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Abstract: 

 

Room temperature ionic liquids (RTILs) are salts that are liquids from as low as -96 °C 

to up to 100 °C. RTILs are of high interest in many fields of study because of their 

negligible vapor pressure, high electrochemical stability, high conductivity, and wide 

electrochemical windows.  These diverse solvents have recently been used in organic 

synthesis, as extraction solvents, and as electrochemical solvents. It is as a direct result 

of the multifunctional capabilities of these RTIL solvents that they are examined in 

this work.  The ability to probe the chemistry of lanthanides and actinides is based on 

the unique properties of the cation/anion pair used in the RTIL solutions.  The ionic 

solvent allows studies to be performed under conditions that minimize hydrolysis of 

the actinide species of interest.  In addition, the RTIL solutions can be utilized in the 

potential dependent electrodeposition of f-elements in their metallic form. However, 

lanthanide and actinide species cannot always be added into the RTIL directly.  

Methods of introducing several f-species into the RTIL solvent will be explored. 

Complexes containing the N(SO2CF3)2 anion were synthesized for this work.  The 

synthesis and resulting mechanisms of addition of f-species into the RTIL will be 

discussed.  Electrochemical analysis of the soluble species will be presented.  

Separation of the f-species from the RTIL solvent onto the surface of the electrode via 

potential mediated electrodeposition will be explored.  The nature of each deposit was 

evaluated with scanning electron microscopy and the accompanying energy dispersive 

spectroscopy.  These results will be presented.  Finally, conclusions will be reviewed 
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regarding the feasibility of the use of RTIL solvents as a tool in future separations of 

lanthanides and actinides from spent nuclear waste and other mixed systems. 
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Chapter 1:  Introduction 

 

1.1 Room Temperature Ionic Liquid Overview  

 

Room temperature ionic liquids (RTILs) are useful solvent systems that have been 

utilized recently in the study of f-elements.  Research can be found in the literature 

regarding RTIL solutions including extraction, synthesis, electrochemistry, and 

spectroscopy.1, 2, 3  The ability to probe the chemistry of lanthanides and actinides is 

based on the unique properties of the cation/anion pair used in the RTIL solutions.  The 

RTIL solvent can be anhydrous, which allows studies to be performed minimizing 

hydrolysis of the f-element species of interest.   

The same RTIL system used to probe the electrochemical properties can also be 

used in the extraction of f-elements from aqueous solutions.4  RTIL solvents have also 

received a great deal of attention with respect to direct dissolution of lanthanide and 

actinide solids for use in the possible reclamation of waste materials and unused fuel 

from nuclear fission processes.5,6,7,8  In addition, the work presented in this dissertation 

will demonstrate that RTIL solutions can be utilized in the potential dependent 

electrodeposition of f-elements in their metallic form. This process is based on the 

relatively large electrochemical potential window afforded by the reduction/oxidation of 

the cation/anion combination.9 
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1.2  Synthesis of the RTIL 

 

RTILs are ionic solvents that are composed of an anion and cation that, when 

combined, form a solution from approximately -100 °C to +100 °C.  The melting point of 

the RTIL is based solely on the choice of cation/anion pairs.9  RTILs are often considered 

green solvents because they have negligible vapor pressure and high thermal stability in 

contrast to common organic solvents.  While they are not always “green” in terms of 

toxicity, RTILs do offer improvements over many volatile organic solvents.  In the end, 

the exact anion and cation composition will determine the relative chemical toxicity for 

each RTIL.10   

Modern RTILs have many applications including chromatography, extraction, and 

inorganic/organic synthesis.10  In addition, they can be utilized as solvents for 

voltammetric experiments based on their potentially high electrochemical conductivity 

and stability.4  The large number of cation/anion pairs available allows the physical and 

chemical properties of the RTILs to be logically constructed and tailored.5  Seddon et al 

described a representative sampling of anion and cation combinations.11  Typical cations 

include 1-alkyl-3-methylimidazolium, N-alkyl-pyridinium, and tetraalkyl-ammonium 

(Figure 1.1). 
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Figure 1.1.  A selection of commonly used RTIL cations 
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Common anion choices range from n-bis(trifluoromethansulfonyl)imide (TFSI) to acetate 

based on the miscibility of the anion with water (Figure 1.2).11   

 

 
Figure 1.2. A selection of commonly employed anions grouped according to their 
solubility in water. 

 

 

In cases where high water stability and low viscosity are required, TFSI is the anion of 

choice.  The TFSI anion has become widely used in RTIL solutions7 because it can lower 

the melting point of salts made from ammonium cations,6 while maintaining high 

electrochemical conductivity.  The TFSI anion is also exploited as a coordinating ligand 

with lanthanide and actinide ions.8   

The solution viscosity and conductivity are also important factors that must be 

considered when selecting the cation.  The alkyl chain interactions of ammonium cations 
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are strongly influenced by the length and branching of alkyl groups.  The chain-chain 

interactions of the alkyl groups in the ammonium cation strongly influence the melting 

point and viscosity of the resulting ionic liquid.12 In electrochemical reactions, the 

reduction of the cation must be at potentials more negative than the reaction to be 

examined.  Ring based structures such as alkyl substituted imidazolium cations have also 

been used to prepare RTIL solutions.  However, previous studies have shown that the 

potential dependent reductive decomposition of the imidizolium rings typically occurs at 

potentials that preclude the electrochemical reduction of trivalent actinides to metal.12,13  

In these studies, the tri-methyl-n-butyl ammonium cation was selected for the relatively 

low viscosity and melting point when combined with TFSI.14  In addition, the tri-methyl-

n-butyl ammonium cation is also electrochemically stable in regions that encompass the 

negative potentials required for the reduction of actinide species to metal.  Figure 1.3 

shows the structure of the RTIL used in this work.  

 

 
Figure 1.3.  TFSI anion paired with [Me3NnBu] cation to form the RTIL used in this 
work. 
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1.3 Benefits of RTIL Solutions 

 

For the actinides, RTILs have potential applications in nuclear fuel cycle 

separations.13,14,15,16,17  PUREX is a liquid-liquid extraction process that is used for 

extracting plutonium and uranium from spent nuclear fuel.18  In this process, tri-n-

butylphosphate (TBP) forms an organic complex with the actinide being extracted from 

the spent fuel, separating it from the fission products and other actnides.19  RTILs could 

be used as an alternative extraction system, replacing the n-dodecane solvent that is used 

with TBP.20,19  It may also be possible to create an ionic liquid, such that it can replace 

both the extractant and the solvent.21  Once the uranium or plutonium is present in the 

ionic liquid, then the advantage is clear:  The electrochemical properties of the RTIL 

solvent can be exploited by simply electrodepositing the actinide onto an electrode.  This 

process has not been demonstrated in an aqueous solvent, where the electrochemical 

window is limited by the oxidation of water and hydrogen reduction.  The RTIL solvent 

has a much larger potential window, which is governed by the oxidation of the anion and 

the reduction of the cation (Figure 1.4).   
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Figure 1.4.  Comparison of [Me3NnBu][TFSI] RTIL cyclic voltammetry background (red, 
dashed) to aqueous H2SO4 background (blue, solid) using three different working 
electrodes, glassy carbon (GC), gold (Au), and platinum (Pt), (labeled).     

 
 

It is clear from Figure 1.4 that the RTIL solvent potential window is much larger 

than that of the aqueous solution.  This large region can be exploited in separations 

schemes by removing a species from the RTIL solution through the selection of the 

appropriate electrochemical potential for deposition onto the electrode surface.  If more 

than one species is to be removed from the RTIL solvent, differences in deposition 
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potential for each species can be utilized to separate and remove them individually from 

the RTIL.  For example, it has been previously shown that plutonium electrodeposition 

can be achieved at  -2.1 V vs Ag/AgCl from molten salt eutectic systems.22  Uranium-

metal deposition in the molten salt system has been reported to occur at -1.5 V vs 

Ag/AgCl.23  Should both the uranium and the plutonium be present in the molten salt, the 

above eutectic potentials for electrodeposition should be sufficiently far enough from one 

another to allow for the tunable removal of both actinide components.24   

The intended use of the actinide dictates the desired level of separation efficiency 

for this process.  The proliferation advantage of the molten salt system is that there are 

extreme difficulties in obtaining pure plutonium.  However, if the goal is to separate the 

plutonium from the fission products for the purpose of recycling it for further use in the 

fuel cycle, then the isolated material could be desired.  Kinoshita et al reported 

preferential, but not complete, separation of uranium from plutonium in a U–Pu–Zr alloy 

fuel.25  Lebedev et al studied the factors that dictate complete versus partial separations of 

uranium from common fission product matrixes.  They reported that the effects of molten 

salt temperature and electrode polarization dramatically influence the degree of 

separation of the uranium from the plutonium in solution.  Additionally, they reported 

that using bipolar electrodes would allow for a tunable degree of uranium separation from 

fission products.26  

RTIL solvents and molten salt systems have similarities with respect to their ionic 

composition, and differences in terms of the temperature conditions under which they are 

used.  As such, they are comparable only to a degree.  Both temperature and specific 

ionic composition of the solvent will affect the potentials under which deposition 
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occurs.27   The key to the success of the previous molten salt electrodeposition example is 

that the potentials are sufficiently separated such that either plutonium or uranium could 

be preferentially removed from the RTIL solvent.   

The comparison to the molten salt eutectic demonstrates that conditions exist in 

which actinide separations could be achieved by electrochemically driven deposits of 

uranium and plutonium species at distinct potentials.  It would be expected that some 

shifting of deposition potentials from the molten salt to the RTIL solvent may occur, but 

as long as the potentials are still suitably separated, then the design of the separations 

scheme still applies.  While the theory behind this process applies to RTIL, aqueous, and 

molten salt systems, the advantage of the RTIL solution is that the potential window is up 

to three times larger than the aqueous solvent while being at substantially lower 

temperatures than the molten salts.  

RTILs have a vast number of potential combinations,10,11 allowing for a tunable 

system that will assist in meeting the intended requirements of the anticipated use, 

specifically for proliferation resistance or fuel refabrication.  This allows potentials for 

deposition to be reached at room temperatures that have not previously been accessible in 

aqueous solution.  Another advantage is that after the plutonium and uranium are 

reclaimed and separated from the RTIL, the ionic liquid would then be available for 

repeated cycles of extraction and electrodeposition. This methodology demonstrates a 

direct approach to separate and reclaim common fission products from an RTIL solution.  

As partitioning by potential mediated electrodeposition is the end goal of the possible 

separation scheme, obtaining a clear understanding of this process is vital, and the use of 

the RTIL solvent is a necessity.    
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1.4 Examination of f-elements in the RTIL solvent 

 

Introducing the species of interest into the RTIL system can be problematic due to 

ligand solubility.  In the ionic liquid used in this research, [Me3NnBu][TFSI], f-elements 

cannot always be added directly as commonly available salts.  In the literature, as well as 

in this research, it has been observed that TFSI can form a complex with actinide and 

lanthanide species.28  Formation of a complex with the anion creates neutral species that 

shares a common ligand with the RTIL solution, thus potentially increasing solubility.  

Forming a complex that shares a common ligand with the solvent also holds potential in 

reducing cross-contamination of the counter-ligand during extraction schemes.  The lack 

of cross contamination is a direct result from the sharing of the counter-ligand between 

the extracted complex and the RTIL solution, thus no additional species aside from the 

actinide of interest are introduced into the RTIL.  

Three complexes were synthesized during this research with the TFSI anion .  The 

specific details regarding the synthesis of each product is presented in Chapter 3.  These 

three species, Sm(TFSI)3(H2O)3, UO2(TFSI)2, and U(TFSI)3, were examined to evaluate 

the solubility and subsequent separation of the f-element complex by electrodeposition. 

In Chapter 4, the details on the extraction of Sm(TFSI)3(H2O)3 are presented.  The 

extraction of Sm(TFSI)3(H2O)3 from aqueous solution was compared to both SmCl3 and 

SmI2.  The extraction data suggest that forming a complex with TFSI increases the 

maximum solubility of samarium extracted into the RTIL solution. When a pH of 9.0 and 

above was achieved, 100% extraction efficiency was observed for the samarium.  Once 
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extracted into the RTIL, electrochemical mediated separation of samarium from the RTIL 

solution at an Au electrode was achieved. 

In Chapter 5, the results from using UO2CO3 as a means to introduce uranium into 

the RTIL are presented.  Uranyl carbonate dissolution was achieved by adding an excess 

of acid, H(TFSI), a species common to the RTIL.  The initially insoluble species, 

UO2CO3 can be incorporated directly into the RTIL by argon assisted dissolution via 

displacing the CO3
2-  ligand and subsequent formation of a UO2(TFSI)2 complex.  The 

displacement of the CO3
2- species occurs through the formation of carbonic acid, and is 

limited by the amount of H+ in solution.  By adding the H(TFSI), the quantity of H+ 

available is increased, and thus increases the formation of carbonic acid and the product 

UO2(TFSI)2.   The resulting UO2(TFSI)2 product was determined to be soluble in the 

RTIL at concentrations of approximately 0.4 M.  The UO2(TFSI)2 was then analyzed 

using electrochemistry techniques and electrodeposited at Au and GC electrodes. 

In Chapter 6, the preliminary results of the direct addition into the RTIL of both 

U(TFSI)3 and the reaction precursor, UI3(THF)4,  are presented.   Both the U(TFSI)3 and 

the UI3(THF)4 species were directly soluble in the RTIL at all concentrations examined, 

up to 0.05 M.  For both the U(TFSI)3 and the UI3(THF)4 complexes, metal deposition was 

achieved at the same electrochemical potential, indicating that the examined ligands do 

not appreciably influence the thermodynamic reduction of the uranium species.  

However, the interactions of the f-species with ions common to the RTIL solvent cannot 

be ignored for neutral species extraction.  As stated previously, there is an advantage to 

utilizing a species with a common ion to the RTIL in that no additional undesired, or 
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more specifically contaminant, ligands will be potentially introduced into the ionic liquid 

during extraction.  This is because TFSI anion would already be present in the RTIL. 

Each chapter contains summary conclusions for each species, and Chapter 6, in 

addition to the preliminary U(III) results, presents overall conclusions and 

recommendations. 

This dissertation and the research contained within explored multiple methods of 

introducing f-elements with varying oxidation states into the RTIL, [Me3NnBu][TFSI].   

Each species was successfully introduced into the RTIL solvent and subsequently 

removed by electrodeposition.  These results demonstrate that the RTIL solvent is a 

useful tool that can be used to investigate the electrochemical properties of lanthanides 

and actinides whether they are introduced by ligand displacement followed by 

complexation, extraction, or direct dissolution.  More importantly, in all cases the 

electrodeposition of the actinides and lanthanides from RTIL solutions was achieved.  

The methodology outlined in this dissertation will be used to examine alternative 

methods that may prove useful in future separation schemes. 

 

1.5 Scope of this Research 

 

 The fundamental concept of this work was to explore actinide/lanthanide 

species dissolution, extraction, and electrochemical properties in RTIL solutions.  

Multiple routes for the introduction of f-species into the RTIL and the evaluation of 

electrochemical reclamation of species were envisioned and explored.  
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Chapter 2:  Instrumentation and Experimental design 

 

 Each section in this chapter contains an overview of the instruments that were 

used in this work along with a brief description of the experimental methods that were 

applied.   

 

2.1 Ultra-Violet Visible Spectroscopy 

 

The potential energy of a molecule can be determined by summing its electronic, 

vibrational, and rotational energies.  The energy that a molecule possesses can be 

assigned specific energy levels, or states.  In ultra-violet visible (UV-Vis) spectroscopy, a 

photon beam is passed through a sample, and absorption causes excitation of electrons 

within the individual states of the molecules in the sample.   These excitations can lead to 

transitions between the energy levels (Figure 2.1). 29 
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Figure 2.1.  Reproduction reflecting electronic transitions and the corresponding spectra 
from Owen, 2000 

 
 

Figure 2.1 demonstrates that the various absorption energies are associated with 

different wavelengths that produce a unique response for each sample.  The instrument 

measures the reference light intensity prior to passing through the sample (Io), and this 

value is compared to the intensity of the light after it has passed through the sample (I).  

The ratio, I/Io, is referred to as transmittance, T (typically expressed as %T).  The 

relationship between absorbance (A), and transmittance is reflected in Equation 2.1: 29 

 

( ) ( )A log T  or – log %T /100     = −               Equation 2.1 

 

A double beam spectrophotometer setup was used in this work.  For this 

measurement the light was split into two beams before passing through the sample.  The 

first beam (Io) is passed through a reference sample, and the second beam (I) is passed 
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through the sample to be analyzed.30  The result produces a spectrum where the reference 

sample absorbances have been accounted for as background.  (Figure 2.2). 

 

 

Figure 2.2.  Block diagram of a generic UV-Vis double beam setup  

 

There is a linear relationship between the concentration of the sample and the 

amount of energy that it absorbed that can be defined by the Beer-Lambert Law.  Here, 

the concentration for the sample is high enough to be measured, but low enough such that 

the absorbance response remains linear.29,30  The specific linear range will vary for each 

species in solution. This region of linear response is governed by the Beer-Lambert Law: 

29,30 

 

A logT  bcε= − =                             Equation 2.2 
 

Where:   A=absorbance 
T=transmittance 
ε=molar absorptivity 
b=path length  
c=concentration 

 

The instrument will provide the transmittance.  Using the relationship described in 

Equation 2.1, the absorbance can then be determined.  The path length is known based on 

the cuvette that was utilized in the experiment.  The two potential unknowns remaining in 
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Equation 2.2 are the molar absorptivity and the concentration.29  When one of these 

factors is known, then the remaining unknown can be determined from the spectrum.    

UV-Visible spectra can also provide valuable information on solution 

speciation.29,30  This is because of the interactions within the sample solution.  This 

includes both intra-molecular interactions that occur between multiple atoms of the 

species in solution, and inter-molecular interactions that occur between the species 

dissolved in the solution and the solvent itself.   The result of these interactions is 

absorbance bands that occur at unique energies within the sample cell upon excitation 

from the beam.  These responses within the cell will yield an observable band structure in 

the UV-Vis spectrum.30    

 

2.1.1 UV-Vis Sample Analysis Details 

 

All spectra were collected using a dual beam Cary6000i UV-Vis-NIR 

spectrophotometer in a   10 mm cuvette.  In chapters 3 and 4, the Sm(TFSI)3(H2O)3 

spectra were collected in quartz cuvettes.   For the UO2(TFSI)2 measurements shown in 

chapters 3 and 5, reduced volume (1 mL) quartz cuvettes were employed.  In the U(III) 

analysis presented in chapters 3 and 6, air stoppered (3.5 mL) glass cuvettes were used.   
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2.2 Infrared Spectroscopy 

 

Infrared (IR) spectroscopy is a complimentary technique to UV-Vis because it 

provides information concerning vibrational and rotational transitions of molecules. 

When energy in the mid IR region is passed through the sample, the excitation energy is 

not as high as that of the UV-Vis  region and lower energy transitions are induced.  These 

transitions are influenced by the chemical species providing information regarding 

functional groups and their interactions within the sample.30,31  In these cases, discrete 

vibration and rotation levels can be observed. This occurs when the frequency of the 

energy level is equal to the frequency of the IR light source.  Infrared absorption will 

only occur if the energy of the beam matches the excitation energy of the molecule and if 

there is a change in the electric dipole moment of the molecule.3  Several different types 

of bending and stretching motions can be observed under these conditions.  These 

movements include stretching, scissoring, wagging, twisting, and rocking.31  These 

motions yield an observable band structure in the FT-IR spectrum.  Each sample will 

have an individual spectrum that can be used for identification of the specific functional 

groups contained in the molecule.30  Additional information on FT-IR fundamentals can 

be found in the literature.31 

For this work, a Fourier transform infrared (FT-IR) instrument was utilized.  In 

this method, the IR light passes through the sample and is channeled through an 

interferometer.  Figure 2.3 displays a schematic for a simple interferogram for a 

monochromatic source.  
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Figure 2.3.  Schematic view of a Michelson interferogram for a monochromatic source. 

 

This method enables the total beam intensity to be measured for as many 

wavelengths that are simultaneously passed though the detector.31  Similarly, a 

background spectrum must also be collected to provide a reference (Io) to compare 

against  the sample (I).  The same principles between absorbance and transmittance that 

were described in Section 2.1 can be related to this discussion.30   After repeating this 

cycle many times, the computer analyzes this data using complex mathematical 

operations that process the signal using time and frequency as the domain.31  The 

fundamental concept of this process can also be understood by examining a simplified 

example using Equation 2.3. 
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( ) ( )xytEctrI m πυυπω 2
1

22222 cos2cos4 −∝                               Equation 2.3 

Where:   I=Intensity detected 
r=reflectance (amplitude) 
t=transmittance 
c=constant speed, based on polarization 
Em=Average electric field amplitude 
ω=frequency 
ν=wavenumber (cm-1) 
 

 

Essentially, Equation 2.3 relates the intensity that the monochromator detects to a 

specific wave number in the spectrum.   In practice, a more complicated situation exists 

in which a polychromatic source is often used.  This allows for multiple wave numbers to 

be analyzed simultaneously, after which a Fourier Transform can be used to process the 

information.  This is done by integrating from wave numbers 0 to νmax
19: 

 

( ) ( ) ( ) ( )dxxIdI πυυυ
υυ

2cosxI maxmax

00 ∫∫ +=                        Equation 2.4 

 

Using the relationship described in Equation 2.4, the intensity (I) observed in the 

spectrum for each wave number (x), can be determined after simultaneously collecting 

the data using a polychromator.19  The final product of these calculations will infer how 

much light there is at each wavelength. The resulting information yields the final unique 

spectral result.  
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2.2.1 IR Sample Analysis Details 

 

All spectra were taken with Varian 3100 FT-IR Excalibur series using a Smiths 

detection DurasamplIR in a compartment diamond attenuated total reflectance (ATR) 

attachment along with Varian Resolutions Pro, version 5.04.009 software.  A constant 

argon atmosphere was maintained during all experiments.  Solids were measured using a 

solid concave tip attachment; solutions were analyzed in a liquid well (Figure 2.4).   

 

Figure 2.4. ATR accessory pieces for solid and liquid analysis 
 

Chapter 3 presents the spectra obtained during materials synthesis including that 

of the RTIL used in this work, and Sm(TFSI)3(H2O)3.  Chapter 4 contains spectra 

obtained during the analysis and extraction of Sm(TFSI)3(H2O)3, and Chapter 5 presents 

spectra comparing neat RTIL to acidified RTIL to RTIL containing the UO2(TFSI)2 

species. 
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2.3 Liquid Scintillation Counting  

 

 In alpha and beta decay, the particles primarily interact with electrons in the 

matter they travel through by means of excitation, ionization, or dissociation.32  Liquid 

scintillation counting (LSC) is a method that utilizes the photons that can be produced as 

a result of these excitation interactions; or more specifically, photons can be emitted 

during de-excitation.32  To ensure that the maximum amount of photons reaches the 

detector’s photomultiplier tube (PMT), the sample is placed into an organic solvent called 

scintillation cocktail.32   

The cocktail contains a scintillator, an emulsifier, and a wave shifter.  The 

scintillator is added to the scintillation cocktail so that the ionizing radiation’s excitation 

energy will be transferred to the solvent, and then transferred to the scintillation 

molecules.  Essentially, this allows each alpha or beta emission to result in a pulse of 

light.32  The wave shifter is an organic compound that absorbs the primary scintillator’s 

photons and then re-emits the photon at a longer wavelength.  It does this because the 

photomultiplier tubes used for detection are more sensitive at the longer wavelengths.33  

Finally, an emulsifier or surfactant is added to the scintillation cocktail to ensure sample 

homogeneity.33   

Once the photons reach the detector, two photomultiplier tubes (PMTs) are 

required to ensure that the photons arrive inside of the detector.  Once they arrive in the 

detector volume, they are converted to an electrical current.33  The results are displayed in 

units of counts per minute (CPM).  An efficiency calibration can be used to relate CPM 

to the concentration of materials (see Section 2.3.1).33   
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2.3.1 LSC Efficiency Calibration   

 

Matrix and quenching affects can have an impact on the LSC sample counting 

efficiency.  When light is quenched, it has gone through a process where the amount of 

light coming out of the sample has been reduced.32,33  This can happen when there is a 

chemical competition for the excitation energy in the solvent.  This situation is a 

chemical quench.  Quenching can also happen optically, which is when the light output 

from the scintillators is absorbed due to coloring in the sample (Figure 2.5).32,33 

 
Figure 2.5. Illustration of the scintillation process.32 

 
 

Since quenching will likely always happen, quench indicating parameters (QIPs) 

were used for normalization.  There are two main methods to measure the amount of 

quenching in the system:  Spectral Index of the Sample (SIS) and transformed Spectral 

Index of the External Standard (t-SIE).32,33  In this work, t-SIE was utilized.  In t-SIE, an 

external 133Ba gamma source induces a Compton spectrum in the sample that is 

measured.  The software is able to mathematically analyze the spectrum and provide a 

value from 0 to 1000, where 0 is the highest amount of quench and 1000 is no quenching.  
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As quench increases, the t-SIE value decreases, as does the counting efficiency.  The 

relationship between efficiency and quench is demonstrated in Figure 2.6.33   

 
Figure 2.6.  Quench curves produced using t-SIE plotted against % efficiency for  14C and 
3H β emitters. 

 

For each sample, the LSC instrument provides the CPM as well as the t-SIE 

value.  The actual activity in the sample after correcting for efficiency is represented by 

decays per minute (DPM).  Equation 2.5 reflects the relationship between CPM, DPM, 

and efficiency.  

 

CPM 100 % Counting efficiency
DPM

×
=                Equation 2.5     

 
Where:   CPM = counts per minute 

DPM = decays per minute 
 
 

 
In the solubility analysis of the UO2(TFSI)2 presented in chapter 5, all LSC 

samples received t-SIE values above 700.  Four uranium containing samples of known 

concentration were analyzed in the RTIL, and the t-SIE values for those samples were in 
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the range of 700-900.  The analysis was replicated five times for each known.  In each 

known sample, the CPM equaled DPM, a 100% efficiency.  Therefore after confirming a 

t-SIE value over 700, for all analysis in this work the CPM value displayed by the LSC 

instrument was taken to equal the measure DPM activity of the sample.     

 

2.3.2 LSC Instrument parameters    

 

Data was obtained using a Perkin Elmer Precisely Liquid Scintillation Analyzer 

Tricarb 3100TR instrument running QuantaSmart software.  The instrument is capable of 

partitioning the signal into three energy regions (in the instrumental range of 0 to 2000 

keV), that can be set by the user.  In this work, the total activity was desired, so the 

counting region was set to reflect from 100 keV to 1000 keV.  A lower energy region was 

set from 0 to 100 keV.  At the high end of the 0 to 100 keV region, a small amount of 

tailing of the external 133Ba source could be seen.  Sample blanks containing only RTIL 

were also analyzed.  The samples were set to count for 45 minutes each, or until the 

counting error was equal to or less than 2% of the 2σ standard deviation of the total 

counts. 

 

2.3.3 LSC Sample Analysis Details   

 

Measurements of the 233U were obtained by adding 100 µL of RTIL solution with 

the 233U tracer to 10 mL of Ultima Gold AB (Perkin Elmer) scintillation cocktail inside of 
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20 mL plastic LSC vials.  While utilizing pipettes allowed for a direct method for 

obtaining sample aliquots of a pre-determined quantity, all masses were also recorded to 

reduce potential pipetting errors due to the viscosity of ionic liquid.  The 233U was used as 

a tracer so that the total uranium concentration could be determined as the half-life of 

238U is not suitable for scintillation counting of low uranium concentrations.  A solid 

UO2CO3 sample containing a mixture of 12 % 233U and 88 % 238U was synthesized for 

this work. For details on this synthesis and isotopic percentage determination, see Section 

3.2.2.   

To determine the final total uranium concentrations used in Chapter 5, the 

following steps were taken: 

1. The efficiency was 100%, so that CPM=DPM.  This was then converted to 

activity in Becquerel (Bq): 

DPM Bq
60

=                       Equation 2.6 

 

2. The decay constant was found using the half life of the isotope: 

1/2

ln 2
t

λ =                       Equation 2.7 

 Where:  t1/2=half life (s) 

The isotope 233U has a half life of 1.59E5 years and thus a decay constant of 

1.38E-13 s-1, whereas 238U has a half life of 4.47E9 years, and decay constant of 

4.92E-18 s-1. The five orders of magnitude difference essentially equates to the 

response being dominated by the 233U isotope at the isotopic molar ratio used for 

the uranyl carbonate synthesis.   
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3.   The concentration of the sample containing volume (V) was determined by first 

utilizing the relationship between activity and moles of material shown below: 

 A Nλ=                              Equation 2.8 
  

Where:  A = activity (Bq) 
λ = radioactive decay constant (s-1) 
N= number of atoms 
 

Equation 2.8 was rearranged and converted to solution molarity using Equation 

2.9: 
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                                        Equation 2.9                                     

 
 
Where:  A = activity (Bq) 

λ = radioactive decay constant of  
       233U (s-1) = 1.38E-13 s-1 
V = Sample aliquot volume (L) 
6.02E23 = Avogadro’s number (atoms/mol) 
%233U = unitless conversion from 233U to totalU using the 
percentage of 233U found in the final UO2CO3 sample (see 
Section 3.2.2 for this experimental determination) 

 

In chapter 5, the results are presented from comparing the final concentrations of 

uranium in the RTIL to the corresponding UV-Vis data that was obtained during the 

experiment.     
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2.4  Inductively Coupled Plasma Mass Spectrometry  

 

 Inductively coupled plasma mass spectrometry (ICP-MS) is a powerful tool that is 

able to quantitatively measure the majority of isotopes.  Introduction of the sample into 

the instrument varies based on the phase of the analyte.34  Gas can be directly introduced, 

and solids are measured by first heating the sample with a laser or heated cell to vaporize 

the sample.  Liquid samples are introduced using a sample introduction system that 

contains a nebulizer to convert the liquid sample to extremely small droplets which are 

then moved through the spray chamber into an injector that then injects the liquid 

droplets into the ICP-MS torch.34 Samples are introduced into a plasma which ionizes the 

elements in the sample.  The individual ions are then sent through an interface and 

focusing ion lens, which is directly behind the interface.  The ions are separated by their 

mass to charge ratio as they enter the mass spectrometer; after which they are counted by 

the detector (Figure 2.7).34,35   

   

 
Figure 2.7. ICP-MS filtering lens array 
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2.4.1  ICP-MS Instrument Parameters 

 

All solid and liquid ICP-MS measurements were taken using an Elan DRC II ICP-

MS with Elan software version 3.3 Patch 6 (Build 3.3.16.167e).  Solid measurements 

employed a CETAC LSX-500 laser ablator using DigiLazII Version 1.2 software.   Prior 

to each use, the following manufacturer required settings were used: 

 

Table 2.1.  ICP-MS parameters 
1 Nebulizer gas flow:   0.90 L/min 
2 Argon auxiliary gas flow:   1.20 L/min 
3 Plasma gas flow: 15.00 L/min 
4 Vacuum pressure: < 7×10-6 torr 
5 Radio-frequency power: 1100 Watts 

 

After the initial settings were confirmed, a performance analysis was executed 

with a tuning-solution that contains multiple analytes in a wide mass range.  The results 

of this analysis were used to ensure that the instrument was working inside of the 

manufacturer’s published parameters for precision and sensitivity of the measurements.   

The liquid samples used in the Sm(TFSI)3(H2O)3 results presented in chapter 4 

were analyzed using a CETAC Technologies autosampler.  They were introduced into the 

ICP-MS via a quartz nebulizer.  The instrument was set to introduce each sample to the 

nebulizer for 90 seconds prior to taking each measurement, from which 5 replicate 

measurements were obtained.  The probe was rinsed in 2% HNO3 for 60 seconds between 

samples.   

The solid electrode samples presented in chapter 5 were introduced into the ICP-

MS instrument by laser ablation.  In this technique the solid material can be ionized and 
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directly introduced into the ICP-MS by irradiation with a laser.34  The laser was set to a 

spot size of 20 µm, and each spot was ablated for 45 seconds.  Multiple spots in all areas 

of the electrode were analyzed using this method to obtain information regarding the 

uniformity of the uranium deposits.   

 

2.4.2 Liquid Sample Preparation 

 

Eight samarium calibration standards were prepared gravimetrically in 2% 

(wt/wt%)  nitric acid from 0 to 300 ppb (0 M to 2.0 µM).  The extraction samples used 

for the samarium analysis presented in Chapter 4 were taken from the aqueous phase.  In 

these experiments, 100 mg samples were placed into a 15 mL centrifuge tube, after which 

9.9 g of 2% HNO3 was added.  These samples were shaken for 60 seconds and then 

analyzed upon completion of each extraction experiment. 

 

2.4.3 Solid Sample Preparation 

 

 Methods of electrodeposition from RTIL solution are described during subsequent 

chapters in this dissertation.  In chapter 4, samarium was deposited onto a gold electrode.  

In chapter 5, uranyl was deposited onto glassy carbon and gold electrodes.  In chapter 6, 

uranium was deposited onto gold electrodes.  In all experiments, the electrode surface 

was carefully rinsed with acetone then dried with a Chemwipe.  The electrode exterior 

was not rubbed, as this could potentially remove the deposit from the surface.  Two types 
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of electrodes were analyzed in this work:  A gold sheet and glassy carbon (GC).  In the 

case of the gold sheet, no additional steps were necessary.  However, the GC electrode 

was too long to fit into the laser ablation sample holder, necessitating electrode tip 

removal for sample analysis. 

 

2.5  Scanning Electron Microscopy  

 

 The scanning electron microscopy (SEM) instrument is an effective tool that 

allows for highly magnified images to be obtained.36  A filament electron gun is used to 

send electrons through a vacuum chamber.  The electron beam is continuously swept 

across the sample at high speeds producing a secondary electron response in the 

sample.36,37  The image results from the excited electrons being observed at the cathode 

ray tube.  In addition, characteristic x-rays produced in this process can be measured and 

used to obtain elemental composition of the sample with energy dispersive spectroscopy 

(EDS), a complimentary SEM tool. 36,37 

 Once the electron beam targets the sample, interactions of the electrons with the 

matter present on the sample are observed.  The primary electron source (the electron 

beam) travels a specific distance into the sample and then collides with another particle.36  

Following this collision, the primary electron will be scattered, and as a result, a teardrop 

shaped reaction vessel forms.  It is in this teardrop reaction vessel where all of the 

scattering events used in the SEM analysis occur (Figure 2.8). 36   
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Figure 2.8.  SEM Electron scattering reaction vessel. 

 
There are several types of possible scattering events.  X-rays are emitted as a 

result of the ejection of electrons from specific orbits of an atom.36  It is this aspect that 

the EDS system utilizes when generating the sample composition information.   The 

detector is designed such as to minimize the interference of the background x-rays and 

acquire a spectrum from 0 eV up to over 30 eV.36 Backscattered electrons occur when the 

primary electron beam interacts with the sample in such a way that instead of being 

absorbed into the sample, it instead escapes the sample.  These interactions maintain most 

of the original energy of the electron beam and are used for imaging samples that want 

relative atomic density combined with topographical data.8 

Secondary electrons occur when the primary electron is absorbed into the sample, 

and a lower energy secondary electron is then emitted from the sample.  The energy of 

the secondary electrons is very low, so only those interactions that occur near the reaction 

vessel surface are measured.36,37 Still, there are two very important uses for selecting the 

secondary electron mode when using the SEM instrument:  high resolution and excellent 

topographical information can be obtained.8  This is because multiple secondary events 

can occur with each primary event; therefore creating an increased signal, thus better 
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imaging.  In this work, both backscattered and secondary electron images were obtained.  

Typically, the secondary images were the most clear.    

 

 

2.5.1 SEM/EDS Sample Analysis Details 

 

SEM and EDS measurements of uranium and samarium electrochemical deposits 

were obtained using a JOEL JSM-5610 instrument and an Oxford ISIS EDS system with 

a tungsten filament.  All samples were deposited onto gold or GC electrode surfaces.  The 

electrodes were cleaned and prepared in the same matter as for the ICP-MS laser ablation 

analysis (see Section 2.4.3). Samples for SEM examination must be electronically 

conductive; however the electrode surfaces are by nature conductive, so no further 

preparation was required for analysis.  The electro-deposition of various f-element 

species and the SEM images and EDS results are presented in Chapters 4, 5, and 6. 

 

2.6  X-Ray Diffraction 

 

X-ray diffraction (XRD) is a very useful tool that is compatible with any solid that 

has crystalline characteristics.38  From this tool, information about the specific chemical 

composition and structural orientation can be obtained.  All compounds can be described 

by their crystal lattice structure, the arrangement of the atoms in three dimensional space. 

The atoms are ordered in a series of repeating planes, with a distance, d, between them.38  

The distance will be different for each material.  There are multiple planes in every 
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crystalline material with their own orientation and distance between them.  This is 

referred to as d-spacing (Figure 2.9).38  

 
Figure 2.9.  Crystal unit cell.  

 

When a monochromatic x-ray beam targets this crystalline solid, it is diffracted 

when the distance between the x-rays and the planes of the material are different by n 

wavelengths, this relationship is described by Bragg’s law: 38 

 

 

n 2dsinλ θ=                                  Equation 2.10 

 Where:  n = wavelength integer 
   λ = wavelength of the incident beam 
   d = distance between planes 
   θ = angle of the incident beam 

 

 

The d-spacing of the crystalline material can then be obtained by varying the angle of the 

incident X-ray beam. A plot can be created with the angles, intensities, and positions 

obtained during analysis, and a diffraction pattern can be created that will be 

characteristic of the specific sample being analyzed (Figure 2.10).38  
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Figure 2.10.  XRD sample and detector arrangement.  

 

2.6.1 Powder XRD Instrument Parameters 

 

Powder XRD measurements were taken using a PANalytical X'PERT Pro X-ray 

Difraction Spectrometer with the following settings:  

 

Table 2.2.  Powder XRD parameters 
1 Power:  40 kV/40 mA 
2 θ  Range:  34 to 58 degrees 
3 Steps: 0.05 degrees 
4 Slit size: 0.1 mm (receiving)      

 

The measurements were refined using a lattice parameter including a 2nd order 

spherical harmonics texture model.  This modeling method can be used to obtain 

orientation and particle morphology details.39  For example, in Section 6.3.1, the XRD 
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analysis of uranium metal is presented.  The determination of the presence and phase of 

the uranium was made using this method.   

 

2.6.2 XRD Electrode Sample Preparation 

 

 Only gold electrodes were analyzed with this technique.  They were prepared 

inside of an argon filled glove box in the same manner as laser ablation (see Section 

2.4.3).  The electrodes were mounted in the sample holder using putty.  The sample 

holder cap was sealed with vacuum grease and a sheet of plastic tape was placed inside of 

the sample holder to protect the air sensitive samples (Figure 2.11).  After the electrodes 

were mounted, they were sealed inside a secondary container and taped closed during 

transport.  After transport they were opened and immediately placed onto the powder 

XRD instrument.  The electro-deposition of uranium onto the gold electrodes and the 

results of the powder XRD analysis are presented in Chapter 6. 
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Figure 2.11. XRD Sample holder containing Au electrode 

 

 

2.6.3 Single Crystal XRD Instrument Parameters 

 

Single crystal XRD measurements were taken using a Bruker Apex II single 

crystal diffractometer with the following settings:   

Table 2.3.  Single crystal XRD parameters 
1 Power:  60 kV/300 mA 
2 θ  Range:  20 to 80 degrees 
3 Steps: 0.05 degrees 
4 Slit size: 0.3 mm (receiving)   
    0.1 mm (diverging)      
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2.6.4 Single Crystal XRD Sample Preparation 

 The Sm(TFSI)3(H2O)3 crystal synthesis procedure is presented in Chapter 3.  The 

crystals were prepared for XRD by removing a small sample and placing it on a slide in 

paratone oil.  A single crystal suitable for analysis was then selected, mounted onto a 

glass fiber, and placed immediately onto the XRD instrument for analysis.   

 

2.7  X-Ray Absorption Fine Structure  

 

 X-ray absorption fine structure (XAFS) is an extremely useful method that can 

provide information on the coordination, oxidation state, and identity of atoms bound to a 

known element.40  Following X-ray excitation of sufficient energy, a core shell electron 

can be excited to an unoccupied state.  This method is typically used at synchrotron 

sources where the energy of the X-rays can be tuned to the specific energy of the shell 

that information is desired from, often known as the absorption edge.41  A double crystal 

monochromator is utilized to select the correct energy for absorption edge of the element 

of interest.40  The resulting spectra can be categorized into two areas:  X-ray Absorption 

Near Edge structure (XANES) and Extended X-ray absorption Fine Structure (EXAFS).  

These two regions together are often referred to as XAFS (Figure 2.12). 
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Figure 2.12.  XANES and EXAFS regions in an XAS spectrum.40 

 

The XANES region is very sensitive to oxidation state and the coordination 

around the atom of interest.40  This area in the spectrum extends from the initial energy to 

approximately 50 eV past the absorption edge.  The position of the absorption edge can 

be used to determine the oxidation state of the atom of interest.40  This technique was 

utilized in the analysis on the UO2 deposited electrode presented in Chapter 5.   

The EXAFS region provides information regarding the identity, coordination, and 

distance of the neighbors surrounding the absorbing atom.41  In this area, the 

photoelectrons have transitioned to continuum states.  As a result of the energy in this 

region, backscattered electrons are created from the atom’s neighbors.  The amplitude of 

the backscattered electrons when they reach the absorbing atom is energy dependant.40,41  

The result is oscillations in the XAFS spectrum that can be used to determine information 

regarding the absorbing atom’s neighbors.41  This technique was also applied in the UO2 

electrode analysis in Chapter 5.  A more comprehensive review of XAFS techniques can 

be found in the literature. 40,41 
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2.7.1 XAFS Sample Preparation 

 

The electrode sample was prepared by scraping the surface of the electrode to 

remove the deposit.  The sample was affixed to 0.25 µm kapton tape and mounted in an 

aluminum sample holder.  The method of electro-deposition is described in Sections 5.6 

and 6.5. 

Liquid samples were analyzed using custom-made aluminum liquid sample holder 

boxes.  Several air-sensitive uranium solutions were prepared for analysis (see Chapter 

6).  After the box was assembled, clear coat nail polish was used to further seal the box 

from open air (Figure 2.13).  

 
Figure 2.13.  XAFS representative liquid sample holder 
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2.7.2 XAFS Sample Analysis Details 

 

XAFS measurements were performed at the Advanced Photon Source (APS) at 

the BESSRC-CAT 12 BM station at Argonne National Laboratory. The XAFS spectra 

were recorded at the U-LIII edge (17,166 eV) in fluorescence mode at room temperature 

using a 13 elements germanium detector. A double crystal of Si [1 1 1] was used as a 

monochromator. The energy was calibrated using an Yttrium foil (K edge = 17,038 eV). 

For each sample, four spectra were recorded in the k range [0 - 14] Å-1 and averaged. 

Background contribution was removed using Athena software and data analysis was 

performed using Winxas.  For the fitting procedure, amplitude and phase shift function 

were calculated by Feff8.2. Input files were generated by Atoms using crystallographic 

structures of the uranyl hydroxides and UO2.42,43  Adjustments of the k3 -weighted XAFS 

spectra were performed under the constraints S0
2 = 0.9.  A single value of energy shift 

(∆E0) was used for all scattering; all the other parameters were allowed to vary. 

 

2.8  Voltammetry  

 

 Each of the techniques described in this work rely on the underlying concept that 

the oxidation states of materials can be probed using an applied voltage.  In an 

electrochemical system, the energy of formation can be evaluated and utilized to observe 

specific oxidation states under solution based conditions.44,45  These formation energies 
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can be obtained, and then utilized to electrochemically deposit a solid species out of the 

solution and onto the working electrode.   

 

2.8.1  Cyclic Voltammetry and Linear Sweep Voltammetry  

 

Cyclic voltammetry (CV) utilizes a technique in which the voltage is applied to a 

solution and the current is measured as a response to changes in the voltage over time.44  

The potential begins at an initial voltage, a, and is swept first towards a negative 

potential, b, then back to a positive voltage, c, and then finally, returns to the initial 

voltage, a (Figure 2.14).   

 

Figure 2.14.  Representative screen display during CV of U(TFSI)3 in the RTIL solution.  
The arrows indicate the direction of the potential as it is repeatedly scanned from points a 
through c. 
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 The current is measured as the potential is varied in this cyclic manner.  This type 

of electrochemical experiment allows for the observation of redox couples in which the 

oxidation and the reduction of the species of interest can be analyzed.44 These redox 

reactions can be as a result of electron transfer reactions or from potential mediated 

chemical reactions.  In the latter example, the applied potential provides the needed 

energy to drive the chemical reaction.  In this case, ligands can be displaced, and new 

complexes formed during the electrochemical reaction.44  The current peaks that are 

viewed during CV experiments are caused as a result of a diffusion layer forming near 

the surface of the electrode when the current is applied.44,45  Over time, the measurements 

obtained will represent the bulk solution, and analysis can be executed with regard to the 

type of reaction that is taking place.  Specifically, in CV, insight into whether an 

oxidation and reduction mechanism is reversible, quasi-reversible, or irreversible can be 

found based on the Nernst Equation.44  In the case of Equation 2.11, the Nernst Equation 

reflects that the energy in volts is proportional to the natural log of the concentration of 

the oxidized species divided by the concentration of the reduced species.44,45 
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                                     Equation 2.11 

Where:  O = oxidized 
   R = reduced 
  E = energy, V 
  R = molar gas constant, 8.31447 J mol-1 K-1  
  T = temperature, K 
  F = Faraday constant, 9.64853 × 10-19 C 
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The reversibility of the system can also be related to the Randles-Sevcik equation:     

 

 

5 3/2 1/2 1/2(2.69 10 ) ACDpi n v= ×                           Equation 2.12 

 Where:   ip = peak current 
   n = number of electrons 
   A = electrode area 
   C = concentration 
   D = diffusion coefficient 
   v = scan rate 

 

If the above equations (Equation 2.11 and 2.12) hold true, then the system can be 

referred to as reversible.  If neither are valid, then it is inferred that the system is 

irreversible.  If one is true, but the other is not, then it is quasi-reversible.44  In 

electrochemical reactions, the rate of the electron transfer between the working electrode 

and the species being reduced in solution defines whether the system is electrochemically 

reversible.  When the electron transfer process happens quickly, the system is said to be 

reversible.  When the electron transfer process happens slowly, the process is defined as 

irreversible.  Finally when the electron transfer rate is neither slow nor fast, the reaction 

is quasi-reversible.44  This relationship can be evidenced by deviation from the above 

equations, which were derived under reversible conditions.  The above description 

explains the most basic underlying concepts.  A more thorough explanation on the 

fundamental theories that govern the electrochemical reactions is presented 

elsewhere.44,45 

In the case of reversible electrochemical adsorption, the following relationship is 

used:44                      
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2 2F A
4RTp

n vi Γ
=                                              Equation 2.13 

Where:  Γ = surface coverage  

All remaining terms are defined above 

 

The theory behind Linear Sweep Voltammetry (LSV) is the same as that for CV, 

with the exception that the sample is only probed in one direction for one scan.44  Simply 

put, LSV is half of a CV experiment.  While this does not give information regarding the 

reversibility of a system, it can be utilized to observe the effects of electrodeposition on 

the surface of the electrode.44  When the current is set sufficiently negative such that a 

deposit can be made with each scan, then changes to the surface of the electrode will be 

observed with each successive scan.  For example, in chapter 5 of this work, real-time 

observations were made as a glassy carbon electrode was changed to a uranyl electrode 

through electrodeposition.  The subsequent voltammetry was altered after the electrode’s 

surface was changed.  This can give insight into whether the potential mediated 

deposition is favored at the original electrode, or on an electrode that already contains the 

material to be deposited.44  Specifically, LSV can yield valuable information on the 

optimal conditions for obtaining deposition onto the electrode surface.  Additionally, 

since the theory of LSV is the same as CV, oxidation and reduction reactions can be 

observed during the half-cycle as previously discussed above.  The literature can be 

consulted for excellent reviews with further fundamentals of CV, LSV and Square wave 

voltammetry (SWV).44,45  
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2.8.2 Square Wave Voltammetry  

 

Square wave voltammetry (SWV) is a difference technique that takes advantage 

of a square waveform that is superimposed over a staircase potential.44  Essentially, the 

current is recorded twice for each wave cycle; once at the beginning, and once at the end 

(Figure 2.15).  The difference of the current at these two points is then plotted against the 

applied voltage.   

 

Figure 2.15.  Square-wave form in SWV.  

 

The peaks are proportional to the analyte concentration.44   In addition, given that 

SWV is a subtractive method, there is a reduction in background interferences that may 

be evident in CV, thus this method can also be employed to de-convolute the redox peaks 

observed in CV.   The net current observed in the SWV technique is much larger and 

more symmetric than the corresponding CV current response because it is the difference 
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in current between the forward and reverse scans.  As such, the SWV redox peaks are 

more resolved from one another.  SWV has also been used in the literature for kinetic 

studies due to the ability to achieve a large number of scans very quickly.44  The resulting 

data from the SWV analysis will reflect electrochemically driven reactions as mentioned 

in Section 2.8.1, specifically electron transfer reactions and electrochemically driven 

chemical reactions.  In summary, one of the main advantages of SWV is a clearer picture 

of the peak locations as a result of the more resolved peaks obtained from this technique.  

Additionally, the concentration of the species in the solution can be obtained from 

observing the maximum peak current for any given redox reaction.44  

 

2.8.3 Reference Electrode 

 

Previous reference electrodes were standardized in aqueous based systems, and 

thus there is an unknown solubility of the reference redox couples in RTIL solutions.  

Based on published RTIL work by Saheb et al, a non-aqueous Ag/Ag+ reference 

electrode is utilized in all work examined in this dissertation.46  By using the Ag/Ag+ 

electrode in contact with a soluble salt such as silver nitrate, the reference electrode’s 

potential no longer is dependent on the electron transfer process at the interference, scan 

rate, or potential range; all of which could be affected by the adsorption of species at the 

working electrode.46  The Ag/Ag+ reference has a known potential versus the 

ferrocene/ferrocenium couple.44 After measuring the potential for ferrocene in the 

[Me3
nNBu][TFSI] RTIL using the Ag/Ag+ reference electrode with a gold working 

electrode, E’ was determined to be -0.173 V.  The published value is +0.400 V versus 
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NHE.   The adjustment from Ag/Ag+ to NHE scale was then calculated to be +0.573 V.  

This process was repeated for platinum and glassy carbon working electrodes, and the 

offset was unchanged at +0.573 V in those cases as well.  This was the conversion 

utilized for all experimental results contained in this dissertation.  

 

2.8.4 Electrochemical Cell Design and Preparation 

 

In all voltammetry experiments, a three-electrode set up is employed (Figure 

2.16).  The system was composed of a glassy carbon disc electrode (3 mm diameter) or 

gold sheet working electrode (1 cm x 1 cm), a Ag/Ag+ (0.1M AgNO3 in MeCN) non-

aqueous reference electrode,46 and a platinum sheet counter electrode (1.25 cm x 1.25 

cm).   

 
Figure 2.16.  Three electrode electrochemistry cell used in experiments. 

 

The working electrodes were freshly cleaned and polished prior to each use.   The 

Reference electrode was not re-used for more than one experiment set.  In between any 
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change in solution conditions, the electrode glass tube was cleaned, the fill solution was 

replaced, and a fresh vicor tip was attached.   The counter electrode was also cleaned and 

fired with a torch prior to each use.  All electrochemical measurements were made using 

a CH Instruments CHI 770 bipotentiostat.    

 

2.8.5 Electrochemical Experimental Conditions 

 

 For all work the same cell design was utilized as sited above.  The solution was 

added to the analysis cell, and the electrodes were carefully inserted.  Many of the 

experiments utilized low volumes of solution down to 1.0 mL, and this created a unique 

situation where migration of the solution up the electrode and onto the electrode clips was 

observed.  To prevent this from re-occurring, the cells were coated with clear nail polish 

on all exposed locations.   

 All work for Chapters 4 and 5 was performed on the bench-top with no additional 

changes.  The experiments for Chapter 6 were executed inside of an argon filled glove 

box.  Initially, these trials were performed inside of a Labconco glove box that had no 

output/input ports for the electrochemical cell wire housing.  As a result, the entire setup 

was moved into the glove box (Figure 2.17).    
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Figure 2.17.  Electrochemical setup in the Labconco glove box. 

 

While the equipment did operate, the electronics generated a substantial amount of heat.  

This caused overheating to the computer, which in turn would shut down during the 

voltammetry experiments.  As a result of this, the temperature had to be carefully 

monitored.  Whenever the temperature exeeded ~35 oC, the electronics were powered off 

until the conditions inside of the box returned to ~ 25 oC.  Later studies were repeated 

using an MBRAUN glovebox that enabled the electrochemical wiring to be inserted 

through a custom made air-tight plate that fit into the pre-installed MBRAUN input ports.  

Moving the computer outside of the glovebox resolved the overheating issues, but did not 

alter the potentials at which the oxidation and reduction processes were observed.  
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Chapter 3:  Synthesis  

 

3.1 Room Temperature Ionic Liquid Synthesis 

3.1.1 Materials   

All reagents used in the synthesis of the ionic liquid were reagent grade.  Lithium 

bis(trifluoromethanesulfonyl)imide (Li(TFSI)) salt was purchased from VWR. The N,N-

Dimethyl-n-butylamine (Me2NnBu) and the Methyl Iodide (MeI) were purchased from 

Sigma Aldrich.  All purchased reagents were used as received. 

 

3.1.2 Synthesis of [Me3NnBu][TFSI]   

The synthesis was based on the procedure by Bhatt, et al.47  A 0.72 mol (100 mL) 

sample of Me2NnBu was removed from the refrigerator and placed into a salted ice bath.  

Over the course of 2 hours, 0.72 mol (45 mL) of MeI was added drop-wise through a 

column with constant stirring of the resulting mixture.  A 100 mL sample of diethyl ether 

was added to the white precipitate, forming a suspension.  Upon addition of 100 mL 

water, an aqueous and organic phase formed.  The layers were separated using a 

separatory funnel, and the excess aqueous solvent was then removed under vacuum and 

gentle heating.  After 3 hours, a white solid, [Me3NnBu]I (169.5 g) was obtained.  The 

solid was dried in a freeze dryer overnight to ensure accurate yield before combining with 

the anion.   
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The product, [Me3NnBu]I, was then dissolved into 10 mL of  DI water and 0.703 

mol of Li[TFSI] was added.  The anion and cation water solutions were then combined 

into one vessel.  The resulting biphasic mixture was then separated using extraction 

techniques.  Frequently, a separatory funnel is employed such that the organic phase can 

be readily separated from the aqueous phase.48  These techniques were somewhat 

modified, as the organic layer was the lower phase; so standard extraction vessels were 

impractical due to the viscosity of the RTIL solvent.  When use of the separatory funnel 

was attempted, the organic lower phase RTIL clogged the small opening in the vessel, 

preventing the extraction from proceeding.  Instead, the majority of the water was 

initially removed by decanting.  Next, the RTIL was removed with a wide mouthed 

disposable pipette.  To remove any remaining excess iodine, the product RTIL layer was 

then washed with sodium thiosulfate and DI water.  The RTIL, [Me3NnBu][TFSI], was 

then dried with sodium sulfate.  The solution was then passed through a column of 

activated alumina to remove any remaining excess iodine and water.12  Finally, the RTIL 

was placed under a vacuum and gently warmed overnight to ensure full removal of any 

remaining un-reacted reagents and water.  The combination of purification techniques 

described above was based on a thorough review of the literature and multiple 

refinements to obtain the purest product possible.12,28,11,10 

The final product [Me3NnBu][TFSI] was characterized via IR-spectroscopy 

(Figure 3.1).  All anticipated IR-active functional groups were evident in the spectra  

(Table 3.1).  The bands were labeled using published values in Figure 3.1 to reflect the 

functional groups that they represent. 48,49  Several batches were made in this manner, and 

the IR-spectra were used to not only to identify successful synthesis, but also to ensure 
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that the batches were reproducible.  Successful batch reproducibility for this work was 

primarily indicated by the band maxima occurring at the same wavelength.  For all three 

batches, the maxima were found to occur at consistent wavelengths (Table 3.1). 

  

Table 3.1.  Comparison of synthesized RTIL batches IR spectral bands. 
Functional 
Group 

Wavelength (cm-1) 
Batch 1 Batch 2 Batch 3 Literature48,49   

CH2 and CH3  1495 1493 1492 1470 
  1481 1481 1483 1465 
SO2 1346 1346 1344 1334 
  1329 1329 1327 1324 
CF3 1180 1179 1173 1195 
SO2 1134 1132 1132 1138 
SNS 1051 1051 1049 1062 
CH3 972 972 972 969 
  932 931 932 953 
  910 908 908 947 
CS 789 789 789 797 
SNS 764 764 762 771 

CF3 741 741 741 741 
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Figure 3.1.  IR spectrum of several batches of neat [Me3NnBu][TFSI].  Batch 1 is the 
black solid line, batch 2 is the green dashed line, and batch 3 is the blue dotted line.  The 
functional groups responsible for the bands are labeled in the figure.  

 

 

 

Following synthesis of each batch, the product was dried and weighed.  The initial 

starting quantities were used to calculate the expected product as demonstrated below.   
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This was compared to the final measurement, and a percent yield was determined as 

shown in Table 3.2.  Each synthesis yielded approximately 60% product after 

purification.  

 

Table 3.2.  RTIL Batch Yields 

Batch 
Actual 
Yield Theoretical % Yield 

1 166.5 277.6 60.0 
2 164.6 260.4 63.2 
3 161.1 280.1 57.5 
  Average 60.2 

 

In addition, for many studies, the amount of water in the system is of interest.  A 

common technique for determining water concentration in a sample is via coulometric 

Karl Fischer Titrations.  In this method, the titration cell is divided into two 
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compartments.  The first compartment contains an anodic solution consisting of sulfur 

dioxide, imidazole, and iodide in a methanol solution.  The sample is injected into the 

smaller, cathodic compartment.  Iodine is then created in an electrochemical reaction in 

the cell.  Any water that comes in contact with the iodine will be titrated until there is no 

remaining water.  The quantity of water is determined by the instrument software by 

measuring the amount of current that was required to generate the iodine.50  The water 

content in the [Me3NnBu][TFSI] was analyzed with five replicate Karl Fisher titrations.  

The data from the experiment is shown in Table 3.3.   

 

Table 3.3.  Karl Fisher Titration data 
Titration % Water 

1 0.285 
2 0.290 
3 0.283 
4 0.281 
5 0.286 

Average 0.285 
Standard Deviation 0.003 

Relative Error 0.012 
 

From the data, the RTIL was determined to contain 0.285± 0.012 mass %  water content.   

 

3.2 Uranyl Carbonate Synthesis 

3.2.1 Materials   

Uranyl nitrate was obtained from a standard stock in the UNLV Radiochemistry 

program.  This stock is comprised of material that was recycled and obtained from other 
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universities.  The RTIL, [Me3NnBu][TFSI] was synthesized in this work (see Section 

3.1).  Sodium carbonate was purchased from VWR.   

 

3.2.2 Synthesis of uranyl carbonate, UO2CO3   

The synthesis of the uranyl carbonate was based on previous literature.51  A 240 

mg sample of uranyl nitrate composed of 180 mg 238U and 60 mg of 233U was placed into 

50 mL of DI water.  These quantities were intentionally selected to obtain a yield a 25% 

ratio of 233U in the product uranyl carbonate.  The final percent composition of each 

isotope was experimentally determined to be 12.2% 233U.  This analysis is described later 

in this section. The solution was then adjusted from pH 2 to a less acidic condition of pH 

5 via slow addition of sodium carbonate with constant stirring.  The pH was selected 

based on published ranges to favor the formation of the mono-carbonate species.52  The 

solution was purged with CO2 gas for one week to ensure sufficient time for reaction 

completion.  The resulting solid pale yellow precipitate, UO2CO3, was then separated and 

freeze dried for 24 hours.  An IR spectrum identified the resulting solid as the desired 

mono uranyl carbonate product (see Section 3.2.3, Figure 3.3).   

To verify the composition of 233U and 238U isotopes, a 25.0 ± 0.1 mg solid sample 

of UO2CO3 product was dissolved into 10 mL of 10% HNO3.  A 50 µL aliquot of the 

sample was then removed, weighed (to reduce volumetric errors), and LSC cocktail was 

added with a final volume of 20 mL. This solution was then analyzed using liquid 

scintillation counting.  The calculation steps below were taken to determine the 

percentage of each uranium isotope in the final product: 
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3. The efficiency was determined to be 100% (see Section 2.3.1), so that 

CPM=DPM:  231200 CPM = 231200 DPM 

4. This was then converted to activity in Becquerel (Bq):  DPM/60 = Bq: 

231200 3853.33 Bqs60 min
=   

5. Using A = λN, the moles of 233U in the sample was determined: 

233U
6233U

4
3

233U
4

6-
233U

8

6-
233U

8
231 13

1

113
233

mol 1027.9
L

mol 1027.9L1010

mL 10   volumesample Original

M 1027.9
L 1050

mol 1064.4

solution L 1050in  mol 1064.4
atoms 106.02

mol
s101.38
sBq 3853.33

1038.1

−
−

−

−
−

−
−−

−

−−

×=






 ×
×

=

×=
×

×

××=







×







×

⋅

×= sUλ

 

4.  The ratio of 233U to 238U present in the UO2CO3 sample was calculated: 
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The experimentally determined ratio of 233U was then found to be 12.2%.  While this 

value was lower than the experimental design would have suggested (the synthesis was 
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designed for a 25% 233U ratio), the liquid scintillation counting sample results were 

repeatable.  For all experimental result calculations, a ratio of 12.2% 233U was utilized. 

 

 

3.2.3 Spectroscopy of uranyl carbonate, UO2CO3   

 An IR spectrum was obtained of the resulting solid uranyl carbonate product 

(Figure 3.2).   The peaks can be assigned to the functional groups as listed in Table 3.4. 

  

 

 
Figure 3.2.  FTIR spectrum of solid UO2CO3 
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Table 3.4.  IR assignments for solid UO2CO3. 
  Wavelength (cm-1) 
Functional 
Group Product Literature9,26 

CO3
2- 1519 1522-1578 

CO3
2- 1348 1347 

UO2
2+ 960 902-932 

UO2
2+ 933 902-932 

UO2
2+ 835 833 

CO3
2- 808 798-802 

CO3
2- 786 726-778 

CO3
2- 754 702-778 

CO3
2- 707 695-700 

 
 
The spectrum was consistent with the published literature for the mono-uranyl species.9,26      

 

3.3 Sm(TFSI)3(H2O)3 Synthesis 

3.3.1 Materials  

Reagent grade chemicals were used in the  synthesis.  Samarium (III) oxide 

(Sm2O3) salt was purchased from VWR. The Bis(trifluoromethanesulfonyl) amine 

(HTFSI) was purchased from Sigma Aldrich.  All purchased reagents were used as 

received. 

 

3.3.2 Synthesis of Sm(TFSI)3(H2O)3 

A synthetic route was designed and followed according to the reaction scheme 

provided below: 
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23H O
2 3 3 2 3Sm O  + 6HTFSI  2Sm(TFSI) (H O)→  

A 1.5 g sample of Sm2O3 and 7.3 g of H(TFSI) was placed in a beaker with 15 mL of 

H2O.  The resulting solution was stirred for 20 minutes, and then placed on the rotary 

evaporator with gentle heat (approximately 60◦C) to remove any excess HTFSI and 

water.  HTFSI has a boiling point of 91oC, which is lower than water, thus any excess of 

either material should be removed during this step.53  After approximately 20 minutes, 

the majority of the excess solvent had been removed, forming an oil.  Crystals began to 

form in the resulting yellow oil while still on the rotary evaporator.  At this point, the oil 

was removed, and a single crystal was isolated for XRD analysis.  The remaining oil was 

returned to the rotary evaporator to attempt to obtain a solid product.  Despite this 

attempt, the product remained an oil with visible crystalline particles contained in the 

sample.  The resulting Sm(TFSI)3(H2O)3 was removed and cooled.  After drying, the oily 

product yield was determined to be 85 percent (7.0 g).   

 

3.3.3 Single Crystal XRD for Sm(TFSI)3(H2O)3   

Single crystals were placed in paratone oil.  Although it was observed that they 

dissolved in paratone over the course of several minutes, a crystal was obtained and 

positioned on the tip of a glass fiber.  This fiber was then quickly placed onto the 

diffractometer.  The low temperature of the cryostream, which  was cooled to 100 K, 

prevented further dissolution of the sample.  The crystal initially indexed as a primitive 

cubic crystal with a cell parameter of 18.4517(7), comparable to Bhatt et al,28 and a full 

sphere of data was collected.  Systematic absences and intensity statistics indicated the 
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chiral spacegroup P213, which was consistent with the structure previously encountered.28  

The structure was solved with SIR200454 within the WINGX program suite.55   

Following structure solution, the model was refined against F2 using SHELXTL.56  

For the two crystallographically distinct TFSI molecules, one refined with reasonable 

anisotropic displacement parameters while those parameters for the second TFSI ligand 

were large.  The coordinating central N atom appeared to be disordered between two 

positions.  Refinement at variable occupancy lead to two chemically reasonable positions 

at close to 50% occupancy.  The occupancy was fixed at 50% for the final refinement 

cycles, and the very close values for the anisotropic displacement parameters for both 

sites suggest this is a very reasonable constraint.  The rest of the molecule was allowed to 

remain on single sites, although the displacement parameters are somewhat large.  The 

ability to locate and refine H atoms on the coordinated water molecules, along with a 

final R1 of 1.63%, suggests a very accurate structural model in spite of the disorder.  For 

the hydrogen atoms bound to water molecules, these were located in the Fourier map, and 

refined with the displacement parameter set to 1.2x that of the oxygen to which they were 

bound.  Distances were restrained to 0.82 Å for the final refinement cycle.  Refinement of 

the Flack parameter to essentially zero (-0.0005   +/-  0.0057) indicates that the crystal is 

homochiral.  Refinement parameters are presented in Table 3.5. 

The results of the single crystal analysis can be compared to those from Bhatt et 

al’s analysis of La(TFSI)3(H2O)3.28  In both cases, the f-element is coordinated through 

the sulfonyl oxgens with a resulting six atom ring structure.  They also observed the 

shorter bond distances of the lanthanum center as compared to the oxygen in the 

coordinated water.  In this work, similar results were observed, with the bond lengths for 
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the Sm-O (W) of 2.3896(19) Å for each coordinated water.  Longer bonds of 2.4639(18) 

to 2.4888(19) Å were found to exist when examining the Sm-O (TFSI) bond.  Bhatt et al 

also stated that because the negative charge on the TFSI anion is not delocalized to any 

large quantity, it is not anticipated that TFSI would be strongly coordinating.28  In 

reviewing the results from the analysis of the Sm-O (TFSI) and Sm-O (water), this 

assessment is supported by the longer Sm-O (TFSI) bond lengths.57 

Table 3.5  Crystal data and structure refinement of Sm(TFSI)3(H2O)3. 
Empirical formula  Sm C6 H6 F18 N3 O15 S6    
Formula weight  1044.85   
Temperature  100(1) K   
Wavelength  0.71073 Å   
Crystal system  CUBIC   
Space group  P2(1)3   
Unit cell dimensions a = 18.4517(7) Å a= 90°. 
  b = 18.4517(7) Å b= 90°. 
  c = 18.4517(7) Å g = 90°. 
Volume 6282.2(4) Å3   
Z 8   
Density (calculated) 2.209 Mg/m3   
Absorption coefficient 2.437 mm-1   
F(000) 4024   
Crystal size 0.09 x 0.08 x 0.07 mm3   
Theta range for data collection 1.56 to 26.11°.   
Index ranges -22<=h<=22, -22<=k<=22, -22<=l<=22 
Reflections collected 75185   
Independent reflections 4186 [R(int) = 0.0431]   
Completeness to theta = 26.11° 100.00%   

Absorption correction 
Semi-empirical from 
equivalents   

Max. and min. transmission 0.7453 and 0.6087   

Refinement method 
Full-matrix least-squares on 
F2   

Data / restraints / parameters 4186 / 4 / 306   
Goodness-of-fit on F2 1.067   
Final R indices [I>2sigma(I)] R1 = 0.0163, wR2 = 0.0400   
R indices (all data) R1 = 0.0171, wR2 = 0.0403   
Absolute structure parameter -0.001(6)   
Largest diff. peak and hole 0.383 and -0.274 e.Å-3   

 

An ORTEP plot is presented in Figure 3.3 below.           
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Figure 3.3.  Structure of Sm(TFSI)3(H2O)3 

 

3.3.4 Spectroscopy of Sm(TFSI)3(H2O)3   

After obtaining the crystal structure of the Sm(TFSI)3(H2O)3 product, the FTIR 

spectrum was acquired (Figure 3.4).  Table 3.6 contains the assigned bands compared to 

the literature values. 
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Table 3.6.  FTIR band assignments for 0.5 M Sm(TFSI)3 in H2O 
Functional 

Group 
Wavelength (cm-1) 

Product Literature28 
OH 1641 1639 
SO2 1351 1323 
SO2 1327 1307 
CF3 1227 1221 
CF3 1206 1198 
SO2 1143 1138 
SO2 1138 1130 
SNS 1059 1055 
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Figure 3.4.  FTIR Spectrum of 0.5 M Sm(TFSI)3 in aqueous solution 

 
 

The Sm(TFSI)3 sample was analyzed while in solution (concentration was 0.5 M), 

because of the acidity of the oil.  The effects of the water are especially notable in the 

broad shoulder starting at 1000 cm-1.  By comparing the reported assignments to those of 

Bhatt et. al, it was found that this broad shoulder is hiding the additional SNS, CF3, and 

SO2 bands.28  The Sm-O band is not IR active, and it was not observed in this spectrum.28  

The functional groups have been labeled in the figure, and the expected IR-active TFSI 

functional groups (SN, SO2, and CF3) are easily viewed in the spectrum, indicating the 
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presence of the Sm-TFSI complex in the aqueous solution.   The oily material was 

extremely acidic, so it was not measured on the FTIR instrument so as to not damage the 

solid press.  

UV-Visible spectroscopy analysis was also utilized to further characterize the 

product Sm(TFSI)3(H2O)3.  Three concentrations of Sm(TFSI)3 aqueous solutions were 

prepared and examined.  When the analysis was executed, the samarium product was a 

sticky oil; to remove it from the spatula, a small amount of water was used before the 

initial mass could be recorded.  This was necessary to remove the sample from the 

spatula.  As a result of this methodology, the following concentrations are approximate:  

0.1 mM, 3.0 mM, and 4.5 mM.  The spectra are presented in two separate figures, as the 

band at 264 nm is so large that it is difficult to observe changes in the bands above 300 

nm when they are presented together.  Figure 3.5 presents the full range of the spectra 

collected, and Figure 3.6 presents the spectra above 325 nm. 
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Figure 3.5.  Sm(TFSI)3 in H2O as a function of concentration.  The blue solid line is the 
initial ~4.5 mM Sm(TFSI)3 sample, the red dashed line is ~3.0 mM Sm(TFSI)3, and the 
green dotted line is ~0.1 mM Sm(TFSI)3.  The grey dashed line is HTFSI in H2O.  Inset is 
a blow-up for the region of 220 to 300 nm in the ~4.5 mM Sm(TFSI)3(H2O) sample. 

 

In Figure 3.5, it can be seen that the band at 264 nm increases as the Sm 

concentration decreases (or conversely as the water concentration increases).  Duluard et 

al performed a detailed analysis of lithium salvation in TFSI using Raman spectroscopy.  

In their observations, they noted a decreasing band with increasing cation concentration 

at 748 cm-1, while the second band examined, at 748 cm-1 increased with increasing 

concentration.  They attributed this finding to the quantity of free TFSI anion in solution 

as compared to coordinated Li-TFSI species.58  Umebayashi et al found similar results 

when examining the band representing free TFSI at 744 cm-1 band, which decreased with 

increasing addition of the lithium cation.  They also observed that the TFSI-Li band at 

750 cm-1 increased as expected with increased lithium addition.59 As the concentration of 
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water is increased, the availability of protons also increases Thus, in this work, the 

disassociation of the TFSI anion from the Sm(TFSI)3 complex and subsequent formation 

of HTFSI could occur with increased quantities with the addition of water.  To verify that 

TFSI does absorb in this region, HTFSI was dissolved directly into water, and measured 

(Figure 3.5, grey dashed line).  It can be seen in the figure that there is a band for the 

HTFSI in the UV-Vis spectrum that is located at 268 nm in all cases (see inset for blow 

up of this region for the 4.5 mM sample).  This band is then tentatively assigned to TFSI 

anion that has dissociated from the samarium complex and then subsequently formed the 

HTFSI complex.  A detailed analysis of multiple TFSI species in water would prove 

useful in further confirming this band assignment, but this was outside of the scope of 

this work. 

 
Figure 3.6.  Sm(TFSI)3 in H2O as a function of concentration.  The blue solid line is the 
initial ~4.5 mM Sm(TFSI)3 sample, the red dashed line is ~3.0 mM Sm(TFSI)3, and the 
green dotted line is ~0.1 mM Sm(TFSI)3.   
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The bands above 300 nm all decrease with decreasing concentration.  A separate figure is 

included (Figure 3.6) so that the changes in this region with concentration can be more 

readily observed.  A sharp band at 402 nm has been reported as a Sm f-f transition in Sm 

nitrate complexes, and is consistent with the spectrum observed here.60  Previous 

researchers have commented on the complexity of assigning the bands to specific 

transitions to lanthanide species.61  As such, while it is indicated from the decreasing 

absorbance with increasing dilution that the bands from 325 to 500 nm are all related to 

the Sm(TFSI)3 complex, individual assignments could not be readily identified.  The use 

of molecular orbital theory would allow for a more precise analysis of the UV-Visible 

spectrum, however this type of analysis was outside of the scope of this research. 

 

3.4 U(TFSI)3 Synthesis  

3.4.1 Materials   

All reagents used in the synthesis of U(TFSI)3 were reagent grade.  

Bis(trifluoromethanesulfonyl)amine (HTFSI) was purchased from Sigma Aldrich.  The 

RTIL, [Me3NnBu][TFSI], was purchased from Solvionic.  All purchased reagents were 

purged with argon gas prior to use to remove any excess oxygen content.  The UI3(THF)4 

complex was obtained from a previous synthesis performed at UNLV. 
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3.4.2 Synthesis of U(TFSI)3   

All reactions were performed in an argon filled glove box.  The UI3(THF)4 (s) was 

obtained from a prior synthesis based on a procedure by Avens et. al.62  The U(TFSI)3 

synthetic route was designed and executed according to the scheme provided below:  

 

KH
2THF

3K(TFSI)
3 4 3THF

HTFSI  KTFSI  (s)  +  H ( )

UI (THF)  U(TFSI)  + 3KI (s)

g→

→  

 

K(TFSI) was synthesized by adding 0.01 g of KH to an air and water free solution 

of tetrahydrofuran (THF).  A 0.07 g sample of HTFSI was added to the solution.  The 

mixture was stirred for three hours to ensure time for reaction completion.  The resulting 

pale yellow solid, K(TFSI), was separated from the THF solution by decanting the excess 

solution, then allowing the remaining THF to evaporate.  The mass of the dried solid 

product was 55.6 mg (theoretical yield was 61.8 mg, 90% yield).  A 0.03 g sample of 

UI3(THF)4 (s) was dissolved into an air and water free THF solution and combined with 

0.015 g K(TFSI).  A slight excess of K(TFSI) was used to ensure reaction completion.  

The resulting clear pale yellow solution was then stirred for 24 hours.  The final solution 

was orange-red, and contained an off white solid, KI precipitate.  The resulting mixture 

contained the KI solid was then filtered through a cotton filled Pasteur pipette three times 

to separate KI (s) from the product THF solution containing the U(TFSI)3. The THF was 

evaporated to leave a solid product U(TFSI)3.  The mass was recorded as 66.9 mg, with a 

74% yield.   
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The product is air sensitive.  Any attempts at FTIR analysis resulted in 

inconsistent spectra, as after repeated data collection using the same sample, the bands 

had visible changes.  This was also indicated by the UV spectrum, which was measured 

first in a sealed sample holder, and again after the cuvette had been opened and a sample 

used for FTIR analysis.  The UV spectra evidenced changes in the band shape and 

positions after the sample had been exposed to air. Examination by cyclic voltammetry 

reflects no presence of iodine response in the observed oxidation and reduction processes.  

 

3.4.3 Spectroscopy of U(TFSI)3   

 The final U(TFSI)3 product in THF solution was compared to the starting material 

of UI3(THF)4 in the THF solvent as well as iodine in a THF solution (Figure 3.5).   

Stoppered specialty cuvettes were utilized for the analysis.  The samples were prepared 

and sealed with the stoppers while still in the glove box.  Additional precautions were 

taken to prevent unwanted introduction of air by placing a parafilm over and around the 

stoppers.  The sealed cuvettes were then placed in a secondary, double-sealed container 

and removed from the argon filled glove box.  The samples were immediately analyzed 

by UV-Vis spectroscopy. 
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Figure 3.5.  UV-Vis spectra of blank reference, (black dotted dashed), 5mM U(TFSI)3 in 
THF (blue solid), 5mM UI3(THF)4 in THF (red, dotted), and I2 in THF (dashed grey). 

 
 

The U(III) samples were analyzed in the THF solvent against a blank solution 

containing neat THF solution.  The spectrum indicated by the black dotted and dashed 

line in Figure 3.5 is a blank reference sample containing only the THF solvent.  The red 

dotted line is the spectrum of UI3(THF)4 and the blue solid line is the spectrum of 

U(TFSI)3.  For comparison, they grey dashed line represents the spectrum of I2 in THF.  

The band locations are presented in Table 3.7.  

Table 3.7. Comparison of UV-Vis wavelengths of  
5mM U(TFSI)3 and 5mM UI3(THF)4 in RTIL. 

Product Wavelength (nm) 

U(TFSI)3 - 293 251 

UI3(THF)4 368 293 - 

I2 368 - - 
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Literature on various U(III) complexes is available. 20,63 UV-Vis can be used as a 

tool to confirm oxidation states by the location of known band positions. However, the 

“fingerprint region” for identifying a trivalent uranium complexes is above 800 nm.20 No 

data was collected in this region.  Since the U(TFSI)3 complex was never exposed to air 

or water, it is assumed that the oxidation state of the uranium complex was unaltered by 

the synthetic process.  Additionally, the observed reduction waves in the electrochemistry 

of the U(TFSI)3 are consistent with that of the UI3(THF)4 (See Section 6.3.1). This 

provides further support that the species remained the 3+ oxidation state. 

There is a band centered at 368 nm in the spectrum of the UI3(THF)4 that is no 

longer present in the product U(TFSI)3.  From reviewing the literature, multiple examples 

can be found of iodine containing complexes that absorb in this region.64,65 Additionally, 

the spectrum of I2 in THF was obtained for comparison.  It can be seen in the figure that 

there is a band at 368 nm for both the I2 as well as the UI3(THF)4 species.  The band at 

368 nm is not evident in the spectrum of the U(TFSI)3.  This is further evidence that the 

band at 368 nm is present as a result of the iodine in solution.  The loss of this band, as 

assigned to iodine, also indicates that the synthetic reaction to form the product U(TFSI)3 

was complete. 

The band at 293 nm is visible in both the initial UI3(THF)4 and the final U(TFSI)3 

product spectrums.  Both U(III) species were synthesized with THF solution, both 

complexes could potentially have some THF solvent coordination in the product.  As 

mentioned previously, the final product could also be U(TFSI)3(THF)X, as opposed to 

simply U(TFSI)3.  A literature search reveals many instances in which THF was used as a 

synthetic solvent and yielded some degree of coordination in the final product.66,67  As 
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such, a band in the UV-Vis band at 293 nm is tentatively assigned to a response related to 

U-THF complexation.   

The spectrum of the final U(TFSI)3 product also has an emergent band at lower 

wavelengths, with a strong absorbance at 251 nm, indicating the appearance of a new 

species.  This is in the region of the HTFSI band that was observed in the aqueous 

samarium system, where TFSI reflected an absorption maximum at 268 nm (section 

3.3.4).  Other spectra taken during this research also include a band in this region when 

TFSI was in solution.  In the discussion of the Sm(TFSI)3(H2O)3 complex in Section 

3.3.4, the presence of the band at 268 nm was assigned to TFSI.  The spectra of  

UO2TFSI2 includes a band in the region of 270 to 290 nm (Section 5.5.1).  HTFSI 

dissolved into the RTIL resulted in a single band, at 270 nm, when analyzed via UV-Vis 

(Section 5.5.1).  Therefore, based on the previously observed spectra of other TFSI 

complexes analyzed in this research, the emergent band in the U(TFSI)3 product appears 

to be consistent with the interaction of the uranium with the TFSI in solution.  

While the UI3(THF)4 species contains a metal and an ionic species, this complex 

has only been reported to contain absorption bands as a result of coordinated bonds.20  

The UI3(THF)4 is a pentagonal bipyramidal complex where the central uranium atom 

forms a covalent bond with the 3 iodine species, as well as to the 4 oxygens in the THF 

rings.62   As such, in previous literature, it has only been observed to have covalent bonds 

in the corresponding spectrum.62   

Further information, such as single crystal structure of the U(TFSI)3 complex 

would be needed to identify the specific type of bonds that are formed here.  Given that 

there have been cases of the TFSI anion forming both charge transfer complexes as well 
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as covalent bonds,47,28,68,69 both could be argued to exist in the U(TFSI)3 species by the 

UV-Visible  spectrum shown here.  As such, the band in the U(TFSI)3 spectrum at 251 

nm is proposed here to indicate an interaction between the TFSI species and the uranium 

in solution. However at this time, it cannot be identified as absorbance based on the 

electronic transitions associated with the ligand interacting weakly with the uranium, or 

as a covalent or a CT relationship between U-TFSI by this information alone.    

One final key point to note is the absence of a series of finger-like bands centered 

around 430 nm that would be an indication of the formation of an aqueous uranyl 

complex; and specifically, hydrolysis having occurred in the air sensitive U(III) species.70  

While analyzing the raw data on the UV-Vis instrument, even when zoomed into this 

region, there were no visible bands.  The absence of these peaks is a positive secondary 

indication that the reaction proceeded without the introduction of water into the system.    
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Chapter 4:  Extraction and Evaluation of Samarium in the RTIL 

Solvent 

4.1 Introduction 

 One of the most appealing aspects of the RTIL solvent is that it can be multi-

functional.  Specifically, it can be used both as an extraction solvent and an 

electrochemical solvent simultaneously.  Following an extraction of samarium from the 

aqueous phase into the RTIL, it can then be removed from the RTIL by potential-

mediated electrodeposition.  There is a shortage of studies reflecting the use of the ionic 

liquid solution for both methods; however the potential uses are immense, especially 

when applied to the areas of actinide extraction and possible separation schemes. 

RTIL solutions have also been examined as solvents for extraction and separation 

of fission products and actinides.14,15,16,17,71 Comparisons between the extraction of f-

elements using n-dodecane and RTIL systems have been primarily focused on 

eliminating n-dodecane as the solvent, while maintaining tributylphosphate (TBP) as a 

complexing agent.19,72 Previous studies have demonstrated that extraction of f-elements 

into the RTIL solution in place of n-dodecane is complicated by aqueous anionic 

species.72   

For example, the extraction of UO2
2+ into a RTIL solution using TBP is 

influenced by the nitrate concentration in the aqueous environment.72,21    The neutral 

UO2(TBP)2(NO3)2 complex is favored as the extracted species,  following a linear trend 

with respect to increasing nitric acid concentration into n-dodecane.  In comparison, the 
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extraction is non-linear with respect to increasing nitric acid concentration when the 

RTIL, 1-alkyl-3-methylimidazolium/TFSI, was used in the extraction.   

The extraction of UO2(TBP)2+ occurs through the exchange of the imidazolium 

cation in the RTIL at low nitrate concentration, while the neutral complex is favored at 

high nitrate concentration allowing partitioning without ionic exchange. The extraction of 

UO2(TBP)2+ was equivalent or enhanced when compared to n-dodecane for increasing 

HNO3 concentration when the PF6
-
 was used in place of TFSI.  The results suggest that 

the choice of anion may be critical in the solvent extraction of uranium in RTIL when 

TBP is used, while extraction without TBP may be the key to eliminating the cross-over 

contamination of RTIL in the aqueous environment.73  

Lanthanide elements contain electrons in the 4f shell, whereas actinides contain 

electrons in the 5f shell.  The coordination chemistry and solvation behavior of elements 

containing f-electrons is very different than that of elements containing only p or d 

electrons.74  Any examination of electrochemical reduction or extraction processes, such 

as those presented in this Chapter for samarium will benefit in gaining a better 

understanding of those properties both in terms of extraction behavior as well as 

electrochemical behavior.   

Currently, to electro-deposit both rare earth metals, such as samarium, as well as 

actinide elements, molten salt technology is used.74  As a result of containing f-electrons, 

both actinides and lanthanides are extremely electropositive and they typically require 

rather large reduction potentials74 which cannot be accessed aqueous solution without 

competing solvent reactions. However, sufficiently negative potentials for 

electrodeposition can be reached in a RTIL solution.74    Samarium can also be used to 
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make comparisons to americium and curium, as all three elements are preferentially 

found in the trivalent oxidation state.74   

This chapter will focus on the extraction of samarium into the RTIL, 

[Me3NnBu][TFSI], from Sm(TFSI)3(H2O)3 dissolved into aqueous solution.  As outlined 

above, samarium was selected because of interest in rare earth recovery.  It was also 

utilized because electrodeposition of the metal species would be a useful tool for 

comparison to the electro negativity that is often also required for deposition for actinide 

species.  Electrochemical comparisons can be made between the samarium and actinide 

species regarding the oxidation and reduction reactions that occur in the RTIL with 

respect to f-electrons. The work presented in this Chapter was initiated with an extraction 

from the samarium species in aqueous solution to the RTIL.  By examining the extraction 

conditions, it was found that the extraction efficiency was dependant on the pH of the 

aqueous phase.  At an aqueous pH of 9.0, 100% extraction efficiency was observed.  In 

addition to achieving an efficient extraction of the samarium into the RTIL, the 

mechanism of the extraction was also examined. Following introduction of the samarium 

into the RTIL solvent, electrochemical analysis of the oxidative and reductive processes 

are evaluated, and finally electrodeposition of Sm metal from the RTIL solution at a 

glassy carbon working electrode is demonstrated.   
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4.2 Methods 

4.2.1  Reagents 

 The synthesis of the Sm(TFSI)3(H2O)3 solid was described in Section 3.1.  SmI2 

and SmCl3 solids were obtained from Sigma Aldrich and used as received andstored in a 

desiccator after opening.   The RTIL solvent, [Me3NnBu][TFSI], was purchased from 

Solvionic (France).  Nitric acid solutions were prepared with reagent grade acid (ACS 

reagent grade, Merck KGaA, Germany) and de-ionized (DI) water (18 MΩ·cm, 

Millipore, USA).  ColorpHast pH test strips were used for all pH analysis, and were 

purchased from VWR. 

 

4.2.2  Extraction Experimental Design 

 All aqueous solutions were prepared such that they initially contained 0.15 

M samarium.  To verify the initial concentration, a sample aliquot of 100 µL was 

removed and added to 10 mL of 2% HNO3 in a 15 mL centrifuge tube and the  pH 

recorded as pH 2.5 ± 0.3.  Next, 10 mL of this initial samarium solution was added to a 

pre-weighed 50 mL beaker and the mass recorded.    An equal volume 10 mL of RTIL 

was added to the beaker.  The  new mass and pH were recorded.   

A time zero sample aliquot of 100 µL was removed from the aqueous layer and 

added to 10 mL of 2 % nitric acid for Sm analysis by ICP-MS (For ICP-MS parameters, 

see Section 2.4).   The subsequent measurements were each taken by removing a 100 µL 

aliquot from the aqueous layer after 1, 5, and 7 hours of the phases being placed into 

contact with each other.  The times and masses were recorded at each sampling to 
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minimize the experimental error.  In addition, to maintain constant volume, 100 µL of the 

RTIL phase was removed each time a sample was taken from the aqueous phase. The 

experiment was repeated in triplicate. 

 

4.3 Discussion 

4.3.1 Extraction into the RTIL solvent 

 There has been an increasing interest in the use of RTILs as the solvent in 

extraction; however the vast majority of recent reports also add either a diluent or 

extractant to the RTIL solvent to increase the extraction efficiency.75,76,77,78  Previous 

studies have reported that no reaction occurred for Sr2+, without the addition of a crown 

ether extractant to the RTIL.  The study also noted that increasing the acid concentration 

decreased the extraction efficiency.75 Other studies reported on the effects of the aqueous 

layer pH on the effectiveness of the extraction of several divalent species.  In these 

experiments, no crown ether was added.  In many cases, by approximately pH 6, 100% 

extraction efficiency was observed.77  Others also observed results that pointed to 

tailoring extraction effectiveness when having multiple species in solution by exploiting 

observed pH dependency on extraction efficiency.1   

When the extraction was initiated in the experiments performed in this Chapter 

with no additional diluent or added acid, only 9 % of the samarium was extracted into the 

RTIL Previous researchers conducted a detailed study on the effects of the pH of the 

aqueous layer on the extraction efficiency of several RTIL solvents.  They conducted 

analysis using [bmim][PF6], [hmim][PF6], [omim][pf6], nitrobenzene, chloroform, and 
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toluene.  In each experiment, 1 mL of RTIL was placed in contact with 5 mL of aqueous 

solution.  The aqueous phase total volume included a 10-2 mol/L buffer and 10-5 to 10-4 

mol/L of M2+ (M=Mn, Co, Ni, Cu, Zn, Cd, or Pb) species.  It was  observed that the 

highest system efficiency was reeached between pH 5-7.77   

This comparison was utilized on the basis of examining extractions of a metal 

species into an RTIL system with no added extracting agent.  Since these metals are in 

the 2+ oxidation state, and the research performed in this dissertation focused on the 3+ 

oxidation state, there would be expected changes in the strength of the resulting extracted 

metal complex based on the different oxidation state of the metals.79  However, the 

comparison was still useful for examining the process of a metal extracted into a RTIL.  

An excerpt of the findings for one of the RTILs examined are summarized in 

Table 4.1, below.  

 

Table 4.1.  Comparison of RTIL Extraction Results for Mn2+ extracted into [bmim][PF6] 
77 

RTIL Metal Species ~Aqueous pH ~Extraction Efficiency 

[bmim][PF6] Mn2+ 4 0 

[bmim][PF6] Mn2+ 4.7 5 

[bmim][PF6] Mn2+ 5 20 

[bmim][PF6] Mn2+ 5.3 50 

[bmim][PF6] Mn2+ 5.7 75 

[bmim][PF6] Mn2+ 6 99 
 

Upon further investigation of the conditions of the experiments performed for this 

Chapter, the pH of the aqueous layer was determined to be 2.5 ± 0.3 which would 

coordinate with a region of low extraction efficiency in studies  discussed above.77    
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Following this observation, repeated extractions were performed by adding NaOH 

to decrease the acidity of the aqueous phase.  Sodium hydroxide was selected for this 

procedure, as it was not expected to alter the conditions of the species in the RTIL phase 

because it was not expected to cross over into the RTIL solution.  The two phases were 

kept at a constant equal volume, such that Vo/Vaq = 1.  The Extraction efficiency (E%), 

which also represents the percent of samarium extracted into the RTIL, was then 

calculated as follows80: 
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          Equation 4.1  

 Where: E% = Percent Efficiency for the extraction 
  D = Distribution coefficient 
  Vo = Volume of the organic phase 
  Vaq = Volume of the aqueous phase 
  [Sm]o = Samarium concentration, organic phase 
  [Sm]aq = Samarium concentration, aqueous phase 
 

 

Extraction efficiency was utilized instead of the distribution coefficient, D, so that a 

comparison of the work done in this Chapter could be made against published work from 

literature reviewed.   

With increasing pH of the aqueous phase, improved extraction efficiency was 

obtained (Figure 4.1).   At pH 9 ± 0.3, 95 % extraction efficiency occurred within 1 hour, 

and 100 % extraction efficiency was observed within 5 hours of the phases being placed 

in contact with each other.   
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There have been examples of acidifying the aqueous phase to increase 

concentration crossover to the organic RTIL phase. In fact, all references reviewed 

indicated that low aqueous pH decreased the extraction efficiency.  At pH values of 0, 

typically, no extraction occurred.75,76,77  Additionally, the initial aqueous pH of the 

samarium extraction was 2.5.  Under this condition, only 7% of the samarium was 

extracted into the RTIL.  Lowering the aqueous pH levels was not considered a viable 

method for increasing extraction based on previous results.   

An alternative route to increase extraction efficiency may have been to acidify the 

RTIL phase by adding an organic acid.  The theory is that if the RTIL’s acidity was lower 

than that of the aqueous phase’s acidity, the samarium in solution may have extracted 

based on preference towards the more acidic solution. However, this experiment was not 

performed in this dissertation. 

 

 
Figure 4.1.  Efficiency of samarium extracted into the RTIL as a function of pH.  
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 Clearly, the effects of the aqueous layer pH cannot be ignored when considering 

the extraction potential of the RTIL solvent.   The pKa of the HTFSI super acid has been 

reported to be -14 to -16.81  Strong acids, by definition, are almost completely dissociated 

in aqueous solution.48  Thus, the initial aqueous conditions indicate that any HTFSI in 

solution would likely be dissociated.  This may also carry through to the Sm-TFSI 

complex.  However, with the increasing aqueous pH, the TFSI in solution may re-

associate.  One possible mechanism for the extraction may be that the Sm-TFSI complex 

dissociates initially in aqueous solution, and as the pH is increased, the species re-

associates and crosses over into the RTIL.   

In all extractions, the acidity of the RTIL was also measured using pH indicator 

strips, and it was consistently found to be pH 5.5.  At the time of this experiment, there 

were no references for measuring the acidity of the RTIL.  As such, this technique of 

verifying the proton salvation conditions of the RTIL has not been previously 

documented.  Litmus paper was selected because the color change is the result of a 

chemical reaction associated with species within the paper.  These reactions are 

indicative of acid or base content which is relevant to the measurement of the acidity of 

the RTIL.  With the caveat that there may be additional error associated with this method 

of measuring the RTIL’s acidity, these results indicate that even as the extraction 

progresses, the RTIL’s acidity remains constant.  In addition, this demonstrates that 

adding sodium hydroxide to the aqueous layer has no observable affect on the acidity of 

the RTIL phase.  Additional extraction experiments were performed to determine the 

primary driving force for the extraction mechanism.  Specifically the research was 
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designed to find if the aqueous pH, oxidation state, or  speciation play an important role 

in the extraction efficiency.  Several species were evaluated at their initial pH of 2.5 in 

water, and at an aqueous pH of 6.5.  This process was repeated for Sm(TFSI)3, SmCl3, 

and SmI2.  The data shows that at pH 6.5, the extraction efficiency of samarium into the 

RTIL beginning with Sm(TFSI)3  in water was highest at 72%.  Similarly, starting with 

SmCl3 in water yielded 48% efficiency, and SmI2 was 43% efficient.  These results are 

also presented in Table 4.2.    

 

Table 4.2.  Comparison of extraction results for SmCl3, SmI2, and Sm(TFSI)3 into the 
RTIL. 

Initial Species 
Initial Solid Species 

Oxidation State 
Extraction 

pH % E 

SmCl3 3 6.5 48 ± 2.4 
SmI2 2 6.5 43 ± 2.1 
Sm(TFSI)3 3 6.5 72 ± 3.7 

 

While SmI2 is expected to oxidize in water, the analysis was still performed.  

Additionally, the UV-Vis spectrum was collected of the extracted species in RTIL from 

the SmI2 system.  The resulting spectrum yielded a markedly different band structure than 

that of the SmCl3 or Sm(TFSI)3, thus indicating that there were observable differences 

between the two systems.  These results will be discussed further in Section 4.3.2. 

 
 Given that Sm(TFSI)3  and SmCl3 are initially in the +3 oxidation state, 

and the final pH was 6.5 for both extractions, the only difference between the two 

complexes is the TFSI and the chlorine ligand.    In this comparison, the extraction was 

nearly 25% more efficient for Sm(TFSI)3 when compared to SmCl3.  When comparing 

the extraction of SmCl3 with SmI2 the results were similar with SmCl3 extracted at 
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slightly higher efficiency.  However, when the error is factored in, the extraction 

efficiencies of the SmCl3 and the SmI2 are effectively equivalent.  When considering the 

initial SmI2 complex in solution, any Sm(II) that oxidizes to Sm(III) could potentially 

form a SmI3 complex upon any re-complexation.  However, there would be insufficient 

iodine to allow for all of the samarium in solution to form this complex, leaving some 

samarium as ionic Sm(III) or Sm(II) in solution.  Additionally, addition of NaOH to the 

aqueous layer could allow for the formation of Sm(OH)3 as follows: 

 

3 3SmCl  (aq) + 3NaOH (aq)  Sm(OH)  (s) + 3NaCl→  

 

If any solid Sm(OH)3 formed before the extraction was completed, this would have also 

resulted in a lower total extraction efficiency, as less samarium would be available in 

solution to cross over into the RTIL phase.  

The findings presented in Table 4.2 indicate that the extraction of samarium into 

the RTIL from Sm(TFSI)3 in water is more favorable than either SmCl3 or  SmI2 from 

aqueous solutions at the same pH.  In this case, having a shared counter-ion on the 

samarium complex and the RTIL used for the extraction resulted in the most favorable 

extraction among the conditions analyzed.  Or, as mentioned above, the sodium 

hydroxide addition may have removed some of the samarium from solution by formation 

of the solid Sm(OH)3 species, thus limiting the extraction potential of the SmCl3 system.  

Additional extraction studies of Sm in other RTIL solutions with common anions 

between the complexes and the ionic liquid would be useful in assessing the role of the 

anion in extraction processes, but it was outside the scope of the dissertation. 
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Returning to the literature reviewed, an analysis was completed by previous 

researchers comparing the results of extractions from an aqueous solution 10% 

acetonitrile and 90% water (v/v%) into pristine RTIL of Cu2+ and CuL2 at multiple acid 

concentrations, where L=PF6.  The RTIL used also contained the PF6 anion, 

[C4mim][PF6]  The concentration of Cu2+ was measured using Atomic absorption 

spectroscopy.  It was found that the extraction efficiency of uncharged Cu2+ was zero at 

all pH values analyzed, however uncharged CuL2 was observed in successful extractions.  

The results reflected that extraction of only the ionic species was less successful than 

extractions of species beginning with a metal-ligand.1   

In the results presented from the work in this Chapter, extraction of samarium 

beginning with the Sm(TFSI)3 complex was more efficient than beginning with the 

SmCl3 or SmI2 species.  When comparing the findings of the literature that was discussed 

in the previous paragraph1 with the results observed in this Dissertation, all data collected 

from the experiments performed in this Chapter indicate that a highly efficient extraction 

depends on the initial ligand to which the extracted samarium was complexed with.  In 

the results presented here, extraction of samarium beginning with the Sm(TFSI)3 complex 

was more efficient than beginning with the SmCl3 or SmI2 species.  Based on the 

information available, both from the presented literature reviews and experiment, it 

appears that the shared ligand between the extracted species and the RTIL increases the 

efficiency of the extraction markedly.  These results, as presented here, are likely either 

do to the affects of extracting the Sm-TFSI into a RTIL solution containing the TFSI 

anion or due to an undesired formation of samarium precipitate in aqueous solution with 

the increasing addition of NaOH. 
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4.3.2 Spectroscopy 

UV-Visible spectra were taken of the Sm(TFSI)3  in both aqueous and RTIL 

solvent (Figure 4.2).  In these experiments, a double beam was used, where the solvent 

spectrum was ratioed against the sample spectrum (see Section 2.1.1).  Specifically, the 

[Me3NnBu][TFSI] solvent was used as a blank for the Sm(TFSI)3 sample in RTIL 

solvent; and water was used as a blank for the Sm(TFSI)3 sample in aqueous solution.  

The speciation details of the band structure in the aqueous system were discussed in 

Section 3.3.4, in Figures 3.5 and 3.6.  The discussion here will focus on the differences 

between the two solvents in terms of observed band structure. 

 

 
Figure 4.2.  UV-Visible spectra of 0.03 M Sm(TFSI)3  in RTIL (red, dotted dashed) and 
4.5 mM Sm(TFSI)3 in H2O (blue, line), and the RTIL blank (grey, dotted).  
Concentrations are prior to dilution of the aqueous samarium solution from 0.28 M. 
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There is a clear change in the spectrum of the extracted samarium in the RTIL 

solvent when compared to the spectrum of the Sm(TFSI)3  in water. As mentioned above, 

in Section 3.3.4, the samarium UV-Vis spectroscopy was discussed at length.  In that 

Section, the sharp band observed in this work at 402 nm was referenced to literature 

reviewed in which it was reported as a Sm f-f transition in Sm nitrate complexes.60  

Additionally, HTFSI was dissolved into water and observed at 264 nm.  Based on 

experimental indications from the work performed in this Dissertation and behavior from 

the referenced literature, band at 264 nm was assigned to TFSI anion that has dissociated 

from the samarium complex and then subsequently formed the HTFSI complex.58,59  In 

the aqueous system, there are a number of intense absorbance bands representing f-f 

transitions in the region from around 310 to 500 nm.  Conversely, in the RTIL solvent, 

the fine spectral bands have been lost in place of a notable increase over the RTIL blank 

baseline when observing the minimum absorbance over the region starting from around 

750 and extending down to 320 nm.  Also in the RTIL there is an intense asymmetric 

band at about 270 nm, at the end of which are a series of maxima on the shoulder.  This 

experiment was repeated 3 times.   

Changes in the extracted species spectrum have been noted in examples from the 

literature as well.1  Previous researchers recorded the UV-Vis spectrum of dithizone in 

the aqueous phase, as well as dithizone extracted into an RTIL.  In the aqueous solution, 

there were two bands observed, one at ~440 nm, and the other at ~620 nm.  However, 

when the spectrum was observed in the RTIL, only one broad band was found, at ~480 

nm, along with an increase in the remaining spectrum where the resulting minimum 

absorbance never drops below ~0.15.  In their case, the researched presented that the 
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proton of the dithizone was extracted partially solvated into the ionic liquid.1  Further 

studies would need to be conducted to fully understand the reasons for the changes in the 

spectrum of the extracted species from that of the aqueous species.   

In Section 3.3.4 the band at 268 nm for water spiked with HTFSI was discussed 

(Figure 3.5).  As mentioned above, this experiment was performed to verify that HTFSI 

does have an absorbance band in this region.  The results indicated that TFSI had 

dissociated from the samarium complex and re-associated with the water in the aqueous 

solution to form HTFSI.58,59 This analysis methodology was repeated by spiking RTIL 

with excess HTFSI, and the emergent band remained at 268 nm.  Based on the detailed 

discussion in Section 3.3.4 that was summarized above, the band observed in the 

Sm(TFSI)3 in RTIL spectrum at 270 nm is then attributed to an interaction involving the 

HTFSI species in solution.58,59   These results suggest that the solvent the complex is 

measured in directly affects the bands seen in the spectrum.   

The lack of fine structure observed in the extracted samarium in the RTIL is not 

isolated to this single instance.  In all RTIL spectra observed in this dissertation, only two 

or three very broad bands were identified.  Upon examining the literature with commonly 

found RTIL solvents, a pattern of broad spectra appeared.82,83,84,85,86  

In the literature reviewed, EuCl3 solutions in [Bu-mim][TFSI] showed similar 

absorbance at 320 nm.87 In other examples, there was a broad band observed in the 

absorption spectrum at 280 nm in a dichloromethane solution containining tetrabutlyl 

ammoniu chloride and Eu.83  Still other researchers observed two broad bands, one at 375 

nm, and one at 490 nm when examining the UV-Vis absorption spectra of PdCl2 in 

[tetraalkyl phosphonium][TFSI].  In this case, the observed bands were assigned to d5 
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electron transitions as well as ligand-metal charge transfer interactions.85  Yet another 

example using the spectrum of [1-FcPyl+][TFSI]- in dichloromethane reflected three 

broad bands; one at ~395 nm, one at ~500 nm, and one at ~975 nm.86  The sheer volume 

of instances where the broad bands are demonstrated is an indication this type of broad 

spectra is not atypical when examining an RTIL.  Further studies beyond the scope of this 

work would be required to have a full understanding and confirmation of this 

observation. 

UV-Visible spectroscopy was also utilized to ensure that the extracted species 

with NaOH addition to alter the aqueous pH to 6.5 was unchanged from the extracted 

species with no added base, where the aqueous solution was left at it’s initial pH of 2.5 

(Figure 4.3).   

 
Figure 4.3.  UV-Visible spectra of 0.025 M samarium extracted into the RTIL from a pH 
2.5 aqueous solution (red, dashed, bottom), and 0.030 M samarium  with NaOH added to 
the aqueous layer to a final pH of 6.5 (blue, solid, top), and RTIL baseline (black, dotted)  
Samples were collected after 0.5 hours of phase contact.  The inset is provided to zoom 
into the region of 225 to 325 nm. 
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The samarium sample was added directly to water, and mixed.  The resulting aqueous 

samarium solution was then evenly divided and used for the two separate experiments.  

This experiment was designed to qualitatively analyze if there was any change in 

speciation between the two systems.  The samples that were used were obtained after 0.5 

hours of extraction progress.  This was an additional extraction that was performed 

separately from the previously outlined experiments for the purpose of evaluating the 

UV-Vis spectra.  It was performed separately so as to not interfere with the overall 

solution volume or ratio of the liquid phases.  Other than the maximum intensity, all 

bands are in the same positions with no observable shifting.  Based on the results 

depicted in the spectra, it can be observed that addition of NaOH to the aqueous solvent 

does not appear to affect the species that is extracted into the RTIL.   

 Finally, the UV-Vis spectrum of samarium extracted into the RTIL from SmI2 in 

water was observed.  This experiment was performed to determine if there was an notable 

difference in the band structure of the extractions beginning with SmI2 compared to 

starting with Sm(TFSI)3 or SmCl3.  
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Figure 4.4.  Samarium extracted into a RTIL solution from SmI2 in water (blue line. 
0.025 M Samarium extracted into RTIL from Sm(TFSI)3 in water (red, dotted dashed 
line)  0.02 M Samarium extracted from SmCl3 in water (green, dashed).  Baseline (dotted 
grey line). 

 

In Figure 4.4, it can be seen from the UV-Vis spectrum of the samarium extracted 

into the RTIL that there is a notable change in the observed bands when beginning with 

SmI2 in aqueous solution when compared with the samarium extracted from Sm(TFSI)3 

or SmCl3.  The resulting spectrum of the samarium in RTIL when initially beginning with 

SmCl3 in water is remarkably similar to the spectrum that results from beginning with 

Sm(TFSI)3.   However, on close observation there are two shoulders appearing on the 

Sm(TFSI)3 extraction spectrum that are not present on the SmCl3 spectrum; one at 238 

and the other at 335 nm.   
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The only change in these systems is that of TFSI; therefore the additional bands 

could be as a result of either free or complexed TFSI being introduced into the RTIL 

solution.  As discussed above, adding HTFSI acid to pristine RTIL solution resulted in a 

band at 268 nm.  Spiking the final samarium extraction solution with HTFSI may have 

provided additional insight into these additional bands; however this experiment was not 

completed in this research.  The spectrum of the extraction from SmI2 is completely 

different than that of the other two, with an intense band at 210 nm.  The results are clear 

in that the extractions starting with each species did indeed affect the species observed in 

the RTIL.   

The variations in the species introduced into the aqueous phase are likely the 

cause of these noted differences in the observed band structure.  As discussed previously, 

the Sm-TFSI shared anion complex may be extracted as the complexed species, whereas 

the SmCl3 and SmI2 initial species may be extracted as ionic samarium.  Additionally, 

there is the possibility of formation of Sm(OH)3 precipitation interfering with this 

extraction in the latter extractions. A detailed modeling study and experiment designed to 

gain a deeper understanding the nature of the extraction would aid in gaining more 

information into the mechanism, but this was not performed in this dissertation. 

 

4.3.3 Electrochemistry   

 In order to obtain an understanding of the potential mediated oxidation and 

reduction processes, the RTIL solvent containing the extracted Sm(TFSI)3 complex was 

evaluated using cyclic voltammetry (CV).  A quartz crystal microbalance (QCM) was 

utilized to obtain an understanding of the processes involved in the deposition of Sm onto 
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the electrode surface.   Finally the potential driven electro-deposition of Sm was 

performed at a constant -1.8 V versus NHE at glassy carbon electrodes to achieve a 

samarium metal deposit on the surface of the electrode. 

 Figure 4.5 is a representative CV with the corresponding QCM response of the 

samarium extracted from aqueous Sm(TFSI)3(H2O)3  into the [Me3NnBu][TFSI] solution.  

The solid lines, blue, red, and green, are the   voltammograms obtained from analyzing 

the samarium in the RTIL solution at the end of the 1st cycle, the 20th cycle, and the 50th 

cycle, respectively.  The potential was varied beginning under reducing conditions to 1.5 

V versus NHE and cycled to + 2.1 V versus NHE using a quartz crystal microbalance 

(QCM).  The resulting current and frequency was measured as the potential was varied.    

The dashed black line is the background response of the RTIL alone.  These elements are 

also labeled within the figure.  There are three reduction waves that can be observed in 

the 50th cycle in Figure 4.4; one at 1.2, one at 0.4 V and the other at -0.3 V versus NHE.  

In addition, there are four oxidation waves that can be seen in the 50th cycle at 1.5, 1.2, 

0.4, and -0.2, V versus NHE.  These results are presented in Table 4.3.  

 

Table 4.3.  Sm(TFSI)3 in RTIL oxidation and reduction 
process peak maxima potentials.   

Band  
# 

Reduction 
(V) 

Oxidation 
(V) 

1 1.2 1.5 
2 0.4 1.2 
3 -0.3 0.4 
4   -0.2 

 

By evaluating the changes in frequency as the potential is varied, an 

understanding of the resulting bands at each reduction and oxidation step can be gained.  
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As mass is deposited onto the electrode, the corresponding response from the quartz 

crystal will shift to lower frequencies.88   Thus the mass of material deposited is 

proportional to the frequency observed.  In the case of the reduction of samarium onto the 

electrode surface, the results must be closely examined.   

 
Figure 4.5.  Cyclic voltammogram and corresponding QCM measurements taken at 100 
mV/s of [Me3NnBu][TFSI] alone (dashed line), and Sm(TFSI)3(H2O)3  in 
[Me3NnBu][TFSI] (solid lines, blue=1st cycle, red=20th cycle, and green=50th cycle). 
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In Figure 4.5, the first CV cycle (blue, labeled) is shown in the top section, and 

the corresponding QCM measurement is reflected (blue, labeled) in the bottom section.  

The arrows indicate the direction of the CV scan as they relate to the changes in observed 

frequency.  The frequency increased as the potential was cycled to negative, reducing 

potentials; and subsequently decreased as the current was cycled towards positive 

potentials.  This is not a typical response for the case when electrodeposition is occurring, 

as a decrease in frequency as the potential is made more negative would be expected.   

One possible explanation for the unexpected increasing current response under 

reducing conditions is viscoelasticity.  When a material has viscoelastic properties, it 

behaves as both viscous and elastic materials would respond.88   It has been reported in 

the literature that an increase in the frequency was observed from the QCM as the 

deposition of aluminum occurred at the electrode surface from an RTIL solution.  This 

result was attributed to a viscosity decrease as a result of anion decomposition.88  To 

examine if this was the case in this research, a background scan of the RTIL was obtained 

(Figure 4.6).  If the anion was decomposing and dramatically affecting the viscoelasticity 

of the system, then the background should reflect this by an increase in frequency.  This 

was not observed, as when reviewing Figure 4.6 (green, labeled)  the CV response is 

shown with the QCM response below it.   
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Figure 4.6.  QCM and corresponding CV for the RTIL background (labeled).  The arrows 
indicate the direction of the potential. 

 

It can be seen in Figure 4.6 that the QCM background had a consistent current of 

zero with respect to frequency as the CV was obtained.  As a result of this finding, it is 

considered unlikely that the increase in current under reducing conditions is caused 

entirely by viscoelasticity.  However, it should be noted that it is also possible that there 

is some combination of RTIL degradation mixed with  

the TFSI ligand displacement from samarium that causes a slight change in the viscosity 

near the electrode surface as the ligand desorbs. 
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The mechanism for samarium deposition can then be inferred from these findings.  

The frequency begins to increase under reducing conditions at -0.1 V versus NHE.  An 

increase in frequency reflects that there is less mass on the surface of the electrode. As 

the cycle reverses towards more positive potentials (from -1.5 V to -0.1 V), the frequency 

initially continues to increase.  At -0.1 V under continued oxidizing conditions, the 

frequency begins to decrease.  A decrease in frequency is associated with increasing mass 

on the surface of the electrode.  An overall decrease in frequency from cycle 1 (Figure 

4.4 (blue, top)) to cycle 50 (Figure 4.5 (green, bottom)) was observed.   

A stepwise deposit, in which the initial deposit contains a Sm-TFSI complex, is 

indicated from these results.  A samarium-TFSI complex has a greater mass than 

samarium alone.  The displacement of the TFSI anion from the electrode surface under 

further reducing conditions would account for the increase in mass as the potential is 

decreased.    The frequency then decreases during each cycle as the mass on the electrode 

surface increases when the free TFSI- in solution re-complexes to the samarium.  The 

QCM results also indicate that with the completion of each full cycle, the total mass on 

the electrode surface has increased.  As the number of cycles increases, more Sm(0) is 

left on the face of the electrode.    

The Sauerbrey equation can be used to determine the mass of materials that were 

deposited onto the surface of the electrode:89 
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Where:   

 ∆f = measured frequency shift 
 f0 = resonant frequency of the fundamental mode of the crystal 
 ∆m = mass change per unit area (g/cm2) 
 A = piezo-electrically active area 
 ρq = density of quartz, 2.648 g/cm3 
 µq = shear modulus of quartz, 2.947 × 1011 g/(cm × s2)  
 
 

The Sauerbrey equation could be solved for the mass of the deposit on the 

electrode surface, however it must be proven to be valid under the conditions of the 

system first.89  Specifically, it has been found if the deposit is not uniform, or if the 

solution is too viscous, the Sauerbrey equation is not valid.89-90 In addition, the fact that 

the resonant frequency of the crystal in air is not the same as the resonant frequency in 

liquid should be taken into consideration.90   One way to do this would be to plot the 

known mass deposited against the frequency change.  The mass of the deposits obtained 

in this Chapter were not measured by another means, so this is not possible. 

In summary, it is proposed that samarium initially is deposited still partially 

complexed to the TFSI ligand, and as the potential is decreased, the TFSI ligand is 

removed.  Scheme 4.1 illustrates this concept.  These findings do not dictate that this is 

the only process occurring at each wave, as it is possible that the Sm(II)/Sm(III) 

oxidation step is occurring simultaneously with the Sm-TFSI re-formation on the surface 

of the electrode. The results reflect that the Sm-TFSI species is first electrodeposited 

together on the electrode, and then the TFSI is removed at more negative potentials. 
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Scheme 4.1.  Proposed mechanism for the reduction to Sm(0) at the electrode surface. 
 
 
 

    

Previous reports of reduction to samarium metal in aqueous systems have been 

found at much more negative potentials, near -2.7 V.48  Parrish et al reported 

electrodeposition at -2.1 V from SmOTf in a RTIL solution, which shares many 

functional groups with the TFSI anion selected for this work.91  These findings are of 

particular interest given the deposition in this system occurred between -0.33 for the Sm-

TFSI complex and -1.5 V for Sm(0). This is still thermodynamically more favorable than 

the deposition from the  SmOTf complex.  The results suggest that the electrodeposition 

of samarium from solutions in [Me3NnBu][TFSI] of extracted Sm(TFSI)3 is more 

favorable than previous systems reported in the literature.  A more thermodynamically 

favorable deposit may make it possible to obtain larger quantities of material from 

deposition from the  RTIL solution in shorter time scales.92   

 The initial samarium deposition occurs at -0.33 V, and as the potential is swept in 

the negative direction the TFSI ligands are removed until approximately -1.5 V.  At this 

point all of the TFSI ligands appear to have been removed from the electrode surface.  

Thus, the instrument was set to maintain a sufficient over-potential to create a driving 

force to allow for bulk Sm(0) deposition to occur. The deposit was desired to reach a 

Sm  Sm 

TFSI TFSI 

Au Electrode    Au Electrode 

2e- 

+ 2(TFSI)- 
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quantity suitable for further analysis with SEM and EDS. (Section 2.5.1)Thus, a constant 

potential of -1.8 V versus NHE was selected, and the current response was measured as a 

function of time (Figure 4.7).  
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Figure 4.7.  Potential mediated deposition of Sm from a solution of 0.05 M 
Sm(TFSI)3(H2O)3  in [Me3NnBu][TFSI]. 

 
 

The current response is directly proportional to the amount of samarium in the 

RTIL solvent, so a decrease in the current indicates a decrease in the amount of samarium 

in the solution, or conversely, an increase in the amount of Sm deposited at the electrode 

surface.44  Additionally, a plateau may indicate that  the potential is not sufficient for 

further depositon.At 1600 s, the rapid change observed in the current response had 

slowed, and the electrodeposition process was stopped.  The electrode was then removed 

from solution, cleaned (see Section 2.4.3), and measured with SEM and EDS to obtain 
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images of the Sm deposit and electrode surface as well as to determine the elemental 

composition of the deposit. 

  

4.3.4 Analysis of the electrodeposition 

 Following successful potential mediated electrodeposition of the samarium onto 

the electrode, it was analyzed via SEM and EDS. In the SEM image shown in Figure 4.8, 

the deposit of samarium can be seen on a gold sheet electrode.  The samarium is in the 

grey ridges in the center of the image, and the light lines creating a grain look to the 

electrode surface is the surface of the gold electrode.   

 
Figure 4.8.  SEM image of samarium deposit on the gold electrode. 

 
 

Sm Au 
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The EDS analysis presented in Figure 4.9, below, confirmed the elemental composition 

of the deposit.   In this case, the samarium deposit was not very large, so the gold 

dominated the count response. 
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Figure 4.9.  EDS of samarium deposit on the gold electrod. 

 
 

In Figure 4.9, it can be seen that the EDS analysis shows the presence of 

samarium onto the surface of the gold electrode, with no indication of oxygen at 5.5 keV.  

Given the EDS is able to detect oxygen content down to 0.5 weight percent, this is further 

support of samarium metal deposition.93  Additionally, the occurrence of fluorine in the 

spectrum is further support to the proposed mechanism of Sm deposition through removal 

of the TFSI ligand during the reduction at the electrode surface.  If they were present, the 

EDS would successfully be able to identify many of the other elements present in the 

TFSI species including oxygen, nitrogen, and sulfur.  Elements lighter than carbon cannot 
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be seen.94  The ionic liquid is very viscous, and the electrode was intentionally left 

partially wet during transport, and then cleaned just before analysis.   

 

4.4 Conclusions 

 In this research, the extraction of samarium from the starting material of 

Sm(TFSI)3 in water into an RTIL solution was shown to be extremely  effective.  The 

extraction was achieved with no additional extractant added to the system, but was found 

to be dependent on the pH of the aqueous layer.  An extraction efficiency of 100 % was 

found to be possible within 5 hours at and above pH 9.0.   

Once the samarium was extracted into the RTIL solvent, studies of the oxidative 

and reductive properties of the species indicated that deposition of a Sm-TFSI complex 

occurs at -0.33 V versus NHE. As the scan continues to more negative potentials, all of 

the TFSI is removed from the Sm-TFSI that was initially deposited at the surface,.  Sm(0) 

is found at the electrode surface by -1.5 V versus NHE, which is over 1.0 V more 

electropositive than previous literature reports of samarium in aqueous based systems.91  

The samarium deposit was successfully obtained and measured using SEM and EDS. The 

deposit was confirmed to be samarium metal, with no visible oxygen at the electrode 

surface as indicated by the EDS analysis of multiple spots.  Most importantly, this 

research shows the potential of the RTIL solvent to be used as both the extraction solvent 

as well as the electrochemical solvent from which separation via electrodeposition of f-

elements has proven feasible. 
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Chapter 5:  Argon assisted dissolution of uranyl carbonate 

5.1 Introduction  

Uranyl carbonate species are often studied because of their ability to interact in 

natural environments, their strong interaction of the metal with the ligand, and the ability 

to manipulate carbonate concentration through control of atmosphere.95  For uranium 

found in nature, UO2
2+ has been reported to be a very mobile species that is easily sorbed 

to organic materials.96  As a result of this high mobility in natural environments, as well 

as concerns with potential dangers from migration from uranium mines and nuclear 

waste, obtaining a more thorough understanding of the uranyl species is extremely 

important.96   

Carbonates are the primary uranium species under basic conditions, therefore this 

high valence uranium complex may be readily found in nature.96  As a result of the high 

stability of the complex, carbonate extractions are an advantageous method employed for 

uranium separations.96  In addition, uranyl carbonates have been reported to have a 

dominating affect when considering speciation under the aqueous conditions as reported 

at the Hanford site when examining the Vadose Zone pore waters.97  In those studies, the 

researchers noted that the uranyl carbonate was the primary mobile species that was 

observed migrating beneath the surface.  Finally, uranyl carbonate is a component of 

some reprocessing schemes, in which the UO2 is separated by precipitation as uranyl 

carbonate.98 

A more detailed understanding of the dissolution of UO2CO3 and the speciation 

and electrochemical behavior of soluble species in the RTIL, [Me3NnBu][TFSI], is then 
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useful for both environmental and reprocessing purposes.  However, there must be 

appreciable solubility of the actinide species in the RTIL to be useful for any envisioned 

applications. The direct dissolution and electrochemical reclamation of f-elements from 

complex mixtures are also relevant in understanding the fundamental application of RTIL 

solutions in reprocessing, solvent extraction, reclamation, and sequestering of nuclear 

waste and reusable materials.   

This chapter presents the evaluation of the dissolution of UO2CO3 in neat and 

acidified RTIL [Me3NnBu][TFSI] using UV/VIS spectroscopy and liquid scintillation 

counting.  The properties of the carbonate ligand are specifically exploited to increase the 

solubility of the f-element species into the RTIL. The complexation and speciation of the 

soluble uranium species is evaluated providing insights into the dissolution mechanism of 

UO2CO3 and interaction of U(VI) species with RTIL solution. Finally, electrochemical 

measurements are used to probe the oxidation/reduction properties of soluble uranium 

and to evaluate the potential dependent deposition from RTIL. 

 

5.2 Methods 

5.2.1  Reagents 

 All reagents used were reagent grade. Lithium bis(trifluoromethanesulfonyl)imide 

(LiTFSI) salt was purchased from VWR. The bis(trifluoromethanesulfonyl)amine 

(HTFSI) was purchased from Sigma Aldrich. All purchased reagents were used as 

received. See Chapter 3 for further details on the synthesis of the RTIL (Section 3.1) and 

the uranyl carbonate (Section 3.2).   
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5.2.2  Dissolution of UO2CO3 

 The reaction was initialized after placing 0.3 g of finely ground uranyl carbonate 

containing 12.2%  by mass 233U along with 55.4 g of [Me3NnBu][TFSI] in a 50 mL 

centrifuge tube (See Section 3.2 for further information on the isotopic ratio).  Constant 

stirring of the reaction vessel contents was executed using a spin vane with a continuous 

argon gas purge (Figure 5.1).  

 

Figure 5.1.  Graphic schematic of the experimental setup for the uranyl carbonate 
dissolution. 

 
 

The centrifuge tube was disconnected from the gas and centrifuged for 10 minutes 

at given time intervals. An aliquot was removed and saved for analysis via liquid 
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scintillation counting, UV-Vis spectroscopy, cyclic voltammetry, and linear sweep 

voltammetry (LSV). These methods were described in detail in Chapter 2.  Aliquots were 

removed and analyzed over the course of 80 days. 

 

5.3 Discussion 

5.3.1 Solubility of UO2CO3 in [Me3NnBu][TFSI] 

 

 The dissolution of UO2CO3 in stirred RTIL was evaluated after one week in the 

absence of an argon gas purge.  There was no observable response above  the baseline for 

soluble uranyl using either UV/Vis or liquid scintillation analysis for this sample.  The 

solubility of UO2CO3 and formation of UO2(TFSI)2 complex in [Me3NnBu][TFSI] was 

also monitored using UV/Vis spectroscopy after initiating an argon purge of the system.  

Figure 5.2 presents selected results of this experiment.  
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Figure 5.2.  UV-Vis spectra of a. Soluble 96 µM uranyl in [Me3NnBu][TFSI] after 
twenty-eight days of argon purging, b. Soluble 60 µM uranyl (diluted from 6.4 mM) in 
[Me3NnBu][TFSI] after addition of HTFSI. and c. HTFSI in [Me3NnBu][TFSI].   

 

The increase in solubility with argon gas purge indicates that the dissolution may 

be tied to the displacement of CO3
2- from the UO2CO3.  However, displacement of CO3

2- 

should only be influenced by argon gas if the carbonate ion is converted to H2CO2 

followed by decomposition to water and CO2 which can then be degassed from solution. 

Free UO2
2+ in the absence of the carbonate ligand can then form a complex with TFSI 

depleting the anion from the RTIL. The lack of protons available in the RTIL hinder the 

dissolution of the UO2CO3 in [Me3NnBu][TFSI]. Thus dissolution is limited based on the 

dissociation of water which has minimal concentration in the system (0.285 % by weight, 

see Section 3.1 for RTIL water content determination). An increase in proton 
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concentration should produce carbonic acid and hastening dissolution in the RTIL, 

Scheme 5.1. 

 

Scheme 5.1. Possible dissolution mechanism for UO2CO3 in [Me3NnBu][TFSI] 

 
 
The dissolution of UO2CO3 (s) was examined after addition of HTFSI to the RTIL 

to evaluate the proposed mechanism. Solid HTFSI appeared to be fully dissolved upon 

visual inspection after adding to the RTIL containing solid UO2CO3. The UV/Vis 

spectrum was examined to ensure the complex formation was consistent with the species 

formed in the absence of acid.  

For example, Figure 5.2a shows the spectra for UO2CO3 dissolution in RTIL 

without acid at 28 days for comparison with acidified UO2CO3 in RTIL in Figure 5.2b.  

Minor spectral differences are observed after the addition of HFTSI in terms of the shape 

and wavelengths for the absorbances for both bands. The decrease in TFSI anion during 

complex formation is likely not observed in Figure 5.2b because additional TFSI anion is 

provided in the form of acid. For comparison, the spectrum of HTFSI in 

[Me3NnBu][TFSI] is also provided, Figure 5.2c. The spectrum shows a single band at 

~275 nm associated with the TFSI ligand consistent with the band observed for acidified 
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RTIL. This band is also consistent with the observed location of the TFSI anion from the 

discussion of Sm(TFSI)3(H2O)3 in water from Section 3.3.4.  The data again supports the 

lower wavelength band corresponding to absorbance associated with the TFSI anion in 

the RTIL and the proton concentration. The spectra also suggest that the addition of 

HTFSI influences the direct dissolution of UO2CO3, in RTIL.  This could be based on the 

loss of carbonate ligand through the formation and decomposition of carbonic acid.  

Additional experiments would be necessary to monitor the formation of carbonic acid to 

verify this statement. 

An additional consideration is that of reduction of the U(VI) species during the 

dissolution process.  However, given the preferential hexavalent oxidation state of 

uranium in aqueous solution96 it is unlikely that there would have been a change in 

oxidation state during the dissolution process. Additionally, for the uranium to reduce, 

the TFSI-, Me3NnBu+, or the CO3
2- would need to oxidize.  A strong reducing agent 

would be required to reduce the U(VI) species.  It is doubtful that any of the available 

species would have this capacity.  Assuming there is no change in oxidation state of the 

uranium species it is expected that the UO2(TFSI)2 complex could form.  

The resulting spectra of the RTIL soluble uranium species (Figure 5.2) are 

markedly different than the spectra that would be expected of uranyl in an aqueous 

solvent.  In the RTIL, the fine structure that is observed in the aqueous solvent is lost.  

Figure 5.3 provides an example of the spectrum of uranyl nitrate dissolved into water for 

comparison.   
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Figure 5.3.  Representative UV-Vis spectrum of uranyl under aqueous conditions.   

 
 
As demonstrated in Figure 5.3, typically free UO2

2+ absorbance is observed 

between 414 – 425 nm in aqueous media.99,100  Absorbance below 500 nm is consistent 

with soluble uranium in the hexavalent oxidation state.100  It can be noted by comparing 

the spectra in Figure 5.2 to that of Figure 5.3 that the shape of the bands resulting from 

soluble uranyl in the RTIL has lost the fine structure that is visible in the aqueous 

solution.  Additionally, the wavelength for the soluble uranium species’ absorbance in 

RTIL (359 nm) is lower than those reported for U(VI) species.   However, the uranyl 

species has been shown to exhibit a strong absorbance below 400 nm in the NaCl-2CsCl 

eutectic systems.27  Other researchers have also reported absorbances from 190 to 400 nm 

of uranyl complexes formed with Schiff bases using an acidic catalysis.  They concluded 

that the bands in this region were from the U(5f)-Schiff Base(O) ligand to metal charge 

transfer band.101   
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The UV-Vis spectroscopic responses for various times are provided in Figure 5.4. 

The spectra were collected using a blank cell containing pure RTIL, [Me3NnBu][TFSI], 

and a sample cell containing aliquots of soluble uranium in RTIL purged with argon gas. 

Any increase in absorbance represents either the emergence of new species in the 

solution due to the dissolution of the UO2CO3(s) or a change in chemistry of the RTIL 

itself. In contrast, negative absorbance is potentially indicative of the depletion of RTIL 

species from the solution due to possible complex formation with soluble uranium.  

From the Figure, a shift can be observed in which band (287 or 359 nm) has the 

higher maximum absorbance as the number of days are increased.  In addition, the 

amplitude of the negative absorbance observed at 268 nm decreases during the course of 

the time period observed. 
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Figure 5.4. UV-Vis spectra of [Me3NnBu][TFSI] background and soluble uranyl in 
[Me3NnBu][TFSI] after various days of argon purging.  The uranyl concentrations as 
obtained from LSC for each time are provided in Table 5.1.   

 

Below 1 a.u, the band at 359 nm has a higher absorbance than the band at 287 nm.  

At approximately 1 a.u., both bands appear to have very similar maxima; however by 2 

a.u., the band at 287 nm has a higher absorbance than the band at 359 nm.  There appears 

to be a correlation between the negative absorbance and maximum absorbance observed, 

however the inability to deconvolute the overlapping bands with the available data 

obtained in this dissertation prevents a valid continuation of this analysis.   The TFSI 

ligand has been reported to form complexes both through the nitrogen center as well as 
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the sulfonyl oxygens,68 thus the two bands could represent the formation of a uranium-

TFSI complex through two different atoms within the TFSI complex. 

Given the observed changes in the resulting spectrum of the soluble uranium 

species in the RTIL, a secondary analysis method was utilized.  Comparison of the 

absorbance and LSC data is a useful method for determining if the dissolution and 

increase UV/Vis absorbance is due to soluble uranium in the RTIL.  Before attempting to 

correlate these two methods, a single UV-Vis band was selected by first examining each 

individual band. 

The absorbance band at 287 nm is well below the typically reported absorbance 

wavelengths of uranium in aqueous or RTIL solution. Therefore the band is not likely 

solely due to complex formation between soluble uranium and TFSI.  In addition, the 

band at 287 nm presented maximum absorbance well above 3.  In regions of high 

absorbance, the linear relationship of concentration with molar absorptivity as written in 

Beer’s law becomes questionable.  Thus absorbances above 3 were not ideal for a 

correlation with uranium concentration in solution.  The band at 359 nm was then 

selected for making comparisons against the LSC data.  Unfortunately, to perform UV-

Vis analysis, LSC, and electrochemical analysis,  an aliquot of at least 1.5 mL was 

required.  As a result, not all LSC samples were analyzed with both techniques.  A 

smaller fraction of samples, obtained at 2, 4, 10, 14, 21, 28, and 36 days were selected to 

have large enough sample volumes removed in which both LSC and UV-Vis techniques 

could be performed.  Therefore, these are the only samples that were used for the 

comparison of techniques and the derivation of the molar absorbtivity.  
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The time dependent concentration for the argon assisted dissolution of UO2CO3 in 

RTIL is provided in Figure 5.5 and Table 5.1 based on LSC measurement of the total 

uranium concentration. As explained above, a portion of these samples were also utilized 

for obtaining the UV-Vis spectra provided in this section.  The Table presents the 

relevant sample information necessary to determine the total uranium concentrations as 

demonstrated in Chapter 3. Those samples that were also analyzed with UV-Vis are 

italicized.   

 

Table 5.1.  LSC results and relevant sample data used for calculations. Italicized results 
indicate that both UV-Vis and LSC was performed on the same sample. 

Time (d) 
Sample 

Mass (g) 
Sample V 

(L) 
DPM 

from LSC A (Bq) Atoms Mols 
[U-233] 

(M) 
[Total U] 

(µM) 
0 0.0863 6.12E-05 0 0.00 0.00E+00 0.00E+00 0.00E+00 0.00 
2 0.0872 6.18E-05 104 1.74 1.26E+13 2.09E-11 3.38E-07 2.77 
4 0.0637 4.52E-05 217 3.61 2.62E+13 4.35E-11 9.63E-07 7.89 
6 0.0562 3.99E-05 795 13.25 9.60E+13 1.59E-10 4.00E-06 32.80 

10 0.0594 4.21E-05 369 6.15 4.45E+13 7.40E-11 1.76E-06 14.39 
14 0.0577 4.09E-05 878 14.64 1.06E+14 1.76E-10 4.31E-06 35.30 
17 0.0399 2.83E-05 1840 30.67 2.22E+14 3.69E-10 1.30E-05 106.93 
21 0.0339 2.40E-05 932 15.54 1.13E+14 1.87E-10 7.78E-06 63.77 
28 0.0260 1.84E-05 1068 17.80 1.29E+14 2.14E-10 1.16E-05 95.25 
36 0.0880 6.24E-05 1244 20.73 1.50E+14 2.50E-10 4.00E-06 32.78 
42 0.0863 6.12E-05 6317 105.29 7.63E+14 1.27E-09 2.07E-05 169.73 
49 0.0842 5.97E-05 7013 116.88 8.47E+14 1.41E-09 2.36E-05 193.12 
56 0.0936 6.64E-05 7223 120.39 8.72E+14 1.45E-09 2.18E-05 178.93 
78 0.1153 8.18E-05 8505 141.76 1.03E+15 1.71E-09 2.09E-05 171.04 

     



 117 

 
Figure 5.5. Total concentration of soluble uranyl in [Me3NnBu][TFSI] as a function of 
time from liquid scintillation counting as shown in Table 5.1. 

 

 

It is interesting to note that the dissolution of UO2CO3 and increased solubility of 

the uranium in [Me3NnBu][TFSI] is influenced by argon degassing of the solution within 

two days. It is clear from the plot that the dissolution of UO2CO3 in RTIL is relatively 

slow with the maximum concentration of ~195 μM at approximately 50 days. It can also 

be seen from the Figure that the concentration does not increase steadily over time, but 

has several distinct decreases, including a fairly substantial decrease at 10 and 36 days.   

The experiment was run in triplicate and the concentration was consistently lower at this 

time period, indicating that it is not a statistical outlier. It is not clear why the soluble 

uranium would decrease at this point. However, a comparison using the UV/Vis 
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absorbance data shown in Figure 5.5 with the LSC data presented in Table 5.2 at the 

same time is consistent with the observed decrease (Figure 5.6).  

  

 

Figure 5.6. Plot of absorbance maxima at 359 nm from the spectra presented in Figure 5.4 
versus total concentration of soluble uranium from LSC measurements shown in Table 
5.1.  This information is also listed together in Table 5.2. 
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Table 5.2.  UV-Vis absorbance at 359 nm and LSC uranium concentrations for all 
samples that were analyzed by both techniques. 

Days Absorbance (A) at 359nm  

[U-total] (M) - 
Determined from 
LSC  

2 0.717 2.77E-06 
4 0.846 7.89E-06 

10 1.09 1.44E-05 
14 1.736 3.53E-05 
21 2.34 6.38E-05 
28 2.59 9.53E-05 
36 1.56 3.28E-05 

 
 

 

The LSC and UV-Vis data presented above initially suggests that the absorbance 

at 359 nm is linked to the dissolution of UO2CO3 in RTIL and the corresponding increase 

of soluble uranium species. In addition, an estimate of the molar absorptivity can be 

obtained from the plot. The molar absorptivity estimated from the slope of the line using 

the linear regression shown in Figure 5.6 was shown to be 2.1×105 ± 2.2×104 L*mol-

1*cm-1.  However, the molar absorptivity value is at least an order of magnitude higher 

than many previous uranium species.102  The magnitude of the molar absorptivity and the 

shift to lower wavelengths as compared to the previously reported free uranyl ion 

suggests that additional analysis should be performed before concluding that this is the 

correct extinction coefficient for uranium in the RTIL. Additionally, as described above, 

the atoms (nitrogen or oxygen) within the TFSI ligand that are responsible for the 

formation of the uranium-TFSI complex must be considered. 

To further test the molar absorptivity as determined from the linear regression 

shown in Figure 5.6, it was recalculated individually for each sample using Beer’s Law: 
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A bc
A
bc

ε

ε

=

=                      Equation 5.1 

 Where: 

  A = Absorbance at 359 nm 
  b = path length = 1 cm 
  ε = Molar Absorbtivity  
  c = concentration, M 

 
The data for each sample is provided in Table 5.3.  These results were also plotted to 

observe the change in molar absorptivity with time (Figure 5.7): 

 

 
Figure 5.7.  Molar absorptivity calculated for each sample, plotted as a function of time 
(days).  

 
It is interesting to note that the molar absorptivity appears to initially fall 

dramatically in the first 4 days of the experiment, and then it steadily decreases through 
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28 days.  The final point, at 36 days, appears to slightly increase, but it could also 

indicate reaching a plateau.  Additional data points would be required to ascertain if this 

is the case. 

 

 
Table 5.3.  Molar absorptivities calculated at A=359 nm for each sample using the sample 
information shown in Table 5.2. 

Days 
Absorbance (A) at 
359nm  

[U-total] (M) - 
Determined from LSC  

Molar 
Absorptivity 

2 0.717 2.77E-06 2.59E+05 
4 0.846 7.89E-06 1.07E+05 

10 1.09 1.44E-05 7.57E+04 
14 1.736 3.53E-05 4.92E+04 
21 2.34 6.38E-05 3.67E+04 
28 2.59 9.53E-05 2.72E+04 
36 1.56 3.28E-05 4.76E+04 

    Average 8.61E+04 
    Standard Deviation 8.08E+04 

 

 

It can be seen from Table 5.3 that the average molar absorptivity calculated by using 

Equation 5.1 is 8.61×104 ± 8.08×104 L*mol-1*cm-1.  This can be compared with the 

molar absorptivity as determined from the linear regression, 2.11 ×105 L*mol-1*cm-1.  If 

correctly assigned, these values should be in agreement.  However, they are 86% 

different from each other.  In addition, it can be seen from the table, that the initial molar 

absorptivity, at 2 and 4 days, are much closer to the linear regression determination.  As 

the experiment continues, the molar absorptivity decreases.  This was also seen in Figure 

5.7.  These results suggest that while the emergent band in Figure 5.4 at 359 nm may be 

related to the increase of uranium in the RTIL solution through the increase of another 

species, such as TFSI, it is not directly from the uranium itself.  
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 Further spectroscopic analysis was performed using a new sample in which 

additional HTFSI acid was added directly to the RTIL solution containing UO2CO3 solid.  

The experimental set up detailed in Section 5.2.2 was otherwise mirrored.  The initial 

results reflected an additional emergent band at 465 nm. The location of this band was 

more consistent with previously observed uranyl in solution.99,100  However the maximum 

absorbances below 400 nm exceeded 10 a.u., which prevented further use of this raw 

data. The sample was diluted to obtain lower absorbances, but unfortunately this also 

caused the emergent band to no longer be visible.  Further experiments would be 

necessary to validate that the preliminary observed band at 465 nm was the uranyl 

response in the RTIL solution. 

It would have been useful to have LSC and UV-Vis data for every sample point, 

but the volume required to obtain a sample for UV-Vis analysis was much greater than 

the volume that was required for LSC analysis.  The sample aliquots removed during the 

experimental procedure were designed to not overly perturb the original system.  The 

goal was to have less than 10% of the total starting volume removed during the course of 

the entire experiment.  As such, only a portion of the samples were examined with both 

techniques.  The emergent band viewed in the raw data of the undiluted spectrum of 

UO2TFSI2 with added HTFSI in RTIL provides further question to the validity of the 

assignment.  The bands at 287 and 359 nm are more likely indirectly caused from 

increasing TFSI in solution, which results from the UO2TFSI2 complex formed during the 

dissolution process as presented in Scheme 5.1 through the displacement of the carbonate 

ligand from the uranyl by acidification. Additional spectra would be useful in confirming 

that the band assignments, but this experiment was not performed during this dissertation. 
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5.3.2 FTIR Spectroscopy 

Complex formation between the UO2
2+ cation and TFSI- anion has not be 

extensively studied using IR spectroscopy. However, theoretical calculations and 

experimental IR spectroscopy have been performed on the TFSI ligand and LiTFSI salt 

providing band assignments for the SO2, CF3, SNS, and CS functional groups.47,103  The 

use of FTIR spectroscopy in our studies is further complicated by the high concentration 

of the RTIL relative to the soluble UO2(TFSI)2 that would be present. The FTIR spectra 

of LiTFSI, RTIL [Me3NnBu][TFSI], and UO2CO3 in RTIL [Me3NnBu][TFSI] after 40 

days are presented in Figure 5.8. 

 

 
Figure 5.8.  FT-IR spectra of solid LiTFSI (bottom), RTIL [Me3NnBu][TFSI] (top, 
dashed line) and soluble UO2

2+ in [Me3NnBu][TFSI] (top, solid line). 
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The characteristic bands from 1050 – 1400 cm-1 encompass the TFSI functional 

groups SNS, SO2, and CF3. For comparison, the spectral bands from 900 – 1000 cm-1 are 

indicative of the Me3NnBu cation. These characteristic IR bands for the cation are absent 

in the spectra of LiTFSI confirming the assignments. The neat RTIL solution compares 

favorably with the literature with bands for SO2 at 1345, 1327, and 1131 cm-1, 

respectively. The CF3 and SNS functional groups can be observed at 1174 and 1049 cm-1, 

respectively in the IR spectrum. Similarly, the band assignments at 1347, 1329, and 1132 

cm-1 are given to the SO2 functional group present in the solvent RTIL, 

[Me3NnBu][TFSI]. The CF3 and SNS functional groups are observed at 1179 and 1051 

cm-1. Table 5.4 presents the comparison of these bands.  The modest shift to higher 

wavenumbers for all the bands associated with the TFSI anion is certainly not conclusive 

proof that UO2
2+ and TFSI form a complex.  

 

Table 5.4.  Comparison of the location FT-IR bands of RTIL containing soluble UO2
2+ 

against literature values for neat RTIL. 
Functional 

Group 
Wavelength (cm-1) 

Product Literature47,103,68,104 
SO2 1345 1323 
  1327 1307 
CF3 1218 1221 
  1179 1198 
SO2 1131 1138 
SNS 1051 1055 
CH3 972 969 
  935 953 
  910 947 
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However, the shape and change in relative intensity of the bands is indicative of 

the formation of the UO2(TFSI)2 complex.47,103  Previous reports have found that the 

TFSI anion can coordinate with a metal center through the sulfonyl oxygens as well as 

the nitrogen center.47,103,68,104 The SO2 doublet has been attributed to the symmetric and 

asymmetric stretching and changes in the intensity and shape of the two bands can be 

ascribed to changes in concentrations of the conformers when the TFSI ligand is 

bound.103 

The FTIR spectra of RTIL [Me3NnBu][TFSI], UO2CO3 in RTIL 

[Me3NnBu][TFSI] after 40 days, and UO2(TFSI)2 in RTIL [Me3NnBu][TFSI] after 

addition of HTFSI are presented in Figure 5.9.  

 
Figure 5.9. FT-IR spectra of RTIL [Me3NnBu][TFSI] (dashed line), soluble UO2

2+ in 
[Me3NnBu][TFSI] (solid line), and soluble uranium in [Me3NnBu][TFSI] after the 
addition of HTFSI (solid line, bold).   
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The IR spectra for the UO2(TFSI)2 in RTIL [Me3NnBu][TFSI] and UO2CO3 in 

RTIL [Me3NnBu][TFSI] after addition of HTFSI are indistinguishable in the spectral 

regions between 1050 and 1400 cm-1 with respect to band position and relative intensity.  

In contrast, the spectral region associated with soluble UO2
2+ shows an increase in band 

intensity from 850 – 900 cm-1. There is no direct comparison to soluble UO2
2+ in RTIL 

available in the literature. However, there is data for uranyl formed from laser ablated 

uranium with gaseous H2O2 which note emergent bands between 700 and 900 cm-1 

encompassing neutral deposits of UO3, UO2 and UO, respectively.105 All of these species 

are oxide forms of uranium, which are a suitable for fundamental comparison with the 

oxygen containing uranium species examined in this Chapter.   

The uranyl functional group also has vibrations reported around 914cm-1 in the 

complex UO2ClI⋅3DMSO.  Previous literature also noted that the bonding atom in the 

uranyl functional group was very sensitive to the complex in which it is bound to.106  

Therefore the emergent band centered at 884 cm-1 in Figure 5.9 is designated as UO2
2+ 

for UO2(TFSI)2 in RTIL [Me3NnBu][TFSI] after addition of HTFSI. This data also 

demonstrates that a much higher concentration of soluble UO2
2+ is achieved with the 

addition of HTFSI through the direct dissolution of UO2CO3, when compared to the 

pristine RTIL solution. 

 

5.3.3 Electrochemistry   

 The electrochemical response of soluble uranium as a function of time is provided 

in Figure 5.10.  
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Figure 5.10. Cyclic voltammetric response of, RTIL [Me3NnBu][TFSI] (dashed line), a. 
Soluble UO2

2+ in [Me3NnBu][TFSI] after two days of argon purge, b. Soluble UO2
2+ in 

[Me3NnBu][TFSI] after four days of argon purge, and c. Soluble UO2
2+ in 

[Me3NnBu][TFSI] after forty days of argon purge. Scan rate =100 mV/s. Inset: Scan rate 
dependence for voltammetric waves for soluble UO2

2+ in [Me3NnBu][TFSI] after two 
days of argon purge. 

 

Following centrifugation, an aliquot without any visible UO2CO3(s) was removed 

from the solution of [Me3NnBu][TFSI] to obtain each cyclic voltammogram at a given 

time.  For clarity, only select times are displayed in the figure. The background for pure 

[Me3NnBu][TFSI] is provided in the figure (dashed line). The cyclic voltammetric 

response for UO2(TFSI)2 in RTIL [Me3NnBu][TFSI] after two days of purging shows 
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discernable oxidation/reduction processes associated with the soluble uranium species in 

RTIL, Figure 5.10a. A similar voltammetric response is observed for the RTIL solution 

after 4 days in Figure 5.10b. There are two reduction waves that can be observed in the 

voltammetric response at 0.75 V and -0.10 V. A single oxidation wave is observed at 

1.21 V in the cyclic voltammetric response. 

 Previous electrochemical studies of uranium ions in RTIL solutions have been 

conducted using alkyl imidazolium cations with various inorganic anions. In some cases 

species such as UCl6
2- are directly incorporated into the RTIL after forming a complex 

with the common cation.  For example the oxidation/reduction of UO2
2+ has been 

examined in 1-butyl-3-methyl-imidazolium RTIL solutions with various anions.71,107 The 

electrochemical response of UO2
2+ in 1-butyl-3-methylimidazolium nonafluorobutane-

sulfonate, bmiNfO shows overlapping waves at negative potentials consistent with 

multiple reduction processes.108 The electrochemical processes were assigned to the 

multi-step reduction of hexavalent to tetravalent uranium via two single electron 

processes followed by the direct deposition of UO2(s) at the electrode surface. 

The study also indentifies a single, large oxidation wave which was attributed to 

the oxidation of multiple uranium species. Previous assignment of the 

oxidation/reduction processes associated with the voltammetric response has been 

complicated due to the lack of literature associated with the reduction of free or 

complexed UO2
2+ in RTIL. In addition, mixed ligand complexes have been previously 

suggested to account for the multiple voltammetric waves observed.16  

Although the multi-step reduction and single oxidation wave observed for UO2
2+ 

in [Me3NnBu][TFSI] are consist with bmiNfO, direct comparison of potentials for 
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oxidation/reduction processes are complicated by the lack of standard reference 

electrodes used in previous measurements and the different chemical constituencies in 

each RTIL solution studied.107,108 

The cyclic voltammetric responses for samples at two and four days are consistent 

with the two step, single electron reduction of U(VI) to U(V) to U(IV) and possible 

deposition of UO2(s).  Analysis of the voltammetric waves as a function of scan rate can 

be used to determine if the oxidation/reduction processes are based on diffusion of 

solution species or adsorbed surface species.  A linear dependence is observed for the 

each voltammetric wave when the peak current is plotted versus the square root of the 

scan rate, ν1/2 (Inset, Figure 5.10).45 Based on the scan rate data the electrochemical 

reduction at 0.76 V and -0.10 V and oxidation at 1.21 V observed at two and four days is 

not consistent with surface bound species. The results suggest that the solution reduction 

of hexavalent uranium to tetravalent uranium can occur in solution. The electrochemical 

reactions could then be as follows: 

 

( ) - -
2 22

-
2 2

UO TFSI   e   UO   2TFSI

UO  e   UO

+

+

+ → +

→  

An additional option would be through the formation of a neutral uranium 

species: 

 

( ) - -
2 22

-
2 2

UO TFSI   e   UO (TFSI)  TFSI

UO (TFSI) + e   UO  TFSI−

+ → +

→ +
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The electrochemical response of UO2(TFSI)2 in RTIL [Me3NnBu][TFSI] after 30 

days of argon degassing is more complex, Figure 5.10c. Two additional reduction 

processes are observed in the in the potential range between -0.6 V and -1.4 V with two 

oxidation processes overlapping the voltammetric wave previously identified at 1.21 V. 

The reduction can be attributed to the electrodeposition of uranium species onto the 

electrode surface. The oxidation is indicative of desorption of the deposits from the 

electrode surface followed by the normal oxidation of solution species.  

To demonstrate the reduction waves are due to the electrodeposition of soluble 

uranium species, the electrode was poised at a final potential of ~-2 V to ensure that 

surface deposits remain. The uranium surface deposit was probed using SEM, Figure 

5.11.  

 
Figure 5.11. SEM of Au substrate with electrochemically deposited uranium 

 
The gold electrode can be observed as the light surface in the SEM image. The 

multi-step electrochemical deposition suggests that the deposition is not simple and that 

the TFSI ligand may play a role. 
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The potential dependent deposition of uranium species at a glassy carbon 

electrode from solutions containing uranium was also evaluated using linear sweep 

voltammetry, Figure 5.12.  

 

Figure 5.12.   Linear sweep voltammetry of successive scans a – d, of soluble UO2
2+ in 

[Me3NnBu][TFSI] after 40 days under argon. The arrows highlight the electrochemical 
regions for the deposition of UO2(s). Scan rate = 100 mV/s. 

 

The figure shows four sequential scans Figure 5.12 a-d, for UO2CO3 in RTIL 

[Me3NnBu][TFSI] after 30 days The potential range encompasses the regions previously 
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identified for the possible deposition of uranium in the form of UO2 (s) from 

[Me3NnBu][TFSI].71,107,108 The first LSV scan shows the characteristic voltammetric 

response observed previously for the sample with the addition of two distinct shoulders at 

more negative potentials (small black arrows). The observation of the reduction processes 

is complicated by the reduction of the RTIL cation at more negative potentials. However, 

the subsequent LSV scan yields lower current responses for the reduction of solution 

species suggesting some electrode surface passivation occurs after the first scan. The 

electrochemical reduction of the solution species re-emerge after the second scan 

indicating that the electrode surface changes with each sequential scan. The voltammetric 

waves attributed to the deposition of uranium species are observed at ~-0.73 and -1.34 V 

and are more prominent for each successive scan, Figure 5.12b – 5.12d. The bands also 

shift to more positive potential (more thermodynamically favorable) with each successive 

scan showing an increase in current density indicative of an increase in surface 

deposition. 

The deposits on the glassy carbon electrode surface were lightly scraped to 

remove the material and the sample was then measured using XAFS spectroscopy. The 

XANES spectra was recorded and compared to solid uranyl nitrate Figure 5.13.  
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Figure 5.13. XANES spectra for hexavalent U(VI) standard (uranyl nitrate) (dashed line) 
and uranium deposits (solid line). 

 
The XANES spectra of electrodeposited product exhibit a slightly more intense 

white line than the U(VI) reference. The position of absorption edge, determined by first 

derivative method, show to be 1.1 eV lower than the uranyl nitrate standard which 

indicate that the compound exhibits an oxidation state lower than U(VI). A decrease in 

the relative intensity at ~17.19 keV was observed for the deposits.  

These two observations are consistent with previous reported energies for XAFS 

measurements of uranium (VI) and uranium (IV), and support the assignment of UO2(s) 

for the electrochemical surface deposit.109 Analysis of the EXAFS spectra of the 

electrodeposited product, show the presence of: 1.6 oxygen atoms at 1.73(2) Å, 7 oxygen 

atoms at 2.31(2) Å and 2 U atoms at 4.01(4) Å. The U=O contribution at 1.73(2) Å is 
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characteristic of U(VI), while the U-O contribution at 2.31(2) Å is likely due to UO2. The 

U-U contribution at 4.01(4) Å also indicates the presence of UO2.  

Analysis of the structure for UO2 from literature, indicate that each uranium atom 

is surrounded by 8 U atoms with U-O with d =2.37 Å.110  The U-O bonds change with 

increasing oxygen coordination. When oxygen coordinated reaches ten oxygen atoms 

there are four normal U-O bonds (2.37 Å), four U-O bonds with d = 2.22 Å and two 

additional U-O bonds with d = 2.30 Å.111-113 The presences of 7 U atoms at 2.31(2) Å 

suggest that the stoichiometry of the electrochemical deposit is not consistent with pure 

UO2(s). Rather, the deposit is consistent with a mixed oxidation state of uranium oxide 

with increased oxygen character. The presence of U(VI) in the final product and 

additional oxygen indicate that further oxidation of the deposits after electrodeposition 

may have occurred in air prior to the XAFS experiment.   A final option would be a UO3 

deposit, but the preliminary results as presented above were not consistent with this 

species either.  In summary, the deposits have been confirmed to have a uranium 

deposition using both XAFS and SEM techniques.  The XAFS reflected U(IV) and U(VI) 

may be present on the electrode surface, and SEM confirmed the presence both uranium 

and oxygen.  However, the data obtained was not consistent with one singular oxidation 

state of uranium. 

  

5.4 Conclusions 

 The present work has evaluated the direct dissolution of UO2CO3(s) in RTIL 

[Me3NnBu][TFSI].  The data indicate that the direct dissolution can be initiated with 

degassing of the solution under argon atmosphere. However, the process is slow and the 
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solubility is limited due to the poor displacement of CO3
2- by the TFSI anion. The direct 

dissolution and solubility of UO2CO3(s) is increased with the addition of HTFSI. The 

UV/Visible and IR spectroscopy suggest that free UO2
2+ can complex with the TFSI 

ligand in the RTIL solution. The solubility of UO2
2+ was probed electrochemically and 

multiple reduction processes and a single oxidative process emerge at short time in the 

absence of acid. These electrochemical processes were attributed to diffusion related 

processes rather than surface adsorption of uranium species. The potential dependent 

deposition of uranium species from RTIL was also demonstrated. The electrochemical 

deposition of uranium was achieved in RTIL with and without the addition of HTFSI and 

the surface deposit was confirmed using SEM analysis. XANES indicate that the 

oxidation state of the electrochemically deposited species are consistent with known 

uranium oxidation states. These studies indicate that the direct dissolution of nuclear 

materials may possible through the acidification of RTIL. Furthermore the potential 

mediated separation of lanthanides and actinides using electrochemical methods may be 

possible using the same solution utilized for the direct dissolution of the species.  
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Chapter 6:   Preliminary U(III) Results, Conclusions and 

Recommendations  

 

6.1  Preliminary U(III) Results 

 Initial experimentation was successfully performed during the final stages of this 

Dissertation on two U(III) species:  U(TFSI)3 and UI3(THF)4.  However, do to limitations 

with available equipment and reference literature, the research was left in the preliminary 

stages.  The following sections present the initial observations from these experiments. 

 

6.1.1 Introduction 

Uranium metal is of great importance for use nuclear fuel, medicinal targets, and 

in military armor and munitions.114,2,115  Medicinally, uranium can be used as a target 

from producing Mo-99.114  Uranium metal alloys can be used for nuclear fast reactor fuel.  

An example is binary alloy consisting of 38% uranium and 62% zirconium combined 

with 1% niobium cladding.116   The zirconium increases the fuel’s melting point, so the 

Zr-U fuel rods could operate under lower temperature conditions than that of UO2 fuel.116  

Additionally, there are military applications to utilizing ammunition containing depleted 

uranium.115  In this case, the addition of the uranium to the weapons affords the 

projectiles the ability to pierce through heavy armor.115  

Uranium metal can be recovered from spent nuclear fuel or chemically generated 

produced following known reactions.  Typically, a liquid molten salt system is used for 
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the reclamation of the uranium metal by first dissolving the fission products from the 

reactor cycle, then electrochemically depositing the uranium onto the surface of the 

cathode.117,118   Another method for obtaining uranium metal is by utilizing magnesium or 

calcium to reduce UF4 or UCl4 at reaction temperatures above 1300 ºC.119  This route 

entails specially fabricated reaction vessels to sustain the stress from such high 

temperatures, which, in turn would lead to increased cost.120  This scheme also involves 

the use or production of highly toxic hydrofluoric gas during the synthesis of the UF4 

materials.  This is an additional expense as specific safety precautions must be taken to 

handle HF gas.120   

Due to the complications listed above, one possible improvement in processes 

used to obtaining uranium metal would be the elimination of elevated temperatures and 

the toxic offgas..  Room temperature ionic liquids (RTIL) systems can be utilized in the 

process to provide similar chemical and electrochemical properties associated with 

molten salt systems to achieve U metal deposition or recovery from oxidized forms 

without the need of high temperatures. 

As described in Section 1.1, RTILs are purely ionic solvents that are typically free 

of water and they provide a unique opportunity to examine f-elements electrochemically 

without appreciable hydrolysis.  A water free solution is especially important in obtaining 

uranium metal from the electrodeposition from solution. Previous experiments outlined in 

this dissertation indicate that reactions of uranium species in aqueous solutions produce 

the oxide rather than the targeted oxygen free U(III) complex.  Thus, because water 

hydrolysis dominates the process in the aqueous solutions examined water free solvents 

were used in the research presented in this Chapter.  Additionally, RTILs have shown 



 138 

promise in the area of radiation damage resistance.121 This attribute would likely be 

necessary to utilize them as solvents for separations of radionuclides, as radiation damage 

could reduce extraction efficiency by impacting or degrading the chemical species within 

the solvent. 

To electrochemically deposit uranium metal from a molten salt eutectic system, 

oxygen free U(III) or U(IV) complexes are often utilized.96,122,123  By applying a 

sufficiently negative potential, U(III) can be reduced to  U(0), yielding a uranium metal 

deposit on the surface of the cathode.  To examine a lower temperature deposition 

process U(TFSI)3 was synthesized from UI3(THF)4 and the potential mediated deposition 

of uranium metal was examined in RTIL .  

The reduction and oxidation states of U(TFSI)3 and UI3(THF)4 were evaluated 

electrochemically using cyclic voltammetry.  For each species, an electrochemically 

deposited uranium metal sample was obtained.  The deposits were analyzed using 

scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and powder 

x-ray diffraction (XRD). 

 

6.1.2 Methods 

6.1.2.1  Reagents 

 

The synthesis of the UI3(THF)4 and the U(TFSI)3 solids were described in Section 3.4.  

The RTIL solvent, [Me3NnBu][TFSI], was purchased from Solvionic (France).  

Tetrahydrofuran (THF) was purchased from Sigma Aldrich (reagent grade).  All 
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purchased reagents were purged with argon gas prior to use to remove any excess oxygen 

content. 

 

6.1.2.2  Experimental Design 

 All electrochemical experiments were performed inside of an argon filled glove 

box.  Initially, these trials were performed inside of a Labconco glove box, and later they 

were moved to a MBRAUN glovebox (see Section 2.8).  At any point in which the air-

sensitive samples needed to be removed from the argon filled glove box, they were sealed 

into screw-top containers that were then taped closed with masking tape.  These 

containers were then placed into a second screw-top container that was also taped closed 

with masking tape.  After sufficiently sealing them from the air, the samples were moved 

quickly to the final location.  For example, this protocol was followed when transferring 

the materials from the Labconco glove box to the MBRAUN glove box.  This was done 

so as to protect the samples for oxidizing in the open atmosphere.  

 

6.1.3  Results and Discussion   

 

6.1.3.1  Electrochemistry of U(TFSI)3 and UI3(THF)4 

U(TFSI)3 was added to an RTIL solution to produce concentration of 

approximately 5 mM.  For comparison, an RTIL solution containing 5mM of UI3(THF)4 

was also examined in parallel.  For both solutions, the solids were added to RTIL and 

stirred for 10 minutes until the solids had dissolved (based on  visual inspection).  Both 
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U(III) solutions were then examined using cyclic voltammetry to evaluate 

oxidation/reduction processes associated with the U(III) species in the RTIL solution  

(Figure 6.1).  The resulting electrochemical oxidation and reduction reactions of the two 

U(III) species is discussed simultaneously.  

There are two reductive waves and two oxidation waves that can be observed in 

the cyclic voltammetry for both species in RTIL.  Additional voltammetric waves are 

observed for UI3(THF)4, when compared to U(TFSI)3.  Table 6.1 summarizes the 

observed oxidation and reduction processes for the 10th cycle. 

 

 

 

Figure 6.1.  CV results at 100 mV/s from the 10th cycle for both of the U(III) species in 
the RTIL.  The grey dashed line is the RTIL background, the solid blue line is 5mM 
UI3(THF)4, and the red dotted line is the 5mM U(TFSI)3.   
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Table 6.1.  Oxidation and reduction processes in each U(III) system at the end of the 10th 
cycle. 

Species Reduction Process:  Potential (V) versus NHE 
UI3(THF)4   -0.095 -0.6092 -0.934 
U(TFSI)3 0.7252     -0.934 
  Oxidation Process:  Potential (V) versus NHE 
UI3(THF)4 -0.513 1.098     
U(TFSI)3   1.049 1.466   

 

 

It can be seen from the comparison in Table 6.1 that the processes at -0.9 V versus 

NHE and +1.0 versus NHE occur at the same potential for both species.  Therefore, a 

preliminary conclusion can be drawn that these two bands are both caused from reduction 

and oxidation, respectively, of the uranium species in solution.  One option is that the 

U(TFSI)3 species is deposited onto the surface of the electrode by first removing one or 

two of the TFSI ligands in a stepwise manner similar to the mechanism presented as a 

possibility for the Sm-TFSI complex (Section 4.3.3).  The responses observed at -0.9 V 

would then represent deposition of uranium metal on the electrode surface.  A schematic 

of this theoretical process is presented below in Scheme 6.1.    
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Scheme 6.1.  Possible uranium deposition steps occurring during potential mediated 
deposition from U(TFSI)3 in RTIL. 

 

The additional electrochemical  processes that are observed for UI3(THF)4 can be 

at least partially attributed to free iodine as a result of the reduction process observed in 

the following mechanism: 

 

( )3UI 3 U 0 3Ie− −+ → +  

 

After the I- is free from the uranium complex, it can undergo further reactions on its own 

or re adsorb on the deposited uranium.   In addition, the I- can react with the gold surface 

that does not contain uranium deposits.124  The adsorption of  I-, as well as I3
- on gold 

electrode surfaces is well known, and potential interactions will be discussed further in 

this section.125  The two possibilities for the iodide interactions and adsorption on the 

electrode further complicate the analysis of the UI3(THF)4 system.   

Analysis of the reductive and oxidative processes in the U(TFSI)3 system is also 

not trivial due to the potential interactions of the TFSI ligand.126 The best possible option 

would be to analyze both U(III) systems with a Quartz Crystal Microbalance (QCM) to 

obtain a more comprehensive analysis of the voltammetry, but due to the radioactive 
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nature of the uranium species, this analysis method was not available.  In the absence of 

the QCM results, only the initial data will be discussed here. Given the preliminary nature 

of the results, no formal conclusions can be made with certainty. 

The voltammetry multiple cycles of U(TFSI)3 in the RTIL solution is presented in 

Figure 6.2.  This information can be used to gain an understanding of what is changing 

over time in the RTIL system. 

 

 

Figure 6.2.  Cyclic voltammetry at 100 mV/s of 5mM U(TFSI)3 in RTIL. The solid light 
grey line is the 1st cycle, the dotted dashed medium grey line is the 5th cycle, and the 
black short dashed line is the 10th cycle.  The grey long dashed lines represent the RTIL 
background. 
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It can be seen in Figure 6.2 that all of the redox reactions observed from U(TFSI)3 in 

RTIL are diminishing with each subsequent cycle.  When electrodeposition is occurring 

during CV, a decrease may be observed in one or more bands.9    Changes in the 

magnitude of cyclic voltammetry bands can be observed as a result of a reduction in the 

surface area of the gold electrode.9  Further examination of the voltammetry can give 

insight into whether the potential mediated deposition is favored at the original electrode, 

or on an electrode that already contains the material to be deposited.44   In addition, it was 

observed that the decreasing current response continued through all cycles examined.  

Future work should include analysis of more cycles to determine if/when steady state in 

the electrochemical responses occurs.   

 

 

Figure 6.3.  Cyclic Voltammetry at 100 mV/s of 5mM UI3(THF)4 in RTIL. The solid 
light grey line is the 1st cycle, the dotted dashed medium grey line is the 5th cycle, and the 
black short dashed line is the 10th cycle.  The grey long dashed lines is the RTIL 
background.  
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It can be seen in Figure 6.3 that the reduction reactions at -0.61 and -0.93 V for 

UI3(THF)4 in the RTIL observed are decreasing with each successive cycle.  However, 

the oxidation reaction at 1.0 V appears to be increasing with continued cycles. These 

observations were consistent through all cycles examined.   Furthermore, the differences 

in the voltammetry as a result of additional bands from oxidation and reduction of I- can 

be readily observed. The decreases in the current are consistent with reductive adsorption 

of I- at the electrode surface.125,127,128  Another observation from comparing Figures 6.2 

and 6.3 is that the current response in the U(TFSI)3 system decreases more rapidly than in 

the UI3(THF)4 experiments.  As discussed previously in this Chapter, a reduction in 

current indicates a decrease in surface area on the gold electrode;45,44 this could be the 

result of  increased quantities of uranium deposited from U(TFSI)3 in RTIL when 

compared to UI3(THF)4 in RTIL or a change in thermodynamics associated with the 

subsequent reduction of U(TFSI)3 at a uranium surface when compared to a clean gold 

surface. The current density, which is found by dividing the current by the surface area 

on the electrode, has a strong influence on the deposition rate as well as the quality of the 

deposit.129  In electrodeposition, each system has an optimal current density that should 

be used to obtain the highest deposition efficiency.129  This optimal current density was 

not determined for the work presented in this Chapter, but should be found in future work 

to assist with larger quantity deposits of uranium metal.  As stated for the above U(TFSI)3 

discussion around Figure 6.2, future work should also include more cycles to determine 

if/when steady state in the electrochemical response would be reached, as well as to 
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identify and confirm the specific reactions occurring at each oxidation and reduction 

wave. 

  

6.1.3.2  Deposition of uranium metal 

It was observed that the uranium metal deposition with the TFSI removed 

appeared to be occurring at -0.9 V versus NHE.   The electrochemical deposition of 

uranium metal onto the surface of the gold sheet electrode was  explored utilizing 

controlled potential deposition.  The voltage was held constant at -1.5 V versus NHE.  A 

more negative potential was selected to be sufficiently electronegative to drive the bulk 

deposition of U(0) free of the TFSI anion complexation.45  Electrochemical deposition 

utilizing an over potential was described in Section 2.8.  Any additional potential beyond 

the minimum calculated deposition potential is considered the over potential.45  More 

specifically, the over potential (η) is the difference between the equilibrium potential (E) 

and the potential as the current is flowing (E(I)): 

 

EIE −= )(η             Equation 6.1 

 

  In potential mediated electrochemical depositions, an over potential is typically utilized 

to achieve improved deposition results.96  In addition, the over potential term can also be 

related to increased nucleation rate.130 This technique was used in the work performed in 

this Dissertation in order to obtain a large enough deposit to analyze via further 

techniques.  Using the cyclic common waves at -1.0 V from the voltammetry results 

presented in Figures 6.1-6.3, a potential for electrodeposition was selected.  The same 
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potential was selected for both U(III) species given the data reflected U(0) deposition 

occurred in the same region from both U(TFSI)3 and UI3(THF)4 in the RTIL. 

 

6.1.3.3  Analysis of electrodeposited uranium metal 

Following electro-deposition from both systems, the electrodes were sealed into 

an argon filled container (see Section 6.2.1) and removed from the glove box for analysis 

via SEM and EDS.  Once at the instrument, they were immediately placed into the  

chamber, which maintains a constant vacuum.  Images were obtained of the surface of 

both electrodes.  Grainy uranium deposits could be seen consistently on the electrode 

surfaces, whereas the gold electrode surface lies in the flat, light colored regions (Figures 

6.4 and 6.5).   
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Figure 6.4.  SEM images of uranium metal deposited on a gold electrode deposited from 
UI3(THF)4 in RTIL. 

 

 
Figure 6.5.  SEM images of uranium metal deposited on a gold electrode from U(TFSI)3 
in RTIL. 

U-metal deposit 

Au electrode 

Au electrode 

U-metal deposit 
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The deposit obtained from the UI3(THF)4 system can be seen in Figure 6.4, and 

the deposit from the U(TFSI)3 system is in Figure 6.5.  Not surprisingly, the surface 

morphology was very similar for both electrodes.  Once the images were obtained, EDS 

analysis was executed.  A series of eleven spots were evaluated on each electrode for 

elemental composition.  A representative spectrum along with the corresponding SEM 

image can be seen in Figure 6.6.   

 

Figure 6.6.  Left: SEM image of a gold electrode with uranium deposits.  The image 
depicts several spots analyzed with EDS.  The corresponding EDS data for Spectrum 3, 
red circled, is shown on the right. 

 

In every case, uranium was found with no accompanying oxygen at 5.5 keV.  

Given the EDS is able to detect oxygen content down to 0.5 weight percent,93 this is 

strong support of uranium metal deposition.93  Additionally, EDS analysis can be utilized 

to identify other elements that are contained in the TFSI species including fluorine, 

oxygen, nitrogen, and sulfur consistent with some residual ligand on the surface.  

Elements lighter than carbon cannot be seen in the EDS.94  The RTIL species, 

[Me3NnBu][TFSI] contains carbon, hydrogen, nitrogen, sulfur, oxygen, and fluorine. 
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Evidence of the RTIL components were visible in the EDS results with the appearance of 

the sulfur band at 2.47 keV.  In addition, chlorine and sodium were also observed in the 

spectrum, which could have been introduced as potential contaminants or un-reacted 

materials from the RTIL synthetic process.   

 In order to further understand the nature of the uranium metal deposit, the samples 

were examined using powder XRD.  Preliminary XRD results indicated that alpha phase 

uranium metal may be deposited on the surface of the electrode; however the amorphous 

nature of the deposit proved to make using this technique complicated.  In order to 

improve the response, additional deposits were obtained from a pure solution, and then an 

attempt to re-crystallize the uranium metal was made.   

The electrode was placed into an argon filled glass tube while still in the inert 

atmosphere glove box.  The glass tube was then sealed with parafilm followed by tape, 

then inserted into a secondary sealed container.  Next, the tube was removed from the 

glove box and subsequently attached to a Schlenk line.  It was then sealed by using a 

torch while maintaining an air free atmosphere from the vacuum on the Schlenk line 

(Figure 6.7). 
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Figure 6.7.  Glass tubes containing the U(0) deposited Au electrodes after sealing closed. 
 
 

The glass tube was then placed into a tube furnace and heated to 550 ºC for 5 

hours.  The temperature was selected using the phase diagram for uranium, such that 

alpha uranium would remain stable.  According to the diagram, the temperature would 

then be under 660 ºC.119   Glass tubes were preferred because they could be more rapidly 

sealed then quartz, and thus further prevent air from entering the system.  However, these 

glass tubes have a softening point of approximately 600 ºC, so the temperature was kept 

at 550 ºC such as to provide the optimum conditions for the glass to remain sealed and for 

the formation of alpha uranium crystalline properties.  After cooling, the glass tube was 
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returned to the argon filled glove box, opened, and cut into two pieces.  One piece was 

packed in an air tight sample holder for a second attempt at XRD analysis (Figure 6.8).   

 

 
Figure 6.8.  XRD pattern with alpha uranium metal analysis 

 
 

The efforts to re-crystallize the uranium proved somewhat successful.  Bruker 

TOPAS software was used during data analysis.  The TOPAS software was designed for 

structural determination using powder XRD results.131  From these results, 2 % by weight 

alpha uranium metal was determined to be on the surface of the electrode in the examined 

sample. The vertical lines in the figure indicate the areas in the resulting XRD spectrum 

that corresponded to the expected alpha uranium result.  The second electrode piece was 

analyzed using SEM and EDS (Figure 6.9 and 6.10).  The uranium deposits can be seen 

in the white grainy sections attached on the surface of the gold electrode.  
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Figure 6.9.  SEM image of annealed uranium on the gold electrode starting from 
U(TFSI)3 in RTIL. 

 

 

u-metal deposit 

Au electrode 
surface 
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Figure 6.10.  SEM image of annealed uranium on the gold electrode starting from 
UI3(THF)4 in RTIL. 

 
 

The corresponding EDS was also obtained for ten spots on the electrode surface.  

A representative spectrum is shown below in Figure 6.11. 

U-metal deposit 

Au electrode 



 155 

 
Figure 6.11.  SEM EDS representative spectrum of an annealed gold electrode after 
uranium deposition from U(TFSI)3 in RTIL.   

 

Once again, uranium was found with no accompanying oxygen at 5.5 keV or 

previously observed contaminants/traces of the TFSI anion (shown in Figure 6.6).  These 

results indicate that a successful deposit of U(0) can be obtained from the RTIL solution.  

This evidence is strengthened by the number of spots analyzed on the electrode surface, 

as a representative sampling of the entire surface of the electrode was evaluated in this 

process. 
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6.1.3.4  Summary: 

In these studies, two U(III) complexes, U(TFSI)3 and UI3(THF)4, were analyzed  

using cyclic voltammetry.  Using this technique, deposition of U(0) was observed at -0.93 

V versus NHE for the U(TFSI)3 species and the UI3(THF)4 complex.  In the case of the 

U(TFSI)3 species, it is presented here that it initially deposits as a U-TFSI species on the 

surface of the electrode at +0.72 V, and as the current is continued to more negative 

directions, the remaining ligand is displaced, leaving the free metal on the surface by -

0.93 V versus NHE (Figure 6.2).  For the UI3(THF)4, it is presented that the U(0) deposit 

is obtained in a single 3 electron reduction process at -0.93 V (Figure 6.3).  It is 

interesting to note that the deposition of U(0) is achieved in a more electropositive region 

from both the U(TFSI)3 as well as the UI3(THF)4 in RTIL solutions when compared to 

LiCl-KCl eutectic melts.22,23  Given the nature of the known interaction of the RTIL 

solvent with the metal ligands, it is likely responsible for these shifts.12   This is because 

the TFSI anion has been documented to have stabilizing affects as a result of coordination 

with the metal ligand.  These stabilizing affects have been observed in multiple studies in 

the form of more electro-positive reduction peaks, just as the case was observed in this 

work.47,28  Using SEM and the accompanying EDS as well as XRD, alpha uranium metal 

was found to be present on the gold electrode surface.   These studies have shown that it 

is possible to directly dissolve a U(III) complex and to achieve potential mediated 

reduction to uranium metal separated from the solution and deposited onto the electrode 

surface.   
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6.2 Dissertation Conclusions 

 This research has explored several methods for introducing various f-species into 

the RTIL solvent, [Me3NnBu][TFSI].  The RTIL solution was analyzed carefully, 

tailoring the anion and the cation in such a way that optimal electrochemical conductivity 

and f-species solubility could be explored with a low melting point, conductive ionic 

solvent.  The melting point of the amine based cation was depressed to allow room-

temperature electrochemistry to be executed with a wide electrochemical window 

afforded by combining the Me3NnBu cation with the TFSI anion. 

 Methods of introducing the f-species while still exploiting the exceptional utility 

of the RTIL solvent were explored.  Sm(TFSI)3 was synthesized in aqueous solution for 

these purposes, and the extraction capabilities of the RTIL were examined.  It was found 

that by reducing the acidity of the aqueous phase to above pH 9.0, high extraction 

efficiency could be obtained, with 100 % of the samarium entering into the RTIL phase.  

Although other samarium complexes could be extracted under the same conditions, the 

efficiency of the extraction was diminished relative to beginning with Sm(TFSI)3; 

indicating that, during the research performed for this dissertation, the TFSI anion 

complex affords greater solubility in the RTIL solvent.  

 The electrodeposition of Sm(0) metal was demonstrated at a potential of -1.5 V 

versus NHE; which is between 0.3 and 1.0 V  more electropositive than previous 

published results in RTIL and aqueous media.  Results from QCM experiments combined 

with CV analysis indicated that this deposition likely occurred in a stepwise manner, in 

which an initial Sm-TFSI complex was deposited onto the surface of the gold electrode.  

The TFSI was later removed from the surface as the potential was varied to more 
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negative values.  This indicates that the TFSI ligand provides more favorable 

electrochemical thermodynamics for the potential mediated electrodeposition.  Samarium 

deposits were analyzed using SEM and EDS; and the results further supported that 

samarium metal was deposited on the electrode surface, with no accompanying traces of 

oxygen or TFSI ligand, thus confirming the potential mediated samarium metal 

deposition from RTIL solution.   

 The research presented in this dissertation reflected the multifunctional aspects of 

the RTIL solvent, in that the initial samarium complex could be extracted from an 

aqueous solution into the RTIL.  The same RTIL solvent was then used to remove the 

samarium from the RTIL solution by electrodeposition onto the surface of a gold 

electrode.   

 Additional investigations into methods of introducing a f-element species into the 

RTIL solvent were conducted by argon assisted dissolution of uranyl carbonate.   This 

mechanism was made possible by H+  introduced into the solvent from trace amounts of 

water in the ionic liquid, which aided in the displacement of carbonate and subsequent 

dissolution of  UO2
2+ into the RTIL.  In replicate studies, it was found that by adding 

HTFSI acid to the initial RTIL solution, the reaction mechanism was greatly improved in 

terms of both in maximum solubility and in  reaction rate for completion.  By adding 

HTFSI acid, other species not examined in this Dissertation may be made soluble into the 

RTIL that otherwise would not have been.  This solubility is afforded by the acid/base 

reaction in which the super acid, HTFSI is potentially able to react with the insoluble 

complex to form a RTIL soluble species.132,133  The same RTIL solvent could then be 

utilized to remove the f-species of interest by electrodeposition onto the electrode. 
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Following introduction of uranyl into the RTIL, a potential mediated 

electrodeposition of UO2(s) was obtained on the electrode surface.  The electrode surface 

was then imaged with SEM.  In addition, EDS analysis confirmed the presence of 

uranium and oxygen on the deposit.  Finally, XANES analysis confirmed that the uranyl 

deposit was primarily in the 4+ oxidation state, with some quantity on uranyl on the 

electrode’s surface having oxidized to the 6+ oxidation state. 

 Finally, preliminary data was presented earlier in this Chapter for the direct 

dissolution of two U(III) species, U(TFSI)3 and UI3(THF)4 into the RTIL.  In both cases, 

U(0) deposits were achieved at the electrode surface when electrochemical analysis was 

performed.  The uranium deposits were verified using SEM EDS and powder XRD 

techniques. 

In summary, these studies have shown three different methods of introduction of 

several different f-species into the RTIL solvent, [Me3NnBu][TFSI]:   

1. Extraction 

2. Argon assisted dissolution with acidification 

3. Direct dissolution both with and without TFSI complexation 

 

All of these methods reflected various needs in industry, as well as the capabilities of the 

RTIL as a solvent.  In all cases, the RTIL was used for multiple purposes, with the final 

result being a successful retrieval of the f-species from the RTIL and onto the electrode 

surface utilizing electrodeposition techniques.  Finally, in the case of both samarium and 

uranium, metal deposition was obtained under room temperature conditions, reflecting 

the utility of the wide electrochemical window afforded by the RTIL solvent. 
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6.3  Recommendations 

 This research presented in this Dissertation exploited the extraction utility of the 

RTIL solvent, and indicated that the aqueous layer pH has a direct affect on the success 

of the extraction.  It is reported in this work that the shared complex of Metal-TFSI anion 

increased the extraction efficiency, but additional RTIL anion/cation combinations should 

be examined to understand the extent to which this applies.  In addition, comparisons of 

the affects of oxidation state by studying the same anion f-element metal complex in 

different oxidation states would further aid in understanding to what degree oxidation 

state plays a role in the extraction efficiency.  For example, an extraction in which the 

efficiencies of Sm(TFSI)3 and Sm(TFSI)2 are compared would be of great use in 

comparing oxidation state effects on extraction efficiency without having to account for 

variations in the ligands to which the metals are complexed to. 

 In the extraction results presented in this dissertation, the acidity of the aqueous 

phase was reduced, which increased the crossover of the samarium species into the RTIL 

phase. Further studies should be performed in which the acidity of the RTIL is increased, 

while the acidity of the aqueous phase is unchanged.  Water free organic acids should be 

used for this type of study. 

 In this Dissertation, the efficiency of the extraction process was examined, but not 

the reaction kinetics.  Further exploration into the kinetics would prove informative.  This 

study should include multiple ligands and oxidation states with respect to the species 

being extracted.  The results would provide insight into whether the most efficient species 

extracted was also the most rapid process. 
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The acidity of the RTIL layer is also of interest.  As of this date, no publications 

exist to provide a method to determine the acidity of the RTIL.  Future work should 

include a comprehensive analysis of adding water free acid to the RTIL and evaluating 

the outcome both spectroscopically as well as using other methods, such as revisiting the 

litmus paper results. 

 Additional research related to the UO2CO3 ligand displacement process should 

also be performed.   Additional carbonate species could be evaluated for solubility after 

adding HTFSI to examine if the same ligand displacement process occurs. A complete 

study of how to optimize the conditions to increase the solubility by addition of HTFSI 

acid would be extremely beneficial.  This is notable considering the fact that many 

researchers have reported difficulties with ligand solubility in RTIL solutions. 

 As mentioned previously in this Chapter, further studies on the U(TFSI)3 and 

UI3(THF)4 systems need to be performed in order to better understand the 

electrochemical reactions occurring in the system when performing cyclic voltammetry 

or electrodeposition.  A QCM would be ideal for answering lingering mechanism 

questions. 

 Finally, and perhaps most of interest to industry would be exploration of the 

deposition of uranium and other f- element metals followed by volatilization of the 

electrode to leave only pure f-metal behind.  To efficiently accomplish this, different 

electrodes with lower melting points than that of gold would need to be explored, as well 

as the quantity of deposited materials increased.  One electrode that should be considered 

is zinc.  A literature search revealed that it has been successfully utilized as a working 

electrode,134 and the melting point of the electrode is 420 ºC.135  This is over 200 ºC 
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lower than that of alpha uranium metal, and therefore may afford isolation of the 

uranium.119 
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