differences in solubility are 

insignificant when compared to the amount of material that is produced.  The resulting 

oxy-hydroxide precipitate was then dried, calcined, and pressed into pellets as previously 

described (Section 2.1).  These pellets were then sintered at 1600oC in a Reetz LORA 

tube furnace for 10 hours under argon atmosphere, plutonium oxide remaining in the 

tetravalent valence state. 

 Plutonium oxide and erbium oxide content was varied to determine the solubility of 

plutonium and erbium within the zirconia phase.  The inert matrix was composed of 

zirconium oxide and magnesium oxide and was varied to explore the composition range.  

The bulk concentrations used to synthesize the pellets in this study are listed in Table 5. 

One of the main goals of this study was to synthesize a two phase inert matrix fuel of 

periclase (a pure MgO phase) and cubic zirconia, which would incorporate the fissile 

material and burnable poison through isomorphic substitution.  This was previously 

attempted by mixing the oxide powders and sintering, which resulted in the formation of 

a third phase consisting of plutonium oxide rich microspheres (55).  A burnable poison 

was not used in the previous study.  Because of this, a precipitation method was used for 
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this study.  This allows for more complete mixing and has been shown to form solid 

solutions at less extreme temperatures and times during sintering (Section 3.1).   

 

Table 5: Oxide concentration synthesized with plutonium (wt. %) 

Sample # % ZrO2 % MgO % PuO2 % ErO1.5 

1 71 3.0 16 9.0 

2 75 11 7.5 7.5 

3 67 14 9.8 8.2 

4 58 20 12 9.8 

5 42 50 4.7 2.4 

6 23 72 3.5 2.0 

7 16 79 3.4 1.8 

 

3.4 Characterization of cerium oxide containing inert matrix fuel 

3.4.1 X-ray diffraction (XRD) of cerium oxide containing inert matrix fuel 

 An XRD pattern was taken of the sample Zr0.943Ce0.035Er0.022O1.95 after calcining at 

700oC for eight hours.  Broad peaks show that the reaction has not gone to completion 

[Figure 8]. There is not a constant concentration throughout the sample.  It does show 

that the reaction has started, because there is no evidence of the starting materials Er2O3 

or CeO2.  The presence of tetragonal zirconium oxide is due to the Ce and Er 

isomorphically substituting onto the zirconium oxide lattice stabilizing the tetragonal 

ZrO2, however there is not enough substitution to fully stabilize the cubic zirconia phase 

or the transition temperature to the cubic phase was not reached. 
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Figure 8: X-ray diffraction pattern of calcined Zr0.960Ce0.025Er0.014O1.99 (blue) with fit 

(red) and difference curve (grey). 

 

 At low magnesium oxide concentrations (less than 7 wt. %) a single cubic zirconia 

phase is evident by XRD.  This was observed in samples Zr0.866Mg0.093Ce0.026Er0.014O1.90 

and Zr0.771Mg0.188Ce0.026Er0.014O1.80 [Figure 9].  This suggests that all of the magnesium, 

cerium, and erbium oxides are isomorphically substituted into the zirconia lattice.  The 

magnesium oxide is required to stabilize the cubic zirconia as evident by the tetragonal 

zirconium oxide in the absence of magnesium oxide. 

 If the magnesium content is increased, the limit of isomorphic substitution of 

zirconium by magnesium is exceeded and the excess magnesium is precipitated as a 

cubic MgO phase (periclase).  This is observed in samples with as little as 11.3 wt. % 

MgO [Figure 10].  This two phase mixture of cubic zirconia and periclase persists for all 

samples with magnesium oxide concentration of 11.3 to 42 wt. % MgO [Figure 11].   
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Figure 9: X-ray diffraction pattern of sintered Zr0.866Mg0.093Ce0.026Er0.014O1.90 (blue) with 

fit (red) and difference curve (grey). 

 

 

Figure 10: X-ray diffraction pattern of sintered Zr0.673Mg0.286Ce0.026Er0.015O1.71 (blue) with 

fit (red) and difference curve (grey). 
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Figure 11: X-ray diffraction pattern of sintered Zr0.254Mg0.702Ce0.028Er0.016O1.29 (blue) with 

fit (red) and difference curve (grey). 

 

 The periclase phase continues to build in until the ZrO2 concentration is too low to 

accommodate the level of CeO2 and Er2O3 that is in the sample; nominally around 30 % 

(wt/wt) of ZrO2 at CeO2 and Er2O3 levels of 8.3 % and 5.2 % (wt/wt) respectively.  At 

sufficiently low levels of ZrO2, CeO2 together with Er2O3 form a cubic solid solution 

resulting in a third phase observed in sample Zr0.143Mg0.813Ce0.028Er0.016O1.18 [Figure 12].  

This CeO2 and Er2O3 phase is also present when there is no ZrO2 

(Mg0.956Ce0.028Er0.016O1.04) [Figure 13].   

 A list of the phases present, space groups, and quantity of phases present for each 

sample is in Table 6.  The lattice parameter for the MgO phase is unchanged by the 

composition, which suggests that the larger cations are not being incorporated into the 

periclase crystal structure.  In contrast the more CeO2 and Er2O3 in the sample the larger 
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the unit cell of the cubic zirconia, indicating the progress in solid solution formation and 

the associated incorporation of Ce4+ and Er3+ cations into the zirconia lattice. 

 

 

Figure 12: X-ray diffraction pattern of sintered Zr0.143Mg0.813Ce0.028Er0.016O1.18 (blue) with 

fit (red) and difference curve (grey). 

 

 

Figure 13: X-ray diffraction pattern of sintered Mg0.956Ce0.028Er0.016O1.04 (blue) with fit 

(red) and difference curve (grey). 
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3.4.3 Electron probe microanalysis of cerium oxide containing ceramics 

 Electron probe microanalysis was used to scan a 4 mm2 area and to map the relative 

concentrations of the elements within the sample.  The elemental zirconium, cerium, and 

erbium maps are identical indicating that cerium and erbium are evenly distributed within 

the zirconia phase.  The magnesium map shows a faint outline of the zirconium map 

suggesting that a small amount of Mg is contained within the zirconia phase.  However, 

in samples containing a secondary MgO phase there are also high concentrations of 

magnesium in areas that have, besides oxygen, no other elements present [Figure 16].  

This shows that the MgO phase is relatively pure, which is also consistent with the results 

of the MgO lattice parameter refinement from the XRD powder data (Section 3.4.1). 

 

 

Figure 16: Elemental maps by electron probe microanalysis over 4 mm2 of Zr Lα (top 

left) Mg Kα (top right) Ce Lα (bottom left) and Er Lα (bottom right) from sample 

Zr0.468Mg0.489Ce0.027Er0.015O1.50 

            46



 

 

 Microprobe analysis was also used to quantify the amount of each element present in 

small volumes.  In this way the stoichiometry of each phase within a sample was 

examined [Table 6].  In the zirconia phase, there is an increase in MgO content as MgO 

in the sample is increased from 0 % to 11 % (wt/wt) in the total sample.  At this point the 

cubic zirconia is saturated with respect to MgO.  The zirconia phase contains up to 5 % 

(wt/wt) MgO at saturation, and any increase in MgO in the sample has no affect on the 

MgO content of the ZrO2 phase.  It can be stated that the solubility limit of Mg for cubic 

stabilized zirconia is 5 % (wt/wt) under these conditions.  The amount of cerium and 

erbium oxide continues to increase as more cerium and erbium oxide are added to the 

ceramic.  The maximum amount of cerium and erbium oxides were 14 % and 12 % 

(wt/wt) respectively for sample Zr0.143Mg0.813Ce0.028Er0.016O1.18, in which a cerium erbium 

oxide phase began to precipitate [Figure 17].   
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Figure 17: Stoichiometry of the zirconia phase by electronprobe microanalysis.  (Error 

bars represent standard deviation in measurements) 
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It was difficult to probe the periclase phase in many samples due to the small area and 

intimate mixture of the phases.  However, many measurements show less than 1 % 

(wt/wt) of any other species in the MgO phase, again supporting earlier data suggesting 

low affinity of cerium, erbium, and zirconium for isomorphic substitution or for 

occupying interstitials within this phase. 

3.4.4 Transmission electron microscopy of cerium oxide containing ceramic 

 Transmission electron microscopy (TEM) was performed according to the procedure 

outlined in Section 2.14.  By high resolution TEM it was possible to confirm lattice 

parameters that were previously determined by x-ray diffraction (Section 3.4.1).   

 

 

Figure 18: Transmission electron microscopy image with corresponding energy 

dispersive spectroscopy of a MgO grain (#1) and a zirconia grain (#2) within  

sample Zr0.363Mg0.594Ce0.027Er0.016O1.40 
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Using energy dispersive spectroscopy it was possible to further confirm the presence of 

all elements contained within the cubic zirconia phase and the existence of a pure MgO 

phase as seen in Figure 18.  Because of the duplication in information obtained by TEM 

and the difficulty posed by sample preparation it was abandoned as a primary tool for 

studies with uranium and plutonium. 

3.4.5 Conclusions from characterization of cerium oxide containing ceramic 

 The precipitation method used to synthesize zirconia magnesia inert matrix fuels has 

been used to produce dual phase material with intimate mixing between phases.  Due to 

the higher degree of mixing, it has been shown to form a solid solution at less severe 

temperatures (510 oC) and durations than the corresponding dry synthesis route as 

demonstrated by TGA/DSC.  Forming a solid solution is essential for this fuels chemical 

performance.  This could be beneficial for fissioning higher actinides with low 

sublimation temperatures, such as americium, which would not withstand the 

temperatures required to sinter the ceramic by a dry synthesis route.  The ZrO2 requires 

very little MgO in the presence of CeO2 and Er2O3 to fully stabilize the cubic zirconia 

phase.  This zirconia phase can accommodate up to 14 % (wt/wt) fissile material and up 

to 12 % (wt/wt) burnable poison.  A consistent 5 % (wt/wt) MgO is contained in the 

zirconia phase allowing for a reliable estimate of the quantity of the periclase phase that 

will be present for a given composition.  The relative amount of Mg is found to determine 

the phase composition of the resulting material.  With no MgO, ZrO2 is in both 

baddeleyite and tetragonal phases.  As little as 3.2 % (wt/wt) and as much as 6.9 % 

(wt/wt) MgO resulted in a single cubic zirconia phase.  A MgO (periclase) phase 

precipitated at MgO concentrations at and above 11.5 % (wt/wt) MgO.  A third phase of 
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cubic Ce-Er oxide was found after exceeding the solubility limit of the zirconia.  This 

was found at ZrO2 concentration of 30 % (wt/wt) with Ce and Er concentrations of 8.3 % 

and 5.2 % (wt/wt) respectively.  This phase is also present in the absence of zirconia.  

The periclase phase remains pure which will allow it to retain its thermophysical 

properties, most importantly thermal diffusivity and thermal conductivity, and to further 

improve the reactor-related qualities of the overall ceramic.  This characterization study 

was performed to lay a foundation for dissolution studies of zirconia-magnesia inert 

matrix fuel under conditions relevant to an advanced fuel cycle with uranium and 

plutonium.   

 

3.5 Characterization of uranium oxide containing ceramics 

3.5.1 X-ray diffraction (XRD) of uranium oxide containing ceramics 

 X-ray diffraction was used to determine the crystalline phases present in the prepared 

samples.  For these studies the zirconium oxide to magnesium oxide while holding 

uranium oxide and erbium oxide at 5% (wt/wt) and 2.5% (wt/wt) respectively with 

measurements collected according to the procedure in Section 2.4.  Table 7 shows the 

phases present, quantity of phase, space group, and lattice parameters for cubic phases in 

the samples presented in this study.  In the absence of magnesium oxide there exist a 

tetragonal partially stabilized zirconium oxide and a monoclinic zirconium oxide 

(baddelyite) as seen in Figure 19, which is consistent with findings from studies 

performed with cerium oxide (Section 3.4.1).   
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Figure 19: X-ray diffraction pattern of Zr0.959U0.024Er0.017O1.99 identifying baddeleyite and 

partially stabilized tetragonal zirconium oxide 

 

Also consistent with previous studies of cerium containing ceramics (Section 3.4.1), as 

little as 5 % (wt/wt) MgO fully stabilized the zirconia resulting in a single cubic zirconia 

phase [Figure 20].  The solubility limit of Mg within the zirconia phase was exceeded at 

10 % (wt/wt) resulting in the precipitation of an MgO (periclase) phase that represented 

3.9 % (wt/wt) of the sample by Reitveld and least square analysis [Figure 21].  This 

shows the limit of the isomorphic substitution of Mg within zirconia to be 6-7 wt. % 

under these conditions.  This is consistent with previous studies with cerium that showed 

the range of single phase zirconium to be between 3.2 and 6.9 wt. % (Section 3.4.1).   
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Figure 20: X-ray diffraction pattern of Zr0.820Mg0.143U0.021Er0.015O1.85 (red) with fit (blue) 

and difference curve (grey). 

 

 

Figure 21: X-ray diffraction pattern of Zr0.705Mg0.261U0.020Er0.014O1.73 (red) with fit (blue) 

and difference curve (grey). 
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This two phase mixture persists from 10 % to 75 % (wt/wt) MgO.  The lattice parameter 

of the periclase phase agrees with published data and remains unchanged for all samples, 

which indicates it is a pure phase with low affinity for any of the larger cations within the 

fuel [Table 7].  The appearance of this periclase phase enables one to specifically design 

thermophysical fuel properties in regard to thermal diffusivity and thermal conductivity 

to further control centerline temperature of the inert matrix fuel pellet under reactor 

conditions.  With as little as 17.5 wt. % ZrO2, there is still no evidence that the solubility 

limits of uranium and erbium in zirconia have been exceeded and a third phase consisting 

of uranium and erbium oxide was not observed [Figure 22].  This would indicate uranium 

oxide solubility in zirconia that exceeds that of cerium oxide.  This significant difference 

between the behavior of plutonium homologs is further discussed in Section 3.5.3. 

 

 

Figure 22: X-ray diffraction pattern of Zr0.070Mg0.914U0.009Er0.006O1.08 (red) with fit (blue) 

and difference curve (grey). 
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The continued expansion of the lattice parameter suggests that both cations are 

incorporated into the zirconia lattice by isomorphic substitution as seen in Table 7.  This 

suggests that the limit of isomorphic substitution for uranium oxide in zirconia is higher 

than that of cerium oxide (Section 3.4.5) and is further discussed below in electron probe 

microanalysis studies.  In the absence of zirconium oxide, uranium and erbium oxide 

form a cubic solid solution similar to that of cerium oxide (Section 3.4.1) as seen in 

Figure 23. 

 

 

Figure 23: X-ray diffraction pattern of Mg0.986U0.008Er0.006O1.01 identifying periclase, 

cubic zirconia and cubic uranium-erbium oxide solid solution 
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3.5.2 Optical microscopy of uranium oxide containing ceramic 

 Optical microscopy proved to be a useful tool to visualize phase mixing and pore 

space.  The ceramics consist of a periclase phase (dark gray) and a zirconia solid solution 

phase (light gray).  The two phases are intimately mixed throughout all compositions 

[Figure 24] showing similar behavior to previous studies with cerium (Section 3.4.2).  

This allows a pathway for internal heat to be transferred to the peripheral of the pellet 

through the interconnected periclase phase. 

 

 

Figure 24: Optical microscopy of Zr0.251Mg0.728U0.012Er0.009O1.27 at 1000x magnification.  

The light grey is zirconia phase, dark grey is magnesia,  

and the darkest areas are pore space. 
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3.5.3 Electron probe microanalysis of uranium oxide containing ceramic 

 Electron probe microanalysis was used to determine elemental distributions over wide 

spatial areas (9 mm2).  The zirconium, erbium, and uranium maps are identical showing 

an even distribution of all three elements throughout the zirconia phase [Figure 25].  

There is a faint outline of the zirconia phase within the magnesium map showing that a 

small amount of magnesium is also evenly distributed within the zirconia phase.  The 

magnesium map also contains bright features in samples that have a periclase phase.   

 

 

Figure 25: Elemental maps by electron probe microanalysis over 9 mm2 of Zr Lα (top 

left), U Mα (top right), Er Lα (bottom left), and Mg Kα (bottom right) in sample 

Zr0.527Mg0.445U0.017Er0.012O1.55 
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These bright spots are areas with high concentrations of magnesium, which correspond to 

locations that do not have evidence of containing any other element, with the exception 

of oxygen.  This is further indication that the periclase phase is pure and has a low 

affinity for the other elements used in the fuel. 

 Electron probe microanalysis was also used to determine the concentrations of each 

element in a small beam interaction volume of 1-9 µm3.  In this way it was possible to 

determine the stoichiometry of each phase.  Areas that were probed without any overlap 

from neighboring phases were used.  It was determined that the magnesium oxide phase 

contained less than 1 wt.-percent of all elements other than magnesium and oxygen.  This 

confirms that the periclase phase is pure MgO as was suggested by the constant lattice 

parameter determined by XRD.  The zirconia phase was determined to have a constant 

amount of Mg.  The Mg content in the zirconia phase was 5 % + 1 % (wt/wt) for all 

compositions as it was in previous studies with cerium (Section 3.4.3).  However, since 

the total zirconium content is decreasing and the UO2 and Er2O3 are held constant within 

the entire pellet, the relative amount of uranium and erbium in the zirconia phase 

increases.  The concentrations of uranium and erbium start at 5 % and 2.5 % (wt/wt) 

respectively as expected for a pellet that is exclusively cubic zirconia.  As the zirconium 

concentration is decreased the uranium and erbium content is measured to be as high as 

15.2(4) and 5.41(5) wt. % respectively in the zirconia phase.  It was not possible to probe 

the sample with the lowest zirconium content by microprobe due to spot size and 

interference from the dominant periclase phase.  However, since there is no additional 

phases present by XRD, it can be assumed that the uranium and erbium content in 

zirconia under these conditions is as high as 20 % and 10 % (wt/wt) respectively.  This is 
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slightly higher than the maximum solubility of cerium, which was found to be 16 wt. % 

at 12% (wt/wt) erbium under similar conditions (Section 3.4.3) a noted difference in the 

structural behavior between a tetravalent lanthanide and actinide.  This could be due to 

the added 2 wt.-percent of the erbium oxide in cerium containing samples and not due to 

any differences between cerium and uranium.  Without a detailed systematic study it is 

difficult to determine the cause of such differences.  A graph of composition within the 

zirconia as a function of increasing magnesium content in the total ceramic is shown in 

Figure 26.  The magnesium content within the zirconia phase, shown in green, does not 

increase with increasing magnesium content of the pellet, while uranium and erbium, 

shown in blue and red respectively, increase as the total amount of zirconia is decreased 

thereby increasing the uranium and erbium content within it. 

 

 

Figure 26: Stoichiometry of the zirconia phase as determined by electron probe 

microanalysis (error bars represent standard deviation within a sample) 
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3.5.4 X -ray absorption fine structure for uranium containing ceramic 

 X-ray absorption fine structure (XAFS) was performed at the Advanced Photon 

Source, BESSERC-CAT 12, in an effort to describe local distortions in the zirconia 

lattice due to the incorporation of uranium.  It was found that although the average lattice 

parameter changed over the compositional range due to the incorporation of uranium and 

erbium within the lattice as shown by XRD, the local structure around both zirconium 

and uranium was consistent from sample to sample within the limits of the measurement 

(0.002 nm) as shown in Table 8. 

 

Table 8: Local bond distances for uranium and zirconium within zirconia as determined 

by x-ray absorption fine structure (error on the measurements is 0.002 nm) 

Sample 
Zr-O 
(nm) 

U-O 
(nm) 

Zr-Zr 
(nm) 

U-Zr 
(nm) 

Zr0.820Mg0.143U0.021Er0.015O1.85 0.215 0.229 0.355 0.364 

Zr0.609Mg0.360U0.018Er0.013O1.63 0.213 0.232 0.353 0.362 

Zr0.527Mg0.445U0.017Er0.012O1.55 0.214 0.232 0.358 0.364 

Zr0.395Mg0.580U0.014Er0.010O1.41 0.215 0.232 0.354 0.363 

Zr0.251Mg0.728U0.012Er0.009O1.27 0.214 0.232 0.354 0.364 

Zr0.148Mg0.834U0.010Er0.007O1.16 0.216 0.231 0.355 0.363 

Zr0.070Mg0.914U0.009Er0.006O1.08 0.216 0.231 0.356 0.365 
average 0.215 0.231 0.355 0.364 

difference due to U 0.016   0.009 

 

The zirconium to first shell oxygen distance was shown to be 0.215(2) nm, while the 

uranium to first shell oxygen distance is 0.231(2) nm resulting in a deformation of 0.016 

nm in the first shell oxygen distance due to uranium incorporation into the lattice.  The 

zirconium to second shell zirconium distance was determined to be 0.355(2) nm and the 
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uranium to second shell zirconium distance was determined to be 0.364(2) nm resulting 

in a deformation in the metal to metal distance of 0.009 nm.  In this way it was possible 

to quantify the bond deformation in zirconia due to the incorporation of uranium into the 

lattice.  A typical spectrum with fit is shown in Figure 27. 

 

 

Figure 27: Fourier transform with fit of X-ray absorption fine structure spectra for 

Zr0.251Mg0.728U0.012Er0.009O1.27 (inset is spectra with fit in k space) 

 

3.5.5 Conclusions from characterization of uranium oxide containing ceramic 

 Uranium containing inert matrix fuel was successfully synthesized in a two phase 

ceramic consisting of cubic zirconia and periclase.  The periclase phase remains pure 

showing a low affinity for all other cations in the ceramic, which will allow it to retain its 
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thermophysical properties, most importantly thermal conductivity and thermal diffusivity.  

Magnesium, uranium, and erbium are able to substitute in the zirconia lattice at different 

levels to create a solid solution.  Magnesium concentrations within the zirconia phase 

remains constant at 5 wt. %.  Uranium and erbium concentrations within the zirconia 

were as high as 20 and 10 % (wt/wt) respectively.  These findings are confirmed by x-ray 

diffraction and electron microprobe analysis and further agree with previous studies 

performed with cerium as a plutonium homolog although the solubility limit for uranium 

was found to be higher than that of cerium within the zirconia under these conditions.  It 

is unclear if this is a difference in behavior between the lanthanide and actinide or if it is 

due to different levels of substituting erbium oxide within the zirconia.  The bond 

deformation due to the incorporation of uranium into the zirconia lattice was determined 

in the first two atomic shells by XAFS and found to be 0.016 nm in the first shell oxygen 

and 0.009 nm in the second shell cations. 

 

3.6 Characterization of plutonium oxide containing ceramic 

3.6.1 X-ray diffraction of plutonium oxide containing ceramic 

 X-ray diffraction was used to identify and quantify crystalline phases present in the 

plutonium containing ceramic.  It was found in the sample with the lowest MgO 

concentration (3 wt. % MgO) that there was only a cubic zirconia phase, indicating that 

all other species were dissolved in the zirconia lattice [Figure 28].  Once the MgO 

concentration is raised to 11 wt. % it exceeds the solubility limit for isomorphic 

substitution and precipitates as cubic MgO (periclase) [Figure 29].  This is expected as 

the solubility limit for MgO in zirconia under similar conditions was determined in 
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previous studies to be 3.2 – 6.9 % (wt/wt) (Section 3.4.1).  This two phase mixture of 

zirconia and periclase was found in all samples with more than 7 wt. % MgO. 

 

 

Figure 28: X-ray diffraction pattern of Zr0.76Mg0.10Pu0.078Er0.062O1.9 (blue) with fit (red) 

and difference curve (grey). 

 

 

Figure 29: X-ray diffraction pattern of Zr0.64Mg0.29Pu0.029Er0.041O1.7 (blue) with fit (red) 

and difference curve (grey). 
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 The lattice parameter for the periclase phase remains consistent and is independent of 

the concentration of other elements suggesting that it is pure MgO and no other elements 

are incorporated into the lattice [Table 9].  The lattice parameter for the zirconia increases 

with increasing plutonium content indicating that plutonium is isomorphically substituted 

into the zirconia lattice as shown in Table 9.  This is further evidence that a third 

plutonium or erbium rich phase is not present, even as an amorphous material.  The 

zirconium oxide concentration of the total pellet was decreased to 16 wt. % with no 

evidence of third phase formation [Figure 30].  This indicates the solubility limit for 

plutonium and erbium within the zirconia phase is high enough to accommodate a wide 

range of zirconia to magnesia ratios.    The solubility limit of plutonium and erbium in 

zirconia is further discussed below in the electron microprobe section [Section 3.6.3].  

 

 

Figure 30: X-ray diffraction pattern of Zr0.061Mg0.93Pu0.0059Er0.0045O1.1 (blue) with fit (red) 

and difference curve (grey). 
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3.6.2 Optical microscopy of plutonium oxide containing ceramic 

 Optical microscopy proved to be a useful tool in visualizing phase mixing and pore 

space.  By optical microscopy it was easy to distinguish the zirconia (light gray), 

magnesia (dark gray) and pore space (black).  It was observed that even at MgO phase 

concentrations as low as 6.7 wt. % the phase is still evenly distributed throughout the 

sample with an intimate phase mixing [Figure 31].  This intimate mixing is evident 

through all samples and shows an interconnected MgO phase at 51.8 wt. % periclase 

[Figure 32].  This interconnected periclase phase will allow thermal diffusivity from the 

center of the pellet to the peripheral because of its superior heat transfer properties, 

thereby lowering the centerline temperature of the fuel. 

 

 

Figure 31: Optical microscopy image at 500x magnification of 

Zr0.64Mg0.29Pu0.029Er0.041O1.7 
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Figure 32: Optical microscopy image at 500x magnification of 

Zr0.21Mg0.77Pu0.011Er0.0078O1.2 

 

3.6.3 Electron probe microanalysis of plutonium oxide containing ceramic 

 Electron probe microanalysis was used to scan over an area of the polished surface to 

map relative concentrations of zirconium, magnesium, plutonium, erbium, and oxygen.  

In this way it is possible to identify elements that have affinity for the same phase and 

those that are exclusive to a phase as previously identified by x-ray diffraction.  All 

pellets examined exhibited the same characteristics.  The periclase phase was shown to 

have no affinity for any elements other than magnesium and oxygen as previously 

suggested by the constant lattice parameter of the x-ray diffraction pattern [Figure 33].   
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Figure 33: Elemental maps by electron probe microanalysis over 120 µm x 120 µm of Zr 

Lα (top left), Mg Kα (top right), Pu Mα (bottom left), and Er Lα (bottom right) from 

sample Zr0.093Mg0.89Pu0.0065Er0.0052O1.1 

 

 The zirconia phase incorporates a small amount of magnesium into the lattice as 

indicated by a faint trace of the zirconia phase in a magnesium map.  All of the 

plutonium, erbium, and zirconia are evenly distributed throughout the zirconia phase 

[Figure 33].  This will simplify modeling of the material as only two phases need to be 

considered and is an improvement over previous attempts at synthesizing a plutonium 

containing zirconia-magnesia inert matrix fuel which resulted in a three phase material 
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(55).  This method also verified that both phases have a high degree of homogeneity in 

each phase. 

3.6.4 Secondary electron microscopy and energy dispersion spectroscopy 

 A secondary electron microscope equipped with an energy dispersive spectrometer 

was used to take semiquantitative measurements in small areas (~2-5 microns) in an 

effort to quantify the elements present in each phase [Figure 34].  In this way it was  

 

 

Figure 34: Secondary electron image of Zr0.21Mg0.77Pu0.011Er0.0078O1.2 (zirconia appears as 

white, periclase as dark grey, and pore space as black) 

 

confirmed that the periclase phase is pure MgO.  The zirconia phase is more complicated, 

because it incorporates all cations involved by isomorphic substitution.  Magnesium was 

found in the zirconia phase at a constant 3-4 wt. % over all samples which defines the 

            68



 

 

limit of isomorphic substitution of magnesium in the zirconia phase.  This is within the 

range of 3-7 wt. % established by similar studies (Sections 3.4.3 and 3.5.3).  There was 

no limit found for plutonium or erbium within the range of samples synthesized in this 

study.  Plutonium content within the zirconia phase was as high as 16 wt. % and erbium 

content reached as high as 12 wt. % within the zirconia phase.  This erbium content is 

more comparable to the composition of the cerium containing ceramic and the plutonium 

is 2 wt. % higher without reaching a solubility limit for the plutonium as was the case for 

cerium.  This would suggest that there may be a difference in the solubility limit in the 

zirconia between actinides and lanthanides as was suggested by the solubility limit of 

uranium.  Due to the semi-quantitative nature of the plutonium measurement and the lack 

of establishing a solubility limit, it is not possible to conclusively determine a difference.  

It is noted here as an observation for further study.  This allows for loading the needed 

fissile material even at low concentrations of zirconium oxide resulting in high 

concentration of plutonium and erbium within the zirconia phase.  A summary of 

quantitative results for the content of the zirconia phase by energy dispersive 

spectroscopy is shown in the stoichiometry column in Table 9. 

3.6.5 Conclusions from characterizing plutonium oxide containing ceramic 

 A zirconia-magnesia inert matrix fuel containing plutonium oxide as the fissile 

material and erbium oxide as a burnable poison was successfully synthesized as a dual 

phase ceramic using a precipitation method over a range of compositions.  This material 

was characterized by x-ray diffraction in an effort to identify and quantify crystalline 

phases present.  It was shown in most samples that the material consisted of cubic 

zirconia and cubic MgO (periclase).  Optical microscopy was used to visualize phase 
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mixing, microstructure, and pore space.  Electron probe microanalysis was used to map 

elemental concentrations over wide areas.  This demonstrated the homogeneity of each 

phase and confirmed that plutonium and erbium are incorporated into the zirconia phase 

resulting in a solid solution.  This is the first time this inert matrix has been synthesized 

as a dual phase material with plutonium oxide and a burnable poison.  The homogeneity 

of the zirconia solid solution will aid in modeling the chemical behavior of the material.  

Secondary electron microscopy equipped with energy dispersive spectroscopy was used 

to determine the stoichiometry of each phase.  It was found that the periclase phase was 

pure MgO.  This will allow it to retain its heat transfer properties, specifically thermal 

diffusivity and thermal conductivity.  Analysis of the zirconia phase shows a presence of 

all cations involved to different concentrations.  Magnesium is incorporated into the 

zirconia at 3-4 wt. % which defines the limit of isomorphic substitution for magnesium in 

zirconia.  The solubility limits of plutonium and erbium in zirconia were not reached, 

however the highest concentration of plutonium and erbium found in the zirconia were 16 

and 12 wt. % respectively.  This high solubility limit will allow fissile material to be 

loaded into the fuel even at low concentrations of zirconium oxide.  This also suggests a 

possible difference between the solubility limit of tetravalent actinides and lanthanides in 

zirconia.  A table summarizing the quantitative data obtained in the study of plutonium 

oxide containing inert matrix fuel is found below.  These studies are aimed at 

understanding the material for dissolution studies in conditions of interest to an advanced 

fuel cycle. 

  

            70



 

 

T
ab

le
 9

: P
ha

se
s 

pr
es

en
t, 

qu
an

ti
ty

, a
nd

 la
tt

ic
e 

pa
ra

m
et

er
s 

de
te

rm
in

ed
 b

y 
x-

ra
y 

di
ff

ra
ct

io
n 

as
 w

el
l a

s 
ph

as
e 

st
oi

ch
io

m
et

ry
 d

et
er

m
in

ed
 b

y 

S
E

M
/E

D
S

. 

C
om

po
si

ti
on

 o
f 

S
am

pl
e 

P
ha

se
s 

P
re

se
nt

 
L

at
ti

ce
 P

ar
am

et
er

 (
Å

) 
P

ha
se

 S
to

ic
hi

om
et

ry
 

Q
ua

nt
it

y 
of

 
P

ha
se

 (
w

t/
w

t)
 

Z
r 0

.7
6M

g 0
.1

0P
u 0

.0
78

E
r 0

.0
62

O
1.

9 
Z

rO
2 

(c
ub

ic
 z

ir
co

ni
a)

 
5.

12
15

(1
5)

 
Z

r 0
.7

1M
g 0

.0
3P

u 0
.1

6E
r 0

.0
9O

1.
9 

10
0 

Z
r 0

.6
4M

g 0
.2

9P
u 0

.0
29

E
r 0

.0
41

O
1.

7 
Z

rO
2 

(c
ub

ic
 z

ir
co

ni
a)

 
5.

09
05

(1
9)

 
Z

r 0
.8

1M
g 0

.0
4P

u 0
.0

8E
r 0

.0
8O

1.
94

 
93

.3
 

 
M

gO
 (

pe
ri

cl
as

e)
 

4.
21

26
(1

7)
 

M
gO

 
6.

7 

Z
r 0

.5
6M

g 0
.3

6P
u 0

.0
37

E
r 0

.0
44

O
1.

6 
Z

rO
2 

(c
ub

ic
 z

ir
co

ni
a)

 
5.

09
73

(1
6)

 
Z

r 0
.7

6M
g 0

.0
31

P
u 0

.1
1E

r 0
.0

92
O

1.
91

 
88

.7
 

 
M

gO
 (

pe
ri

cl
as

e)
 

4.
21

33
(1

3)
 

M
gO

 
11

.3
 

Z
r 0

.4
4M

g 0
.4

7P
u 0

.0
42

E
r 0

.0
48

O
1.

5 
Z

rO
2 

(c
ub

ic
 z

ir
co

ni
a)

 
5.

10
86

(1
3)

 
Z

r 0
.7
M

g 0
.0

3P
u 0

.1
5E

r 0
.1

2O
1.

91
 

82
.2

 

 
M

gO
 (

pe
ri

cl
as

e)
 

4.
21

29
(1

1)
 

M
gO

 
17

.8
 

Z
r 0

.2
1M

g 0
.7

7P
u 0

.0
11

E
r 0

.0
07

8O
1.

2 
Z

rO
2 

(c
ub

ic
 z

ir
co

ni
a)

 
5.

09
84

(1
5)

 
Z

r 0
.8

2M
g 0

.0
36

P
u 0

.0
92

E
r 0

.0
46

O
1.

93
 

48
.2

 

 
M

gO
 (

pe
ri

cl
as

e)
 

4.
21

10
(1

2)
 

M
gO

 
51

.8
4 

Z
r 0

.0
93

M
g 0

.8
9P

u 0
.0

06
5E

r 0
.0

05
2O

1.
1 

Z
rO

2 
(c

ub
ic

 z
ir

co
ni

a)
 

5.
10

42
(2

1)
 

Z
r 0

.7
8M

g 0
.0

31
P

u 0
.1

2E
r 0

.0
69

O
1.

93
 

29
.2

 

 
M

gO
 (

pe
ri

cl
as

e)
 

4.
21

69
(1

7)
 

M
gO

 
70

.8
 

Z
r 0

.0
61

M
g 0

.9
3P

u 0
.0

05
9E

r 0
.0

04
5O

1.
1 

Z
rO

2 
(c

ub
ic

 z
ir

co
ni

a)
 

5.
11

60
(2

0)
 

Z
r 0

.7
3M

g 0
.0

31
P

u 0
.1

6E
r 0

.0
85

O
1.

93
 

21
.5

 

 
M

gO
 (

pe
ri

cl
as

e)
 

4.
21

17
(1

6)
 

M
gO

 
78

.5
 

 
 

            71



 

 

CHAPTER 4 

 

AQUEOUS DISSOLUTION STUDIES 

4.1 Aqueous dissolution studies with cerium containing ceramic 

 Aqueous dissolution studies on cerium containing ceramic were performed to 

establish procedures for assessing the material in reactor and repository conditions.  This 

section describes the results of dissolution studies performed in high temperature high 

pressure water to simulated reactor conditions in the event of a cladding failure and a 

Soxhlet corrosion study to establish its resistance to corrosion by water over long periods 

of time as in environmental conditions. 

4.1.1 Soxhlet corrosion study with cerium containing ceramic 

 Compositions used in aqueous dissolution of cerium containing samples are listed in 

Table 10.  The progress of corrosion was investigated using a Soxhlet apparatus [Figure 

35] and samples analyzed by mass loss.  Samples gained mass for the first several hours 

 

 

Figure 35: Soxhlet apparatus for corrosion experiments.  Cellulose thimbles seen in 

chamber to suspend sample above water volume. 
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due to water absorption into pore space.  The mass gained differed for each pellet due to 

variations in accessible pore space and density, but was consistent for a single pellet over 

the course of the study.  This was proven by drying the sample in an oven at 90oC 

periodically during the study.  The samples consistently returned to the same “wet” mass 

as was established before drying within 48 hours.  Because of this, samples were not 

dried before determining mass, but blotted dry with a kimwipe and the “wet” mass was 

used to determine corrosion progress.  This decreased handling and reduced the amount 

of time the samples were out of the Soxhlet for measuring. 

 

Table 10: Oxide concentrations in samples used for aqueous dissolution study (wt. %) 

sample # % ZrO2 % MgO % CeO2 % ErO1.5 

1 94.3 0.0 3.5 2.2 

2 86.5 6.9 4.1 2.5 

3 58.6 31.4 6.2 3.9 

4 30.3 56.3 8.3 5.2 

  

 The mass loss of samples over the course of the experiment follows linear kinetics 

due to the solution never approaching equilibrium.  Samples that have low amounts of 

magnesium oxide content (0 and 6.9 wt. % MgO) show little to no corrosion for the 2,000 

hours that the experiment was carried out [Figure 36].  This is due to the absence of a 

magnesium oxide phase.  The zirconia phase shows no measurable corrosion in this 

study. 
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Figure 36:  Corrosion via Soxhlet apparatus of cerium containing ceramics with low 

MgO concentrations 

 

When the magnesium oxide content is increased it forms a periclase phase, which has the 

potential to undergo hydration to magnesium hydroxide and subsequent dissolution.  

Samples were assessed by mass loss so that initial weight was not a factor.  This was 

determined by simply subtracting the initial mass by the mass at time (t) as seen in the 

equation below. 

2) Mass (initial) – Mass (t) = Mass loss (Δg) 

Because of this there is a measureable corrosion rate when the sample contains a 

magnesium oxide phase as seen in Figure 37.  This sample contains 31 wt. % MgO and 

has a mass loss of 0.0297±0.0017 mg/h. 
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Figure 37: Mass loss via Soxhlet for cerium containing sample with 31 wt. % MgO 

 

As the MgO content is further increased the corrosion rate also increases.  This can be 

seen in a sample containing 56 wt. % MgO.  In this sample the magnesium oxide content 

is nearly double that of the previous sample at 31 wt. % MgO.  The resulting corrosion 

rate is nearly an order of magnitude higher at 0.107±0.005 mg/h as seen in Figure 38.  

These studies were performed to lay a foundation for further studies with the actinides.  It 

was found that there was no measureable corrosion of the zirconia phase and therefore 

corrosion was due exclusively to the amount of magnesium oxide present in the sample.  

The magnesium oxide was hydrolyzed to magnesium hydroxide (identified by 
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microscopy) that was then dissolved.  The rate of corrosion increased nearly tenfold for 

an increase in magnesium oxide content from 31 to 56 wt. %. 
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Figure 38: Corrosion via Soxhlet for cerium containing sample with 56 wt. % MgO 

 

4.1.2 Pressure vessel dissolution study with cerium containing ceramic 

 To test the corrosion of the inert matrix fuel in conditions relevant to a reactor a 

pressure vessel was used to perform dissolution studies at high temperature and pressure.  

The pressure vessel was operated for 500 hours for each sample.  Samples were place in a 

sample cup within the pressure vessel filled with deionized water.  The sample cup was 

located in the middle of the vessel volume.  The vessel was also equipped with a swage 

lock port for in situ sampling and a stirring mechanism [Figure 39].  Samples were heated 

to 300oC which resulted pressures of 10.3 MPa. 
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Figure 39: Pressure vessel equipped with stirring mechanism  

and swage lock for in situ sampling. 

 

 The corrosion properties of two compositions (Zr0.771Mg0.188Ce0.026Er0.014O1.80 and 

Zr0.571Mg0.387Ce0.027Er0.015O1.61) were tested via the pressure vessel to simulate reactor 

conditions in the event of a cladding failure.  It was found that within 48 hours the pellets 

were physically destroyed and reduce to a powder, mainly consisting of zirconia.  The 

zirconia appeared to remain intact and there was no measureable level of zirconium, 

cerium, or erbium as determined by ICP-AES in the solution.  The magnesium oxide 

phase was almost completely dissolved through the mechanical destruction of the pellet 

by turbid water and subsequent dissolution of MgO to Mg(OH)2 by hydrolysis.  The 

maximum time for these experiments was 250 hours.  They were performed as a basis for 

experiments with actinides. 

            77



 

 

4.1.3 Conclusions from aqueous dissolution of cerium containing ceramics 

 Aqueous dissolution studies were performed with cerium oxide containing ceramic in 

order to establish protocols and validate procedures with non-radioactive material.  These 

studies have also been used to assess the effectiveness of cerium as a plutonium homolog 

both structurally and chemically.  These studies have found that zirconia is a highly 

resilient material that does not dissolve or release material incorporated into its matrix in 

aqueous media as tested in these experiments.  The corrosion of the material is dictated 

by its magnesium oxide content.  Once this magnesium oxide concentration is greater 

than 30 wt. % there is a measurable corrosion rate.  This corrosion rate increases by 

almost an order of magnitude when the magnesium oxide concentration is nearly doubled 

to 56 wt. %.  Experiments were performed to simulate dissolution under reactor 

conditions in the event of a cladding failure.  These experiments performed with turbid 

water at 300oC found that the fuel pellet was physically destroyed within 48 hours, but 

there was no evidence of dissolution of the zirconia phase or any of its components for up 

to 250 hours.  These studies have been effective in establishing parameters and 

procedures to be used with actinide containing inert matrix fuel. 

 

4.2 Aqueous dissolution studies with uranium containing ceramic 

 Uranium dissolution studies in aqueous media were performed in an effort to find a 

more suitable chemical homolog for plutonium.  Studies were performed in a pressure 

vessel to simulate reactor conditions in the event of a cladding failure.  Studies were also 

performed to assess the durability of the material as a waste form in environmental 
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conditions should it be used in a “once through” fuel cycle and go to a long term 

geological repository. 

4.2.1 Soxhlet corrosion study with uranium containing ceramic 

  Samples behaved similar to those that contained cerium and were therefore treated 

with the same procedure (Section 4.1.1).  Compositions used in aqueous dissolution of 

uranium containing samples are listed in Table 11. 

 

Table 11: Composition of uranium containing ceramics in aqueous dissolution (wt. %) 

Sample # ZrO2 % MgO % UO2 % ErO1.5 % 

1 72.5 20 5 2.5 

2 62.5 30 5 2.5 

3 47.5 45 5 2.5 

4 32.5 60 5 2.5 

5 0 92.5 5 2.5 

 

Samples achieved their maximum mass after two hundred hours.  This maximum mass 

was used to determine the mass loss over the course of the experiment and only masses 

taken after the maximum was achieved are plotted.  In this way all samples can be 

assessed independently of their uptake of water, which is dependent on accessible pore 

space not chemical composition.  Mass losses were normalized to geometric surface area 

to account for differences in size from one sample to the next. 

 The dissolution kinetics of the samples roughly followed a linear rate as expected, 

since the solution is never allowed to approach equilibrium.  The two samples with the 
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highest zirconium oxide concentration (Zr0.527Mg0.445U0.017Er0.012O1.55 and 

Zr0.395Mg0.580U0.014Er0.010O1.41) show very little corrosion over the 2,000 hours of the 

experiment.  A linear fit was used to establish a rate of mass loss of 0.012±0.002 g/m2h.  

The samples with little and no zirconium concentration (Zr0.148Mg0.834U0.010Er0.007O1.16 

and Mg0.986U0.008Er0.006O1.01) showed similar corrosion kinetics to each other at a mass 

loss of 0.102±0.006 and 0.092±0.003 g/m2h, which is nearly an order of magnitude 

higher than samples with high levels of zirconium oxide.  A sample with zirconium oxide 

concentrations in between these two groups (Zr0.251Mg0.728U0.012Er0.009O1.27) of samples 

showed a moderate corrosion rate of 0.039±0.005 g/m2h.  This gradient of corrosion rates 

based on zirconium oxide content can be seen in Figure 40. 
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Figure 40: Normalized mass loss of uranium containing zirconia-magnesia inert matrix 

fuel over time with linear fit from corrosion in a Soxhlet apparatus 
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 The pellets were analyzed by secondary electron microscopy after being exposed to 

water via the Soxhlet apparatus.  It was found that there was increased cracking and 

irregularity on the surface with increasing magnesium oxide content.  This can be seen in 

three samples examined at low magnification (500x) to view a representative surface of 

the pellet in Figure 41.  At low magnesium oxide content the surface appears relatively 

unchanged [Figure 41a].  As the magnesium oxide content is increased large cracks 

appear at the surface [Figure 41b].  When the magnesium oxide content is increased 

further an irregular surface is formed in addition to the cracks [Figure 41c].  Upon 

examination at higher magnification, large plate-like morphologies were identified that 

were not present in the samples before being exposed to water.  These plate-like 

structures increased in size and number with increasing magnesium oxide content of the 

sample after the corrosion study [Figure 42].  They seem to be concentrated in pore space 

[Figure 43] and cracks [Figure 44], which could be due to preferential nucleation in these 

areas or added protection from dissolution after formation due to location.  These plate 

structures were determined to contain magnesium and oxygen by energy dispersive 

spectroscopy.  X-ray diffraction identified a brucite (Mg(OH)2) phase in samples after 

being exposed to water by the Soxhlet apparatus and this was therefore determined to be 

the phase of the plates observed within the samples.  The hexagonal nature of the 

microstructure further suggests that this new phase is brucite. 
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a)  

b)  

c)  

Figure 41: SEM images of surface corrosion over increasing magnesium oxide content 

after corrosion test with Soxhlet apparatus.  a) Zr0.395Mg0.580U0.014Er0.010O1.41  b) 

Zr0.251Mg0.728U0.012Er0.009O1.27  c) Zr0.148Mg0.834U0.010Er0.007O1.16 
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a)  b)  

Figure 42: SEM images at 1,000x of Mg(OH)2 plate microstructure formation  

with increasing magnesium oxide content after Soxhlet corrosion study.   

a) Zr0.251Mg0.728U0.012Er0.009O1.27  b) Zr0.148Mg0.834U0.010Er0.007O1.16 

 

 

Figure 43: SEM image at 5,000x of Mg(OH)2 plate microstructure formation in pore 

space of Zr0.251Mg0.728U0.012Er0.009O1.27 after being exposed to deionized  

water over 2,000 hours via a Soxhlet apparatus. 
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Figure 44: SEM image at 2,000x of Mg(OH)2 plate microstructure formation in cracks of 

Zr0.148Mg0.834U0.010Er0.007O1.16 after being exposed to deionized water  

over 2,000 hours via a Soxhlet apparatus. 

 

 The findings of the Soxhlet apparatus study support a preferential dissolution of the 

magnesium oxide phase (periclase) through hydrolysis to Mg(OH)2 (brucite).  Samples 

with zirconium oxide concentrations above 40 mol. % show corrosion rates of 

0.012±0.002 g/m2h.  This suggests that the zirconium oxide has a significant stabilizing 

affect and the corrosion of the magnesium oxide phase is propagated inward from the 

surface.  Samples with zirconium oxide concentrations below 15 mol. % have corrosion 

rates as high as 0.102±0.006 g/m2h, exhibiting no stabilizing effect.  The corrosion of the 

magnesium oxide is proliferated along grain boundaries, thereby swelling and cracking 

entire grains out of the matrix.  This mechanism was proposed by Medvedev et. al. (53).  
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Soxhlet corrosion experiments with uranium containing samples were successful in 

identifying the range of compositions that were dominated by surface corrosion and those 

compositions that are dominated by the swelling and cracking of material along grain 

boundaries leading to accelerated corrosion. 

4.2.2 Environmental pulse flow dissolution with uranium containing ceramics 

 An environmental pulse flow dissolution experiment was performed by submerging 

uranium containing ceramics in deionized water, silicate-bicarbonate solution or brine 

solution and taking samples periodically to quantify dissolved material.  Material from 

the pulse flow dissolution study was first evaluated visually to determine physical 

destruction of sample pellets.  It was found that higher magnesium oxide concentration 

leads to more complete destruction of the physical pellet as predicted by the Soxhlet 

corrosion experiments.  This can be best visualized by examining the corrosion of three 

different compositions that were exposed to the silicate-bicarbonate solution [Figure 45].  

Figure 45a has the least amount of magnesium oxide in the sample and shows the least 

amount of physical damage as can be seen by the pellets remaining whole.  Figure 45b 

has an intermediate magnesium oxide concentration and displays moderate damage in 

that one pellet is relatively intact while others have been reduced to large pieces.  Figure 

45c has the highest amount of magnesium oxide in the sample and therefore has the 

highest physical damage as the pellets have been reduced to pieces ranging in size from 

powder to cross sections of the pellet.   
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a)  b)  

c)  

Figure 45: Pictures of zirconia-magnesia inert matrix fuel after pulse flow dissolution 

study showing increasing damage with increasing magnesium oxide   

a) Zr0.395Mg0.580U0.014Er0.010O1.41  b) Zr0.251Mg0.728U0.012Er0.009O1.27   

c) Zr0.148Mg0.834U0.010Er0.007O1.16 

 

 Visual inspection also revealed that brine was the most corrosive solution, followed 

by deionized water, and lastly silicate-bicarbonate solution.  This can be seen in Figure 

46, which shows the corrosion of three samples with the same composition in the 

different solutions.  The sample that was immersed in silicate-bicarbonate solution shows 

little corrosion and a white coating on the surface of the pellet (Figure 46a). Water was 

corrosive enough to reduce the sample to pieces as seen in Figure 46b.  The sample that 

was in brine (Figure 46c) was reduced to a fine powder.   
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a)  b)  

c)  

Figure 46: Pictures of Zr0.395Mg0.580U0.014Er0.010O1.41 after immersion in three different 

solutions at 90 oC for 154 days.  a) silicate-bicarbonate solution   

b) deionized water  c) brine 

 

 To assess the differences in corrosion products the samples were examined by 

secondary electron microscopy and x-ray diffraction.  It was evident that corrosion rate 

and extent was determined by magnesium oxide content and that the hydrolysis of 

magnesium oxide to magnesium hydroxide was the precursor to dissolution.  In samples 

with low magnesium oxide concentration in deionized water there was very little 

evidence of corrosion and the parent cubic phases dominated the surface morphology 

[Figure 47].  In samples that were immersed in deionized water it was possible to follow 
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Figure 47: SEM image at 500x magnification of Zr0.395Mg0.580U0.014Er0.010O1.41 after 

immersion in water at 90 oC for 154 days.  Surface still comprised of parent  

cubic phases (zirconia and/or periclase). 

 

the progress of Mg(OH)2 formation over samples with varying magnesium oxide content 

[Figure 48].  In a sample with little MgO there are Mg(OH)2 sites starting to nucleate as 

shown in Figure 48a.  In Figure 48b it is evident that the higher MgO content has led to a 

plate microstructure formation of Mg(OH)2 similar to that observed in the Soxhlet 

experiments; however, it is shown here to be on crystal faces and not localized to cracks 

and pore space indicating no preference to nucleation sites.  The sample shown in Figure 

48c has the highest concentration of MgO and the Mg(OH)2 phase has grown stepwise 

[Figure 48d] so that the original plate microstructure has thickened into crystals that 

dominate the surface.   
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a)  b)  

c)  d)  

Figure 48: SEM images of samples after pulse flow study in water   

a) Zr0.395Mg0.580U0.014Er0.010O1.41 with Mg(OH)2 nucleation   

b) Zr0.251Mg0.728U0.012Er0.009O1.27 with Mg(OH)2 plate microstructure   

c) Zr0.148Mg0.834U0.010Er0.007O1.16 with Mg(OH)2 crystals   

d) Zr0.148Mg0.834U0.010Er0.007O1.16 at 7,500x magnification 

 

Brine proved to be the most corrosive of the solutions tested.  This was also evident 

by SEM as the surface was highly irregular and showed a great deal of “pitting” [Figure 

49], which is consistent with the corrosion of samples with high concentration of MgO 

along grain boundaries as proposed by Medvedev et. al.(53).  The silicate-bicarbonate 

solution showed the least amount of corrosion over the samples tested.  SEM images 

demonstrated that a coating was formed on the surface of the pellet that inhibited further 
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corrosion [Figure 50].  This coating was a product of the silicate in solution reacting with 

the MgO on the surface to form H(Mg2(SO4))8 (olivine), which was identified by x-ray 

diffraction [Figure 51].  The silicate was not successful in completely prohibiting 

corrosion at high concentrations of magnesium oxide (> 45 wt. %).  At these 

concentrations Mg(OH)2 was evident on the surface by SEM [Figure 52] and there was 

little evidence of the olivine on the surface by XRD [Figure 53]. 

 

 

Figure 49: SEM image at 500x magnification of Zr0.148Mg0.834U0.010Er0.007O1.16 showing 

significant corrosion damage and “pitting” after being immersed in brine solution  

at 90 oC for 154 days. 
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Figure 50: SEM image at 1,500x magnification of Zr0.395Mg0.580U0.014Er0.010O1.41 with 

coating on surface after being immersed in silicate-bicarbonate solution  

at 90 oC for 154 days. 

 

 

Figure 51: XRD pattern of Zr0.251Mg0.728U0.012Er0.009O1.27 (blue) with Rietveld analysis 

and least square fit (red) and difference curve (grey) identifying  

the dominant surface layer as olivine (H(Mg2(SO4))8). 
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Figure 52: SEM image at 10,000x magnification of Zr0.148Mg0.834U0.010Er0.007O1.16 with 

Mg(OH)2 growth after being immersed in silicate-bicarbonate solution  

at 90oC for 154 days. 

 

 

Figure 53: XRD pattern of Zr0.148Mg0.834U0.010Er0.007O1.16 (blue) with Rietveld analysis 

and least square fit (red) and difference curve (grey) identifying the olivine 

(H(Mg2(SO4))8) as a minor phase while brucite (Mg(OH)2)  

dominates the magnesium phases. 
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The solutions used in this experiment were evaluated by inductively coupled plasma – 

atomic emission spectroscopy.  In all samples there was no evidence of any zirconium, 

uranium, or erbium in solution.  The detection limit for these elements was approximately 

0.1 mmol/L.  This further proves the immobilization of elements within the zirconia and 

illustrates the corrosion resistance of the this phase.  Magnesium was detected in all 

samples, but kinetics were unreliable due to fluctuations between samples.  It was 

impossible to evaluate in brine due to the high background amount of magnesium in 

solution. 

4.2.3 Pressure vessel dissolution of uranium containing ceramic 

 To test the corrosion of the inert matrix fuel in conditions relevant to a reactor a 

pressure vessel was used to perform dissolution studies at high temperature and pressure.  

The pressure vessel was operated for 500 hours for each sample.  Samples were placed in 

a sample cup within the pressure vessel with deionized water.  The sample cup was 

located in the middle of the vessel volume.  The vessel was also equipped with a swage 

lock port for in situ sampling and a stirring mechanism.  Samples were heated to 300oC 

which resulted in pressures of 10.3 MPa.  Two samples (Zr0.070Mg0.914U0.009Er0.006O1.08 

and Zr0.527Mg0.445U0.017Er0.012O1.55) were tested over five experiments with similar results.  

The solution contained a constant level of magnesium after one hour, which was the 

shortest time before a sample was taken.  This amount of magnesium depended on the 

sample size and volume of water placed in the vessel.  It was determined that the 

magnesium oxide was quickly dissolved to completion due to mechanical corrosion by 

turbid water.  The mechanical destruction of the pellet by turbid water followed by 

dissolution through the hydrolysis of magnesium oxide proved much faster (< 1 hour) 
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than suggested previously by studies done in static water at 300oC (53).  There was no 

evidence by ICP-AES of zirconium, uranium, or erbium in solution.  After the 

experiment was concluded the vessel was opened and examined.  A powder residue was 

found at the bottom of the vessel that was found to be cubic zirconia by x-ray diffraction.  

This indicates that although the magnesium oxide phase is destroyed, the zirconia 

remains unchanged and does not release the fissile material or burnable poison into the 

simulated coolant.  The fuel pellet is however physically destroyed. 

4.2.4 Conclusions of aqueous dissolution with uranium containing ceramic 

In this study zirconia-magnesia ceramic containing uranium oxide as a fissile 

component and plutonium oxide homolog and erbium oxide as a burnable poison was 

examined for corrosion resistance should the fuel be adopted for a “once through” fuel 

cycle scheme.  A Soxhlet corrosion study was performed to quantify the mass loss of the 

material with different magnesia to zirconia ratios over long periods of time (>2,000 

hours).  It was found that samples with magnesium oxide content up to 30 wt. % showed 

minimum corrosion rates due to the stabilizing effect of zirconia.  Samples with 

magnesium oxide content of 60 wt. % or more showed no stabilizing effect from zirconia 

and had corrosion rates similar to that of samples with an inert matrix of pure magnesium 

oxide.  A moderate magnesium oxide concentration of 45 wt. % displayed an 

intermediate corrosion rate.  It is proposed that the corrosion of samples containing high 

zirconium oxide concentration is dominated by corrosion along the surface.  Higher 

magnesium oxide concentrations lead to Mg(OH)2 formation along grain boundaries 

dislodging entire grains leading to accelerated corrosion rates. 
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A pulse flow dissolution study was conducted with three sample compositions of 

varying magnesium oxide to zirconium oxide ratios in three solutions (deionized water, 

silicate-bicarbonate solution, and brine).  The samples compositions were chosen based 

on results from the Soxhlet corrosion study.  A sample that exhibited significant 

corrosion (Zr0.148Mg0.834U0.010Er0.007O1.16), moderate corrosion  

(Zr0.251Mg0.728U0.012Er0.009O1.27) and very little corrosion (Zr0.395Mg0.580U0.014Er0.010O1.41) 

via the Soxhlet were selected for the pulse flow dissolution study.  There was no evidence 

of zirconium, uranium, or erbium in solution for any sample by ICP-AES indicating that 

the cubic zirconia phase remained intact and no cations were leached from the phase.  

This will immobilize the material even in the event that the pellet is physically destroyed 

through the corrosion of the magnesia phase.  The pellets were physically destroyed to 

different degrees due to the dissolution of the magnesium oxide phase.  Rate and degree 

of corrosion was found to be proportional to magnesium oxide content, which is 

consistent with the Soxhlet study.  Magnesium oxide hydration and dissolution was 

monitored by SEM imaging and XRD analysis.  Brine was found to be the most corrosive 

solution followed by deionized water.  Silicate-bicarbonate solution was found to be the 

least corrosive due to the formation of a magnesium silicate on the surface that prohibits 

further corrosion.  This protective layer does not fully prohibit corrosion at magnesium 

oxide concentrations greater than 45 wt. %.  This study confirms the corrosion 

mechanism proposed by previous studies and expands that knowledge to solutions 

relevant to environmental conditions.  It further quantifies the limits at which zirconia is 

significantly stabilizing the magnesium oxide to corrosion by water.  It was found that the 

ceramic begins to have significant levels of corrosion above ~60 mol. % MgO. 
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 Pressure vessel dissolution studies have shown that the pellet is physically destroyed 

through the mechanical destruction and dissolution of the magnesium oxide phase by 

turbid water at 300oC and pressures of 10.3 MPa.  This is a significant difference from 

those studies performed in static water at 300oC (53).  The zirconia phase remains 

unchanged and there is no evidence of the release of any uranium or erbium by ICP-AES. 

 

4.3 Aqueous dissolution with plutonium containing ceramic 

 Aqueous studies were performed with plutonium containing samples to evaluate how 

actual fissile material behaves within the inert matrix.  Because the inert matrix has been 

well characterized by previous studies using uranium and cerium, studies with plutonium 

only quantified the amount of plutonium in solution to evaluate its behavior.  The 

environmental pulse flow dissolution study was performed to evaluate the material as a 

waste form in a “once through” fuel cycle.  The material was also tested under reactor 

coolant conditions (high temperature, high pressure water) with the aid of a pressure 

vessel. 

4.3.1 Environmental pulse flow study with plutonium containing ceramic 

 The environmental pulse flow dissolution study was carried out with plutonium 

containing inert matrix fuel over 1,000 hours in deionized water at 90oC.  Three 

compositions were tested including Zr0.64Mg0.29Pu0.029Er0.041O1.7, 

Zr0.56Mg0.36Pu0.037Er0.044O1.6, and Zr0.44Mg0.47Pu0.042Er0.048O1.5.  Samples were taken from 

the water and analyzed by liquid scintillation counting.  The samples did not contain any 

activity above background (0.1 Bq).  Assuming a detection limit of twice the background, 

the amount of plutonium released was less than 0.01 wt. % of the plutonium for each 
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sample.  This confirms that there is no corrosion of the zirconia phase and that no fissile 

material is released under these conditions. 

 Upon physical inspection there was no difference in the samples from their original 

condition.  To assess any changes in microstructure the samples were also analyzed by 

secondary electron microscopy.  It was found that there was virtually no change in the 

appearance of the microstructure in the samples.  The sample with the least amount of 

magnesium oxide (Zr0.44Mg0.47Pu0.042Er0.048O1.5) was polished for electronprobe 

microanalysis in a previous study.  It is still evident that there is no corrosion damage at 

the surface [Figure 54] even on areas of magnesium oxide [Figure 55].  A sample with 

slightly higher magnesium oxide (Zr0.56Mg0.36Pu0.037Er0.044O1.6) that did not have a 

polished surface also shows no change in microstructure on the surface of the pellet after 

exposure to 90 oC water over 1,000 hours as seen in Figure 56. 

 

a)  b)  

Figure 54: SEM image of Zr0.44Mg0.47Pu0.042Er0.048O1.5 a) without exposure to water  

b) after pulse flow dissolution study. 
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Figure 55: SEM image of Zr0.44Mg0.47Pu0.042Er0.048O1.5 at 600x with magnesium oxide 

phase (dark) and zirconia (light) after dissolution study. 

 

a)  b)  

Figure 56: SEM image of Zr0.56Mg0.36Pu0.037Er0.044O1.6 a) without exposure to water  

b) after pulse flow experiment 

 

The sample with the highest amount of magnesium oxide (Zr0.44Mg0.47Pu0.042Er0.048O1.5) 

shows similar behavior even though it is now obvious that there is a dominant amount of 

magnesium oxide.  The sample unexposed to water is identical to that sample that was in 
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the pulse flow dissolution study [Figure 57].  Even at high magnification there is no 

discernable difference between the samples [Figure 58]. 

 

a)  b)  

Figure 57: SEM image of Zr0.44Mg0.47Pu0.042Er0.048O1.5 a) without exposure to water  

b) after pulse flow dissolution study at 250x magnification 

 

a)  b)   

Figure 58: SEM image of Zr0.44Mg0.47Pu0.042Er0.048O1.5 a) without exposure to water  

b) after pulse flow dissolution study at 1,200x magnification 

 

After SEM imaging, the sample Zr0.44Mg0.47Pu0.042Er0.048O1.5 was evaluated by x-ray 

diffraction to assess any changes in the phases.  This sample was chosen because it had 

the highest magnesium oxide content and was therefore the most likely to undergo 
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corrosion damage and phase changes.  It was shown that the x-ray diffraction pattern was 

almost identical to the one taken before the dissolution study [Figure 59].  There was a 

minor decrease in periclase (MgO phase) from 17.8 to 13.6 wt. % which could be due to 

partial dissolution.  It could also be due to inhomogeneity within the sample as only 5 mg 

samples are used for x-ray diffraction analysis. 

 

 

Figure 59: X-ray diffraction pattern of Zr0.44Mg0.47Pu0.042Er0.048O1.5 (blue) with fit (red) 

and difference curve (grey) after dissolution study. 

 

4.3.2 Pressure vessel dissolution of plutonium containing ceramic 

 A pressure vessel containing a sample with the composition 

Zr0.76Mg0.10Pu0.078Er0.062O1.9 was filled with deionized water and heated to 300oC to 

simulate corrosion conditions by coolant water in the event of a cladding failure.  This 

study differed from the previous pressure vessel studies in that there was no stirring or in 

situ sampling.  Without the mechanical corrosion of turbid water the pellet remained 

intact.  There was no visual evidence of corrosion.  The water was analyzed by 
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scintillation counting at 150 hours and at 300 hours and was found both times to contain 

less than 0.8 wt. % of the total plutonium within the pellet.  This indicates that there was 

very little release of plutonium from the matrix.  Some of the plutonium at the surface 

was leached into the solution, because the activity was non-zero, but this small quantity 

of activity was released and did not increase after it was detected.  The pellet was 

analyzed for changes in microstructure by secondary electron microscopy and was found 

to have very little damage on the surface [Figure 60].  The surface was polished before 

the sample was exposed to the dissolution experiment.  There is no evidence of any 

corrosion even at high magnification [Figure 61].  This experiment confirms previous 

studies under static reactor conditions by Medvedev et. al. (53). 

 

 

Figure 60: SEM image of Zr0.76Mg0.10Pu0.078Er0.062O1.9 after pressure vessel disolution 

experiment at 35x magnification 
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Figure 61: SEM image of Zr0.76Mg0.10Pu0.078Er0.062O1.9 after pressure vessel dissolution 

experiment at 350x magnification 

 

4.3.3 Conclusions of aqueous dissolution with plutonium containing inert matrix fuels 

 The goal of the aqueous dissolution studies with plutonium was to evaluate inert 

matrix fuel containing actual fissile material and burnable poison in reactor and 

repository conditions.  The inert matrix dissolution was well characterized by dissolution 

studies with uranium.  The advantage of plutonium is its relatively high specific activity 

that can be used to significantly lower the detection limit of the material by liquid 

scintillation counting when compared to ICP-AES.  Even with this lower detection limit 

it was found that less than 0.8 wt. % of the plutonium is released in static 300oC water.  

This study also confirmed previous studies on pellet integrity under these conditions and 

validates the differences found between static and turbid water corrosion properties.   As 
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a waste form zirconia does not appear to have any corrosion at all within the scope of this 

study.  The release of plutonium in waste form dissolution studies was found to be less 

than 0.01 wt. %, which is the detection limit under these experimental conditions.  This 

material performs extremely well under aqueous dissolution and proves to be a robust 

material under both reactor and repository conditions. 

 

4.4 Conclusions of aqueous dissolution studies 

 Aqueous dissolution studies were performed with cerium oxide containing inert 

matrix ceramic in order to establish protocols and validate procedures with non-

radioactive material.  These studies have also been used to assess the effectiveness of 

cerium as a plutonium homolog both structurally and chemically.  Soxhlet corrosion 

studies with cerium and uranium have found that zirconia is a highly resilient material 

that does not dissolve or release material incorporated into its matrix in aqueous media as 

tested in these experiments.  Samples with magnesium oxide content of 60 wt. % or more 

showed no stabilizing effect from zirconia and had corrosion rates similar to that of 

samples with an inert matrix of pure magnesium oxide.  A moderate magnesium oxide 

concentration of 45 wt. % displayed an intermediate corrosion rate.  It is proposed that 

the corrosion of samples containing high zirconium oxide concentration is dominated by 

corrosion along the surface.  Higher magnesium oxide concentrations lead to Mg(OH)2 

formation along grain boundaries dislodging entire grains leading to accelerated 

corrosion rates. 

 A pulse flow dissolution study was conducted with three sample compositions of 

varying magnesium oxide to zirconium oxide ratios in three solutions (deionized water, 
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silicate-bicarbonate solution, and brine).  There was no evidence of zirconium, uranium, 

plutonium or erbium in solution for any sample by ICP-AES indicating that the cubic 

zirconia phase remained intact and no cations were leached from the phase.  This will 

immobilize the material even in the event that the pellet is physically destroyed through 

the corrosion of the magnesia phase.  The pellets were physically destroyed to different 

degrees due to the dissolution of the magnesium oxide phase.  Rate and degree of 

corrosion was found to be proportional to magnesium oxide content, which is consistent 

with the Soxhlet study.  Magnesium oxide hydration and dissolution was followed by 

SEM imaging and XRD analysis.  Brine was found to be the most corrosive solution 

followed by deionized water.  Silicate-bicarbonate solution was found to be the least 

corrosive due to the formation of a magnesium silicate on the surface that prohibits 

further corrosion.  This protective layer does not fully prohibit corrosion at magnesium 

oxide concentrations greater than 45 wt. %.  This study confirms the corrosion 

mechanism proposed by previous studies and expands that knowledge to solutions 

relevant to environmental conditions.  It further quantifies the limits at which zirconia is 

significantly stabilizing the magnesium oxide to corrosion by water.   

 Experiments were performed to simulate dissolution under reactor conditions in the 

event of a cladding failure.  These experiments performed with turbid water at 300oC 

found that the fuel pellet was physically destroyed within 48 hours, but there was no 

evidence of dissolution of the zirconia phase or any of its components for up to 250 

hours.  Due to a far lower detection limit, plutonium was found at less than 0.8 wt. % 

released in static 300oC water.  This small amount of plutonium, probably at the surface, 

was initially released and no further dissolution was evident.  Studies performed in static 
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conditions also confirmed previous studies on pellet integrity under these conditions and 

validates the differences found between static and turbid water corrosion properties.    
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CHAPTER 5 

 

ACIDIC DISSOLUTION STUDIES 

5.1 Acidic dissolution with cerium containing ceramic 

5.1.1 Nitric acid dissolution with cerium containing ceramic 

 To determine the solubility of the ceramic in nitric acid, a round bottom flask 

containing 16 M HNO3 with a reflux condenser was placed in a heating mantle and 

samples were introduced in the flask with a measured amount of acid and boiled.  The 

first studies were done with cerium containing ceramics so that the method could be 

developed without the additional complication of radioactive material.  These studies also 

assess the applicability of using cerium as a homolog for the actinides.  Samples were 

analyzed by visual inspection and the concentration of material in solution was quantified 

by inert coupled plasma – atomic emission spectroscopy (ICP-AES). 

 A 200 mg sample of Zr0.866Mg0.093Ce0.026Er0.014O1.90 was placed in 11.3 M nitric acid 

and boiled at ~125 oC for three hours.  No visible signs of dissolution were present on the 

pellet.  It remained whole and displayed no change on the surface.  Because of this, the 

pellet was ground to a powder, placed in concentrated (15.7 M) nitric acid and boiled at 

~120 oC for two additional hours.  At this point the heat was removed and the powdered 

sample was allowed to sit in the nitric acid for four days.  The solution was then heated 

and the sample boiled for an additional 8 hours.  In total the sample was in nitric acid for 

6 days, 13 hours of which it was boiling.  There was no physical change in the powder.  It 

should be noted that this sample did not contain a magnesia phase which is known to be 

soluble in nitric acid.  This study was aimed at exploring the solubility of the zirconia 
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phase.  A sample of the solution was diluted to 5 vol. % acid and analyzed by ICP-AES.  

It was determined that all species (zirconium, magnesium, cerium, and erbium) were 

below the detection limit which is nominally 10 ppm for the ICP-AES under these 

conditions.  This study verified our experimental set up and method with non-radioactive 

material.  It also proved that zirconia with this composition is insoluble in high 

concentrations of nitric acid within the time and detection limit of the current experiment. 

5.1.2 Sulfuric acid dissolution with cerium containing ceramic 

 As an alternative to the nitric acid dissolution, sulfuric acid was also explored as a 

means of dissolving the ceramic.  These studies were performed in the same way as the 

nitric acid dissolution studies with the exception of temperature.  Sulfuric acid dissolution 

was performed at the boiling point of concentrated sulfuric acid, which is 290 oC as 

compared to the much lower boiling point of nitric acid at 120 oC.  This study was to 

serve as the validation of method and yield information on the accuracy of cerium as a 

homolog for the actinides. 

 A pellet of Zr0.771Mg0.188Ce0.026Er0.014O1.80 was ground to a powder and 1.8087 g of it 

was placed in a round bottom flask with 150 mL of concentrated sulfuric acid.  The 

solution was brought to a boil and allowed to proceed for 48 hours.  At that time there 

was some residue in the bottom of the flask that appeared to be slightly less than the 

starting material.  A sample of the solution was taken periodically throughout the 

dissolution to assess the kinetics.  The concentrations determined by ICP-AES were 

normalized by the surface area of the sample as determined by gas sorption. 

 It was determined that Zr0.771Mg0.188Ce0.026Er0.014O1.80 is at least partially soluble in 

sulfuric acid.  Concentrations of all four elements were found in solution to different 
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degrees.  Zirconium was found at the highest concentrations, which is not surprising 

considering it is the major component in the sample.  Cerium and erbium seem to follow 

first order kinetics as can be seen in Figure 62.  It is unclear as to the kinetics of 

zirconium dissolution, because of its low solubility but it is compared to first order 

kinetics in Figure 63.  Magnesium increases sporadically and is therefore not fit to any 

kinetics equation [Figure 63].   
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Figure 62: Cerium and erbium dissolution in sulfuric acid from 

Zr0.771Mg0.188Ce0.026Er0.014O1.80 with first order kinetics fit. 
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Figure 63: Dissolution in sulfuric acid of Zr0.771Mg0.188Ce0.026Er0.014O1.80  

with first order kinetics fit of zirconium. 

 

The kinetics constants for zirconium and cerium are 0.20+0.044 and 0.19+0.025 hrs-1 

respectively, but erbium is 0.16+0.022 hrs-1 and magnesium does not seem to follow first 

order kinetics suggesting that this may be an incongruent dissolution.  These experiments 

will be repeated with actinides to better establish the dissolution kinetics of the system.  

These experiments were successful in establishing the method for sulfuric acid 
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dissolution and suggest that it is possible to partially dissolve the zirconia phase in 

concentrated sulfuric acid.  It was also suggested that cerium and erbium follow first 

order kinetics. 

5.1.3 Conclusions of acidic dissolution with cerium containing inert matrix fuel 

 The main focus of dissolution studies with cerium was to use it as a non-radioactive 

homolog for actinides within the inert matrix fuel and to establish methods and protocols 

that would be applied to studies with actinides.  This proved to be invaluable in 

establishing procedures.  The second goal of these studies was to evaluate the 

effectiveness of cerium as a homolog for uranium and plutonium.  It was established in 

this study that cerium containing zirconia is insoluble in high concentrations of nitric 

acid.  It proved to be somewhat soluble in sulfuric acid.  Cerium and erbium follow first 

order kinetics in sulfuric acid.  The kinetics of zirconium and magnesium were not 

determined.  Also, the ceramic was not completely dissolved and a large amount of solid 

residue remained after 48 hours in the sulfuric system.  These studies are performed in 

greater detail with uranium to evaluate the solubility of the material in various acids. 

 

5.2 Acidic dissolution with uranium containing ceramic 

5.2.1 Nitric acid dissolution with uranium containing ceramic 

 Several sample compositions containing uranium were examined for nitric acid 

solubility.  Samples were crushed to a coarse powder and the surface area of the powder 

was measured before being added to the flask.  Concentrated nitric acid (16M) was used 

for all studies.  All magnesium oxide was dissolved in less than one hour under current 

experimental conditions.  Two of those sample compositions 
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(Zr0.148Mg0.834U0.010Er0.007O1.16 and Zr0.070Mg0.914U0.009Er0.006O1.08) showed solubility of 

species other than magnesium.  It was found that at these extremely high levels of 

magnesium oxide there are two advantages that allow for the dissolution of uranium.  The 

first is that since the zirconia is the minor phase it has a large surface area to volume ratio 

after the magnesium oxide is dissolved, which will enhance the kinetics.  The second 

advantage is that since all of the uranium is concentrated within this zirconia phase the 

less zirconium oxide in the sample the more concentrated the uranium within that phase.  

Because of this, it was observed that there is zirconium, uranium, and erbium in solution 

by ICP-AES.  This is a substantial difference from those studies done in the absence of a 

fissile material or with cerium oxide as a fissile material homolog. 

 The sample with the highest amount of magnesium oxide, 

Zr0.070Mg0.914U0.009Er0.006O1.08, shows the most material in solution.  As can be seen in 

Figure 64, the amount of material going into solution over time follows linear kinetics 

without any indication of equilibrium.  This same behavior can be seen in sample 

Zr0.148Mg0.834U0.010Er0.007O1.16 although less material is being dissolved for the same 

period of time [Figure 65].  In both samples there seems to be a slower rate for the first 

100 hours than there is afterward.  This initial lag in kinetics could be due to a number of 

factors such as an initial leaching of magnesium from the zirconia, the formation of 

nitrous acid, kinetics of oxidation within the lattice, etc.  For this reason kinetics were 

determined from concentrations taken after 100 hours.  It was determined that the fastest 

rate of uranium dissolution, which was in sample Zr0.070Mg0.914U0.009Er0.006O1.08, was 

3.0+0.25 µmol/L•m2•h [Figure 66].  When the zirconium oxide content was increased 

from  
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Figure 64: Surface area normalized concentrations of Zr0.070Mg0.914U0.009Er0.006O1.08 in 

concentrated nitric acid.  Error bars represent standard deviation of three samples. 
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Figure 65: Surface area normalized concentrations of Zr0.148Mg0.834U0.010Er0.007O1.16 in 

concentrated nitric acid.  Error bars represent standard deviation of three samples. 
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Figure 66: Uranium concentration with rate of Zr0.070Mg0.914U0.009Er0.006O1.08 in 

concentrated nitric acid.  Error bars represent standard deviation of three samples. 
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Figure 67: Uranium concentration with rate of Zr0.148Mg0.834U0.010Er0.007O1.16 in 

concentrated nitric acid.  Error bars represent standard deviation of three samples. 
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7.0 mol. % to 14.8 mol. % the rate of uranium dissolution fell to 1.2 µmol/L•m2 [Figure 

67].  Both samples display incongruent dissolution because of the preferential leaching 

of uranium and erbium from the lattice.  This can be seen by examining the amount of 

material in solution compared to the total amount of material in the sample for each 

component.  This is shown in Figure 68 and Figure 69 as the wt. % of the material in 

solution for zirconium, uranium, and erbium.   
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Figure 68: Weight percent of total sample Zr0.070Mg0.914U0.009Er0.006O1.08 in concentrated 

nitric acid.  Error bars represent standard deviation of three samples. 
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Figure 69: Weight percent of total sample Zr0.148Mg0.834U0.010Er0.007O1.16 in concentrated 

nitric acid.  Error bars represent standard deviation of three samples. 

 

It is evident that there is a much higher percentage of uranium and erbium being 

dissolved than there is zirconium.  The residue left at the bottom of the flask was 

examined by x-ray diffraction and was found to be pure cubic zirconia with a small 

amount of magnesium oxide (periclase) [Figure 70].  This further confirms that almost all 

of the magnesium oxide is dissolved.  There are two zirconia phases with different lattice 

parameters after dissolution when there was only one in the beginning.  This means that 

the chemical makeup of the zirconia has changed, which can be explained by the 

proposed incongruent dissolution which would strip the zirconia of the larger uranium 

and erbium cations that expand the lattice parameter. 
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Figure 70: X-ray diffraction pattern (blue) with fit (red) and difference curve (grey) of the 

residue after nitric acid dissolution of Zr0.148Mg0.834U0.010Er0.007O1.16. 

 

This preferential leaching of uranium and erbium is only evident at extremely low 

concentrations of zirconium oxide.  This leaching has been shown to reach as much as 50 

wt. % over nearly 1,000 hours of the total uranium and erbium within the sample, which 

proves more uranium is being dissolved than that on the original surface.  This can be 

explained by examining the composition of the zirconia phase.  At the lowest 

concentration of zirconium oxide the uranium and erbium content within the zirconia is 

20 and 10 wt. % respectively.  Together with an additional 5 wt. % of magnesium 

dissolved into the zirconia, leachable material accounts for 35 wt. % of the cations on the 

lattice.  Because other cations can make up 30 at. % of the lattice, leaching this amount of 

material is believed to destabilize the zirconia, causing it to fall apart and expose a new 

surface that can be leached for additional uranium, erbium, and magnesium.  This 

mechanism not only explains the sample compositions prone to dissolution both before 

and after exposure to nitric acid, but also the linear kinetics of that dissolution.  This is 
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also evidence that zirconia alone is unable to predict the behavior of the composite and 

that cerium oxide is not a suitable chemical homolog for uranium oxide as it is not 

soluble from the zirconia matrix.  Plutonium oxide will be evaluated in future studies to 

assess the accuracy of uranium as a plutonium homolog. 

5.2.2 Sulfuric acid dissolution with uranium containing ceramic 

 A single sample composition, Zr0.148Mg0.834U0.010Er0.007O1.16, was tested for 

dissolution in sulfuric acid.  Experiments were performed with 5 M, 9 M, and 

concentrated 18 M sulfuric acid.  The acid was heated to boiling and samples were 

immersed for over 100 hours.  Sulfuric acid has a stronger nucleophile, SO4
2-, than that of 

nitric acid (NO3
-), which may make it possible to attack the cation sites of the zirconia 

and dissolve the material.  Sulfuric acid is not the acidic media used in reprocessing.  

Therefore, an additional step would be required to precipitate out the dissolved material 

and redissolve it in nitric acid for the purpose of reprocessing.  This would add additional 

complication and cost to the recycling of this fuel.  It does however, eliminate the need to 

use hydrofluoric acid, which would reduce the radiotoxicity of the solvent used in 

reprocessing.  Sample dissolution was followed by examining the concentration of 

cations in solution by inert coupled plasma – atomic emission spectroscopy and the 

nature of those species was evaluated by time resolved laser spectroscopy. 

 It was found that 5 M and 9 M sulfuric acid were inadequate at dissolving any 

appreciable amount of the zirconia phase as seen by ICP-AES, which has an approximate 

detection limit of 1-10 ppm in the method described above.  Concentrated sulfuric acid 

was also unable to dissolve zirconium, uranium, or erbium indicating that kinetics factors 

play a large role in the dissolution of this material.  Magnesium oxide was easily 
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dissolved within 10 hours by all concentrations of sulfuric acid.  Its kinetics were fast 

enough and the extent of dissolution was so complete that it seemed independent of the 

sulfuric acid concentration under these conditions as can be seen in Figure 71.  It is 

shown there that both 5 M and 9 M sulfuric acid dissolve the magnesium oxide phase to 

completion within 10 hours at virtually the same rate.  This fast, complete dissolution of 

magnesium oxide should leave behind a porous zirconia matrix with a high surface area 

to volume ratio that will improve the kinetics of the overall dissolution. 

 

 

Figure 71: Surface area normalized concentration of magnesium from six samples of 

Zr0.148Mg0.834U0.010Er0.007O1.16 in 5 M and 9 M sulfuric acid. 
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concentrated sulfuric acid was able to dissolve a measurable amount of zirconium in 

solution and was able to solubilize an initial amount of uranium and erbium within the 

first 24 hours of the experiment, which remained constant for the remainder of the time 

studied.  The sample size of these experiments did not exceed 450 mg in 150 mL of 

sulfuric acid.  The amount of uranium dissolved in solution was less than 12 wt. % of the 

total uranium in the sample.  The erbium was significantly more soluble with 46 wt % of 

the total erbium dissolved in concentrated sulfuric acid.   

 

 

Figure 72: Surface area normalized concentrations of Zr0.148Mg0.834U0.010Er0.007O1.16 in 

concentrated sulfuric acid.  Error bars represent standard deviation of three samples. 
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 The zirconium exhibits different behavior in that its concentration reaches a 

maximum at 24 hours with a significant standard deviation between samples and then 

drops to an equilibrium amount of around 2 mmol/Lm2.  This is due to the low solubility 

of zirconium in sulfuric acid.  The sulfuric acid is successful in breaking up the matrix 

and releasing the cations within the zirconia.  The uranium and erbium are solubilized to 

an extent and the zirconium is suspended as a colloid.  As the colloids conglomerate, they 

drop out of solution lowering the concentration to an equilibrium amount of solubilized 

zirconium.  This also accounts for the large range of concentrations at the maximum 

zirconium concentration as this is based on suspended colloids which is highly influenced 

by particle size distribution, which varies from sample to sample of crushed ceramic. 

 Colloidal suspension presented more of a problem with samples that were finely 

crushed than those that had a slightly lower surface area to volume ratio.  This was 

confirmed by time resolved laser spectroscopy.  At 200 nsec after the laser pulse [Figure 

73] the sample with a small surface area to volume ratio shows a typical fluorescence 

pattern due to the presence of uranyl, though enhanced because of the high concentration 

of sulfate.  The sample with a slightly higher surface area to volume ratio has a 

significant background due to scattering in addition to typical uranyl fluorescence 

spectra.  This background was proven to be due to colloidal scattering by taking a spectra 

at 1000 nsec after the laser pulse at which time the scattering process has concluded.  At 

this time, the background seen in the previous spectra is not present and only the 

contribution due to uranyl fluorescence is present as seen in Figure 74.  The lifetimes of 

the two fluorescent samples indicate that they have slightly different speciation, though 

this may be an effect of the highly complexing environment.  Also, the sample may have 
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had colloidal material encompassing the uranyl ion allowing it a non-radiative de-

excitation route which would have acted as a static quenching agent. 

 

 

Figure 73: Time resolved laser fluorescence of two samples of 

Zr0.148Mg0.834U0.010Er0.007O1.16 labeled by relative surface  

area to volume ratios 200 nsec after fluorescence. 

 

 

Figure 74: Time resolved laser fluorescence of two samples of 

Zr0.148Mg0.834U0.010Er0.007O1.16 labeled by relative surface  

area to volume ratios 1000 nsec after fluorescence. 
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5.2.3 Conclusion of acidic dissolution with uranium containing ceramic 

This study was successful in exploring the possibility of reprocessing zirconia-

magnesia inert matrix fuel through dissolution in nitric and sulfuric acid.  These studies 

were unique in that they incorporated a fissile component using an actinide and a 

burnable poison as erbium oxide.  It was found that this is vital to accurately represent the 

dissolution behavior of the ceramic and that uranium has a different chemical behavior 

than cerium, a common actinide homolog, under these conditions.  This is best illustrated 

in the dissolution behavior of the material in concentrated nitric acid.  It was shown that 

at low levels of zirconium oxide, the high concentration of uranium within the zirconia 

phase and high surface area to volume of that phase enables the leaching of uranium, 

erbium, and magnesium from the zirconia lattice.  At significantly high levels of these 

substituting ions it is possible to destabilize the lattice due to leaching and consequently 

dissolve the zirconia phase through a linear, incongruent dissolution process.  This 

process does however require a great deal of time and only happens under specific 

chemical compositions.  Because of this, sulfuric acid was also explored as a means of 

dissolving the fuel.  It was found that only 12 wt. % of the uranium in the sample was 

dissolved under current experimental conditions.  This would mean that large ratios of 

sulfuric acid to fuel would be needed to dissolve the material completely, making it a 

highly inefficient process.  In addition there is significant formation of colloids that 

conglomerate and settle to the bottom of the vessel.  This could pose engineering 

problems in the processing of large amounts of material.  Both sulfuric and nitric acid 

pose problems to the dissolution of zirconia-magnesia inert matrix fuels.  Future studies 

will use plutonium as the fissile component of the fuel and compare chemical behavior to 
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that of the uranium and cerium homolog studies.  In addition future studies will also 

incorporate the use of hydrofluoric acid to further enhance the dissolution process with 

nitric acid. 

 

5.3 Acidic dissolution with plutonium containing ceramic 

5.3.1 Nitric acid dissolution with plutonium containing ceramic 

 Three sample compositions (Zr0.21Mg0.77Pu0.011Er0.0078O1.2, 

Zr0.093Mg0.89Pu0.0065Er0.0052O1.1, and Zr0.061Mg0.93Pu0.0059Er0.0045O1.1) were used to explore 

the dissolution of plutonium containing ceramic in nitric acid.  These compositions were 

chosen because they are comparable to the sample compositions tested with uranium 

containing samples (Zr0.148Mg0.834U0.010Er0.007O1.16 and Zr0.070Mg0.914U0.009Er0.006O1.08).  

Pellets of this material that measured 3 to 4 mm in diameter were placed in a round 

bottom flask with 100 mL of concentrated nitric acid and the solution was brought to a 

boil (~120 oC) for 48 hours.  Only plutonium was analyzed for via liquid scintillation 

counting.  This allowed for smaller sample sizes which were chosen to be 100 µL and 

were diluted with 2 mL of water before adding 10 mL of scintillation cocktail.  Samples 

were counted for a maximum of 1 hour or 2 σ % counting error between 200 and 500 

keV.  The detection limit of the liquid scintillation counter is 0.1 Bq, which given the 

method and sample size puts the detection limit at 0.002 wt. % of the total plutonium in 

the sample.  Zirconium, magnesium, and erbium were not analyzed, because their 

behavior was well described in previous studies with cerium and uranium presented 

earlier in these studies. 
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 The concentrations calculated from the activity detected by liquid scintillation are 

normalized to geometric surface area and plotted in Figure 75.  It was found that while 
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Figure 75: Geometric surface area normalized concentrations of plutonium in 

concentrated nitric acid from Zr0.21Mg0.77Pu0.011Er0.0078O1.2, 

Zr0.093Mg0.89Pu0.0065Er0.0052O1.1, and  

Zr0.061Mg0.93Pu0.0059Er0.0045O1.1  

with first order kinetics fit. 
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within the first 4 hours the amount of plutonium in solution trends with chemical 

composition.  That is to say the more plutonium and magnesium and the less zirconium 

lead to higher concentration of plutonium dissolved in solution as expected.  However, 

after 4 hours the middle chemical composition (Zr0.093Mg0.89Pu0.0065Er0.0052O1.1) continues 

to increase while the other two compositions seem to plateau.  It is inconclusive from the 

data collected as to the kinetics mode of these two samples.  It is possible that they follow 

first order kinetics but have reached a diffusion controlled maximum where the zirconia 

matrix makes it impossible to further leach plutonium, which appears to be the case in 

Zr0.21Mg0.77Pu0.011Er0.0078O1.2.  It could also be that this leaching process will continue in a 

linear trend as it seems to continually increase in sample Zr0.061Mg0.93Pu0.0059Er0.0045O1.1.  

It can be concluded that like uranium this is an incongruent dissolution that involves the 

leaching of plutonium from the zirconia matrix.  The concentration plateau that is reached 

in all samples is micro molar concentrations while the saturation limit for plutonium in 

nitric acid is on the order of molar.  Because of this it was concluded that the 

concentration limit achieved in this experiment is due to the ability of zirconia to retain 

plutonium.  Sample Zr0.093Mg0.89Pu0.0065Er0.0052O1.1 seems to follow first order kinetics.  It 

was found to have a concentration limit of 0.089±0.002 mmol/Lcm2 and an initial rate 

constant of 0.12±0.01 hrs-1.   

This first order behavior is a significant deviation from uranium studies that 

suggested a linear dissolution rate in nitric acid.  This could be due to the increased 

detection limit with plutonium.  It is possible that uranium follows first order kinetics for 

the first 48 hours while the concentrations, below 0.03 mM, are too low to be monitored 

by ICP-AES.  After this period of time it is hypothesized that all of the plutonium that is 
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close to the surface is in solution and a leaching process then dictates the kinetics and 

follows a linear trend.  If the kinetics are assumed to be linear after the initial 24 hours 

then the slope of that line can be estimated by the slope of the points taken after 24 hours.  

If this is done then the slopes are 0.43, 1.1, and 2.4 mmol/L.hrs.cm2 x 10-4 for samples 

Zr0.21Mg0.77Pu0.011Er0.0078O1.2, Zr0.093Mg0.89Pu0.0065Er0.0052O1.1, and 

Zr0.061Mg0.93Pu0.0059Er0.0045O1.1 respectively.  This rate trends with composition in the 

same way that it did for uranium.  It also increases by the same order of magnitude for 

the same range in compositions as it did for uranium.  This further supports that the 

kinetics are similar.  It is recognized that this trend is only determined from two points 

and therefore impossible to determine a quantitative result.  It is presented here merely as 

a suggestion to behavior and should be a subject for further study.  The detection limit for 

the uranium studies was not low enough to detect the first order behavior in the beginning 

of the dissolution and the plutonium dissolution was not carried on long enough to 

conclusively identify the linear behavior at greater time. 

This explanation of the kinetics does not explain the differences in the quantity of 

material dissolved into solution.  A table of the physical characteristics of the pellets used 

in this study is found in Table 12.  As can be seen in the table above, the samples show  

 

Table 12: Physical properties for plutonium containing inert matrix fuel used in nitric 

acid dissolution study. 

Sample Composition 
Total Pu 

in Sample
Geometric 

Surface Area 
Mass of 
Sample 

Density of 
Sample 

Zr0.21Mg0.77Pu0.011Er0.0078O1.2 2.98 mg 45 mm2 72.0 mg 3.6 g/cm2 

Zr0.093Mg0.89Pu0.0065Er0.0052O1.1 2.60 mg 45 mm2 84.4 mg 4.2 g/cm2 

Zr0.061Mg0.93Pu0.0059Er0.0045O1.1 2.72 mg 43 mm2 91.0 mg 4.2 g/cm2 
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very little difference in physical properties.  The maximum amount of plutonium in 

solution does not show a trend with density, surface area, or mass of sample.  The sample 

with the least amount of plutonium shows the highest amount in solution while the 

highest amount of plutonium in a sample has the lowest amount in solution.  The 

difference in solution is far greater than the 15 % relative difference in plutonium 

content.  The amount of plutonium in solution as compared to the total amount of 

plutonium in the sample can be seen in Figure 76 as the wt. % of plutonium in solution. 
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Figure 76: Weight percent of plutonium in concentrated nitric acid from 

Zr0.21Mg0.77Pu0.011Er0.0078O1.2, Zr0.093Mg0.89Pu0.0065Er0.0052O1.1,  

and Zr0.061Mg0.93Pu0.0059Er0.0045O1.1 
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This difference in amount of plutonium initially dissolved into solution is believed to be 

due to the effective surface area of the zirconia phase.  These samples were broken in 

order to sample for characterization studies and it is possible that differences due to 

sampling effect the amount of zirconia surface that is accessible to the nitric acid.  The 

greater the accessible surface area the more of the plutonium is able to be solubilized by 

the nitric acid.  In the case of Zr0.093Mg0.89Pu0.0065Er0.0052O1.1 more than 50 wt. % is able 

to be dissolved in the initial 48 hours.   

 Interestingly if it is assumed that the linear rate proposed is true for all samples, both 

samples Zr0.21Mg0.77Pu0.011Er0.0078O1.2 and Zr0.093Mg0.89Pu0.0065Er0.0052O1.1 will take the 

same amount of time to dissolve, approximately 30 days.  The greater linear rate due to 

chemical composition is able to compensate for the low amount of plutonium 

immediately dissolved due to low effective surface area.  Given these assumptions, 

Zr0.061Mg0.93Pu0.0059Er0.0045O1.1 will take over twice as long to dissolve at 70 days.  These 

times are only slightly faster than studies performed with uranium that suggested 

complete dissolution could be achieved in 70 to 160 days depending on sample 

composition.  Further experimentation is needed to determine if these observations are 

differences due to the variation in chemistry from uranium to plutonium or if they are 

merely two different stages of the same kinetics mechanism. 

5.3.2 Hydrofluoric acid – nitric acid wet ashing of plutonium containing inert matrix fuel 

 One sample each of Zr0.76Mg0.10Pu0.078Er0.062O1.9, Zr0.64Mg0.29Pu0.029Er0.041O1.7, 

Zr0.56Mg0.36Pu0.037Er0.044O1.6 and Zr0.44Mg0.47Pu0.042Er0.048O1.5 were used in a dissolution 

experiment with hydrofluoric acid.  The physical properties of the samples are listed in 

Table 13.  Samples were placed in a 10 mL Teflon vial and 5 mL of 7 M nitric acid and 
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0.05 M hydrofluoric acid solution was added to the vial.  An addition 1-2 mL of 30 % 

hydrogen peroxide was added to the vial and the vial was heated to dryness.  This was 

repeated five times for each sample before the sample was reconstituted in 7 M nitric acid 

[Section 2.10].  The amount of plutonium in solution was monitored before each heating 

by removing a small sample and measuring the activity by LSC.  The samples for LSC 

were not filtered, with the exception of after the sample was reconstituted in 7 M nitric 

acid.  At that point the sample was filtered with a 0.45 µm filter and then counted. 

 

Table 13: Physical properties of plutonium containing inert matrix fuel samples used in 

HF-HNO3-peroxide dissolution. 

Sample Composition 
Total Pu 

in Sample 
Geometric 

Surface Area 
Mass of 
Sample 

Density of 
Sample 

Zr0.76Mg0.10Pu0.078Er0.062O1.9 1.9 mg 8.8 mm2 11.9 mg 5.5 mg/cm3 

Zr0.64Mg0.29Pu0.029Er0.041O1.7 2.63 mg 16.5 mm2 35.1 mg 5.5 mg/cm3 

Zr0.56Mg0.36Pu0.037Er0.044O1.6 1.93 mg 13.2 mm2 19.7 mg 4.6 mg/cm3 

Zr0.44Mg0.47Pu0.042Er0.048O1.5 1.4 mg 7.0 mm2 11.7 mg 7.7 mg/cm3 

 

 There was no evidence of a change in activity due to filtration and it was therefore 

determined that colloid formation with plutonium in nitric acid was not a significant 

concern.  There was also no indication that the final addition of nitric acid left previously 

dissolved material undissolved.  That is to say that the material that was dissolved by the 

nitric-hydrofluoric-peroxide solution is soluble in nitric acid.  Because of this, the amount 

of activity in the final nitric acid solution is taken to be the total amount of plutonium 

dissolved over the five wet ashing cycles.  The amount of plutonium dissolved in solution 

increased after every wet ashing cycle, but it was erratic and inconsistent from sample to 
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sample.  This resulted in little information on the kinetics of the dissolution.  The total 

amount of plutonium that was dissolved was determined and is given in Table 14.  As can 

be seen in the amount of plutonium dissolved in nitric acid, there is no trend with 

chemical composition.  This coupled with no trend in physical properties given in Table 

13, suggests that the kinetics and extent of dissolution is dependent on a property that has 

not been measured, such as effective surface area of the zirconia phase.  This would be 

consistent with previous studies involving nitric acid and would further support the 

incongruent leaching process described previously.  This dissolution process is successful 

in dissolving up to 81.4 wt. % of the total plutonium from sample 

Zr0.56Mg0.36Pu0.037Er0.044O1.6.  This indicates that this solution can be used to successfully 

dissolve significant amounts of the material.  Increasing the surface area by crushing the 

material should aid in the dissolution process.  Crushing of the material can be aided by 

dissolving the magnesium oxide phase in an initial dissolution step of nitric acid, which 

would leave behind a porous zirconia phase that would be easily crushed exposing a large 

surface area.  It also has the advantage that samples are already dissolved in the media of 

choice for performing separations in a reprocessing scheme. 

 

Table 14: Weight percent dissolved from plutonium containing inert matrix fuel in HF-

HNO3-peroxide solution. 

Sample Composition wt. % dissolved 

Zr0.76Mg0.10Pu0.078Er0.062O1.9 47.9 

Zr0.64Mg0.29Pu0.029Er0.041O1.7 29.7 

Zr0.56Mg0.36Pu0.037Er0.044O1.6 81.4 

Zr0.44Mg0.47Pu0.042Er0.048O1.5 72.3 
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5.3.3 Conclusions of acidic dissolution study with plutonium containing inert matrix fuel 

 It was found that nitric acid is successful in at least partially dissolving plutonium 

from a zirconia matrix.  It is proposed that the first 24 hours of dissolution is dominated 

by first order kinetics as the plutonium at the surface is dissolved by nitric acid.  This was 

not observed in uranium due to detection limits.  After 24 hours it is hypothesized that the 

kinetics will follow a linear trend due to the leaching of plutonium from the zirconia 

matrix leading to incongruent dissolution.  This was observed in uranium and the rate 

was found to trend with both magnesium oxide content and concentration of plutonium 

within the zirconia phase.  This behavior in plutonium containing samples is supported by 

fitting points taken after 24 hours to a line, which shows the same trend as in rates 

determined in uranium samples.  The amount of plutonium in solution at any time is 

related to both the rate of dissolution and effective surface area of zirconia.  This 

effective surface area is why the sample with moderate magnesium and plutonium 

exhibited the greatest amount of dissolved plutonium after 48 hours.  It was concluded 

that given the current kinetics model it would take between 30 and 70 days depending on 

composition and surface area to completely dissolve the plutonium from the material, 

which is only slightly faster than with uranium (70 to 160 days). 

 Hydrofluoric acid and hydrogen peroxide were added to nitric acid to improve the 

dissolution kinetics of the experiment.  It was found that in five wet ashing cycles it was 

possible to dissolve up to 81 wt. % of the plutonium from the matrix.  This is 

significantly more and also much faster than with nitric acid alone.  The amount of 

plutonium dissolved continues to increase with each ashing, so it is predicted to be 

possible to use this dissolution method for the complete dissolution of plutonium.  The 
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amount of plutonium dissolved with each ashing was inconsistent and therefore 

impossible to predict the kinetics.  The amount of plutonium dissolved did not trend with 

the physical or chemical properties that were measured.  It is believed to be due to the 

effective surface area of the zirconia phase as was the case with nitric acid dissolution of 

uranium containing samples.  It should also be noted that the HF-HNO3-peroxide 

dissolution study was carried out with sample compositions that were more durable 

(higher zirconium oxide concentrations) than those that were carried out with nitric acid 

alone.  Therefore, the sample compositions with greater concentrations of plutonium and 

magnesium oxides should dissolve faster and to a greater extent than the samples with 

higher zirconium oxide. 
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CHAPTER 6 

 

IRRADIATION DAMAGE STUDIES 

6.1 Heavy ion irradiation in fluorite and related structures 

 Radiation tolerance is vital to nuclear materials that are to be used in high dose fields, 

such as fuels and waste forms.  The dissolution properties presented in previous chapters 

are only valid if the material remains unchanged after the high irradiation dose it will 

receive during its lifetime or function.  This chapter presents the theories for irradiation 

tolerance in fluorite structure derivatives published by Sickafus et. al.(60) and uses them 

to explain radiation damage studies in zirconia-magnesia inert matrix fuel as compared to 

the delta phase compound UY6O12.   

 Sickafus suggests using phase diagrams to predict irradiation tolerance in fluorite 

structure derivatives.  Delta phase compositions of A4B3O12 and pyrochlore compositions 

of A2B2O7 where B is zirconium oxide were studied specifically.  It can be shown in the 

binary temperature-composition (T-C) phase diagrams of zirconium oxide and the 

lanthanides that there are trends in the stability of these phases.  As the cation size 

decreases across the rare earth compounds from lanthanum to gadolinium the temperature 

of the order to disorder transition from pyrochlore to disordered fluorite goes down 

dramatically [Figure 77].  At dysprosium there is no stable delta or pyrochlore phase and 

the phase diagram is dominated by the disordered fluorite structure.  After this, the order 

to disorder transition temperature from a delta phase to a disordered fluorite goes up 

slightly as the cation radius of the lanthanide is increased [Figure 77].  Molecular statics 

calculations show that this trend is duplicated in the amount of energy it takes to create a 
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cation antisite and anion Frenkel defect (60).  It is not surprising that the higher the 

energy it takes to create a point defect the more stable the phase is to temperature. 

 Radiation fields lead to point defects that cannot be avoided.  Therefore, the better 

equipped the lattice is at storing these defects, the more radiation tolerant (at least to 

amorphization) the material is.  If these point defects result in little stored energy, then it 

is less likely for them to cause changes in structure such as amorphization or defect 

clustering.  These processes of lowering stored lattice energy result in swelling and 

drastically change the dissolution properties of the material and should therefore be 

avoided.  Material with a low order to disorder transition temperature will correspond to 

having low stored lattice energy due to defects caused by radiation.  Therefore, material 

with a low order to disorder transition temperature should perform better than those with 

higher temperature transitions and disordered fluorites should be highly radiation tolerant 

in terms of amorphization resistance.  This idea of predicting radiation damage behavior 

from T-C phase diagrams was suggested by Sickafus et. al. (60) and is merely 

summarized here for clarity as it is relevant to irradiation studies presented in subsequent 

sections. 

 The importance of this in the zirconium oxide system is that lanthanides similar to the 

size of dysprosium (where there is no ordered sublattice) should show the most radiation 

tolerance.  Furthermore, delta phase compounds should exhibit superior resistance to 

amorphization as compared to pyrochlores, which have been championed lately as highly 

radiation tolerant (61).  Disordered fluorites will have the highest resistance to 

amorphization as compared to both delta phase and pyrochlore compounds.  The study 

presented in this chapter uses the irradiation of a delta phase compound (UY6O12) and the 
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zirconia-magnesia inert matrix fuel, a disordered fluorite structure, to illustrate this point.  

If the crystal structure remains intact then the material behavior should be similar to that 

of the pristine sample.  Therefore, the material should behave similar before and after use 

as a nuclear fuel, or after extended use as a waste form. 

 

 

Figure 77: Selected T-C phase diagrams(62) in which various sesquioxides (A2O3) are 

mixed with the dioxide, zirconia (ZrO2).  Stability regions for the pyrochlore (P),  

delta phase (δ) and fluorite (F) crystal structures are colored for clarity. 
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6.2 Heavy ion irradiation of UY6O12 

The -Y6U1O12 exposed to heavy ion irradiation at cryogenic temperature does not 

amorphize, but undergoes an order-to-disorder transformation at a relatively high 

displacement damage dose.  Density functional theory (DFT) is also used to calculate the 

energy to form a cation antisite in Y6U1O12 and uranium surrogate -phase compounds 

Y6W1O12 and Yb6W1O12.  DFT results reveal that Y6U1O12 with lowest cation antisite 

formation energy exhibits higher radiation-induced amorphization resistance than 

Y6W1O12  and Yb6Y1O12 (63). 

Yttrium oxide (99.9 %) powder from Alpha Aesar was calcined at 1000 C for 12 h, 

and mixed with UO2 powder from Bio-Analytical Industries in the molar ratio of 1:3.  

The mixture was then ball milled in a stainless steel cup and pressed in a SPEX 13 mm 

die.  Resulting pellets were oxidized in air for 4 h in a Mellen high temperature tube 

furnace at 350 C, then up to 1500 C for 12 h.  The reaction was not completed so pellet 

fragments were placed in a box furnace for 72 h at 1000 C under air, then remilled, 

repressed and resintered under air at 1500 C for 72 h.  X-ray diffraction measurements 

showed that the sintered pellets are primarily -phase crystal structure, a structure 

characterized by rhombohedral symmetry.  Ion irradiations were performed as described 

in Section 2.1.  Irradiated samples were analyzed using both grazing incidence X-ray 

diffraction (GIXRD) and transmission electron microscopy (TEM) as described in 

Section 2.4 and 2.1, respectively.  Irradiated samples were prepared in cross-sectional 

geometry for TEM examination using focused-ion-beam (FIB).  TEM investigations were 

performed using Philips CM-30 and FEI Tecnai F30 electron microscopes operating at 

300 kV [Section 2.14].   
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Figure 78 shows GIXRD patterns obtained from pristine Y6U1O12 and Y6U1O12 

irradiated with 300 keV Kr++ ions to fluences of 51019 Kr/m2 and 21020 Kr/m2.  These 

ion fluences correspond to peak displacement damage doses of ~ 12 and 50 dpa (these are 

estimates based on the Monte Carlo ion transport code SRIM (64); 40 eV was used for 

the displacement threshold energy for all target atoms in these calculations).  The pristine 

GIXRD pattern in Figure 78 is consistent with the rhombohedral -phase Y6U1O12 

structure.   

 

 

Figure 78: Grazing incidence X-ray diffraction (GIXRD) patterns obtained from Y6U1O12 

before and after irradiation with 300 keV Kr++ ions. 

 

Up to irradiation fluence of 21020 Kr/m2, some subtle peaks associated with the fluorite 

structural derivative phase disappear or diminishing with increasing ion dose, and some 

-phase peaks seem to persist; while the four prominent diffraction peaks (at ~29, 34, 
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48, 57 2) are more or less unaffected by irradiation.  These peaks can be interpreted as 

arising from the parent fluorite structure.  Also, these fluorite peaks broaden following 

ion irradiation, which is due either to decreased grain size or increased lattice strain. 

Figure 79 shows a cross-sectional TEM image obtained from Y6U1O12 irradiated with 

300 keV Kr++ ions to a fluence of 21020 Kr/m2 (corresponding to ~ 50 dpa).  The inset 

microdiffraction (D) patterns indicate a change in structure between the unirradiated 

substrate (bottom pattern) and the irradiated layer (top pattern).  The substrate D pattern 

is consistent with the rhombohedral -phase Y6U1O12 structure.  Superlattice reflections 

characteristic of pristine Y6U1O12 are seen to disappear in the D pattern obtained from 

the irradiated layer.  This D pattern from the irradiated layer can be indexed as 

consistent with a cubic, disordered fluorite phase.   

 

 

Figure 79: Cross-sectional TEM bright-field image and microdiffraction patterns (inset) 

for Y6U1O12 irradiated to a fluence of 2 x 1020 Kr/m2 (~50 dpa). 
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The structural changes observed in the high-dose ion irradiated -phase Y6U1O12 

sample were further investigated using high-resolution TEM (HRTEM).  Figure 80 shows 

HRTEM micrographs obtained from the same sample as in Figure 79 at the interface 

between lower irradiated layer and unirradiated substrate.  These micrographs were 

obtained with the electron beam aligned along B  = [121] with respect to the 

rhombohedral -phase Y6U1O12 substrate (using the 3-index system for indexing 

hexagonal directions).  In Figure 80, two distinct structural regions, labeled “substrate” 

and “irradiated”, are apparent.  Insets shown in Figure 80 are diffractograms obtained 

using the fast Fourier transform (FFT) method, from the substrate and irradiated regions 

in the HRTEM micrograph.  These diffractograms are consistent with the µD patterns in 

Figure 79.  The HRTEM observations confirm that Kr++ ion irradiation induces an order 

to disorder transition in the buried irradiated layer of Y6U1O12.   

 

 

Figure 80: High-resolution TEM (HRTEM) micrographs obtained from the interface 

between the lower irradiated region and the unirradiated substrate in Fig. 74. The 

micrograph was obtained with the electron beam aligned along the [121] direction. 
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GIXRD and TEM observations indicate an irradiation-induced phase transformation 

in Y6U1O12 from an ordered, -phase structure with rhombohedral symmetry to a fluorite 

phase with cubic symmetry by the highest experimental dose of ~50 dpa.  We interpret 

this transformation to the cubic fluorite phase as an order-to-disorder (O-D) 

transformation, analogous to that seen in previous radiation damage studies on 6:1:12 

uranium surrogate-phase compounds (-Y6W1O12 and -Y6W1O12 (63)).  For irradiated 

delta phase compounds, cation antisite defects must form on the cation sublattice and 

anion Frenkel defects must be created on the anion sublattice in order to achieve this 

transformation. With this order to disorder transformation the rhombohedral symmetry of 

the ordered -phase vanishes in favor of cubic symmetry.  These reactions lead the 

material transforms to a structure indistinguishable from the fluorite (CaF2) crystal 

structure.  We refer to this radiation-induced structure as a “disordered fluorite” phase.   

It is interesting that -Y6U1O12 compound irradiation result shows very strong 

amorphization resistance and remains crystalline to a high dose of 50 dpa, while uranium 

surrogate -phase compounds Y6W1O12 and Yb6Y1O12 undergo amorphous transitions at 

the same dose level.  As well known, radiation-induced amorphization resistance is an 

inherent ability to accommodate atomic lattice disorder, including cation disorder on the 

A and B sites, as well as on a disordering of oxygen vacancies.  The defect-formation 

energy has a significant effect on the susceptibility of the structure to radiation damage.  

Under irradiation, the lattice energy increase rapidly, especially in materials with a high 

defect formation energy.  When the free energy of the crystalline structure during 

irradiation is greater than the free energy of the aperiodic state, the material is more easily 

amorphized. 
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To gain some insight into the defect processes responsible for disordering and 

amorphization under irradiation, we performed density functional theory (DFT) 

calculations to determine the energy to create an antisite pair in Y6U1O12 and uranium 

surrogate -phase compounds Y6W1O12 and Yb6W1O12 (65).  We calculated the 

formation energy Ef of a cation antisite pair via the relation Ef = E(AB) + E(BA) - 2Eperfect 

where E(AB) is the energy of a simulation cell with an A cation on a B site, E(BA) is the 

energy of a simulation cell with a B cation on an A site, and Eperfect is the energy of a 

simulation cell of perfect delta phase.  Figure 81 shows the DFT results for these three 

compounds in order of decreasing A3+/B6+ radius ratio, cation antisite formation energies 

of for Y6W1O12, Yb6W1O12 and Y6U1O12 are Ef =11.90, 10.25, 8.21 eV, respectively.   

 

 

Figure 81: DFT calculations for the energy to form cation antisite in Y6U1O12, Y6W1O12 

and Yb6Y1O12 in order of decreasing A3+/B6+ radius ratio. 
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These are relatively large numbers, larger than equivalent energies found for other 

materials with empirical potentials (60).  This suggests that disordering might be 

relatively difficult in these materials.  However, the trends in disordering and 

amorphization tendencies predicted by these numbers show different agreements with the 

experimental results described above.  The uranium compound has lower antisite 

formation energy suggesting that they will amorphize at higher dose.  Exceptional 

resistance to radiation-induced amorphization in Y6U1O12 is indeed observed 

experimentally, however, we do not observe Y6U1O12 to undergo an ordered 

rhombohedral to disordered cubic fluorite transformation as readily as do the Y6W1O12 

and Yb6W1O12 compounds.   

The antisite formation energy in the uranium compound is quite high, suggesting that 

this material is strongly ordered.  That a material with such a strong propensity for 

ordering does not amorphize under irradiation is interesting and challenges our previous 

understanding of amorphization resistance (60).  However, the ability of a material to 

accommodate disorder via mechanisms such as antisite formation is only part of the story 

for amorphization resistance.  Also of key importance is the number and types of defects 

produced during irradiation.  It may be that in this material, because of the very high 

mass of the cations, the anions play the dominant role in absorbing the energy of the 

incoming radiation and dissipating it in the system.  Future work will investigate the 

defect production and anion behavior in these materials. 

We also note that the cation antisite formation energy is increased with the larger 

disparity between cation ionic radii in Figure 81.  This large size difference is not 

favorable to cation antisite reactions, thus limiting the atomic mechanisms available for 
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lattice recovery from radiation damage.  Clearly, the cation radius ratio of Y6U1O12 is 

much smaller than that of tungsten compounds, which suggests Y6U1O12 possesses more 

ability to accommodate disorder and greater stability for the crystalline.  Work is in 

progress on additional uranium bearing 6:1:12 compounds to determine if the cation 

radius ratio and cation antisite formation energy are indeed important parameters in 

determining susceptibility to radiation-induced amorphization. 

In summary, we performed Kr ion irradiation experiments under cryogenic 

conditions on polycrystalline -phase Y6U1O12, and DFT calculations for the cation 

antisite formation energy.  GIXRD measurements and TEM observations revealed -

phase Y6U1O12 possesses higher radiation resistance to amorphization than uranium 

surrogate -phase compounds Y6W1O12 and Yb6Y1O12.  The material did, however, 

undergo an order to disorder transition at high doses (~ 50 dpa).  The theoretical 

simulation also supports that Y6U1O12 should be more resistant to radiation damage than 

the tungsten homolog due to the low cation antisite formation energy and similar cationic 

radii.  This is further evidence that there is nothing mysterious about pyrochlore 

compounds and that the search for radiation tolerant material should aim toward 

structures that naturally accommodate disorder.  The significance of the irradiation of 

UY6O12 is that it is the first, to our knowledge, demonstration of significant radiation 

tolerance (specifically amorphization resistance) in a fluorite derivative compound 

containing a substantial actinide concentration and irradiated to a substantial dose 

(greater than 10 dpa).  This study is compared to the irradiation of the zirconia-magnesia 

inert matrix fuel in the following section.   
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6.3 Heavy ion irradiation of zirconia-magnesia inert matrix fuel 

 A uranium containing inert matrix fuel of the composition 

Zr0.251Mg0.728U0.012Er0.009O1.27 was irradiated with 300 keV Kr++ ions to a fluence of 2 x 

1016 Kr/m2 at liquid nitrogen temperatures.  The sample was prepared as described in 

Section 3.2 and then polished to a mirror finish (1 micron).  Structural changes were 

evaluated by GIXRD before and after the irradiation.  The GIXRD patterns taken after 

the irradiation were collected at 0.25o, 0.5o, 0.75o and 1.0o incidence angle to probe 

different depths of the sample.  Since the Kr++ ions have a small penetration depth of a 

few hundred nanometers the incidence angle should be able to probe from only the 

irradiated layer at the most shallow angles to the irradiated layer and some of the 

substrate at higher angles.  This allows identifying differences in the irradiated layer as 

compared to the substrate. 

 SRIM calculations were used to determine the dose due to the irradiation in 

displacements per atom and to estimate the amount of Kr++ deposited in various depths of 

the sample.  It was found that the maximum dose was ~ 42 dpa at 200 nm beneath the 

surface and that the damage extended to 600 nm below the surface.  This is a relatively 

high dose, although lower than the 50 dpa used previously, for the material and the 

fluence used for this dose is the same as that for UY6O12.  Even so, these two irradiations 

are close enough to be comparable for radiation tolerance purposes.  The maximum 

concentration of Kr++ in the sample is 2.3 atomic % at 300 nm and the Kr++ range extends 

to 650 nm into the substrate.  A graph of the dose and Kr++ concentration as calculated by 

SRIM can be seen in Figure 82. 
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Figure 82: Dose in displacements per atom (DPA) and Kr++ concentration  

as a function of penetration depth. 

 

 GIXRD was performed on the sample after irradiation to evaluate any changes in 

crystal structure (Figure 83).  It can be seen that there are only the major fluorite peaks 

from both the zirconia phase and magnesia phase as there was in the pristine starting 

material (Figure 84).  Furthermore, there is no change in the pattern as the incident angle 

is changed.  This suggests that there is no difference between the irradiated material and 

the substrate.  Not only is there no change in intensity, but there is little peak broadening 

as was seen in the irradiation of UY6O12.  There is no ordered sub-lattice, so there is no 

possibility of an order to disorder transition.  The disordered fluorite structure lends itself 
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to accommodating any cation on any cation site and oxygen vacancies can also distribute 

themselves in a random fashion.  This minimizes the stored energy within the lattice and 

will therefore accommodate high radiation fields without amorphization. 
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Figure 83: Grazing Incidence X-ray Diffraction pattern of irradiated uranium containing 

zirconia-magnesia inert matrix fuel at 0.25, 0.5, 0.75 and 1.0 o incident angle. 

 

 This is a significant finding for a number of reasons.  It validates the theories put 

forth by Sickafus et. al. (60).  The disordered fluorite structure has superior radiation 

tolerance in terms of amorphization resistance, because it is able to accommodate 

disorder within the lattice without accumulating a significant amount of lattice energy.  
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This irradiation study also validates the solubility studies performed on the synthesized 

material as the material remains unchanged and should therefore behave similarly.  It will 

be necessary to repeat the studies with irradiated material to confirm the behavior of the 

material.  The fact that the material does not undergo any significant change, however, is 

a good indication that the irradiated material will perform similar to the as unirradiated 

synthesized material.  This confirms that zirconia-magnesia inert matrix fuel will not 

undergo any significant structural changes due to radiation damage to high dose (~ 42 

dpa). 
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Figure 84: GIXRD pattern of pristine Zr0.251Mg0.728U0.012Er0.009O1.27. 
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6.4 Conclusions from heavy ion irradiations 

 It was proposed by Sickafus et. al. (60) that radiation tolerance (particularly 

amorphization resistance) in fluorite structural derivatives can be predicted from 

temperature - composition phase diagrams.  Furthermore, it is favorable to amorphization 

resistance in order to be able to accommodate disorder in the form of cation antisite and 

anion Frenkel defects.  The energy required to make these defects is a good indication of 

temperature – composition diagram features and therefore radiation induced 

amorphization resistance.  If it is possible to accommodate these defects with a minimal 

amount of energy, then the material will be highly radiation tolerant.  Therefore, one of 

the best possible options for a radiation tolerant material is a disordered fluorite. 

 To test this theory a fluorite derivative, UY6O12, was irradiated to high dose and 

compared to irradiations of uranium surrogate compositions of WY6O12 and WYb6O12.  It 

was found through density functional theory (DFT) calculations that the energy of a 

cation antisite and Frenkel defect pair are lower in the uranium compound than in the 

tungsten surrogate compounds.  It is therefore predicted that the uranium compound will 

have a greater ability to accommodate disorder and therefore not undergo amorphization 

as easily as the tungsten compounds.  Under irradiation studies to a dose of ~ 50 dpa it 

was found that UY6O12 undergoes an order to disorder transition, but no amorphization.  

This is further evidence of the ability to predict radiation tolerance from T – C phase 

diagrams. 

 Finally, the uranium containing zirconia-magnesia inert matrix fuel with the 

composition Zr0.251Mg0.728U0.012Er0.009O1.27 was irradiated.  It was found that the material 

did not change in any way detectable by GIXRD.  The GIXRD patterns probing different 
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depths of the material show no difference in structure and are identical to the pristine 

starting material.  This further supports the superior radiation tolerance, at least to 

amorphization resistance, of disordered fluorite structures which is well described by 

Sickafus et. al. (60).  This also supports dissolution studies performed on as synthesized 

material as there was no change in chemical structure.  It is shown that the material 

should undergo little to no change with use as an advanced fuel or waste form.  

Therefore, the as synthesized material should behave similar to the irradiated material in 

dissolution studies as long as the material is compared to that of similar dose as 

calculated by SRIM. 
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CHAPTER 7 

 

CONCLUSIONS AND RECOMMENDATIONS 

7.1 Synthesis and characterization 

 The precipitation method used to synthesize zirconia magnesia inert matrix ceramics 

has been used to produce dual phase material with intimate mixing between phases.  It 

has also been shown to form a solid solution at less severe temperatures (510 oC) and 

durations than the corresponding dry synthesis route as demonstrated by TGA/DSC 

[Figure 6].  This could be beneficial for burning higher actinides with low sublimation 

temperatures, such as americium.  The ZrO2 requires very little MgO in the presence of 

CeO2 and Er2O3 to fully stabilize the cubic zirconia phase.  This zirconia phase can 

accommodate up to 14 % (wt/wt) fissile material and up to 12 % (wt/wt) burnable poison.  

A consistent 5 % (wt/wt) MgO is contained in the zirconia phase allowing for a reliable 

estimate of the quantity of the periclase phase that will be present for a given 

composition.  The relative amount of Mg is found to determine the phase composition of 

the resulting material.  With no MgO, ZrO2 is in both baddeleyite and tetragonal phases.  

As little as 3.2 % (wt/wt) and as much as 6.9 % (wt/wt) MgO resulted in a single cubic 

zirconia phase.  A MgO (periclase) phase precipitated at MgO concentrations at and 

above 11.5 % (wt/wt) MgO.  A third phase of cubic Ce-Er oxide was found after 

exceeding the solubility limit of the zirconia.  This was found at ZrO2 concentration of 30 

% (wt/wt) with Ce and Er concentrations of 8.3 % and 5.2 % (wt/wt) respectively.  This 

phase is also present in the absence of zirconia.  The periclase phase remains pure which 

will allow it to retain its thermophysical properties, most importantly thermal diffusivity 
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and thermal conductivity, and to further improve the reactor-related qualities of the 

overall ceramic.  This characterization study was performed to lay a foundation for 

dissolution studies of zirconia-magnesia inert matrix fuel under conditions relevant to an 

advanced fuel cycle with uranium and plutonium [Table 6].   

 Uranium containing inert matrix ceramic was successfully synthesized in a two phase 

ceramic consisting of cubic zirconia and periclase.  The periclase phase remains pure 

showing a low affinity for all other cations in the ceramic, which will allow the periclase 

phase to retain its thermophysical properties, most importantly thermal conductivity and 

thermal diffusivity.  Magnesium, uranium, and erbium are able to substitute in the 

zirconia lattice at different levels to create a solid solution.  Magnesium concentrations 

within the zirconia phase remains constant at 5 wt. %.  Uranium and erbium 

concentrations within the zirconia were as high as 20 and 10 % (wt/wt) respectively.  

These findings are confirmed by x-ray diffraction and electron microprobe analysis and 

further agree with previous studies performed with cerium as a plutonium homolog 

although the solubility limit for uranium was found to be higher than that of cerium 

within the zirconia under these conditions.  The higher solubility limit for uranium in 

zirconia as compared to cerium is an important deviation in behavior between the 

actinides and the lanthanide homolog.  The bond deformation due to the incorporation of 

uranium into the zirconia lattice was determined in the first two atomic shells by XAFS 

[Table 8]. 

 A zirconia-magnesia simulated inert matrix fuel containing plutonium oxide as the 

fissile material and erbium oxide as a burnable poison was successfully synthesized as a 

dual phase ceramic using a precipitation method over a range of compositions.  This 
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material was characterized by x-ray diffraction in an effort to identify and quantify 

crystalline phases present.  It was shown in most samples that the material consisted of 

cubic zirconia and cubic MgO (periclase).  Optical microscopy was used to visualize 

phase mixing, microstructure, and pore space.  Electron probe microanalysis was used to 

map elemental concentrations over wide areas.  This demonstrated the homogeneity of 

each phase and confirmed that plutonium and erbium are incorporated into the zirconia 

phase resulting in a solid solution.  This will simplify modeling and achieved new 

findings from this work.  Secondary electron microscopy equipped with energy 

dispersive spectroscopy was used to determine the stoichiometry of each phase.  It was 

determined that the periclase phase was pure MgO.  This will allow it to retain its heat 

transfer properties, specifically thermal diffusivity and thermal conductivity.  Analysis of 

the zirconia phase shows a presence of all cations involved to different concentrations.  

Magnesium is incorporated into the zirconia at 3-4 wt. % which defines the limit of 

isomorphic substitution for magnesium in zirconia under these conditions.  The solubility 

limits of plutonium and erbium in zirconia were not reached, however the highest 

concentration of plutonium and erbium found in the zirconia were 16 and 12 wt. %, 

respectively.  This high solubility limit will allow fissile material to be loaded into the 

fuel even at low concentrations of zirconium oxide.  These studies established that a dual 

phase composition of cubic zirconia solid solution and magnesium oxide can be achieved 

with plutonium and erbium oxide. 
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7.2 Aqueous dissolution 

 Aqueous dissolution studies were performed with cerium oxide containing inert 

matrix ceramic in order to establish protocols and validate procedures with non-

radioactive material.  These studies have also been used to assess the effectiveness of 

cerium as a plutonium homolog both structurally and chemically.  Soxhlet corrosion 

studies have found that zirconia is a highly resilient material that does not dissolve or 

release cations incorporated into its matrix in aqueous media as tested in these 

experiments.  The corrosion of the material is dictated by its magnesium oxide content.  

Once this magnesium oxide concentration is greater than 30 wt. % there is a measurable 

corrosion rate.  This corrosion rate increases by almost an order of magnitude when the 

magnesium oxide concentration is nearly doubled to 56 wt. %.  Experiments were 

performed to simulate dissolution under reactor conditions in the event of a cladding 

failure.  These experiments performed with turbid water at 300 oC found that the fuel 

pellet was physically destroyed within 48 hours, but there was no evidence of dissolution 

of the zirconia phase or any of its components for up to 250 hours.  These studies have 

been effective in establishing parameters and procedures to be used with actinide 

containing inert matrix fuel. 

Aqueous dissolution studies with inert matrix ceramic containing uranium oxide as a 

fissile component and plutonium oxide homolog and erbium oxide as a burnable poison 

were performed for corrosion resistance should the fuel be adopted for a “once through 

then out” fuel cycle scheme.  A Soxhlet corrosion study was performed to quantify the 

mass loss of the material with different magnesia to zirconia ratios over long periods of 

time (>2,000 hours).  It was found that samples with magnesium oxide content up to 30 
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wt. % showed minimum corrosion rates due to the stabilizing effect of zirconia.  Samples 

with magnesium oxide content of 60 wt. % or more showed no stabilizing effect from 

zirconia and had corrosion rates similar to that of samples with an inert matrix of pure 

magnesium oxide.  A moderate magnesium oxide concentration of 45 wt. % displayed an 

intermediate corrosion rate.  It is proposed that the corrosion of samples containing high 

zirconium oxide concentration is dominated by corrosion along the surface.  Higher 

magnesium oxide concentrations lead to Mg(OH)2 formation along grain boundaries 

dislodging entire grains leading to accelerated corrosion rates. 

 A pulse flow dissolution study [Section 2.10] was conducted with three sample 

compositions of varying magnesium oxide to zirconium oxide ratios in three solutions 

(deionized water, silicate-bicarbonate solution, and brine).  There was no evidence of 

zirconium, uranium, or erbium in solution for any sample by ICP-AES indicating that the 

cubic zirconia phase remained in tacked and no cations were leached from the phase, 

with a detection limit of 0.03 mM.  This will immobilize the material even in the event 

that the pellet is physically destroyed through the corrosion of the magnesia phase.  The 

pellets were physically destroyed to different degrees due to the dissolution of the 

magnesium oxide phase.  Rate and degree of corrosion was found to be proportional to 

magnesium oxide content, which is consistent with the Soxhlet study.  Magnesium oxide 

hydration and dissolution was followed by SEM imaging and XRD analysis.  Brine was 

found to be the most corrosive solution followed by deionized water.  Silicate-

bicarbonate solution was found to be the least corrosive due to the formation of a 

magnesium silicate on the surface that prohibits further corrosion.  This protective layer 

does not fully prohibit corrosion at magnesium oxide concentrations greater than 45 wt. 
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%.  This study confirms the corrosion mechanism proposed by previous studies and 

expands that knowledge to solutions relevant to environmental conditions.  It further 

quantifies the limits at which zirconia is significantly stabilizing the magnesium oxide to 

corrosion by water.   

 Pressure vessel dissolution studies have shown that the pellet is physically destroyed 

through the mechanical destruction and dissolution of the magnesium oxide phase by 

turbid water at 300 oC and pressures of 10.3 MPa.  This is a significant difference from 

those studies performed in static water at 300 oC (53).  The zirconia phase remains 

unchanged and there is no evidence of the release of any uranium or erbium by ICP-AES. 

 The goal of the aqueous dissolution studies with plutonium was to evaluate the 

simulated inert matrix fuel containing actual fissile material and burnable poison in 

reactor and repository conditions.  The inert matrix dissolution was well characterized by 

dissolution studies with uranium.  The advantage of plutonium is its relatively high 

specific activity that can be used to significantly lower the detection limit of the material 

by liquid scintillation counting when compared to ICP-AES.  Even with this lower 

detection limit it was found that less than 0.8 wt. % of the plutonium is released in static 

300 oC water.  This study also confirmed previous studies on pellet integrity under these 

conditions and validates the differences found between static and turbid water corrosion 

properties.   As a waste form zirconia does not appear to have any corrosion at all within 

the scope of this study.  The release of plutonium in waste form dissolution studies was 

found to be less than 0.01 wt. %, which is the detection limit under these experimental 

conditions.  This material performs extremely well under aqueous dissolution and proves 

to be a robust material under both reactor and repository conditions. 
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7.3 Acidic dissolution 

 The main focus of dissolution studies with cerium was to use it as a non-radioactive 

homolog for actinides within the inert matrix ceramic and to establish methods and 

protocols that would be applied to studies with actinides.  This proved to be invaluable in 

establishing procedures.  The second goal of these studies was to evaluate the 

effectiveness of cerium as a homolog for uranium and plutonium.  It was established in 

this study that cerium containing zirconia is insoluble in high concentrations of nitric 

acid.  It proved to be somewhat soluble in sulfuric acid.  Cerium and erbium follow first 

order dissolution kinetics in sulfuric acid medium.  The kinetics of zirconium and 

magnesium were not determined due to inconsistent concentrations found in solution.  

Also, the ceramic was not completely dissolved and a large amount of solid residue 

remained after 48 hours.  These studies are performed in greater detail with uranium to 

evaluate the solubility of the material in various acids. 

Studies using uranium in an inert matrix were successful in testing possibilities for 

dissolution as a first step in reprocessing.  These studies were unique in that they 

incorporated an actinide as a fissile component and erbium oxide as a burnable poison.  It 

was found that this is vital to accurately represent the dissolution behavior of the ceramic 

and that uranium has a different chemical behavior than cerium, a common actinide 

homolog, under these conditions.  This is best illustrated in the dissolution behavior of 

the material in concentrated nitric acid.  It was shown that at low levels of zirconium 

oxide, the high concentration of uranium within the zirconia phase and high surface area 

to volume of that phase enables the leaching of uranium, erbium, and magnesium from 

the zirconia lattice.  At significantly high levels of these substituting ions it is possible to 
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destabilize the lattice due to leaching and consequently dissolve the zirconia phase 

through a linear, incongruent dissolution process.  This process does however require a 

great deal of time and only happens with specific chemical compositions.  Because of 

this, sulfuric acid was also explored as a means of dissolving the ceramic.  It was found 

that only 12 wt. % of the uranium in the sample was dissolved under current experimental 

conditions.  This would mean that the cations involved will have a low solubility in the 

medium.  In addition there is significant formation of colloids that conglomerate and 

settle to the bottom of the vessel.  Both sulfuric and nitric acid pose problems to the 

dissolution of zirconia-magnesia inert matrix fuels.  Further studies were performed with 

plutonium as the fissile component of the fuel and its chemical behavior was compared to 

that of the uranium and cerium homolog studies.   

 It was found that nitric acid is successful in at least partially dissolving plutonium 

from a zirconia matrix.  It is proposed that the first 24 hours of dissolution is dominated 

by first order kinetics as the plutonium at the surface is dissolved by nitric acid.  This was 

not observed in uranium due to detection limits.  After 24 hours it is hypothesized that the 

kinetics will follow a linear trend due to the leaching of plutonium from the zirconia 

matrix leading to incongruent dissolution.  This was observed in uranium and analysis of 

the plutonium data shows the rate to trend with both magnesium oxide content and 

concentration of plutonium within the zirconia phase as would be expected.  This 

behavior in plutonium containing simulated inert matrix fuel is supported by fitting points 

taken after 24 hours to a line, which shows the same trends in rate as compared to 

composition that uranium samples did.  The amount of plutonium in solution at any time 

is related to both the rate of dissolution and effective surface area of zirconia.  This 
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effective surface area is why the sample with moderate magnesium and plutonium 

exhibited the greatest amount of dissolved plutonium after 48 hours.  It was concluded 

that given the current kinetics model it would take between 30 and 70 days depending on 

composition and surface area to completely dissolve the plutonium from the material, 

which is only slightly faster than rates determined with uranium as the fissile 

component(70 to 160 days), which would also suggest similar kinetics. 

 Hydrofluoric acid and hydrogen peroxide were added to nitric acid to improve the 

dissolution kinetics of the experiment.  It was found that in five wet ashing cycles it was 

possible to dissolve up to 81 wt. % of the plutonium from the matrix.  This is 

significantly more and much faster than with nitric acid alone.  The amount of plutonium 

dissolved continues to increase with each ashing, so it is expected to be possible to use 

this dissolution method for the complete dissolution of plutonium.  The amount of 

plutonium dissolved did not trend with the physical or chemical properties that were 

measured.  It is believed to be due to the effective surface area of the zirconia phase as 

was the case with nitric acid dissolution of uranium containing samples.  It should also be 

noted that the HF-HNO3-peroxide dissolution study was carried out with sample 

compositions that were more durable (higher zirconium oxide concentrations) than those 

that were carried out with nitric acid alone.  Therefore, the sample compositions with 

greater concentrations of plutonium and magnesium oxides should dissolve faster and to 

a greater extent than the samples with higher zirconium oxide that were used for this 

study. 
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7.4 Radiation tolerance 

 It was proposed by Sickafus et. al. (60) that radiation tolerance (particularly 

amorphization resistance) in fluorite structural derivatives can be predicted from 

temperature - composition phase diagrams.  Furthermore, it is favorable to exploit 

amorphization resistance to be able to accommodate disorder in the form of cation 

antisite and anion Frenkel defects.  The energy required to make these defects is a good 

indication of temperature – composition diagram features and therefore radiation induced 

amorphization resistance.  If it is possible to accommodate these defects with a minimal 

amount of energy, then the material will be highly radiation tolerant.  Therefore, one of 

the best possible options for a radiation tolerant material is a disordered fluorite. 

 To test this theory a fluorite derivative, UY6O12, was irradiated to high dose and 

compared to irradiations of uranium surrogate compositions of WY6O12 and WYb6O12.  It 

was found through density functional theory (DFT) calculations that the energy of a 

cation antisite and Frenkel defect pair are lower in the uranium compound than in the 

tungsten surrogate compounds [Section 6.2].  It is therefore predicted that the uranium 

compound will have a greater ability to accommodate disorder and therefore not undergo 

amorphization as easily as the tungsten compounds.  Under irradiation studies to a dose 

of ~ 50 dpa it was found that UY6O12 undergoes a partial order to disorder transition, but 

no amorphization, while the tungsten surrogates amorphize at comparable doses.  This is 

further evidence of the ability to predict radiation tolerance from T – C phase diagrams. 

 Finally, the uranium containing zirconia-magnesia inert matrix fuel with the 

composition Zr0.251Mg0.728U0.012Er0.009O1.27 was irradiated to a dose of 42 dpa.  It was 

found that the material did not change in any way detectable by GIXRD.  The GIXRD 
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patterns probing different depths of the material show no difference in structure and are 

identical to the pristine starting material.  This further supports the superior radiation 

tolerance, at least to amorphization resistance, of disordered fluorite structures which is 

well described by Sickafus et. al. (60).  This also validates dissolution studies performed 

on as synthesized material.  It is shown that the material should undergo little to no 

change with use as an advanced fuel or waste form.  Therefore, the as synthesized 

material should behave similar to the irradiated material to a similar dose in dissolution 

studies. 

 

7.5 Recommendations 

 The research presented in this thesis addressed several major hurdles to the feasibility 

of zirconia-magnesia inert matrix fuel.  The first was in the synthesis of the material.  It 

was established that a zirconia-magnesia inert matrix fuel could be synthesized with 

plutonium and erbium oxide via a coprecipitation method.  This coprecipitation method 

allowed for solid solution formation at less extreme sintering temperatures and durations 

as compared to the dry synthesis route of mixing the oxide powders.  The 

characterization of the material lead to the determination of the solubility limit of 

magnesium oxide in zirconia, under these conditions.  The solubility limit of plutonium 

and erbium oxide in zirconia was not determined.  It can be inferred through studies with 

cerium and uranium oxide, but it will be necessary to determine this explicitly in future 

work.  Because of this, it was determined that the synthesis of this material was possible 

given the procedure outlined in this work. 
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 The material that was synthesized in these studies was examined in two aqueous 

environments.  The first was in reactor condition as a nuclear fuel in the event of a 

cladding failure.  It was confirmed that the material is stable to static 300 oC water, which 

was determined by earlier studies.  Experiments done with turbid 300 oC water revealed 

that the magnesia phase was not stable and the sample pellet was physically destroyed.  

There was less than 1 wt. % of the fissile material released from the zirconia, but since 

the physical integrity of the fuel was compromised this poses a problem to reactor safety.  

Further assessment of this scenario needs to be done to determine the effect this would 

have in an accident scenario.  The second aqueous environment that was explored was 

environmental conditions should the inert matrix be used as the waste form in a once 

through fuel cycle scenario.  Under these conditions the inert matrix performed 

exceptionally well with less than 0.01 wt. % of the plutonium released from the sample.  

The fuel pellet is physically destroyed in some conditions, but since the activity is 

trapped in the zirconia this is not expected to be of consequence.  Further study should be 

performed on spent fuel to determine where other elements, such as fission products and 

minor actinides, are concentrated and whether they will become mobile under 

environmental conditions. 

 Several methods of dissolving the material were explored so that recycling could be 

an option for the spent fuel.  It was determined that sulfuric and nitric acid were 

inadequate at dissolving the material in efficient quantities and times for reprocessing.  

Nitric acid dissolution did, however, reveal that a fissile component with multiple 

oxidation states is necessary to accurately model the chemical behavior of the fuel.  

Therefore dissolution studies should be performed on material that contains plutonium if 
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it is to be accurately described.  Nitric acid with hydrofluoric acid and peroxide was 

successful in dissolving the material in a wet ashing procedure.  Therefore, this method is 

recommended for further study to accurately describe the kinetics and solubility limits so 

that it could be used to dissolve spent zirconia-magnesia inert matrix fuel. 

 Irradiation studies performed on the material confirm its high tolerance to 

amorphization.  A systematic study was performed to more accurately describe the mode 

in which materials fail in radiation testing.  In this way a better understanding of radiation 

tolerant materials can lead to better selection methods.  Because the zirconia-magnesia 

material does not undergo amorphization under high radiation dose it should be ideal as a 

fuel or waste form.  The material’s crystal structure did not change during irradiation and 

should therefore behave the same in dissolution studies as the synthesized material. 

 In conclusion, many of the issues associated with zirconia-magnesia inert matrix fuels 

were addressed in this work.  The synthesis of the material was solved through a 

coprecipitation process.  Compatibility with coolant water was identified as a subject for 

further study in accident scenarios.  The material behaved extremely well as a waste 

form.  A method was identified for dissolving the spent fuel so that reprocessing may be 

performed.  Irradiation studies confirmed the durability of the material in high dose fields 

making it a suitable nuclear fuel and waste form.  In short, zirconia-magnesia remains a 

promising material for use in advanced nuclear systems as a means of burning plutonium 

in existing pressurized water reactors. 
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