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ABSTRACT 

Substituent Effect on the Electronic and Assembling Properties of  
Asymmetric Phenazine Derivatives 

by  

Bin Cao  

Dr. Dong-Chan Lee, Exam Committee Chair  
Assistant Professor of Chemistry  
University of Nevada, Las Vegas  

Currently, one-dimensional (1-D) nanostructures have drawn much interest because 

of their potential applications for nanoscale optoelectronic devices. Self-assembly (SA) 

based on π-conjugated systems through various intermolecular interactions has been 

widely used to produce 1-D nanostructure. Morphology of the assembled structures can 

be modified by incorporating substituents, which provide additional secondary 

interactions. Meanwhile, those substituents also influence the electronic properties of the 

molecules. Previous studies have made little effort to systematically study subsistent 

effects on both electronic and SA properties. 

The primary objective of this research is to generate controllable 1-D structures 

through SA, and to provide a fundamental understanding of how different peripheral 

substituents bonded to a π-core influence the electronic and assembling properties of the 

molecules. A series of asymmetric phenazine derivatives containing different functional 

groups were designed and synthesized in order to investigate the halogen effect, position 

effect and the alkoxy chain length effect. The electronic properties were studied by UV- 
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vis spectroscopy, fluorescence spectroscopy, and cyclic voltammetry (CV). The 

experimental results of the systems’ electronic properties are compared with the 

theoretical calculations. The SA properties were extensively investigated by polarized 

optical microscopy (POM), scanning electron microscopy (SEM), transmission electron 

microscopy (TEM), single crystal X-ray crystallography, and X-ray diffraction (XRD). 
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CHAPTER 1 

 

SYNTHESES AND PHYSICAL PROPERTIES OF ASYMMETRIC  

PHENAZINE DERIVATIVES 

1.1. General Introduction 

      Most of electronic devices such as field effect transistors (FETs) and photovoltaic 

(PV) cells are based on inorganic semiconductors, and their organic counterparts have 

been relatively rare. However, organic semiconductors possess many advantages over 

their inorganic counterparts, such as optimizing their electronic structures by facile 

structure change, high flexibility, and low cost of device fabrication. One-dimensional  

(1-D) nanostructures such as nanofibers, nanobelts, nanotubes, etc., have gained 

increasing interest in both science and technology due to their potential applications in 

nanoscale optoelectronic devices.1,2 The electronic properties and self-assembly (SA) 

abilities are the two important features if these materials are to be useful organic 

semiconductors. These two properties are the major focuses of this research. 

      SA based on π-conjugated systems through various intermolecular interactions has 

been widely used to induce 1-D structures.3-5 SA is a spontaneous process by which 

molecules adopt well-defined superstructures through various noncovalent interactions 

such as hydrogen bonding (HB), halogen bonding (XB), π-π interactions, van der Waals 

forces, dipole-dipole interactions, etc. Previous studies of large macrocyclic aromatic 

molecules3-7 such as hexabenzocoronene indicated that self-assembly through π-π 
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stacking could be an effective approach to 1-D nanostructures for planar, rigid organic 

molecules. However, in most cases different kinds of interactions such as HB, π-π 

interactions, and van der Waals forces exist simultaneously in a system and they 

cooperate with each other to assist SA. Consequently, rational molecular design is very 

important for successful growth of 1-D structures. 

      Due to the electron-withdrawing property of imine nitrogens, it has been 

demonstrated that the introduction of pyridine, pyrazine, or triazine containing 

heterocyclic moieties8-11 could impart n-type character into the systems while their flat 

aromatic π core helps enhancing SA. The introduction of heteroaromatics cores should be 

a reasonable approach to achieve both electron-deficiency and self-assembly 

simultaneously. A number of imine containing heterocycles such as quinoline and 

quinoxaline have already been used as electron transporting material in organic light-

emitting diodes (OLEDs).8 

      Another important issue is how to successfully control both electronic properties and 

morphologies with different substituents. It has been reported that incorporating electron-

withdrawing substituents such as cyano (CN) and fluorine (F) into p-type semiconductors 

can create new n-type structural analogues.12-17 Also, manipulating the side groups18-21 

connected to the π-core can provide additional secondary interactions,22, 23 which is a 

good way to accomplish the morphology control. 

      Published works from our lab shows that two kinds of heteroaromatic asymmetric 

bisphenazine derivatives demonstrate excellent self-assembly properties.24-27 Therefore, 

to provide further understanding on the SA of heteroaromatic compounds, this thesis will 

focus on substituent effect on the electronic and assembling properties of asymmetric 
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phenazines derivatives. A total of eight molecules will be presented and their electronic 

characters and assembling morphologies will be discussed. These molecules are designed 

based on a heteroaromatic phenazine π-core that can easily be substituted peripherally to 

further tune its assembly and electronic properties.  

 

1.2. Molecular Design 

      In this research, phenazine was chosen as a platform for its assembling ability and 

electron-deficiency. It has been reported that the substituted dialkoxy phenazine exhibits 

gelling properties and shows potential as an acid-sensor.28 Previous studies on other π 

system have corroborated the fact that slight modification of an aromatic ring can have a 

remarkable influence on both physical properties and molecular arrangement, and may 

further change the morphology of the assembled structures.26,27,29,30 However, to the best 

of our knowledge, the effect of substituents on phenazine has not been extensively 

studied. Due to its SA ability and better electron-dificiency nature compared to 

anthracene, further investigation of the phenazine moiety, a potentially promising n-type 

semiconductor,31 requires a facile synthetic route and a sensible molecular design.  

Eight asymmetric phenazine derivatives were designed and synthesized to study both 

electronic character and 1-D SA (Figure 1.1). Three major structural features are of 

importance in this design. First, phenazine is a planar heteroaromatic molecule that may 

assist self-assembly through π-π interactions. Compared to previous reported π 

system,3,4,24-27 phenazine has a smaller π core which may provide less efficient π orbital 

overlap. However, π-π stacking is not the only driving force to induce SA, and the 
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Long alkoxy side chains: to promote 
solubility and assembly 

Halogen substituents (X, Y): 
controlling electronic property and 
giving secondary interactions 

Planar phenazine core for π-π 
interactions and electron-deficiency 

additional interactions including HB, XB, and van der Waals interactions will support SA.  

In addition, the presence of two imine nitrogens makes the system electron-deficient.  

 

 

 

 

Figure 1.1.  Design principle of asymmetrically substituted phenazines 

 

      The π-core is substituted asymmetrically by two different types of substituents. Long 

alkoxy chains with variable length are attached to one side of the π-core to promote 

solubility and assembly through cooperative van der Waals interactions. The halogen 

substituents added to the other side vary in size, position, and electron-withdrawing 

ability. These substituents will further tune the electronic properties such as electron-

deficiency and HOMO-LUMO energy gap while modulating the morphology of 

assembly. Overall, this design strategy will allow for the SA through cooperation of 

different intermolecular interactions while tuning the electronic properties of the 

molecule by changing the peripheral substituents.  

The first chapter will focus on the synthesis and physical properties of the molecules 

including optical and electrochemical characters. The subsequent chapter will focus on 

the molecular packing and assembly morphology of the final compounds through a study 

of cast film and solution based 1-D assembly using a phase transfer (PT) method. 
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1.3. Instrumentation 

      Nuclear magnetic resonance (NMR) spectra were obtained at 25 ˚C on a Varian 

Gemini 400 MHz spectrometer. Deuterated chloroform (CDCl3) with tetramethylsilane 

(TMS) as an internal standard was used as the solvent for all samples. Mass spectrometry 

(MS) data was collected at the University of North Carolina Chapel Hill and University 

of Illinois at Chicago. UV-vis absorption spectra of the final products were collected on a 

Shimadzu UV-2450 UV-vis spectrophotometer from solutions in CH2Cl2. Fluorescence 

emission spectra were obtained on a Horiba Flourescencemeter using a xenon lamp for 

excitation. Data was obtained from much diluted solutions in CH2Cl2 with excitation at 

different wavelengths. Cyclic voltammetry (CV) was performed on a CH Instrument 

660C potentiostat using a 3-electrode cell with a platinum disc working electrode (2 mm 

diameter), a nonaqueous Ag/Ag+ reference electrode (Ag+ as 10 mM AgNO3 solution in 

anhydrous acetonitrile), and a platinum plate as the counter electrode. CV measurements 

for all compounds were obtained from a methylene chloride solution of the compound in 

0.1 M tetrabutylammonium hexafluorophosphate (TBAPF6) as the supporting electrolyte. 

The electrolyte solution containing the sample was purged with Ar for 15 - 20 minutes 

before each experiment and a blanket of Ar was used during the measurements. The scan 

rate was adjusted to 100 mV for all experiments. All potentials were calibrated to the 

ferrocene/ferrocenium (Fc/Fc+) redox couple.  
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1.4. Synthesis Procedures 

      All chemicals and solvents were purchased from chemical sources and used as 

received. The target molecules (1 - 8) were prepared by the procedure shown in section 

1.5.1 (Scheme 1). All the compounds were confirmed by 1H-NMR, 13C-NMR and mass 

spectrometry. 

Compound 1 

1,2-Diaminobenzene (100 mg, 0.93 mmol) was dissolved in 20 mL absolute ethanol. 2,5-

Dihydroxyl-1,4-benzoquinone (130 mg, 0.93 mmol) was added at once and the mixture 

was refluxed for 24 hours under a positive N2 flow. The reaction mixture was cooled 

slightly. Without purification of the intermediate, after evaporating the solvent, the crude 

solid was dissolved in 20 mL dimethylformamide (DMF), followed by addition of K2CO3 

(447 mg, 3.23 mmol). Then bromodecane (616 mg, 0.58 mL) was added and the mixture 

was maintained at 60 ˚C for 24 hrs with continuous stirring. The mixture was cooled 

down to room temperature and poured into 200 mL of H2O, filtered and washed 

thoroughly with H2O. It was then dried over anhydrous sodium sulfate. The product was 

purified by silica gel column chromatography (CH2Cl2/Hexane 1/2 v/v). The pure product 

was obtained as a yellow solid. (Two-step yield: 58%). 

1H NMR (CDCl3) δ 8.14 (m, 2H), 7.73 (m, 2H), 7.35 (s, 2H), 4.23 (t, 4H, J = 6.6 Hz), 

1.96 (m, 4H), 1.54 (m, 4H), 1.5-1.2 (m, 24H), 0.89 (t, 6H, J = 6.8 Hz).  

13C NMR (CDCl3) δ 154.48, 142.01, 141.84, 128.81, 105.54, 69.30, 31.92, 29.62, 29.58, 

29.37, 29.36, 28.73, 26.05, 22.70, 14.12. (1 aromatic peak not seen due to overlapping 

signals) 

[M+H] +: Calcd 493.37; Found 493.3. 
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Compound 2 

1,2-Diamino-4,5-diflurobenzene (50 mg, 0.35 mmol) was dissolved in 7 mL absolute 

ethanol. 2,5-Dihydroxyl-1,4-benzoquinone (49 mg, 0.35 mmol) was added at once and 

the mixture was refluxed for 24 hours under a positive N2 flow. The reaction mixture was 

cooled slightly. After evaporating the solvent, without purification of the intermediate, 

the crude solid was dissolved in 8 mL DMF, followed by addition of K2CO3 (168 mg, 

1.23 mmol). Then bromodecane (231 mg, 0.22 mL) was added and the mixture was 

maintained at 60 ˚C for 24 hrs with continuous stirring. The mixture was cooled down to 

room temperature and poured into 80 mL of H2O, filtered and washed thoroughly with 

H2O. It was then dried over anhydrous sodium sulfate. The product was purified by silica 

gel column chromatography (CH2Cl2/Hexane 1/6 v/v). The pure product was obtained as 

a white solid. (Two-step yield: 68%). 

1H NMR (CDCl3) δ 7.84 (dd, 2H, J = 9.6 Hz), 7.30 (s, 2H), 4.22 (t, 4H, J = 6.6 Hz), 1.96 

(m, 4H), 1.54 (m, 4H), 1.5-1.2 (m, 24H), 0.89 (t, 6H, J = 7 Hz).  

13C NMR (CDCl3) δ 154.75, dd (153.56, 153.37, 151.00, 150.80), 141.88, t (139.02, 

138.96, 138.91), q (113.65, 113.58, 113.52, 113.45), 105.28, 69.39, 31.93, 29.62, 29.58, 

29.36, 28.72, 26.04, 22.70, 14.12. (1 aliphatic peak not seen due to overlapping signals) 

[M+H] +: Calcd 529.35; Found 529.3. 

Compound 3 

1,2-Diamino-4,5-dichlorobenzene (177 mg, 1 mmol) was dissolved in 25 mL absolute 

ethanol. 2,5-Dihydroxyl-1,4-benzoquinone (140 mg, 1 mmol) was added at once and the 

mixture was refluxed for 24 hours under a positive N2 flow. The reaction mixture was 

cooled slightly. After evaporating the solvent, without purification of the intermediate, 
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the crude solid was dissolved in 20 mL DMF, followed by addition of K2CO3 (493 mg, 

3.5 mmol). Then bromodecane (676 mg, 0.64 mL) was added and the mixture was 

maintained at 60 ˚C for 24 hrs with continuous stirring. The mixture was cooled down to 

room temperature and poured into 200 mL of H2O, filtered and washed thoroughly with 

H2O. It was then dried over anhydrous sodium sulfate. The product was purified by silica 

gel column chromatography (CH2Cl2/Hexane 1/3 v/v). The pure product was obtained as 

a yellow solid. (Two-step yield: 44%). 

1H NMR (CDCl3) δ 7.94 (s, 2H), 7.00 (s, 2H), 4.10 (t, 4H, J = 6.6 Hz), 1.94 (m, 4H), 1.54 

(m, 4H), 1.5-1.2 (m, 24H), 0.89 (t, 6H, J = 6.8 Hz).  

13C NMR (CDCl3) δ 154.98, 142.16, 139.81, 132.75, 128.90, 105.10, 69.31, 31.96, 29.68, 

29.64, 29.45, 29.41, 28.80, 26.08, 22.73, 14.14.  

[M+H] +: Calcd 561.29; Found 561.5. 

Compound 4 

1,2-Diamino-4,5-dibromobenzene (500 mg, 1.88 mmol) was dissolved in 40 mL absolute 

ethanol. 2,5-Dihydroxyl-1,4-benzoquinone (260 mg, 1.88 mmol) was added at once and 

the mixture was refluxed for 24 hours under a positive N2 flow. The reaction mixture was 

cooled slightly. After evaporating the solvent, without purification of the intermediate, 

the crude solid was dissolved in 40 mL DMF, followed by addition of K2CO3 (910 mg, 

6.5 mmol). Then bromodecane (820 mg, 0.77 mL) was added and the mixture was 

maintained at 60 ˚C for 24 hrs with continuous stirring. The mixture was cooled down to 

room temperature and poured into H2O, filtered and washed thoroughly with H2O. It was 

then dried over anhydrous sodium sulfate. The product was purified by silica gel column 
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chromatography (CH2Cl2/Hexane 1/1 v/v). The pure product was obtained as a yellow 

solid. (Two-step yield: 57%). 

1H NMR (CDCl3) δ 8.45 (s, 2H), 7.27 (s, 2H), 4.22 (t, 4H, J = 6.6 Hz), 1.95 (m, 4H), 1.54 

(m, 4H), 1.5-1.2 (m, 24H), 0.88 (t, 6H, J = 6.8 Hz).  

13C NMR (CDCl3) δ 155.28, 142.58, 140.72, 132.59, 124.97, 105.32, 69.44, 31.92, 29.63, 

29.58, 29.36, 28.71, 26.03, 22.70, 14.12. (1 aliphatic peak not seen due to overlapping 

signals) 

[M] +: Calcd 648.19; Found 648.3.  

Compound 5 

1,2-Diamino-4,5-diiodobenzene (366 mg, 1.02 mmol) was dissolved in 25 mL absolute 

ethanol. 2,5-Dihydroxyl-1,4-benzoquinone (143 mg, 1.02 mmol) was added at once and 

the mixture was refluxed for 24 hours under a positive N2 flow. The reaction mixture was 

cooled slightly. After evaporating the solvent, without purification of the intermediate, 

the crude solid was dissolved in 20 mL DMF, followed by addition of K2CO3 (493 mg, 

3.5 mmol). Then bromodecane (676 mg, 0.64 mL) was added and the mixture was 

maintained at 60 ˚C for 24 hrs with continuous stirring. The mixture was cooled down to 

room temperature and poured into 200 mL of H2O, filtered and washed thoroughly with 

H2O. It was then dried over anhydrous sodium sulfate. The product was purified by silica 

gel column chromatography (CH2Cl2/Hexane 1/2 v/v). The pure product was obtained as 

a yellow solid. (Two-step yield: 54%). 

1H NMR (CDCl3) δ 8.64 (s, 2H), 7.18 (s, 2H), 4.20 (t, 4H, J = 6.6 Hz), 1.95 (m, 4H), 1.54 

(m, 4H), 1.5-1.2 (m, 24H), 0.88 (t, 6H, J = 6.8 Hz).  
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13C NMR (CDCl3) δ 155.28, 142.46, 141.17, 138.84, 107.33, 105.34, 69.41, 31.92, 29.63, 

29.58, 29.37, 29.36, 28.72, 26.04, 22.70, 14.12. 

[M+H] +: Calcd 745.16; Found 745.1. 

Compound 6: 

1,2-Diamino-3,6-dibromobenzene (676 mg, 2.54 mmol) was dissolved in 55 mL absolute 

ethanol. 2,5-Dihydroxyl-1,4-benzoquinone (356 mg, 2.54 mmol) was added at once and 

the mixture was refluxed for 24 hours under a positive N2 flow. The reaction mixture was 

cooled slightly. After evaporating the solvent, without purification of the intermediate, 

the crude solid was dissolved in 50 mL DMF, followed by addition of K2CO3 (1.23 g, 

8.89 mmol). Then bromodecane (1.13 g, 1.06 mL) was added and the mixture was 

maintained at 60 ˚C for 24 hrs with continuous stirring. The mixture was cooled down to 

room temperature and poured into 500 mL of H2O, filtered and washed thoroughly with 

H2O. It was then dried over anhydrous sodium sulfate. The product was purified by silica 

gel column chromatography (CH2Cl2/Hexane 1/2 v/v). The pure product was obtained as 

a yellow solid. (Two-step yield: 56%). 

1H NMR (CDCl3) δ 7.93 (s, 2H), 7.48 (s, 2H), 4.25 (t, 4H, J = 6.6 Hz), 1.97 (m, 4H), 1.54 

(m, 4H), 1.41-1.28 (m, 24H), 0.89 (t, 6H, J = 6.8 Hz). 

13C NMR (CDCl3) δ 155.64, 142.78, 139.51, 131.57, 123.20, 105.45, 69.63, 31.92, 29.60, 

29.57, 29.36, 29.33, 28.73, 26.00, 22.70, 14.13. 

[M+H] +: Calcd 651.19; Found 651.1. 

Compound 7: 

1,2-Diamino-4,5-diiodobenzene (400 mg, 1.11 mmol) was dissolved in 25 mL absolute 

ethanol. 2,5-Dihydroxyl-1,4-benzoquinone (156 mg, 1.11 mmol) was added at once and 
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the mixture was refluxed for 24 hours under a positive N2 flow. The reaction mixture was 

cooled slightly. After evaporating the solvent, without purification of the intermediate, 

the crude solid was dissolved in 22 mL DMF, followed by addition of K2CO3 (537 mg, 

3.89 mmol). Then bromohendecane (783 mg, 0.75 mL) was added and the mixture was 

maintained at 60 ˚C for 24 hrs with continuous stirring. The mixture was cooled down to 

room temperature and poured into 250 mL of H2O, filtered and washed thoroughly with 

H2O. It was then dried over anhydrous sodium sulfate. The product was purified by silica 

gel column chromatography (CH2Cl2/Hexane 1/2 v/v). The pure product was obtained as 

a yellow solid. (Two-step yield: 71%). 

1H NMR (CDCl3) δ 8.70 (s, 2H), 7.24 (s, 2H), 4.21 (t, 4H, J = 6.6 Hz), 1.95 (m, 4H), 1.54 

(m, 4H), 1.5-1.2 (m, 28H), 0.88 (t, 6H, J = 6.4 Hz).  

13C NMR (CDCl3) δ 155.58, 142.82, 141.55, 139.14, 107.59, 105.60, 69.67, 32.16, 29.87, 

29.84, 29.60, 29.57, 28.91, 26.23, 22.92, 14.34. (1 aliphatic peak not seen due to 

overlapping signals) 

[M] +: Calcd 772.20; Found 772.3. 

Compound 8: 

1,2-Diamino-4,5-diiodobenzene (400 mg, 1.11 mmol) was dissolved in 25 mL absolute 

ethanol. 2,5-Dihydroxyl-1,4-benzoquinone (156 mg, 1.11 mmol) was added at once and 

the mixture was refluxed for 24 hours under a positive N2 flow. The reaction mixture was 

cooled slightly. After evaporating the solvent, without purification of the intermediate, 

the crude solid was dissolved in 22 mL DMF, followed by addition of K2CO3 (537 mg, 

3.89 mmol). Then bromohendecane (1.02 g, 1.02 mL) was added and the mixture was 

maintained at 60 ˚C for 24 hrs with continuous stirring. The mixture was cooled down to 



 12

room temperature and poured into 250 mL of H2O, filtered and washed thoroughly with 

H2O. It was then dried over anhydrous sodium sulfate. The product was purified by silica 

gel column chromatography (CH2Cl2/Hexane 1/2 v/v). The pure product was obtained as 

a yellow solid. (Two-step yield: 60%). 

1H NMR (CDCl3) δ 8.72 (s, 2H), 7.25 (s, 2H), 4.22 (t, 4H, J = 6.6 Hz), 1.95 (m, 4H), 1.54 

(m, 4H), 1.5-1.2 (m, 48H), 0.88 (t, 6H, J = 6.8 Hz).  

13C NMR (CDCl3) δ 155.38, 142.63, 141.37, 138.95, 107.39, 105.40, 69.46, 31.94, 29.73, 

29.71, 29.68, 29.62, 29.38, 29.35, 28.69, 26.02, 22.70, 14.13. (4 aliphatic peaks not seen 

due to overlapping signals) 

[M] +: Calcd 912.35; Found 912.3. 

 



 13

1.5. Results and Discussion 

1.5.1. Synthesis 

 

            

 

Scheme 1.  Sequential synthetic route to compounds 1 – 8. 

 

      The route to synthesis of final compounds 1–8 is described in Scheme 1, following 

the literature report.28 As mentioned in the previous section, for the first step of 

synthesizing title compounds (1–8), the dihydroxyphenazine intermediate was yielded 

after a cyclization. Due to the presence of hydroxyl groups in compound b, column 

chromatography could not be used for purification owing to the strong OH interactions 

with the silica gel. The crude product was subjected to a Williamson Ether Synthesis to 

yield the final product. Except for compound 3, good yields (two steps overall yield) 

above 50% were obtained for all other compounds.  
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1.5.2. UV-vis absorption spectroscopy 
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Figure 1.2.  Normalized UV-vis spectra for final compounds 1–5. 

 

      The UV-vis spectra for compounds 1-5 are shown in Figure 1.2. The spectra have 

been normalized at the absorption maxima of each compound for comparison. All of the 

final compounds showed absorption maxima around 380 to 410 nm arising from the 

aromatic phenazine core. The absorption edge is gradually shifted to longer wavelengths 

as the substituent is changed from H (1) to F (2) to Cl (3) to Br (4) to I (5). As a result, 

the HOMO-LUMO energy gap calculated from the tangent of the absorption edge32 

decreases in the same order (Table 1). The UV-vis absorption results show that the 
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electronic properties of this series of phenazine derivatives can be modulated with 

different halogen substituents.  
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Figure 1.3.  Normalized UV-vis spectra for final compounds 4 and 6. 

 

      The UV-vis spectra comparison of compounds 4 and 6 are shown in Figure 1.3. The 

absorption edge is shifted to longer wavelengths as the bromine substituents switched 

from 2,3- to 1,4-position. As a result, the HOMO-LUMO energy gaps were decreased in 

the same order.  

      The absorption spectra of compounds 5, 7 and 8 were nearly identical. This was 

expected because changing the alkoxy chain length of the side group does not affect the 

molecules chromophore.  



 16

1.5.3. Fluorescence spectroscopy 
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Figure 1.4.  Normalized fluorescence spectra for final compounds 1–5. Excitation λ: 375  

nm (1), 376 nm (2), 385 nm (3), 387 nm (4), and 391 nm (5). 

 

      The fluorescence emission spectra for compounds 1-5 are shown in Figure 1.4. The 

fluorescence spectra have been normalized at the emission maxima for comparison. The 

reduction of the optical energy gap seen in the UV-vis spectra shows the same trend in 

fluorescence. As the HOMO-LUMO gap becomes smaller, the emission maxima in the 

fluorescence spectra were shifted to longer wavelengths which can be clearly seen in the 

spectra.  
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Figure 1.5.  Normalized fluorescence spectra for final compounds 4 and 6. Excitation λ:  

387 nm (4), and 399 nm (6). 

 

      The fluorescence emission spectra comparison of compounds 4 and 6 are shown in 

Figure 1.5. The λmax was shifted from 438 nm (4) to 454 nm (6), so the energy gap of 

compound 6 (1,4-disubstituted) was smaller than compound 4 (2,3-disubstituted).  

      There were still no differences in the emission spectra of compounds 5, 7 and 8. This 

was due to the same effect observed in UV-vis; changing the length of the alkoxy side 

groups has no effect on its optical properties.  
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1.5.4. Cyclic voltammetry 

 

 
Figure 1.6.  Cyclic Voltammograms for the reduction of 1 (A), 2 (B), 3 (C), 4 (D), 5 (E), 

6 (F), 7 (G) and 8 (H). Scan rate: 100mV/s 

(A) (B) 

(C) (D) 

(E) (F) 

(G) (H) 
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      The electrochemical properties of all eight compounds were studied with cyclic 

voltammetry (Figure 1.6). Our primary concern was the first reduction potential which 

can be directly related to the LUMO level of the molecules. Thus the onset of the first 

reduction wave was measured to calculate the LUMO energy (Table 1.1).  

      In this series of compounds, the LUMO level was continuously decreased as the 

electron-withdrawing ability of the substituent increased: 1 < 2 < 3 < 4 < 5 = 7 = 8 and as 

the position of bromine substituents changed from 2,3- to 1,4-position. These results 

demonstrate that increasing the electron-affinity of a whole system can be accomplished 

by introducing proper peripheral substituents to the phenazine moiety.  

      The onset of the first oxidation wave can similarly be used to calculate the HOMO 

level of the molecules; however, we were not able to obtain the accurate oxidation 

potentials of those compounds because of overlap with the solvent background. Thus, 

HOMO levels could not be directly estimated from CV. Instead, HOMO energies 

associated with the molecules with different functional groups were estimated from the 

LUMO energies in combination with the HOMO/LUMO energy gaps derived from the 

UV-vis spectroscopy (Table 1.1). 

      Theoretical calculations were performed to compare with the experimental LUMO 

levels obtained from CV and energy band gap results obtained from UV-vis spectroscopy. 

Optimum geometries were calculated with the density functional theory (DFT) at the 

B3LYP/6-31G* level and HOMO and LUMO energies were predicted by single point 

calculation (B3LYP/6-31+G*//B3LYP/TD-DFT 6-31G*). Time-dependent density 

functional theory (TD-DFT) was also employed for the energy gap computation 
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(B3LYP/6-31+G*). These values are summarized and compared with experimental 

results in Table 1.1.  

 

Table 1. Electronic properties of compounds 1 – 8 from experimental data and theoretical 
calculations. 

Ered 
peak Ered

onset ELUMO
[a] EHOMO

[b] Egap
[c] ELUMO

[d] EHOMO
[d] Egap

[d]

[V] [V] [eV] [eV] [eV] [eV] [eV] [eV]

1 -1.97 -1.81 -2.99 -5.91 2.92 -2.27 -5.52 3.25

2 n/a[e] -1.73 -3.07 -5.99 2.92 -2.52 -5.77 3.25

3 -1.77 -1.62 -3.18 -6.09 2.91 -2.62 -5.75 3.13

4 n/a[e] -1.58 -3.22 -6.12 2.90 -2.64 -5.77 3.13

5 n/a[e] -1.52 -3.28 -6.06 2.78 n/a[f] n/a[f] n/a[f]

6 -1.69 -1.54 -3.26 -6.09 2.83 -2.66 -5.65 2.99

7 n/a[e] -1.52 -3.28 -6.06 2.78 n/a[f] n/a[f] n/a[f]

8 n/a[e] -1.52 -3.28 -6.06 2.78 n/a[f] n/a[f] n/a[f]

 
[a] ELUMO= -(Ered 

onset + 4.8 eV), [b] EHOMO=ELUMO - Egap 
optical, [c] optical HOMO-LUMO 

energy, [d] Theoretical calculation, [e] Peak potentials for 2, 4, 5, 7 and 8 were not clearly 
resolved, [f]  Theoretical treatments for 5, 7 and 8 were not carried out, owing to 
limitations in suitably packaged basis sets for iodine.  

 

It is important to note that the CV results illustrate the trend of lowering LUMO 

levels which is in the same order as energies predicted from theoretical calculations. The 

result of lowering energy gap obtained from UV-Vis experiments was also in the same 

order as the theoretically predicted values. 

 

1.6. Conclusions 

      A straightforward synthetic route to asymmetrically substituted phenazine derivatives 

1-8 was successfully established. 1H and 13C NMR and mass spectrometry analyses 

confirmed that the correct molecules were obtained. It was shown from UV-vis 
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spectroscopy that by changing the type (from H to F to Cl to Br to I) or position (from 

2,3- to 1,4-) of halogen, the polarizability is increased and the absorption edge is pushed 

to longer wavelengths, which results in a decrease of the energy gap. This decrease of the 

energy gap is consistent with fluorescence spectra which also showed a red shift in the 

same order.  

      Cyclic voltammetry and theoretical calculations further corroborated that the 

electronic properties of the molecule, the electron affinity and HOMO-LUMO energy gap, 

can be modulated by changing different type or position of halogen substituents.  

      The length of alkyl group has no effect on the molecules’ chromophores so that the 

electronic properties were almost the same among compounds 5, 7 and 8.  
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CHAPTER 2  

 

ASSEMBLY 

2.1. Introduction 

      Due to the potential applications in nanoscaled optoelectronic devices,1 the 1-D SA of 

π-conjugated organic semiconductors into nanofibers,2-4 nanobelts,5-7 and nanotubes8-10 

with high aspect ratios has been one of the most active fields of research.  

      The morphological control of self-assembled nanostructure is worthy of particular 

interest because it will directly influence the devices’ performance.11-13 There are several 

ways to control the morphology based on a rational molecular design strategy. First, we 

can manipulate the side groups bonded to π-cores such as altering the length14-15 and 

branching.16-17 Secondly, we can control the assembly condition,18 such as the assembly 

method, the concentration and polarities of the solvent, or we can control the secondary 

interactions.19-20  

      Organic supramolecular self-assemblies are often based on a combination of 

noncovalent interactions, including van der Waals forces and π-π stacking, as well as 

hydrogen bonding (HB).21-22 HB interactions have been used to control the growth and 

microstructure of films used in a variety of applications including nonlinear optics, 

sensors, and transistors.23-24 Interestingly, halogen bonding (XB) exhibits characteristics 

similar to HB in directionality and strength. XB is an intermolecular interaction involving 

a halogen atom (frequently iodine and bromine, but also chlorine and even fluorine) and a  
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neutral or anionic Lewis base.25-26 Most of the previous research shows that XB plays an 

important role in natural systems27 and has been used for crystal engineering, liquid 

crystals, and template synthesis.28-32 However, to the best of our knowledge, XB as one of 

driving forces to control the morphology in solution based 1D self-assembly has never 

been accomplished. 

      In the first chapter, it has been demonstrated that the peripheral halogen substituents 

were effective at modifying the electronic properties of the whole system. In addition, 

those substituents are expected to influence the morphology of the 1-D nanostructures 

even with their trivial size. This chapter will focus on the morphological control through 

halogen effect, position effect, and alkyl length effect.  

 

2.2. Experiments 

2.2.1. Drop casting film 

2.2.1.1. Drop casting film on cover glass 

      Cast films of compounds 1-8 were made as follows. First, each compound was 

dissolved in CH2Cl2; the solution was transferred with a pipette and drop-cast onto a 

clean cover glass surface. Then it was left undisturbed for several minutes, until the 

solvents evaporated. A raw crystalline structure of each compound was finally formed on 

top of the cover glasses. The castfilm experiment was carried out twice and the data is 

reproducible. 

2.2.1.2. UV-vis absorption spectroscopy 

      The intermolecular π-π interactions in solid state were investigated with UV-vis 

spectroscopy. The UV-vis absorption spectra of the solid state samples of compounds 1 – 



 27

8 (drop casted thin films on cover glasses) were collected on a Shimadzu UV-2450 UV-

vis spectrophotometer and compared with those in the solution state. 

2.2.2. Phase transfer (PT) self-assembly 

2.2.2.1. Phase transfer (PT) self-assembly in bisolvent system 

      The solution based SA was performed using a phase transfer (PT) method7 in a 

CH2Cl2/methanol binary solvent system. All solvents were filtered through a 0.2 µm 

PTFE filter before each PT experiment. A homogeneous solution of the compound was 

prepared in a “good” solvent (CH2Cl2) and was filtered through a 0.2 µm PTFE filter into 

a clean 20 mL screw-cap vial. The “poor” solvent (methanol) was slowly added to the 

CH2Cl2 solution so that two phases could be maintained. The binary solvent mixture was 

then left undisturbed overnight to induce 1-D assembly. The volume ratio of 

CH2Cl2/methanol was kept constant (1/5 v/v). 

2.2.2.2. Scanning electron microscopy (SEM) 

      The assembled product by PT was drop casted onto gold mica and the solvent was 

evaporated under ambient conditions. SEM images of the 1-D assembled samples were 

obtained on a Jeol JSM-5600 scanning electron microscope. Before imaging, all samples 

were sputter-coated (50 mA, 60 sec.) with a thin layer of gold to prevent charging. 

Accelerating voltages and working distances are specified with each image. 

2.2.2.3. Single crystal X-ray crystallography 

      Single crystal X-ray crystallography was carried out with compound 3. Crystals were 

prepared in 5 mM CH2Cl2 (2 mL) and MeOH (10 mL) binary solvent system. Single 

crystal diffraction data were collected on a microcrystal diffraction beamline (11.3.1) at 

the Advanced Light Source (supported by the Director, Office of Science, Office of Basic 
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Energy Science, of the US Department of Energy under Contract No. DEAC02-

05CH11231). Needles were examined in paratone in a polarizing microscope, and a flat 

needle was selected that appeared to be unbent. Attempts to collect data at 100 K 

produced poor peak profiles and low quality data, indicating stress or a phase transition 

accompanying cooling. As a result, higher quality data were collected at room 

temperature. A full sphere of data was collected, and the structure was solved using direct 

methods and refined within the SHELXTL routine.33 Hydrogen atoms were generated 

using the riding model, but no other restraints/constraints were necessary to refine the 

structure to an R1 value of 4.09%.  Statistics from the refinement are presented in Table 

2.1. 

2.2.2.4. Transmission electron microscopy (TEM) 

      The assembled product by PT was drop casted onto a 3 mm diameter carbon-coated 

copper grid using a pipette. A TECNAI-G2-F30 transmission electron microscope with a 

300 KeV Schottky field emission gun was used to characterize the morphology and 

atomic structure of the molecules under the conventional diffraction contrast (bright-field, 

BF) and Z-contrast (scanning transmission electron microscope, STEM) modes. 

2.2.2.5. X-ray diffraction (XRD) 

      The assembled product by PT was drop casted onto a zero background plate and the 

solvent was evaporated under ambient conditions. X-ray diffraction analyses were carried 

out on an X’Pert PRO PANalytical diffractometer at 25 ˚C using Cu-Kα radiation (λ = 

1.54 Å, 40 KV, 40 mA). 

2.2.2.6. High-resolution transmission electron microscopy (HRTEM) 
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      The assembled sample by PT was drop casted onto a 3 mm diameter carbon film. The 

samples were left undisturbed for half an hour and ready for TEM observation. The same 

instrument was used as described in section 2.2.2.3. Many-beam condition was used to 

characterize the atomic structure under the phase-contrast (HRTEM) mode. 

 

2.3. Results and Discussion 

2.3.1. Drop casting film 

2.3.1.1. UV-vis absorption spectroscopy 
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Figure 2.1.  Normalized UV-vis spectra comparison of cast films (dash-dot lines) and  

solutions (solid lines) of final compounds 1 (A), 2 (B), 3 (C), 4 (D) and 5 (E). 

 

      The UV-vis absorption spectra of cast films of compounds 1–5 were recorded and 

compared with those in the solution state as shown in Figure 2.1. In general, cast film 
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samples showed significantly red-shifted absorption maxima compared with the 

absorptions in the solution state. This result strongly supports intermolecular π-π 

interactions in the solid state.  
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Figure 2.2.  Normalized UV-vis spectra comparison of cast films (dash-dot lines) and  

solutions (solid lines) of final compounds 4 (B) and 6 (A).  

 

      While comparing the UV-vis spectra of cast films of 4 and 6, the appearance of an 

additional shoulder around 435 nm in the case of 6 suggests more effective molecular π-

aggregation in solid state. It is reasonable to assume that interactions between compound 

6 through XB were geometrically more favored to induce a tight molecular packing due 

to 1,4-disubstitution, leading to more effective π orbital overlapping. Thus it has stronger 

π-π interactions between neighboring molecules than compound 4 and showed an 

additional shoulder at the higher wavelength. 
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Figure 2.3.  Normalized UV-vis spectra comparison of cast films (dash-dot lines) and  

solutions (solid lines) of final compounds 5 (A), 7 (B) and 8 (C). 

 

All three iodine substituted compounds 5, 7 and 8 showed similar behavior in both 

solution and solid state. The absorption maxima were significantly shifted to a longer 

wavelength from those of solution to cast films. All three spectra were nearly identical to 

each other. Therefore, the alkyl length has no influence to the optical properties of those 

compounds in both solution and solid state. 
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2.3.1.2. Polarized optical microscopy (POM) 

The halogen effect on the morphology control of the 

1-D nanoclusters formed on castfilms 

 

 
Figure 2.4.  POM images  of cast films of 1 (A), 2 (B), 3 (C), 4 (D) and 5 (E). 

Scale bars: 20 µm. 

 

      Polarized optical microscopy (POM) was performed with these cast film samples 1-5 

on cover glasses, as shown in Figure 2.4. Compounds 1 and 5 showed 1-D grown 

structures which means both of these two compounds have strong intermolecular 

interactions and produce a 1-D growth during the solvent evaporation process. In the case 

of compound 1, the driving force could be HB while XB between iodine and the imine 

nitrogen might be the reason for compound 5. Compound 2 showed random growth with 

a torn-paper like structure. Although fluorine has no XB, both HB and π-π interactions 

would be the major driving force and lead the molecules to grow in two directions. From 

images C and D, we can see the similar crystalline textures of compound 3 and 4. In both 
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cases, the rate of nucleation could be much faster than that of 1-D fiber growth, both 

compound 3 and 4 showed spherulites structure. 

The position effect on the morphology control of the 

1-D nanoclusters formed on castfilms 

 

 
Figure 2.5.  POM images of cast films of 4 (A) and 6 (B). 

Scale bars: 20 µm. 

 

      POM comparison of cast films from compound 4 and 6 are shown in Figure 2.5. By 

changing the bromine group from the 2,3- (4) to 1,4-position (6), the cast film showed 

long 1-D grown microfibers instead of spherulites. This implies that for compound 6666, 

interactions between neighboring molecules is geometrically more favorable in one 

direction than compound 4, resulting in the long fiber growth. 
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The alkyl length effect on the morphology control of the 

1-D nanoclusters formed on castfilms 

 

 
Figure 2.6.  POM images of cast films of 5 (A), 7 (B) and 8 (C).  

Scale bars: 20 µm. 

 

      POM comparisons of cast films from compounds 5, 7 and 8 are shown in Figure 2.6. 

Both compounds 5 and 7 showed similar short needle-like structures, while compound 8 

with the longest alkoxyl chains (hexadecyloxy) in this series of molecules showed a cell-

like structure with numerous micro circles of various sizes all around the surface of the 

cover glass. Although not clear, solvent trap followed by evaporation may be the reason 

for the formation of the network structure.  
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2.3.2. Phase transfer (PT) self-assembly 

2.3.2.1. Phase transfer (PT) self-assembly 

      The 1-D SA of compounds 1–8 were studied using both recrystallization from CH2Cl2 

and a phase transfer (PT) method using two different binary solvent systems: 

CH2Cl2/methanol and CH2Cl2/hexane. The CH2Cl2/methanol binary solvent system was 

found to be more suitable for the assembly. Compound 1 showed no assembly due to its 

high solubility under the condition used. For the other compounds, a concentration study 

was carried out. To a homogeneous CH2Cl2 solution with a certain concentration (varying 

from 1 mM to 10 mM), methanol was added very slowly to maintain two phases. In all 

cases, the volume ratio between methylene chloride and methanol was kept constant 

(CH2Cl2/MeOH 1/5 v/v).  

2.3.2.2. Scanning electron microscopy (SEM) Section I 

The halogen effect on the morphology control of the 

1-D nanoclusters formed through PT 

      The halogen substituent effect on the self-assembly properties of asymmetric 

phenazines 1–5 was examined by comparing the morphologies of the assembled 

structures obtained using SEM. Samples were prepared using PT method with all 5 mM 

concentration of CH2Cl2 solution. 
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Figure 2.7.  SEM images of PT assemblies of compounds 2 (A), 3 (B), 4 (C), and 5 (D).  

Scale bars: 50 µm. 

 

      Compound 1 did not form any assembled structure using the PT method due to its 

high solubility in the binary solvent system. As shown in the SEM images (Figure 2.7), 

fluorine containing phenazine (2) showed morphology similar to torn-paper. It was the 

most randomly assembled microstructures. Because of the small size of the fluorine atom, 

both π-π interactions and HB could be major driving forces, and their directions are 

perpendicular to each other. The fact that the structures can grow in two directions 

indicates the two interactions may have similar strength. For chlorine substituted 

phenazine (3), it formed large crystals, with the milimeters’ length and width about 50 

µm. From the single crystal X-ray crystallography (section 2.3.3.1), we confirmed that in 

the case of compound 3, the major driving forces are HB, π-π interactions, and van der 
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Waals interactions. The detailed molecular packing will be discussed in the later section. 

Furthermore, both Br (4) and I (5) substituted phenazines showed a more 1-D character 

and the possible HB and the XB between halogens (typically Br or I) and imine nitrogens 

in 4 and 5 may exist simultaneously, serving together as the major driving force in these 

cases. The coexistence of HB and XB might be the reason that only compounds 4 and 5 

formed twisted microbelts. Compared to the large crystal formed with compound 3, the 

width of microbelts from both compounds 4 and 5 was much narrower, because the large 

size of bromine and iodine may hinder the lateral growth driven by π-π interactions. 

2.3.2.3. Single crystal X-ray crystallography 

      Suitable crystals of compound 3 for single crystal X-ray crystallography 

measurements were obtained through the PT method at room temperature. Compound 3 

forms in the Triclinic space group P-1 with the following unit cell dimensions: a = 

5.421(2), b = 9.800(4), and c = 29.833(13) Å.  
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Figure 2.8. Crystal packing of compound 3, shown as a ball and stick model, viewed 
along hydrogen bonding direction and showing short intermolecular contacts in dashed 
lines. Colors of atoms: carbon, grey; hydrogen, dark grey; nitrogen, blue; chlorine, green;  
oxygen, red. 

 

      The short intermolecular contacts are shown in Figure 2.8. In this crystal plane, both 

nitrogen and chlorine are involved in a HB interactions with hydrogen from the 

heteroaromatic ring of a phenazine moiety. Interestingly, the distance between iodine and 

a hydrogen from the alkoxy chain was only 2.92 Å, so there may be some weak 

interactions. Furthermore, in a single molecule, two alkyl chains are not in the same 

direction, one is mostly stretching in the same plane while another is pointing out of the 

plane. 
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Figure 2.9. Crystal packing of compound 3, viewed along hydrogen bonding direction 
and showing as two layered structure. Colors of atoms: carbon, grey; hydrogen, dark  
grey; nitrogen, blue; chlorine, green; oxygen, red. 

 

      As shown in Figure 2.9, it was confirmed that the molecule has an off-face stacking. 

Based on face indexing from single crystal X-ray crystallography, we conclude the c 

direction was mostly parallel to the long axis of the molecule. This direction is the less 

favored direction for self-assembly because van der Waals interactions between alkyl 

side groups are relatively weak. Strong HB interactions is closer to the a direction while 

π-π interactions would drive molecular growth in the direction closer to b which is clearly 

manifested in Figure 2.10. 



 40

 

 

 
Figure 2.10. Crystal packing of compound 3 shown as a ball and stick model viewed 
along [210] direction. Colors of atoms: carbon, grey; hydrogen, dark grey; nitrogen, blue;  
chlorine, green; oxygen, red.  

 

      Parallel aligned molecular planes are illustrated from the [210] direction, as shown in 

Figure 2.10. The distance between the parallel planes is about 3.45 Å which is closer to 

typical π-π stacking distance.34-35 Although the distance is short enough for π-π stacking, 

as mentioned earlier, off-face stacking may produce weak π-π interactions. As a result, 

the overall 3-D structure consists of continuous parallel molecular planes. HB, which is 

the strongest interaction in this case, drove the molecules to align side by side, growing in 

the major [210] direction and formed the long axis of the single crystal.  
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2.3.2.4. Scanning electron microscopy (SEM) Section II 

The position effect on the morphology control of the 

1-D nanoclusters formed through PT 

 

 
Figure 2.11.  SEM images of PT assemblies of compounds 4 (A, B) and 6 (C, D).  

Scale bars: A, C are 500 µm. B, D are 50 µm. 

 

      To verify the existence of XB, SA structure of 4 and 6 were compared. Both 

compounds 4 and 6 produced assembled structures in the CH2Cl2/MeOH binary solvent 

system with a 3 mM CH2Cl2 solution. However, the morphologies were quite different 

from each other. In the case of compound 4, thin and short microbelts were formed. Belt 

bundles varied in width from ≈2 µm to 10 µm. Compound 6 formed ultra long, straight 

microfibers rather than the short, twisted microbelts. Compared to compound 4, 

compound 6 may have a more regular and stronger XB caused by a more favorable 

geometrical contact between bromine and imine nitrogen in neighboring molecules, 
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resulting in a better side by side molecular packing. In the case of compound 4, halogen 

bond angles make it difficult to generate long fibers. 

The alkyl length effect on the morphology control of the 

1-D nanoclusters formed through PT 

 

 
Figure 2.12.  SEM images of PT assemblies of compounds 5 (A, B), 7 (C, D), and 8 (E, 

 F). Scale bars: A, C, E are 10 µm. B, D, F are 1 µm. 
 

      Compounds 5 and 7 produced fairly homogeneous microbelts by PT method from 

CH2Cl2/MeOH system. Due to the poor solubility of compound 8, a nice whole twisted 

structure was only found in a very low concentration (0.1mM of CH2Cl2 solution) while 

in higher concentrations it showed a partially twisted structure. As shown in Figure 2.9, 

both compounds 5 and 7 formed 1-D structures by PT with a 1 mM CH2Cl2 solution. The 
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width of the microbelts and the proportion of twisting obtained from compound 8 were 

much bigger and more numerous than those from compounds 5 and 7. The widths of the 

microbelts obtained from compound 5 varied from ≈800 nm to 2 µm while those of 8 

varied from 3 µm to 10 µm. It is important to notice that the pitch of twisted structure is 

smaller going from 5 to 7 to 8. It has been reported that slower precipitation processes 

may result in larger pitch distance, and the driving force for twisting may derive from the 

imbalance of the growth rate between the edge and center.36 The fact that compound 8 

produced the most twisted microbelts with smallest pitch distance may be attributed to its 

longest alkyl side groups,36 and they may cause less favored longitude fiber growth. 

Further investigation of this alkyl chain length effect is in progress. 
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2.3.2.5. Transmission electron microscopy (TEM) 

 

 
Figure 2.13.  TEM images of PT assemblies of compounds 4 (A, B), and 5 (C, D).  

Scale bars: A, C are 2 µm. B, D are 1 µm.  

 

      Samples were prepared using PT with a 3 mM CH2Cl2 solution. From the BF and 

STEM mode images, we can see 4 and 5 have similar 1-D microstructure, in terms of 

width and length. The properties of bromine and iodine are similar to each other and there 

is some structural equivalence of halogen-bonded iodine and bromine,37 so we expect that 

the molecular packing mode might be same. However, the microbelts of iodine 

substituted phenazine 5 looks thinner than the bromine substituted compound 4, it may 

because the size of iodine is bigger than bromine, and XB between 5 is much stronger 

and the growth in the thickness direction is less favored compared with compound 4.  
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2.3.2.6. X-ray diffraction (XRD) 
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Figure 2.14.  XRD patterns of PT assemblies of compounds 2 – 8 from CH2Cl2/MeOH.  
2 (a), 3 (b), 4 (c), 5 (d), 6 (e), 7 (f), and 8 (g). 

 

      The XRD study was conducted on the self-assembled cluster of compounds 2–8. 

Although XRD alone is not sufficient to deduce the molecular packing in the 

microclusters, the major purpose of this study was to determine the different crystallinity 

in these assembled samples.  

      The XRD patterns of the microstructures 2-6 obtained from the PT method from 

CH2Cl2/MeOH were compared to determine the effect of the peripheral halogen 

substituent on the 1-D self-assembly. All these five diffraction patterns show sharp, 

intense peaks, indicating that good crystallinity was found in these assembled samples. 
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Compounds 3 and 6, which exhibit the highly ordered 1-D growing structure from SEM, 

showed the most well-defined diffraction pattern among the compounds, indicative of 

high crystallinity. Bromine substituted phenazine 4 showed a similar diffraction pattern 

as iodine substituted compound 5, indicating similar molecular packing model which is 

consistent with the result observed in SEM images. In compound 2, the XRD pattern was 

less defined and was not similar to other compounds. This may result from the random 

grown torn-paper like structure with a less order packing model. 

      In the case of compounds 7 and 8, they show similar patterns to compound 5. 

However, compound 8 shows lower intensity because a lower sample amount was used 

for XRD characterization.  

2.3.3.7. High-resolution transmission electron microscopy (HRTEM) 

 

 
Figure 2.15.  HRTEM images of compounds 2 (A), 4 (B), 5 (C), and 6 (D).  

Scale bars: 5 nm. 

A B 

C D 
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      To further study the molecular packing model, HRTEM was carried out to investigate 

the molecular alignment. An electron diffraction pattern was not obtained because of 

irreproducibility of the data.  

In general, similar alignments were observed in the edge area of compounds 4 and 6, 

meanwhile compound 2 showed a less defined structure which is consistent with the 

XRD result. Only compound 5 showed a clear layered structure. At the edge area, it 

showed better longitude alignment while in the center it was less ordered because of the 

increasing thickness. Since the information from the HRTEM image is the accumulation 

of information from all different layers, the molecules may have better order in a single 

layer and show good crystallinity. However, they may align in different directions within 

different layers, resulting in a less ordered or even an amorphous texture on a larger scale.  

 

2.4. Conclusion 

      We have demonstrated the utility of the halogen substituents in this series of 

asymmetric phenazine derivatives to induce 1-D assembly and manipulate the 

morphology of the self-assembled structures in terms of shape and size. SA using a phase 

transfer method with a methylene chloride/methanol binary solvent system showed that 

assembled morphologies are easily modified from 2-D torn-paper like structure to 

microbelts by changing different halogen peripheral substituents. Chlorine substituted 

phenazine 3, which has HB interactions as the major driving force, resulted in the longest 

crystal structure among those five molecules (1-5). By changing the bromine substituents 

from 2,3- to 1,4-position, the ability to produce 1-D microfibers was enhanced. In 

addition, the length of alkyl group also influenced the morphology significantly. As the 
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alkyl length increased, the solubility was decreased, resulting in a whole twisted, short 

microbelt structure.  

      Combined analyses of SEM, TEM and XRD study identified the driving forces for 

the morphological transformation. The XRD patterns of all these compounds showed 

good crystallinity. In addition, the HRTEM result combined with the single crystal X-ray 

crystallography helped us to speculate the molecular packing models. As a result, 

collaboration of those different HB and XB interactions could be predominant and 

promote the molecules growing in a major direction. The results of this research illustrate 

a rational way for manipulating the electronic properties and assembly morphology of 

asymmetric phenazine, which has potential to be used in optoelectronic devices.  
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APPENDIX CRYSTALLOGRAPHY DATA 

 

Section 1. Crystal data and structure refinement for compound 3. 

Empirical formula  C32H46Cl2N2O2 

Formula weight  561.61 

Temperature  293(2) K 

Wavelength  0.77490 Å 

Crystal system  Triclinic 

Space group  P-1 

Unit cell dimensions a = 5.421(2) Å α= 90.125(6) 

 b = 9.800(4) Å β= 91.359(6) 

 c = 29.833(13) Å γ= 97.340(6) 

Volume 1571.6(12) Å3 

Z 2 

Density (calculated) 1.187 Mg/m3 

Absorption coefficient 0.294 mm-1 

F(000) 604 

Crystal size 1.50 x 0.09 x 0.01 mm 

Theta range for data collection 3.19 to 26.77°. 

Index ranges -6<=h<=6, -11<=k<=11, -34<=l<=34 

Reflections collected 14611 

Independent reflections 5164 [R(int) = 0.0393] 

Completeness to theta = 26.77 99.5 %  

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 5164 / 0 / 343 

Goodness-of-fit on F2 1.020 

Final R indices [I>2sigma(I)] R1 = 0.0409, wR2 = 0.1089 

R indices (all data) R1 = 0.0592, wR2 = 0.1200 

Largest diff. peak and hole 0.187 and -0.252 e.Å-3 
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Section 2. Atomic coordinates ( x 104) and equivalent isotropic displacement parameters 
(Å2 x 103) for compound 3. U(eq) is defined as one third of the trace of the 
orthogonalized Uij tensor.  

_____________________________________________________________________  

 x y z U(eq) 

_____________________________________________________________________  

Cl(1) 9484(1) 2290(1) 1116(1) 68(1) 

O(2) -295(2) 3614(1) -1799(1) 55(1) 

Cl(2) 4806(1) 76(1) 1122(1) 65(1) 

O(1) 3406(2) 5496(1) -1787(1) 54(1) 

N(2) 6390(3) 3954(2) -376(1) 51(1) 

N(1) 2154(3) 1901(2) -375(1) 52(1) 

C(5) 3309(3) 4674(2) -1422(1) 47(1) 

C(6) -3719(3) 2730(2) -2275(1) 53(1) 

C(7) 5241(3) 1180(2) 670(1) 49(1) 

C(8) 1193(3) 3610(2) -1427(1) 48(1) 

C(9) 3546(4) 1095(2) 329(1) 52(1) 

C(10) 7741(3) 3094(2) 325(1) 53(1) 

C(11) -2299(3) 2510(2) -1846(1) 51(1) 

C(12) 4685(3) 3841(2) -708(1) 46(1) 

C(13) 3870(3) 2016(2) -36(1) 48(1) 

C(14) 6002(3) 3039(2) -37(1) 48(1) 

C(15) -9213(4) 606(2) -2932(1) 63(1) 

C(16) -5760(4) 1556(2) -2379(1) 57(1) 

C(17) -12616(4) -326(2) -3498(1) 69(1) 

C(18) -10716(4) 873(2) -3353(1) 65(1) 

C(19) 5484(4) 6567(2) -1809(1) 54(1) 

C(20) 2560(3) 2805(2) -710(1) 47(1) 

C(21) 5013(4) 7437(2) -2210(1) 65(1) 

C(22) 4988(3) 4769(2) -1076(1) 50(1) 

C(23) 851(3) 2713(2) -1081(1) 51(1) 

C(24) 7375(3) 2197(2) 669(1) 49(1) 

C(25) -7275(4) 1800(2) -2799(1) 60(1) 

C(26) -14167(4) -73(2) -3911(1) 73(1) 

C(27) 7308(4) 6310(2) -2826(1) 65(1) 
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Section 2. (Continue) 

 

C(28) 11338(5) 4191(3) -4144(1) 86(1) 

C(29) 6996(4) 5559(2) -3274(1) 72(1) 

C(30) 4854(4) 6677(2) -2657(1) 66(1) 

C(31) 8980(5) 4528(3) -3934(1) 79(1) 

C(32) -15996(5) -1299(3) -4050(1) 93(1) 

C(33) -17617(6) -1068(4) -4455(1) 120(1) 

C(34) 9376(4) 5247(3) -3479(1) 77(1) 

C(35) 10905(5) 3362(3) -4574(1) 98(1) 

C(36) 13233(6) 3041(4) -4789(1) 122(1) 

_____________________________________________________________________  
 



 55

VITA 
 

Graduate College 
University of Nevada, Las Vegas 

 

Bin Cao 

Local address:  
1600 E University Ave, Apt 236. 

      Las Vegas, Nevada 89119 
 
Home Address: 
      312 Hezuo Road,  
      Shijiazhuang, Hebei, China 050051 
 
Degrees: 
      Bachelor of Engineering in Polymer Materials ＆ Engineering, 
      Zhengzhou University,  
      Zhengzhou, China 450002 
 
Thesis Title: Substituent Effect on the Electronic and Assembling Properties of 
Asymmetric Phenazine Derivatives  
 
Thesis Examination Committee: 
      Chairperson, Dr. Dong-Chan Lee, Ph.D. 
      Committee Member, Dr. Clemens Heske, Ph.D. 
      Committee Member, Dr. Kathleen Robins, Ph.D. 
      Graduate Faculty Representative, Dr. Michael Pravica, Ph.D. 
 

 


	Substituent effect on the electronic and assembling properties of asymmetric phenazine derivatives
	Repository Citation

	Cover page
	Front-01
	Front-02
	Front-03
	Front-04
	Front-05
	Front-06
	Front-07
	page 01
	page 02 - 24
	page 25
	page 26 - 51
	page 52
	page 53 - 55

