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ABSTRACT 

 

Controlled Functionalization of Crystalline Polyolefins and Application in Soluble 

Polymer Support 

 

by 

 

Jihoon Shin 

 

Dr. Chulsung Bae, Examination Committee Chair 

Assistant Professor of Chemistry 

University of Nevada, Las Vegas 

 

Functionalization of polyolefins has been recognized as a useful methodology for the 

generation of new materials with a wide range of applications. Recently, crystalline or 

semi-crystalline polyolefins have drawn increasing attention in both industrial and 

academic fields as one of the most interesting engineering plastics, due to their 

remarkable physical and mechanical properties. This dissertation describes: (1) novel 

methods for the direct postfunctionalization of crystalline polyolefins to introduce 

functionality, (2) characterizations for the functionalized polymers to analyze their 

structures, molecular-weight properties, thermal properties, and hydrophilicity, and (3) an 

application of the modified crystalline polystyrene as a soluble polymer support for 

recyclable catalysts in green chemistry. 

Chapter 1 describes the controlled iridium-catalyzed C–H activation of commercial 

polystyrenes having three types of tacticity. The resulting boronic group in the polymers 

was further converted into other versatile groups such as hydroxy and aryl groups via 



 iv 

subsequent modifications. Chapter 2 addresses the preparation of a soluble syndiotactic 

polystyrene-supported phosphine ligand. The Suzuki–Miyaura cross-coupling was 

effectively accomplished with the polymer-supported palladium complex, which was 

recovered quantitatively and recycled several times without any loss of activity and the 

addition of fresh base. In Chapter 3, controlled electronic aromatic bromination of 

syndiotactic polystyrene was studied. The brominated polymer could serve as a precursor 

for polyolefins having variable functionalities. Chapter 4 describes the synthesis of 

hydroxy-functionalized isotactic poly(1-butene) using controlled and regioselective 

rhodium-catalyzed C–H functionalization and subsequent oxidation. Atom transfer 

radical polymerization could generate a polar or amphiphilic graft copolymers from the 

functionalized crystalline polyolefin. 
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CHAPTER 1 

 

CONTROLLED FUNCTIONALIZATION OF CRYSTALLINE POLYSTYRENES VIA 

ACTIVATION OF AROMATIC C–H BONDS 

1.1. Abstract 

The functionalization of polystyrenes having three types of tacticity–syndiotactic 

(sPS), isotactic (iPS), and atactic (aPS)– is accomplished through the borylation of the C–

H bonds in the aromatic ring using a commercially available iridium catalyst. The 

boronic ester group of the functionalized polymer was converted to more useful 

functional groups such as hydroxy and arene via subsequent oxidation and Suzuki-

Miyaura cross–coupling reaction. There were no changes in the polymer chain length, 

molecular weight distribution and tacticity of the parent polymer after the 

functionalizations. The concentration of incorporated functional groups was easily tuned 

by adjusting the ratio of the diboron reagent, B2(pin)2, to polymer repeating unit in the C–

H borylation. The efficiency of C–H borylation was affected by the solubility of the 

polymer in reaction solvent and the ratio of the boron reagent with monomer unit, 

regardless of the tacticity. 

It was found that the thermal properties of the functionalized sPS were greatly 

influenced by the size and concentration of the introduced functional groups. The 

crystallinity of sPS completely disappeared with even a small amount (< 5 mol %) of the 
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boronate ester group incorporated into the polymer, because the functional group in sPS–

B(pin) is bulky. The high crystallinity and melting temperature of sPS were not 

significantly changed until 10 mol % of hydroxy group was introduced into the polymer, 

probably due to the small size of hydroxy group. 

 

1.2. Introduction 

Polyolefins account for more than 60% of total polymeric material consumption in 

the world, owing to good chemical stability, mechanical properties, processability and 

low production cost. These are materials made by polymerization of simple olefins such 

as ethylene, propylene, butane, isoprene, pentane, and styrene. Despite their favorable 

properties mentioned above, lack of polar functionality is still one of the most serious 

drawbacks of polyolefins and has prevented wider applications of the materials. The 

introduction of polar functionality into nonpolar polyolefins can address the limitation of 

surface properties and enhance adhesion to polar surfaces. However, a controlled 

selective mild functionalization of polyolefins has been one of the most difficult 

challenges in synthetic polymer chemistry.  

Syndiotactic polystyrene (sPS) is a good example of a stereoregular polyolefin and 

has received a significant attention in polymer industry as well as academic field due to 

its intriguing physical properties such as a high degree of crystallinity and stable 

mechanical and chemical properties at high temperature.
1
 Despite its unique properties, 

sPS has a few drawbacks for commercial applications as an engineering plastic. Because 

of its high melting point (~270 
o
C), excessively high melt-processing temperature >300 

o
C (close to the polymer degradation temperature) causes a major problem in processing 
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of the polymer. In addition, sPS has poor compatibility with polar materials and impact 

strength. To overcome these drawbacks, research has been conducted to introduce polar 

functional groups into sPS. So far, there are two methodologies employed to synthesize 

functionalized sPS. The first method is copolymerization with a second styrene monomer 

containing desired functional group. Unfortunately, as with other transition metal-

catalyzed stereospecific olefin polymerization,
2
 it is difficult to achieve comparable 

molecular weights and/or yields in the syndiospecific copolymerization of styrene with a 

functionalized monomer, compared with those afforded by the syndiospecific 

homopolymerization of styrene. Examples of the former approach include the 

copolymerization of styrene with a borane monomer and a silyloxy monomer which 

provide hydroxy functionalized syndiotactic polystyrenes.3,4 

The other method to prepare functionalized sPS is direct post-polymerization 

functionalization of sPS. Since a variety of polyolefins with different tacticities and 

variable molecular weights could be easily prepared with the significant development in 

homogeneous metallocene polymerization catalysts, the controlled postfunctionalization 

of such polyolefins could be an attractive alternative approach to yield functionalized 

polymers having variable molecular weight properties5 as well as to overcome the 

limitations of the copolymerization method. Because most postfunctionalizations of 

polyolefins are initiated by a highly reactive free radical, however, it is hard to control the 

molecular weight properties of the polymers. They can induce competitive side reactions 

which can break or couple chains of polymer and alter mechanical/physical properties of 

the parent polymer. Free radical mediated modification of sPS can also reduce the 

tacticity at the benzylic position of the polymer. 
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Atactic polystyrene (aPS), an amorphous material that has good solubility in a variety 

of solvents, can be readily functionalized by electrophilic aromatic substitution to 

introduce a high ratio of the polar functional group to the polymer.6 In sPS modification, 

however, very poor solubility of the crystalline polymer in most makes the 

postfunctionalization reaction conducted under heterogeneous condition, where it is 

difficult to introduce functional groups uniformly especially in a large scale reaction. To 

date, only a few examples of sPS modifications using carbon intermediates such as free 

radicals and carbocations have been reported with limited success.
7-13

 For example, only 

3–12 mol % of the aromatic ring of sPS was functionalized with sulfonic acid group 

when electrophilic sulfonation of sPS under chlorinated solvents was conducted.7-10 Thus, 

a homogeneous controlled postfunctionalization of sPS highly desired. 

Boron functionality in polymer can be used as a useful intermediate for generation of 

a variety of functionalized polymers, especially polyolefins.
14

 There are two methods to 

prepare boron-containing polymers. The first method is polymerization of boron-

functionalized monomers and the second one is post-polymerization functionalization of 

a boron precursor polymer. It has been reported earlier that when aPS was directly 

borylated with haloboranes, it incorporated only a low content of boryl group while 

inducing significant side reactions under hard conditions.15 A boron moiety has also been 

introduced into the aromatic ring of polystyrene resin via several steps of post-

functionalization.
16

 When this method was used for the preparation of soluble boron 

polymers, however, it caused significant cross-linking. It has recently been reported that 

soluble borylated polystyrene could be synthesized from the silylated precursor polymer 

through a silicon–boron exchange reaction. Although that modification was not a 
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catalytic process, it was an important example that showed controlled boron–

functionalization with excellent chemo- and regioselectivity.17,18 

Polymer modification by transition metal-catalyzed C–H activation has emerged as a 

new polyolefin postfunctionalization methodology.
19-24

 Unlike typical polyolefin 

modifications, which proceed through a highly reactive free radical or carbocation 

intermediate, this new method allows incorporation of functional groups into polyolefins 

with negligible changes in the polymer chain length, polydispersity and tacticity 

compared to those of the starting polymers. A representative example is functionalization 

of the side chain of saturated polyolefins by rhodium-catalyzed C–H borylation. The 

boron moiety of the polymer was conveniently converted to hydroxy and amine groups 

through simple organic reactions.21-23 Unfortunately, some of these examples were 

conducted on amorphous polyolefins of relatively low molecular weight and required the 

preparation of special metal catalysts.
19-21

 Moreover, when semicrystalline polyolefins 

were functionalized via activation of C–H bonds, their efficiencies of the 

functionalization were very low.
22-24

 

We herein report a highly efficient controlled aromatic C–H bond 

activation/functionalization of high-molecular-weight polystyrenes with different 

tacticities using a commercially available iridium catalyst (Scheme 1.1). We have found 

that up to 42 mol % of a boronate ester group can be incorporated by the iridium-

catalyzed borylation of aromatic C–H bonds
25-29

 without affecting the molecular weight 

properties of the starting polymer. To our knowledge, this result reports the first example 

of crystalline polyolefin functionalization that affords a high degree of functionalization 

without any competitive side reactions. Because it is known that the iridium-catalyzed 
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aromatic C–H activation/borylation occur only at the aromatic ring of arenes,
25-29

 this 

functionalization would allow generation of borylated polystyrenes with different 

tacticities in a single step. We also demonstrate that the aryl boronate ester group of sPS 

can serve as a versatile synthetic precursor for a range of functionalized sPS products. 

 

1.3. Results and Discussion 

1.3.1. Screening Experiments for Standard Conditions of sPS Functionalization 

We first tested suitable solvents that can dissolve the crystalline sPS at a reasonable 

concentration for optimized functionalization conditions of sPS under homogeneous 

conditions. sPS is known to be insoluble in most organic solvents except for hydrocarbon 

and chlorinated solvents at elevated temperatures. Thus, a solubility test of sPS was 

conducted with two hydrocarbon solvents having high boiling points, cyclooctane and 

1,3,5-triisopropylbenzene, and two chlorinated solvents, chloroform and carbon 

tetrachloride. In the case of a mixture of sPS and solvent in a 1:6 molar ratio (sPS 

repeating unit to solvent), a homogeneous solution was observed under the following 

conditions: in cyclooctane at 150 °C, in 1,3,5-triisopropylbenzene at 200 
o
C, and in 

chloroform at 60 oC. The mixture of sPS and carbon tetrachloride still remained 

heterogeneous even at its boiling temperature. Although sPS was soluble in chloroform, it 

was found that cumene [C6H5–CH(CH3)2], a model small arene whose structure 

resembles that of sPS repeating unit, was not borylated in chloroform; thus we did not 

select it as a solvent for the C–H borylation of sPS. When we applied different transition 

metal catalyst/ligand systems–[IrCl(COD)]2/dtbpy (COD = 1,5-cyclooctadiene; dtbpy = 

4,4’-di-tert-butyl-2,2’-bipyridine), [Ir(OMe)(COD)]2 /dtbpy, [IrCl(COE)2]2/dtbpy (COE = 
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cyclooctene), and Cp*Rh(η
4
-C6Me6)–for the C–H activation of cumene with 

bis(pinacolato)diboron [B2(pin)2] in cyclooctane (in a 1:6 molar ratio of cumene and 

solvent) at its boiling temperature, all iridium catalyst/ligand systems were much more 

effective than the rhodium catalyst. When different iridium catalysts such as 

[IrCl(COE)2]2, [Ir(OMe)(COD)]2, and [IrCl(COD)]2 were used for the C–H activation of 

sPS with B2(pin)2, [IrCl(COD)]2/dtbpy was slightly more reactive compared with two 

other catalysts (Table 1.1). Moreover, the lower cost of [IrCl(COD)]2 compared to those 

of [IrCl(COE)2]2 and [Ir(OMe)(COD)]2 makes [IrCl(COD)]2 be more preferred catalyst 

of sPS functionalization. Thus, we selected the experimental condition of [IrCl(COD)]2 

(3 mol % iridium) and dtbpy ligand (3 mol %) in cyclooctane at 150 °C as the standard 

condition for the C–H borylation of sPS. 

 

Table 1.1. Borylation of syndiotactic polystyrene with different iridium catalysts
a
. 

sPS–B(pin) 
entry PS Iridium catalyst 

[B2(pin2)]/ 

[monomer] B(pin) (%)
b
 effic (%)

c
 

1 sPS [IrCl(COE)2]2 0.05    4.2 42 

2 sPS [Ir(OMe)(COD)]2 0.05    5.5 55 

3 sPS [IrCl(COD)]2 0.05    5.9 59 

4 sPS [IrCl(COE)2]2 0.1   12.4 62 

5 sPS [Ir(OMe)(COD)]2 0.1   14.7 74 

6 sPS [IrCl(COD)]2 0.1   16.4 82 

a
 C–H borylation was conducted on 200 mg of polymer with 3 mol % of iridium catalyst 

and 3 mol % of dtbpy relative to B2(pin)2 in cyclooctane (in a 1:6 molar ratio of 

polystyrene repeating unit to solvent) at 150 
o
C for 6 h. 

b
 The mol % of B(pin) 

functionalized styrene unit calculated from the 
1
H NMR spectrum. 

c
 Efficiency of 
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functionalization (i.e., the percentage of functionalized styrene unit relative to boron 

atoms added). 

1.3.2. Iridium-Catalyzed C–H Borylation of Crystalline Polystyrenes 

The iridium-catalyzed reaction of commercial polystyrenes [syndiotactic (sPS), 

atactic (aPS), and Isotactic (iPS)] with a boron reagent such as B2(pin)2 or pinacolborane 

[HB(pin)] in cyclooctane generated the corresponding borylated polymers [PS-B(pin)] 

(Scheme 1.1). 

 

B2(pin)2 or HB(pin)

1.5% [IrCl(COD)]2
3% dtbpy

Cyclooctane, 150
o
C, 6h

Polystyrene
(aPS, sPS, iPS)

Borylated 

polystyrene

PS-B(pin)

B
O

O

B(pin) =

B

O
O

aPS sPS iPS

 

Scheme 1.1. C–H activation/borylation of polystyrenes with iridium catalyst. 

 

In 
1
H NMR spectra of all PS–B(pin), a distinct new peak was found at 1.20–1.35 ppm 

for the methyl groups of pinacolboronate ester [B(pin)]: 1.35 ppm for sPS–B(pin) in 

CDCl3 (Figure 1.3); 1.20 ppm for sPS–B(pin), aPS–B(pin), and iPS–B(pin) in C6D6 

(Figures 1.4, 1.10 and 1.14). The two proton resonances from –CH2– and –CH– of the 

polystyrene main chain maintained a ratio of 2:1, confirming that the methylene and 
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methine groups of polystyrene were intact during the borylation. In 
13

C NMR spectra, 

new sharp peaks were also shown at 83.5 and 24.0 for the aryl–B(pin) moiety of the 

polymer (Figures 1.5 and 1.11). 13C NMR attached proton test (APT) spectroscopy of 

sPS–B(pin) confirmed that those two resonances corresponded to the methyl and the 

quaternary carbon atoms of the B(pin) structure (Figure 1.6). The 
11

B NMR spectrum of 

sPS–B(pin) showed a broad peak at 27 ppm, which is consistent with the boron chemical 

shift of previously reported B(pin)-functionalized aPS homopolymer (Figures 1.7 and 

1.12).
18

 

 

 

Figure 1.1. 
1
H NMR spectrum of syndiotactic PS [10 mg/mL in CDCl3

 
at 25 

o
C]. 
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Figure 1.2. 
13

C NMR spectrum of syndiotactic PS [20 mg/mL in CDCl3
 
at 25 

o
C]. 

 

 

Figure 1.3. 
1
H NMR spectrum of syndiotactic PS–B(pin) [10 mg/mL in CDCl3

 
at 25 

o
C]. 
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Figure 1.4. 
1
H NMR spectrum of syndiotactic PS–B(pin) [10 mg/mL in C6D6

 
at 25 

o
C]. 

 

 

Figure 1.5. 
13

C NMR spectrum of syndiotactic PS–B(pin) [30 mg/mL in CDCl3
 
at 25 

o
C]. 
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Figure 1.6. 
13

C APT NMR spectrum of syndiotactic PS–B(pin) [30 mg/mL in CDCl3
 
at 25 

o
C]. 

 

 

Figure 1.7. 
11

B NMR spectrum of syndiotactic PS–B(pin) [30 mg/mL in CDCl3
 
at 25 

o
C]. 
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Figure 1.8. 
1
H NMR spectrum of atactic PS [10 mg/mL in C6D6

 
at 25 

o
C]. 

 

 

Figure 1.9. 
13

C NMR spectrum of atactic PS [30 mg/mL in CDCl3
 
at 25 

o
C]. 
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Figure 1.10. 
1
H NMR spectrum of atactic PS–B(pin) [10 mg/mL in C6D6

 
at 25 

o
C]. 

 

 

Figure 1.11. 
13

C NMR spectrum of atactic PS–B(pin) [30 mg/mL in CDCl3
 
at 25 

o
C]. 
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Figure 1.12. 
11

B NMR spectrum of atactic PS–B(pin) [30 mg/mL in CDCl3
 
at 25 

o
C]. 

 

 

Figure 1.13. 
1
H NMR spectrum of isotactic PS [10 mg/mL in C6D6

 
at 25 

o
C]. 
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Figure 1.14. 
1
H NMR spectrum of isotactic PS–B(pin) [10 mg/mL in C6D6

 
at 25 

o
C]. 

 

We calculated the mol % of the borylated styrene repeating unit from the 
1
H NMR 

spectrum by comparing the ratio of the methine proton of the polystyrene main chain and 

the methyl groups of the B(pin) group. These results are summarized in Tables 1.2 and 

1.3. Note that the efficiency of functionalization in Tables 1.2 and 1.3 is defined as the 

percentage of borylated styrene units relative to added boron atoms. All polystyrenes 

could be efficiently functionalized with varying numbers of boryl groups without any 

influence on polymer tacticity. Except for the functionalizations of sPS with a very low 

ratio of added B2(pin)2 to monomer unit (ratios <0.1; Table 1.2, Entries 1–3), both sPS 

and aPS generally showed decreased efficiency of functionalization as the added diboron 

amount was increased (Table 1.2, Entries 4–8 for sPS; Table 1.3, Entries 1–7 for aPS). 

The explanation for the sPS exceptions is not clearly understood and needs further 

investigation. Although efficiency of C–H borylation steadily decreases as more B2(pin)2 
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is added to the styrene unit, up to 42 mol % of styrene repeating units of sPS and aPS can 

be easily borylated using 3 mol % of the commercially available iridium catalyst and the 

ligand using this method (Table 1.2, Entry 7 for sPS; Table 1.3, Entry 6 for aPS). We also 

observed that the effect of solubility has an influence on the efficiency of 

functionalization in the case of iPS borylation. Since the commercial iPS that we studied 

has an extremely high molecular weight (Mn = 309 kg/mol, PDI = 6.42), homogeneous 

dissolution at 150 °C was achieved by adding more solvent (i.e., in a 1:10 molar ratio of 

iPS repeating unit to solvent). The solvent dilution induced a decrease in efficiency 

compared with that of the standard conditions for sPS–B(pin) (Table 1.2, Entries 4 and 9). 

Similarly, the borylation of sPS under the identical diluted condition (i.e., in a 1:10 molar 

ratio of sPS repeating unit to cyclooctane) also resulted in a slightly reduced efficiency 

compared with that under the standard condition (Table 1.2, Entries 4 and 10). Unlike 

other transition metal-catalyzed polyolefin C–H functionalizations,
19-24

 the iridium-

catalyzed borylation of sPS was highly effective even with low catalyst loading (i.e., 0.5 

mol % iridium catalyst loading for Table 1.2, Entry 11). 
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Table 1.2. Borylation of crystalline polystyrene [syndiotactic (sPS) and isotactic (iPS)] 

with bis(pinacolato)diboron [B2(pin)2]
a. 

PS–B(pin) 

entry PS Mn
b
 

PDI
b 

(Mw/Mn) 

[B2(pin2)]/

[monomer] Mn
b
 

PDI
b 

(Mw/Mn) 

B(pin)  

(%)
c
 

Effic.  

(%)
d
 

1 sPS 127 2.64 0.03 133 2.37 2.5 42 

2 sPS 127 2.64 0.05 116 2.74 5.9 59 

3 sPS 127 2.64 0.07 116 2.53 9.9 71 

4 sPS 127 2.64 0.1 90.0 2.50 16.4 82 

5 sPS 127 2.64 0.2 124 2.40 23.6 59 

6 sPS 127 2.64 0.4 97.0 2.55 34.2 43 

7 sPS 127 2.64 0.8 
g g 

41.1 26 

8 sPS 127 2.64 1.2 
g g 

42.1 18 

9e iPS 309 6.42 0.1 418 5.00 10.6 50 

10
e
 sPS 127 2.64 0.1 

g g 
13.7 69 

11
f
 sPS 127 2.64 0.1 

g g 
12.9 65 

a
 B(pin) = pinacolboronate ester. PS = polystyrene. Unless otherwise specified, C–H 

borylation was conducted on 200–260 mg of polymer with 3 mol % of iridium and 3 

mol % of ligand relative to B2(pin)2 in cyclooctane (in a 1:6 molar ratio of polystyrene 

repeating unit to solvent) at 150 
o
C for 6 h. sPS = syndiotactic polystyrene; iPS = 

isotactic polystyrene. 
b
 Number-average molecular weight (Mn) in kg/mol and 

polydispersity index (PDI) measured with high-temperature size-exclusion 

chromatography in 1,2,4-trichlorobenzene at 160 
o
C relative to polystyrene standards. 

c
 

The mol % of B(pin) functionalized styrene unit calculated from the 
1
H NMR spectrum. 

d
 

Efficiency of functionalization (i.e., the percentage of functionalized styrene unit relative 

to boron atoms added). e
 Borylation conducted in cyclooctane in a 1:10 molar ratio of 
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polystyrene repeating unit to solvent. 
f
 0.5 mol % of iridium and 0.5 mol % of ligand 

were used. g Not measured. 

 

Table 1.3. Borylation of monodisperse atactic polystyrene (aPS) with bis(pinacolato) 

diboron [B2(pin)2]
a
. 

PS–B(pin) 

entry PS Mn
b 

PDI
b 

(Mw/Mn) 

[B2(pin2)]/

[monomer] Mn
b
 

PDI
b 

(Mw/Mn) 

B(pin)  

(%)
c
 

Effic.  

(%)
d
 

1 aPS 25.1 1.09 0.05 26.5 1.09 8.4 84 

2 aPS 25.1 1.09 0.07 27.0 1.09 11.1 80 

3 aPS 25.1 1.09 0.1 27.9 1.10 16.4 82 

4 aPS 25.1 1.09 0.2 29.2 1.10 22.4 56 

5 aPS 25.1 1.09 0.4 30.1 1.11 32.8 41 

6 aPS 25.1 1.09 0.8 30.9 1.12 42.3 26 

7 aPS 25.1 1.09 1.2 31.1 1.14 41.1 17 

8 aPS 247 1.07 0.1 256 1.05 16.9 85 

a
 B(pin) = pinacolboronate ester. PS = polystyrene. C–H borylation was conducted on 

200 mg of polymer with 3 mol % of iridium and 3 mol % of ligand relative to B2(pin)2 in 

cyclooctane (in a 1:6 molar ratio of polystyrene repeating unit to solvent) at 150 
o
C for 6 

h. 
b
 Mn in kg/mol and PDI measured with SEC in THF at 40 

o
C relative to polystyrene 

standards. c The mol % of B(pin) functionalized styrene unit calculated from the 1H NMR 

spectrum. d Efficiency of functionalization. 

 

The iridium-catalyzed C–H borylation of sPS and aPS can also be accomplished with 

HB(pin) as the boron reagent (Table 1.4). Although the efficiency of functionalization 

with HB(pin) was lower than that with B2(pin)2, the borylation using various ratios of 
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HB(pin) to styrene repeating unit produced 1–10 mol % B(pin)-functionalized sPS and 

aPS. The C–H borylation results of aPS showed that the polymer chain lengths after the 

post-functionalization were unchanged from those of the starting polymers. 

 

Table 1.4. Borylation of polystyrene [syndiotactic (sPS) and atactic (aPS)] with 

pinacolborane [HB(pin)]a
. 

PS–B(pin) 

entry PS
b
 Mn

c
 

PDIc 

(Mw/Mn) 

[HB(pin)]/

[monomer] Mn
c
 

PDIc 

(Mw/Mn) 

B(pin) 

(%)
c
 

Effic. 

(%)
e
 

1 sPS 127
f
 2.64

f
 0.05 –

g
 –

g
 2.6 52 

2 sPS 127
f
 2.64

f
 0.1 –

g
 –

g
 4.5 45 

3 sPS 127
f
 2.64

f
 0.2 82.1

f
 2.65

f
 7.1 36 

4 sPS 127
f
 2.64

f
 0.4 93.8

f
 2.38

f
 9.8 25 

5 aPS 25.1 1.09 0.1 25.7 1.09 4.0 40 

6 aPS 25.1 1.09 0.4 26.0 1.10 5.9 15 

7 aPS 247 1.07 0.1 259 1.07 4.0 40 

8 aPS 247 1.07 0.4 262 1.05 5.6 14 

a
 B(pin) = pinacolboronate ester. PS = polystyrene. borylations were conducted on 200–

260 mg of polymer with 3 mol % of iridium and 3 mol % of ligand relative to HB(pin) in 

cyclooctane (in a 1:6 molar ratio of polystyrene repeating unit to solvent) at 150 
o
C for 6 

h. b
 PS = polystyrene. aPS [Mn = 25.1 kg/mol, PDI = 1.09; and Mn =247 kg/mol, PDI = 

1.07]; sPS [Mn = 127 kg/mol, PDI = 2.64]. c Mn in kg/mol and polydispersity index (PDI) 

measured with size-exclusion chromatography in THF at 40 
o
C relative to polystyrene 

standards unless otherwise specified. 
d
 The mol % of B(pin) functionalized styrene unit 

calculated from the 
1
H NMR spectrum. 

e
 Efficiency of functionalization (i.e., the 

percentage of functionalized styrene unit relative to boron atoms added). 
f
 Mn in kg/mol 
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and PDI measured with high-temperature size-exclusion chromatography in 1,2,4-

trichlorobenzene at 160 oC relative to polystyrene standards. g Not measured. 

1.3.3. Steric Effect in the C–H Borylation of sPS 

When cumene was borylated with B2(pin)2 under the standard condition for the C–H 

functionalization of sPS, a mixture of meta- and para- substituted cumene–B(pin) 

isomers in an approximate ratio of 7:3 was generated, because this reaction is controlled 

by steric hindrance (Figure 1.15a). A related iridium-catalyzed C–H activation of mono-

substituted arene shows similar results.
29

 Surprisingly, when we studied the ratio of 

regioisomers of borylated polymer products, we found the ratio of meta- and para- 

borylated polymers to be approximately 4:3 based on the resonances at 7.50–8.50 ppm on 

the 1H NMR spectrum of sPS–B(pin). The 1H NMR spectra of both sPS–B(pin) and iPS–

B(pin) in C6D6 showed distinctive resonances for their meta- and para- isomers (Figure 

1.15b,c). Although it was difficult to determine the isomer ratio of aPS–B(pin), because 

stereoregularity in the polymer chain was absent and the resulting peaks at 7.50–8.50 

ppm region of the 
1
H NMR spectrum were very broad in Figure 1.15d, we can assume 

that it possesses a similar ratio of isomers. It is believed that the higher ratio of para- 

isomer in the borylated polystyrene compared with that of borylated cumene results from 

reduced steric accessibility of the iridium catalyst for the meta- site of the polymer in the 

reaction medium. Since aromatic rings are attached to every other carbon of the 

polystyrene main chain, the available space for the active iridium catalyst to insert into 

the meta- C–H bond of the aromatic rings in the polystyrene chain is much smaller 

compared with that in the C–H borylation of cumene. 
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Figure 1.15. Expanded 
1
H NMR spectra of (a) borylated cumene, (b) sPS–B(pin), (c) 

iPS–B(pin), and (d) aPS–B(pin) in C6D6. An asterisk denotes resonances from the 

deuterated NMR solvent. 

 

1.3.4. Oxidation of Borylated Polystyrenes 

The boronic ester group of sPS–B(pin) (Table 1.2, Entries 1–6) and aPS–B(pin) 

(Table 1.3, Entry 2) was oxidized to hydroxy group with NaOH/H2O2 in THF to give the 

corresponding polar polymers, sPS-OH and aPS-OH, respectively (Scheme 1.2). It is 

known that a hydroxy-functionalized sPS could be synthesized through copolymerization 

with functionalized styrenes.
3
 However, its molecular weight and concentration of 

hydroxy group in the functionalized sPS were low (Mn = 9.2 kg/mol, 1.8 mol % OH 

group).3 In another example, when a borane-functionalized styrene monomer containing 

long alkylene spacers between the borane group and the aromatic ring was used in 



 23 

syndiospecific polymerization with styrene, a higher concentration of hydroxy group 

could be incorporated into sPS after oxidation. Similar to the previous example of 

hydroxylated sPS,3 however, the polymerization resulted in decreased molecular weights 

and reduced degrees of crystallinity for the polymers compared with those of an sPS 

homopolymer.
4
 

 

sPS-B(pin)

aPS-B(pin)

Mn = 27.0 kg/mol

PDI = 1.09

B

O
O OH

sPS-OH

aPS-OH

Mn = 25.9 kg/mol

PDI = 1.08

rt
THF

H2O2

NaOH

 
Scheme 1.2. Oxidation of borylated polystyrenes [Entries 1–6 of Table 1.2 for sPS–

B(pin) and Entry 2 of Table 1.3 for aPS-B(pin)]. 

 

In our study, the hydroxy group was directly incorporated into the aromatic ring of 

sPS. The hydroxy group of sPS–OH and aPS–OH could be easily identified by a strong 

O–H stretching band at 3477 cm
–1

 and 3485 cm
–1

 in the IR spectrum, respectively 

(Figures 1.16 and 1.17). The resonances of B(pin) unit in the polymer chain disappeared 

completely in the 
1
H

 
and 

13
C NMR spectra of sPS–OH and aPS–OH (Figures 1.18, 1.19, 

1.20 and 1.21). Thus, the iridium-catalyzed borylation of aromatic C–H bonds and 

subsequent oxidation is a convenient method for introducing a hydroxy group directly 

into the aromatic ring of sPS. 
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Figure 1.16. FT-IR spectrum of syndiotactic PS–OH. 

 

 
Figure 1.17. FT-IR spectrum of syndiotactic PS–OH. 
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Figure 1.18. 

1
H NMR spectrum of syndiotactic PS–OH [10 mg/mL in CDCl3

 
at 25 

o
C]. 

 

 
Figure 1.19. 

13
C NMR spectrum of syndiotactic PS–OH [30 mg/mL in 1,1,2,2-

tetrachloroethane-d2
 
at 70 

o
C]. 

 



 26 

 
Figure 1.20. 

1
H NMR spectrum of atactic PS–OH [10 mg/mL in C6D6

 
at 25 

o
C]. 

 

 
Figure 1.21. 

13
C NMR spectrum of atactic PS–OH [30 mg/mL in CDCl3

 
at 25 

o
C]. 
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1.3.5. Suzuki–Miyaura Coupling Reaction of Borylated Polystyrenes 

Suzuki–Miyaura coupling reaction allows biaryl C–C bond formation through a 

cross-coupling reaction of aryl boron compound and an aryl halide in presence of a 

palladium catalyst. The cross reaction is widely used in organic synthesis owing to its 

good compatibility with various functional groups.
30

 The coupling reaction of the 

polymer B(pin) groups with a functionalized aryl halide can install various functional 

groups at the polymer side chain. As shown in Scheme 1.3, (4-bromophenoxy)-tert-

butyldimethylsilane coupled with PS–B(pin) to form arene-functionalized polystyrenes 

(sPS-Ar and aPS-Ar in Scheme 1.3) using 3 mol % of palladium catalyst. 

 

sPS-B(pin)

aPS-B(pin)

Mn = 27.0 kg/mol

PDI = 1.09

B

O
O

O

Si

sPS-Ar

aPS-Ar

Mn = 29.5 kg/mol

PDI = 1.12Br O Si

3% Pd(dppf)Cl2
NaOtBu

toluene, 100
 o

C

 
Scheme 1.3. Suzuki–Miyaura coupling reaction of borylated polystyrenes [Entries 1–6 in 

Table 1.2 for sPS–B(pin) and Entry 2 in Table 1.3 for aPS-B(pin)]. 

 

Upon the Suzuki-Miyaura coupling reaction, the B(pin) group in the polymer 

disappeared completely and new tert-butyldimethylsilyl group appeared with a similar 

concentration in the 
1
H and 

13
C NMR spectra of the coupled products (Figures 1.22, 1.23, 

1.24 and 1.25). 
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Figure 1.22. 
1
H NMR spectrum of syndiotactic PS–Ar [10 mg/mL in CDCl3

 
at 25 

o
C]. 

 

 

Figure 1.23. 
13

C NMR spectrum of syndiotactic PS–Ar [30 mg/mL in CDCl3
 
at 25 

o
C]. 
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Figure 1.24. 
1
H NMR spectrum of atactic PS–Ar [10 mg/mL in C6D6

 
at 25 

o
C]. 

 

 

Figure 1.25. 
13

C NMR spectrum of atactic PS–Ar [30 mg/mL in CDCl3
 
at 25 

o
C]. 
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1.3.6. Size Exclusion Chromatography 

To study whether there is any change in Mn and PDI during the C–H activation 

process in detail, we subjected two model aPS materials with narrow molecular weight 

distributions (Mn of 25.1 kg/mol with a PDI of 1.09, and Mn of 247 kg/mol with a PDI of 

1.07) to the standard borylation condition. It was found that an increase in the ratio of 

B2(pin)2 to monomer resulted in an Mn increase owing to the incorporation of more 

B(pin) group into aPS–B(pin) (Entries 1–8 of Table 1.3 and Figure 1.26). All PDI values 

remained ~1.10, however, even with the incorporation of 41 mol % of B(pin) group 

(Table 1.3, Entry 7). This data clearly indicate that the iridium-catalyzed arene C–H 

activation process does not induce any deleterious side reactions leading to cleavage or 

coupling of polymer chains. 

 

 

Figure 1.26. Size exclusion chromatography for (a) atactic polystyrene (aPS) [Mn = 25.1 

kg/mol; PDI = 1.09]; (b) aPS–B(pin) [Mn = 26.5 kg/mol; PDI = 1.09] (Table 1.3, Entry 

1); (c) aPS–B(pin) [Mn = 27.8 kg/mol; PDI = 1.10] (Table 1.3, Entry 3); and (d) aPS–
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B(pin) [Mn = 30.1 kg/mol; PDI = 1.11] (Table 1.3, Entry 5). Mn relative to polystyrene 

standards. 

 

Although the molecular weight data of sPS (Table 1.2, Entries 1–6) and iPS (Table 

1.2, Entry 9) apparently show slight deviation from those of unfunctionalized crystalline 

polymers (i.e., Mn = 127 kg/mol, PDI = 2.64 for sPS; Mn = 309 kg/mol, PDI = 6.42 for 

iPS), these values may be due to the nature of the relatively broader molecular weight 

distributions of the polymers. When examined using high-temperature size exclusion 

chromatography (SEC) in 1,2,4-trichlorobenzene at 160 
o
C, their SEC traces did not 

show any sign of polymer chain degradation or coupling (Figure 1.27). 

 

 

Figure 1.27. High-temperature size exclusion chromatography for (a) syndiotactic 

polystyrene (sPS) [Mn = 127 kg/mol; PDI = 2.64]; (b) sPS–B(pin) [Mn = 132 kg/mol; PDI 

= 2.37] (Table 1.2, Entry 1); (c) sPS–B(pin) [Mn = 116 kg/mol; PDI == 2.74] (Table 1.2, 

Entry 2); (d) sPS–B(pin) [Mn = 116 kg/mol; PDI = 2.53] (Table 1.2, Entry 3); and (e) 
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sPS–B(pin) [Mn = 97.0 kg/mol; PDI = 2.55] (Table 1.2, Entry 6). Mn relative to 

polystyrene standards. 

 

The molecular weight changes from the borylation-oxidation sequence, which was 

studied in depth with model aPS, were negligible (Figure 1.28: aPS: Mn = 25.1 kg/mol, 

PDI = 1.09; aPS–B(pin): Mn = 27.0 kg/mol, PDI = 1.09; aPS–OH: Mn = 25.9 kg/mol, PDI 

= 1.08), highlighting the mildness of this protocol. The molecular weight distribution of 

the Suzuki coupling product, which was studied in depth with the model aPS, was again 

found to be unchanged from that of the precursor polymer (Figure 1.28: aPS–B(pin): Mn 

= 27.0 kg/mol, PDI = 1.09; aPS–Ar: Mn = 29.5 kg/mol, PDI = 1.12). 

 

 

Figure 1.28. Size-exclusion chromatography for (a) aPS [Mn = 25.1 kg/mol, PDI = 1.09], 

(b) aPS–B(pin) [Mn = 27.0 kg/mol, PDI = 1.09] (Table 1.3, Entry 2), and (c) aPS–OH [Mn 

= 25.9 kg/mol, PDI = 1.08] (Scheme 1.2), (d) aPS–Ar [Mn = 29.5 kg/mol, PDI = 1.12] 

(Scheme 1.3). Mn relative to polystyrene standards. 
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1.3.7. Thermal Analysis 

The thermal properties of sPS, sPS–B(pin) and sPS–OH are shown in Figure 1.29. 

sPS is known to possess a complex polymorphism. The most stable α and β crystalline 

forms have similar melting temperatures approximately at 270 
o
C, and their 

crystallization behaviors strongly depend on experimental conditions,
31-33

 which may 

explain why the unfunctionalized sPS exhibits more than one melting transition in our 

study (Figure 1.29a). Despite high crystallinity in unfunctionalized sPS, the melting point 

and crystallinity of sPS were strongly affected by the size and concentration of functional 

group incorporated on the polymer (Figure 1.29 and Table 1.5). 

 

 

Figure 1.29. Differential scanning calorimetry scans of (a) syndiotactic polystyrene (sPS); 

(b) 2.5 mol % B(pin)-functionalized sPS–B(pin) (Table 1.2, Entry 1); (c) 2.5 mol % OH-

functionalized sPS–OH (from oxidation of Entry 1 of Table 1.2); (d) 5.9 mol % OH-

functionalized sPS–OH (from oxidation of Entry 2 of Table 1.2); (e) 9.9 mol % OH-

functionalized sPS–OH (from oxidation of Entry 3 of Table 1.2); (f) 16.4 mol % OH-

functionalized sPS–OH (from oxidation of Entry 4 of Table 1.2). 
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For example, the sPS–B(pin) containing 5.9 mol % B(pin) group (Table 1.2, Entry 2) 

lost crystallinity completely because the bulky B(pin) group disrupted crystallization. 

This result is consistent with a report that the attached sulfonic acid group sharply 

decreases the melting point and degree of crystallinity of sPS even in lightly (i.e., <5 

mol %) sulfonated sPS.
8
 After oxidation, however, even sPS–OH containing 9.9 mol % 

group (from oxidation of Entry 3 of Table 1.2) recovered high crystallinity and showed a 

slightly lower melting temperature (267 
o
C) compared with those of unfunctionalized sPS 

(40% and 271 
o
C) (Figure 1.29e and Table 1.5). It is believed that the smaller hydroxy 

group in the polymer did not interfere with the crystallization as much as the bulky 

boronic ester group did in sPS–B(pin). Overall, the sequence of borylation-oxidation 

process can generate polar group-functionalized sPS that has a slightly lower melting 

point without inducing degradation or cross-linking of the parent polymer.
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Table 1.5. Thermal properties of syndiotactic polystyrene (sPS) and functionalized sPS
a

. 

Polymer Functional group Tg (
o
C)

b
 Tm (

o
C)

c
 ∆Hf (J/g)

d
 

Crystallinity
e
 

(%) 

sPS none 99 271 21.1    40 

sPS–B(pin) 2.5 mol % B(pin) 95 249 3.1     6 

sPS–B(pin) 5.9 mol % B(pin) 109 
f 

-    - 

sPS–OH 2.5 mol % OH 
f 

264 19.5    37 

sPS–OH 5.9 mol % OH 100 269 17.2    34 

sPS–OH 9.9 mol % OH 104 267 19.2    36 

sPS–OH 16.4 mol % OH 106 261 8.3    16 

sPS–OH 23.6 mol % OH 118 260 0.9     2 

sPS–OH 34.2 mol % OH 129 
f 

-    - 

a
 Differential scanning calorimetry (DSC) measurements conducted using heating/cooling 

rates of 10 
o
C/min. The OH mol % is based on the assumption of quantitative conversion 

of B(pin) group without formation of other deborylated byproducts. 
b
 Glass transition 

temperature in oC. c
 Melting point of polymer in oC. d

 Heat of fusion of polymer in J/g. e
 

The percent of crystallinity based on the theoretical heat of fusion calculated for 100% 

crystalline sPS (i.e., ∆Hf
o
 = 53.3 J/g; from reference 1). 

f
 Not detected. 

 

1.4. Experimental 

1.4.1. General Comments 

[IrCl(COD)]2, dtbpy, HB(pin), hydrogen peroxide, tetrahydrofuran (THF), sodium 

hydroxide, and chloroform were reagent grade and used without further purification. 

B2(pin)2 was obtained from Frontier Scientific Co. and used after recrystallization from 

hexane. Cyclooctane was dried using sodium and benzophenone, distilled under reduced 

pressure, and stored in a nitrogen-filled glovebox. sPS (Mn = 127 kg/mol with PDI = 
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2.64) and two model aPS of narrow molecular distributions (Mn = 25.1 kg/mol with PDI 

= 1.09 and Mn = 247 kg/mol with PDI = 1.07) were obtained from LG Chem Ltd., 

Daejeon, South Korea, and Sigma Aldrich Co., respectively, and used as received. To 

improve the solubility of iPS (Mn = 309 kg/mol, PDI = 6.42, 90% isotactic from Sigma 

Aldrich Co.) in the borylation medium, the following procedure was performed. One 

gram of the polymer was placed in a two-neck round-bottom flask, and then the flask was 

evacuated and backfilled with nitrogen three times. 1,2-Dichlorobenzene (30 mL) was 

added to this flask and the mixture was refluxed at 180 °C under nitrogen for 30 min to 

dissolve all iPS. The solution was then cooled to 140 °C and poured into cold methanol 

(300 mL). The precipitate was filtered and dried under vacuum at 60 °C. 

1H NMR spectra were obtained using a 400 MHz Varian NMR spectrometer at room 

temperature and chemical shifts were referenced to TMS. The NMR samples were 

prepared by applying gentle heat to dissolve polymer in CDCl3 (for sPS) or C6D6 (for sPS, 

aPS, and iPS). The 
1
H NMR samples were prepared at a concentration of 10 mg/mL. The 

B(pin) mol % of PS–B(pin) was determined based on the relative intensity of –CH– in 

polystyrene main chain (δ = 1.81 in CDCl3; δ = 2.10–2.30 in C6D6) to –CH3 of B(pin) (δ 

= 1.35 in CDCl3; δ = 1.15–1.20 in C6D6) in the spectra and provided in Tables 1.2–4. For 

molecular weight characterization of aPS materials, size exclusion chromatography 

(SEC) analysis was conducted using a VISCOTEK chromatograph equipped with three 

visco-GEL I Series columns and tetra detector array (UV/vis, low and right angle light 

scattering, refractive index, and viscometer) at 40 °C. THF was used as the mobile phase 

and the flow rate was set at 1.0 mL/min. High-temperature size exclusion 

chromatography analysis for the molecular weight measurement of sPS and iPS was 
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obtained using a Polymer Laboratory GPC-220 high-temperature size exclusion 

chromatography at 160 °C. 1,2,4-Trichlrobenzene was used as the mobile phase and the 

flow rate was set at 1.0 mL/min. Both instruments were calibrated using polystyrene 

standards. The differential scanning calorimetry (DSC) measurement was conducted on a 

Perkin-Elmer Pyris 6 DSC series under a nitrogen atmosphere. The polymer samples 

were heated to 300 °C, with a hold at 300 °C for 1 min in order to remove the influence 

of thermal history, cooled to 0 °C, held at 0 °C for 1 min, and then reheated to 300 °C, 

cooling and heating at a rate of 10 °C/min. All DSC curves in Figure 1.29 were obtained 

from the second heating. The temperatures (Tg and Tm) and enthalpy (∆Hf) were obtained 

after calibration with high-purity indium and zinc standards.  

sPS: 1H NMR (400 MHz, CDCl3) δ = 1.30 (2H, –CH2–), 1.81 (1H, –CH–), 6.55 (2H, 

Harom), 7.06 (3H, Harom). 
13

C NMR (100 MHz, CDCl3) δ = 40.54 (–CH–), 43.84 (–CH2–), 

125.60 (C6H5–C4), 127.60 (C6H5–C2,6), 127.86 (C6H5–C3,5), 145.19 (C6H5–C1). 

aPS: 
1
H NMR (400 MHz, C6D6) δ = 1.60 (br, 2H, –CH2–), 2.10 (br, 1H, –CH–), 

6.41–6.88 (2H, Harom), 6.91–7.28 (3H, Harom). 
13

C NMR (100 MHz, CDCl3) δ = 40.74 (–

CH–), 41.3–47.2 (–CH2–), 126.02 (C6H5–C4), 128.02 (C6H5–C2,6), 128.34 (C6H5–C3,5), 

145.70 (C6H5–C1). 

iPS: 1H NMR (400 MHz, C6D6) δ = 1.59 and 1.65 (2H, –CH2–), 2.33 (1H, –CH–), 

6.77 (2H, Harom), 7.08 (3H, Harom). 
13

C NMR spectrum could not be obtained due to lack 

of solubility of the polymer in C6D6 or CDCl3. 

1.4.2. Synthesis of Pinacol Boronic Ester–Functionalized Polystyrene 

Preparation of sPS–B(pin) using B2(pin)2 (Entry 4 of Table 1.2). In a nitrogen-filled 

glovebox, a mixture of sPS (260 mg, 2.50 mmol polystyrene repeating unit), B2(pin)2 



 38 

(63.0 mg, 0.25 mmol), [IrCl(COD)]2 (2.5 mg, 3 mol % iridium based on the amount of 

B2(pin)2), dtbpy (2.0 mg, 3 mol % based on the amount of B2(pin)2), and cyclooctane 

(1.68 g, 15.0 mmol) and a magnetic stirring bar were placed into a vial and capped with a 

Teflon-lined septum. The vial was removed from the glovebox and placed in an oil bath 

at 150 °C for 6 h. After cooling to room temperature, the mixture was diluted with 

chloroform (30 mL) and filtered through a short plug of silica to remove the catalyst. The 

filtrate was concentrated by a rotary evaporator to approximately 5 mL, and cold 

methanol (25 mL) was added to precipitate the polymer. The dissolution and precipitation 

process was repeated one more time to ensure complete removal of any small molecules 

trapped in the polymer. The borylated polymer was filtered as a white solid and dried 

under vacuum at 60 °C (281 mg, 108% yield based on polymer weight): 1H NMR (400 

MHz, CDCl3) δ = 1.30 (2H, –CH2–), 1.35 (s, BOCCH3), 1.80 (1H, –CH–), 6.54 (2H, 

Harom), 7.05 (3H, Harom), 7.56 (Harom from C6H4–B(pin)); 
1
H NMR (400 MHz, C6D6) δ = 

1.15 and 1.19 (BOCCH3), 1.49 (2H, –CH2–), 2.08 (1H, –CH–), 6.07 (2H, Harom), 7.05 

(3H, Harom), 7.75 [Harom from C6H4–B(pin)], 8.00 [Harom from C6H4–B(pin)], 8.04 [Harom 

from C6H4–B(pin)]. 
13

C NMR (100 MHz, CDCl3) δ = 24.9 (BOCCH3), 40.5 (–CH–), 43.8 

(–CH2–), 83.5 (BOCCH3), 125.6 (C6H5–C4), 127.2 [Carom from C6H4–B(pin)], 127.7 

(C6H5–C2,6), 127.9 (C6H5–C3,5), 130.9 [Carom from C6H4–B(pin)], 132.3 [Carom from 

C6H4–B(pin)], 134.0 [Carom from C6H4–B(pin)], 134.5 [Carom from C6H4–B(pin)], 144.6 

[Carom from C6H4–B(pin)], 145.18 (C6H5–C1), 148.79 [Carom from C6H4–B(pin)]. 
11

B 

NMR (128.3 MHz, CDCl3) δ = 28.0 (br). 

Preparation of sPS–B(pin) using HB(pin) (Entry 2 of Table 1.4). In a nitrogen-filled 

glovebox, a mixture of sPS (260 mg, 2.50 mmol polystyrene repeating unit), HB(pin) 
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(32.0 mg, 0.25 mmol), [IrCl(COD)]2 [2.5 mg, 3 mol % iridium based on the amount of 

HB(pin)], dtbpy [2.0 mg, 3 mol % based on the amount of HB(pin)], and cyclooctane 

(1.68 g, 15.0 mmol) and a magnetic stirring bar were placed into a vial and capped with a 

Teflon-lined septum. The vial was removed from the glovebox and placed in an oil bath 

at 150 °C for 16 h. After cooling to room temperature, the mixture was diluted with 

chloroform (30 mL) and filtered through a short plug of silica to remove the catalyst. The 

filtrate was concentrated by a rotary evaporator to approximately 5 mL, and cold 

methanol (25 mL) was added to precipitate the polymer. The dissolution and precipitation 

process was repeated one more time to ensure complete removal of any small molecules 

trapped in the polymer. The borylated polymer was filtered as a white solid and dried 

under vacuum at 60 °C (255 mg, 98% yield based on polymer weight). 

Preparation of aPS–B(pin) using B2(pin)2. Borylated atactic polystyrene with the 

different ratios of B2(pin)2/monomer reported in Table 1.3 was prepared in a 200 mg 

scale (1.92 mmol polystyrene repeating unit) according to the procedure described for the 

preparation of sPS–B(pin) using B2(pin)2: 
1
H NMR (400 MHz, C6D6) δ = 1.17 (s, 

BOCCH3), 1.58 (br, 2H, –CH2–), 2.09 (br, 1H, –CH–), 6.41–6.88 (2H, Harom), 6.91–7.28 

(3H, Harom), 8.03 [br, Harom from C6H4–B(pin)]. 13C NMR (100 MHz, CDCl3) δ = 24.9 (–

BOCCH3), 40.3 (–CH–), 41.3–47.2 (–CH2–), 83.5 (–BOCCH3), 125.6 (C6H5–C4), 127.6 

(C6H5–C2,6), 127.94 (C6H5–C3,5), 131.02 [Carom from C6H4–B(pin)], 132.39 [Carom from 

C6H4–B(pin)], 134.66 [Carom from C6H4–B(pin)], 145.31 (C6H5–C1). 
11

B NMR (128.3 

MHz, CDCl3) δ = 27.5 (br). 

Preparation of aPS–B(pin) using HB(pin). Borylated atactic polystyrene with the 

different ratios of HB(pin)/monomer reported in Table 1.4 was prepared in a 200 mg 
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scale (1.92 mmol polystyrene repeating unit) according to the procedure described for 

preparation of sPS–B(pin) using HB(pin). 

Preparation of iPS–B(pin) using B2(pin)2 (Entry 9 of Table 1.2). In a nitrogen-filled 

glovebox, a mixture of iPS (200 mg, 1.92 mmol polystyrene repeating unit), B2(pin)2 

(48.3 mg, 0.192 mmol), [IrCl(COD)]2 (1.9 mg, 3 mol % iridium based on the amount of 

B2(pin)2), dtbpy [1.5 mg, 3 mol % based on the amount of B2(pin)2], cyclooctane (2.15 g, 

19.2 mmol) and a magnetic stirring bar were placed into a vial and capped with a Teflon-

lined septum. The vial was removed from the glovebox and placed in an oil bath at 

150 °C for 6 h. After cooling to room temperature, the mixture was diluted with 

chloroform (40 mL). (Because of high viscosity of the solution, filtration through silica 

was avoided). The solution was concentrated by a rotary evaporator to approximately 5 

mL, and cold methanol (25 mL) was added to precipitate the polymer. The dissolution 

and precipitation process was repeated one more time to ensure complete removal of any 

small molecules trapped in the polymer. The precipitated solid was filtered and dried 

under vacuum at 60 °C (203 mg, 102% yield based on polymer weight from iPS): 
1
H 

NMR (400 MHz, C6D6) δ = 1.16 (s, BOCCH3), 1.59 and 1.65 (2H, –CH2–), 2.33 (1H, –

CH–), 6.71 (2H, Harom), 7.06 (3H, Harom), 7.83 [Harom from C6H4–B(pin)], 8.03 [Harom 

from C6H4-B(pin)], 8.08 [Harom from C6H4–B(pin)]. 13C NMR spectrum could not be 

obtained due to lack of solubility of the polymer in C6D6 or CDCl3. 

1.4.3. Synthesis of Hydroxy-Functionalized Polystyrene 

Preparation of sPS–OH. sPS–B(pin) (100 mg, Entry 4 of Table 1.2) was dissolved in 

THF (100 mL) in a 250 mL flask by applying gentle heat and then cooled to room 

temperature. A mixture of aqueous 3M NaOH (1 mL) and 30% H2O2 (1 mL) was slowly 
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added to the polymer solution at room temperature. The resulting solution was stirred at 

room temperature for 12 h. The solution was concentrated by a rotary evaporator to 

approximately 5 mL, and a mixture of methanol and water (10 mL/40 mL) was added. 

The heterogeneous suspension was stirred for 20 min and filtered. The collected white 

solid was washed with water (3 × 10 mL) and methanol (3 × 5 mL). The solid was dried 

under vacuum at 60 °C [87 mg, 87% yield based on polymer weight from sPS–B(pin)]: 

1
H NMR (400 MHz, CDCl3) δ = 1.30 (2H, –CH2–), 1.80 (1H, –CH–), 6.54 (2H, Harom), 

7.05 (3H, Harom). 
13

C NMR (100 MHz, 1,1,2,2-tetrachloroethane-d2 at 70 °C) δ = 40.7 (–

CH–), 43.8 (–CH2–), 112.4 (Carom from C6H4–OH), 114.7 (Carom from C6H4–OH), 120.1 

(Carom from C6H4–OH), 125.6 (C6H5–C4), 127.6 (C6H5–C2,6), 127.9 (C6H5–C3,5), 

124.0–129.2 (multiple Carom from C6H4–OH), 137.5 (Carom from C6H4–OH), 145.2 

(C6H5–C1), 147.2 (Carom from C6H4–OH), 153.0 (HO-p-C6H4–C4), 154.9 (HO-m-C6H4–

C3). FT-IR (film) ν = 3477 cm
–1

 (O–H). 

Preparation of aPS–OH. Hydroxylated atactic polystyrene was prepared in a 100 mg 

scale according to the procedure described for the preparation of sPS–OH: 
1
H NMR (400 

MHz, C6D6) δ = 1.60 (2H, –CH2–), 2.11 (1H, –CH–), 6.41–6.88 (2H, Harom), 6.91–7.28 

(3H, Harom). 13C NMR (100 MHz, CDCl3) δ = 40.3 (–CH–), 41.3–47.2 (–CH2–), 125.7 

(C6H5–C4), 127.7 (C6H5–C2,6), 112.7 (Carom from C6H4–OH), 114.8 (Carom from C6H4–

OH), 128.1 (C6H5–C3,5), 129.2 (Carom from C6H4–OH), 145.2 (C6H5–C1), 153.3 (HO-p-

C6H4–C4), 155.2 (HO-m-C6H4–C3). FT-IR (film) ν = 3472 cm
–1

 (O–H). 

1.4.4. Synthesis of tert-Butyldimethylsilyloxy-Functionalized Polystyrene 

Preparation of sPS–Ar by Suzuki–Miyaura Cross–Coupling of sPS–B(pin) (from 

Entry 3 of Table 1.3). In a nitrogen-filled glovebox, a mixture of sPS–B(pin) [50 mg, 
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0.043 mmol B(pin)], (4-bromophenoxy)-tert-butyldimethylsilane (62.0 mg, 0.215 mmol), 

dichloro[1,1ʹ-bis(diphenylphosphino)ferrocene] palladium(II) [1.1 mg, 3 mol % based on 

the amount of boron concentration in sPS–B(pin)], sodium tert-butoxide [12.4 mg, 0.129 

mmol, 3 equiv to the amount of boron concentration in sPS–B(pin)], and toluene (1 mL) 

and a magnetic stirring bar were placed into a vial and capped with Teflon-lined septum. 

The vial was removed from the glovebox and placed in an oil bath at 100 °C for 22 h. 

After cooling, the mixture was diluted with chloroform (30 mL) and filtered through a 

short plug of silica. The filtrate was concentrated by a rotary evaporator to approximately 

5 mL, and cold methanol (25 mL) was added to precipitate the polymer. The dissolution 

and precipitation process was repeated one more time to ensure complete removal of any 

small molecules trapped in the polymer. The polymer product was filtered as a white 

solid and dried under vacuum at 60 °C [45 mg, 90% yield based on polymer weight from 

sPS–B(pin)]: 
1
H NMR (400 MHz, CDCl3) δ = 0.24 [s, Si(CH3)2C(CH3)3], 1.02 [s, 

Si(CH3)2C(CH3)3], 1.30 (2H, –CH2–), 1.80 (1H, –CH–), 6.54 (Harom), 7.06 (Harom). 
13

C 

NMR (100 MHz, CDCl3) δ = –4.4 [Si(CH3)2C(CH3)3], 18.3 [Si(CH3)2C(CH3)3], 25.7 

[Si(CH3)2C(CH3)3], 40.5 (–CH–), 43.8 (–CH2–), 120.2 (Cc), 124.1 (Carom from C6H4–Ar), 

125.6 (C6H5–C4), 126.1 (Carom from C6H4–Ar), 127.7 (C6H5–C2,6), 127.9 (C6H5–C3,5), 

128.0 (Cb), 134.6 (Ca), 145.2 (C6H5–C1), 155.0 (Cd). 

Preparation of aPS–Ar by Suzuki–Miyaura Cross–Coupling of aPS–B(pin) (from 

Entry 2 of Table 1.3). Arene functionalized atactic polystyrene was prepared from aPS–

B(pin) [50 mg, 0.043 mmol B(pin)] according to the procedure described for the 

preparation of sPS–Ar: 
1
H NMR (400 MHz, C6D6) δ = 0.19 [s, Si(CH3)2C(CH3)3], 1.06 ]s, 

Si(CH3)2C(CH3)3], 1.60 (2H, –CH2–), 2.11 (1H, –CH–), 6.41–6.88 (Harom), 6.91–7.28 
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(Harom). 
13

C NMR (100 MHz, CDCl3) δ = –4.3 [Si(CH3)2C(CH3)3], 18.3 

[Si(CH3)2C(CH3)3], 25.8 [Si(CH3)2C(CH3)3], 40.4 (–CH–), 41.3–47.2 (–CH2–), 120.2 

(Cc), 124.1 (Carom from C6H4–Ar), 125.7 (C6H5–C4), 126.2 (Carom from C6H4–Ar), 127.6 

(C6H5–C2,6), 128.0 (C6H5–C3,5), 134.6 (Ca), 145.3 (C6H5–C1), 155.0 (Cd). 

 

1.5. Conclusion 

In summary, the iridium-catalyzed functionalization of the aromatic C–H bond of 

commercial polystyrenes with three types of tacticities (syndiotactic, isotactic, and 

atactic) using boron reagents was accomplished. The introduction of a boronic ester 

group was controlled up to 42 mol % without negatively influencing the chain length or 

tacticity of the parent polymer. The amount of the incorporated boryl group can be easily 

controlled by changing the ratio of boron reagent to polymer repeating unit with as low as 

0.5 mol % of catalyst loading. The boronic ester group in the polymer was further 

converted to other versatile groups by subsequent oxidation and Suzuki-Miyaura cross-

coupling reaction. It was shown that sPS–OH containing up to 10 mol % of hydroxy 

group still kept high crystallinity with a high melting temperature in the thermal analysis. 

This study has shown a facile route to install functional groups into crystalline 

polystyrenes for further applications of these important polymers. 
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CHAPTER 2 

 

A HOMOGENEOUS PALLADIUM CATALYST SUPPORTED ON SYNDIOTACTIC 

POLYSTYRENE AND ITS APPLICATION IN SUZUKI–MIYAURA CROSS–

COUPLING REACTIONS 

2.1. Abstract 

Soluble syndiotactic polystyrene-supported triphenylphosphine (sPS–TPP) was 

prepared from borylated syndiotactic polystyrene [sPS–B(pin)] and (4-

bromophenyl)diphenylphosphine (TPP–Br). We studied the reactivity of a palladium 

complex supported on sPS–TPP as a catalyst for Suzuki-Miyaura coupling reactions of 

aryl halides under homogeneous conditions. The polymer-supported palladium complex 

ligand was quantitatively recovered from the reaction mixture through precipitation by 

adding a poor solvent of the polymer and recycled in four consecutive runs without 

significant loss of activity. 

 

2.2. Introduction 

Although homogeneous catslysts have been widely used in chemical synthesis due 

to better efficiency and selectivity than the heterogeneous counterparts, they require 

tedious, time-consuming, and laborious purification steps such as chromatography, 

distillation, or crystallization to separate product from the catalyst in reaction mixture. 
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Thus, recovery and recyling of homogenous catalysts are difficult.
34

 Since Merrifiled 

resin was introduced for peptides synthesis in the 1960s, cross-linked polystyrene-

supported catalysts have been widely used in numerous organic reactions to make 

product purifiaction and catalyst recovery simpler.
35

 Catalysts have also been 

supported on insoluble materials such as activated carbon,
36

 zeolite,
37

 metal oxide,
38

 

insoluble polymer resin,
39

 and mesoporous silica nano particles.
40

 Despite the well-

known advantage of insoluble supports–convenient separation–they generally suffer 

from slow diffusion rates caused by interfacial mass transfer limitation, difficult 

characterization, metal leaching, and lower activity and selectivity owing to the nature 

of heterogenous reaction conditions.41 

To overcome the problems of insoluble supports, soluble polymer supports have 

recently gained a significant attention as an alternative catalyst recovery method. 

Soluble polymer supports allow convenient transfer of solution-based synthetic 

protocols that are commonly used in traditional solution-organic chemistry, thus 

additional optimization process often required in the heterogeneous reactions is not 

necessary.  

Soluble polymer supports include polyethylene glycol, polyacrylic ester, polyvinyl 

alcohol, polyethylene imine, polyacrylamide, polyethylene, polypropylene (PP), 

polyacrylic acid, cellulose, and atactic polystyrene. Among them, oligomeric 

polyethylene glycol (PEG, Mn = 3–5 kg/mol),
42

 oligomeric polyethylene (PE, Mn ~3 

kg/mol),
43

 and non-cross-linked (atactic) polystyrene (aPS)
44

 are the most 

representative soluble polymeric supports used in organic synthesis and combinatorial 

chemistry. However, these supports also have some drawbacks needed to be 
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overcome. First, because PEG is soluble in water, it is not suitable for an organic 

reaction that needs an aqueous workup process. Second, PEG and PE are end-

functionalized polymer supports which have the limitaion on loading capacity. 

Typical loading capacity is less than 0.3 mmol/g for PEG and 0.1 mmol/g for PE. 

Lastly, soluble polymer supports are often isolated as a viscous gooey or gummy 

material (for example aPS, see Figure 2.1b), making them difficult to be recovered in 

high yields via simple precipitation methods. Thus, studies of recovery yields of 

soluble polymer support have often been omitted.
45

 

Herein, we introduce a new type of soluble polymer support derived from 

crystalline syndiotactic polystyrene (sPS). aPS has good solubility in most solvents 

due to its amorphous nature, which often results in low or non-quantitative recovery 

yield. To recover aPS support in high yield, it is required to add excess of cold poor 

solvent. Compared to aPS, sPS and functionalized sPS show a more restrictive 

solubility profile because of high stereoregular configuration of phenyl rings along 

the polymer main chain and the resulting tendency toward crystallization.
46

 We 

assumed that the relationship between solubility and recovery of crystalline polymer 

can induce better recovery yield of sPS support when precipitated with addition of 

poor solvent. 

In Chaper 1 we reported that a controlled functionalization of sPS by an iridium-

catalyzed activation/borylation of aromatic C–H bonds. This functionalization 

allowed the introduction of a pinacolboronate ester [B(pin)] group in a quantity of up 

to 42 mol %.
47

 Developing a controlled functionalization of sPS (Mn = 48.6 kg/mol, 

Mw/Mn = 2.90) has allowed us to prepare sPS supports of variable loading capacity 
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without sacrificing molecular weight and recovery yield. 

Triphenylphosphine (TPP) is widely used in organic synthesis including 

Staudinger reduction, Mitsunobu reaction, Wittig reaction, halogeneration of alcohols 

and carbon-carbon coupling reactions (Sonogashira, Suzuki–Miyaura, and Heck).
48

 

We decided to synthesize sPS-supported TPP (sPS-TPP; Scheme 2.1) and investigate 

its catalytic activity and reusability in palladium-catalyzed Suzuki–Miyaura cross–

coupling reactions of aryl halides and arylboronic acid.
49

 Recently there has been 

considerable interest in developing heterogeneous catalyst systems
50

 and recoverable 

homogeneous catalysts
51

 for Suzuki–Miyaura reactions. This is the first example of a 

sPS-supported palladium catalyst and its use in Suzuki-Miyaura cross-coupling 

reactions. 

 

2.3. Results and Discussion 

2.3.1. Solubility and Precipitation Test of Functionalized sPS and aPS 

It was reported in Chapter 1 that a controlled functionalization of sPS was 

accomplished by the iridium-catalyzed activation/borylation of aryl C–H bonds. The 

functionalization allowed introduction of a boronate ester group (up to 42 mol %) into the 

aromatic ring of polystyrene.47 While working on the functionalization of sPS, we found 

that a functionalized sPS such as pinacolboronate ester–functionalized sPS [sPS–B(pin)], 

(50 mg) can be recovered quantitatively as a fine powder when dissolved in good solvent 

(CHCl3, 2.5 mL) and precipitated by adding an equal volume of poor solvent (methanol, 

2.5 mL). The recovery yield of sPS–B(pin) was over 99%, whereas the yield of borylated 

atactic polystyrene [aPS–B(pin)] was 55% under the same conditions (Figure 2.1 and 
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Table 2.1). Additional solubility/recovery data of sPS-B(pin) and aPS-B(pin) using 

different organic solvents were are summarized in Tables 2.1 and 2.2. 

 

 

Figure 2.1. Precipitation results when precipitated by adding an equal volume of MeOH: 

(a) sPS–B(pin) in fine power and(b) aPS–B(pin) in suspension solution. 

 

Table 2.1. Solubility and precipitation test of sPS–B(pin)
a
. 

Good solvent CHCl3 Toluene THF Dioxane 

Polymer sPS–B(pin) sPS–B(pin) sPS–B(pin) sPS–B(pin) 

Mn 48,600 48,600 48,600 48,600 

Solution 100 mg/5 mL 100 mg/5 mL 50 mg/2.5 mL 50 mg/2.5 mL 

Concentration 20 mg/mL 20 mg/mL 20 mg/mL 20 mg/mL 

Poor solvent 5 mL MeOH 5 mL MeOH 2.5 mL MeOH 2.5 mL MeOH 

Good/poor 

solvent ratio 
5/5 (v/v) 5/5 (v/v) 2.5/2.5 (v/v) 2.5/2.5 (v/v) 

Precip. type small particles small particles small particles small particles 

Recov. yield 99% 98% 98% 99% 

a
 Recovery yield for other solvents: CH2Cl2 (98%), Digylme (99%), DME (99%), DMA 

(99%), DMF (99%)  



 49 

Table 2.2. Solubility and precipitation test of aPS–B(pin). 

Good solvent CHCl3 Toluene THF 

Polymer aPS–B(pin) aPS–B(pin) aPS–B(pin) 

Mn 212,000 212,000 212,000 

Solution 100 mg/5 mL 100 mg/5 mL 50 mg/2.5 mL 

Concentration 20 mg/mL 20 mg/mL 20 mg/mL 

Poor solvent 5 mL MeOH 5 mL MeOH 2.5 mL MeOH 

Good/poor 

solvent ratio 
5/5 (v/v) 5/5 (v/v) 2.5/2.5 (v/v) 

Precipitation 

type 

Suspension and 

gummy/viscous 

substance 

Suspension and 

gummy/viscous 

substance 

Suspension and 

gummy/viscous 

substance 

Recov. yield 55% 60% 33% 

 

2.3.2. Syndiotactic Polysyrene-Supported Triphenylphosphine (sPS–TPP). 

As shown in Scheme 2.1, (4-bromophenyl)diphenylphosphine (TPP–Br) was 

synthesized in 97% yield from the reaction of 1,4-dibromobenzene and 

chlorodiphenylphosphine in THF. The chemical shift assignment in 
1
H and 

13
C NMR 

spectra of TPP–Br matched well with the structure of the compound (Figures 2.2 and 2.3). 

The 31P NMR spectrum of TPP–Br displayed a new resonance at –5.3 ppm of the 

arylphosphine (Figure 2.4b). The resonance at 82.8 ppm from chlorodiphenylphosphine 

in the NMR data disappeared completely. We prepared 10 mol % functionalized sPS–

B(pin) via iridium-catalyzed C–H borylation according to literature method.
14

 TPP was 

immobilized to sPS via the Suzuki-Miyaura coupling reaction of TPP–Br and sPS–B(pin), 

and the immobilized polymer support, sPS–TPP, was fully characterized using NMR 

spectroscopies. 
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Scheme 2.1. Synthesis of syndiotactic polystyrene-supported triphenylphosphine (sPS–

TPP). 

 

 
Figure 2.2. 

1
H NMR spectrum of (4-bromophenyl)diphenylphosphine [10 mg/mL in 

CDCl3 at 25 
o
C]. 
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Figure 2.3. 
13

C NMR spectrum of (4-bromophenyl)diphenylphosphine [20 mg/mL in 

CDCl3 at 25 
o
C]. 

 

The successful incorporation of the TPP moiety was confirmed in the 
31

P NMR 

spectrum, which revealed a resonance at –5.0 ppm (Figure 2.4c). The 31P NMR spectrum 

did not show any resonance that could have resulted from arylphosphine oxide. In 

addition, the 
1
H NMR spectrum of sPS–TPP showed two new resonances at 7.34 and 

7.51 ppm, which correlate to the phenyl groups of the attached TPP moiety (Figure 2.5). 

The attached aromatic moiety of the polymer showed new sharp resonances at 137.4, 

133.7, 128.7, and 128.5 ppm in the 
13

C NMR spectrum (Figure 2.6). The phosphine 

loading level of sPS–TPP determined by 
1
H NMR was 0.71 mmol/g (i.e., 10 mol %). 

Unlike that of end-functionalized polymer supports, this loading capacity can be easily 

tuned by adjusting the pinacolboronate ester concentration in the C–H borylation step 

without affecting the solubility and recovery of the polymer. 
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Figure 2.4. 

31
P NMR spectra of (a) chlorodiphenylphosphine (δ = 82.8 ppm), (b) (4-

bromophenyl)diphenylphosphine (δ = –5.3 ppm), and (c) sPS–TPP (δ = –5.0 ppm). 

 

 

Figure 2.5. 
1
H NMR spectrum of sPS–supported triphenylphosphine (An asterisk 

indicates H2O from CDCl3). 
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Figure 2.6. 
13

C NMR spectrum of syndiotactic polystyrene-supported triphenylphosphine 

[20 mg/mL in CDCl3 at 25 
o
C]. 

 

sPS–TPP is readily soluble in common organic solvents including toluene, THF, 

dioxane, diglyme, DME, DMF, DMA, CH2Cl2, and CHCl3 when heated gently and is 

insoluble in hexane, diethyl ether, and methanol. Unlike aPS support, which requires the 

addition of an excess of cold poor solvent (e.g., 10-fold volume of –30 ºC methanol) for 

polymer recovery in high yield, support with sPS–TPP requires only the addition of an 

equal volume of methanol for quantitative precipitation of the polymer. 

2.3.3. Effect of Base on the sPS–TPP-Supported Suzuki–Miyaura Reactions 

The catalyst activity of the soluble polymer-supported ligand was tested for the 

Suzuki–Miyaura coupling reactions of aryl bromides and chlorides with phenylboronic 

acid. The coupling of 4-bromoacetophenone (1 equiv) and phenylboronic acid (1.5 equiv) 

in toluene was performed as a model reaction under varying reaction conditions using a 

palladium catalyst/ligand system generated in situ from the complexation of sPS–TPP (1 
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mol %) and Pd(OAc)2 (1 mol %) (Table 2.3). Among six different bases tested (Cs2CO3, 

K3PO4, K2CO3, NEt3OH, NaOH, and NaOtBu), Cs2CO3 gave the highest conversion 

(99%) within 1 h (Table 2.3, Entry 1). Thus, Cs2CO3 was selected as the base for 

polymer-catalyzed Suzuki-Miyaura reactions of various aryl halides with phenylboronic 

acid (Table 2.4). 

 

Table 2.3. Effect of base on the sPS–TPP-supported Suzuki–Miyaura reactions of 4-

bromoacetophenone and phenylboronic acid.
a
 

Br + (HO)2B
sPS-TPP, Pd(OAc)2

Toluene
base (3 equiv)

O O

 

Entry Base Time (h) Temp (
o
C) Conv.

b
 (%) 

1 Cs2CO3 1 110 99 

2 K3PO4 1 110 92 

3 K2CO3 1 110 94 

4 NEt4OH 1 110 18 

5 NaOH 1 110 91 

6 NaOtBu 1 110 52 

a
 4-Bromoacetophenone (0.044 mmol), phenylboronic acid (0.066 mmol), sPS–TPP (1 

mol %), Pd(OAc)2 (1 mol %), toluene (1 mL). 
b
 Conversion to coupled product 

determined using GC-MS. 

 

2.3.4. sPS–TPP-Supported Suzuki–Miyaura Reactions of Aryl Halides 

As shown in Table 2.4, Suzuki–Miyaura reactions of both electron-rich and electron-

deficient aryl bromides proceed with high yields at 70 ºC under homogeneous conditions. 

As expected, the reaction rates of electron-deficient aryl bromides were faster than those 

of electron-rich aryl bromides (Entries 2–4 of Table 2.4) which required a slightly longer 
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reaction time (i.e., 4 h) to achieve over 80% yield (Entries 5–7 of Table 2.4). When 

conducted at 110 ºC, all aryl bromides except for p-(N,N-dimethylamino)phenyl bromide 

afforded more than 99% conversion within 1 h and their products could be conveniently 

isolated by simple precipitation of the sPS–TPP-supported palladium catalyst and 

removal of the supported catalyst. Aryl chlorides are known to be much less reactive 

when TPP is used a ligand.
52

 Although the sPS–TPP-supported palladium catalyst 

furnished the Suzuki-Miyaura reaction products of aryl chlorides, it did so in low yields 

even after 24 h at 110 
o
C (7–28%; Table 2.4, Entries 9–12). 

 

Table 2.4. sPS–TPP-supported Suzuki–Miyaura reactions of aryl halides with 

phenylboronic acid.
a
 

XR + (HO)2B
sPS-TPP, Pd(OAc)2

Toluene

Cs2CO3 (3 equiv)

R

 

Entry R X Temp (
o
C) Time (h) Yield

b
 (Conv.)

c
 (%) 

1 H Br 70 1 84 (93) 

2 COCH3 Br 70 1 84 (94) 

3 CF3 Br 70 1 82 (93) 

4 CHO Br 70 1 83 (95) 

5 CH3 Br 70 4 82 (90) 

6 CH2OH Br 70 4 79 (89) 

7 OCH3 Br 70 4 81 (87) 

8 NMe2 Br 70 4 11 (20) 

9 H Cl 110 24 11 (20) 

10 CHO Cl 110 24 28 (41) 

11 COCH3 Cl 110 24 17 (25) 

12 CH3 Cl 110 24 7 (18) 

a
 4-Bromoacetophenone (0.88 mmol), phenylboronic acid (1.32 mmol), sPS–TPP (1 
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mol %), Pd(OAc)2 (1 mol %), toluene (2 mL). 
b
 Isolated yield obtained by column 

chromatography. c Conversion to coupled product determined using GC-MS. 

2.3.5. Recovery/Recycling of sPS–TPP-Supported Palladium Catalyst 

Adding methanol allowed us to recover sPS–TPP quantitatively, enabling us to 

perform a recycling experiment with the sPS-supported palladium catalyst (Table 2.5). 

After filtering the base and polymer-supported catalyst in the first run, we evaporated 

the volatile liquid from the filtrate and retrieved the pure coupled product in 96% 

isolated yield. No additional purification process such as column chromatography or 

recrystallization was necessary. Washing the filtered solids with water removed any 

remaining base and allowed measurement of the recovered polymer support. As 

shown in Table 2.5, the recovery yield of polymer support is quantitative in each 

cycle, demonstrating the great potential of the soluble support for use as a recoverable 

catalyst or reagent. The recovered polymer-supported catalyst was reused for the next 

cycle with fresh Cs2CO3 (Table 2.5). Alternatively, the filtered solid (i.e., a mixture of 

polymer-supported catalyst and base) can be reused for each cycle without adding 

fresh base (Table 2.6). 
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Table 2.5. Recovery/recycling of sPS–TPP-supported palladium catalyst in Suzuki–

Miyaura reactions and the leaching of palladium.
a
 

Br + (HO)2B
sPS-TPP, Pd(OAc)2

Toluene

Cs2CO3 (3 equiv)

O O

 

Cycle
b
 1st 2nd 3rd 4th 5th 

Conversion (%)
c
 99 96 99 98 66 

Yield of product (%)d 96 96 97 95 —h 

Purity (%)
e
 >99 >99 >99 >99 —

h
 

Recovery yield of polymer support (%)
f
 99 98 98 99 99 

Leaching of Pd (%)
g
 0.6 0.5 0.4 0.4 0.4 

a 
4-Bromoacetophenone (14.2 mmol), phenylboronic acid (21.3 mmol), sPS–TPP (1 

mol %), and Pd(OAc)2 (1 mol%) at 110 
o
C for 1h. 

b
 No additional Pd(OAc)2 was 

added in the recycling experiments. 
c 

Conversion to the coupled product determined 

using GC-MS based on an average of two experiments. d Isolated yield of product 

based on an average of two experiments. e Determined from 1H NMR spectrum. f 

Recovered yield (weight %) of polymer support when precipitated by adding 

methanol and washed with H2O. 
g
 Percentage of original Pd leached into the product 

solution. 
h
 Not measured. 

 

Table 2.6. Recovery/recycling of sPS–TPP-supported palladium catalyst in Suzuki–

Miyaura reactions and the leaching of palladium without adding fresh base
a
 

Cycle
b
 1st 2nd 3rd 4th 5th 

Conversion (%)
c
 99 99 99 99 60 

Yield of product (%)d 96 96 97 95 —f 

Leaching of Pd (%)
e
 1.0 0.6 0.7 0.9 0.4 
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a
 4-Bromoacetophenone (14.2 mmol), phenylboronic acid (21.3 mmol), sPS–TPP (1 

mol%), and Pd(OAc)2 (1 mol%) at 110 oC for 1 h. b No additional Pd(OAc)2 and Cs2CO3 

were added in the recycling experiements. c Conversion to coupled product determined 

using GC-MS. 
d
 Isolated yield of product. 

e
 Percentage of Pd leached into the product 

solution. 
f
 Not measured. 

The recycled sPS-supported palladium catalyst did not show any loss of catalytic 

activity up to a fourth cycle. When we investigated the leaching of the palladium into the 

product solution after precipitation of the polymer support, however, we found that a very 

small percent of the total amount of the original palladium species was lost to the product 

solution in each cycle (0.6%, 0.5%, 0.4%, 0.4%, and 0.4%, measured using ICP-AES). 

Considering the initial loading of Pd(OAc)2 in the first run of the reaction (1 mol %) and 

the convenience of product purification (just precipitation and filtration), the amount of 

palladium found in the product is very small (an average of 46 ppm of palladium each 

cycle). 

 

2.4. Experimental 

2.4.1. General Comments 

1,4-Dibromobenzene, n-butyllithium (1.6 M in hexane), chlorodiphenyl phosphine, 

chloro-1,5-cyclooctadiene iridium(I) dimer ([IrCl(COD)]2), 4,4’-di-tert-butyl-2,2’-

dipyridyl (dtbpy), Pd(OAc)2, 2-dicyclohexylphosphino-2’,6’-dimethoxy-1,1’-biphenyl 

(S-Phos), tetraethylammonium hydroxide (NEt4OH, 35 wt% solution in water), 4-

bromobenzene, 4-bromoacetophenone, 4-bromobenzotrifluoride, 4-bromobenzaldehyde, 

4-bromotoluene, 4-bromobenzyl alcohol, 4-bromoanisole, 4-bromo-N,N-dimethylaniline, 
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4-chlorotoluene, 4-chloroacetophenone, 4-chlorobenzene, 4-chlorobenzaldehyde, 

phenylboronic acid, cesium carbonate (Cs2CO3), methanol, and chloroform were 

purchased from commercial vendors and used without further purification. 

Bis(pinacolato)diboron [B2(pin)2] was obtained from Frontier Scientific Co. and used 

after recrystallization from hexane. Anhydrous THF and toluene were obtained from 

EMD Chemicals (EM Recycler
®

 Container System) and collected from the containers 

using a positive pressure of nitrogen. Cyclooctane was dried using sodium and 

benzophenone, distilled under reduced pressure, and stored in a nitrogen-filled glovebox. 

Syndiotactic polystyrene (sPS) was obtained from LG Chem Ltd., Daejeon, South Korea. 

Pinacolboronic ester-functionalized syndiotactic polystyrene [sPS-B(pin)] was 

synthesized according to a literature method.47 

1
H and 

13
C NMR spectra were obtained using a Varian NMR spectrometer (400 MHz 

for 
1
H and 100 MHz for 

13
C) at room temperature, and chemical shifts were referenced to 

tetramethylsilane (TMS). 
31

P NMR spectra were obtained using a 161.82 MHz Varian 

NMR spectrometer at room temperature. Chemical shifts of 
31

P NMR spectra were 

referenced to 85% H3PO4. 
1
H and 

13
C NMR samples were prepared at a concentration of 

10 and 20 mg/mL, respectively. GC-MS analysis was conducted using a Shimadzu 

QP2010S equipped with a 30 m x 0.25 mm SHR-XLB GC column and an EI ionization 

MS detector. The amount of palladium leached to product solution in each recycling 

cycle was measured by inductively coupled plasma atomic emission spectroscopic (ICP-

AES) analysis using a Thermo Scientific iCAP 6500 Duo. 

2.4.2. Synthesis of (4-bromophenyl)diphenylphosphine (TPP–Br)
53 

A solution of 1,4-dibromobenzene (3.00 g; 12.7 mmol) in THF (75 mL) was cooled to 
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–95 
o
C using a toluene/liquid nitrogen bath under a nitrogen atmosphere. n-BuLi (8.10 

mL of 1.6 M in hexane; 12.7 mmol) was added slowly and the resulting solution was 

stirred at –95 oC. After 1 h, chlorodiphenylphosphine (2.81 g; 12.7 mmol) was added. 

The solution was allowed to warm to room temperature, stirred overnight, and filtered 

through a short plug of Celite. The filtrate was evaporated under reduced pressure, and 

the remaining solid was extracted with hexane (300 mL) and filtered through a short plug 

of silica gel. Evaporation of solvent from the filtrate afforded a pure, air-stable white 

solid (4.21 g; 97% yield). 
1
H NMR (400 MHz, CDCl3, ppm) δ = 7.45 (dd, 2H, J = 1.2 

and 8.0 Hz), 7.36–7.32 (m, 6H), 7.31–7.26 (m, 4H), 7.15 (dd, 2H, J = 6.9 and 8.0 Hz). 

13C NMR (100 MHz, CDCl3, ppm) δ = 136.6 (d, C5, J = 10.5 Hz), 136.5 (d, C4, J = 12.7 

Hz), 135.2 (d, C3, J = 20.2 Hz), 133.7 (d, C6, J = 19.4 Hz), 131.6 (d, C2, J = 7.5 Hz), 

129.0 (s, C8), 128.6 (d, C7, J = 6.7 Hz), 123.4 (s, C1). 
31

P NMR (161.8 MHz, CDCl3, 

ppm) δ = –5.32 (s). 

2.4.3. Preparation of sPS-Supported Triphenylphosphine (sPS–TPP) 

In a nitrogen-filled glovebox, sPS–B(pin) [500 mg; 0.470 mmol B(pin)], (4-

bromophenyl)diphenylphosphine [1.30 g; 3.79 mmol; 8 equiv based on the amount of 

boron concentration of sPS–B(pin)], Pd(OAc)2 [5.3 mg; 0.024 mmol; 5 mol % based on 

the amount of boron concentration of sPS–B(pin)], S-Phos [11.0 mg; 0.0240 mmol; 5 

mol % based on the amount of boron concentration of sPS–B(pin)], toluene (10 mL), and 

a magnetic stirring bar were placed in a vial. The vial was capped with a Teflon-lined 

septum and removed from the glovebox. NEt4OH solution [0.6 mL of 35% solution; 1.42 

mmol, 3 equiv based on the amount of boron concentration of sPS–B(pin)] and water (1 

mL) were added to the vial. The vial was placed in an oil bath at 100 
o
C for 13 h. After 
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cooling, the reaction mixture was diluted with chloroform (50 mL), dried with anhydrous 

magnesium sulfate, and filtered through a short plug of Celite. The filtrate was 

concentrated using a rotary evaporator to approximately 7 mL, and methanol (7 mL) was 

added to precipitate polymer. The precipitated polymer was filtered and dried under 

vacuum at 60 
o
C for 12 h (589 mg, 103% yield based on polymer weight). 

1
H NMR (400 

MHz, CDCl3, ppm) δ = 1.29 (2H, –CH2– of sPS main chain), 1.80 (1H, –CH– of sPS 

main chain), 6.53 (2H, Hc and Hg of C6H5 in sPS side chain), 7.05 (3H, Hd, He, and Hf of 

C6H5 in sPS side chain), 7.34 (14H, H2,3,5,6,8,9,10 of triphenylphosphine moiety in the 

polymer), 7.51 (2H, H11 of triphenylphosphine moiety in the polymer). 
13

C NMR (100 

MHz, CDCl3, ppm) δ = 145.2 (Cc of C6H5 in sPS side chain), 137.3 (d, C7, J = 10.5 Hz), 

133.7 (d, C8, J = 18.7 Hz), 128.7 (s, C10), 128.5 (d, C9, J = 7.5 Hz), 127.9 (Ce of C6H5 in 

sPS side chain), 127.7 (Cd of C6H5 in sPS side chain), 125.6 (Cf of C6H5 in sPS side 

chain), 43.9 (–CH2–of sPS main chain), 40.6 (–CH– of sPS main chain). 
31

P NMR (161.8 

MHz, CDCl3, ppm) δ = –5.04 (s). 

2.4.4. General Procedure of Suzuki–Miyaura Reaction with sPS–TPP. 

In a nitrogen-filled glovebox, aryl halide (0.880 mmol; 1 equiv), phenylboronic acid 

(161 mg; 1.32 mmol; 1.5 equiv), Pd(OAc)2 (2.0 mg; 0.0088 mmol; 1 mol % based on the 

amount of aryl halide), Cs2CO3 (860 mg; 2.64 mmol; 3 equiv), and a magnetic stirring 

bar were placed in a vial. sPS–TPP (12.4 mg; 0.00880 mmol TPP, 1 mol % based on the 

amount of aryl halide) and toluene (2 mL) were placed in another vial. Both vials were 

capped with Teflon-lined septa and removed from the glovebox. sPS–TPP was dissolved 

in toluene by applying gentle heat. The sPS–TPP solution was transferred to the aryl 

halide solution using a syringe, and the reaction mixture was stirred in an oil bath under 
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the specified conditions in Table 2.4 (70 
o
C for aryl bromide and 110 

o
C for aryl chloride). 

The reaction mixture was cooled to room temperature, diluted with chloroform (2 mL), 

and filtered through a short plug of Celite. The filtrate was concentrated by a rotary 

evaporator to approximately 2 mL. Methanol (2 mL) was added to precipitate polymer. 

The precipitated polymer was removed by filtration through a short plug of Celite. The 

filtrate was dried under vacuum and analyzed using GC-MS to check conversion of the 

coupled product. Isolation by column chromatography afforded a pure product. 

Biphenyl from aryl bromide (Table 2.4, Entry 1). The crude product was purified with 

column chromatography (ethyl acetate:hexane = 2:98). Yield: 84%. 
1
H NMR (400 MHz, 

CDCl3, ppm) δ = 7.59 (d, 4H, J = 7.4 Hz), 7.44 (t, 4H, J = 7.5 Hz), 7.34 (t, 2H, J = 7.3 

Hz). 13C NMR (100 MHz, CDCl3, ppm) δ = 141.5, 129.0, 127.5, 127.4. Spectra agree 

with those reported in literature.
54

 

4-Acetylbiphenyl from aryl bromide (Table 2.4, Entry 2). The crude product was 

purified with column chromatography (ethyl acetate:hexane = 2:98). Yield: 84%. 
1
H 

NMR (400 MHz, CDCl3, ppm) δ = 8.04 (d, 2H, J = 8.0 Hz), 7.69 (d, 2H, J = 8.0 Hz), 

7.63 (d, 2H, 7.2 Hz), 7.48 (t, 2H, J = 7.4 Hz), 7.42 (t, 1H, J = 6.8), 2.65 (s, 3H). 
13

C NMR 

(100 MHz, CDCl3, ppm) δ = 197.7, 145.8, 139.9, 135.9, 129.0, 128.9, 128.2, 127.3, 127.2, 

26.7. Spectra agree with those reported in literature.55 

4-Methylbiphenyl from aryl bromide (Table 2.4, Entry 5). The crude product was 

purified with column chromatography (ethyl acetate:hexane = 2:98). Yield: 82%. 
1
H 

NMR (400 MHz, CDCl3, ppm) δ = 7.58 (d, 2H, J = 7.2 Hz), 7.50 (d, 2H, J = 8.2 Hz), 

7.43 (t, 2H, J = 7.4 Hz), 7.33 (t, 1H, J = 7.6 Hz), 7.25 (d, 2H, J = 8.2 Hz), 2.35 (s, 3H). 

13
C NMR (100 MHz, CDCl3, ppm) δ = 141.1, 138.6, 137.3, 129.7, 129.0, 127.3, 127.2, 
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21.4. Spectra agree with those reported in literature.
55

 

4-Trifluoromethylbiphenyl from aryl bromide (Table 2.4, Entry 3). The crude product 

was purified with column chromatography (ethyl acetate:hexane = 2:98). Yield: 82%. 1H 

NMR (400 MHz, CDCl3, ppm) δ = 7.69 (s, 4H), 7.61 (m, 2H), 7.48 (m, 2H), 7.41 (m, 

1H). 
13

C NMR (100 MHz, CDCl3, ppm) δ = 145.0, 140.0, 129.6 (q, JCF = 32.2 Hz), 129.2, 

128.4, 127.7, 127.5, 126.0 (q, JCF = 3.7 Hz), 124.6 (q, JCF = 272.3 Hz). Spectra agree 

with those reported in literature.
56

 

4-Formylbiphenyl from aryl bromide (Table 2.4, Entry 4). The crude product was 

purified with column chromatography (ethyl acetate:hexane = 2:98). Yield: 83%. 
1
H 

NMR (400 MHz, CDCl3, ppm) δ = 10.06 (s, 1H), 7.96 (d, 2H, J = 8.4 Hz), 7.76 (d, 2H, J 

= 8.2 Hz), 7.64 (d, 2H, J = 7.1 Hz), 7.49 (t, 2H, J = 7.2 Hz), 7.42 (t, 1H, J = 7.2 Hz). 13C 

NMR (100 MHz, CDCl3, ppm) δ = 192.1, 147.4, 140.0, 135.4, 130.5, 129.3, 128.7, 127.9, 

127.6. Spectra agree with those reported in literature.
57

 

4-(Hydroxymethyl)biphenyl from aryl bromide (Table 2.4, Entry 6). The crude 

product was purified with column chromatography (ethyl acetate:hexane = 2:98). Yield: 

79%. 
1
H NMR (400 MHz, CDCl3, ppm) δ = 7.59 (d, 4H, J = 8.2 Hz), 7.44 (t, 4H, J = 7.8 

Hz), 7.35 (t, 1H, J = 7.2 Hz), 4.73 (s, 2H). 13C NMR (100 MHz, CDCl3, ppm) δ = 140.8, 

140.6, 139.9, 128.8, 127.5, 127.3, 127.2, 127.1, 65.1. Spectra agree with those reported in 

literature.
58

 

4-Methoxybiphenyl from aryl bromide (Table 2.4, Entry 7). The crude product was 

purified with column chromatography (ethyl acetate:hexane = 2:98). Yield: 81%. 
1
H 

NMR (400 MHz, CDCl3, ppm) δ = 7.54 (t, 4H, J = 7.6 Hz), 7.42 (t, 2H, J = 7.6 Hz), 7.30 

(t, 1H, J = 7.2 Hz), 6.98 (d, 2H, J = 8.8 Hz), 3.85 (s, 3H). 
13

C NMR (100 MHz, CDCl3, 
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ppm) δ = 159.4, 141.1, 134.0, 128.9, 128.4, 127.0, 126.9, 114.4, 55.6. Spectra agree with 

those reported in literature.54 

4-(N,N-Dimethylamino)biphenyl from Aryl Bromide (Table 2.4, Entry 8). The crude 

product was purified with column chromatography (ethyl acetate:hexane = 2:98). Yield: 

11%. 
1
H NMR (400 MHz, CDCl3, ppm) δ = 7.55 (d, 2H, J = 7.2 Hz), 7.50 (d, 2H, J = 9.2 

Hz), 7.38 (t, 2H, J = 8.0Hz), 7.26 (t, 1H, J = 7.6 Hz), 6.80 (d, 2H, J = 8.8 Hz), 2.99 (s, 

6H). 
13

C NMR (100 MHz, CDCl3, ppm) δ = 150.0, 141.2, 129.3, 128.6, 127.7, 126.3, 

126.0, 112.8, 40.6. Spectra agree with those reported in literature.
55

 

Biphenyl from aryl chloride (Table 2.4, Entry 9). The crude product was purified with 

column chromatography (ethyl acetate:hexane = 2:98). Yield: 11%. 1H NMR (400 MHz, 

CDCl3, ppm) δ = 7.59 (d, 4H, J = 7.4 Hz), 7.44 (t, 4H, J = 7.5 Hz), 7.34 (t, 2H, J = 7.3 

Hz). 
13

C NMR (100 MHz, CDCl3, ppm) δ = 141.5, 129.0, 127.5, 127.4. Spectra agree 

with those reported in literature.
54

 

4-Formylbiphenyl from aryl chloride (Table 2.4, Entry 10). The crude product was 

purified with column chromatography (ethyl acetate:hexane = 2:98). Yield: 28%. 
1
H 

NMR (400 MHz, CDCl3, ppm) δ = 10.06 (s, 1H), 7.96 (d, 2H, J = 8.4 Hz), 7.76 (d, 2H, J 

= 8.2 Hz), 7.64 (d, 2H, J = 7.1 Hz), 7.49 (t, 2H, J = 7.2 Hz), 7.42 (t, 1H, J = 7.2 Hz). 13C 

NMR (100 MHz, CDCl3, ppm) δ = 192.1, 147.4, 140.0, 135.4, 130.5, 129.3, 128.7, 127.9, 

127.6. Spectra agree with those reported in literature.
57

 

4-Acetylbiphenyl from aryl chloride (Table 2.4, Entry 11). The crude product was 

purified with column chromatography (ethyl acetate:hexane = 2:98). Yield: 17%. 
1
H 

NMR (400 MHz, CDCl3, ppm) δ = 8.04 (d, 2H, J = 8.0 Hz), 7.69 (d, 2H, J = 8.0 Hz), 

7.63 (d, 2H, 7.2 Hz), 7.48 (t, 2H, J = 7.4 Hz), 7.42 (t, 1H, J = 6.8), 2.65 (s, 3H). 
13

C NMR 
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(100 MHz, CDCl3, ppm) δ = 197.7, 145.8, 139.9, 135.9, 129.0, 128.9, 128.2, 127.3, 127.2, 

26.7. Spectra agree with those reported in literature.55 

4-Methylbiphenyl from aryl choride (Table 2.4, Entry 12). The crude product was 

purified with column chromatography (ethyl acetate:hexane = 2:98). Yield: 7%. 
1
H NMR 

(400 MHz, CDCl3, ppm) δ = 7.58 (d, 2H, J = 7.2 Hz), 7.50 (d, 2H, J = 8.2 Hz), 7.43 (t, 

2H, J = 7.4 Hz), 7.33 (t, 1H, J = 7.6 Hz), 7.25 (d, 2H, J = 8.2 Hz), 2.35 (s, 3H). 
13

C NMR 

(100 MHz, CDCl3, ppm) δ = 141.1, 138.6, 137.3, 129.7, 129.0, 127.3, 127.2, 21.4. 

Spectra agree with those reported in literature.
55

 

2.4.5. Recycling Experiment of sPS-Supported Catalyst 

In a nitrogen-filled glovebox, 4-bromoacetophenone (2.83 g, 14.2 mmol, 1 equiv), 

phenylboronic acid (2.60 g, 21.3 mmol, 1.5 equiv), Cs2CO3 (13.9 g; 42.6 mmol; 3 equiv), 

Pd(OAc)2 (31.8 mg; 0.142 mmol; 1 mol %), sPS–TPP (184 mg; 0.142 mmol TPP; 1 

mol %), toluene (33 mL), and a magnetic stirring bar were placed in a 250 mL flask. The 

flask was removed from the glovebox and placed in an oil bath at 110 
o
C for 1 h. The 

reaction mixture was cooled to room temperature, filtered, and washed with hot toluene 

(100 mL). The filtered solid, which contains base and polymer-supported palladium 

catalyst, was washed with additional hot toluene (20 mL × 2) and dried under vacuum. 

The filtrate was concentrated by a rotary evaporator to approximately 10 mL, then 

methanol (10 mL) was added to precipitate the remaining polymer support which was 

collected by centrifugation ( ~30 mg of polymer was recovered). Although the remaining 

polymer precipitated quantitatively with the addition of 10 mL of methanol, additional 

methanol (300 mL) was added to the toluene/methanol solution to prevent co-

precipitation of the product with the polymer during centrifugation–because the solubility 
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of the product in methanol for the centrifugation process was found to be ~10 mg/mL and 

the expected weight of the product was 2.78 g, it was necessary to add 300 mL of 

methanol to prevent co-precipitation of the product. After removal of the precipitated 

polymer, evaporation of the centrifuged methanol solution afforded pure product (96% 

yield), which was analyzed by 
1
H and 

13
C NMR spectroscopies to check the purity and 

subjected to ICP-AES to determine the amount of leached palladium. The recovered 

polymer from the centrifugation was dried, combined with the initially filtered base and 

polymer-supported palladium catalyst mixture, and washed with water (400 mL) to 

remove the base. The resulting brownish polymer solid was filtered, washed with water 

(50 mL × 2) and methanol (10 mL × 1), and dried under vacuum. The weight percent of 

the brownish polymer relative to the initial weight of sPS-TPP is provided as the recovery 

yield of polymer support in Table 2.5. Fresh Cs2CO3 (3 equiv), 4-bromoacetophenone 

(2.83 g, 14.2 mmol, 1 equiv), phenylboronic acid (2.60 g, 21.3 mmol, 1.5 equiv), and 

toluene (33 mL) were added to the recovered polymer support and were used for the next 

run. 

4-Acetylbiphenyl (Table 2.6, cycle 1). 
1
H NMR (400 MHz, CDCl3, ppm) δ = 8.04 (d, 

2H, J = 8.6 Hz), 7.69 (d, 2H, J = 8.4 Hz), 7.63 (d, 2H, 7.4 Hz), 7.48 (t, 2H, J = 7.2 Hz), 

7.42 (t, 1H, J = 7.2), 2.64 (s, 3H). 13C NMR (100 MHz, CDCl3, ppm) δ = 198.0, 146.0, 

140.1, 136.1, 129.2, 129.1, 128.5, 127.5, 127.4, 26.9. Spectra agree with those reported in 

literature.
55

 

2.4.6. Recycling Experiment without the Addition of Fresh Cs2CO3 

The same reaction scale and experimental procedure of the above recycling procedure 

were used until the centrifugation step of methanol solution. The recovered polymer from 
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the centrifugation (~30 mg) was dried, combined with the initially filtered base and 

polymer-supported palladium catalyst mixture, and used for the next run without 

removing the base. Almost identical results of Table 2.5 were obtained (Table 2.6). 

2.4.7. Product Characterization Data 

 

Figure 2.7. 1H NMR spectrum of biphenyl (Entry 1 of Table 2.4). 
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Figure 2.8. 
13

C NMR spectrum of biphenyl (20 mg/mL in CDCl3 at 25 
o
C) (Entry 1 of 

Table 2.4). 

 

 

Figure 2.9. 
1
H NMR spectrum of 4-acetylbiphenyl (10 mg/mL in CDCl3 at 25 

o
C) (Entry 

2 of Table 2.4). 
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Figure 2.10. 
13

C NMR spectrum of 4-acetylbiphenyl (20 mg/mL in CDCl3 at 25 
o
C) 

(Entry 2 of Table 2.4). 

 

 

Figure 2.11. 
1
H NMR spectrum of 4-trifluoromethylbiphenyl (10 mg/mL in CDCl3 at 25 

o
C) (Entry 3 of Table 2.4). 
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Figure 2.12. 
13

C NMR spectrum of 4-trifluoromethylbiphenyl (20 mg/mL in CDCl3 at 25 

o
C) (Entry 3 of Table 2.4). 

 

 

Figure 2.13. 
1
H NMR spectrum of 4-formylbiphenyl (10 mg/mL in CDCl3 at 25 

o
C) 

(Entry 4 of Table 2.4). 
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Figure 2.14. 
13

C NMR spectrum of 4-formylbiphenyl (20 mg/mL in CDCl3 at 25 
o
C) 

(Entry 4 of Table 2.4). 

 

 

Figure 2.15. 
1
H NMR spectrum of 4-methylbiphenyl (10 mg/mL in CDCl3 at 25 

o
C) 

(Entry 5 of Table 2.4). 
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Figure 2.16. 
13

C NMR spectrum of 4-methylbiphenyl (20 mg/mL in CDCl3 at 25 
o
C) 

(Entry 5 of Table 2.4). 

 

 

Figure 2.17. 
1
H NMR spectrum of 4-(hydroxymethyl)biphenyl (10 mg/mL in CDCl3 at 25 

o
C) (Entry 6 of Table 2.4). 
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Figure 2.18. 
13

C NMR spectrum of 4-(hydroxymethyl)biphenyl (20 mg/mL in CDCl3 at 

25 
o
C) (Entry 6 of Table 2.4). 

 

 

Figure 2.19. 
1
H NMR spectrum of 4-methoxybiphenyl (10 mg/mL in CDCl3 at 25 

o
C) 

(Entry 7 of Table 2.4). 
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Figure 2.20. 
13

C NMR spectrum of 4-methoxybiphenyl (20 mg/mL in CDCl3 at 25 
o
C) 

(Entry 7 of Table 2.4). 

 

 

Figure 2.21. 
1
H NMR spectrum of (N,N-dimethylamino)biphenyl (10 mg/mL in CDCl3 at 

25 
o
C) (Entry 8 of Table 2.4). 

 



 75 

 

Figure 2.22. 
13

C NMR spectrum of (N,N-dimethylamino)biphenyl (20 mg/mL in CDCl3 

at 25 
o
C) (Entry 8 of Table 2.4). 

 

 

Figure 2.23. 
1
H NMR spectrum of 4-acetylbiphenyl (10 mg/mL in CDCl3 at 25 

o
C) 

(Cycle 1 of Table 2.5). 
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Figure 2.24. 
13

C NMR spectrum of 4-acetylbiphenyl (20 mg/mL in CDCl3 at 25 
o
C) 

(Cycle 1 of Table 2.5). 

 

2.5. Conclusion 

In summary, a soluble sPS-supported phosphine ligand was prepared by reacting sPS–

B(pin) with TPP-Br. The loading of the polymer support can be easily tuned by changing 

the boronate ester concentration in the C–H borylation of sPS. The sPS–TPP-supported 

palladium catalyst showed excellent catalytic activity in Suzuki–Miyaura coupling of aryl 

halides. Moreover, it could be recovered quantitatively through a simple 

precipitation/filtration process and reused multiple times without significant loss of 

activity. 
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CHAPTER 3 

 

CONTROLLED FUNCTIONALIZATION OF SYNDIOTACTIC POLYSTYRENE BY 

A COMBINATION AND SUZUKI–MIYAURA REACTION 

3.1. Abstract 

Controlled functionalization of a high-molecular-weight syndiotactic polystyrene 

(sPS) was performed via combination of electrophilic aromatic bromination and Suzuki–

Miyaura cross-coupling reactions. The mol % of the brominated styrene repeating unit in 

sPS was easily controlled by changing the ratio of added bromine (Br2) relative to the 

polymer repeating unit. The crystalline polystyrene was brominated up to 78 mol %. The 

brominated styrene unit in 8.5 mol % brominated sPS (sPS–Br) was converted to other 

useful functional groups by Suzuki–Miyaura reactions with para- and meta-substituted 

phenyl boronic acids. The conversions of the coupling reactions were always quantitative 

and afforded various functionalized sPS materials. 

 

3.2. Introduction 

Due to good physical properties, chemical stability, processability, and low 

production cost, the development of new materials based on polyolefin has been actively 

researched in academia and industry. Stereoregular syndiotactic polystyrene (sPS) has 

attracted a great deal of attention not only as an interesting polyolefin and but also as a 
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novel engineering thermoplastic since its first synthesis by Idemitsu Kosan Co. Ltd. in 

1985.59 Due to its crystalline nature, physical properties of sPS are significantly different 

from those of amorphous atactic polystyrene materials which are prepared by either 

radical or anionic polymerization of styrene. They include good chemical and moisture 

resistance, as well as robust mechanical strength even at elevated temperatures.
60

 Despite 

these favorable properties, there are a few disadvantages that are limiting further 

applications of sPS; inherent brittleness, excessively high melt processing temperature 

(>300 
o
C) which is near to the polymer degradation temperature, and a lack of 

compatibility with polar materials. In order to overcome these drawbacks of sPS, the 

synthesis of functionalized sPS has been pursued as a way to address the limited end-uses 

of sPS. 

Incorporation of a polar moiety into sPS can be conducted by either syndiospecific 

copolymerization with a functionalized styrene monomer
61,62

 or direct chemical 

modification (post-functionalization) of sPS. In the former approach, achieving 

comparable average molecular weight and yields to those of unfunctionalized sPS has 

been difficult because of the catalyst poisoning effect caused by a polar group present in 

functionalized styrene comonomer. In the latter approach, because preparation of sPS 

materials with a variety of molecular weights has been well documented, this method in 

principle can yield functionalized sPS with different molecular weights and overcome the 

low molecular weight problem of the copolymerization method. Another important 

advantage of the latter method is capability to tune the level of functional group 

concentration by simple stoichiometric considerations. Examples of direct post-

functionalization of sPS reported so far include sulfonated sPS,
63,64,65,66

 acetylated sPS,
67
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free radical initiated bromination at the benzylic position of sPS backbone,
68

 and maleic 

anhydride-functionalized sPS.69 Unfortunately, these post-functionalizations of sPS based 

on reactive carbon intermediates such as free radical or carbocation usually induce 

competitive side reactions such as chain scission, chain transfer and coupling reactions, 

which can alter the mechanical properties of the starting polymer as a result of changes in 

tacticity and/or molecular weight properties. 

In our effort to develop functionalized sPS materials, we have recently reported a 

controlled post-functionalization of sPS via transition metal-catalyzed aromatic C–H 

activation/borylation under homogenous reaction.
70

 The C–H borylation of sPS allowed 

incorporation of a high level of a boronate ester group (up to 42 mol %) to the meta- and 

para-positions of the aromatic ring. The size-exclusion chromatography (SEC) and NMR 

spectra confirmed that the iridium-catalyzed borylation of arene C–H bonds of sPS did 

not negatively affect the molecular weight and the tacticity of the starting polymer. 

Bromination of the aromatic ring of atactic polystyrene (aPS) via electrophilic 

aromatic substitution is a well-known chemical modification method of the amorphous 

material.
71,72,73,74

 The brominated aPS is known to serve as a versatile intermediate 

polymer in extensive applications such as catalyst supports, chromatographic stationary 

phases, polymeric reagents.75 Because aPS is readily soluble in most organic solvents, it 

is easy to carry out the bromination in homogenous conditions. In the case of sPS, 

however, reports of sPS halogenation were very rare due to its poor solubility in most 

organic solvents.
76

 Thus, except a free radical initiated bromination of benzylic position 

of sPS under heterogeneous condition,
68

 most literatures of bromination of polystyrene 
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were concerned with bromination of aPS. Here, we report a synthetic procedure of 

electrophilic aromatic bromination of sPS via homogenous organic reaction. 

Cross-coupling reaction of aryl halides and aryl boron compounds, called Suzuki–

Miyaura cross-coupling,
77

 is one of the most powerful biaryl C–C bond formation 

reactions and aryl boronic acids are very useful reagents in the coupling reaction. Since 

aryl boronic acids containing various polar functional groups are readily accessible, the 

Suzuki-Miyaura coupling reactions of brominated sPS and the functionalized aryl boronic 

acids would offer preparation of functionalized sPS materials that contain a wide range of 

functionalities. 

 

3.3. Results and Discussion 

Scheme 3.1 shows our strategy of sPS post-functionalization; electrophilic aromatic 

bromination at the para-position of the aromatic ring in sPS side chain followed by 

palladium-catalyzed Suzuki–Miyaura coupling reactions phenyl boronic acids having 

different functional groups. 

 

Br2, 5 % FeCl3

Syndiotactic

Polystyrene 
(sPS)

Brominated  
sPS (sPS-Br)

2 -78 mol% Br

Br

CHCl3
60 

o
C, 2 h, N2

Functionalized sPS 
(sPS-FG)

R1

sPS-COCH3: R1 = -COCH3, R2 = -H

sPS-OCH3: R1 = -OCH3, R2 = -H

sPS-OSi(CH3)2C(CH3)3: R1 = -OSi(CH3)2C(CH3)3, R2 = -H

sPS-COOCH3: R1 = -COOCH3, R2 = -H

sPS-CHO: R1 = -CHO, R2 = -H

sPS-NH2: R1 = -H, R2 = -NH2

sPS-CONH2: R1 = -CONH2, R2 = -H

1 % Pd(PPh3)4

Cs2CO3 (3eq.)

Solvent : water 
= 10:1,  5 h R2

Br

R2

R1

Scheme 3.1. Electrophilic bromination and subsequent Suzuki–Miyaura coupling of 

syndiotactic polystyrene. 
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3.3.1. Electrophilic Aromatic Bromination of sPS 

We first examined different solvents that would be able to dissolve syndiotactic 

polystyrene at a reasonable concentration for effective bromination of sPS under 

homogeneous conditions. Solubility of sPS in dichloromethane (CH2Cl2), tetrahydrofuran 

(THF), chloroform (CHCl3), and carbon tetrachloride (CCl4) was tested to identify 

appropriate solvent for the reaction conditions. A mixture of sPS and chloroform in 50 

mg/mL concentration became a homogeneous solution at 60 
o
C. The other solvents did 

not dissolve sPS completely at this temperature. When we also tested two Lewis acid 

catalysts–ferric chloride (FeCl3) and ferrocine [Fe(C5H5)2]–for the bromination of sPS 

under the above condition and found ferric chloride was more effective than ferrocine. 

Thus, we decided to use ferric chloride (5 mol %) in chloroform at 60 oC for the standard 

bromination condition of sPS, which has a number average molecular weight (Mn) of 

48.6 kg/mol and a polydispersity index (PDI = Mw/Mn) of 2.90. The bromination of sPS 

was performed in the absence of light to prevent light-catalyzed free radical bromination 

at the benzylic C–H bonds of the polymer backbone.
72,73,74

 

1
H NMR spectra of all brominated syndiotactic polystyrenes (sPS–Br) showed a new 

distinctive resonance at 1.71 ppm for –CH– of the polystyrene main chain that has a 

brominated phenyl ring (H2’ of Figure 3.1). Two resonances of the methylene groups of 

the polymer main chain and the combined methine groups of the brominated and non-

brominated polymer main chain maintained an integral ratio of 2:1, proving that there 

was no side reaction in sPS backbone during the bromination. The 
1
H NMR spectrum 

also displayed two new doublets at 6.30–6.37 and 7.10–7.18 ppm for the ortho-positioned 

and the meta-positioned protons of the brominated aromatic moiety (Hb’ and Hc’ of Figure 
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3.1). As more Br2 was added relative to the polymer repeating unit in the bromination, the 

intensities of the brominated aromatic protons increased. This indicates that more 

bromine has been incorporated into the polymer at para-position of the phenyl ring.  

 

 
Figure 3.1. 1H NMR spectrum [delay time = 1 s, number of transients = 16] of 

brominated sPS [10 mg/mL in CDCl3 at 25 oC] (An asterisk indicates H2O from CDCl3). 

 

The brominated aromatic moiety of sPS showed new sharp resonances at 119.4, 129.6, 

131.1, and 114.2 ppm in the 
13

C NMR spectrum (Figure 3.2). The 
13

C attached proton test 

(APT) NMR spectroscopy of sPS–Br confirmed that these resonances corresponded to 

the tertiary (Cb’ at 129.6 and Cc’ at 131.1 ppm of Figure 3.2) and quaternary (Cd’ at 119.4 

and Ca’ at 144.2 ppm of Figure 3.2) carbons of the brominated phenyl ring in polymer 

side chain. These 13C NMR spectrum assignments of sPS–Br are consistent with those of 

brominated atactic polystyrene (aPS–Br).71 From the 13C APT spectrum of sPS–Br, we 
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did not detect any deshielded resonances corresponding to CH

Br

 and 
C

Br

 that 

could have resulted from the bromination at the sPS backbone.  

 

 

Figure 3.2. 
13

C APT NMR spectrum [delay time = 4 s, number of transients = 8000] of 

brominated sPS [40 mg/mL in CDCl3 at 25 
o
C]. 

 

The mol % of brominated styrene repeating unit in sPS–Br was calculated from the 

1
H NMR spectrum by comparing the integral ratio of the combined methine protons of 

sPS main chain (H2 and H2’ at 1.71 and 1.81 ppm in Figure 3.1) and the ortho proton of 

brominated aromatic moiety (Hb’ at 6.30–6.37 ppm in Figure 3.1). As can be in the results 

of Table 3.1, sPS could be efficiently brominated with varying degrees. The results also 

show that the efficiency of bromination, which is defined as the ratio of brominated 

styrene repeating unit relative to Br2 added, generally increased as more Br2 was added 

(entries 1–9 of Table 3.1). Up to 78 mol % of styrene units of sPS can be easily 
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brominated using 5 mol % ferric chloride, a traditional Lewis acid catalyst. Bromination 

of sPS conducted in a larger scale required a little extended reaction time (6–8 h) to 

achieve the similar mol % of brominated unit (see entries 3 and 10 of Table 3.1).  

 

Table 3.1. Bromination of syndiotactic polystyrene
a
 with bromine (Br2)

b
. 

sPS–Br 
Entry Mn

c
 

PDI 

(Mw/Mn)
c
 

[Br2]/ 

[monomer] Mn
c
 PDI

 
(Mw/Mn)

c
 Br (%)

d
 Effic. (%)

e
 

1 48.6 2.90 0.10 37.2 2.76 2.2 11 

2 48.6 2.90 0.15 ─g ─g 4.7 16 

3 48.6 2.90 0.20 35.0 2.71 8.5 21 

4 48.6 2.90 0.25 ─
g
 ─

g
 10.6 21 

5 48.6 2.90 0.30 35.3 2.94 15.5 26 

6 48.6 2.90 0.40 ─
g
 ─

g
 17.9 22 

7 48.6 2.90 0.50 33.9 2.61 28.1 28 

8 48.6 2.90 0.70 32.1 2.89 48.9 35 

9 48.6 2.90 1.00 31.2 2.78 77.8 39 

10
f
 48.6 2.90 0.20 ─

g
 ─

g
 7.2 18 

a
 Syndiotactic polystyrene (sPS) [Mn = 48.6 kg/mol, PDI = 2.90]. 

b
 Bromination was 

conducted with 100 mg of the polymer with 5 mol % of ferric chloride relative to 

bromine in chloroform at 60 ºC for 2 h. c Mn in kg/mol and PDI measured with high-

temperature size exclusion chromatography in 1,2,4-trichlorobenzene at 160 ºC with 

polystyrene standards. 
d
 Mol % of Br-functionalized styrene unit calculated from 

1
H 

NMR spectrum. 
e
 Efficiency of functionalization (i.e., the percentage of brominated 

styrene unit relative to added Br2). 
f
 Bromination was conducted with 900 mg of the 
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polymer with 10 mol % of ferric chloride relative to bromine in chloroform at 60 ºC for 8 

h. g Not detected. 

We also investigated bromination of aPS under the identical reaction condition. As 

shown in Table 3.2, the bromination of aPS afforded comparable mol % of brominated 

polymer, suggesting that this post-functionalization process is efficient regardless of the 

tacticity of polystyrene. 

 

Table 3.2. Bromination of monodisperse atactic polystyrene
a
 with bromine (Br2)

b
. 

aPS–Br 
Entry Mn

c
 

PDI
 

(Mw/Mn)
c 

[Br2]/ 

[monomer] Mn
c
 PDI

 
(Mw/Mn)

c
 Br (%)

d
 Effic. (%)

e
 

1 37.5 1.03 0.10 34.3 1.04 1.2 6 

2 37.5 1.03 0.20 32.8 1.05 8.9 22 

3 37.5 1.03 0.30 31.8 1.08 17.0 28 

4 37.5 1.03 0.50 31.1 1.09 29.3 29 

5 37.5 1.03 0.70 31.5 1.09 40.2 29 

6 37.5 1.03 1.00 31.1 1.10 51.2 26 

a
 Atactic polystyrene (aPS) [Mn = 37.5 kg/mol, PDI = 1.03]. 

b
 Bromination was 

conducted with 100 mg of the polymer with 5 mol % of ferric chloride relative to 

bromine in chloroform at 60 ºC for 2 h. c Mn in kg/mol and PDI measured with size 

exclusion chromatography in THF at 40 ºC with polystyrene standards. 
d
 Mol % of Br-

functionalized styrene unit calculated from 
1
H NMR spectrum. 

e
 Efficiency of 

functionalization (i.e., the percentage of brominated styrene unit relative to added Br2). 
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3.3.2. Suzuki–Miyaura Coupling Reactions of sPS-Br 

Suzuki–Miyaura cross-coupling reaction is a very powerful biaryl C–C bond 

formation method owing to its good compatibility with a range of functional groups. 

Thus, the coupling reaction of functionalized arylboronic acid and sPS–Br using a 

palladium catalyst would offer installation of various functional groups to the polymer in 

a convenient way. To explore this possibility, seven examples of para- and meta-

substituted phenyl boronic acids were reacted with 8.5 mol % bromine-functionalized 

sPS-Br. Phenyl boronic acids containing acetyl, methoxy, siloxy, methoxycarbonyl, 

formyl, amino, and carbamoyl groups were coupled with sPS–Br using 1 mol % 

Pd(PPh3)4 to form its corresponding functionalized sPS (sPS–FG in Scheme 3.1 and 

Table 3.3). When sPS–FG were analyzed with 1H NMR spectroscopy, their spectra 

showed an appearance of the corresponding functional group with a similar concentration 

( ~8.5 mol %), which suggests that the conversion of each coupling reaction was always 

quantitative regardless of the location of the substituent at para- or meta-position of the 

aromatic ring. The methine resonance main chain at 1.71 ppm and two doublet aromatic 

proton resonances of sPS–Br at 6.30–6.37 and 7.10–7.18 ppm disappeared completely in 

1H NMR spectra after the Suzuki–Miyaura couplings (see Section 3.4.4. NMR Spectra of 

Functionalized Polymer Products). The proton resonances of methylene groups and 

methine groups of sPS–FG were maintained in ratio of 2:1, indicating that the polymer 

main chain was intact.  
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Table 3.3. Suzuki–Miyaura reactions of brominated sPS
a
 with phenyl boronic acid

b
. 

Entry Phenyl boronic acid 
Product 

sPS–FG 

FG (mol %)e 

/Conversion (%) 
Mn ⅹ10

-3 
(PDI)

f
 

1
c
 

B(OH)2

O

CH3  CH3O  

8.5 / >99 33.3 (2.78) 

2
c
 

B(OH)2

H3CO  
OCH3 

8.5 / >99 37.4 (2.56) 

3
c
 

B(OH)2

O
SiC

 
OSi(CH3)2C(CH3)3

 

8.5 / >99 42.4 (2.56) 

4
d
 

B(OH)2

O

O
H3C  OO

CH3 

8.5 / >99 34.3 (3.89) 

5
d
 

B(OH)2

OHC  
CHO  

8.5 / >99 32.5 (2.99) 

6
d
 

B(OH)2H2N

 
H2N  

8.5 / >99 37.6 (1.83) 

7
d
 

B(OH)2

O

NH2  NH2O  

8.3 / 98 ─
g
 

a
 Brominated syndiotactic polystyrene (sPS–Br) (8.5 mol % Br, Mn = 35.0 kg/mol, PDI = 

2.71). 
b
 Suzuki–Miyaura reaction was conducted with 40 mg of polymer and 1 mol % of 
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Pd(PPh3)4 in toluene at 100 ºC (or THF at 80 ºC) for 5 h. 
c 
Reaction was conducted in 

toluene at 100 ºC. d Reaction was conducted in THF at 80 ºC. e Mol % of functionalized 

styrene unit calculated from 1H NMR spectra. f Mn in kg/mol and PDI measured with 

high-temperature size exclusion chromatography in 1,2,4-trichlorobenzene at 160 ºC with 

polystyrene standards. 
g
 Not detected. 

3.3.3. Molecular Weight Studies with Size Exclusion Chromatography 

To study any changes of molecular weight parameters of sPS as a result of 

bromination process, high-temperature SEC analysis of sPS and sPS–Br was conducted. 

As can be seen in Table 3.1 and Figure 3.3, a decrease in Mn values of sPS–Br (from 48.6 

kg/mol of sPS to 31.2 kg/mol of 78 mol % sPS–Br) and their SEC traces suggest a small 

percentage of polymer chain degradation during the bromination. All PDI values in the 

brominated polymers, however, remained similar at approximately 2.7 (entries 1, 3, 5, 7, 

8, 9 of Table 3.1 and Figure 3.3).  

 

 



 89 

Figure 3.3. High-temperature size exclusion chromatography [1 mg/mL in 1,2,4-

trichlorobenzene at 160 oC] of (a) sPS [Mn = 48.6 kg/mol; PDI = 2.90]; (b) 2.2 mol % 

sPS–Br [Mn = 37.2 kg/mol; PDI = 2.76] (entry 1 of Table 3.1); (c) 8.5 mol % sPS–Br [Mn 

= 35.0 kg/mol; PDI = 2.71] (entry 3 of Table 3.1); (d) 15.5 mol % sPS–Br [Mn = 35.3 

kg/mol; PDI = 2.94] (entry 5 of Table 3.1); (e) 28.1 mol % sPS–Br [Mn = 33.9 kg/mol; 

PDI = 2.61] (entry 7 of Table 3.1); (f) 48.9 mol % sPS–Br [Mn = 32.1 kg/mol; PDI = 

2.89] (entry 8 of Table 3.1); (g) 77.8 mol % sPS–Br [Mn = 31.2 kg/mol; PDI = 2.78] 

(entry 9 of Table 3.1). Mn relative to polystyrene standards. 

 

To study the polymer chain reduction from bromination reaction in detail, a model 

aPS having narrow molecular weight distribution (Mn of 37.5 kg/mol with a PDI of 1.03) 

was brominated with the same condition of sPS–Br (Table 3.2 and Figure 3.4). As 

increasing the amount of added Br2, the Mn of aPS–Br also decreased gradually from 37.5 

kg/mol of aPS to 31.1 kg/mol of 51.2 mol % aPS–Br. All aPS–Br showed similar PDI 

values, approximately 1.10, to that of aPS (entries 1–6 of Table 3.2 and Figure 3.4). From 

the molecular weight results of sPS–Br and aPS–Br, we suspect that the electrophilic 

aromatic bromination process induces a slight degradation of polymer chain lengths and 

the extent of the degradation increases as more Br2 is added. A similar decrease in Mn 

values as a result of bromination of (atactic) polystyrene has also been reported in 

literatures.
78,79
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Figure 3.4. Size exclusion chromatography [1.0 mg/mL in THF at 40 
o
C] of (a) aPS [Mn 

= 37.5 kg/mol; PDI = 1.03]; (b) 1.2 mol % aPS–Br [Mn = 34.3 kg/mol; PDI = 1.04] (entry 

1 of Table 3.2); (c) 8.9 mol % aPS–Br [Mn = 32.8 kg/mol; PDI = 1.05] (entry 2 of Table 

3.2); (d) 17.0 mol % aPS–Br [Mn = 31.8 kg/mol; PDI = 1.08] (entry 3 of Table 3.2); (e) 

29.3 mol % aPS–Br [Mn = 31.1 kg/mol; PDI = 1.09] (entry 4 of Table 3.2); (f) 40.2 

mol % aPS–Br [Mn = 31.5 kg/mol; PDI = 1.08] (entry 5 of Table 3.2); (g) 51.2 mol % 

aPS–Br [Mn = 31.1 kg/mol; PDI = 1.10] (entry 6 of Table 3.2). Mn relative to polystyrene 

standards. 

 

As shown in Table 3.3 and Figure 3.5, the molecular weight properties (Mn and PDI) 

of the Suzuki–Miyaura coupling products were not unchanged significantly from that of 

8.5 mol % sPS–Br (Mn = 35.0 kg/mol, PDI = 2.71). This result means that the Suzuki–

Miyaura coupling reaction did not induce any side reactions such as chain cleavage and 

cross-linking in the polymer chains. 
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Figure 3.5. High-temperature size exclusion chromatography [1 mg/mL in 1,2,4-

trichlorobenzene at 160 
o
C] of (a) 8.5 mol % 4-acetyl-functionalized sPS [Mn = 33.3 

kg/mol; PDI = 2.78] (entry 1 of Table 3.3); (b) 8.5 mol % 4-methoxy-functionalized sPS 

[Mn = 37.4 kg/mol; PDI = 2.56] (entry 2 of Table 3.3); (c) 8.5 mol % 4-(tert-

butyldimethylsilyloxy)-functionalized sPS [Mn = 42.4 kg/mol; PDI = 2.56] (entry 3 of 

Table 3.3); (d) 8.5 mol % 4-(methoxycarbonyl)-functionalized sPS [Mn = 34.3 kg/mol; 

PDI = 3.89] (entry 4 of Table 3.3); (e) 8.5 mol % 4-formyl-functionalized sPS [Mn = 32.5 

kg/mol; PDI = 2.99] (entry 5 of Table 3.3). Mn relative to polystyrene standards. 

 

3.3.4. Thermal Properties 

Thermal properties of unfunctionalized sPS and sPS–Br with a wide range of bromine 

groups were studied with differential scanning calorimetry (DSC) (Figure 3.6 and Table 

3.4). A complex polymorphism of sPS is known to induce similar melting temperatures of 

two most stable crystalline forms.
80,81,82

 Thus, unfunctionalized sPS possessed more than 

one melting transition at approximately 270 
o
C and Tg of 102 

o
C (Figure 3.6a; entry 1 of 
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Table 3.4). The 2.2 mol % sPS–Br exhibited a DSC scan similar to that of sPS with a 

slightly decreased enthalpy and 30% crystallinity (Figure 3.6b; entry 2 of Table 3.4). 

However, sPS–Br with higher than 4.7 mol % bromine started to lose crystallinity sharply 

and showed lower melting temperatures because the higher concentration of bromine 

group disrupted the crystallization process of the polymer extensively (Figure 3.6c–e; 

entries 3–5 of Table 3.4). Above 15.5 mol % of bromine incorporation, no endothermic 

response was detected in sPS–Br (Figure 3.6f–j; entries 6–10 of Table 3.4). These sPS–Br 

samples lost crystallinity completely and showed only Tg at 105 
o
C.  

 

 

Figure 3.6. DSC scans of (a) sPS, (b) sPS–Br (2.2 mol % Br), (c) sPS–Br (4.7 mol % Br), 

(d) sPS–Br (8.5 mol % Br), (e) sPS–Br (10.6 mol % Br), (f) sPS–Br (15.5 mol % Br), (g) 

sPS–Br (17.9 mol % Br), (h) sPS–Br (28.1 mol % Br), (i) sPS–Br (48.9 mol % Br), and 

(j) sPS–Br (77.8 mol % Br). 
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Table 3.4. Thermal properties of syndiotactic polystyrene and brominated sPS
a
  

Entry Polymer Tg (ºC)
b
 Tm

 
(ºC)

c
 ∆Hf (J/g)

d
 Crystallinity

e
 (%) 

1 sPS 101.6 269.9 19.4 36.5 

2 2.2 mol % sPS–Br 106.1 265.3 15.9 29.9 

3 4.7 mol % sPS–Br 106.6 246.2 10.9 20.5 

4 8.5 mol % sPS–Br 106.4 231.7 5.9 11.0 

5 10.6 mol % sPS–Br 105.8 230.0 3.8 7.1 

6 15.5 mol % sPS–Br 104.5 ─
f
 ─

g
 ─

g
 

7 17.9 mol % sPS–Br 106.1 ─f ─g ─g 

8 28.1 mol % sPS–Br 105.6 ─
f
 ─

g
 ─

g
 

9 48.9 mol % sPS–Br 105.3 ─
f
 ─

g
 ─

g
 

10 77.8 mol % sPS–Br 105.7 ─f ─g ─g 

a Differential scanning calorimetry (DSC) measurements conducted using heating/cooling 

rates of 10 °C/min. 
b
 Glass transition temperature in °C. 

c
 Melting point of polymer in °C. 

d
 Heat of fusion of polymer in J/g. 

e
 The percent of crystallinity based on the theoretical 

heat of fusion calculated for 100% crystalline sPS (i.e., ∆Hf
o
 = 53.3 J/g). 

f
 Not detected. 

g
 

Cannot be calculated due to absence of endothermic peak. 

 

3.3.5. Water Contact Angles 

Water contact angles of sPS, sPS–Br, 4-formyl-functionalized sPS, 3-amino-

functionalized sPS, and 4-carbamoyl-functionalized sPS were measured to investigate the 

change of the surface energy (Figure 3.7). The unfunctionalized sPS has a contact angle 

of 102.5
o
. Bromination of sPS did not change the hydrophilicity of the polymer (101.4

o
 of 

sPS–Br). Although the functionalized polymers have the same concentration of functional 

group to that of sPS–Br (i.e., 8.5 mol %), their water contact angles were much lower 



 94 

than that of sPS-Br indicating that the incorporation of polar functionality by Suzuki–

Miyaura reaction greatly increased hydrophilicity in the polymer (93.7–95.6o).  

 

 

Figure 3.7. Water contact angles of (a) sPS (102.5
o
); (b) 8.5 mol % sPS–Br (101.4

o
) 

(entry 3 of Table 3.1); (c) 8.5 mol % sPS–CHO (95.6o) (entry 5 of Table 3.3); (d) 8.5 

mol % sPS–NH2 (95.4o) (entry 6 of Table 3.3); (e) 8.5 mol % sPS–CONH2 (93.7o) (entry 

7 of Table 3.3).  
3.4. Experimemntal 

3.4.1. General Comments 

Bromine (Br2), anhydrous ferric chloride (FeCl3), chloroform, 

tetrakis(triphenylphosphine) palladium(0) [Pd(PPh3)4], cesium carbonate (Cs2CO3), 4-

(tert-butyldimethylsilyloxy)phenyl boronic acid, 4-acetylphenyl boronic acid, 4-

methoxyphenyl boronic acid, 4-(methoxycarbonyl)phenyl boronic acid, 4-formylphenyl 

boronic acid, 3-aminophenyl boronic acid, and 4-carbamoylphenyl boronic acid were 
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purchased from commercial vendors (Sigma Aldrich Co., Alfa Aesar, Frontier Scientific, 

and Acros Organics) and used without further purification. Anhydrous tetrahydrofuran 

(THF) and toluene were obtained from EMD Chemicals (EM Recycler® Container 

System) and collected from the containers using a positive pressure of nitrogen. 

Syndiotactic polystyrene (sPS, Mn = 48.6 kg/mol with PDI = 2.90) was obtained from LG 

Chem Ltd., Daejeon, South Korea. To improve the solubility of sPS in the bromination 

medium, the following procedure was performed. One gram of the polymer was placed in 

a two-neck round-bottom flask, and then the flask was evacuated and backfilled with 

nitrogen three times. 1,2-Dichlorobenzene (30 ml) was added to this flask and the 

mixture was refluxed at 180 oC under nitrogen for 30 min to dissolve sPS. The solution 

was then cooled to 140 oC and poured into cold methanol (300 mL). The precipitate was 

filtered and dried under vacuum at 60 
o
C.  

1
H and 

13
C NMR spectra were obtained using 400 and 100 MHz Varian NMR 

spectrometer at room temperature. All chemical shifts were referenced to 

tetramethylsilane (TMS). The NMR samples were prepared by applying gentle heat to 

dissolve the polymer in CDCl3. 
1
H NMR and 

13
C NMR samples were prepared at a 

concentration of 10 mg/mL and 40 mg/mL, respectively. The molecular weight 

measurement of sPS and sPS–Br was conducted using a Polymer Laboratory GPC-220 

high-temperature size exclusion chromatography at 160 
o
C. 1,2,4-Trichlorobenzene was 

the mobile phase and the flow rate was set at 1.0 mL/min. This instrument was calibrated 

using polystyrene standards. Differential scanning calorimetry (DSC) was performed 

using a NETZSCH STA 449C instrument under a helium atmosphere. Polymer samples 

were heated to 300 
o
C, held there for 1 min to remove the influence of thermal history, 
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cooled to –0 
o
C, held there for 1 min, and then reheated to 300 

o
C. The rates of heating 

and cooling were 10 oC/min. All DSC curves in Figure 3.6 were obtained from the 

second heating. Glass transition and melting temperatures (Tg and Tm) and enthalpy of 

fusion (∆Hf) were obtained after calibration with high-purity indium and zinc standards. 

The static water contact angles of polymers using a contact angle goniometer 

(Dataphysics OCA15) at room temperature. The measurement was repeated at ten 

different positions on the same glass plate, and reported data were the average of the 

measurements. 

sPS: 
1
H NMR (400 MHz, CDCl3, ppm) δ = 1.30 (2H, –CH2–), 1.81 (1H, –CH–), 6.55 

(2H, C6H5-Hb), 7.06 (3H, C6H5-Hc,d). 
13C NMR (100 MHz, CDCl3, ppm) δ = 40.5 (–CH–), 

43.8 (–CH2–), 125.6 (C6H5-Cd), 127.6 (C6H5-Cb), 127.9 (C6H5-Cc), 145.2 (C6H5-Ca). 

3.4.2. Representative Synthesis of sPS–Br (Entry 5 of Table 3.1) 

A mixture of sPS (100 mg, 0.960 mmol polystyrene repeating unit), FeCl3 (2.3 mg, 5 

mol % iron based on the amount of sPS) and a magnetic stirring bar were placed in a vial 

and capped with a Teflon-lined septum. The vial was evacuated and backfilled with 

nitrogen three times. Chloroform (1.8 mL) was added to the vial with a syringe. The vial 

was placed in an oil bath at 60 oC and sPS was dissolved completely after 30 min. A 

bromine stock solution (0.2 mL, 0.288 mmol Br2) prepared from Br2 (730 µL) and 

chloroform (10 mL) was transferred to the vial containing the polymer solution using a 

microsyringe. A nitrogen balloon was connected to the vial and the mixture was stirred at 

60 
o
C for 2 h in the absence of light. Methanol (2 mL) was added to precipitate the 

polymer as a white solid, which was filtered and washed with additional methanol (2 × 10 

mL). The polymer product was dried under vacuum at 60 
o
C for 12 h (98.0 mg, 98% 
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yield based on polymer weight). 
1
H NMR (400 MHz, CDCl3, ppm) δ = 1.30 (2H, –CH2– 

of sPS main chain), 1.71 (1H, –CH– of sPS main chain having brominated aromatic ring), 

1.81 (1H, –CH– of sPS main chain), 6.33 (d, 2H, C6H4Br-Hb`, J = 8.4 Hz), 6.55 (2H, 

C6H5-Hb), 7.06 (3H, C6H5-Hc,d), 7.14 (d, 2H, C6H4Br-Hc`, J = 8.2 Hz). 
13

C NMR (100 

MHz, CDCl3, ppm) δ = 40.4 (–CH– of sPS main chain having brominated aromatic rings), 

40.8 (–CH– of sPS main chain), 44.3 (–CH2– of sPS main chain), 119.5 (C6H4Br-Cd`), 

126.0 (C6H5-Cd), 127.9 (C6H5-Cb), 128.2 (C6H5-Cc), 129.7 (C6H4Br-Cb`), 131.2 (C6H4Br-

Cc`), 144.3 (C6H4Br-Ca`), 145.5 (C6H5-Ca). 

4.4.3. General Suzuki–Miyaura Cross-Coupling Procedure for the Synthesis of sPS–FG 

In a nitrogen glovebox, a mixture of 8.5 mol % sPS–Br [40.0 mg, 0.0310 mmol Br] 

(from entry 3 of Table 3.1), aryl boronic acid (0.310 mmol, 10 equiv based on the amount 

of bromine concentration of sPS–Br), and Cs2CO3 (30.3 mg, 0.0930 mmol, 3 equiv based 

on the amount of bromine concentration of sPS–Br), and a magnetic stirring bar were 

placed in a vial. A palladium catalyst stock solution (0.8 mL) prepared from Pd(PPh3)4 

(3.6 mg) and toluene (or THF) (8 mL) was transferred to the vial containing the polymer 

mixture in the glovebox [The amount of added Pd(PPh3)4 is 1 mol % based on the amount 

of bromine concentration of sPS–Br]. The vial was capped with a Teflon-lined septum 

and removed from the glovebox. Deionized water (80 µL) was added to the vial with a 

microsyringe. The vial was placed in an oil bath at 100 
o
C (or 80 

o
C if THF was used) for 

5 h. After cooling, the reaction mixture was diluted with chloroform (10 mL), dried over 

magnesium sulfate and filtered through a short plug of Celite. The filtrate was 

concentrated to approximately 1 mL using a rotary evaporator, and cold methanol (1 mL) 

was added to precipitate the polymer. The process of dissolution in chloroform and 
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precipitation with methanol was repeated one more time to ensure complete removal of 

any small molecules trapped in the polymer. The precipitated polymer was filtered and 

dried under vacuum at 60 oC for 12 h. 

4-Acetyl-functionalized sPS (entry 1 of Table 3.3). Yield: 82% based on polymer 

weight from sPS–Br. 
1
H NMR (400 MHz, CDCl3, ppm) δ = 1.29 (2H, –CH2– of sPS 

main chain), 1.80 (1H, –CH– of sPS main chain), 2.64 (s, COCH3), 6.54 (2H, C6H5-Hb), 

6.60 (2H, C6H4Ar-Hb`) 7.06 (3H, C6H5-Hc,d), 7.28 (2H, C6H4Ar-Hc`), 7.61 (2H, 

C6H4COCH3-Hf`), 8.02 (2H, C6H4COCH3-Hg`). 
13

C NMR (100 MHz, CDCl3, ppm) δ = 

26.7 (COCH3), 40.3 (–CH– of sPS main chain having functionalized aromatic ring), 40.6 

(–CH– of sPS main chain), 43.9 (–CH2– of sPS main chain), 125.6 (C6H5-Cd), 126.7 

(C6H4Ar-Cc`), 126.9 (C6H4COCH3-Cf`), 127.7 (C6H5-Cb), 127.9 (C6H5-Cc), 128.3 

(C6H4Ar-Cb`), 128.9 (C6H4COCH3-Cg`), 135.5 (C6H4Ar-Cd`), 136.9 (C6H4COCH3-Ch`), 

145.0 (C6H4Ar-Ca`), 145.2 (C6H5-Ca), 145.7 (d, C6H4COCH3-Ce`, J = 16.5 Hz), 197.7 

(COCH3) 

4-Methoxy-functionalized sPS (entry 2 of Table 3.3). Yield: 85% based on polymer 

weight from sPS–Br. 
1
H NMR (400 MHz, CDCl3, ppm) δ = 1.29 (2H, –CH2– of sPS 

main chain), 1.81 (1H, –CH– of sPS main chain), 3.84 (s, OCH3), 6.54 (2H, C6H5-Hb), 

6.97 (2H, C6H4OCH3-Hg`), 7.06 (3H, C6H5-Hc,d), 7.22 (2H, C6H4Ar-Hc`), 7.48 (2H, 

C6H4OCH3-Hf`). 
13

C NMR (100 MHz, CDCl3, ppm) δ = 40.5 (–CH– of sPS main chain 

having functionalized aromatic ring), 40.8 (–CH– of sPS main chain), 44.1 (–CH2– of 

sPS main chain), 55.6 (OCH3), 114.4 (C6H4OCH3-Cg`), 125.9 (C6H5-Cd), 126.4 (C6H4Ar-

Cc`), 127.9 (C6H5-Cb), 128.1 (C6H5-Cc), 128.3 (C6H4Ar-Cb`), 134.1 (C6H4OCH3-Ce`), 

138.2 (C6H4Ar-Cd`), 144.0 (C6H4Ar-Ca`), 145.5 (C6H5-Ca), 159.1 (C6H4OCH3-Ch`). 
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4-(tert-Butyldimethylsilyloxy)-functionalized sPS (entry 3 of Table 3.3). Yield: 83% 

based on polymer weight from sPS–Br. 1H NMR (400 MHz, CDCl3, ppm) δ = 0.24 (s, 

Si(CH3)2C(CH3)3), 1.02 (s, Si(CH3)2C(CH3)3), 1.29 (2H, –CH2– of sPS main chain), 1.81 

(1H, –CH– of sPS main chain), 6.54 (2H, C6H5-Hb), 6.90 (2H, C6H4OSi(CH3)2C(CH3)3-

Hg`), 7.05 (3H, C6H5-Hc,d), 7.21 (2H, C6H4Ar-Hc`), 7.40 (2H, C6H4OSi(CH3)2C(CH3)3-

Hf`). 
13

C NMR (100 MHz, CDCl3, ppm) δ = –4.1 (Si(CH3)2C(CH3)3), 18.5 

(Si(CH3)2C(CH3)3), 26.0 (Si(CH3)2C(CH3)3), 40.5 (–CH– of sPS main chain having 

functionalized aromatic ring), 40.8 (–CH– of sPS main chain), 44.1 (–CH2– of sPS main 

chain), 120.5 (C6H4OCH3-Cg`), 125.9 (C6H5-Cd), 126.4 (C6H4Ar-Cc`), 127.9 (C6H5-Cb), 

128.1 (C6H5-Cc), 134.7 (C6H4OSi-Ce`), 138.3 (C6H4Ar-Cd`), 144.0 (C6H4Ar-Ca`), 145.5 

(C6H5-Ca), 155.2 (C6H4OSi-Ch`). 

4-(Methoxycarbonyl)-functionalized sPS (entry 4 of Table 3.3). Yield: 80% based on 

polymer weight from sPS–Br. 
1
H NMR (400 MHz, CDCl3, ppm) δ = 1.29 (2H, –CH2– of 

sPS main chain), 1.80 (1H, –CH– of sPS main chain), 3.94 (s, COOCH3), 6.54 (2H, 

C6H5-Hb), 6.60 (2H, C6H4Ar-Hb`) 7.05 (3H, C6H5-Hc,d), 7.28 (2H, C6H4Ar-Hc`), 7.60 (2H, 

C6H4COOCH3-Hf`), 8.11 (2H, C6H4COOCH3-Hg`). 
13

C NMR (100 MHz, CDCl3, ppm) δ 

= 40.3 (–CH– of sPS main chain having functionalized aromatic ring), 40.6 (–CH– of sPS 

main chain), 43.9 (–CH2– of sPS main chain), 51.5 (COOCH3, J = 121.9 Hz), 125.6 

(C6H5-Cd), 126.6 (C6H4Ar-Cc`), 126.7 (C6H4COOCH3-Cf`), 127.7 (C6H5-Cb), 127.8 

(C6H5-Cc), 128.2 (C6H4Ar-Cb`), 128.5 (C6H4COOCH3-Ch`), 130.0 (C6H4COOCH3-Cg`), 

137.1 (C6H4Ar-Cd`), 145.0 (C6H4Ar-Ca`), 145.2 (C6H5-Ca), 145.6 (d, C6H4COOCH3-Ce`, J 

= 15.8 Hz), 167.1 (COOCH3). 



 100 

4-Formyl-functionalized sPS (entry 5 of Table 3.3). Yield: 83% based on polymer 

weight from sPS–Br. 1H NMR (400 MHz, CDCl3, ppm) δ = 1.29 (2H, –CH2– of sPS 

main chain), 1.80 (1H, –CH– of sPS main chain), 6.54 (2H, C6H5-Hb), 6.61 (2H, C6H4Ar-

Hb`) 7.05 (3H, C6H5-Hc,d), 7.30 (2H, C6H4Ar-Hc`), 7.69 (2H, C6H4CHO-Hf`), 7.95 (2H, 

C6H4CHO-Hg`), 10.05 (s, CHO). 
13

C NMR (100 MHz, CDCl3, ppm) δ = 40.3 (–CH– of 

sPS main chain having functionalized aromatic ring), 40.6 (–CH– of sPS main chain), 

43.9 (–CH2– of sPS main chain), 125.6 (C6H5-Cd), 126.8 (C6H4Ar-Cc`), 127.3 

(C6H4CHO-Cf`), 127.7 (C6H5-Cb), 127.9 (C6H5-Cc), 128.3 (C6H4Ar-Cb`), 130.2 

(C6H4CHO-Cg`), 134.9 (C6H4CHO-Cd`), 136.8 (C6H4Ar-Ch`), 145.0 (C6H4Ar-Ca`), 145.2 

(C6H5-Ca), 146.6 (d, C6H4CHO-Ce`, J = 128.0 Hz), 191.9 (CHO). 

3-Amino-functionalized sPS (entry 6 of Table 3.3). Yield: 87% based on polymer 

weight from sPS–Br. 
1
H NMR (400 MHz, CDCl3, ppm) δ = 1.29 (2H, –CH2– of sPS 

main chain), 1.81 (1H, –CH– of sPS main chain), 3.67 (s, NH2), 6.54 (2H, C6H5-Hb), 6.62 

(1H, C6H4NH2-Hi`), 6.84 (1H, C6H4NH2-Hj`), 6.94 (1H, C6H4NH2-Hf`), 7.06 (3H, C6H5-

Hc,d), 7.20 (1H, C6H4NH2-Hg`), 7.30 (2H, C6H4Ar-Hb`). 
13

C NMR (100 MHz, CDCl3, 

ppm) δ = 40.6 (–CH– of sPS main chain having functionalized aromatic ring), 40.9 (–

CH– of sPS main chain), 44.2 (–CH2– of sPS main chain), 114.0 (C6H4NH2-Ci`, j`), 117.8 

(C6H4NH2-Cf`), 125.9 (C6H5-Cd), 126.8 (C6H4Ar-Cc`), 128.0 (C6H5-Cb), 128.1 (C6H5-Cc), 

128.3 (C6H4NH2-Cg`), 138.8 (C6H4Ar-Cd`), 142.7 (C6H4NH2-Ce`), 144.6 (C6H4Ar-Ca`), 

145.5 (C6H5-Ca), 146.9 (C6H4NH2-Ch`). 

4-Carbamoyl-functionalized sPS (entry 7 of Table 3.3). Yield: 80% based on polymer 

weight from sPS–Br. 
1
H NMR (400 MHz, CDCl3, ppm) δ = 1.29 (2H, –CH2– of sPS 

main chain), 1.81 (1H, –CH– of sPS main chain), 6.55 (2H, C6H5-Hb), 6.61 (2H, C6H4Ar-
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Hb`), 7.06 (3H, C6H5-Hc,d), 7.29 (2H, C6H4Ar-Hc`), 7.61 (2H, C6H4CONH2-Hf`), 7.89 (2H, 

C6H4CONH2-Hg`). 
13C NMR (100 MHz, CDCl3, ppm) δ = 40.3 (–CH– of sPS main chain 

having functionalized aromatic rings), 40.6 (–CH– of sPS main chain), 43.9 (–CH2– of 

sPS main chain), 125.6 (C6H5-Cd), 126.6 (C6H4Ar-Cc`), 127.0 (C6H4CONH2-Cf`), 127.7 

(C6H5-Cb), 127.9 (C6H5-Cc), 128.3 (C6H4Ar-Cb`), 131.5 (C6H4CONH2-Ch`), 137.0 

(C6H4Ar-Cd`), 145.0 (C6H4Ar-Ca`), 145.2 (C6H5-Ca), 145.2 (d, C6H4CONH2-Ce`, J = 60.6 

Hz), 169.1 (CONH2). 

3.4.4. NMR Spectra of Functionalized Polymer Products 

 

Figure 3.8. 
1
H NMR spectrum [delay time = 1 s, number of scans = 16] of sPS–COCH3 

[10 mg/mL in CDCl3 at 25 
o
C] (An asterisk indicates H2O from CDCl3). 
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Figure 3.9. 
13

C NMR spectrum [delay time = 4 s, number of scans = 8000] of sPS–

COCH3 [40 mg/mL in CDCl3 at 25 oC]. 

 

 

Figure 3.10. 1H NMR spectrum [delay time = 1 s, number of scans = 16] of sPS–OCH3 

[10 mg/mL in CDCl3 at 25 
o
C] (An asterisk indicates H2O from CDCl3). 

 



 103 

 

Figure 3.11. 
13

C APT NMR spectrum [delay time = 4 s, number of scans = 8000] of sPS–

OCH3 [40 mg/mL in CDCl3 at 25 
o
C]. 

 

 

Figure 3.12. 
1
H NMR spectrum [delay time = 1 s, number of scans = 16] of sPS–

OSi(CH3)2C(CH3)3 [10 mg/mL in CDCl3 at 25 
o
C] (An asterisk indicates H2O from CDCl3). 
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Figure 3.13. 
13

C APT NMR spectrum [delay time = 4 s, number of scans = 8000] of sPS–

OSi(CH3)2C(CH3)3 [40 mg/mL in CDCl3 at 25 
o
C]. 

 

 

Figure 3.14. 
1
H NMR spectrum [delay time = 1 s, number of scans = 16] of sPS–

COOCH3 [10 mg/mL in CDCl3 at 25 
o
C] (An asterisk indicates H2O from CDCl3). 
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Figure 3.15. 
13

C APT NMR spectrum [delay time = 4 s, number of scans = 8000] of sPS–

COOCH3 [40 mg/mL in CDCl3 at 25 
o
C]. 

 

 

Figure 3.16. 
1
H NMR spectrum [delay time = 1 s, number of scans = 16] of sPS–CHO 

[10 mg/mL in CDCl3 at 25 
o
C] (An asterisk indicates H2O from CDCl3). 
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Figure 3.17. 
13

C APT NMR spectrum [delay time = 4 s, number of scans = 8000] of sPS-

CHO [40 mg/mL in CDCl3 at 25 
o
C]. 

 

 

Figure 3.18. 
1
H NMR spectrum [delay time = 1 s, number of scans = 16] of sPS–NH2 [10 

mg/mL in CDCl3 at 25 
o
C] (An asterisk indicates H2O from CDCl3). 
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Figure 3.19. 
13

C APT NMR spectrum [delay time = 4 s, number of scans = 8000] of sPS–

NH2 [40 mg/mL in CDCl3 at 25 
o
C]. 

 

 

Figure 3.20. 
1
H NMR spectrum [delay time = 1 s, number of scans = 16] of sPS–CONH2 

[10 mg/mL in CDCl3 at 25 
o
C] (An asterisk indicates H2O from CDCl3). 
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Figure 3.21. 
13

C APT NMR spectrum [delay time = 4 s, number of scans = 8000] of sPS–

CONH2 [40 mg/mL in CDCl3 at 25 
o
C].  

 

3.5. Conclusion 

In summary, we have described a new incorporation method of a wide range of 

functional groups into high-molecular-weight sPS via a combination of electrophilic 

aromatic bromination at the para-position of the polymer and subsequent Suzuki–

Miyaura cross-coupling reactions of the brominated polymer with functionalized aryl 

boronic acid. The controlled bromination of the crystalline polystyrene allowed 

introduction of bromine group up to 78 mol %, although there was a slight degradation of 

the polymer chain length. Suzuki–Miyaura cross-coupling reactions with functionalized 

phenyl boronic acids afforded quantitative replacement of the attached bromine group in 

sPS to other versatile functional groups. This easy-to-perform post-functionalization 

method provides a convenient alternative way to install various functional groups with 

desired concentration into aromatic polymers. 
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CHAPTER 4 

 

HYDROPHILIC GRAFT MODIFICATION OF A COMMERCIAL CRYSTALLINE 

POLYOLEFIN 

4.1. Abstract 

We report a novel approach to synthesize hydroxy-functionalized isotactic poly(1-

butene) using rhodium-catalyzed regioselective C–H activation at the side chain of the 

commercial polyolefin and subsequent oxidation of boronic ester group. The introduction 

of a hydroxy group was accomplished up to ~19 mol % without any significant side 

reactions that could alter the molecular weight properties. The functionalization was 

controllable by changing the ratio of the boron reagent to the polymer repeating unit. A 

side chain-functionalized polyolefin macroinitiator was prepared by esterification of the 

hydroxy group in the polymer with 2-bromoisobutyl bromide. 

Atom Transfer Radical Polymerization of methyl methacrylate and tert-butyl acrylate 

from the macroinitiator generated high molecular-weight graft copolymers of the 

polyolefins, isotactic poly(1-butene)-graft-poly(methyl methacrylate) (PB-g-PMMA) and 

isotactic poly(1-butene)-graft-poly(tert-butyl acrylate) (PB-g-PtBA). Finally, hydrolysis 

of the tert-butoxy ester group of PB-g-PtBA created an amphiphilic polyolefin containing 

a short carboxylic acid-functionalized polymer block at the side chain, isotactic poly(1-

butene)-graft-poly(acrylic acid) (PB-g-PAA). 
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4.2. Introduction 

Because polyolefins provide excellent mechanical property, chemical stability, 

precessability and low production cost, they are ubiquitously used around the world as 

commercial polymers.
83

 In spite of their large-scale production and favorable properties, 

the saturated polymers have some limitations for wider application. These include 

incompatibility with polar materials due to low surface energy which is resulted from the 

lack of polar functional groups in the polymers. Selective functionalization of polyolefins 

even with low concentration of polar group can be sufficient to change surface properties 

and improve compatibility with other materials. Thus, synthesis of such a polar group-

incorporated polyolefins has attracted much interest from the research community of 

academia and industry.84-125 

Several olefin copolymerization approaches of α-olefins with vinyl monomers 

containing pendant boranes
87

 or protected polar group
88

 have been attempted to obtain 

functionalized polyolefin. Copolymerization with polar chain transfer agents such as 

phosphines,
89

 silanes,
90

 boranes,
91

 and vinyl chloride
92

 have also been reported. These 

catalysts, however, showed much reduced activity in the copolymerization compared 

with those in homopolymerization of α-olefin, and the polar monomer-incorporated 

copolymers had much lower molecular weight. In addition, less oxophilic late metal 

catalysts have been used for copolymerization of olefin with polar vinyl monomers.
93-97

 

However, the microstructures of polymers generated by late transition metal catalysts are 

different from those of crystalline polyolefins.
96,97

 Controlled radical copolymerization of 

α-olefins with methyl acrylate has been recently reported for randomly functionalized 

polyolefins. However, the functionalized polymers were mostly composed of 
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poly(methyl acrylate) instead of polyolefin.
98,99

 

As an alternative approach, direct chemical modification of polyolefin can introduce 

polar functionality into the polymer. Since a diverse spectrum of polyolefins having 

different molecular weight properties are easily obtainable, a successful 

postfunctionalization of the polymers could readily afford a variety of uniformly 

functionalized polyolefins.
100

 Because the saturated C–C and C–H bonds in polyolefin 

are very inert, however, this approach typically uses a highly reactive free radical to 

activate the polymer functionalization. The radical intermediate generally accompanies 

side reactions such as chain scission and cross-linking and alters the length and properties 

of the polymer in the chemical modification process. 

Recently, polymer modification by transition metal-catalyzed C–H activation has 

attracted attention as a new methodology of polyolefin functionalization.
100-107

 Unlike 

typical polyolefin modification via a highly reactive free radical or a carbocation 

intermediate, this new method allowed incorporation of functional group into polyolefins 

with small or negligible changes in molecular weight from the starting polymers. 

Unfortunately, these methods were mostly adopted for functionalization of amorphous 

polyolefins and generated only a low concentration of polar functionality when high-

molecular-weight crystalline polymers were used. 

Atom Transfer Radical Polymerization (ATRP) is a useful polymerization method to 

prepare various vinyl polymers having controllable molecular weight. It was reported that 

a combination of a transition metal catalyzed polymerization of olefin and subsequent 

ATRP of vinyl monomers generated several examples of functionalized polyolefin block 

or graft copolymers.
108-112,115,116,118,120

 Given that the most of the block/graft copolymers 
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prepared from low-molecular weight macroinitiator were made up of a polyacrylate 

segment in place of polyolefin segment,111,112 they were far different from real 

commercial polyolefin. Direct functionalization of commercial polyolefins for the 

creation of well-defined graft copolymers has not been studied much.
105,109,110,119

 

It has recently been reported by us that the regiospecific functionalization of the C–H 

bond of isotactic poly(1-butene) (PB), a commercial high-molecular-weight crystalline 

polyolefin, through a rhodium catalyzed terminal C–H activation/borylation with 

bis(pinacolato)diboron [B2(pin)2] can be achieved.
126

 We herein demonstrated that the 

concentration of (hydroxy-)functionalized side chains in the polymer could be easily 

controlled up to ~19 mol % by changing the percentage of the boron reagent to that of the 

polymer repeating unit in C–H borylation and subsequently oxidizing the pinacolboronic 

ester [B(pin)] group. Furthermore, using a functionalized macroinitiator prepared from 

the hydroxylated PB, we report ATRP of methyl methacrylate (MMA) and tert-butyl 

acrylate (tBA) and synthesis of polar block-grafted polyolefins, isotactic poly(1-butene)-

graft-poly(methyl methacrylate) (PB-g-PMMA) and isotactic poly(1-butene)-graft-

poly(tert-butyl acrylate) (PB-g-PtBA). Finally, an amphiphilic graft copolymer, isotactic 

poly(1-butene)-graft-poly(acrylic acid) (PB-g-PAA), was synthesized from the hydrolysis 

of the tert-butoxy ester group in PB-g-PtBA. 

 

4.3. Results and Discussion 

4.3.1. Borylated and Hydroxylated Isotactic Poly(1-butene) 

Scheme 4.1 shows the synthetic route for the preparation of hydroxylated isotactic 

poly(1-butene) (PB–OH). A commercial high-molecular-weight crystalline polyolefin, 



 113 

isotactic poly(1-butene) (PB in Scheme 4.1), was functionalized regiospecifically at the 

terminal methyl groups of the polymer’s side chain. The C–H activation/borylation was 

conducted using variable amounts of B2(pin)2 and 5 mol % Cp*Rh(η4-C6Me6) (based on 

the amount of B2(pin)2) in cyclooctane solvent at 150 
o
C. Because of the steric effect, 

only the terminal methyl group is known to react with B2(pin)2 in the rhodium-catalyzed 

C–H activation of alkane containing methyl, methylene and methine groups.
126

 Thus, 

cyclooctane, a high boiling solvent composed only of methylene groups, was chosen as 

the solvent. After the functionalization, the crude borylated polymer [PB–B(pin)] was 

dissolved in toluene and precipitated in cold methanol for purification. To explore the 

possibility of introducing a polar group into the nonpolar polymer, the isolated B(pin)-

functionalized polymer was then oxidized with a solution of NaOH/H2O2 in THF to give 

the corresponding PB–OH. The boronic ester group at the terminal side chain was 

completely converted into a hydroxy group. 

 

5% Cp*Rh(C6Me6)

B2(pin)2

H2O2

NaOH

PB: Mn = 51.6 kg/mol, PDI = 4.9
O

B
O

O

B
O O

B
O

B2(pin)2 =

PB-B(pin)

PB-OH

OH

 

Scheme 4.1. Regioselective functionalization of isotactic poly(1-buene). 

 

The 
1
H NMR spectrum of PB–B(pin) showed a new resonance at 1.24 ppm for the 

four methyl groups of the B(pin) moiety (–BOC(CH3)2) (Figure 4.1). The 
13

C NMR 

spectrum of PB-B(pin) showed two new resonances from the B(pin) group: 83.0 ppm for 
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–BOC(CH3)2 and 25.0 ppm for –BOC(CH3)2 (Figure 4.2). The successful incorporation 

of the B(pin) group was also verified by 11B NMR spectrum, which revealed a broad 

resonance at 34.0 ppm (Figure 4.3). 

 

 

Figure 4.1. 1H NMR spectrum of PB–B(pin) (Entry 2 of Table 4.1; 10 mg/mL in CDCl3). 
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Figure 4.2. 
13

C NMR spectrum of PB–B(pin) (Entry 2 of Table 4.1; 30 mg/mL in CDCl3). 

 

 

Figure 4.3. 
11

B NMR spectrum of PB–B(pin) (Entry 3 of Table 4.1; 30 mg/mL in CDCl3). 
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Upon oxidation the FT-IR spectrum supports the presence of hydroxy group in PB-

OH, which showed a broad O–H bond stretching band at 3330 cm-1 (Figure 4.4). The 1H 

and 13C NMR spectra of PB–OH showed a triplet resonance at 3.67 ppm and a resonance 

at 61.4 ppm, respectively, for the methylene group of –CH2OH (Figures 4.5 and 4.6). The 

resonance at 61.4 ppm in the 
13

C NMR spectrum was confirmed as a methylene group 

using 
13

C attached proton test (APT) NMR spectroscopy (Figure 4.7). The complete 

disappearance of resonances at 25.0 and 83.0 ppm of the B(pin) group in the 
13

C NMR 

spectrum of PB–OH demonstrated successful oxidation in the polymer chain. In the 
13

C 

APT NMR spectrum of PB–OH, no resonances corresponding to CH

OH  or 
C

OH  
resulting from hydroxylation of the backbone methylene or methine positions were 

detected. Based on this analysis, it was concluded that the rhodium-catalyzed C–H 

borylation occurred selectively at the terminal methyl group of the side chain. 

Furthermore, the absence of resonances corresponding to –C(=O)H or –CO2H in the 
1
H 

and 
13

C NMR spectra of PB–OH indicates that the oxidation of the B(pin) group in the 

side chain was not over-oxidized. 
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Figure 4.4. FT-IR spectrum of PB–OH (11.0 mol % OH, Entry 6 of Table 4.1). 

 

 

Figure 4.5. 
1
H NMR spectrum of PB–OH (Entry 4 of Table 4.1; 10 mg/mL in CDCl3). 
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Figure 4.6. 
13

C NMR spectrum of PB–OH (Entry 4 of Table 4.1; 30 mg/mL in CDCl3). 

 

 

Figure 4.7. 
13

C APT NMR spectrum of PB–OH (Entry 4 of Table 4.1 in CDCl3). 
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The relative intensities of the triplet resonance of –CH2OH at 3.67 ppm and the triplet 

resonance of –CH3 at 0.85 ppm in the 1H NMR spectrum of PB–OH allowed the 

calculation of the mol % of –CH2OH group in the polymer and their values are provided 

in Table 4.1. With increasing amounts of B2(pin)2 added relative to the polymer repeating 

unit in the C–H borylation, the intensity of the resonance increases, indicating that more 

of the B(pin) group was incorporated into the polymer. Based on assumption that all of 

the –CH2B(pin) groups of PB–B(pin) were converted to –CH2OH groups of PB–OH 

without deborylation or over-oxidation, we determined the percentage of –CH2OH group 

relative to the added B2(pin)2 as the efficiency of the C–H bond functionalization, which 

is included in Table 4.1. 

The relationship of the ratio of B2(pin)2 to the polymer repeating unit in the borylation 

condition and the concentration of functionalized side chain in PB–OH was studied using 

5 mol % of Cp*Rh(η
4
-C6Me6) as the catalyst. Although the relationship of the ratio and 

hydroxymethyl group concentration was nonlinear, increasing the ratio generally resulted 

in more functionalized side chains of the polymer (Table 4.1). Because the terminal 

methyl group of the side chain of PB is sterically less hindered than that of isotactic 

polypropylene, both the maximum mol % of hydroxymethyl group (i.e., 19 mol %) and 

the efficiency of C–H functionalization of PB–OH were substantially higher than those of 

crystalline hydroxy-functionalized isotactic polypropylene, where the maximum 

concentration of hydroxy-functionalized methyl side chain was ~1 mol %.
105

  

We also attempted C–H borylation of PB using pinacolborane as a boron reagent. It 

resulted in a significantly lower concentration of functionalized side chain (i.e., ~1 mol % 

of –CH2OH group in the functionalized polymer) under the experimental conditions. 
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Table 4.1. Regioselective C–H functionalization of isotactic poly(1-butene) with 

bis(pinacolato)diboron
a
. 

PB–B(pin) PB–OH PB–OH PB–OH 
Entry Ratio

b
 

Mn×10
-3

(PDI)
c
 Mn×10

-3
(PDI)

c
 OH mol %

d
 

Effic. 

(%)
e
 Contact Angle

f
 

1 0.02 51.5 (5.6) 55.0 (5.0) 1.8 90 104.4
o
 

2 0.03 53.9 (5.1) 61.9 (5.6) 2.7 90 102.7
o
 

3 0.05 58.7 (4.7) 61.6 (5.3) 3.5 70 102.0
o
 

4 0.07 64.9 (5.9) 63.1 (5.4) 4.6 66 100.5
o
 

5 0.15 70.2 (5.9) 69.0 (5.6) 7.7 51 100.4o 

6 0.03 68.9 (5.3) 68.9 (5.6) 11.0 37 93.9
o
 

7 0.45 73.0 (4.6) 74.4 (5.9) 15.3 34 92.2o 

8 0.60 75.4 (3.7) 77.6 (5.9) 18.6 31 90.9
o
 

a
 Starting material: isotactic poly(1-butene) (PB) (Mn = 51.6 kg/mol, PDI = 4.9). 

b
 Initial 

ratio of bis(pinacolato)diboron [B2(pin)2]/polymer repeating unit. 
c
 Mn in kg/mol and PDI 

measured using size exclusion chromatography at 40 
o
C relative to polystyrene standards. 

THF was used as eluent. 
d
 Mol % of –CH2OH relative to the terminal methyl group of the 

side chains of PB–OH. e Efficiency of functionalization = the percentage of –CH2OH 

groups in the final polymer relative to the B2(pin)2 added. f Contact angles of other 

polymers: PB (105.7
o
), 6.4% tBA-grafted PB-g-PtBA (100.8

o
), 6% acrylic acid-grafted 

PB-g-PAA (96.9
o
). 

 

When a higher–molecular weight isotactic poly(1-butene) (hPB) (Mw = ~570 kg/mol 

by GPC in Aldrich
®

) was subjected to the same condition of the C–H functionalization, it 

generated similar concentrations of hydroxy groups in the side chains to those of the 

lower-molecular-weight isotactic poly(1-butene) (PB; Mn = 51.6 kg/mol, PDI = 4.9) (see 

Tables 4.1 and 4.2). Since hPB showed much limited solubility in the eluent of SEC, (i.e. 
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THF), molecular weight properties of hPB and functionalized hPB [hPB–B(pin) and 

hPB–OH)] were not studied. 

 

Table 4.2. Regioselective C–H functionalization of higher-molecular-weight isotactic 

poly(1-butene) (hPB) with bis(pinacolato)diboron
a
. 

PB–OH 
Entry Ratio

b
 

OH mol %
c
 

Effic. (%)
d
 

1 0.02 0.7 35 

2 0.03       2.1 70 

3 0.05       3.7 74 

4 0.07       4.4 63 

5 0.15       6.7 45 

6 0.03      11.4 38 

a 
Starting material (hPB), isotactic poly(1-butene): Mw = ~580 kg/mol in Aldrich

®
. 

b
 

Initial ratio of B2(pin)2/repeating units. 
c 
Mol % of CH2OH of hPB–OH relative to methyl 

side chains.
 d

 Efficiency of functionalization [the percentage of –CH2OH groups in the 

final polymer relative to the B2(pin)2 added]. 

 

4.3.2. Macroinitiator of Isotactic Poly(1-butene): PB-Br 

The synthetic procedure of isotactic poly(1-butene) macroinitiator (PB–Br) using ~1 

mol % hydroxy-functionalized PB–OH (Table 4.1, entry 1) is shown in Scheme 4.2. 
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Scheme 4.2. Preparation of macroinitiator (PB-Br), PB-g-PtBA, and PB-g-PAA. 

 

The esterification of the primary alcohol of PB–OH with 2-bromoisobutyl bromide 

gave PB–Br, which could be used as a macroinitiator for the graft polymerization of a 

polar vinyl monomer. To remove HBr by-product from the reaction, triethylamine was 

added and the resulting triethylamine hydrobromide was removed via filtration. The 1H 

NMR spectrum of PB–Br showed a triplet at 4.20 ppm and a singlet at 1.93 ppm 

corresponding to –CH2CH2OC(=O)– and –C(CH3)2Br, respectively (Figure 4.8). Their 

integral ratio was approximately 1:3, which was consistent with the structure. The 
1
H 

NMR spectrum also showed complete disappearance of the triplet at 3.67 ppm, 

confirming the absence of unreacted –CH2OH from PB–OH. The relative intensities of 

the triplet resonance of the –CH2CH2OC(=O) at 4.20 ppm and the triplet resonance of –

CH3 at 0.85 ppm in the 
1
H NMR spectrum of PB–Br indicated that ~1 mol % of the a 

bromoester group is attached to the polymer side chain. The 13C NMR spectrum of PB-Br 

showed new resonances at 31.0 ppm for the two methyl carbons of –CH2 
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OC(=O)C(CH3)2Br, at 55.9 ppm for the alpha carbon of –CH2OC(=O)C(CH3)2Br, at 64.5 

ppm for the methylene carbon of –CH2OC(=O)C(CH3)2Br, and at 171.9 ppm for the 

carbonyl carbon of –CH2OC(=O)C(CH3)2Br (Figure 4.9). 

 

 

Figure 4.8. 1H NMR spectrum of PB–Br (from Entry 1 of Table 4.1). 
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Figure 4.9. 
13

C NMR spectrum of PB–Br (from Entry 1 of Table 4.1). 

 

4.3.3. Graft Copolymer PB-g-PtBA 

ATRP of tBA from the macroinitiator PB–Br was conducted to prepare a polar block-

grafted polyolefin, PB-g-PtBA, using Cu(I)Br and N,N,N’,N’’,N’’-

pentamethyldiethylenetriamine (PMDETA) at 90 
o
C in toluene (Scheme 4.2). When we 

screened various solvents and reaction times to optimization of ATRP condition, we 

found that toluene was the most effective solvent showing higher activity than other 

solvents such as o-xylene and anisole. Increasing the graft polymerization time from 10 

to 20 h in toluene did not result in significant improvement in the graft chain length. The 

FT-IR spectrum of PB-g-PtBA showed a new absorption at 1710 cm–1, which 

corresponded to the C=O stretching of the ester group of the tBA unit (Figure 4.10). The 

1
H NMR spectrum of the polymer displayed a resonance at 1.46 ppm for the methyl 

protons of the tertiary butoxy group, –OC(CH3)3 (Figure 4.11). 
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Figure 4.10. FT-IR spectrum of PB-g-PtBA (6.4 mol % PtBA, Entry 6 of Table 4.3). 

 

 

Figure 4.11. 
1
H NMR spectrum of PB-g-PtBA (6.4 mol % PtBA, Entry 6 of Table 4.3). 

*Resonance from H2O. 
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It was found that the mol % of PtBA blocks in the graft copolymers ranged from 2.4 

to 6.4 mol % based on the relative intensity ratio of the tertiary butoxy group resonance at 

1.46 ppm to the resonance of the terminal methyl group of side chain in the PB segment 

at 0.85 ppm. The mol % of the polar block in the graft copolymer can be controlled by 

changing the amount of tBA relative to the bromine concentration of the macroinitiator 

(Table 4.3, Entries 4–6). Because the conversion of tBA was quite low under the ATRP 

condition and we were interested in preparation of a low concentration of polar block 

functionalized polyolefins that preserve good properties of the unfunctionalized polymer, 

we used the 6.4 mol % PB-g-PtBA (Entry 6 of Table 4.3) for the next hydrolysis reaction. 

 

Table 4.3. Analytical results of poly(1-butene)-graft-poly(t-butyl acrylate)s and their 

precursor polymers. 

Entry Polymer
a
 Functional Group (mol %)

b
 Mn × 10

-3
 (PDI)

c
 

1 PB None  51.6 (4.9) 

2 PB–OH –OH (1%)  55.0 (5.0) 

3 PB–Br –OC(=O)C(CH3)2Br (1%)  57.7 (4.6) 

4
d
 PB-g-PtBA –CH2CH(CO2t-Bu)– (2.4%)  –

e
 

5
f
 PB-g-PtBA –CH2CH(CO2t-Bu)– (4.0%)  –

e
 

6
g
 PB-g-PtBA –CH2CH(CO2t-Bu)– (6.4%)  69.5 (5.2) 

a
 Graft polymerization condition: toluene (3.5 g); initiator = poly(1-butene) 

macroinitiator PB–Br (50 mg, 1 mol % Br); temperature = 90 
o
C; time = 10 h. 

b
 

Functional group incorporated into the side chain of isotactic PB. Mol % of the functional 

group is based on calculation from 1H NMR spectrum. c Mn in kg/mol and PDI measured 

using SEC with THF as eluent at 40 oC. d Molar ratio of tBA/Br = 50. e Not measured. f 

Molar ratio of tBA/Br = 100. 
g
 Molar ratio of tBA/Br = 150. 
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4.3.4. Amphiphilic Graft Copolymer PB-g-PAA 

An amphiphilic graft copolymer of the polyolefin, PB-g-PAA, was synthesized from 

the hydrolysis of the tert-butoxy ester group in PB-g-PtBA (Scheme 4.2). The 

amphiphilic graft copolymer consisted of a nonpolar PB block at the main chain and 

polar poly(acrylic acid) block at the side chains. The hydrolysis was conducted in 

dichloromethane at room temperature, and the resulting PB-g-PAA was precipitated from 

the reaction mixture due to the solubility differences. The carboxylic acid-containing 

polymer was insoluble in CHCl3, methanol and toluene but was soluble in THF. The FT-

IR spectrum of PB-g-PAA showed a C=O stretching peak at 1730 cm
–1

 corresponding to 

the carbonyl group of the carboxylic acid (Figure 4.12). The 1H NMR spectrum of PB-g-

PAA in THF-d8 showed a new deshielded resonance at 10.9 ppm from the proton of the 

carboxylic acid group (Figure 4.13). The relative intensities of the singlet resonance of 

the –CO2H at 10.9 ppm and the triplet resonance of –CH3 at 0.88 ppm in the 
1
H NMR 

spectrum of the graft copolymer indicated the presence of ~6 mol % of the carboxylic 

acid group in the polymer side chain, which indicates the hydrolysis reaction did not 

result in degrafting of PtBA blocks. The absence of the three methyl groups of t-butoxy 

ester at 1.46 ppm in the 1H NMR spectrum suggested that the ester group in the polymer 

was completely hydrolyzed. 
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Figure 4.12. FT-IR spectrum of PB-g-PAA (6.0 mol % PAA). 

 

 

Figure 4.13. 
1
H NMR spectrum of PB-g-PAA (6.4 mol % PAA) in THF-d8. *Resonance 

from solvents. 
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4.3.5. Size Exclusion Chromatography 

Mn and PDI of PB–B(pin) and PB–OH were investigated using size exclusion 

chromatography (SEC) to see whether their molecular weight properties changed as a 

result of the functionalization process. In contrast to typical postfunctionalization of 

polyolefin via a free radical method, the sequence of C–H borylation and oxidation did 

not change Mn and PDI significantly from those of the starting parent polymer (PB: Mn = 

51.6 kg/mol, PDI = 4.9), indicating that these reactions underwent without significant 

chain scission or coupling between polymer chains (Table 4.1; Figure 4.14). Mn and PDI 

of PB–Br measured using SEC with THF as the eluent were 57.7 kg/mol and 4.6, 

respectively, which were again close to those of PB (Mn = 51.6 kg/mol; PDI = 4.9) 

(Figure 4.14). Since the PB block was assumed to contain an average of 921 repeating 

units (i.e., degree of polymerization = 921) based on the SEC analysis of PB (Mn = 51.6 

kg/mol; PDI = 4.9), the average degree of polymerization and Mn of the combined PtBA 

segment in the longest copolymer (Entry 6 of Table 4.3) were calculated to be 63 and 8.1 

kg/mol, respectively. The combination of the Mn of PB–Br (57.7 kg/mol measured using 

SEC analysis) and the Mn of combined PtBA segments (8.1 kg/mol estimated using 
1
H 

NMR spectrum) gives the estimated Mn of PB-g-PtBA as 65.8 kg/mol. An SEC trace of 

the graft copolymer also revealed that the synthesized copolymer had a slightly higher 

average molecular weight than that of the macroinitiator while maintaining a similar 

molecular weight distribution (Mn = 69.5 kg/mol; PDI = 5.2; see Figure 4.14e; Entry 6 of 

Table 4.3). Although PB-g-PAA was soluble in THF, it did not provide a reasonable 

signal on SEC measurement possibly owing to the strong interaction between column 

packing material and the polar group in the polymer. 
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Figure 4.14. Size exclusion chromatography [1.0 mg/ mL THF] for (a) PB [Mn = 51.6 

kg/mol, PDI = 4.9], (b) PB–B(pin) (Entry 5 of Table 4.1) [Mn = 70.2 kg/mol, PDI = 5.9], 

(c) PB–OH (Entry 5 of Table 4.1) [Mn = 69.0 kg/mol, PDI = 5.6], (d) PB–Br (Entry 3 of 

Table 4.3) [Mn = 57.7 kg/mol, PDI = 4.6], (e) PB-g-PtBA (Entry 6 of Table 4.3) [Mn = 

69.5 kg/mol, PDI = 5.2]. Mn relative to polystyrene standards. 

 

4.3.6. Thermal Properties 

Thermal properties of unfunctionalized PB, PB–OH with different concentrations of 

hydroxy group, PB–Br, and the graft polymers (PB-g-PtBA and PB-g-PAA) were 

investigated using differential scanning calorimetry (DSC) (Figures 4.15 and 4.16). 

Based on the data shown in Table 4.1, we demonstrated that the rhodium-catalyzed C–H 

borylation and subsequent oxidation process can convert a fraction of the terminal methyl 

group of the polymer side chain selectively to a hydroxymethyl group without altering 

the structure or the chain length of the polymer main chain. Thus, this method can, in 

principle, generate a functionalized polyolefin material that still preserves the physical 
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properties of starting material, such as tacticity, molecular weight, and crystallinity. The 

unfunctionalized PB has a Tm of 115 oC and a Tg of –20 oC (Figure 4.15a). Up to 5 mol % 

of the polymer side chain contained hydroxy group, the PB–OH samples showed almost 

the same Tm of PB with a slightly decreased enthalpy of change in DSC data (Figure 

4.15b-e) and had little effect on crystallinity. When more than 7 mol % of the polymer 

side chain contains hydroxy group, however, the PB–OH materials display an 

endothermic peak with a lower temperature and a sharply decreased enthalpy of change 

(Figure 4.15f-g) because the higher concentration of hydroxy group starts to interfere 

with the crystallization process of the polymer chain significantly. 

Thermal properties of unfunctionalized PB, PB–OH with different concentrations of 

hydroxy group, PB–Br, and the graft polymers (PB-g-PtBA and PB-g-PAA) were 

investigated using differential scanning calorimetry (DSC) (Figures 4.15 and 4.16). 

Based on the data shown in Table 4.1, we demonstrated that the rhodium-catalyzed C–H 

borylation and subsequent oxidation process can convert a fraction of the terminal methyl 

group of the polymer side chain selectively to a hydroxymethyl group without altering 

the structure or the chain length of the polymer main chain. Thus, this method can, in 

principle, generate a functionalized polyolefin material that still preserves the physical 

properties of starting material, such as tacticity, molecular weight, and crystallinity. The 

unfunctionalized PB has a Tm of 115 
o
C and a Tg of –20 

o
C (Figure 4.15a). Up to 5 mol % 

of the polymer side chain contained hydroxy group, the PB–OH samples showed almost 

the same Tm of PB with a slightly decreased enthalpy of change in DSC data (Figure 

4.15b-e) and had little effect on crystallinity. When more than 7 mol % of the polymer 

side chain contains hydroxy group, however, the PB–OH materials display an 
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endothermic peak with a lower temperature and a sharply decreased enthalpy of change 

(Figure 4.15f-g) because the higher concentration of hydroxy group starts to interfere 

with the crystallization process of the polymer chain significantly. 

 

 

Figure 4.15. DSC scans of (a) PB, (b) PB–OH (1.4 mol % OH), (c) PB–OH (2.7 mol % 

OH), (d) PB–OH (3.5 mol % OH), (e) PB–OH (4.6 mol % OH), (f) PB–OH (7.7 mol % 

OH), and (g) PB–OH (11 mol % OH). 

 

In the case of PB–Br, even though the concentration of functionalized side chain is 

very low ( ~1 mol %), the macroinitiator shows a slightly reduced melting point (i.e., 100 

o
C) owing to the bulky size of the α-bromoester group in the side chain (Figure 4.16c). 

After graft polymerization of tBA, the Tm of the graft copolymer shifted to a lower 

temperature because the relatively short poly(tert-butyl acrylate) block in the side chain 

of the graft copolymer suppressed the crystallization of isotactic PB main chain instead of 

forming a separate phase (Figure 4.16d). A similar melting point depression was 
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observed during DSC analysis of PB-g-PAA (Figure 4.16e). 

 

 

Figure 4.16. DSC scans of (a) PB, (b) PB-OH (1 mol % OH), (c) PB–Br (1 mol % Br), 

(d) PB-g-PtBA (6.4 mol % PtBA), and (e) PB-g-PAA (6 mol % PAA). 

 

4.3.7. Water Contact Angles 

As discussed in the Introduction, one of the major drawbacks of polyolefins is low 

surface energy, which can be indirectly studied by measuring water contact angles of the 

polymers. Contact angle measurement of water on the surface of functionalized PB on 

glass plate is summarized in Table 4.1 and plotted in Figure 4.17. The unfunctionalized 

PB has a contact angle of 105.6
o
. As shown in Figure 4.17, the water contact angles of 

PB–OHs were lower than that of PB, and the more incorporation of hydroxy group into 

the polymer side chain resulted in a systematic decrease of contact angle in a series of 

PB–OH. This result indicates that the hydroxy functionalization led to an increase of 

hydrophilicity of the polymer. The 6.4 mol % tBA-grafted PB-g-PtBA has a contact 



 134 

angle of 100.7
 o

, which is smaller than that of PB, 105.6
 o

. Compared with the contact 

angle of PB, the 6 mol % acrylic acid-grafted PB-g-PAA exhibited a much smaller 

contact angle (96.8o), also indicating the creation of a more hydrophilic surface in the 

polymer. 

 

 

Figure 4.17. Water contact angles of a series of hydroxy-functionalized isotactic poly(1-

butene)s and graft copolymers. 

 

4.3.8. Graft Copolymer PB-g-PMMA 

ATRP of MMA from the macroinitiator was also conducted to prepare poly(methyl 

methacrylate)-grafted polyolefin, PB-g-PMMA. As shown in Scheme 4.3, the same 

polymerization condition of ATRP of PB-g-PtBA (CuBr and PMDETA at 90 oC in 

toluene) was used. 
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Scheme 4.3. Preparation of a graft copolymer of isotactic poly(1-butene), PB-g-PMMA. 

 

The FT-IR spectrum of PB-g-PMMA confirmed grafting of MMA units into PB. The 

C=O stretching of PMMA block was clearly visible at 1740 cm-1 (Figure 4.18). As more 

MMA was introduced into the graft copolymer, the intensity of the C=O stretching of the 

PMMA block was increased in the FT-IR spectra of the graft copolymer. 
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Figure 4.18. FT-IR spectra of PB–OH (a) poly(1-butene)-graft-poly(methyl meth 

acrylate) copolymers containing (b) 6, and (c) 29 mol % PMMA content. 

 

 

Figure 4.19. 
1
H NMR spectrum of PB-g-PMMA (21 mol % PMMA, Entry 4 of Table 4.4). 

*Resonance from H2O. 
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The 
1
H NMR spectrum of PB-g-PMMA showed a distinct resonance at δ = 3.59 for –

OCH3 of the PMMA block (Figure 4.19). As more MMA was introduced into the polymer, 

the intensity of the resonance from the PMMA block was increased. This change in the 

composition of PMMA block relative to PB main-chain in the graft copolymer as a result 

of different amounts of MMA addition is summarized in Table 4.3. Based on the relative 

intensity ratio of the methoxy resonance at 3.59 ppm to the resonance of the terminal 

methyl group of side chain in the PB segment at 0.85 ppm, it was concluded that the 

mol % of PMMA blocks in the graft copolymers could be controlled 6–29 mol % by 

changing the amount of MMA relative to bromine concentration of the macroinitiator. 

 

Table 4.4. Analytical results of poly(1-butene)-graft-poly(methyl methacrylate)s and their 

precursor polymers
a
. 

Entry Polymer
b
 Functional Group (mol %)

b
 Mn × 10

-3
 (PDI)

c
 

1 PB None  67.4 (3.5) 

2 PB–Br –OC(=O)C(CH3)2Br (1 mol %)  67.9 (4.0) 

3d PB-g-PMMA –CH2(CH3)(CO2CH3)– (6.3 mol %)  90.7 (7.9) 

4
e
 PB-g-PMMA –CH2(CH3)(CO2CH3)– (21.1 mol %)  102.5 (10.5) 

5
f
 PB-g-PMMA –CH2(CH3)(CO2CH3)– (28.9 mol %) 102.2 (7.6) 

a
 Graft polymerization condition: toluene (3.5 g); initiator = poly(1-butene) 

macroinitiator PB–Br (50 mg, 1 mol % Br); temperature = 90 oC; time = 10 h. b 

Functional group incorporated into the side chain of isotactic poly(1-butene). Mol % of 

the functional group is based on calculation from 
1
H NMR spectrum. 

c
 Number-average 

molecular weight (Mn) in kg/mol and polydispersity index (PDI, Mw/Mn) measured using 

high temperature SEC using 1,2,4-trichlorobezene as eluent at 160 
o
C. 

d
 Molar ratio of 

MMA/Br = 50. 
e
 Molar ratio of MMA/Br = 150. 

f
 Molar ratio of MMA/Br = 200. 
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Because the PMMA-grafted copolymer exhibited much low solubility in THF, their 

Mn and PDI were obtained from high temperature SEC at 160 oC using 1,2,4-

trichlorobenzene as eluent. To evaluate the effect of grafting on Mn and PDI of graft 

copolymers, the Mn values of PB and PB-Br were also obtained with high temperature 

SEC (Entries 1 and 2 of Table 4.4; 67.7 kg/mol and PDI = 3.5 for PB; 67.9 kg/mol and 

PDI = 4.0 for PB-Br) and they were found to be a little higher than those from SEC 

measured at 40 
o
C using THF as eluent (Entries 1 and 3 of Table 4.3; 51.6 kg/mol and 

PDI = 4.9 for PB; 57.7 kg/mol and PDI = 4.6 for PB-Br). The differences in Mn and PDI 

of PB and PB-Br are believed to derive from hydrodynamic volume change under the 

different SEC measurement conditions. Upon grafting, the PMMA graft copolymers 

showed higher Mn and broader PDIs than those of the macroinitiator (Entries 3–5 of 

Table 4.4). This broad molecular weight distribution of the graft copolymer was also 

confirmed in the SEC traces of PB-g-PMMAs which showed bimodal distribution of 

molecular weight (Figure 4.20). Because ATRP reactivity of MMA is known to be much 

higher than that of tBA, it is believed that non-quantitative graft initiation of MMA that 

occurred at the macroinitiator resulted in fast growing of PMMA along the side chain 

while leaving some polymer chains un-grafted. 
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Figure 4.20. High-temperature size exclusion chromatography [1,2,4-trichlorobenzene at 

160 
o
C] for PB, PB–Br, and PB-g-PMMAs. Mn relative to polystyrene standards. 

 

4.4. Experimental 

4.4.1. General Comments 

Hydrogen peroxide (30%), sodium hydroxide, tetrahydrofuran (THF), trifluoroacetic 

acid (TFA), triethylamine, 2-bromoisobutyl bromide, copper bromide, and PMDETA 

were purchased from commercial vendors (Sigma Aldrich Co., Alfa Aesar, and Acros) 

and used without further purification. The unfunctionalized isotactic poly(1-butene) with 

a number-average molecular weight (Mn) of 51.6 kg/mol and a polydispersity index (PDI, 

Mw/Mn) of 4.9, measured using size exclusion chromatography (SEC) with THF as the 

eluent, was purchased from Aldrich and used as received. B2(pin)2 was donated by 

Frontier Scientific and used after recrystallization from hexane. Cp*Rh(η
4
-C6Me6) was 

prepared according to literature methods.
127,128

 Cyclooctane and toluene were dried using 
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sodium and benzophenone, distilled under reduced pressure, and stored in a nitrogen-

filled glove box. tBA (98% from Aldrich) was passed through a disposable alumina 

column (Sigma Aldrich Co.) to remove the inhibitor, dried over calcium chloride, and 

distilled under reduced pressure. 
1
H NMR spectra were recorded using a 400 MHz Varian 

NMR spectrometer at room temperature. All chemical shifts were referenced to 

tetramethylsilane. The 
1
H NMR samples were prepared at a concentration of 10 mg/mL 

by applying gentle heat to dissolve the polymer in deuterated NMR solvents. The OH 

mol % of PB-OH was determined based on the relative intensity of resonances of –

CH2OH at 3.67 ppm and –CH3 of the side chain at 0.85 ppm in the 
1
H NMR spectrum 

(Table 4.1). SEC analysis of both unfunctionalized and functionalized polymers was 

conducted using a VISCOTEK chromatograph equipped with three Visco-GEL I series 

columns and a tetra detector array (UV/visible, low and right angle light scattering, 

refractive index, and viscometer) at 40 
o
C. The SEC traces of polymers displayed in 

Figure 4.14 were obtained from the signals of refractometer. THF was the mobile phase, 

and the flow rate was set at 1.0 mL/min. The instrument was calibrated using polystyrene 

standards. The unfunctionalized polymer PB was received as semicrystalline pellets and 

has a limited solubility in THF at room temperature. To decrease the crystallinity of PB 

and improve the solubility in THF for the SEC measurement, the following procedure 

was performed: One gram of the polymer was placed in a two neck round-bottom flask, 

and then the flask was evacuated and backfilled with nitrogen three times. Toluene (50 

mL) was added to this flask and the mixture was refluxed at 110 
o
C under nitrogen for 30 

min to dissolve all PB. The solution was then cooled to room temperature and poured into 

cold methanol (100 mL). The precipitate was filtered and dried under vacuum at 60 
o
C. 
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DSC measurement was conducted on a NETZSCH STA 449C under a helium 

atmosphere. The polymer samples were heated to 200 oC, held there for 1 min to avoid 

the influence of thermal history, cooled to –50 oC, held there for 1 min, and then reheated 

to 200 
o
C. The rates of heating and cooling were 10 

o
C/min. All DSC curves in Figures 

4.15 and 4.16 were obtained from the second heating. The glass transition and melting 

temperatures (Tg and Tm) and enthalpy of change (∆Hf) were obtained after calibration 

with high-purity indium and zinc standards. The static contact angle measurement of 

water on polymer film was carried using a contact angle goniometer (Dataphysics 

OCA15) at room temperature. To prepare a polymer film, the polymer was dissolved in a 

small amount of chloroform and was cast on a glass plate. After the solvent was slowly 

evaporated at room temperature, the polymer film was dried under vacuum at 50 oC. A 

droplet of pure water (10 µL) was placed on the polymer film for 30 s, and the static 

contact angle was measured. Each reported contact angle value in Table 4.1 is the 

average of 10 measurements. 

4.4.2. Synthesis of (Cp*RhCl2)2 

Rhodium (III) chloride hydrate (40% Rh, 500 mg, 1.94 mmol) and absolute methanol 

(15 mL) were placed in a round bottom flask fitted with a reflux condenser under 

nitrogen. 1,2,3,4,5-Pentamethylcyclopentadiene (317 mg, 2.33 mmol) was added using a 

syringe under a nitrogen flow. The mixture was gently refluxed for 20 h. The reaction 

mixture was allowed to cool to room temperature, and the dark brown precipitate was 

filtered. The collected reddish brown solid was washed with diethyl ether (3 × 2 mL) and 

dried under vacuum (470 mg, Yield: 78%). 
1
H NMR (400 MHz, CDCl3) δ = 1.65 (s, –CH3). 

13
C NMR (100 MHz, CDCl3) δ = 9.7 (s, –CH3), 94.4 (d, Carom). 
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4.4.3. Synthesis of [Cp*Rh(C6Me6)](PF6)2 

[Cp*RhCl2]2 (580 mg, 0.94 mmol) and hexamethylbenzene (679 mg, 4.45 mmol) 

were combined with trifluoroacetic acid (12 mL) in a nitrogen filled round bottom flask 

fitted with a reflux condenser. The mixture was refluxed for 14 h. Trifluoroacetic acid 

was evaporated using a rotary evaporator. Addition of water (30 mL) produced an off-

white precipitate that was filtered and washed with water (3 × 15 mL). The filtrate 

solution was concentrated to ~20 mL using a rotary evaporator. The addition of 

ammonium hexafluorophosphate (1.03 g, 6.30 mmol) to the filtrate solution caused 

formation of an off-white precipitate that was filtered and washed with water (3 × 8 mL) 

and diethyl ether (3 × 8 mL). The solid was dried at 100 oC under vacuum for 10 h (969 

mg, Yield: 75%). The product was consumed to synthesize the final product, Cp*Rh(η4-

C6Me6), without further analysis. 

4.4.4. Synthesis of Cp*Rh(η
4
-C6Me6) 

[Cp*Rh(C6Me6)](PF6)2 (969 mg, 1.40 mmol) and hexane (40 mL) were placed in a 

Schlenk flask in a nitrogen filled glove box. Cobaltocene (477 mg, 2.52 mmol) was 

added to the flask in the glove box, and the reaction mixture was stirred at room 

temperature for 14 h during which a yellow precipitate was formed. The solution was 

filtered through a short pack of celite inside the glove box, and the filtrate was evaporated 

under reduced pressure. The reddish-brown solid was dried at 60 
o
C under vacuum (412 

mg, Yield: 74 %). 
1
H NMR (400 MHz, C6D6) δ = 1.27 (s, CH3, 6H), 1.41 (s, CH3, 6H), 

1.64 (s, CH3, 15H), 2.05 (s, CH3, 6H). 
13

C NMR (100 MHz, C6D6) δ = 10.1, 14.5, 18.6, 

64.8, 89.7, 93.0, 134.1 
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4.4.5. Synthesis of Pinacol Boronic Ester-Functionalized Isotactic Poly(1-butene) [PB–

B(pin)] (Table 4.1, Entry 5) 

In a nitrogen-filled glove box, a mixture of PB (157 mg), B2(pin)2 (107 mg), 

Cp*Rh(η
4
-C6Me6) (8.4 mg, 5 mol % based on the amount of the boron reagent), 

cyclooctane (300 mg), and a magnetic stirring bar were placed into a vial and capped 

with a Teflon-lined septum. The vial was removed from the glove box and the reaction 

mixture was stirred in an oil bath at 150 
o
C for 24 h. The mixture was cooled to room 

temperature, diluted with toluene (20 mL), and filtered through a short plug of silica to 

remove the catalyst. The filtrate was concentrated using a rotary evaporation to ~5 mL, 

and cold methanol (20 mL) was added to precipitate the polymer as a white solid. The 

precipitated solid was filtered and dried under vacuum at 60 oC for 12 h. Yield: 158.0 mg 

(101% based on polymer weight). 
1
H NMR (400 MHz, CDCl3, ppm): 0.85 (t, 3H, CH3 of 

the PB unit side chain), 1.01 and 1.10 (m, 2H, –CH2– of the PB unit backbone), 1.24 (s, 

BOC(CH3)2), 1.27 (m, 3H, –CH– of the PB unit backbone and –CH2– of the PB unit side 

chain). 
13

C NMR (100 MHz, CDCl3, ppm): 10.8 (CH3 of the PB unit side chain), 25.0 

(BOC(CH3)2), 27.2 (–CH2– of the PB unit side chain), 34.0 (–CH– of the PB unit 

backbone), 39.3 (–CH2– of the PB unit backbone), 82.9 (BOC(CH3)2). 
11B NMR 

(128.3MHz, CDCl3, ppm): 34.3 (–BOC(CH3)2) 

4.4.6. Synthesis of Hydroxylated Isotactic Poly (1-butene) (PB–OH) 

PB–B(pin) (100 mg) (Table 4.1, entry 4) was dissolved in THF (50 mL) in a 250-mL 

flask by applying gentle heat and then cooled to room temperature. A mixture of aqueous 

3 N NaOH solution (1 mL) and 30% H2O2 (1 mL) was slowly added to the PB–B(pin) 

solution, and the solution was vigorously stirred at room temperature for 12 h. The 
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solution was concentrated using a rotary evaporator to approximately 3 mL, and a 

mixture of water/methanol (40 mL/10 mL) was added. The heterogeneous suspension 

was stirred for 20 min and filtered. The collected white solid was washed with methanol 

(3 × 5 mL), dissolved in toluene, and filtered. The filtrate was concentrated using a rotary 

evaporation to approximately 5 mL, and cold methanol (10 mL) was added to precipitate 

the polymer as a white solid. The precipitated solid was filtered and dried under vacuum 

at 60 
o
C for 12 h. Yield: 85.0 mg (85% based on polymer weight). 

1
H NMR (400 MHz, 

CDCl3, ppm): 0.85 (t, 3H, –CH3 of the PB unit side chain), 1.01 and 1.10 (m, 2H, –CH2– 

of the PB unit backbone), 1.27 (m, 3H, –CH– of the PB unit backbone and –CH2– of the 

PB unit side chain), 1.52 (2H, –CH2CH2OH), 3.67 (t, 2H, –CH2OH). 13C NMR (100 M 

Hz, CDCl3, ppm): 10.8 (–CH3 of the PB unit side chain), 27.2 (–CH2– of the PB unit side 

chain), 30.0 (–CH2CH(CH2CH2OH)–), 34.0 (–CH– of the PB unit backbone), 38.7 (–

CH2CH(CH2CH2OH)–), 39.3 (–CH2– of the PB unit backbone), 40.1 (–

CH2CH(CH2CH2OH)–), 61.4 (–CH2OH). FT-IR (film) ν = 3333 cm
–1

 (O–H). 

4.4.7. Synthesis of the Macroinitiator (PB–Br) 

PB–OH (200 mg with 1.4 mol % OH; 5 × 10
–2

 mmol hydroxy group) was placed in a 

Schlenk flask equipped with a magnetic stirring bar, and the flask was evacuated and 

backfilled with nitrogen three times. Toluene (3 mL) was added to the flask, and the 

mixture was stirred at 90 
o
C for 20 min to dissolve the polymer. Triethylamine (70 µL, 

0.5 mmol) and 2-bromoisobutyryl bromide (62 µL, 0.5 mmol) were added to the solution, 

and the reaction mixture was stirred at 90 
o
C for 8 h. After cooling the reaction mixture, 

additional toluene (15 mL) was added. The heterogeneous suspension was filtered. The 

dark brown filtrate was concentrated using a rotary evaporator to approximately 5 mL 
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and 2% HCl-acidified cold methanol (10 mL) was added to precipitate the polymer as a 

pale brown solid. The solid was collected via filtration, washed with methanol (3 × 10 

mL), and dried under vacuum at 60 oC for 12 h. Yield: 200.0 mg (100% yield based on 

polymer weight). 
1
H NMR (400 MHz, CDCl3, ppm): 0.85 (t, 3H, CH3 of the PB unit side 

chain), 1.01 and 1.10 (m, 2H, –CH2– of the PB unit backbone), 1.27 (m, 3H, –CH– of the 

PB unit backbone and –CH2– of the PB unit side chain), 1.93 (s, 6H, –OCOC(CH3)2Br), 

4.20 (t, 2H, –CH2CH2OC(=O)–). 
13

C NMR (100 MHz, CDCl3, ppm): 10.8 (CH3 of the 

PB unit side chain), 27.2 (–CH2– of the PB unit side chain), 30.0 (–

CH2CH(CH2CH2OC(=O))–), 31.0 (–C(CH3)2Br), 34.00 (–CH– of the PB unit backbone), 

39.3 (–CH2– of the PB unit backbone), 55.9 (–C(CH3)2Br), 64.5 (–CH2CH2OC(=O)–), 

171.9 (–CH2CH2OC(=O)–). Mn = 57.7 kg/mol, PDI = 4.6 (SEC using THF as the eluent 

at 40 
o
C); Mn = 67.9 kg/mol, PDI = 4.0 (SEC using 1,2,4-trichlorobenzene at 160 

o
C). 

4.4.8. Synthesis of PB-g-PtBA (Entry 6 in Table 3.2) 

In a nitrogen-filled glove box, PB–Br (50.0 mg, 7.0 × 10
–3

 mmol Br concentration), 

toluene (2.1 g), and a magnetic stirring bar were placed in a 25-mL vial. The vial was 

removed from the glove box, and PB–Br was dissolved with gentle heating. A catalyst 

solution (1.7 mL) composed of Cu(I)Br (1.0 mg, 7.0 × 10–3 mmol), PMDETA (2.4 mg, 

1.4 × 10–2 mmol), toluene (1.4 g), and tBA (134.6 mg, 1.05 mmol) was placed in a vial in 

the glove box and transferred to the vial containing the PB–Br solution. The mixture was 

stirred at room temperature for 5 min and at 90 
o
C for 10 h. After cooling the reaction 

mixture, toluene (15 mL) was added, and the solution was filtered through a short plug of 

celite to remove the metal catalyst. The filtrate was concentrated to approximately 3 mL 

using a rotary evaporator, and cold methanol (10 mL) was added to precipitate the 
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polymer as a white solid. The solid was filtered and dried under vacuum at 60 
o
C for 12 h. 

Yield: 48.0 mg (96% based on polymer weight). 1H NMR (400 MHz, CDCl3, ppm): 0.85 

(t, 3H, CH3 of the PB unit side chain), 1.01 and 1.10 (m, 2H, –CH2– of the PB unit 

backbone), 1.28 (m, 3H, –CH– of the PB unit backbone and –CH2– of the PB unit side 

chain), 1.46 (9H, –OC(CH3)3), 2.25 (1H, –CH2CH(CO2t-Bu)–), 4.07 (2H, –

CH2CH2OC(=O)–). 
13

C NMR (100 MHz, CDCl3, ppm): 10.8 (CH3 of the PB unit side 

chain), 27.2 (–CH2– of the PB unit side chain), 28.2 (–OC(CH3)3), 34.0 (–CH– of the PB 

unit backbone), 39.3 (–CH2– of the PB unit backbone), 42.3 (–CH2CH(CO2t-Bu)–), 80.5 

(–OC(CH3)3), 174.4 (–C(=O)Ot-Bu). FT-IR (film) ν = 1731 cm
–1

 (C=O). Mn = 69.5 

kg/mol, PDI = 5.2 (SEC using THF as eluent at 40 oC). 

4.4.9. Synthesis of PB-g-PAA 

PB-g-PtBA (25.0 mg of 6.4 mol % tBA-grafted polymer, 0.025 mmol tBA 

concentration) and a magnetic stirring bar were placed into a vial and capped with 

Teflon-lined septum. The vial was evacuated and backfilled with nitrogen three times. 

Dichloromethane (1 mL) was added to the vial, and the polymer was dissolved by 

applying gentle heating. TFA (37 µL, 0.5 mmol, 20 equiv to tBA concentration) was 

added to the polymer solution, and it was then stirred for 24 h at room temperature under 

nitrogen. Cold methanol (4 mL) was added to precipitate the polymer as a white solid 

which was filtered and washed with additional methanol (3 × 10 mL). The polymer 

product was dried under vacuum and dissolved in THF (3 mL). After filtration through a 

short plug of celite, the THF solution was concentrated to approximately 2 mL using a 

rotary evaporator and added to cold methanol (4 mL) to precipitate the polymer as a 

white solid. The solid product was filtered, washed with methanol (3 × 10 mL), and dried 
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under vacuum at 60 
o
C for 12 h. Yield: 15.0 mg (60% based on polymer weight). 

1
H 

NMR (400 MHz, THF-d8, ppm): 0.88 (t, 3H, CH3 of the PB unit side chain), 1.09 and 

1.17 (m, 2H, –CH2– of the PB unit backbone), 1.32 (m, 3H, –CH– of the PB unit 

backbone and –CH2– of the PB unit side chain), 2.48 (br, –CH2CH(CO2H)–), 4.06 (br, –

CH2CH2OC(=O), 10.85 (s, –CO2H). FT-IR (film) ν = 1715 (C=O). 

4.4.10. Synthesis of PB-g-PMMA (Entry 3 of Table 3.4) 

In a nitrogen-filled glove box, PB–Br (50.0 mg, 7.0 × 10
–3

 mmol Br concentration), 

toluene (2.1 g), and a magnetic stirring bar were placed in a 25-mL vial. The vial was 

removed from the glove box, and PB–Br was dissolved with gentle heating. A catalyst 

solution (1.7 mL) composed of Cu(I)Br (1.0 mg, 7.0 × 10–3 mmol), PMDETA (2.4 mg, 

1.4 × 10–2 mmol), toluene (1.4 g), and MMA (70.0 mg, 0.70 mmol) was placed in a vial 

in a glove box and transferred to the vial containing the PB–Br solution. The mixture was 

stirred at room temperature for 5 min and at 90 
o
C for 10 h. After cooling the reaction 

mixture, toluene (15 mL) was added, and the solution was filtered through a short plug of 

celite to remove the metal catalyst. The filtrate was concentrated to ca. 3 mL using a 

rotary evaporator, and cold methanol (10 mL) was added to precipitate the polymer as a 

white solid. The solid was filtered and dried under vacuum at 60 oC for 12 h. Yield: 64.0 

mg (128% based on polymer weight). 1H NMR (400 MHz, CDCl3, ppm): 0.85 (t, 3H, 

CH3 of the PB unit side chain), 1.01 and 1.10 (m, 2H, –CH2– of the PB unit backbone), 

1.28 (m, 3H, –CH– of the PB unit backbone and –CH2– of the PB unit side chain), 1.78–

1.99 (m, 2H, –CH2C(CH3)(CO2CH3)–), 3.60 (s, 1H, –CH2C(CH3)(CO2CH3)–), 4.04 (2H, 

–CH2CH2OC(=O)–). FT-IR (film) ν = 1740 cm
–1

 (C=O). Mn = 102.5 kg/mol, PDI = 10.5 

(SEC using 1,2,4-trichlorobenzene as eluent at 160 
o
C). 
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4.5. Conclusion 

The regioselective rhodium-catalyzed borylation of C–H bonds introduced a boronic 

ester functionality at the terminal methyl group of side chain of a commercial high-

molecular-weight crystalline polyolefin, isotactic poly(1-butene). The boronic ester group 

of the polymer was selectively converted into hydroxy group by subsequent oxidation at 

the side chain termini. The functionalization did not disturb the Mn or the molecular 

weight distribution significantly compared with those of the parent material. The 

concentration of functionalized side chains could easily be controlled by changing the 

ratio of diboron reagent to polymer repeating units in the rhodium-catalyzed borylation. 

Esterification of the hydroxylated polymer generated a macroinitiator that has an α-

bromoester group at the end of side chain of the polymer. We successfully synthesized 

high-molecular-weight polar block grated polyolefins, PB-g-PMMA and PB-g-PtBA, by 

ATRP of polar vinyl monomers from the macroinitiator. Hydrolysis of PB-g-PtBA 

created an amphiphilic graft copolymer of the polyolefin, PB-g-PAA. Development of 

the amphiphilic graft copolymer from an easily accessible commercial polyolefin offers a 

convenient alternative way to synthesize new polyolefin-based functionalized materials 

and expand their potential applications. 
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