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ABSTRACT 

 

Even though mullite occurs rarely in nature, it is perhaps one of the most important 

phases in both traditional and advanced ceramics. Existing and emerging applications of 

mullite and mullite-type materials include: high-temperature composites, aerospace 

materials, ballistic shielding for military applications and even non-linear optical materials. 

There are many uncertainties regarding the basic physical properties of mullite-type 

materials, particularly in terms of their high-pressure structural stability and mechanical 

behavior that are important to address for emerging applications of mullites as engineering 

materials. This work is the first reported comprehensive investigation of the high –pressure 

structural behavior of several different mullites and synthetic mullite-type oxides. The 

materials investigated are representatives of different structural and chemistry branches of 

the mullite family. The goal is to elucidate how the most fundamental building blocks of 

mullite oxides accommodate high pressure compression. Mullites and mullite-type oxides 

are investigated at extreme pressures using synchrotron x-ray diffraction and laser Raman 

spectroscopy. These experiments enable the extraction of the materials’ structure and its 

modifications in a function of increasing pressure: deformation of polyhedra, phase 

transitions, formation and breaking of bonds. The experimental techniques used here are 

ideally suited to provide a synergical interplay in the study of oxides under high-pressure 

conditions: Raman spectroscopy is a technique for investigating short range order 

phenomena while x-ray diffraction accesses structural changes occurring at the long range 

order. The following phenomena are discussed: phase transitions, equations of state, 

pressure-driven amorphization, and the very rare effect of negative linear compressibility. 

The unprecedented discovery of negative linear compressibility in mullite-type oxides 

presented here opens the door to military applications as incompressible optical materials.  
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CHAPTER 1 - INTRODUCTION 

 

Even though mullite occurs rarely in natural rocks, it is perhaps one of the most 

important phases in both traditional and advanced ceramics and thus one of the most 

widely studied ceramic phases. The outstanding position of mullite in ceramics is due to its 

overall  properties,  like low density, high temperature stability even in severe oxidizing 

environments, favorable mechanical properties, low thermal expansion and associated very 

good thermal shock behavior, low thermal and electrical conductivity, excellent creep 

resistance, and transmittance to electro-magnetic (visible and near infrared) radiation. 

There many uncertainties regarding the basic physical properties of alumino-silicate 

mullite, particularly in terms of its high-pressure phase stability and mechanical behavior 

that are important to address for applications of mullite as an engineering material. The 

knowledge of the high-pressure behavior of materials does offer a sensitive probe to detect 

their structural instabilities and possible phase transitions. This is why this work was begun 

with the examination of several alumino-silicate mullites at high-pressures. Another branch 

of the mullite family that is investigated here are lead-metal-borate mullites. These mullites 

are negative thermal expansion materials (NTE). From a physics point of view it is rational 

to search for unusual pressure-dependent behavior in NTE materials. Further, the strong 

anisotropy of the Pb2+ coordination, due to its lone electron pair, affects not only the 

geometry, but is often the origin of interesting physical properties, while its open structures 

makes them predisposed to pressure-driven phase transitions. 

In the past 30 years it has become possible to achieve, in the laboratory, extremely 

high-pressures (superior to what can be achieved with the temperature parameter). The 

multimegabar pressures now achievable correspond to a volume compression in excess of 

an order of magnitude, which can reveal a wealth of information about molecular materials. 
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The pressure-volume work (free energy change) can be of up to 10 eV which exceeds the 

strongest molecular bonds. Among the effects of such extreme compression there are: 

changes in bonding patterns, phase transitions, chemical reactions, quantum effects, 

changes in chemical properties, changes in physical properties. Pressure also modifies 

chemical affinities and hence reactivties, and in this way new materials with unusual 

combination of physical and chemical properties can be formed. High-pressure Raman 

spectroscopy and high-pressure x-ray diffraction studies of materials (bulk- and nano-

structures) are critical to identifying new equilibrium and metastable states that can be 

accessed, as these materials are compressed to very small volumes.  

Furthermore the two techniques used in this work are ideally suited to provide a 

synergical interplay in the study of mullites in high-pressure compression: Raman 

spectroscopy is a technique for investigating short range order phenomena while x-ray 

diffraction accesses phenomena occurring at the long range order.  

The presented Doctor of Philosophy in Physics Dissertation is structured in five 

chapters as outlined below.  

Chapter 2 introduces all the conceptual elements involved in the present research. 

Since the materials investigated belong to the mullite family, an overview of mullites is 

presented, including structural relationships, properties and applications and relevant 

previous studies. The physical foundations and the technique of Raman spectroscopy is 

presented in detail including history, classical and quantum mechanical treatments, 

strength and applications to materials at high pressures. Subsequently the technique of X-

ray diffraction is presented including the production of X-rays as well as elements of 

crystallography. The object of this work is the study of various mullites to extreme 

pressures (up to 1 Mbar or 100 GPa). Thus Chapter 2 also outlines the effects of high-

pressures on materials, with specifics on how high-pressures are achieved in the laboratory 
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and how materials under high-pressures are investigated. Finally, since X-ray diffraction 

studies at high-pressures require very bright and highly focused radiation, synchrotron 

radiation is introduced with production of X-rays as well as the synchrotron storage ring 

where the present studies were carried out.  

Chapter 3 presents the samples investigated and the experimental approaches used 

for their studies. First, in situ high-pressure Rama spectroscopy is presented. High-pressure 

X-ray diffraction studies are described next, with details of the synchrotron radiation-based 

experiments. 

Chapter 4 outlines the results and presents the discussion of high-pressure 

investigations of three families of mullite materials. First structural transformations in 2:1, 

3:2 mullite and sillimanite are discussed in view of high-pressure x-ray diffraction results 

and high-pressure Raman spectroscopy results. Next structural transformations in B-

mullite and isostructural 7:4 mullite are presented. In both materials’ families structural 

changes leading towards a theorized phase transition and the pressure-driven 

amorphization are discussed. Structural transformations in two PbMBO4 (M=metal) 

mullites are introduced next. Three new phase transitions are proposed in view of high-

pressure x-ray diffraction results and high-pressure Raman spectroscopy results. The role 

of Pb2+ lone electron pairs on the structural behavior under pressure is discussed. The very 

rare effect of negative linear compressibility is demonstrated and discussed and an 

explanation is offered. Finally for all investigated materials, mechanical properties and 

vibrational properties are analyzed in relevant sub-sections, using specific mathematical 

formalism (equations of state and mode-Grüneisen parameters). Finally the key conclusions 

of this doctoral dissertation are presented. 
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CHAPTER 2 – BACKGROUND 

 

2.1. Description of Mullites and Their Applications 

 

2.1.1. Alumino-Silicate Mullites 

Sillimanite, andalusite and kyanite, the three polymorphs of Al2SiO5 form at 

moderate and high pressure, respectively, while mullite (3Al2O3·2SiO2), the stable 

crystalline phase in the Al2O3-SiO2 system at ambient conditions, is known as a high 

temperature material. 1 Even though mullite occurs rarely in natural rocks, it is perhaps one 

of the most important phases in both traditional and advanced ceramics 1 and thus one of 

the most widely studied ceramic phases. The outstanding position of mullite in ceramics is 

due to its overall  properties,  like low density, high temperature stability even in severe 

oxidizing environments, favorable mechanical properties, low thermal expansion and 

associated very good thermal shock behavior, low thermal and electrical conductivity, 

excellent creep resistance, and transmittance to electro-magnetic (visible and near infrared) 

radiation. 1 Because of these technologically important properties mullite has become a 

major compound in a large number of conventional ceramics (e.g., porcelains and 

refractories), but also in various advanced ceramics (e.g.: heat exchangers, catalysator 

convertors, filters, optical devices, electronic packaging). For a review of mullite materials 

see Schneider et al. 1 2 Mullite is also an important constituent of thermal and environmental 

barrier coatings, oxide fibers and oxide-based ceramic matrix composites, the latter having 

a high potential as insulating materials in combustors  of aircraft and stationary gas turbine 

engines. 1, 2 Interestingly, one of the most promising armor materials with high ballistic 
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performance are alumina-mullite ceramics with a coexisting alkali-aluminosilicate glassy 

phase. 3 

2.1.1.1. Objectives of high-pressure studies of alumino-silicate mullites. 

There remain many uncertainties regarding the basic physical properties of mullite, 

particularly in terms of its high-pressure phase stability and mechanical behavior. These are 

important to address for applications of mullite as an engineering material. The knowledge 

of the high-pressure behavior of materials does offer a sensitive probe to detect their 

structural instabilities and possible phase transitions. Moreover, pressure-induced 

structural changes of mullite will also contribute to the in-depth fundamental 

understanding of the crystal chemistry of mullite-type alumino-silicates. Because of their 

close structural similarities, it is interesting to compare the pressure-induced behavior of 

different compounds of the mullite-type Al4+2xSi2-2xO10-x phases: sillimanite and different 

mullites. Therefore this study includes investigations of 2:1-mullite (x = 0.4, or 0.4 oxygen 

vacancy per unit cell), 3:2-mullite and (x = 0.25 or 0.25 vacancy per unit cell), sillimanite (x 

= 0, no oxygen vacancy), with the goal being the understanding of the role of oxygen 

vacancies on the high pressure behavior of the mullite-type alumino silicates. To the best of 

the author’s knowledge the present is the first report of in situ static-pressure compression 

of alumino silicate mullites. 

2.1.1.2. Previous studies of aluminosilicate mullites and of sillimanite. 

The thermo-elastic behavior of sillimanite and of alumino-silicate mullites have been 

studied extensively by:  

(i) Neutron or x-ray diffraction: Brace et al. (compressibility of sillimanite); 4 Winter 

and Ghose (thermal expansion of sillimanite); 5 Schneider and Eberhard (thermal 

expansion of mullite); 6 Balzar and Ledbetter (compressibility of mullite); 7 

Brunauer et al. (high-temperature structure and thermal expansion of mullite); 8, 9  
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(ii) Brillouin spectroscopy: Vaughan and Weidner (elasticity and structure of 

sillimanite); 10 

(iii) Acoustic resonance spectroscopy: Hildmann et al. (elastic constants of mullite and 

sillimanite); 11  

(iv) Resonant ultrasound spectroscopy: Schreuer et al. (elastic constants of mullite at 

high temperature); 12 

(v) Dilatometry: Schreuer et al. (single crystal derived thermal expansion of mullite); 12  

(vi) Vickers indentation as well as ball milling: Schmucker et al. (amorphization of 

mullite); 13, 14 

(vii) Simulation of thermo-elastic behavior: Oganov et al. (compression of sillimanite) 15 

and by Winkler at al. (elastic constants of sillimanite). 16 

No in situ static high-pressure compression studies of mullite exist, where pressure and 

pressure-distribution are controlled. Static high-pressure compression of sillimanite was 

carried out previously up to 5.3 GPa by Yang et al.;  17 up to 46 GPa by Friedrich et al.;  18 and 

up to 8.5 GPa by Burt et al.  19 Shock-compression studies were performed by Schneider et 

al. (andalusite and kyanite), 20 Schneider and Horneman (andalusite).21 A shock-

compression study by Kawai et al.  22 reports a disproportionation of mullite to corundum 

and stishovite at ~30 GPa, while a work by Braue et al. 23 reported shock-wave induced 

amorphization of mullite above 35 GPa.  

 

2.1.2. Boron Mullite 

Boron is used in an extensive range of industrial applications including glasses, 

ceramics, glass-ceramics, metallurgy and more.24 Boron forms preferentially covalent bonds 

due to its high ionization potential and it has a high affinity for oxygen. Also, boron has 

many similarities to silicon and carbon, and when associated with oxygen it has a similar 
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structural chemistry to Si. This similarity suggests that in an alumino-silicate mullite, where 

Si is tetrahedrally coordinated to O, it should be possible to substitute some of the Si with B. 

The groups BO3, BO4, and SiO4, are all predisposed to polymerize leading to great structural 

complexity.   

After alumino-silicate mullites, a second category of ceramics, important from the 

technological point of view, are aluminum borates (e.g. Al18B4O33) with mullite-type crystal 

structure. Industrial applications include the reinforcement of aluminum alloys by 

incorporation of aluminum borate whiskers and incorporation in refractory linings due to 

the good corrosion resistance of aluminum borates against molten glasses containing boron. 

25 Therefore successful combination of alumino-silicate mullite with alumino-borate with 

mullite-type structure in one material would offer great promise to design technologically 

important, high-performance materials with on-demand properties.  

The existence of a solid-solution between 3:2 mullite (Al4.5Si1.5O9.75) and Al18B4O33 by 

substitution of boron for silicon was first suggested by Dietzel and Scholze. 26 The term 

“boron-mullite” or “B-mullite” was introduced by Werding and Schreyer 27 in order to 

describe a compositional range between mullite solution series and Al5BO9 with mullite 

structure and AlBO3 with calcite structure. It was recently shown 28, 29  that that there is no 

complete solid solution series between alumino-silicate mullite and mullite-type aluminum-

borates.  

Boron-doping of mullite results in significant changes of lattice parameters b and c, with 

a linear relationship between c and the boron-content. 29, 30 In contrast, no significant 

changes are observed for the lattice parameter a, which, in B-free mullite, is linearly 

correlated with the Al/Si ratio.31 Furthermore, the incorporation of B results in a strong 

reduction of the mean thermal expansion coefficient of 15%, which makes the material 

interesting, e.g., for substrates resistant to thermal shock up to 1000°C. 32 The crystal 
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structure of B-mullite has recently been solved from neutron diffraction data and 11B MAS 

NMR spectroscopy of a series of sol-gel derived B-mullites with various compositions 

synthesized at 1200°C. 33  

The knowledge of crystal structure, boron incorporation mechanism,30 composition and 

properties is very important to address for applications of boron-doped mullites as 

engineering materials. The response of mullite-type materials to high-pressure offers a 

sensitive probe of their structural integrity, structural instabilities and possible phase 

transitions. Moreover, investigations of pressure-induced structural changes in mullites will 

also contribute to the in-depth fundamental understanding of their crystal chemistry. 

 

2.1.3. PbMBO4 Synthetic Mullites 

The sillimanite group contains a number of PbMBO4 phases with M = Al3+, Ga3+, Fe3+, 

Cr3+ and Mn3+ and it has been classified in space group setting Pnam to better understand 

the physical properties of these materials while guaranteeing the conformity to the mullite 

family members. 34, 35, 36, 37, 38  Their identical symmetry was the reason for their 

categorization in the sillimanite group, even though the structural details of sillimanite, 

Al2SiO5, and the PbMBO4 phases differ considerably. In PbMBO4 mullite, the octahedral 

chains are cross-linked by BO3 groups and the four-coordinated Pb atoms form the vertex of 

a pyramid with four oxygens, this anisotropy stemming from the fact that the Pb2+ lone 

electron pair is stereochemically active. Because of the transition metal, the octahedral 

chains of PbMBO4 display one-dimensional magnetic behavior. 39 The chromium and iron 

compounds are characterized by intra-chain antiferromagnetism, whereas the manganese 

compound shows ferromagnetic coupling. Inter-chain correlations are always 

ferromagnetic, which means that these phases belong to the class of insulating 

ferromagnets. 
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In particular PbFeBO4 has drawn attention due to its diverse crystal chemical 

aspects. To describe the magnetic properties of PbFeBO4, where the dominant spin 

exchange interaction is antiferromagnetic, its edge-sharing FeO6 octahedra have been 

considered as a Heisenberg one-dimensional uniform chain model. 40 The nonlinear optical 

(NLO) properties of PbFeBO4 seem to be promising from two points of view. First, according 

to the anionic group theory of NLO, 41 the planar ionic groups with π-conjugated systems 

such as trigonal planar BO3 are responsible for large second harmonic generation (SHG) 

effects. Second, distortion from the stereochemically active LEP effect on the Pb2+ cation can 

give rise to non-centrosymmetric building units such as PbO4 leading to SHG. These two 

non-centrosymmetric local factors in PbFeBO4 may overcome the centrosymmetric 

constraint for NLO properties. The thermal expansion behavior ultimately determines the 

usefulness of many mullite ceramics and mullite refractory materials. 1 The thermal 

behavior of borates mainly stems from their unique B–O bonding strength as either isolated 

BOx-polyhedra or bridging BOx polyhedral unit. 

 

2.1.4. How Do the Investigated Materials Relate to Each Other?   

Typically mullite-type structures are characterized by their linear chains of edge-sharing 

MO6- octahedra with M representing a variety of di- and trivalent cations in the extended 

mullite family. 1 Following the classification of Baur & Fischer (2000) for zeolite-type 

frameworks, mullite materials are classified in a hierarchical order according to their 

crystallographic group-subgroup relationships (Figure 1). 
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(i)  

Figure 1. The Bärnighausen tree 42 illustrating the relations in the family of mullite-type compounds. 
After Bärnighausen, 1980. Figure prepared after 39 and 1. The symbol t stands for “translationengleich”, k 
for “klassengleich”, i for “isomorphic”. Unit-cell  transformations are given by the corresponding 
expressions for the basis vectors. The numbers after this symbol represent the index of symmetry 
reduction for the respective step. Roman numerals represent the index of symmetry reduction relative to 
the aristotype. Group symbols in grey fields refer to observed compounds, the others are needed as 
intermediate steps for the symmetry reductions.  

 

A material must meet the following benchmarks 1 to be classified in the mullite-type 

family:  

(ii) The space group of a mullite-type compound must be a subgroup of P4/mbm 

representing the highest possible symmetry of the hypothetical aristotype (so 

cubic, hexagonal, or trigonal structures are excluded from mullite family).  
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(iii) The edge-sharing MO6 octahedra arranged in chains must be linear representing 

single Einer-chains in their highest topological symmetry in space group P4/mbm.  

(iv)  If an axis is drawn through the non-edge-sharing atoms of the octahedra such axis 

must point towards the edges of adjacent octahedral chains. This can also be 

expresses as the inclination angle ω which should have values 30◦ ≦ ω ≦ 90◦.  

(v)  The chain structure should resemble the orthogonal metric of the aristotype 

perpendicular to the chain direction as closely as possible The approach to 

orthogonality is given by the angle γ between the projections of the basis vectors 

(in mullite these are the a and b axes) of the unit-cell onto the plane perpendicular 

to the chain axes (γ = 90 ± 5°). 

 

2.2. Raman Spectroscopy 

 

Spectroscopic investigations give us most of our knowledge about the structure of 

atoms and molecules. Thus spectroscopy has made an outstanding contribution to the 

present state of atomic and molecular physics, to chemistry, and to molecular biology. 

The primary object of Raman spectroscopy is the determination of molecular energy levels 

and transition probabilities connected with molecular transitions that are not accessible to 

infrared spectroscopy. Linear laser Raman spectroscopy, CARS, and hyper-Raman scattering 

have very successfully collected many spectroscopic data that could not have been obtained 

with other techniques. Besides these basic applications to molecular spectroscopy there are, 

however, a number of scientific and technical applications of Raman spectroscopy to other 

fields, which have become feasible with the new methods. 43, 44, 45, 46, 47 

Today Raman spectroscopy is used in many and wide-ranging applications such as: 

physics and chemistry, materials science and engineering, geosciences, biology, forensics, 
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environmental sciences, pharmaceuticals, food analysis, cosmetics, corrosion, archeology 

and conservation science. 

 

2.2.1. A Brief History of the Raman Effect 

The origins of the Raman effect date back to the 1920’s when the hot topic in 

research was scattering of electromagnetic radiation by charged particles. 1923 saw the 

discovery of the Compton effect or the quantum mechanical interpretation of the scattering 

of X-ray photons by electrons and their change in wavelength. Shortly after it was predicted 

that inelastic light scattering will occur in molecules just like in the Compton effect (Smekal, 

Germany). In 1925 Kramers and Heisenberg predicted the same in terms of electromagnetic 

theory. In 1928 the experiments followed theoretical predictions when C.V. Raman (India) 

reported a “feeble fluorescence” or “New Radiation”.48 Almost at the same time the effect 

was also reported by Landsberg and Mandelstam 49 (Moscow), and shortly after confirmed 

by R. W. Woods (USA), who was close to this discovery as well. The almost immediate 

award of the Nobel Prize in Physics to C.V. Raman in 1930, illustrated the prominence of 

this new phenomenon, which since then has been called Raman scattering, the Raman effect 

or Raman spectroscopy. 43, 44, 45, 46, 47 

In spite of early successes in 1940’s with Raman spectroscopy, owing to 

instrumentation being similar to already exiting atomic spectroscopy, the technique was 

overshadowed in the 1950’s and 1960’s by the commercial development of IR  

spectrometers. Raman remained hindered by experimental difficulties and there were few 

experts (this can also be seen through the slow evolution of the number of publications on 

the topic in that time frame). 43, 44, 45, 46, 47 

A true revolution in Raman spectroscopy was brought, in the mid-1960’s by: (i) the 

development of the first continuous wavelength lasers (He-Ne) to serve as incident 
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radiation instead of high-pressure mercury arcs; as well as by the development of (ii) 

diffraction gratings, (for dispersion of scattered light), (iii)photomultipliers and photon 

counting equipment (for detection of scatterers light).  

 

 
Figure 2. Number of articles published on the topic of Raman spectroscopy between 1946 and 2014.  
Source, Web of Science (query on 6/23/2014). Note the rapid increase starting in the 1980’s. 
 

These instruments were in widespread use by the 1970’s. The new holographic grating 

developed in the 1970’s opened the door for low-frequency Raman studies by eliminating 

many of the artifacts that afflicted early instruments. The next important milestone was the 

introduction of Ar+ continuous lasers (514.532nm), which contributed in a dual way to the 

advancement of Raman spectroscopy: it increased the intensity of probing radiation by 

more than one order of magnitude while at the same time making the spectroscopic region 

of the Raman effect move to the green wavelength region, where incidentally the 

photomultipliers were much more effective. Lasers have greatly improved the sensitivity of 

spontaneous Raman spectroscopy. Lasers have also opened the door to new spectroscopic 

techniques, based on the stimulated Raman effect, such as coherent anti-Stokes Raman 

scattering (CARS) or hyper-Raman spectroscopy. 43, 44, 45, 46, 47 
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Until ~ 1986, the Raman literature was composed mostly of physical and structural 

investigations, with few reports of Raman spectroscopy in chemistry.  The barriers to entry 

in to the chemistry research were both fundamental and technical: weak intensity, 

fluorescence interference, and inefficient light collection and detection. In 1986 the 

introduction of charge-coupled devices (CCDs), Fourier transform (FT)-Raman, small 

computers, and near-infrared lasers opened the door for routine chemical analysis and 

created a period of Raman renaissance. 43, 44, 45, 46, 47 The development of instrumentation 

rendered Raman spectroscopy, which is inherently a difficult technique, much more 

accessible. This is also illustrated by the evolution of the number of publication on this topic 

which increased exponentially following instrumental advances (Figure 2). 43, 44, 45, 46, 47 

 

2.2.2.  What is the Raman Effect? 

When incoming light interacts with matter it can be either absorbed or scattered. 

The absorption process requires that the energy of the incident photon matches the energy 

gap between the ground state of a molecule and the excited state. Many spectroscopic 

techniques use this process (ex. IR Absorption). On the other hand scattering occurs 

independently of whether there is or there is not a suitable pair of energy levels to absorb 

the incoming radiation. 

The Raman effect is a light-scattering effect, where an incident monochromatic 

beam interacts with a material and a small percentage of this light undergoes a change in 

frequency (either decrease or increase). The change in frequency is the outcome of coupling 

between the incident radiation and vibrational energy levels of molecules. Raman scattering 

is well well-known also from electronic and rotational energy levels. The most common 

spectroscopic region where the Raman effect is observed is the visible (with incident 
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radiation being also in the visible). However both UV and near-IR Raman have also many 

applications.  

Today, in many cases Raman spectroscopy is preferred to its cousin, IR 

spectroscopy, since measurements can be carried out in situ, property-related information 

can be obtained in samples in any physical state (solid, liquid, gas), dynamic investigations 

can be carried out and finally it is easily applied to aqueous solutions (IR spectroscopy is 

not), which is very useful for biological applications. The progress in diagnostic applications 

of Raman, which now overshadows IR spectroscopy, is connected to several crucial features 

of this technique: (i) the technique is non-destructive; (ii) very small samples can yield 

spectra, and with the addition of a microscope samples on the order of a micron can be 

studied (single crystals, grains, filaments, nano-liters of liquids can be studied without 

sample preparation); (iii) aqueous solutions can be readily investigated, since Raman 

scattering form water is very weak (as opposed to IR); (iv) high/low temperature stages 

and high-pressure cells allow for studies of materials in situ  while P or T is being modified. 

It is worth underlining that Raman spectroscopy offers the option to investigate the 

entire vibrational spectrum: 

• Low-frequency modes, < 200cm-1: lattice, torsional, chain modes; this region is 

still under-utilized; also triple-grating monochromators are usually required to 

access this very low frequency region;  

• Mid-frequency, between 200cm-1 and ~1600 cm-1 (the actual upper limit 

depends on the type of molecular units investigated ex. inorganic vs organic): 

the so called “fingerprinting” modes that allow the identification of chemical 

species; 

• High-frequency: fundamental modes; 
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2.2.3. Limitations of Raman Spectroscopy. 

Raman scattering is inherently a very weak effect. Further, when one considers the 

energy transfer region of the Raman effect (Figure 3) it can be seen that Raman overlaps 

with fluorescence. If the incoming energy is enough to excite both luminescence and Raman 

then the luminescence phenomenon, which is 106-108 times stronger will overpower any 

present Raman signal.  Trace impurities can often be enough to cause fluorescence.  

 

 
Figure 3. Classification of spectroscopies by the amount of energy transferred in the process.  
Types of spectroscopy are indicated. 
 

In such cases a different laser wavelength is required, for example UV or IR. If a tunable 

visible laser is available it can often be enough to choose a blue or a red wavelength to get 

away from the excitation of valence electrons of the impurities and hence to minimize or 

avoid fluorescence. To eliminate background fluorescence a classical approach is the 

irradiation of the sample with the laser for an extended period of time, just prior to a Raman 

measurement, which results in the photobleaching of the luminescent impurity. Finally, 

The linked image cannot be displayed.  The file may have been moved, renamed, or deleted. Verify that the link points to the correct file and location.
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since the Raman effect arises on a much shorter time scale than fluorescence, this 

distinction can be used to separate the two although it requires a more intricate 

experimental setup. 

Another issue which arises due to the use of intense, focused laser beams is that a 

sample can absorb this light, and heating and black-body radiation phenomena can 

overpower any present Raman signal, rendering it undetectable. Thermal decomposition or 

photochemistry can also be an issue. Besides reducing the power of the excitation beam, 

samples can be mixed with a fine metallic powder or dispersed in KBr, which will help in 

dissipating the absorbed heat.  

 

2.2.4.  States of a System – Vibration of a Diatomic Molecule 

 Consider the vibrations of a diatomic molecule in which two atoms are connected by 

a chemical bond. As indicated in Figure 4, r1 +r2 is the equilibrium distance and x1 and x2 

are the displacements of atoms form their equilibrium positions. The conservation of the 

center of gravity requires that: 

𝑚1𝑟1 = 𝑚2𝑟2           

or with the atoms moving from their equilibrium position that: 

𝑚1(𝑟1 + 𝑥1) = 𝑚2(𝑟2 + 𝑥2)         

The above equations are combined to get: 

𝑥2 = �𝑚1
𝑚2
�𝑥1   or  𝑥1 = �𝑚2

𝑚1
�𝑥2     

Classically the chemical bond is considered to be as a spring following Hooke’s law where 

the restoring force f and the force constant K are related as: 

𝑓 = −𝐾(𝑥1 + 𝑥2)          

Combining the above two equations: 
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𝑓 = −𝐾 �𝑚1+𝑚2
𝑚2

�𝑥1 = −𝐾 �𝑚1+𝑚2
𝑚1

�𝑥2         

 

 

Figure 4. Vibrations of a diatomic molecule. 
 

We can then write Newton’s equation of motion for atom 1 and atom 2 (f=ma): 

𝑚1
𝑑2𝑥1
𝑑𝑡2

= −𝐾 �𝑚1+𝑚2
𝑚2

� 𝑥1 and 𝑚2
𝑑2𝑥2
𝑑𝑡2

= −𝐾 �𝑚1+𝑚2
𝑚1

�𝑥2   

By combining the above equations we obtain: 

𝑚1𝑚2
𝑚1+𝑚2

�𝑑
2𝑥1
𝑑𝑡2

+ 𝑑2𝑥2
𝑑𝑡2

� = −𝐾(𝑥1 + 𝑥2)         

This can be rewritten as: 

𝜇 𝑑2𝑞
𝑑𝑡2

= −𝐾𝐾           

Where μ is the reduced mass and q is the displacement. This differential equation is solved 

with a sin function:   

𝐾 = 𝐾0𝑠𝑠𝑠(2𝜋𝑣0𝑡 + 𝜑) = 𝐾0𝑠𝑠𝑠(𝜔𝑡 + 𝜑)       

Where q0 is the maximum displacement and φ is the phase constant, which varies according 

to initial conditions. v0 is the classical vibrational frequency: 

𝑣0 = 1
2𝜋�

𝐾
𝜇

   𝐾 = 𝜇(2𝜋𝑣0)2        

The potential energy for the two atoms is: 
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𝑓 = −𝑑𝑑
𝑑𝑞

     𝑑𝑑 = −𝑓𝑑𝐾 = 𝐾𝐾𝑑𝐾   𝑑 = 1
2
𝐾𝐾2  

𝑑 = 1
2
𝐾𝐾02𝑠𝑠𝑠2(2𝜋𝑣0𝑡 + 𝜑)  

And replacing K the potential energy is: 

𝑑 = 1
2
𝐾𝐾02𝑠𝑠𝑠2(2𝜋𝑣0𝑡 + 𝜑)  

𝑑 = 2𝜇𝜋2𝑣02𝐾02𝑠𝑠𝑠2(2𝜋𝑣0𝑡 + 𝜑)  

Next the expression for kinetic energy is:  

𝑇 = 1
2
𝑚1 �

𝑑𝑥1
𝑑𝑡
�
2

+ 1
2
𝑚2 �

𝑑𝑥2
𝑑𝑡
�
2

= 1
2
𝜇 �𝑑𝑞

𝑑𝑡
�
2

  

𝑇 = 2𝜇𝜋2𝑣02𝐾02𝑐𝑐𝑠2(2𝜋𝑣0𝑡 + 𝜑)  

Then we write the total energy:  

𝐸 = 𝑇 + 𝑑 =  2𝜇𝜋2𝑣02𝐾02 = 𝑐𝑐𝑠𝑠𝑡𝑐𝑠𝑡  

The potential V has a parabolic shape and in the classical point of view the two oscillating 

atoms constitute a harmonic oscillator.   

In the quantum mechanical approach the vibration of the two atoms can be 

considered as motion of a single particle of mass u with potential energy again being: 

𝑑 = 1
2
𝐾𝐾2  

We can then write the Schrödinger equation for this system:  

𝑑2𝜓
𝑑𝑞2

+ 8𝜋2𝜇
ℎ2

�𝐸 − 1
2
𝐾𝐾2�𝜓 = 0  

The condition for ψ is that it should be single valued, continuous and finite.  The eigenvalues 

and the frequencies of vibration are: 

𝐸𝑣 = ℎ𝜈 �𝑣 + 1
2
� = ℎ𝑐𝜈� �𝑣 + 1

2
�  

𝜈 = 1
2𝜋�

𝐾
𝜇

  and  𝜈� = 1
2𝜋𝜋 �

𝐾
𝜇

  

In the above equation 𝑣 is the vibrational quantum number with values 0, 1, 2, 3, 4. The 

quantum mechanical frequency is the same as the classical frequency.  
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In a given molecule there exists a series of electronic states, each of which contains a 

multiple vibrational and rotational states. When inter-nuclear separations are big, the 

atoms are basically unconstrained, but with decreasing distance (such as the application of 

pressure) they are attracted to one another and a bond is eventually formed (Figure 5).  

 

 
Figure 5. Potential energy curve or Morse potential for a diatomic molecule. 
 

If the distance becomes too small however, nuclear repulsion begins to act and there is a 

sharp increase in energy of the molecule. The length of the bond corresponds to the 

internuclear distance with the lowest energy for the molecule. Due to the quantization of 

the vibrational energies of the molecule, only discrete energies are allowed in the potential 

energy curve. 45 

Compared to the time of nuclear movement, the phenomenon of Raman scattering is 

fast, so the nuclear separation does not have time to change noticeably during scattering 
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and therefore there is no change in the internuclear distance (Figure 5). 45 To obtain a 

simple schematic, the energy states of a molecule are drawn as horizontal lines while 

modifications in energy of the molecule are drawn as vertical lines leading to a simplified 

energy level diagram, such as that in Figure 8. 

For each vibrational quantum number 𝑣 there is a corresponding eigenfunction: 

𝜓𝑣 = (𝛼 𝜋⁄ )1 4⁄

√2𝜈𝑣!
𝑒−𝛼𝑞2 2⁄ 𝐻𝑣��𝐾𝑞�    

with 𝑞 = 2𝜋�𝜇𝐾 ℎ⁄ = 4𝜋2𝜇 𝜈 ℎ⁄  

and with 𝐻𝑣��𝐾𝑞� being Hermite polynomials of 𝑣𝑡ℎ degree. The eigenvalues and 

eigenfunctions are: 

𝑣 = 0 and  𝐸0 = 1
2
ℎ𝜈 and  𝜓0 = (𝑞 𝜋⁄ )1 4⁄ 𝑒−𝛼𝑞2 2⁄  

𝑣 = 1 and  𝐸1 = 3
2
ℎ𝜈 and  𝜓1 = (𝑞 𝜋⁄ )1 4⁄ 21 2⁄ 𝑒−𝛼𝑞2 2⁄   

and so on. 

What are the differences between classical and quantum mechanical descriptions of 

the vibrations of a diatomic molecule? Classically the lowest energy state for q=0 is E=0 but 

quantum mechanically the zero point energy is 𝐸0 = 1
2
ℎ𝜈 (from Heisenberg’s uncertainty 

principle). In the quantum mechanical treatment the energy changes in units of hv whereas 

classically the energy can change continuously. Finally due to the tunnel effect in quantum 

mechanics it is possible to find q outside of the parabola whereas in classical mechanics q is 

confined to the parabola.  

In reality the molecular potential is better approximated by the Morse potential 

Figure 5: 

𝑑 = 𝐷𝑒�1− 𝑒−𝛽𝑞�
2  

where De is the dissociation energy, β is a measure of the curvature of at the bottom of the 

potential well. The solution to the Schrödinger equation with the Morse potential is: 47 
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𝐸𝑣 = ℎ𝑐𝜔𝑒 �𝑣 + 1
2
� − ℎ𝑐𝜒𝑒𝜔𝑒 �𝑣 + 1

2
�
2

+ ⋯  

where ωe is the wavenumber corrected for anharmonicity and χeωe is the magnitude of 

anharmonicity. The separation between energy levels is not equidistant (as for a harmonic 

oscillator) but it decreases for increasing energy levels 𝑣 (Figure 5). In quantum mechanics, 

for a harmonic oscillator only transitions of ∆𝑣 = ±1 are allowed. For anharmonic vibration 

transitions of ∆𝑣 = ±2, ±3,⋯ called overtones can be weakly allowed by selection rules. 

Out of the many  ∆𝑣 = ±1 allowed transitions, the strongest one is the 𝑣 = 0 → 1 called the 

fundamental transition is the strongest in IR and Raman spectroscopy.   

When considering the vibrational frequency 𝜈� = 1
2𝜋𝜋 �

𝐾
𝜇

  we see that 𝜈� is 

proportional to √𝐾 referred to as the force constant effect and inversely proportional to √𝜇 

called the mass effect. However a large force constant does not necessarily indicate a strong 

bond, because the force constant is actually the curvature of the potential well near the 

equilibrium 𝐾 = �𝑑
2𝑑

𝑑𝑞2
�
𝑞→0

(so a large K means a sharp curvature near the bottom of the 

well) while bond strength or dissociation energy is the depth of the potential well. 

 

2.2.5. Classical Light Scattering - Rayleigh Theory 

The following derives the theory of light scattering from a small particle.43, 44 Light, 

or electromagnetic radiation is described as a function of time:  

𝐸𝑧 = 𝐸0 cos𝜔𝑡 = 𝐸0 cos �2𝜋𝜋𝑡
𝜆
�     / … �𝑣 = 𝜋

𝜆
= 𝜔

2𝜋
�  

where E0 is the amplitude of the electric field, c is the speed of light, and λ is the wavelength 

of light and Ez indicates plane polarized light along the z axis. An incident beam of light 

polarized in the z direction is shown in Figure 6. If the particle is polarizable, the incident 
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electric field will induce a dipole moment in that particle. The polarizability αp indicates the 

magnitude of the dipole moment in respect to the incident field. The dipole moment is: 

𝑝 = 𝑞𝑝𝐸0𝑐𝑐𝑠 �
2𝜋𝜋𝑡
𝜆
� = 𝑞𝑝𝐸0𝑐𝑐𝑠(2𝜋𝑣𝑡) = 𝑞𝑝𝐸0𝑐𝑐𝑠(𝜔𝑡)   

The induced dipole moment will radiate light in all directions. Let’s observe the scattered 

light at a distance r from the origin along a line that makes an angle 𝜃𝑧 with the z axis.  

 

 

Figure 6. Schematic of the classical light scattering process.  
Left: plane polarized light polarized in the z direction and incident on a small particle. Right: light scatters off the 
particle at an angle θ and it is observed a t a distance r. 
 

Then we can write the electric field for light scattered in the 𝜃𝑧  direction: 

𝐸𝑆 = 1
𝑟
1
𝜋2

𝑑2𝑝
𝑑𝑡2

= −�1
𝑟
𝜔2

𝜋2
𝑞𝑝𝐸0𝑠𝑠𝑠(𝜃𝑧)� 𝑐𝑐𝑠(𝜔𝑡) = − �1

𝑟
4𝜋2

𝜆2
𝑞𝑝𝐸0𝑠𝑠𝑠(𝜃𝑧)� 𝑐𝑐𝑠(𝜔𝑡)    

The scattered light field will be proportional to 1
𝜋2

𝑑2𝑝
𝑑𝑡2

  because the second derivative of p is 

the acceleration of the charge on the dipole moment. To include spatial effects, since 

electromagnetic fields decrease as 1/r the scattered light is also proportional to 1/r ,  and 

finally the term 𝑠𝑠𝑠(𝜃𝑧) accounts for the projection of the dipole moment along the direction 

of observation.  

Measurements of scattered light are usually done through measurements of 

intensity. The intensity is obtained by squaring the amplitude of Es: 

𝐼𝑆𝜋𝑆𝑡𝑡𝑒𝑟𝑒𝑑 = 𝐼𝑆 = 𝐼0𝑧𝑞𝑝2
𝜔4

𝑟2𝜋2
𝑠𝑠𝑠2(𝜃𝑧) = 𝐼0𝑧𝑞𝑝2

16𝜋4

𝑟2𝜆4
𝑠𝑠𝑠2(𝜃𝑧)    
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Where 𝐼0 = 𝐸02 is the intensity of the z polarized incident light. These results are for incident 

light polarized in the z direction. Experiments, however, are usually done with unpolarized 

light. We can account for unpolarized incident light by summing the intensity of equal parts 

of incident light polarized in both the z direction and the y direction: 

𝐼0 =
1
2
𝐼0𝑧 +

1
2
𝐼0𝑦 

𝐼𝑆 =
1
2
𝐼𝑆,𝑧 +

1
2
𝐼𝑆,𝑦 = 𝐼0𝑧𝑞𝑝2

𝜔4

2𝑟2𝑐2 �
𝑠𝑠𝑠2(𝜃𝑧) + 𝑠𝑠𝑠2�𝜃𝑦�� = 𝐼0𝑧𝑞𝑝2

8𝜋4

𝑟2𝜆4 �
𝑠𝑠𝑠2(𝜃𝑧) + 𝑠𝑠𝑠2�𝜃𝑦�� 

where 𝜃𝑦 is the angle the observation direction makes with the y axis.  

By geometry the 𝜃𝑧 and 𝜃𝑦 terms can be related to the angle 𝜃𝑥 that the observation 

direction makes with the x axis (Figure 6). This angle will simply be referred to as θ. Since 

direction cosines add up to 1: 

𝑐𝑐𝑠2𝜃𝑥 + 𝑐𝑐𝑠2𝜃𝑦 + 𝑐𝑐𝑠2𝜃𝑧 = 1  

𝑐𝑐𝑠2𝜃𝑦 + 𝑐𝑐𝑠2𝜃𝑧 = 1 + 𝑐𝑐𝑠2𝜃  

We now have the scattered light intensity for scattering off a single particle: 

𝐼𝑆 = 1
2
𝐼𝑆,𝑧 + 1

2
𝐼𝑆,𝑦 = 𝐼0𝑧𝑞𝑝2

𝜔4

2𝑟2𝜋2
[1 + 𝑐𝑐𝑠2𝜃] = 𝐼0𝑧𝑞𝑝2

8𝜋4

𝑟2𝜆4
[1 + 𝑐𝑐𝑠2𝜃]  

 

2.2.6.  Theory of Raman Scattering - Overview 

When Incoming light of a specific energy encounters a molecule it can scatter from it 

either without change in energy (Rayleigh scattering), or with a decreased or increased 

energy (Raman). The physics of Raman scattering can be approached in two ways: the 

classical wave interpretation or the quantum particle interpretation. In the classical wave 

interpretation of Raman, electromagnetic radiation comprises an oscillating electric field 

which interacts with a molecule through the molecule’s polarizability. Polarizability is the 

ability of the electron cloud to interact with an electric field. For example, soft molecules, 
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such as benzene, tend to be strong Raman scatterers while harder molecules, like water, 

tend to be fairly weak scatterers. In the quantum particle interpretation of Raman, a photon 

reaches a molecule and then scatters inelastically. The number of scattered photons is 

proportional to the size of the bond. Reprising the previous example, molecules with large π 

bonds, such as benzene, tend to scatter lots of photons, while water, with small single 

bonds, tends to be a very weak Raman scatterer. 

2.2.6.1. Theory of Raman and Rayleigh Scattering – Classical Treatment 

In any spectroscopy there is a mechanism through which incident radiation 

interacts with molecular energy levels. Raman spectroscopy originates from the general 

phenomenon of light scattering where light (electromagnetic radiation) interacts with a 

pulsating, deformable/polarizable electron cloud.  

 

 
Figure 7. Polarization of a diatomic molecule in an external electric field. 
 

In the case of Raman phenomenon, the above interaction is controlled by molecular 

vibrations and causes an induced dipole moment. In IR absorption spectroscopy the 

mechanism of interaction of radiation with molecular vibrational energy levels is the change 

in permanent dipole moment during the vibration. 44, 46  

When electromagnetic radiation strikes a (spherical) polarizable sample (Figure 7) 

this causes the electron cloud to oscillate, driven by the frequency of incident radiation. A 

pulsating electron cloud will radiate in all directions (scattered light). Now any molecule 
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consists of a series of electronic states, each of which contains a large number of vibrational 

and rotational states (Figure 8). Vibrational transitions appear in the 104~102cm-1 region 

and these are observed in Raman and IR spectra.  

 

 
Figure 8. Energy levels of a diatomic molecule. 
 

Assume the incident electromagnetic radiation is represented by its electric field: 

𝐸 ���⃗ = 𝐸0 cos𝜔𝑡 = 𝐸0 cos �2𝜋𝜋𝑡
𝜆
�   / … �𝑣 = 𝜋

𝜆
= 𝜔

2𝜋
�    Eq. 1 

A classical description of the vibrational Raman effect was developed first by Placzek, 50 and 

states the following relation: 

𝑝 = 𝜇0����⃗ + 𝑞�𝐸�⃗           Eq. 2 

Connecting the incoming radiation with the dipole moment 𝑝 of a molecule; 𝜇0����⃗  is a possible 

permanent dipole moment, and 𝑞�𝐸�⃗  is the induced dipole moment (Figure 9). Polarizability 𝑞� 

is usually a tensor of rank 2, and it together with dipole moment are functions of the 

coordinates of nuclei and electrons. However as long as frequency of incident light is far off 
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resonance (with electronic or vibrational transitions), the nuclear displacement induced by 

the polarization of the electron cloud are small. 

 

 
Figure 9. Dipole moment of a molecule and its relation to the induced dipole moment.  

 

So we need to consider that the scattering body (a molecule in fact) is not just a 

polarizable sphere, but has vibrational modes of its own, or normal modes q. (The complex 

vibration that a molecule is making is really a superposition of a number of much simpler 

basic vibrations called “normal modes” q1 ). For small vibrational amplitudes the normal 

coordinates qn(t) of the vibrating molecule can be approximated by: 

𝐾𝑛(𝑡) =  𝐾𝑛0 cos(𝜔𝑛𝑡)         Eq. (3) 

Since the electronic charge distribution is determined by the nuclear positions and adjusts 

“instantaneously” to changes in these positions, we can expand the dipole moment and 

polarizability into Taylor series in the normal coordinates qn of the nuclear displacements: 

                                                             
1 In general a normal mode of an oscillating system is a pattern of motion in which all parts of the 
system move sinusoidally with the same frequency and with a fixed phase relation. The motion 
described by the normal modes is called resonance. The frequencies of the normal modes of a system 
are known as its natural frequencies or resonant frequencies. A physical object, such as a building, 
bridge or molecule, has a set of normal modes that depend on its structure, materials and boundary 
conditions. The most general motion of a system is a superposition of its normal modes. The modes 
are normal in the sense that they can move independently, that is to say that an excitation of one 
mode will never cause motion of a different mode. In mathematical terms, normal modes are 
orthogonal to each other. 
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𝜇 =  𝜇(0) +  � 𝜕𝜇��⃗
𝜕𝑞𝑛

�
0
𝐾𝑛 +  ⋯         Eq. (4) 

𝑞𝑖𝑖(𝐾) =  𝑞𝑖𝑖(0) +  �𝜕𝛼𝑖𝑖
𝜕𝑞𝑛

�
0
𝐾𝑛 +  ⋯        Eq. (5) 

where μ(0) = μ0 is the dipole moment and αij (0) is the polarizability at the equilibrium 

configuration qn = 0.  By combining Eq.(1) with Eq.(4) and Eq.(5) we can obtain a 

description of the dipole moment of a molecule: 

�⃗� =  𝜇0����⃗ +  𝑞�𝐸�⃗ =  �𝜇0����⃗ +  � 𝜕𝜇��⃗
𝜕𝑞𝑛

�
0
𝐾𝑛� +  �𝑞𝑖𝑖(0) +  �𝜕𝛼𝑖𝑖

𝜕𝑞𝑛
�
0
𝐾𝑛�  𝐸0 cos𝜔𝑡   Eq.(6) 

And by inserting Eq. (3) we get:  

 �⃗� =  �𝜇0����⃗ + � 𝜕𝜇��⃗
𝜕𝑞𝑛

�
0
𝐾𝑛0 cos(𝜔𝑠𝑡)� +  �𝑞𝑖𝑖(0) +  �𝜕𝛼𝑖𝑖

𝜕𝑞𝑛
�
0
𝐾𝑛0 cos(𝜔𝑠𝑡)�  𝐸0 cos𝜔𝑡  Eq.(7) 

 

�⃗� =  𝜇0����⃗ +  � 𝜕𝜇��⃗
𝜕𝑞𝑛

�
0
𝐾𝑛0 cos(𝜔𝑠𝑡) + 𝑞𝑖𝑖(0)𝐸0 cos𝜔𝑡  +  �𝜕𝛼𝑖𝑖

𝜕𝑞𝑛
�
0
𝐾𝑛0 cos(𝜔𝑠𝑡)𝐸0 cos𝜔𝑡   

Eq.(8) 

Finally by applying a trigonometric identity to the last term:  

�⃗� =  𝜇0����⃗ +  �� 𝜕𝜇��⃗
𝜕𝑞𝑛

�
0
𝐾𝑛0 cos(𝜔𝑠𝑡)� + ⋯     ( Infrared Spectrum) 

⋯+ �𝑞𝑖𝑖(0)𝐸0 cos𝜔𝑡� + ⋯        

( Rayleigh elastic scattering; oscillating dipole that radiates light at frequency ω) 

⋯+ 1
2
𝐸0  �𝜕𝛼𝑖𝑖

𝜕𝑞𝑛
�
0
𝐾𝑛0[cos(𝜔 − 𝜔𝑠)𝑡 + cos(𝜔 + 𝜔𝑠)𝑡]       Eq.(9) 

( Raman scattering: inelastic Stokes and superelastic anti-Stokes) 

The above expression was written for one vibrational mode of a molecule qn with, but in fact  

a molecule with N nuclei has Q = 3N - 6 (or 3N-5 for linear) number of normal vibrational 

modes, which means that Eq.(4) and (5) should be re-written as a summation over all the Q 

vibrational modes:  
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𝜇 =  𝜇(0) +  ∑ � 𝜕𝜇��⃗
𝜕𝑞𝑛

�
0

𝑄
𝑛=1 𝐾𝑛 + ⋯                        Eq. (10) 

𝑞𝑖𝑖(𝐾) =  𝑞𝑖𝑖(0) +  ∑ �𝜕𝛼𝑖𝑖
𝜕𝑞𝑛

�
0

𝑄
𝑛=1 𝐾𝑛 + ⋯                    Eq. (11) 

And by adding the summation sign to Eq.(9) the complete description of the interaction of a 

molecule’s vibrational modes with incoming radiation becomes:  

�⃗� =

 𝜇0����⃗ +  ∑ �� 𝜕𝜇��⃗
𝜕𝑞𝑛

�
0
𝐾𝑛0 cos(𝜔𝑠𝑡)�

𝑄
𝑛=1 + 𝑞𝑖𝑖(0)𝐸0 cos𝜔𝑡 + 1

2
𝐸0  ∑ ��𝜕𝛼𝑖𝑖

𝜕𝑞𝑛
�
0
𝐾𝑛0[cos(𝜔 −𝑄

𝑛=1

𝜔𝑠)𝑡 + cos(𝜔 + 𝜔𝑠)𝑡]�                       Eq. (12)  

The complete description of the interaction of a molecule’s vibrational modes with 

incoming radiation is also illustrated in Figure 10. 

 

 
Figure 10. Interaction of a molecule’s vibration with incoming radiation. 
The complete description of the interaction of a molecule’s vibrational modes with incoming radiation. 
 

From the above equation we see that what determines whether a vibrational mode will be 

IR or Raman active is the non-zero rate of change of the dipole moment or of the 

polarizability (respectively) during normal vibrations of a molecule. An example can be 
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seen below for the case of a CO2 molecule. The polarizability change is ∂α/∂q ≠ 0 only for 

the symmetric stretch ν1, which is therefore called “Raman active.” The permanent dipole 

moment change ∂μ/∂q ≠ 0 for the bending vibration ν2 and for the asymmetric stretch ν3 

which are then called “infrared active” vibrations. 

An oscillating dipole moment is a source of new waves generated at each molecule. 

The microscopic contributions from each molecule add up to macroscopic waves with 

intensities that depend on the population N(Ei) of the molecules in the initial level Ei, on the 

intensity of the incident radiation, and on the expression (∂αij/∂qn)qn, which describes the 

dependence of the polarizability components on the nuclear displacements. 

The classical description of Raman spectroscopy predicts a simple linear 

dependence of Raman scattering on incident beam intensity and sample concentration, 

which is in accordance with experimental observations. The frequencies ω±ωn are correctly 

predicted, and so are the relative intensities of Rayleigh and Raman scattering: it is expected 

that Σ∂αij/∂qn will be much smaller than αij(0) implying that Raman scattering is in fact 

much smaller than Rayleigh. However the classical description does not yield absolute 

intensities of Raman modes, which brings about the need for a quantum mechanical 

treatment. The older classical treatment of Raman scattering is based on the wave theory of 

light and it’s weakness lies in the fact that it does not account for the quantized nature of 

vibrations and it cannot explain as much about the relationship between Raman scattering 

and molecular properties as the quantum treatment can. 

2.2.6.2. Theory of Raman Scattering – Quantum Mechanical Treatment 

 An incoming light wave may interact with a molecule, and because this light wave is 

a propagating oscillating dipole, it can then distort the electron cloud of the molecule. As a 

result of this interaction the energy is scattered or released again in the form of radiation  

(light). The incoming light is much larger than the molecule, since visible light has 
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wavelengths between 400-700 nm, while a small molecule is a few angstroms (~0.5 nm). If 

the interaction between the propagating oscillating dipole (light wave) and the molecule 

takes place at all, the electrons of the molecule become polarized and move to a higher 

energy state. As that happens the light wave’s energy is reassigned to the molecule.  

 

 

Figure 11. Possible consequences of a photon-molecule interaction.  

 

The transfer of energy form light wave to molecule can be viewed as the creation of a very 

short-lived composite (also commonly referred to as a “virtual state” by chemists, Figure 11) 

between the electrons in the molecule and the light energy. In that very short time the 

nuclei do not move in a significant way. 45  The molecule assumes a high energy form with 

different electron geometry, but nuclear movement is not significant. The light is actually 

released immediately as scattered radiation since the above defined composite between the 
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light and the molecule is unstable. The nuclei have no time to reach new equilibrium 

geometry, in response to the new, distorted electronic geometry of the molecule. Since the 

new electron arrangement cannot be illustrated by any of the electronic states of the 

molecule the very short-lived composite carries the label of “virtual state”. Hence the 

“virtual state” is a real state of the short-lived composite formed between the light energy 

and the electrons in the molecule. The wavelength of the laser used thus the energy 

imparted to the molecule to create the virtual state determines the shape of the distorted 

electron geometry. So the energy of the virtual state and the amount of the distortion of the 

electron geometry is regulated by the excitation source used in the Raman experiment. 45 

How is scattering different from absorption? The electrons of the molecule are not 

promoted to any one excited state. In fact the states of the distorted composite between the 

light energy and the electrons in the molecule is made by involving and mixing - to varying 

degrees - all states of the static molecule. The excitation source determines the energy of the 

distorted composite. The electronic properties of the molecule, together with the energy of 

the excitation source determine the degree of distortion of the electron geometry. 

In comparison to absorption processes, the lifetime of the excited state in Raman scattering 

is very short. The radiation is not lost by energy transfer within a molecule or emitted at a 

lower energy, but it is scattered as a sphere. The polarization of the exciting (laser) and 

scattered (Raman) phonons are related, which can be of value in distinguishing and 

assigning the scattering to particular vibrations. 

Intensity is a characteristic feature of the two processes in scattering, Rayleigh and 

Raman scattering. Raman, with only one in 106-108 of the photons scattered is a very rare 

event. 45 The nuclei begin to move at the same time as the light and electrons of the 

molecule interact, but because they are so much heavier than electrons, the energy of the 

molecule changes to either a lower or higher energy depending whether the process begins 
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with a molecule in the ground state or with a molecule in a vibrationally excited state 

(Figure 11).  The first process is called anti-Stokes Raman (from a vibrationally excited state 

to the ground state) and the second Stokes Raman (from the ground state to a vibrationally 

excited state). Since Raman scattering is so rare, the overwhelming majority of scattered 

photons goes to Rayleigh scattering, with the electron cloud relaxing without any nuclear 

movement and without any change in energy (elastic scattering).  

Most of the Raman effect is Stokes scattering (Figure 11) since most molecules will 

be initially in the ground vibrational state, while only a minority will be in an excited 

vibrational level prior to interaction with light. The Boltzmann equation gives the ratio of 

intensities of the Stokes and anti-Stokes scattering which is a function of  the number of 

molecules in the ground and excited vibrational levels: 43 

𝑁𝑛
𝑁𝑚

=  𝑔𝑛
𝑔𝑚
𝑒𝑥𝑝 �−(𝐸𝑛−𝐸𝑚)

𝑘𝑘
�                    Eq. (13) 

where n and m are different vibrational states of the ground electronic state, g is the 

degeneracy of the levels n and m, Nn is the number of molecules in the excited vibrational 

level (n), Nm is the number of molecules in the ground vibrational level (m), En-Em is the 

difference in energy between vibrational levels. The degeneracy g indicates the number of 

vibrations that can occur in more than one way (through symmetry) but with the same 

energies, so that individual components cannot be separated; for most vibrational states 

g=1 but for degenerate vibrations g=2 or 3. 45 

The expectation value of the component αij of the polarizability tensor is given by:  

〈𝑞𝑖𝑖〉𝑆𝑎 = ∫𝑢𝑎∗ (𝐾)𝑞𝑖𝑖𝑢𝑆(𝐾)𝑑𝐾          Eq.(14) 

where: 

-  the function ua(q) represent the molecular eigenfunction in the initial level a  

- and the function ub(q) represent the molecular eigenfunction final level b.  
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The integration extends over all nuclear coordinates. The expectation value of the 

component αij of the polarizability tensor shows that a computation of the intensities of 

Raman lines is based on the knowledge of the molecular wave functions of the initial and 

final states. For vibrational–rotational Raman scattering these are the rotational–vibrational 

eigenfunctions of the electronic ground state. 

Assuming small displacements qn, the molecular potential can be approximated by a 

harmonic potential, where the coupling between the different normal vibrational modes can 

be neglected (it was mentioned before that normal vibrational modes are independent of 

each other or orthogonal to each other). The functions u(q) can then be written as a 

product: 

𝑢(𝐾) =  ∏ 𝑤𝑛(𝐾𝑛,𝑣𝑛)𝑄
𝑛=1          Eq.(15) 

of vibrational eigenfunction of the nth normal mode with 𝑣𝑛 vibrational quanta. Using the 

orthogonality relation: 

∫𝑤𝑛𝑤𝑚𝑑𝐾 =  𝛿𝑛𝑚          Eq.(16) 

 

of the functions wn(qn), we get from Eq.(14) and Eq.(11)  

    �𝑞𝑖𝑖(𝐾) =  𝑞𝑖𝑖(0) +  ∑ �𝜕𝛼𝑖𝑖
𝜕𝑞𝑛

�
0

𝑄
𝑛=1 𝐾𝑛 +  ⋯� 

〈𝑞𝑖𝑖〉𝑆𝑎 = (𝑞𝑖𝑖)0 + ∑ �𝜕𝛼𝑖𝑖
𝜕𝑞𝑛

�
0
∫𝑤𝑛(𝐾𝑛,𝑣𝑆) 𝑄

𝑛=1 𝐾𝑛 𝑤𝑛(𝐾𝑛,𝑣𝑆)𝑑𝐾𝑛    Eq.(17) 

The first term represents Rayleigh scattering and it is a constant.   

For nondegenerate vibrations the integrals in the second term vanish unless 𝑣𝑆 = 𝑣𝑎 ± 1. In 

these cases it has the value �1
2

(𝑣𝑆 + 1)�
1
2� . Hence the basic intensity parameter of 

vibrational Raman spectroscopy is the derivative (∂αij/∂q), which can be determined from 

Raman spectra. 



35 
 

The intensity Is of a Raman line at the Stokes or anti-Stokes frequency ωs = ω ± ωn is 

determined by: 

-  the population density Ni(Ei) in the initial level Ei(𝑣, J),  

- by the intensity IL of the incident pump laser,  

- and by the Raman scattering cross section σR(i → f ) for the Raman transition Ei→ Ef : 

𝐼𝑠 =  𝑁𝑖(𝐸𝑖)𝜎𝑅(𝑠 → 𝑓)𝐼𝐿          Eq.(18) 

At thermal equilibrium the population density Ni(Ei) follows the Boltzmann distribution: 

 𝑁𝑖(𝐸𝑖 , 𝑣, 𝐽) =  𝑁
𝑍
𝑔𝑖𝑒

−𝐸𝑖
𝑘𝑘� , where 𝑁 = ∑𝑁𝑖        Eq.(19) 

The statistical weight factors gi depend on the vibrational state 𝑣 = �𝑠1𝑣1,𝑠2𝑣2,⋯� the 

rotational state with the rotational quantum number J, the projection K onto the symmetry 

axis in the case of a symmetric top, and furthermore on the nuclear spins I of the N nuclei. 

The partition function Z is a normalization factor, which makes ∑𝑁𝑖(𝑣, 𝐽) = 𝑁 (to check 

insert Eq.(20) into Eq. (19)): 

𝑍 = ∑ 𝑔𝑖𝑒
−𝐸𝑖

𝑘𝑘�
𝑖           Eq.(20) 

For anti-Stokes radiation the molecules may have initially some excitation energy, while for 

Stokes radiation the initial state of the molecules may be the vibrational ground state. 

Because of the lower population density in the excited levels, the intensity of the anti-Stokes 

lines is lower by exp(-ħωv/kT ). 

The scattering cross section is:  

𝜎𝑅(𝑠 → 𝑓) = 8𝜋𝜔𝑠
4

9ħ𝜋4
�∑

〈𝛼𝑖𝑖〉𝒆𝑳� 〈𝛼𝑖𝑗〉𝒆𝑺�
𝜔𝑖𝑖−𝜔𝐿−𝑖𝑖𝑖

+
〈𝛼𝑖𝑖〉𝒆𝑳� 〈𝛼𝑖𝑗〉𝒆𝑺�
𝜔𝑖𝑗−𝜔𝐿−𝑖𝑖𝑖𝑖 �

2
   Eq.(21) 

where 𝒆𝑳� and 𝒆𝑺� are unit vectors representing the polarization of the incident laser beam 

and the scattered light. The scattering cross section depends on the matrix element of the 

polarizability tensor and depends on frequency as ω4 analogously to what was derived in 
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the chapter about Rayleigh Theory. The sum extends over all molecular levels j with 

homogeneous width 𝛾𝑖  accessible by single-photon transitions from the initial state i.  

From Eq.(21) it can be seen that the initial and final states are connected by two-

photon transitions, which implies that both states have the same parity. For example, the 

vibrational transitions in homonuclear diatomic molecules, which are forbidden for single-

photon infrared transitions, are accessible to Raman transitions. The matrix elements αij 

depend on the symmetry characteristics of, the molecular states. While the theoretical 

evaluation of the magnitude of  αij demands a knowledge of the corresponding wave 

functions, the question whether αij is zero or not depends on the symmetry properties of the 

molecular wave functions for the states |𝑠⟩ and |𝑓⟩ and can therefore be answered by group 

theory without explicitly calculating the matrix elements. 

The intensity of the Raman lines is proportional to the product of the Raman 

scattering cross section σR, which depends according to Eq. (21) on the matrix elements αij 

of the polarizability tensor and the density Ni of molecules in the initial state. If the cross 

sections σR have been determined elsewhere, the intensity of the Raman lines can be used 

for measurements of the population densities N(v, J ). Assuming a Boltzmann distribution 

Eq.(19) the temperature T of the sample can be derived from measured values of N(v, J ). 

This is frequently used for the determination of unknown temperature profiles in flames or 

of unknown density profiles in liquid or gaseous flows at a known temperature. 

According to Eq.(21) the Raman scattering cross section increases considerably if 

the laser frequency ωL matches a transition frequency ωij of the molecule, and this is called 

the Resonance Raman effect. The enhanced sensitivity of resonant Raman scattering can be 

utilized for measurements of micro-samples or of very small concentrations of molecules in 

solutions, where the absorption of the pump wave is small in spite of resonance with a 

molecular transition. If the frequency difference ωL−ωs corresponds to an electronic 
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transition of the molecule, we speak of Electronic Raman scattering, which gives 

complementary information to electronic-absorption spectroscopy. This is because the 

initial and final states must have the same parity, and therefore a direct dipole-allowed 

electronic transition . |𝑠⟩  |𝑓⟩  is not possible. 

 

2.2.7. Selection Rules 

The basic selection rule is that Raman scattering originates from a change in the 

polarizability of a molecule. This implies that symmetric vibrations will give the most 

intense Raman scattering. On the other hand in infrared absorption a dipole change in the 

molecule implies that asymmetric vibrations will be the most intense.  

In the previous section we obtained an expression for the intensity of Raman scattering, 

but that expression does not show whether the key terms, the αij’s are non-zero for a 

particular vibrational mode.  Group theory allows to predict whether these terms can be 

non-zero, with information about the symmetry of a molecule (crystal). In each case group 

theory predicts whether a transition moment integral can be non-zero. These integrals 

contain the product of three terms – the wavefunctions for the ground and excited states, 

and the operator (in this case the components of the polarizability derivatives) that 

connects these two states. For a transition to occur the product of these three terms must be 

totally symmetric, which means it must leave the original molecule totally unchanged. 

Molecules of high symmetry are needed in both IR and Raman spectroscopy to observe 

vibrational modes.  The best known selection rule is the “Rule of Mutual Exclusion” which 

states that if a molecule has a center of symmetry, vibrations cannot be active in both IR and 

Raman spectroscopy. In general vibrations that do not distort the molecule or symmetric 

vibrations are intense in Raman while those that distort a molecule a lot are most intense in 

IR spectroscopy. If the atoms constituting these vibrations are highly polarizable then the 
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Raman intensity is high. Further there are four main generalizations 51 about intensities of 

Raman spectra: 

• Stretching vibrations associated with chemical bonds should be more intense 

than deformation vibrations 

• Multiple chemical bonds should give rise to intense stretching modes 

• Bonds involving atoms of large atomic mass are expected to give rise to 

stretching vibrations of high Raman intensity. 

• Raman features arising from normal coordinates involving two in-phase bond 

stretching motions are more intense than those involving a 180o phase 

difference. Similarly for cyclic compounds the in-phase breathing mode is 

usually the most intense. 

 

2.2.8. Raman Spectroscopy at Ambient and High Pressures 

Raman spectroscopy is a fantastic technique mainly because it can deliver - very 

quickly - a lot of easily analyzable information. Finger-printing of materials and phases – 

both their composition and their state - can be done thanks to the very sensitive 

discrimination of Raman phonons: lattice and molecular vibrations. The measurement of 

elementary excitations can be used to characterize the related elastic, vibrational, 

electronic, or magnetic structures. Raman activity of phonon modes is directed by 

vibrational selection rules, as a function of their symmetry and the wave vector. Therefore 

vibrational selection rules yield information about crystal structure. Vibrational states give 

access to electronic and magnetic excitations. The electronic and magnetic states can be 

accessed through coupling to vibrational states.   

Changing the pressure variable will influence the spectra of elemental excitation, so 

that Raman spectra can be used to examine the changes in elastic, vibrational, electronic, or 
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magnetic structures in function of pressure. Raman spectroscopy under pressure can be 

used to study phase transformations (including melting), changes in the energy of the 

vibrational excitations (from which we can get mode Grüneisen parameters), magnetic and 

electronic transitions, chemical reactivity. Raman spectroscopy is also very useful to 

measure accurately pressure at very low and very high temperatures. 52 

 

2.3. X-Ray Diffraction 

 

With today’s state of the art high-resolution electron or atomic force microscopes 

atomic structures of crystals can be imaged directly, which could hypothetically render 

obsolete the idea of indirect imaging through diffraction. 53 In reality, however, diffraction 

yields more information regarding an unknown structure or structural parameters, because 

it is optimally sensitive to the periodic nature of the crystal. Diffraction experiments can be 

carried out using X-rays, neutrons for the bulk and electrons and atoms –primarily for the 

surface - all of which have different (elastic or inelastic) interactions with a solid. Diffraction 

can be described quasi-classically since the only quantum mechanical idea is that a beam of 

X-rays or neutrons possesses the wave-particle dual nature. 53 

Diffraction is the constructive and destructive interference of radiation caused by an 

object in the path of the radiation and of size comparable to the wavelength of radiation. 53, 

54, 55 Since the intensity of electromagnetic radiation is proportional to the square of the 

amplitude of the waves, regions of constructive interference appear as having an enhanced 

intensity. The spacing of atoms in a crystal is on the order of one to a few Å, therefore the 

appropriate wavelength to study their structure through diffraction falls in the X-ray region. 

X-rays range from “soft” just above the Carbon K edge to hard X-rays in the 100 keV range. 

These limits, however, are not very well defined and differ slightly depending on the 
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scientific community. 56  The most common X-ray radiation wavelengths used are those of 

CuKα (1.54056 Å) as well as the sub-angstrom wavelengths of synchrotron radiation. The 

depth of penetration of an x-ray beam depends on the solid and on the photon energy but a 

typical depth is about 1 cm.54  

 

2.3.1. Production of X-Rays 

In the laboratory, X-rays are generated by accelerating electrons through a potential 

difference, and bombarding a metal target with these high-energy electrons (~keVs). 57 

Typical anode materials in X-ray tubes are: chromium, iron, cobalt, nickel, copper, 

molybdenum, silver and tungsten. 58 The collision with a metal target decelerates the 

electrons and the difference in energy is emitted as a continuous range of wavelengths, or 

Bremsstrahlung radiation. If some electrons have just the right amount of energy for 

ionization, they will collide and remove an electron from the K-shell of the target metal. The 

thus created vacancy will be immediately filled by an electron from the L or M-shell. (It is 

also possible, but less probable, that the vacancy will be filled with an electron from outside 

of the atom.) As the electron falls into a lower energy shell it will emit the excess energy as 

an X-ray photon called Kα and Kβ radiation, depending on whether it originates from the L- 

or the M-shells, respectively. The radiation will be in the X-ray range because the energy 

difference between the L and K-shells in a high-Z metal is of several thousands of keVs. 57 

Vacancies are also created in higher shells (M, N and up) but the energy differences between 

the levels are much smaller and the emitted radiation appears as part of the continuous 

radiation (Bremsstrahlung).  
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2.3.2. The Bragg Equation 

The foundation of almost all modern crystallography lies in the work of William 

Henry Bragg and his son William Lawrence Bragg which took place in 1913 and brought the 

pair a Nobel prize almost instantly, in 1915. 57 Let’s consider the crystal to be a set of 

parallel lattice planes separated by a distance d, and acting like a mirror for incoming X-

rays. It is then straightforward to derive the condition on the angle between the lattice 

plane and the incident X-rays necessary for constructive interference. 

 

 
Figure 12. Schematic illustrating the principle of Bragg’s law.  
In order for the two waves to be in phase after they reflect from the two parallel planes, the path difference 
between the two waves must be equal to an integer number of wavelengths. 
 

The difference of the length of the path of two X-rays diffracting from two planes separated 

by d must be an entire number of wavelengths λ. The condition on the path difference is 

called the Bragg law (Figure 12) and is: 

 𝒏𝒏 = 𝟐 𝒅 𝒔𝒔𝒏𝒔               

Here n indicated the order of the reflection (or intense beam arising from constructive 

interference). In modern X-ray diffraction n is combined with d and hence the nth order 

reflection is considered as originating from the (nh nk nl) plane.  

θ

θθ
2θ

d

d sin(θ) d sin(θ)
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For a known angle, the d-spacing of a set of planes may be calculated. Once d is known then 

if the reflections can be indexed - that is ascribed (hkl) values - then one can obtain the 

lattice parameters a, b, and c of the unit cell. The key to solving a structure is then indexing. 

53  Once the crystal structure is known, the parameters describing it, such as atom position 

and unit cell dimensions are adjusted (Rietveld refinement) until the calculated pattern 

(from the model of the structure) best matches the experimental pattern. 53 This can often 

be problematic for low symmetry system with a lot of reflections and for cases where there 

is more than one probable structure that differs very little. Finally, the next major step after 

refinement of the structure at ambient pressure is uncovering of possible phase transitions 

and the structural refinement when the pressure variable is introduced in the experiment. 

Such is the procedure followed in the presented work. 

 

2.3.3. Theory of X-Ray Diffraction 

W. L. Bragg’s explanation for the diffracted beams from a periodic crystal structure 

assumed a mirror like behavior of the material. The Bragg equation is beautiful in its 

simplicity however it is convincing only 54 because it reproduces the correct result. Below is 

a more rigorous derivation of the condition of diffraction. 53, 54 

In order to describe diffraction one must start from a few basic assumptions. One 

assumption is that an incoming wave of X-rays, for example, will undergo single scattering 

and thus emit spherical waves from all points of an atom. If the waves are being emitted 

from a sufficiently distant source, they can be considered as plane waves at the site of an 

atom of the considered solid. Also we need to assume coherent scattering – a fixed phase 

between the incoming wave and the scattered spherical waves. Let the scattering center be 

located at a point P and the observation point to be labeled B. The amplitude of X-rays at 

point P can be expressed as:  
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𝑨𝑷 = 𝑨𝒐𝒆𝒔𝒌
��⃗ 𝒐∙�𝑹��⃗ +𝒓�⃗ �−𝒔𝒊𝒊             

After scattering occurs, spherical waves are emitted from the sample and their amplitude 

and phase relative to the incident wave are described by the complex scattering density 

ρ(r). At the detection point B the spherical waves can be therefore expressed as: 

𝑨𝑩(𝒓, 𝒊) = 𝑨𝑷𝝆(𝒓)���⃗   𝒆
𝒔𝒌�𝑹′����⃗ −𝒓�⃗ �

�𝑹′����⃗ −𝒓�⃗ �
             

 And since the vector 𝒌��⃗  is in the direction of 𝑹′���⃗ − 𝒓�⃗   and further R’>>r: 

𝑨𝑩(𝒓, 𝒊) = 𝑨𝑷𝝆(𝒓�⃗ ) 𝒆
𝒔𝒌 ∙ �����⃗ �𝑹′�����⃗ −𝒓�⃗ �

𝑹′
= 𝑨𝒐

𝑹′
𝒆𝒔(𝒌��⃗ 𝒐∙𝑹��⃗ +𝒌��⃗ ∙𝑹′����⃗ )𝒆−𝒔𝒊𝒐𝒊𝝆(𝒓�⃗ )  𝒆𝒔(𝒌𝒐����⃗ −𝒌��⃗ )∙𝒓�⃗    

In order to obtain the total scattering amplitude one must integrate over the entire 

scattering region: 

𝑨𝑩𝒊𝒐𝒊𝒕𝒕(𝒊) ∝ 𝒆−𝒔𝒊𝒐𝒊 ∫𝝆(𝒓�⃗ )  𝒆𝒔(𝒌𝒐����⃗ −𝒌��⃗ )∙𝒓�⃗ 𝒅𝒓�⃗            

Since in diffraction we measure the intensity of the scattered waves and the intensity being 

proportional to the square of the amplitude we have: 

𝑰(𝑲���⃗ ) ∝ �𝑨𝑩𝒊𝒐𝒊𝒕𝒕(𝒊)�
𝟐
∝ �∫𝝆(𝒓�⃗ )  𝒆𝒔(𝒌𝒐����⃗ −𝒌��⃗ )∙𝒓�⃗ 𝒅𝒓�⃗ �

𝟐
              

Where the scattering vector is defined as: 𝑲���⃗ = 𝒌��⃗ − 𝒌��⃗ 𝒐 

2.3.3.1. The Reciprocal Space 

If we consider a crystal, which is a structure with translational symmetry, its electron 

density is periodic, so 𝝆(𝒙) = 𝝆(𝒙 + 𝒏𝒕) where n=0, 1, 2… and a is the lattice parameter (in 

1D). 53, 54 Expanding in a Fourier series we have: 

𝝆(𝒙) = ∑ 𝝆𝒏𝒏 𝒆𝒔�
𝟐𝟐𝒏
𝒕 �𝒙           

In 3D the position 𝒓�⃗  is described by three lattice vectors  

𝒓�⃗ 𝒏 = 𝒏𝟏𝒕��⃗ 𝟏 + 𝒏𝟐𝒕��⃗ 𝟐 + 𝒏𝟑𝒕��⃗ 𝟑         

Then the electron density in 3D is written: 

𝝆(𝒓�⃗ ) = ∑ 𝝆𝑮𝒆𝒔𝑮
��⃗ ∙𝒓�⃗

𝑮��⃗            
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where the vector  𝑮��⃗  is defined with basis vectors and intereger multipliers: 

𝑮��⃗ = 𝒉𝒈��⃗ 𝟏 + 𝒌𝒈��⃗ 𝟐 + 𝒕𝒈��⃗ 𝟑          

In order for electron density to remain a periodic function, we need to impose a set of 

conditions on the vector 𝑮��⃗ : 

𝑮��⃗ ∙ 𝒓�⃗ 𝒏 = 𝟐𝟐𝟐           

For example if n2=n3=0 then (𝒉𝒈��⃗ 𝟏 + 𝒌𝒈��⃗ 𝟐 + 𝒕𝒈��⃗ 𝟑)𝒏𝟏𝒕𝟏����⃗ = 𝟐𝟐𝟐, which can be insured if 

𝒈��⃗ 𝟏 ∙ 𝒕��⃗ 𝟏 = 𝟐𝟐  and 𝒈��⃗ 𝟐 ∙ 𝒕��⃗ 𝟏 = 𝟎 and 𝒈��⃗ 𝟑 ∙ 𝒕��⃗ 𝟏 = 𝟎 which is equivalent to writing: 

𝒈��⃗ 𝒔 ∙ 𝒕��⃗ 𝒋 = 𝟐𝟐𝜹𝒔𝒋          

The three 𝒈��⃗ 𝒔 vectors span the reciprocal space and the three values h, k and l are the 

reciprocals of points where the plane intersects the a, b, and c axis of the unit cell, 

respectively. 

The above equation indicates that, for example, vector 𝒈��⃗ 𝟏 is perpendicular to 𝒕��⃗ 𝟐 and 𝒕��⃗ 𝟑 

(and hence to the plane formed by them), and that its length is 𝟐𝟐/(𝒕 𝒄𝒐𝒔𝒄) where 𝒄 is the 

angle between 𝒈��⃗ 𝟏 and 𝒕��⃗ 𝟏. This can also be expressed by: 

𝒈��⃗ 𝟏 = 𝟐𝟐 𝒕��⃗ 𝟐×𝒕��⃗ 𝟑
𝒕��⃗ 𝟏∙(𝒕��⃗ 𝟐×𝒕��⃗ 𝟑)

          

where the other vectors can be obtained by cyclic permutation. 

2.3.3.2. The Laue condition 

Let’s return to 𝑰(𝑲���⃗ ) ∝ �∫𝝆(𝒓�⃗ )  𝒆𝒔(𝒌𝒐����⃗ −𝒌��⃗ )∙𝒓�⃗ 𝒅𝒓�⃗ �
𝟐

and insert the expression for (𝒓�⃗ ) = ∑ 𝝆𝑮𝒆𝒔𝑮
��⃗ ∙𝒓�⃗

𝑮��⃗  : 

𝑰�𝑲���⃗ � ∝  |𝑨𝒐|𝟐

𝑹′𝟐
�∑ 𝝆𝑮 ∫𝒆𝒔(𝑮

��⃗ −𝑲���⃗ )∙𝒓�⃗
𝑮��⃗ � .       

It can be shown that, in fact, the above sum is negligibly small when 𝑲���⃗  differs significantly 

from 𝑮��⃗ . If the integral was expressed in components then for an infinite volume it would be 

a representation of respective δ-functions. We then have: 

∫𝒆𝒔(𝑮��⃗ −𝑲���⃗ )∙𝒓�⃗ 𝒅𝒓�⃗ = �𝐭𝐭𝐭 𝐬𝐜𝐜𝐭𝐭𝐭𝐜𝐜𝐜𝐜 𝐯𝐯𝐯𝐯𝐯𝐭 𝑽 𝒇𝒐𝒓 𝑮��⃗ = 𝑲���⃗
~𝟎 𝐯𝐭𝐭𝐭𝐜𝐨𝐜𝐬𝐭
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The Laue condition 53, 54 states that scattering from periodic structures will lead to 

diffraction if the difference between the 𝒌��⃗  vectors of scattered and incident wave 

corresponds to 𝑮��⃗  (Figure 13) or:  

𝑮��⃗ = 𝑲���⃗   

Then the intensity that can be measured in a diffraction experiments is: 

𝑰𝐯𝐭𝐜𝐬𝐯𝐜𝐭𝐦�𝑲���⃗ = 𝑮��⃗ � ∝ |𝑨𝒐|𝟐

𝑹′𝟐
�𝝆𝑮��⃗ �

𝟐𝑽𝟐         

The vector G is uniquely defined in the basis 𝒈��⃗ 𝒔 of the reciprocal lattice by its three 

coordinates h, k and l. These indices can also be used to label the diffraction beams or 

reflections since a specific plane has a unique set of coordinates and it gives rise to one 

reflection which appears a peak in the diffraction pattern (Figure 13). 

 

 

Figure 13. Schematic of a reciprocal lattice with (hkl)’s marking some of the reciprocal planes.  
The (reciprocal) c axis points out of the page. The circle represents the Ewald sphere of the reciprocal lattice 
illustrating the Laue condition 𝐆��⃗ =  𝐊��⃗ = �⃗� − �⃗�𝐯. A diffracted beam will be produced whenever a reciprocal 
lattice point coincides with the surface of the sphere. 
 

Let’s consider one lattice plane in a periodic crystal structure: we can label the three 

points where the plane intersects with the coordinate axis as m, n and o and call the 

reciprocals of these numbers h’=1/m, k’=1/n and l’=1/o (Figure 14). In order to avoid 
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dealing with fractions one can multiply h’, k’ and l’ by and integer p and obtain a set of three 

integers: h, k, l which are the coordinates of G. A given 𝑮��⃗ 𝒉𝒌𝒕 is perpendicular to the 

corresponding (hkl) plane (Figure 14).  

 

 
Figure 14. Set of crystal lattice plains in real space.  
The plane in red intersects the axis at (2, 2, ∞) so the plane’s (hkl)’s are 2*(1/2, 1/2, 0) which is (110). All planes 
parallel to this plane are equivalent, because they contain the same density of atoms. 
 

2.3.3.3. The Bragg Equation 

The distance from the origin of the lattice to a (hkl) plane is: 

𝒅𝒉𝒌𝒕′ = 𝒕𝟏
𝒉′
𝐜𝐯𝐬(𝒄) = 𝒕𝟏

𝒉′
�𝒕��⃗ 𝟏∙𝑮

��⃗ 𝒉𝒌𝒕
𝒕𝟏𝑮𝒉𝒌𝒕

� = 𝟏
𝒉′

𝟐𝟐𝒉
𝑮𝒉𝒌𝒕

= 𝟐𝟐
𝑮𝒉𝒌𝒕

𝒉
𝒉′

= 𝟐𝟐
𝑮𝒉𝒌𝒕

𝒑     

The distance to the nearest plane is then: 

𝒅𝒉𝒌𝒕 = 𝒅𝒉𝒌𝒕
′

𝒑
= 𝟐𝟐

𝑮𝒉𝒌𝒕
          

The Laue condition is the condition for scattering so one should be able to obtain the Bragg 

equation from it: 

�𝑮��⃗ � = �𝒌��⃗ − 𝒌��⃗ 𝒐�  

𝑮𝒉𝒌𝒕 = 𝟐𝟐
𝒅𝒉𝒌𝒕

= 𝟐𝒌𝒐𝐬𝐜𝐜 𝒔                      (Eq. 22) 

a1

a2 G

m

n
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𝟐𝟐
𝒅𝒉𝒌𝒕

= 𝟐 𝟐𝟐
𝒏
𝐬𝐜𝐜 𝒔  

𝒏 = 𝟐𝒅𝒉𝒌𝒕𝒔𝒔𝒏𝒔            

In this way we obtain the Bragg equation, 53, 54 which says that the path difference between 

waves scattering from two parallel adjacent planes should be equal to the wavelength (or an 

integer of wavelengths) in order to produce constructive interference and hence a reflection 

(Figure 12). 

2.3.3.4. Atomic scattering factor 

How much of incoming X-rays will be scattered by an atom, that is the intensity of a 

reflection, depends on the electron density or in equation form:  𝑰𝒉𝒌𝒕 ∝ |𝝆𝒉𝒌𝒕|𝟐 where 

(𝒓�⃗ ) = ∑ 𝝆𝑮𝒆𝒔𝑮
��⃗ ∙𝒓�⃗

𝑮��⃗  . The coefficients of the Fourier series of the scattering density are: 

𝝆𝒉𝒌𝒕 = 𝟏
𝑽𝒄
∫ 𝝆(𝒓�⃗ )𝒆−𝒔𝑮��⃗ ∙𝒓�⃗ 𝒅𝒓�⃗.
𝒖𝒏𝒔𝒊
𝒄𝒆𝒕𝒕

         

In an element, the core electrons are concentrated in a small region around the atom 

(except for light elements, which are also ones that are least appropriate for investigation 

by X-rays). In comparison to core electrons, scattering from valence electrons is negligible. 

 
Figure 15. Schematic illustrating the decomposition of the position vector r. 
r is decomposed into three vectors where 𝐜 = �⃗�𝐜 + �⃗�𝛂 + �⃗�′. The box represents a unit cell from a crystal lattice. 
 

rn

rα r’
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So we can consider the total scattering density of a crystal lattice as a sum of scattering 

densities of component atoms. Let 𝒓�⃗ 𝒏 be the origin of the nth unit cell, 𝒓�⃗ 𝜶 be the position of 

of each atom in the unit cell and 𝒓�⃗ ′ be a position vector pointing away from the center of 

each atom (Figure 15) so that 𝒓 = 𝒓�⃗ 𝒏 + 𝒓�⃗ 𝜶 + 𝒓�⃗ ′.  

Then the scattering density of a single atom is: 

𝝆𝒉𝒌𝒕
𝒔𝒔𝒏𝒈𝒕𝒆
𝒕𝒊𝒐𝟐 = 𝟏

𝑽𝒄
∑ 𝒆−𝒔𝑮��⃗ ∙𝒓𝜶����⃗𝜶 ∫ 𝝆𝜶 �𝒓′���⃗ � 𝒆−𝒔𝑮

��⃗ ∙𝒓′���⃗ 𝒅𝒓′���⃗.
𝜶        

where we can define the atomic scattering factor or form factor (De): 

𝒇𝜶 = ∫ 𝝆𝜶 �𝒓′���⃗ � 𝒆−𝒔𝑮
��⃗ ∙𝒓′���⃗ 𝒅𝒓′���⃗.

𝜶            

Switching from Cartesian to polar coordinates: 

𝒇𝜶 = ∫ 𝝆𝜶 �𝒓′���⃗ � 𝒆−𝒔𝑮
��⃗ ∙𝒓′���⃗ 𝒅𝒓′���⃗.

𝜶 = −∭𝝆𝜶(𝒓′)𝒆−𝒔𝑮𝒓′𝒄𝒐𝒔𝒔𝒓′𝟐𝒅 𝒓′ 𝐬𝐜𝐜𝒔𝒅𝒄   

𝒇𝜶 = 𝟒𝟐∫𝝆𝜶(𝒓′)𝒓′𝟐 𝐬𝐜𝐜 (𝑮𝒓′)
𝑮𝒓′

𝒅𝒓′  

Now since the diffraction angle between 𝒌��⃗  and 𝒌��⃗ 𝒐 is 2Θ, the using Eq. 22 we have the final 

definition of atomic scattering factor or form factor: 

𝒇𝜶 = 𝟒𝟐∫𝝆𝜶(𝒓′)𝒓′𝟐
𝐬𝐜𝐜 [𝟒𝟐𝒓′ 𝐬𝐜𝐜�𝜣𝒏�]

𝟒𝟐𝒓′ 𝐬𝐜𝐜�𝜣𝒏�
𝒅𝒓′                      

The maximum of the atomic scattering factor occurs for Θ=0 where the integral becomes 

equal to the scattering density, which in turn is proportional to the total number of 

electrons per atom.  

2.3.3.5. The Structure Factor 

If we consider again all the atoms of a unit cell then we arrive at the definition of the 

structure factor: 

𝑭𝒉𝒌𝒕 = ∑ 𝒇𝜶𝒆−𝒔𝑮
��⃗ 𝒉𝒌𝒕∙𝒓�⃗ 𝜶𝜶           

where the summation is over the atoms in the unit cell (see Figure 15). So finally the 

scattering density is expressed as: 
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𝝆𝒉𝒌𝒕
𝒔𝒔𝒏𝒈𝒕𝒆
𝒕𝒊𝒐𝟐 = 𝑺𝒉𝒌𝒕

𝑽𝒄
           

The intensity of diffraction lines is proportional to the square of the wave amplitude or of 

the structure factor: 

𝑰𝒉𝒌𝒕 ∝  𝑭𝒉𝒌𝒕 ∗ 𝑭𝒉𝒌𝒕             

And if we consider for example that there are two different atoms in the unit cell then we 

have: 

𝑰𝒉𝒌𝒕 ∝  𝑭𝒉𝒌𝒕 ∗ 𝑭𝒉𝒌𝒕 = �𝒇𝟏𝒆−𝒔𝑮
��⃗ 𝒉𝒌𝒕∙𝒓�⃗ 𝟏 + 𝒇𝟐𝒆−𝒔𝑮

��⃗ 𝒉𝒌𝒕∙𝒓�⃗ 𝟐�
∗
�𝒇𝟏𝒆−𝒔𝑮

��⃗ 𝒉𝒌𝒕∙𝒓�⃗ 𝟏 + 𝒇𝟐𝒆−𝒔𝑮
��⃗ 𝒉𝒌𝒕∙𝒓�⃗ 𝟐� =

�𝒇𝟏𝒆+𝒔𝑮
��⃗ 𝒉𝒌𝒕∙𝒓�⃗ 𝟏 + 𝒇𝟐𝒆+𝒔𝑮

��⃗ 𝒉𝒌𝒕∙𝒓�⃗ 𝟐� �𝒇𝟏𝒆−𝒔𝑮
��⃗ 𝒉𝒌𝒕∙𝒓�⃗ 𝟏 + 𝒇𝟐𝒆−𝒔𝑮

��⃗ 𝒉𝒌𝒕∙𝒓�⃗ 𝟐� = 𝒇𝟏𝟐 + 𝒇𝟏𝒇𝟐 �𝒆+𝒔𝑮
��⃗ 𝒉𝒌𝒕∙𝒓�⃗ 𝟏−𝒔𝑮��⃗ 𝒉𝒌𝒕∙𝒓�⃗ 𝟐 +

𝒆+𝒔𝑮��⃗ 𝒉𝒌𝒕∙𝒓�⃗ 𝟐−𝒔𝑮��⃗ 𝒉𝒌𝒕∙𝒓�⃗ 𝟏� + 𝒇𝟐𝟐 = 𝒇𝟏𝟐 + 𝒇𝟐𝟐(𝟐𝐜𝐯𝐬 (𝝓𝒉𝒌𝒕))  

Finally we have a simple expression for the intensity of diffracted X-rays: 

𝑰𝒉𝒌𝒕 ∝  𝑭𝒉𝒌𝒕 ∗ 𝑭𝒉𝒌𝒕 = 𝒇𝟏𝟐 + 𝒇𝟐𝟐 + 𝟐𝒇𝟏𝒇𝟐𝐜𝐯𝐬 (𝝓𝒉𝒌𝒕)      

The intensities of reflections are altered by the presence of other atoms in the cell and this 

can sometimes lead to characteristic extinctions of certain reflections (if two different 

atoms have the same Z and their scattered waves are 180o out of phase).  

In conclusion the Bragg reflections’ positions provide information about the shape and the 

dimensions of the unit cell, whereas the intensities of those reflections yield insight into the 

type of atoms present in the unit cell. 

When it is desired to investigate the structure of a solid on the atomic scale then the 

wavelength used should be at least on the order of the lattice constant. We can only 

measure the intensity of the diffracted radiation, so we do not obtain any information about 

phases. If one could actually measure the amplitude of the scattering radiation, then the 

scattering density could be obtained by inverse Fourier transform of the amplitude. The 

lack of information about phases leads to the necessity of trying out different model 
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structures (and varying their parameters which can be extremely time-intensive) and 

determining which one fits the experimental diffraction pattern best. 

2.3.3.6. Temperature Factor 

The Debye-Waller factor (DWF, after Peter Debye and Ivar Waller) is used to 

describe the attenuation of X-ray scattering (and also neutron) scattering caused by thermal 

motion or quenched disorder. It gives the fraction of elastic scattering. Assuming a solid is a 

classical harmonic oscillator the Debye-Waller factor is given by the exponential factor in 

the expression: 

𝑰(𝒉𝒌𝒕) = 𝑰𝒐𝒆
�−𝟏𝟑〈𝒖

𝟐〉𝑮𝟐� = 𝑰𝒐𝒆
�−𝒌𝑩𝑻𝑮

𝟐

𝑴𝒊𝟐
�        

where  〈𝒖𝟐〉 is the mean square displacement of an atom, M is the mass of the atom, ω is the 

frequency of the oscillator.54 This classical result approximates well experimental data at 

high temperatures. At low temperatures one must use quantum considerations. At T=0, the 

is the mean square displacement 〈𝒖𝟐〉of an atom does not vanish due to zero point motion 

and the scattered intensity is: 

𝑰(𝒉𝒌𝒕) = 𝑰𝒐𝒆
�−ℏ𝑮𝟐

𝟐𝑴𝒊�         

which gives about 90% of elastic scattering when typical numbers are substituted.59  

The Debye-Waller factor was first called the temperature factor because Peter 

Debye (1913) and Ivar Waller (1923) were the first to understand and formulate the effect 

that thermal vibrations would have on the intensity of X-ray scattering. Since then it has 

become obvious that static displacements produce a similar effect on the scattered 

intensities of X-rays therefore the use of the term ‘temperature factor’ is formally 

discouraged, as stated by the 1996 IUCR Commission on Crystallographic Nomenclature.59 

What are the key components of static displacement?  First is the displacement arising from 

atomic vibrations due to motion of molecules or molecular fragments or, in a crystal, due to 
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internal vibrations, such as bond stretching and bending. All of these motions are 

temperature-dependent, unless the temperature is very low. Besides temperature effects 

there are other effective displacements from the mean position which are due to a variety of 

possible types of disorder. Disorder includes small deviations from ideal periodicity, 

present in all real crystals; orientational disorder, present in many molecular crystals; 

density and displacement modulations; and short- and long-range displacive correlations. 

Besides decreasing the intensity of diffraction lines, many types of disorder also give rise to 

diffuse scattering.  

 

2.4. High-Pressure Materials Physics 

 

2.4.1. Overview 

Pressure and temperature are the key parameters in the thermodynamic study of 

materials. Materials at high-pressures are found in nature in oceans (0.1 GPa) and inside the 

Earth (center at 360 GPa) as well as within planets, stars, and the universe. 60 The static 

high-pressure range in nature and in the universe spans about 60 orders of magnitude and 

is hence larger than for any other physical variable. 61 Nowadays, pressures superior to 

those found at the center of the earth can be replicated in the laboratory environment. The 

pressure variable can be applied in a very controlled manner to samples of the order of few 

microns to a few centimeters cubed, by using either a diamond anvil cell or for the latter, a 

large volume press. A wealth of information can be obtained when molecular materials are 

subjected to very high-pressures. In fact, pressure allows for tuning of electronic, magnetic, 

structural and vibrational properties.  Another application in fundamental science is the 

possibility to tune interatomic bonds for the purpose of testing theories.60  



52 
 

In summary, high-pressure research enables a better understanding of structural 

properties of materials, of chemical reactions, and of materials synthesis. Phase transitions, 

phase diagrams and equations of state have been determined for countless systems with the 

use of pressure and temperature combined with in situ X-ray diffraction.62 37, 38, 63, 64, 65, 66, 67, 

68, 69, 70, 71, 72, 73, 74, 75 

 

2.4.2. Diversification of High-Pressure Research 

As the 35th anniversary of high-pressure diffraction took place in 2012, synchrotron 

sources, pressure cells and data acquisition and analysis systems are continuously being 

modified and improved in the search for better, faster and more efficient experiments. 62 

Synchrotron radiation was used for the first time in combination with X-ray diffraction 30 

years ago, in 1977. 76 High-pressure X-ray diffraction studies involving synchrotron 

radiation were first reported in 1977 as well. 76 The key advantages of synchrotron X-rays, 

as applied to high-pressure studies, were the tunable wavelength, improved resolution, low 

noise and excellent statistics.  On the other hand, high-pressure created new constraints due 

to the extremely small sample size and absorption and scattering due to small angular 

range. 

High-pressure techniques have been steadily advancing since the eighties, with 

development accelerating in the past few years. Accompanied by the parallel development 

in new synchrotron techniques (diffraction, spectroscopy, from X-ray to infrared region) all 

these developments allowed high-pressure research to flourish into an interdisciplinary 

tool spanning geosciences, different domains of physics, materials science and even biology.  

High-pressure research has shown an unprecedented wave of growth across 

research areas in the last 20 years.60 The developments that contributed to making high-

pressure the thriving research field it is today, are the evolution of diamond anvil cells and 
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the arrival of 3rd generation synchrotron sources with the parallel advances in synchrotron 

techniques. Today the pressure limit achievable in the laboratory is ~5 Mbars. 

 

2.4.3. The Effect of Pressure on Matter 

What is the effect of pressure 60, 77 on a solid? 8, 12 As interatomic distances are 

reduced under pressure, the material becomes denser. It is then relevant to examine what 

are the mechanisms for increasing the density of a material. As the crystal lattice is reduced 

and atoms are drawn closer, compression acts on the energetics of electrons. The energy of 

electrons is composed of kinetic, coulomb, exchange and correlation contributions. From 

the point of view of density functional theory, the kinetic energy of electrons is proportional 

to electron density to the 5/3 power. Therefore, the kinetic energy increases fast under 

compression. 77 Electrons tend towards states of lower kinetic energy. As a consequence 

intramolecular bonds are destabilized. Already in the 1930s it was postulated that at 

pressures sufficiently high molecular systems will transition to close-packed structures 

before, or in concert with, the formation of a fully metallic phase (“metallic or valence 

states”) 78 and ultimately form a plasma in which the chemical description of bonding does 

not hold anymore. In fact, as atoms are brought together, changes in hybridization occur, 

because of covalent interactions. On compression it is possible for different types of bonds 

(van der Waals, ionic, covalent, metallic and hydrogen) to compete among each other.  

Since it is possible to achieve, in the laboratory, pressures high enough to reduce the 

unit cell volume by more than a factor of 2, the resulting changes in inter-atomic bonding 

can be immense and hence the properties of high-pressure phases can differ greatly from 

the ambient pressure and temperature phase. 60 As a result of compression the atomic 

arrangement can suddenly change. As the Gibbs free energy of different arrangements of 

atoms varies under pressure, it may become more energetically favorable for the material 
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to change this arrangement in which case a solid-solid phase transition occurs. This change 

in atomic arrangement can either be discontinuous or continuous and accompanied by a 

change in crystal symmetry.  

Under high-pressures some materials adopt high-symmetry structures of increasing 

coordination number. However, some materials can first transition into lower symmetry 

structures at intermediate pressures and only at higher pressures they transform into 

higher-symmetry structures.  

So what is the bottom line result of compression? Unexpected, intermediate states 

can be formed at high-pressures as molecular bonds evolve before being annihilated. 

Pressure can induce auto-ionization as well as molecular bonding. New materials can be 

produced by chemical reactions or mechanisms very different from those at ambient 

conditions and their kinetics maybe either accelerated or slowed down depending on the 

activation volume. High-pressures can lead to materials with technological implications 

such as super hard materials, nonlinear optical materials or high temperature 

superconductors. Pressure can also induce loss of long-range order or material 

amorphization, where glassy materials can be obtained below their regular glass transition 

temperature. 77 

 

2.4.4. The Diamond Anvil Cell 

The reliable and controlled replication of high-pressures in the laboratory begins 

with “the Bridgman” era as referred to by Jayaraman. 79  From 1910 to 1950 P.W. Bridgman 

invented and developed the Bridgman anvil and the piston cylinder device for electrical 

resistance and compressibility measurements (up to 100 kbar = 10 GPa). The diamond anvil 

cell (DAC) was first developed by Jamieson, Lawson, and Nachtrieb 80 and Weir et al. 81 The 

principle of operation of any high-pressure device is based on the fact that a large force F 
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applied to a small area A generates a large pressure p=F/A (Figure 16). The smaller the 

area, the large will be the pressure created on the sample. The limit is the deformation and 

eventual fracture of the diamond under very high loads. Diamond is ideal for high-pressure 

applications because it combines the highest bulk modulus and hardness among all known 

materials. 

 

Figure 16. Schematic of the inside of a diamond anvil cell (DAC).  
Typical sizes are: 1/3 carat for the diamond with a culet of ~300 μm; the sample chamber is usually 100 μm or 
less. 

 

In the DAC, a small amount of material is placed between the flat faces or culets of 

two brilliant-cut diamonds.82, 83 The culets are separated by a thin metallic foil which serves 

as gasket. An initial compression of the gasket creates a indentation in the foil and in the 

middle of the indentation a micron-size hole is drilled. This hole constitutes the sample 

chamber, where the desired sample is placed together with a pressure standard as well as a 

pressurizing fluid medium to insure (quasi-) hydrostaticity and homogeneous conditions. 

The diamond culets can have dimensions between 100 µm and 1000 µm, the metallic gasket 

has a thickness between 300 µm and as little as 100 µm (in the case of X-ray Raman) with 

the indented area being anywhere between 80 to 30 µm. The ideally circular hole centered 

in the indentation can have a diameter between 50 and 200 µm. Exact dimensions will 

depend on the diamond culets, type of experiment and target pressure. Due to the small 
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dimensions involved, as well as the need for perfect centering of various elements and high 

precision, all manipulations are carried out under a high-magnification optical microscope. 

The chief reason for using diamonds, besides their exceptional hardness, is also their wide 

window of transparency, between the near ultraviolet (~5.5 eV) up to hard X-rays (>10 

keV), which allows for a multitude of scattering and diffraction techniques. Diamond anvil 

cells have been the key limiting factor in high-pressure research, in terms of optical access 

and signal exit (through diamonds, through the gasket material), extent of attainable 

pressure, and integration with various experimental techniques. 

 

2.4.5. Measuring Pressure in a Diamond Anvil Cell 

Static pressure P is the force excreted per unit area. The force applied on a DAC is 

transmitted to the sample in a very complex way (especially above 10 GPa) due to the 

friction and deformation of the materials of the cell, so the generated pressure depends not 

only on the force but also on the mechanical properties of the materials.82, 83 In that case 

instead of modeling how pressure is transmitted to the sample chamber, it is much more 

practical to use transferable pressure scales. Here pressure measurements are based on the 

equation of state (P(V) isotherms) reference materials. 

Primary pressure scales are based on materials such as Au, Pt, Ag, Cu or NaCl, for 

which the equations of state, which were established from a combination of ultrasonic data 

and shock-wave experiments, show a good degree of consistency. In a typical X-ray 

diffraction compression experiment the lattice parameters of a primary pressure scale are 

accurately measured and the pressure is obtained through the corresponding equation of 

state.  

Another possibility is the use of a secondary scale, calibrated against a primary 

pressure scale, and which may be easier to use in a high-pressure experiment. In fact, at 
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very high-pressure, the accurate determination of the lattice parameters of a reference 

material becomes difficult. One such secondary scales is the very popular ruby (Al2O3:Cr3+) 

scale, which has a fluorescence line (R1) which shifts with pressure almost linearly up to 10  

GPa, with dp/dλ=0.2746 GPa Å-1, and with a small deviation at higher pressures, according 

to the empirical equation 84 : 

𝑃(𝐺𝑃𝑐) = 1904
𝐵
��1 + ∆𝜆

𝜆𝑜
�
𝐵
− 1�       

where B=7.665 for quasi-hydrostatic conditions and B=5.0 for non-hydrostatic conditions. 

The R1 fluorescence line is also dependent on temperature with dλ/dT=0.068 Å K-1, so that 

an increase in temperature of 10 K corresponds to an increase in pressure of 0.187 GPa 

0.2 GPa. 

(0.2746 GPa Å-1) * (0.068 Å K-1) * (10 K) = 0.187 GPa 

In most of the presented studies in the experimental part of this Dissertation both a primary 

and a secondary pressure scale was used. 

 

2.5. Synchrotron X-ray Diffraction  

 

2.5.1. History of Synchrotrons 

Synchrotron radiation got off to a “poor” start at electron accelerators where it was 

seen as a nuisance since it represented loss of energy. 56, 85 Materials scientists, who saw 

potential in synchrotron radiation, were allowed by particle physicists to sometimes tap 

into radiation that went lost otherwise and operate beam ports in “parasitic” mode. The 

first generation synchrotrons were born. From nuisance synchrotron radiation evolved to 

one of the most powerful tools for the study of matter. The next evolutionary step was the 

construction of what became known as the second generation synchrotron sources, of the 
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1980s. These were properly dedicated facilities and not merely attachments to particle 

accelerators. The second generation synchrotron sources were composed of two straight 

sections with a wiggler or an undulator and connected by two semi-circular ends with 

bending magnets.56, 85 Third generations sources, such as the Advanced Photon Source 

Argonne national Laboratory (Argonne, IL, USA), were built in the 1990s. They are 

composed of many straight sections connected in to a polygon and optimized to supply very 

bright radiation from far UV to hard X-rays depending on the synchrotron.  

 

2.5.2. Bending Magnets, Undulators, Wigglers 

Synchrotron radiation goes from far infrared to hard X-rays. Highly parallel 

radiation originates from a very small source (0.01-0.1 mm). It is linearly polarized in the 

plane of the electron orbit and elliptically polarized above and below the plane.  

Accelerated charged particles emit radiation in the well-known sine squared 

angular pattern of dipole radiation. The synchrotron makes use of the fact that centripetal 

acceleration of charged particles causes transverse emission of electromagnetic radiation in 

the tangential direction of the ring where electrons circulate (due to an applied magnetic 

field). If, in addition the particles travel at relativistic speeds, the radiation is emitted in a 

narrow cone, tangent to the path and in the forward direction, mimicking a sweeping 

searchlight or a train on a circular track. 56, 86  

In a third generation synchrotron source the circular motion of a tightly confined 

beam of relativistic electrons is insured by bending magnets. End-stations that follow only a 

bending magnet are characterized by wide spectrum of radiation sometimes referred to as a 

synchrotron light bulb. Undulators can be found between two bending magnets and they 

are periodic magnetic structures with a large number of cycles (ex: 100). The relatively 

weak magnetic field of undulators causes the electrons to have a small harmonic oscillation 
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which is also called undulation. The electrons experience additional acceleration in a 

direction which is perpendicular to their circular motion. Due to the fact that the amplitude 

of oscillation is small the resultant radiation cone is narrow. Also since the original electron 

beam was already tightly confined, the end result is highly directional radiation with small 

angular divergence, small cross-section and narrow spectral width. The undulator radiation 

is quasi-monochromatic and approximates many of the desired properties of an X-ray laser. 

Wigglers are also periodic magnetic structures that can be found between two bending 

magnets, but with fewer periods than undulators and with a much stronger magnetic field.  

Here the amplitude of oscillation is larger, and as the electron is jolted up and down, the 

resultant radiation cone is wider in space and angle. Stronger magnetic field also translates 

into larger radiated power. As a result the radiation from a wiggler has a wide spectrum 

much like for a bending magnet, but the spectrum is shifted towards higher energies and 

the photon flux is larger.56, 86  

Synchrotron radiation is the best tool for the study matter enclosed in a high-

pressure cell. Synchrotron radiation is characterized by a very penetrating high-energy 

beam. High-brilliance and low-emittance of the beam permit to focus it down to micron 

sized spots, which are ideal when the sample chamber is itself a few tens of microns in 

diameter. The brilliance of X-rays at a third generation synchrotron source also reduces the 

data collection time down to a few minutes or a few seconds depending on the beamline 

versus hours or more for a standard X-ray diffractometer. 56, 86  

 

2.5.3. The Advanced Photon Source at Argonne National 

Laboratory 

There exists today only about a dozen synchrotron facilities in the world that 

possess high-pressure-dedicated beamlines: APS (US), ESFR (FR), Spring-8 (JP), Soleil (FR), 
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NSLS (US), ALS (US), BSRL (China), HasyLab (DE), DESY-PETRAIII (DE), CHESS (US), KEK-

PF (JP), SERC (UK), ELETTRA (IT), Australia, Korea). The portion of experimental work 

related to high-pressure x-ray diffraction presented in this work was carried out at the U.S. 

Department of Energy’s Advanced Photon Source of Argonne National Laboratory (Figure 

17). Electrons are first emitted from a cathode ray tube and accelerated by high-voltage 

alternating electric fields in a linear accelerator. Selective phasing of the electric field 

accelerates the electrons to 450 MeV. At 450 MeV, (>99.999% of the speed of light). 

 

 

Figure 17. Aerial view of the Advanced Photon Source (APS). 
The APS is a third generation synchrotron, at Argonne National Laboratory in Argonne (Chicago), IL, and it is the 
brightest source of radiation in the northern hemisphere. 87 

 

Electrons are injected into the booster synchrotron (a ring of electromagnets), and 

accelerated from 450 MeV to 7 GeV in one-half second (>99.999999% of the speed of 

light).87 The accelerating force is supplied by electrical fields in four radio frequency 

cavities. 

In order to maintain the orbital path of the electrons, bending and focusing magnets 

increase the electron field strength in synchronization with the radio frequency field. The 7-

GeV electrons are injected into the 1,104-m (3,622 ft or ~0.7 mi) circumference storage 

ring, a circle of more than 1,000 electromagnets and associated equipment, located in a 
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concrete enclosure inside the experimental hall. A powerful electromagnetic field focuses 

the electrons into a narrow beam that is bent on a circular path as it orbits within 

aluminum-alloy vacuum chambers running through the centers of the electromagnets.87   

There are 40 straight sections, or sectors, in the storage ring of this 3rd generation 

synchrotron. Five sectors are used for beam injection and radio frequency equipment. The 

remaining 35 are equipped with insertion devices. Each sector has a least 2 beamlines 

which extend up to 75 meters from ring across the experimental hall floor. One of the 

beamlines begins at a bending magnet. The other beamline begins at an insertion device 

(undulator or wiggler).  

The work described in the experimental part of this Thesis was carried out at sector 

16, the High-pressure Collaborative Access Team (HPCAT). HPCAT is a sector dedicated to 

high-pressure research and it has three BM (BMA, BMB, BMD) and two ID operational 

beamlines (IDB, IDD) as well as one ID beamline under construction (ID-E). The 

maintenance and operations costs for an 8-hour shift at a beamline amount to ~$10K. The 

annual budget of the APS is of about $2 billion. That is why experimental time (or 

beamtime) is very valuable and experiments need to be carefully designed to make the most 

of the allotted time. Hence the time variable has a crucial influence in the already 

challenging aspects of a high-pressure experiment.  
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CHAPTER 3 – EXPERIMENTAL 

 

3.1. Samples 

 

3.1.1. Alumino-Silicate Mullite and Sillimanite 

Mullite with composition of 75.2 wt.% Al2O3, 24.5 wt.% SiO2  (designated as 2:1-

mullite) is a commercial product (Duramul, Washington Mills Electro Minerals Ltd, UK). The 

material was produced by electric arc furnace fusion above 2000oC of Bayer processed 

Al2O3 and high purity SiO2, and cool-down to room temperature. The starting materials 

contained ~0.20 wt.% Na2O and minor traces of TiO2, Fe2O3, K2O, CaO and MgO. Mullite with 

a composition of 72.0 wt.% Al2O3 and 28.0 wt.% SiO2 (designated as 3:2-mullite) was 

synthesized from aluminum sec-butoxide (C12H27AlO3) and tetraethyloxysilane Si(OC2H5)4. 

The starting materials were diluted in isopropanol, homogenized and heat-treated at 

1600°C for 2 h. Sillimanite was provided by CSIRO (Melbourne, Australia) and originates 

from Australia. According to visual inspection, the XRD-derived lattice parameters, its white 

color and its fibrous character, it has a composition of ideal sillimanite.  

 

3.1.2. Boron Mullites 

The samples of 7:4 mullite and of the alumino-silicate mullite with 3.5(4) mol% B2O3 

were synthesized by the sol-gel procedure and follow the nitrate decomposition method 

using aluminum-nitrate nonahydrate, tetraethoxysilane and boric acid as reactants. The 

chemicals were dissolved in pure ethanol and heated at 60°C in a water bath to form 

transparent sols followed by gelation at 60°C and subsequent drying at 150°C. The resulting 
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yellowish, spongy glass was ground and calcined at 350°C with subsequent mullitization in 

corundum crucibles at 1200°C. For more details refer to Lührs.29 

 

3.1.3. PbAlBO4, PbFeBO4 and PbMnBO4 Mullites 

Polycrystalline PbFeBO4 was prepared by the glycerin method.88 More details can be 

found in the reference. Stoichiometric amounts of Pb(NO3)2, Fe(NO3)2•6H2O with 5% excess 

of B(OH)3 were mixed with 10 wt.% of glycerin. The mixture was stirred at 353 K till it 

solidified upon release of NOx. It was dried at 473 K for 2 hours followed by mixing in an 

agate mortar and then heated at 973 K in a corundum crucible for 24 h. For more details 

refer to Gesing et al. 88 

 

3.2. Raman Spectroscopy at Ambient and High Pressure 

 

The pressure-dependent Raman spectra were measured in a backscattering 

configuration with a Horiba Jobin-Yvon T64000 triple-grating confocal Raman spectrometer 

using micro-mode. The 514.532 nm line of a Spectra Physics Stabilite 2018 Ar-Kr laser was 

used for sample excitation less than 10 mW power at the sample to avoid burning. A liquid 

nitrogen cooled CCD detector (Symphony, 2048 x 512 pixels) was used for recording the 

spectra. The incoming and scattered light was focused and collected with an Olympus 

microscope objective (20× LWD), leading to a theoretical 1.7 μm diameter focal spot and a 

length of the focal region of a few μm. Raman spectra were collected in the range between 

10 cm-1 and 1500 cm-1 with a spectral resolution of approximately 1 cm-1, using three 

gratings of 1800 grooves/mm working in Subtractive Mode. Signal integration times were 

20 – 600s, with multiple acquisitions per pressure point, and with longer acquisition times 

for increasing pressure measurements.  
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Figure 18. Overview of the experimental Raman setup at FAME-Tech Labs, UNLV.  
The setup was used for the presented in situ high-pressure Raman spectroscopy experiments. 
 

 
Figure 19. Sketch of the optical setup of the experimental Raman at FAME-Tech Labs, UNLV.  
The sketch shows the optical path and various optical elements used for in situ high-pressure Raman 
spectroscopy experiments. The triple spectrometer contains three gratings used in tandem in the pre-
monochromator and spectrometer. 
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Band positions, determined from peak fitting are accurate to ±4 cm-1 for broad/overlapped 

bands and ±1 cm-1 for the sharper bands. Micro grains of the sample were compressed in a 

symmetric type diamond anvil cell (DAC), in numerous pressure steps at ambient 

temperature. 

 

3.2.1. Alumino-Silicate Mullites and Sillimanite  

The 514.532 nm line of a Spectra Physics Stabilite 2018 Ar-Kr laser was used for 

sample excitation. Micro grains of sample were compressed in a symmetric type diamond 

anvil cell (DAC), from ambient pressure up to 33 GPa for 2:1 mullite and from ambient 

pressure up to 25.5 for sillimanite, in several pressure steps at ambient temperature. A 

Rhenium gasket was pre-indented to a thickness of ~50 μm using diamonds with 250 μm 

diameter culets. The sample chamber consisted of a 90 μm diameter hole, drilled in the pre-

indented rhenium gasket. To ensure quasi-hydrostatic pressure conditions, compression 

was carried out with Ne as pressure transmitting medium, which was loaded into the 

sample chamber at about 138 MPa (20,000 psi), using the gas loading setup of Sector 13 of 

APS, ANL.89. For accurate pressure readings during compression ruby microspheres were 

placed in the sample chamber and used to measure pressure using the Mao pressure scale. 

90 A second method for pressure determination was based on the shift of the high-frequency 

edge of the Raman band of diamond, which corresponds to the Raman shift of the anvil culet 

due to the normal stress.91 The interval between a pressure increase and the measurement 

of spectra was kept at several minutes allowing for the pressure inside the sample chamber 

to equilibrate. Spectra were decomposed into individual Lorentzian or mixed Gaussian-

Lorentzian bands using LabSpec 5.78.24 software (Jobin-Yvon Horiba). 
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3.2.2. PbAlBO4 Mullite 

The 514.532 nm line of a Spectra Physics Stabilite 2018 Ar-Kr laser was used for 

sample excitation. Micro grains of the sample were compressed in a symmetric type 

diamond anvil cell (DAC), from ambient pressure up to 88 GPa in several pressure steps at 

ambient temperature. A Rhenium gasket was pre-indented to a thickness of ~50 μm using 

diamonds with 250 μm diameter culets. The sample chamber consisted of a 90 μm diameter 

hole, drilled in the pre-indented rhenium gasket. To ensure quasi-hydrostatic pressure 

conditions, compression was carried out with Ne as pressure transmitting medium, which 

was loaded into the sample chamber at about 138 MPa (20,000 psi), using the gas loading 

setup of Sector 13 of APS, ANL.89. For accurate pressure readings during compression ruby 

microspheres were placed in the sample chamber and used to measure pressure using the 

Mao pressure scale. 90 A second method for pressure determination was based on the shift 

of the high-frequency edge of the Raman band of diamond, which corresponds to the Raman 

shift of the anvil culet due to the normal stress.91 The interval between a pressure increase 

and the measurement of spectra was kept at several minutes allowing for the pressure 

inside the sample chamber to equilibrate. Spectra were decomposed into individual 

Lorentzian or mixed Gaussian-Lorentzian bands using LabSpec 5.78.24 software (Jobin-

Yvon Horiba). 

 

3.2.3. PbFeBO4 Mullite 

The 514.532 nm line of a Spectra Physics Stabilite 2018 Ar-Kr laser was used for 

sample excitation with less than 10 mW power at the sample to avoid burning.. Micro grains 

of the sample were compressed in a symmetric type diamond anvil cell (DAC), from ambient 

pressure up to 20.4 GPa in several pressure steps at ambient temperature. A Rhenium 

gasket was pre-indented to a thickness of ~50 μm using diamonds with 250 μm diameter 
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culets. The sample chamber consisted of a 90 μm diameter hole, drilled in the preindented 

rhenium gasket. To ensure quasi-hydrostatic pressure conditions, compression was carried 

out with a 4:1 methanol-ethanol mixture. For accurate pressure readings during 

compression ruby microspheres were placed in the sample chamber and used to measure 

pressure using the Mao pressure scale. 90 A second method for pressure determination was 

based on the shift of the high-frequency edge of the Raman band of diamond, which 

corresponds to the Raman shift of the anvil culet due to the normal stress.91 The interval 

between a pressure increase and the measurement of spectra was kept at several minutes 

allowing for the pressure inside the sample chamber to equilibrate. Spectra were 

decomposed into individual Lorentzian or mixed Gaussian-Lorentzian bands using LabSpec 

5.78.24 software (Jobin-Yvon Horiba). 

 

3.3. High Pressure XRD at the Advanced Photon Source, 

Argonne National Laboratory  

 

3.3.1. Experimental Conditions 

All high-pressure, in situ, angle-dispersive synchrotron X-ray diffraction (ADXRD) 

measurements were performed at the 16-IDB beamline of the High Pressure Collaborative 

Access Team (HPCAT), Advanced Photon Source (APS), Argonne National Laboratory (ANL). 

For the geometry of the experimental setup see Figure 20. A monochromatic X-ray beam, 

with a wavelength λ=0.3-0.4Å (depending on the experimental run) was focused down to a 

~7 x 5 μm2 spot using Kirkpatrick-Baez 200 mm mirrors. Diffraction images were recorded 

with a MAR345 imaging plate and were integrated and corrected for distortion using the 

FIT2D software. 92, 93 Any overexposed spots on the image plate, due to sample texture, were 
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masked, and hence excluded, prior to image integration. The acquisition time was between 

30s  and 5 min (depending on the specific sample). The sample-detector distance and 

geometric parameters were calibrated at the beginning of each high pressure run, using a 

CeO2 standard reference material from the National Institute of Standards and Technology. 

 

 
Figure 20. Setup for in-situ high-pressure synchrotron x-ray diffraction experiments in a DAC.  
The schematic is not to scale. The synchrotron x-ray beam – focused down to a few microns – enters the DAC 
and, after passing through one diamond anvil, reaches the sample chamber. The x-rays diffract on the sample 
and Debye diffraction rings are intercepted by an imaging plate. The 3-dimensional Debye rings are integrated 
to yield a 2-dimensional diffraction pattern.  

 

The samples consisting of very fine powders were compressed in a symmetric type 

diamond anvil cell (DAC). Rhenium gaskets were pre-indented to a thickness of ~40 μm, 

using diamonds with 250 or 300 μm diameter culets (depending on the specific sample). A 

90-130 μm diameter hole (depending on the compressibility of pressure media), was drilled 

by electrical discharge machining in the pre-indented rhenium gasket and served as the 
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sample chamber. For accurate pressure determination during compression experiments, 

fragments of gold foil were mixed-in with the samples and used to measure pressure using 

the equation of state of gold by Anderson et al.94 For the gas loading procedure, a ruby 

microsphere was placed in the sample chamber and used to measure pressure using the 

pressure scale of Mao.90 All compression runs were carried out with either Ne or He as a 

quasi-hydrostatic pressure transmitting medium,95 which was loaded into the sample 

chamber at about 138 MPa (20,000 psi), using the gas loading setup of Sector 13 of APS, 

ANL.89 All diffraction patterns were collected at ambient temperature. The time interval 

between a pressure increase and the subsequent X-ray measurement was kept at several 

minutes, especially at lower pressures, in order to allow for the pressure inside the sample 

chamber to stabilize. Pressure increase was controlled remotely using a motorized 

mechanical pressure control device. The Topas 4.2 program 96 was used to index diffraction 

patterns and to perform Rietveld full-profile structural refinements. The Diamond 3.2 

program 97 was used to draw and examine crystal structures.  

 

3.3.2. Alumino-Silicate Mullite and Sillimanite 

The structural stability of 2:1-mullite, 3:2-mullite and sillimanite was investigated in 

separate compression runs, up to 40.8 GPa, 27.3 GPa and 44.6 GPa, respectively. High-

pressure, in situ, angle dispersive, synchrotron X-ray diffraction measurements were 

performed at the 16-IDB beamline of the High Pressure Collaborative Access Team, 

Advanced Photon Source, Argonne National Laboratory (see section 3.3.1). The 

monochromatic X-ray beam, had a wavelength λ = 0.398039 Å, λ = 0.398160 Å or λ = 

0.407530 Å (depending on the day of the experimental run). To insure quasi-hydrostatic 

pressure conditions, all compression runs were carried out with either Ne (2:1-mullite) or 

He (3:2-mullite and sillimanite) as a quasi-hydrostatic pressure transmitting medium, 98, 99 
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(gas loading setup of Sector 13, APS, ANL89). The number of pressure points analyzed for 

each sample was: 24 for 2:1-mullite, 27 for 3:2-mullite and 21 for sillimanite.  

 

3.3.3. Boron Mullite 

The structural stability of 7:4 mullite and B-mullite was investigated in separate 

compression runs, up to 28.2, and 28.8 GPa, respectively.  High-pressure in situ angle-

dispersive synchrotron X-ray diffraction measurements were performed at the 16-IDB 

beamline of the High Pressure Collaborative Access Team, Advanced Photon Source, 

Argonne National Laboratory (see section 3.3.1). The monochromatic X-ray beam, had a 

wavelength λ= 0.373790Å. The number of pressure points acquired and analyzed for each 

sample was: 20 for 7:4 mullite and 29 for B-mullite. All compression runs were carried out 

with Ne as a quasi-hydrostatic pressure transmitting medium,95 (gas loading setup of Sector 

13, APS, ANL89). The monochromatic X-ray beam, had a wavelength λ = 0.398160 Å,  λ = 

0.398137 Å or λ = 0.398175 Å (depending on the day of the experimental run).  

 

3.3.4. PbMBO4 Mullites 

The structural stability of PbMBO4 was investigated in separate compression runs, 

up to 71.7 GPa (PbFeBO4), and 111.8 GPa (PbAlBO4). High-pressure, in situ, angle dispersive, 

synchrotron X-ray diffraction measurements were performed at the 16-IDB beamline of the 

High Pressure Collaborative Access Team, Advanced Photon Source, Argonne National 

Laboratory (see section 3.3.1). All patterns were collected between 21oC and 23oC. All 

compression runs were carried out with Ne or He as a quasi-hydrostatic pressure 

transmitting medium 95 (gas loading setup of Sector 13, APS, ANL89). 
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3.3.5. Ambient Pressure X-ray Diffraction  

Conventional angle dispersive X-ray diffraction patterns were collected in Θ-2Θ 

Bragg-Brentano geometry, using a D8 Advance Bruker X-ray diffractometer with CuKα 

radiation and a LynxEye point detector. The sample was placed in low background Si 

sample holder. The patterns were recorded with step size of 0.008o 2Θ in the range 10 o to 

120o 2Θ and variable time per step. A very fine powder of Si standard reference material 

was mixed with the samples to calibrate the instrument parameters during Rietveld 

refinements.  
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CHAPTER 4 – RESULTS AND DISCUSSION 

 

4.1. Crystal Structure of Crystal Structures of Mullites 

 

4.1.1. Crystal Structure of Alumino-Silicate Mullite 

The chemical composition of the mullite samples was verified by using the well-

known linear relationship between the a-lattice parameter and the molar Al2O3 content of 

the Al4+2xSi2-2xO10-x phases. 100 The mullite sample with a = 7.58154 (6) Å, was determined to 

have a chemical composition of 65.3 mol% Al2O3 which corresponds to that of 2:1-mullite 

with x = 0.4 (designated as 2:1-mullite). The mullite sample with a = 7.55707(6) Å, was 

determined to have a chemical composition of 61.6 mol% Al2O3 which corresponds to that 

of 3:2-mullite with x = 0.25 (designated as 3:2-mullite). According to its cell dimensions (a = 

7.4840 (2) Å) and its white color, sillimanite is near the ideal composition Al2O3 ·SiO2.  

At ambient pressure and temperature all the phases of the Al4+2xSi2-2xO10-x system 

studied in this work all have an orthorhombic crystal lattice: mullite crystallizes in the space 

group Pbam (55) whereas sillimanite crystallizes in the space group Pbnm (62). The crystal 

structures of mullite-type alumino-silicates of Al4+2xSi2-2xO10-x composition may best be 

described by means of sillimanite. The key features of the crystal structure of sillimanite 

(Figure 21a) are edge-sharing octahedral AlO6 chains, forming single Zweier chains, 101  

running parallel to the c-axis. 1, 102 These octahedral chains are linked by double chains of 

corner-sharing MO4 tetrahedra (also parallel c), with an ordered distribution of the 

tetrahedral cations Al3+ and Si4+. Perpendicular to the c-axis the situation is different, with a 

sequence of AlO6 octahedra and AlO4 and SiO4 tetrahedra occurring parallel to the a- and b-

axis (Figure 21a). The average structure of mullite can be derived from the closely related, 
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but structurally more simple sillimanite by the coupled substitution Si4+tet + O2- = 2Al3+tet + 

vacancy � (where tet = tetrahedral) and simultaneous Al3+ and Si4+ disordering over the 

tetrahedral sites (Figure 21b). The “fictitious” reaction involves removal of oxygens 

bridging two adjacent tetrahedra in the sillimanite structure (O(C) oxygen atoms) and the 

formation of oxygen vacancies (this being needed to maintain the overall charge neutrality), 

with the number of vacancies corresponding to the x-value of the general formula of the 

mullite-type alumino silicates Al4+2xSi2-2xO10-x. 

 

 
Figure 21. Comparison of the structures of sillimanite (a) and of mullite (b).  
In order to illustrate oxygen vacancies, while maintaining the same number of octahedral units along the c-axis, 
eight unit cells are displayed. Crystal structures were drawn with Diamond 3.2 software. 97 
 

The formation of vacancies causes associated tetrahedral sites T to be displaced to positions 

designated as T*, and the formerly bridging O(C) oxygen atoms become threefold 
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coordinated and form T3O groups (the so-called tetrahedral triclusters, T* according to 

literature is favorably Al, see Figure 21). The excess positive charge in mullite produced by 

the formation of oxygen vacancies is compensated by substitution of Si4+ by Al3+.  

The mullite-type Al4+2xSi2-2xO10-x phases investigated in this study differ in the 

amount of oxygen vacancies in going from 2:1-mullite (x = 0.4, or 0.4 oxygen vacancies per 

unit cell), to 3:2-mullite (x = 0.25 or 0.25 oxygen vacancies per unit cell) and to sillimanite (x 

= 0, no vacancy). The main motivation of this portion of the present study was to 

understand the role of oxygen vacancies on the high-pressure behavior and structural 

integrity of the mullite-type alumino silicates. 

 

4.1.2. Crystal Structure of Boron Mullite 

At ambient pressure and temperature the 7:4 mullite and B-mullite systems studied 

in this work have an orthorhombic crystal lattice and crystallize in the same space group as 

conventional mullite (Pbam (55)). The crystal structures of mullite-type alumino–silicates 

of Al4+2xSi2-2xO10-x composition were described in section 4.1.1 above. 

Another Al4+2xSi2-2xO10-x mullite-type phase investigated in this study is the 7:4 

mullite (Al4.66Si1.33O9.66) with x=0.333 (or about one oxygen vacancy per three unit cells). Its 

high pressure behavior was compared to that of an alumino-silicate mullite with 3.5(4) 

mol% B2O3, where B substitutes some of the Si atoms. 29 The boron-substituted mullite is 

hereafter referred to as B-mullite. The SiB substitution leads to formation of additional 

oxygen vacancies, according to the coupled substitution 2Si4+ + O2-  2B3+ +  , as well as to 

formation of BO3 triangles connecting the octahedral AlO6 chains (Figure 22). 29 The goal of 

this portion of the present study was the investigation of the structural behavior and phase 

stability of 7:4 mullite in comparison to B-mullite, including a possible description of 
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pressure-induced structural rearrangements at the atomic scale, and the role of oxygen 

vacancies, upon compression and decompression. 

 

 

 

Figure 22. Ambient pressure crystal structures of mullite 103 and B-substituted mullite. 29  
The schematic substitution mechanisms are shown. Tetrahedral triclusters are found near T* sites, while oxygen 
vacancies are indicated by [ ]. Crystal structures were drawn with Diamond 3.2 software. 97 
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Additionally, the thermal behavior of various B-mullites mullite was recently reported. 29 

The thermal expansion, along with the volume compression in response to the applied 

pressure, allows to provide, given some assumptions, a P–T–V Equation-of-State for B-

mullite. 

 

4.1.3. Crystal Structure of PbMBO4 Synthetic Mullites 

The crystal structure of mullite-type PbAlBO4, PbFeBO4 and PbMnBO4 has been 

known since Park et al. 36 who described it in space group Pnma. The PbMBO4 (M= Al, Mn, 

Fe and Al1-xMnx ) compounds have been recently reported 38, 104 with the space group set to 

Pnam in order to ensuing their conformity to the mullite family while better understanding 

their physical properties. 1  

Figure 23 shows the crystal structure of PbAlBO4 and Figure 24 that of PbFeBO4. The 

(infinite) chains of edge-sharing AlO6/FeO6 octahedra run parallel to the c-axis. The 

octahedra chains are bridged by boron forming a trigonal planar BO3 group.  

 

 
Figure 23. The ambient pressure and temperature crystal structure of PbAlBO4.  
The structure is drawn in the mullite setting. Both individual atoms and the polyhedral outlines can be seen. The 
parallel with the mullite family of materials can be readily observed, among others, by the edge-sharing 
octahedral chains running along the c crystallographic axis. The difference is in the fact that the octahedral 
chains are cross-linked with BO3 triangles and PbO4E distorted square pyramids instead of AlO4 and SiO4 
tetrahedra, as in aluminosilicate mullites. ‘E’ stands for the lone electron pair. 
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Figure 24. The ambient pressure and temperature crystal structure of PbFeBO4.  
The structure is drawn in the mullite setting. Both individual atoms and the polyhedral outlines can be seen. The 
parallel with the mullite family of materials can be readily observed, among others, by the edge-sharing 
octahedral chains running along the c crystallographic axis. The difference is in the fact that the octahedral 
chains are cross-linked with BO3 triangles and PbO4E distorted square pyramids instead of AlO4 and SiO4 
tetrahedra, as in aluminosilicate mullites. ‘E’ stands for the lone electron pair. 
 

Between two BO3 groups a Pb2+ cation locates at the apex of a distorted PbO4 square 

pyramid, where the 6s2 lone electron pair (LEP) of Pb2+ cations is stereochemically active.As 

in other mullite-type materials, in lead-boron contacting mullites the characteristic building 

units are edge sharing MO6 octahedra, forming single Zweier chains 1 running parallel to the 

crystallographic c-axis. A well-known Pb containing compound of the Pbam structural 

family is the mineral minium Pb3O4, (used in anticorrosion paint for years 105). In minium 

the octahedral chains are made of Pb4+ cations surrounded by oxygens, and the chains are 

interconnected by Pb2+ cations, which stabilize the structure using their stereochemically 

active 6s2 lone electron pair (LEP, E in formula). In the orthorhombic arrangement the Pb4+ 

cations could be replaced by Sn4+,105 as well as cations having a lower valence, resulting in 

the same orthorhombic crystal structure which is, with this chemical composition, stable at 

room temperature.38 If we replace the Pb4+ ions by M3+ ions, then for the purpose of charge 

balance one of the Pb2+ cations must also be replaced by a trivalent cation. Such a mutual 
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combination is found in PbMBO4 phases (M = Ga, Al, Cr, Mn, Fe) where  Pb4+ is replaced for 

example by Al3+ while Pb2+ is replaced by B3+; this was first reported by Park et al. 34, 35, 36  

 

 

Figure 25. The first coordination sphere of the Pb2+ cation.  
Left: PbAlBO4 and right: PbFeBO4. The spatial distribution of the bonding oxygens illustrates the stereochemical 
activity of the lone electron pair. Dotted lines indicate non-bonding oxygens.  
 

Comparing these two structure types, the Pb1 atom in Pb3O4 is replaced for example by Al, 

the Pb2 atom remains as Pb and the Pb3 atom is replaced by B. If we consider that the 

average B––O bond length is 137.6(7) pm 35 while average Pb––O bond length is much 

longer with 237.6(7) pm 34 then we can see that the resulting BO3 group in the PbMBO4 

structure significantly increases the strength of the interconnection between octahedral 

chains.38 

In PbMBO4 the 6 s2 lone electron pair of Pb2+ with a nido-like trigonal bipyramidal 

coordination (PbO4/LEP) is also stereochemically active, 106 thus not influenced by the 

trigonal planar BO3 group. 38 The Bi2Fe4O9 synthetic mullite also possesses such a 

coordination of the LEP for the bismuth atoms, 106 but the closely related Bi2Mn4O10 phase 

does not.107 The BO3 group greatly influences the  properties of the PbMBO4 phases and 

indeed Park et al. 35 reported it to be the driving force for the temperature-driven αβ 

phase-transition of PbAlBO4. Moreover, in the PbMBO4 mullites the strong B––O bonds were 

found to be the origin of negative thermal expansion of the a lattice parameter, whereas a 

positive thermal expansion of the b and c lattice parameters was observed.38, 108  
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4.2. High-Pressure Behavior of Alumino-Silicate Mullites 

and Sillimanite 

 

4.2.1. High-Pressure Synchrotron XRD 

High-pressure ADXRD patterns of the three mullite-type Al4+2xSi2-2xO10-x phases were 

collected in-situ in a DAC, on compression from 0.9 GPa up to 44.6 GPa for sillimanite, from 

1.3 GPa to 27.3 GPa for 3:2-mullite and from 0.45 GPa to 40.8 GPa for 2:1-mullite. Figure 26 

shows selected x-ray diffraction patterns. As pressure is increased all diffraction lines shift 

towards higher 2θ angles i.e. lower d-spacings. According to the ADXRD patterns the 

compression appears to be continuous up to ~30 GPa for sillimanite, and up to ~25 GPa in 

the case of the two mullites (Figure 26). The discontinuous change of the d-spacings goes 

along with a dramatic intensity loss and important broadening of x-ray diffraction lines. 

This finally leads to complete x-ray amorphization of both mullites at above ~ 30 GPa, while 

amorphization of sillimanite is observed at much higher pressure, above ~40 GPa. High-

pressure, synchrotron ADXRD patterns of the three Al4+2xSi2-2xO10-x phases were also 

collected in situ (DAC), during decompression runs from the highest pressures investigated 

down to ambient conditions. Comparative x-ray diffraction patterns of sillimanite and 2:1-

mullite decompressed to ambient pressure are shown in Figure 27. Sillimanite retains most 

of its crystallinity upon decompression from 44.6 GPa to ambient pressure. On the contrary 

in the 2:1-mullite decompressed from 28.5 GPa to ambient pressure the amorphized phase 

is metastably retained reverting gradually to a highly disordered, parent-like phase. upon 

decompression from 43 GPa the 2:1-mullite appears mostly x-ray amorphous (Figure 27).  
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Figure 26. Selected high pressure XRD patterns of: (a) sillimanite, (b) 3:2- and (c) 2:1-mullite.  
Lines of the gold pressure indicator, Ne pressure medium and Al2O3 impurity are marked. 
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Figure 27. High-pressure XRD patterns of 2:1-mullite and sillimanite on decompression.  
Compression (arrows up) and the subsequent decompression to ambient pressure (arrows down).  
For 2:1-mullite two patterns are shown: decompression from 28.5 GPa and from 43 GPa while for sillimanite 
decompression from 44.6 GPa is shown. Diffraction lines of Re gasket, ruby pressure indicator and of gold, are 
marked. 
 

In order to follow the pressure evolution of unit cell parameters and unit cell 

volumes, of 2:1- and 3:2-mullite and of sillimanite, Rietveld full-profile structural 

refinements were performed on all x-ray diffraction patterns collected. Pressure-induced 

broadening and intensity loss of ADXRD lines limited the structural refinements to 37.7 GPa 

for sillimanite, 27.3 GPa for 3:2-mullite and 24.5 GPa for 2:1-mullite.  

At ambient pressure and temperature all the phases of the Al4+2xSi2-2xO10-x system 

studied in this work all have an orthorhombic crystal lattice: mullite crystallizes in the space 

group Pbam (55) whereas sillimanite crystallizes in the space group Pbnm (62). For starting 

the ambient pressure refinements of 2:1-mullite we used the initial structure of Voll et al., 

109 for 3:2-mullite the initial structure of Brunauer et al. 8 was used and sillimanite was 

refined with the initial structure of Winter and Ghose. 95 The pressure-induced evolution of 

unit cell parameters a, b, and c and of cell volumes V are given in Figure 28, while relative 
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fractional changes of these parameters are shown in Figure 29. A detailed comparison of the 

fractional evolution of the c-axis of all the samples investigated in this work compared with 

available literature data are shown in Figure 30. The lattice compression is anisotropic for 

all samples studied, with the c-axis being much less compressible than the a-axis and the b-

axis (Figure 28, Figure 29, Figure 30).   On compression below ~20 GPa sillimanite and both 

mullites display nearly identical fractional pressure evolution (Figure 29). 

 

 
Figure 28. Cell parameters vs. pressure.  
Pressure evolution of the unit cell parameters of: (a) sillimanite, (b) 3:2-mullite and (c) 2:1-mullite as well as the 
pressure evolution of their unit cell volumes (d) obtained from ADXRD data.  
In (d) the solid lines represent 3rd order Birch-Murnaghan EoS fits. For graphs (a) through (c) the left-side axes 
refer to a and b while the right-hand axes refer to c.  All vertical axes span 1 Å for easy comparison. For 
sillimanite, the evolution, as a function of pressure, is compared with available literature data.  
 

However, for sillimanite the a- and b-axis compression appears linear up to ~30 

GPa, while for both mullites the linearity of the a and b compression is limited only to ~22 
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GPa for 3:2-mullite and ~20 GPa for 2:1-mullite (Figure 28, Figure 29). It is interesting to 

note that for the c-axis there exists a slight, but characteristic discontinuity of compression 

(decrease of the c-axis slope with increasing pressure) above ~20 GPa for sillimanite and 

above ~10 GPa for both mullites (Figure 30).  

On compression above ~20 GPa the lattice constants and correlated cell volumes of 2:1 and 

3:2-mullites decrease rapidly. This discontinuity is slightly stronger for 2:1- than for 3:2-

mullite. A similar, though less pronounced discontinuity in lattice constants and cell volume 

can be observed for sillimanite, but at much higher pressures, namely above ~30 GPa 

(Figure 28, Figure 29, Figure 30).  

 

 
Figure 29. Fractional pressure evolution cell parameters. 
Fractional pressure evolution of the a, b and c unit cell parameters for sillimanite, 3:2- and 2:1-mullite.  
Fractional changes are shown by grouping the a, b and c parameters of all three materials together, to illustrate 
similarities and differences in their pressure behavior along the three crystallographic axes. For easy 
comparison all axes span the same vertical range. 
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No compression data for mullite have been reported in the literature up to now. For 

compression of sillimanite, our results of pressure-evolution of cell parameters (Figure 28, 

Figure 30) agree well with data reported by Yang et al. 17 on compression up to 5.3 GPa and 

with data of Burt et al. up to 8.5 GPa. 19 In the sillimanite data of Friedrich et al. 18 the 

pressure evolution of the c-axis appears to follow the same trend as our data, with a 

discontinuity, but this evolution is slightly slower above ~15 GPa and significantly slower 

above ~30 GPa (Figure 30). This can be attributed to different pressure-transmitting media 

used and different methods for pressure measurement, especially since the observed 

differences increase steadily with pressure. Data of sillimanite in reference 18 were obtained 

 

 
Figure 30. Zoom on the fractional pressure-evolution of the c lattice parameter. 
Zoom on the fractional pressure-evolution of the c lattice parameter of 2:1-mullite, 3:2-mullite and of sillimanite.  
Results for sillimanite are compared with literature data. It is interesting to note that sillimanite displays a 
similar behavior to mullite, with a discontinuity in the compression of the c-axis, but at higher pressure (~10 
GPa for both mullites and at ~20 GPa for sillimanite).  

 

with a 4:1 methanol-ethanol mixture as pressure-transmitting medium, which is 

hydrostatic only up to 10 GPa, 95 while pressure measurements were done using the ruby 

luminescence scale, which gives inaccurate pressure readings in non-hydrostatic conditions 

(above 10 GPa). On the other hand, in the present work the pressure-transmitting medium 

was helium, which gives excellent hydrostatic conditions up to at least 50 GPa, 98, 99 covering 
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our entire experimental range of pressure. Also our pressure readings were done using the 

equation of state of gold, mixed-in with the sample thus allowing, together with hydrostatic 

conditions, for more realistic pressure readings.  

4.2.1.1. Compression Mechanisms 

Based on our results it appears that the changes of lattice parameters above ~20 

GPa in 2:1-mullite, 3:2-mullite and sillimanite probably represent processes taking place in 

several steps, which we describe as follows.75 Below ~20 GPa, 2:1-mullite, 3:2-mullite and 

sillimanite behave quite similarly on compression. The pressure-evolution of cell 

parameters and cell volumes of all phases are given in Figure 28. The fractional 

compression (Figure 29) between ambient pressure and 20 GPa along the crystallographic 

a-axis (≈ 5%) is similar to that along the b-axis (≈ 4%). The significantly lower compression 

along the c-axis (≈ 2%) - observed in both mullites and in sillimanite - is reasonable, 

because of the occurrence of the firmly bound, edge-connected octahedral chains in this 

lattice direction, which are cross-linked by rigid tetrahedral double chains (see structure in 

Chapter 2). In fact, in sillimanite at low pressures (below 8 GPa), it was found 17, 19 that the 

main compression mechanism is the shortening of bonds within the AlO6 octahedra, 

whereas the tetrahedra behave as rigid units. So compression along the c-axis can only take 

place through the compression of the edge-sharing AlO6 octahedra. Clearly the arrangement 

of the firmly bound octahedral and tetrahedral chains in the mullite-type alumino-silicate 

structures results in the high resistance against elastic compression in the c-direction 

observed for all three phases. The situation is different perpendicular to the c-axis, in the 

(001) plane, where a sequence of rigid AlO4 and SiO4 tetrahedra and the more compliant 

AlO6 octahedra are corner-sharing (see structure in Chapter 2). 

In corner sharing systems the inter-polyhedral angles can change more easily as the 

result of compression and this can justify the higher compressibility observed in a and b 
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directions for both mullites and for sillimanite. It is interesting to have a closer look at the 

influence of the compliant AlO6 octahedra on the compressibility of the investigated phases. 

The longest and most elastic Al-O(D) bond of the octahedron should display the largest 

pressure-induced shortening. Since Al-O(D) encloses an angle of about 30° with the b-axis 

and of about 60° with the a-axis (see structure in Chapter 2), it can be expected that the 

fractional compression is higher parallel to b than parallel a. However this is not observed 

and the fractional compression is even slightly higher parallel to the a-axis than it is parallel 

to b (Fig.5). One simple explanation could be that the octahedral chains are rotated in a way 

that the angle between Al-O(D) and the b-axis becomes larger with pressure. The similar 

high-pressure compressibility of sillimanite and of both mullites up to ~20 GPa implies that 

the observed behavior is mainly controlled by pressure-induced compression of the three-

dimensional structural networks of sillimanite and mullite. Obviously the absence – in 

sillimanite – or presence – in mullite – of oxygen vacancies does not play a significant role 

on their pressure response below ~20 GPa. 75 

Comparison of the compressibilities βj of sillimanite and of the mullites with the 

linear elastic stiffnesses cij provides further understanding. Sillimanite displays a slightly 

higher mean linear stiffness of 303 GPa (from Brillouin scattering 10), than does 2:1-mullite 

with 292 GPa (from resonant ultrasound spectroscopy 12), which explains the higher 

resistance of sillimanite against mechanical load. In both phases the high stiffnesses along 

the c-axis (c33) reciprocally correspond to the low compressibilities (βc) in this lattice 

direction, found in the present work. Actually our experimental data support the idea that 

alumino-silicates with mullite structure display their highest mechanical stability along the 

c-axis. The situation is less clear perpendicular to the c-axis, where the highest 

compressibility is expected along b (see above). Actually the compressibilities along the a 

and b-axes are quite similar (Figure 29). 75 
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Below 20 GPa, it is worthwhile to have a closer look on the high-pressure behavior 

of 3:2-mullite, 2:1-mullite and sillimanite. Figure 30 compares the fractional pressure 

evolution of the c-parameter of both mullites and of sillimanite obtained in this work with 

published data of sillimanite. 17, 18, 19 At ~10 GPa in both mullites and at ~20 GPa in 

sillimanite, a small discontinuity of the c-parameter compression occurs and is seen as a 

decrease in the slope, indicating a slowdown of the c-parameter’s compression. A similar 

discontinuity in sillimanite can be seen in literature data of sillimanite, 18 at slightly different 

pressures (Figure 30). No such discontinuity is observed in the compression along the a- 

and b-parameters up to 20 GPa neither in sillimanite nor in mullite (Figure 28, Figure 29). 

One possible explanation of the observed slowdown is that the rigid tetrahedral double 

chains and the cross-linked, edge-connected octahedral chains are close to reaching a 

lower-limit of cation-oxygen bond lengths and of oxygen-cation-oxygen angles. Yet, the 

polyhedral network along the c-axis is still strong enough to support further compression 

load up to ~20 GPa for 2:1-mullite, up to ~22 GPa for 3:2-mullite and up to~30 GPa for 

sillimanite. On the other hand, the polyhedral network perpendicular to c, with its 

sequences of rigid tetrahedra and compliant octahedra, allows for further, steady 

compression parallel to the a and b-axes up to ~20 GPa (Figure 28, Figure 29). At  this 

compression stage the number of oxygen vacancies and the substitution and disordering of 

tetrahedrally bound Si4+ by Al3+, with the associated weakening of the tetrahedral Si(Al)-O 

bonds, do not seem to have significant influence on the high-pressure behavior of both 

mullites and of sillimanite. 75 

Above ~20 GPa for 2:1-mullite, and ~ 22 GPa for 3:2-mullite, an important increase 

of pressure-induced compression, manifested by a significant decrease in the unit cell 

volume is observed (Figure 28). The strong discontinuity of the volume compression 

together with a dramatic intensity loss and important broadening of ADXRD lines (Figure 
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26) is interpreted in terms of a gradual and irreversible structural decomposition of both 

mullites. This is consistent with a work by Braue et al. 23 that reported a shock-wave 

induced amorphization of mullite above 35 GPa. A displacive or reconstructive phase 

transformation is excluded, since the diffraction patterns of the decompressed materials 

(recovered from high-pressure loading), display a very low degree of crystallinity (Figure 

27). The structural decomposition in our data for both mullites and for sillimanite (Figure 

26,  Figure 28, Figure 29), in turn, strongly reduces the resistance of the crystal lattices 

against compression, which drives the volume discontinuity further. Moreover, it is found 

that 2:1-mullite, containing more oxygen vacancies (0.4 per unit cell) than 3:2-mullite (0.25 

per unit cell), displays a larger and somewhat faster structural decomposition effect than 

the latter, especially in a and b (but not c) directions (Figure 29). Oxygen vacancies in both 

mullites obviously play a significant role in lowering their mechanical stability. 

Interestingly, in both mullites the b parameter is the most resistant against the discussed 

decomposition at pressures above 20 GPa (Figure 29). Possibly the longer and more elastic 

octahedral Al-O(D) bonds lying at about 30° to the b-axis allow for a better support of the 

pressure-induced stress along b, whereas the shorter and less elastic octahedral Al-O(A,B) 

bonds lying closer to the a-axis are less flexible (see structure in Chapter 2). In the c-

direction, for both mullites, the mechanical stability limit is reached at about 20 GPa for 2:1-

mullite and 22 GPa for 3:2-mullite, and both structures collapse upon further pressure 

increase (Figure 26, Figure 29). 75 

A pressure-driven discontinuity of lattice parameters and unit cell volume similar to 

that of both mullites is also observed for sillimanite. It is attributed to an early onset of a 

pressure-induced amorphization. However, the observed volume discontinuity is much less 

marked and occurs at ~30 GPa for sillimanite compared to ~20 GPa for the mullites (Figure 
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28, Figure 29, Figure 30), again demonstrating the higher mechanical stability of sillimanite 

with respect to mullite. 75 

The lower structural stability of both mullites in comparison to sillimanite is 

attributed to the presence of oxygen vacancies in mullites. The more open and disordered 

crystal structures of mullites are not able to support as high pressures as the sillimanite 

structure does. This statement is consistent with the fact that sillimanite forms in low-

pressure metamorphic rocks, whereas mullite is a typical high-temperature phase. Finally, 

it is the presence of oxygen vacancies in both mullite structures that leads to an irreversible, 

pressure-driven structural decomposition. 75 

Using theoretical simulations Oganov et al. 15 predicted a phase transition in 

sillimanite at ~35 GPa. This is in the same pressure range where we observe the onset of 

structural amorphization. Oganov et al. 15 proposed the formation of a metastable high-

pressure phase of sillimanite with fivefold coordinated Al3+ and fivefold coordinated Si4+. 

Our Rietveld refinements of sillimanite above 30 GPa, however, yielded no match to a 

metastable 15 sillimanite structure.  In this study of 2:1 and 3:2 mullite and sillimanite there 

is no evidence of formation of a metastable high-pressure phase of sillimanite with fivefold 

coordinated Al3+ and Si4+. 75 

4.2.1.2. Equation of State of Alumino-Silicate Mullites and Sillimanite 

The pressure-volume plot shown in Figure 28(d) is a good illustration of the 

threshold at which discontinuities in the pressure-evolution of unit cell parameters appear. 

The following sequence of pressure-induced discontinuity onsets can be identified: ~30 GPa 

for sillimanite, ~22 GPa for 3:2-mullite and ~20 GPa for 2:1-mullite. A third order Birch-

Murnaghan 110, 111, 112, 113, 114 equation of state (EoS) was fitted to the experimental pressure-

volume data (Figure 28(d)) in order to determine the bulk modulus K0 and its pressure 

derivative K0’ at ambient conditions for sillimanite, for 3:2-mullite and for 2:1-mullite: 
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The bulk moduli (K0) obtained from the Birch-Murnaghan fits  are summarized in Table 1, 

together with literature data obtained by other methods. For each sample, the EoS was 

fitted only up to the early onset of the pressure-induced discontinuities, beyond which the 

EoS breaks down (Figure 28(d)). 75 

 

Table 1. Comparison of: bulk moduli for mullites and for sillimanite. 
Comparison of: bulk moduli (K0), their pressure derivatives (K0’) and unit cell volumes at ambient pressure (V0) 
obtained in the present work with available literature data. 75 
 

 K0 (GPa) K0’  V0 (Å3)  method 

2:1-Mullite 

169.2 - - acoustic resonance spectroscopy 11 

169.1 - 168.13 resonance ultrasound spectroscopy  12 
166.5 - 168.13 resonance ultrasound spectroscopy 12 
171.0 2 - 168(1) Brillouin spectroscopy 115 
167.6 - 332.0738 theoretical (VASP) 116 
162(7) 2.2(6) 168.13(2) powder XRD - this work 

3:2-Mullite 

174 - 167.335(2) ultrasonic 7 
172.4 - 167.335(2) ultrasonic 117 
190 - 167.335(2) theoretical (ionic-model) 7 
173.2 - 329.6418 theoretical (VASP) 116 
173(6) 2.3(2) 167.580 (1) powder XRD - this work 

Sillimanite 

166.4 - - Brillouin (Reuss) 10 
175.1 - - Brillouin (Voigt) 10 
164(1) 5.0(3) 331.208(18) single crystal XRD 19 
171(7) 4(3) 331.81(5) single crystal XRD 17 
176(11) 4 (fixed) 331.0(3) powder XRD 18 
160.1 2.69 339.57 theoretical (VASP) 15 
161.4 2.99 319.11 theoretical (GULP) 15 
174.9 - 325.3389 theoretical (VASP) 116 
159 - - theoretical DFT 16 
167(7) 2.1(4) 331.459(3) powder XRD - this work 

 

Data in Table 1 show that the bulk moduli (K0) of the two mullites and of sillimanite 

obtained in this work are in good agreement with averaged literature data. The higher value 

of the pressure derivative K0’ obtained for sillimanite by Burt et al. 19 can be explained by 

                                                             
2 Data available only for 2.5:1 mullite. 
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the fact that the EoS was fitted in a much smaller pressure range (up to 8.5 GPa) as 

compared to the present work (up to 30.5 GPa). Contrary to expectations, it is not possible 

to establish a trend of bulk modulus value versus the amount of oxygen vacancies. Our 

experimental values of K0 are too close to each other to allow for such differentiation. 

Moreover the pressure-evolution of unit cell parameters and of unit cell volume of the two 

mullites and of sillimanite is very similar below ~20 GPa, which helps to illustrate that the 

bulk modulus values are so comparable. 75 

 

4.2.2. Laser Raman Spectroscopy at High Pressures 

Measuring the pressure dependence of the Raman vibrational modes gives 

information on bonding and crystal chemical properties. Raman spectra contain 

characteristic signatures of structural phase transitions, phase transitions involving subtle 

changes in symmetry of the crystal lattice and transitions to disordered and amorphous 

state.  The mechanisms involved in the phase transitions and what happens to the structural 

building blocks can be inferred by analyzing of the features as Raman spectra evolve versus 

pressure. One of the most active areas in high pressure research in recent years has been 

pressure-induced amorphization, and in this field Raman spectroscopic studies have played 

an important role. 

 

4.2.3. High-Pressure Raman Spectroscopy of Mullites and of 

Sillimanite 

4.2.3.1. Predicting Vibrations using Group Theory 

In Chapter 2 we obtained an expression for the intensity of Raman scattering, but 

that expression does not show whether the key terms, the αij’s are non-zero for a particular 

vibrational mode.  Group theory allows to predict whether these terms can be non-zero, 
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with information about the symmetry of a molecule (crystal). In each case group theory 

predicts whether a transition moment integral can be non-zero. These integrals contain the 

product of three terms – the wavefunctions for the ground and excited states, and the 

operator (in this case the components of the polarizability derivatives) that connects these 

two states. For a transition to occur the product of these three terms must be totally 

symmetric, which means it must leave the original molecule totally unchanged. 

When a crystal is composed of single atoms at each lattice site in the crystal 

structure then all vibrations can be considered as EXTERNAL (or lattice) vibrations. For the 

case of EXTERNAL (or lattice) vibrations: we need to correlate only Site Group  Factor 

Group. When a crystal is composed of molecules or sub-units such as polyhedra at some 

lattice sites in the crystal structure then one needs to consider two types of vibrations: 

• Vibrations within the polyhedron are INTERNAL vibrations (n)  

• Vibrations of the polyhedron as a unit are EXTERNAL (or lattice) vibrations and 

are composed of: 

o Translatory (T’) and  

o Rotatory (R’) vibrations 

In this case we need to predict external vibrations for the polyhedron by correlating: 

    Site Group  Factor Group 

We also need to predict internal vibrations for the polyhedron by correlating: 

   Point Group  Site Group  Factor Group 

This correlations needs to be executed for each atom that is on a different crystallographic 

Wyckoff site. 

 Sillimanite or Al2O3 - SiO2 belongs to Space Group #62 – Pbnm – D2h16 and has a 

Primitive unit cell (P) with Z=4. Sillimanite is built of: 

• AlO6 octahedra – which have a center of inversion so are optically inactive 
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• SiO4 tetrahedra consisting of  atoms Si1 O1, O3 and O4 (Table 2) 

• AlO4 tetrahedra and Al2, O2, O3, O4 (Table 2) 

To predict vibrational modes we need to analyze the following units:  

• The SiO4 tetrahedron which involves Si1 O1, O3 and O4 and  

• the remaining O2 atom and  

• two aluminum atoms Al1 and Al2 which have different Wyckoff positions (Table 2). 

 

Table 2. Atomic sites and atomic parameters for sillimanite. 

 
 

According to Wyckoff’s Tables for determining proper site correlation (appendix 5 in 

Ferraro 44) space group SG #62 (D2h16) only states that site c = σzx. So it needs to be 

determined what site symmetry are the other Wyckoff sites in space group #62, D2h16. 

Wyckoff’s nomenclature of site i can be deduced from the site symmetries of space group 

#62 by listing the site positions in alphabetical order (Appendix 4 in Ferraro 44) as shown in 

Table 3 and Table 4. For the SiO4 tetrahedron we need therefore to find internal vibrations 

(n) by correlating: Point Group  Site Group  Factor Group. For the SiO4 polyhedron we 

also need to find External vibrations by correlating: Site Group  Factor Group. As part of 

External vibrations the tetrahedron will have both Translatory (T’) and Rotatory (R’) 

vibrations. For Al1, Al2 and O2 we only need to correlate: Site Group  Factor Group. These 

atoms will only have External vibrational modes. What is the expected number of 

vibrational modes for sillimanite? Sillimanite or Si1Al2O5 has  Z=4. The total number of 

vibrational modes expected is: 
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3nZ = 3x(1+2+5)x4 = 3x8x4 = 96 

If the primitive cell contains σ molecules, each with ρ atoms:  Z=4 so σ =4 SiO4 molecules, 

with ρ =5 atoms. 

 

Table 3. Site correlation for space group #62, D2h16 

 
 

Table 4. Finding Factor Group, Site Group and Point Group Symmetries for Sillimanite 

 
 

The number of acoustic modes is 3. Number of optical modes is 3σρ-3 = 3x4x5 – 3 = 57. 

Optical modes are divided into: 

• Internal modes = (3 ρ-6) σ = (3x5 – 6)x4 = 36 

• Eternal (Lattice) modes = 6 σ-3 = 6x4 – 3 = 21 

Al1 is on Wyckoff site 2a. According to Wyckoff’s Tables for determining proper site 

correlation (appendix 5 in Ferraro 44) SG #62 (D162h) indicates that site a  = Ci. A 
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calculation of degrees of freedom gives DOF = (3n, Z) = 3x1xZ = 3x1x4 = 12 DOF 

(Translatory only).  

 

Table 5. Expected number of vibrational modes for sillimanite. 

 
 

So we need to set up correlation table between the Factor Group (space group) 62 – D162h 

and Site Group Ci (Table 6). The Ci site group has 2 characters, Ag and Au. According to 

Character Tables of Point Groups Au (Appendix 1 in 44) possesses all three translation 

vectors, Tx, Ty and Tz while Ag has three rotational vectors only. Therefore all 12 DOFs go 

under Au, Table 6 (there are no site rotations for single atoms).  

 We fill out the correlation table between the Factor Group (Di2h) and Site Group Ci by 

consulting the Correlation Tables (Appendix 6 in 44) under space group Di2h, which shows 

which species from Ci “correlate” (connect) to which species of D2h (Table 7). Once the 

species under Factor Group are filled out, we note from Point Groups and their Character 

Tables (Appendix 1 in 44), that B1u has translation vector Tz, B2u has Ty, and B3u has Tx (Table 

7). Now we need to distribute equally the DOFs from the left side (Site Group) to the right 

side (Factor group). All four species correlated to Au get 12/4=3 DOFs. The species with a 
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translatory vector get 1 acoustic and 2 translatory DOFs, while the species without a 

translatory vector get all 3 DOFs under the Translatory (T’) modes.   

 

Table 6. Filling out the Site Group  Factor Group Correlation Table for Al1 in sillimanite. 

 
 

Table 7. Site Group  Factor Group Correlation Table for Al1 in sillimanite. 

 

 

There were no Rotatory (R’) DOFs on the left under Site Group and hence zero R’ in the 

Factor Group. Raman activity (none in this case) can be read from the Point Groups and 

their Character Tables (Appendix 1 in 44).  
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Now this procedure is repeated for the other atoms/molecules/sites. 

 

Table 8. Site Group  Factor Group Correlation Table for Al2 

 
 

Table 9. Factor Group Correlation Table for O2 

 
 

Next, we need to find out the species and their number of normal vibrations for the SiO4 

tetrahedron, which is on the molecular Point Group Td. (Appendix 2 in 44). The number of 

vibrations is calculating knowing that:  

• m = 0 = # of sets of nuclei not on any symmetry elements.  

• m0 = 1 = # of sets of nuclei on all symmetry elements.  

• md = 0 = # of sets of nuclei  on σd plane but not on any other element of symmetry.  
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• m2 =  0 = # of sets of nuclei on a C2 axis but not on any other symmetry element that 

does not wholly coincide with that axis.  

• m3 = 1 = # of sets of nuclei on a C3 axis but not on any other symmetry element that 

does not wholly coincide with that axis. 

 

Table 10. Correlation Table for SiO4 Tetrahedron – Internal Modes. 

 
 

We then set up a correlation table between the Molecular Point Group Td and Site Group Cs  

and Factor Group (62) D2h16. The molecular point group column gets the vibrational species 

found in Table 10. Translation and rotation vectors are obtained from the Point Groups and 

their Character Tables (Appendix 1 in 44). The SiO4 tetrahedron is on Wyckoff site c so its 

Site Group is Cs. The Cs site group has 2 characters A’ and A’’ and these go under the Site 

Group column. The correlation between Site Group Cs and Point Group Td is obtained from 

the Correlation Tables (Appendix 6 in 44). Under Site group we count the number of lines 

connecting to each species and also include the number in front of a given molecular point 

group: this is how species A’ has 4 lines but two of those count as 2 each so we get 

1+1+2+2=6 A’. The D2h16 Factor Group has 8 characters: Ag, Au, B1g, B2g, B3g, B1u, B2u, B3u and   

these go under the Factor Group column (Appendix 1 in 44). We then correlate the D2h16 

Factor Group with the Site Group Cs. The SiO4 tetrahedron has 36 internal modes (Table 5) 

and 2/3 of them are correlated to species A’ while 1/3 is correlated to A’ 
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Table 11. Correlation table for internal modes of SiO4 tetrahedron. 

 
 

Table 12. Correlation table for external modes of SiO4 tetrahedron. 

 
 

 Finally for the external vibrational modes of SiO4 we set up a correlation table 

between the Factor Group (space group 62) D2h16 and Site Group Cs. From Table 5 we know 

that there are 24 DOFs, 12 are translatory + acoustic and 12 are rotatory. The Cs site group 

has 2 characters A’ and A’’ and these go under the Site Group column. A’ possesses two 

translation vectors, Tx and Ty and rotation Rz while A’’ has vector Tz and rotation Rx and Ry. 

For translatory DOFs: put ⅔ under A’ (=8) and ⅓ under A’’ (=4). For rotatory DOFs: put ⅓ 

under A’ (=4) and ⅔ under A’’ (=8). We then correlate The correlation between Site Group 
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Cs and Factor Group D2h is obtained from the Correlation Tables (Appendix 6 in 44). Now we 

distribute equally the DOFs from the Site Group to the Factor group. 

   

Table 13. Complete Character Table and Correlation Scheme 

 
 

In summary the irreducible representations corresponding to the sillimanite lattice 

are derived from the character table, under the assumption that all vibrations can be 

separated into internal modes of SiO4-tetrahedra and external modes in which these 

tetrahedra act as rigid molecules. The set of irreducible representations corresponding to 

the lattice of sillimanite is:  

Γ= 13Ag + 8B1g + 13B2g + 8B3g +11Au+ 16B1u + 11B2u + 16B3u 

including the acoustic modes 

Γacoust.= B1u + B2u + B3u 

Therefore, there are 42 Raman active modes (13Ag + 8B1g + 13B2g + 8B3g) and 40 infrared 

active modes (15B1u + 10B2u + 15B3u) for sillimanite. This is in agreement with the 

correlation scheme shown by Salje and Werneke. 118  
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By following the same procedure we derive the irreducible representations 

corresponding to the mullite lattice but assuming an ‘ideal’ mullite without vacancies (x=0):  

Γ= 6Ag + 6B1g + 3B2g + 3B3g +5Au+ 5B1u + 10B2u + 10B3u 

including the acoustic modes: 

Γacoust.= B1u + B2u + B3u 

There are 18 Raman active modes (6Ag + 6B1g + 3B2g + 3B3g) and 22 infrared active modes 

(4B1u + 9B2u + 9B3u) for mullite. 

Four different modes of vibration occur in free SiO4 according to the point group Td: ν1(A1-

type ), ν2 (E1-type ), ν3 and ν4 (T2-type ).  

4.2.3.2. Raman Spectra at High Pressures 

It is interesting to note that in the present work Raman spectroscopy was used to spotlight 

the local disorder of 2:1 mullite: in fact Raman spectra of mullite contrast starkly with those 

of the ordered sillimanite structure.  

 

 
Figure 31. Comparison of Raman spectra of 2:1 mullite and sillimanite at ambient pressure. 
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The key differences between the structure of mullite and sillimanite are the oxygen 

vacancies as well as the disorder in the tetrahedral sites. On the level of “long range order” 

both materials present crystalline x-ray diffraction patterns where the above mentioned 

differences cannot be perceived. On the other hand when looking at a comparison of Raman 

spectra of sillimanite and 2:1 mullite (Figure 31) the large structural differences are very 

readily apparent.  

 

 
Figure 32. Pressure-driven evolution of Raman spectra of sillimanite measured in the DAC. 
Stars mark new vibrations. 
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Sillimanite has a set of very narrow vibrations and 2:1 mullite has instead several wide and 

overlapping bands, illustrating that the “short range order” of these materials is indeed very 

different. Many strong peaks of sillimanite can be identified as bands in mullite, some of 

them shifted by a few wavenumbers and some having very different intensities.  

 

 
Figure 33. Pressure-driven evolution of Raman spectra of 2:1 mullite measured in the DAC.  
Stars mark suspected new peaks. 
 

Figure 32 presents the Raman spectra of sillimanite as a function of pressure from ambient 

condition to 25.5 GPa. At ambient pressure 28 Raman bands are observed, out of the 42 
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predicted ones. Figure 33 presents the Raman spectra of 2:1 mullite acquired as a function 

of pressure from ambient conditions up to 32.9 GPa. 12 Raman bands are observed out of 

the 18 predicted ones. To the best of the author’s knowledge a high-pressure Raman 

spectroscopy investigation of alumino-silicate mullite has not been published before.  

A Raman spectroscopy study of sillimanite examining the effect of pressure on 

compression up to 15 GPa was discussed by Mernagh and Liu. 119 It was reported that 11 

Raman bands were observed, but no spectra of sillimanite as a function were published in 

that work. 119 No phase changes were observed. 

Peak broadening in sillimanite and the shift of bands towards broad features in 2:1 

mullite reveal the progress of amorphization in the two samples. The Raman spectroscopy 

results coincide with the results of in situ high pressure X-ray diffraction studies. In 

amorphization, the sharp X-ray diffraction lines disappear.  

On release of pressure, the amorphized phase is metastably retained down to 

ambient pressure, reverting gradually to a highly disordered, parent-like phase (see 

Chapter on results of XRD). 

4.2.3.3. Mode Grüneisen Parameters  

The Grüneisen parameter, γ, named after Eduard Grüneisen, describes the effect 

that changing the volume of a crystal lattice has on its vibrational properties, and, as a 

consequence, the effect that changing temperature has on the size or dynamics of the lattice. 

The term is usually reserved to describe the single thermodynamic property γ, which is a 

weighted average of the many separate parameters γi entering the original Grüneisen's 

formulation in terms of the phonon nonlinearities. 

The Debye model estimates the contribution of phonons to specific heat.54 Thermal 

expansion (coefficient α) is proportional to specific heat and the proportionality is the 

average Grüneisen constant γAV:  
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𝑞 =
𝛾𝐴𝑑𝐶𝑑
3𝑑𝑀𝐾0

 

where VM is the molar volume, K0 is the bulk modulus, and CV is the molar specific heat at 

constant volume and may be written as: 

𝐶𝑑 = �
𝑝𝑖𝐶𝑖

4
𝑖

 

The mode Grüneisen parameter is the logarithmic derivative of vibrational frequency over 

volume:  

 

A value of γi = 1 means that there is a 1% change in frequency over a 1% change in volume. 

The typical values of γi are 0.5 – 2. If we transform the equation for gamma to a pressure 

derivative we obtain:  

 

Measurements of Raman spectroscopy at high pressures allows to obtain mode Grüneisen 

parameters for each vibration: it is the relative change in vibrational frequency over the 

change in pressure multiplied by the bulk modulus (which is obtained in this work from 

analysis of high-pressure x-ray diffraction).  

Raman modes for sillimanite (experimental and theoretical) and 2:1 mullite 

(experimental) are shown in Table 14 along with the experimental and calculated mode 

Grüneisen parameters for sillimanite as well as the experimental ones for 2:1 mullite. Also 

indicated are the mode type and symmetry for all modes of sillimanite. The correspondence 

between calculated and experimental mode Grüneisen parameters is good, with a few 

exceptions. 
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Table 14. Raman modes and Grüneisen parameters for 2:1 mullite and sillimanite below 350cm-1. 
Experimentally obtained Raman modes for sillimanite (experimental and theoretical) and 2:1 mullite 
(experimental) as well as their mode Grüneisen parameters. Raman modes marked with * appear at higher 
pressures, so for those the νi value is derived from an extrapolation to ambient pressure. Theoretical values are 
issued from calculations carried out by Prof. D. Többens, Helmholtz Zentrum Berlin (private communication). 
Also included are the type and symmetry of each mode: b=bending, s=stretching, o=other; (o)=octahedra, 
(t)=tetrahedra. 

Sillimanite – this work –  
K0 = 167(7)GPa 

2:1 Mullite – this work – 
K0=162(7)GPa 

Irreducible 
Representation 
and  Assignment 

Theoretical Experimental Experimental 

νi  
(cm-1) 

dνi/ 
dP γi  

νi  
(cm-1) dνi/dP γi 

νi  
(cm-1) dνi/dP γi 

Ag b(Al(o)-O-Si) 
b(O-Al(o)-O) 
b(O-Si-O) 

139.251 0.40 0.48 143(1) 0.17 0.20(1) - - - 

B1g b(Al(o)-O-Si) 
b(O-Al(o)-O) 155.854 -1.03 -1.1 - -  - - - 

B1g b(O-Al(o)-O) 186.067   - -  - - - 
B3g o(O-Al(o)-O) 

o(O-Si-O) 208.603 0.33 0.26 - -  - - - 

B2g o(O-Al(o)-O) 216.113   - -  - - - 
Ag b(O-Al(o)-O) 234.65 -0.86 -0.61 236(1) -0.99 -0.70(5) - - - 
B3g o(O-Al(o)-O) 249.626   - -  - - - 
B1g b(O-Al(t)-O) 259.257 0.31 0.20 *262 (5) 0.41 0.26(2) 257.0(50) 0.56 0.35 
B2g o(O-Al(o)-O) 

o(O-Si-O) 260.361   - -  - - - 

Ag o(O-Al(t)-O) 
b(O-Si-O) 301.857 -0.62 -0.34 - -  - - - 

Ag b(Al(o)-O-Si) 
b(O-Al(o)-O) 309.786 0.81 0.44 311(2) 0.52 0.28(2) - - - 

B1g b(Al(o)-O-Si) 
b(O-Al(o)-O) 310.179 -0.51 -0.27  309(1) -0.59 -0.32(2) - - - 

- - - - - - -  - - - 
- - - - - *303 (2) 1.55 0.85(6) - - - 
- - - - - *303 (5) 2.28 1.30(8) 307(2) 2.0 1.1 
- - - - - 309*(5) 0.11 0.06(1) *313 (5) -0.15 -0.078 
- - - - - -  - - 333(5) 3.67 1.8 
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Table 15. Raman modes and Grüneisen parameters for 2:1 mullite and sillimanite above 350cm-1. 
Experimentally obtained Raman modes for sillimanite (experimental and theoretical) and 2:1 mullite 
(experimental) as well as their mode Grüneisen parameters. Raman modes marked with * appear at higher 
pressures, so for those the νi value is derived from an extrapolation to ambient pressure. Theoretical values are 
issued from calculations carried out by Prof. D. Többens, Helmholtz Zentrum Berlin (private communication). 
Also included are the type and symmetry of each mode: b=bending, s=stretching, o=other; (o)=octahedra, 
(t)=tetrahedra. 

Sillimanite – this work –  
K0 = 167(7)GPa 

2:1 Mullite – this work – 
K0=162(7)GPa 

Irreducible 
Representation 
and  Assignment 

Theoretical Experimental Experimental 

νi  
(cm-1) 

dνi/ 
dP γi  

νi  
(cm-1) dνi/dP γi 

νi  
(cm-1) dνi/dP γi 

B3g o(O-Al(t)-O) 
b(O-Al(o)-O) 
b(O-Si-O) 

350.692 1.78 0.85 - - - - - - 

Ag b(O-Al(t)-O) 
b(O-Al(o)-O) 354.529 1.34 0.63 - - - - - - 

B2g o(O-Al(t)-O) 
b(O-Al(o)-O) 
b(O-Si-O) 

381.059 0.64 0.28 364(1) 0.4 0.18(1) - - - 

B1g b(O-Al(o)-O) 387.469 1.73 0.75 391(1) 1.78 0.76(5) *384.2 
(10) 0.72 0.30 

Ag b(O-Al(t)-O) 
b(O-Si-O) 406.23 1.47 0.60 409(1) 1.34 0.55(4) *412.2 

(30)  1.23 0.48 

B1g b(O-Al(t)-O) 417.411 1.64 0.66 422(1) 1.68 0.66(4) 411(2) 1.69 0.67 
B2g s(O-Al(t)-Al(t)) 

s(Al(o)-O-Al(t)) 
b(Si-O-Al(t)) 

437.331 - - - - - -  - - 

B3g s(O-Al(t)-Al(t)) 
s(Al(o)-O-Al(t)) 
b(Si-O-Al(t)) 

444.704 - - - - - - - - 

Ag b(Si-O-Al(o)) 
b(O-Si-O) 445.774 0.66 0.25 457(1) 0.93 0.34(2) - - - 

B1g b(Si-O-Al(o)) 
b(O-Si-O) 447.883 1.15 0.43 464(1) 0.87 0.31(2) - - - 

B3g s(O-Al(t)-Al(t)) 
o(O-Si-O) 479.461 1.06 0.032 483(1) 1.26 0.44(3) - - - 

- - - - - - - - *515 (1) 0.04 0.013 
B2g s(O-Al(t)-Al(t)) 529.346 - - - - - - - - 
Ag b(O-Al(o)-O) 

b(O-Si-O) 592.75 1.81 0.51 594(1) 1.96 0.55(4) - - - 

B2g s(O-Al(t)) 
s(Al(o)-O-Al(t)) 
b(Si-O-Al(t)) 
b(O-Si-O) 

601.77 3.12 0.87 *600(1) 3.44 0.96(6) 612(5) 0.86 0.23 

B3g b(Al(o)-O-Al(t)) 
b(Si-O-Al(t)) 647.001 - - - - - - - - 

B1g b(O-Al(o)-O) 
b(O-Si-O) 648.36 - - - - - - - - 

B3g s(O-Al(o)) 688.511 - - - - - - - - 
B2g b(Al(o)-O-Al(t)) 

s(O-Al(o)) 706.297 4.16 0.98 705(1) 3.74 0.89(6) - - - 

Ag s(O-Al(o)-O) 710.859 3.17 0.74 710(1) 3.87 0.91(6) 720(2) - - 
B1g s(O-Al(o)-O) 773.62 - - - - - - - - 
B1g s(O-Al(o)) 780.399 - - - - - - - - 
Ag s(O-Al(o)) 788.799 - - - - - - - - 
Ag s(O-Si) 874.665 3.27 0.62 872(1) 3.02 0.58(4) - - - 
B3g s(O-Si) 903.423 5.25 0.97 907(1)  4.95 0.91(6) - - - 
B1g s(O-Si-O) 910.971 - - - - - - - - 
B2g s(O-Si) 913.75 - - - - - - - - 
Ag s(O-Si) 957.902 4.19 0.73 963(1) 4.32 0.75(5) 962(2) 4.53 0.76 
B1g s(O-Si) 1035.69 4.89 0.79 1035(1) 4.57 0.74(5) 1034(5) 4.39 0.69 
Ag s(O-Si) 1130.15 3.37 0.50 1128(2) 3.45 0.51(3) 1131(2) 2.55 0.37 
B1g s(O-Si) 1136.31 3.39 0.50 *1137 (3) 3.26 0.48(3) - - - 
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4.2.3.4. Comparison of Pressure Evolution. 

To focus the analysis, it was decided to follow the pressure-induced evolution of 

selected, strong Raman modes of sillimanite and compare them with all bands of 2:1 mullite.  

 

 
Figure 34. Pressure-evolution of experimental vibrational modes of 2:1 mullite and sillimanite. 
Comparison of pressure-evolution of experimental vibrational modes of 2:1 mullite (orange) and those of 
sillimanite (black). Continuous lines (no symbols) represent calculated sillimanite, full squares represent 
experimental sillimanite and open circles represent experimentally measured 2:1 mullite. Stars mark new 
vibrations of 2:1 mullite (orange) and sillimanite (black) found experimentally. Numbers in the legend 
correspond to a given peak’s position at lowest pressure in which it appears. 
 

The shift of Raman peak positions (vibrational frequencies) vs. pressure for 

experimental data of 2:1 mullite is illustrated together with experimental and calculated 

data of sillimanite in Figure 34. Some trends can be identified. In sillimanite all vibrations 

above 850cm-1, which corresponds to pure stretching modes of SiO4 tetrahedra agree very 
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well with calculations (Figure 34d). When experimental vibrations of 2:1 mullite are 

superimposed on those of sillimanite the agreement is very good (Figure 34d), with the 

exception of the vibration at 256cm-1. Finally, 2:1 mullite does not present any strong 

vibrations below 250cm-1 (Figure 34a).  

Vibrations in sillimanite are sharp and narrow, but in 2:1 mullite they correspond to 

wide bands. So vibrations which are localized in ordered sillimanite are much more spread 

in 2:1 mullite, due to both site disorder and oxygen vacancies. 

Within the crystal lattice of both 2:1 mullite and sillimanite, the vibrations around 

700-800 cm-1 are attributed to internal motions of AlO4 (O-Al stretching modes,) and those 

above 800 cm-1 are attributed to SiO4 and tetrahedra (O-Si stretching). These modes show a 

large pressure dependence of over 3cm-1/GPa. This was also observed for sillimanite by 

Mernagh and Liu. 119 When considering the crystal structure of sillimanite the AlO6 

octahedral chains are linked by double chains of corner-sharing MO4 tetrahedra (also 

parallel c), with an ordered distribution of the tetrahedral cations Al3+ and Si4+. In this 

configuration there are open tunnels running along the c-axis. With increasing pressure, 

such open tunnels permit minor rotations of the tetrahedral chains to occur, which leads to 

a general increase in energy of the tetrahedral vibrations. The Raman modes above 700cm-1 

are also in excellent agreement with their calculated pressure evolution over the entire 

pressure range, which implies that tetrahedral vibrations are well isolated form the rest of 

the lattice. On the other hand all other vibrations (below 700 cm-1) present some degree of 

variation from their calculated counterparts, implying that that they are much less isolated 

and the whole lattice has a greater influence on their high-pressure behavior. 

In a few instances, an increase in pressure makes vibrations more localized, and 

decouples them. For example, where theoretically calculated sillimanite presents two 

vibrations (ex. 592cm-1 and 601cm-1), for experimental sillimanite only one corresponding 
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peak can be identified (594 cm-1).  However above 2.5 GPa a second peak appears as a 

shoulder (at 608cm-1). This is also seen for the sillimanite peak at 1127cm-1 (one 

experimentally measured peak but two calculated vibrations), which splits into two at 4GPa 

and above. The same behavior is observed in the corresponding peak of mullite (ex: peak at 

611cm-1 and shoulder appearing above 4GPa at 636cm-1; or the peak at 406cm and two 

shoulders appearing above 4GPa). 

The vibrational mode at 483cm-1 was attributed to the free SiO4 ion due to its very 

high Grüneisen parameter value (1.93). In this work however it is found the 483-1 mode has 

a small Grüneisen parameter (0.44) and can be attributed to both a vibrational mode of O-

Si-O and to a stretching mode of the aluminum tetrahedra O-Al(t)-Al(t). 

Vibrations with lower mode-Grüneisen parameters are indicative of more ionic 

bonding and may correspond to vibrations of the aluminate tetrahedra. However there is 

only one instance of isolated aluminate tetrahedra vibration: bending of O-Al(t)-O at 262cm-

1 with a Grüneisen parameter of 0.2. 

The low wavenumber modes show very little pressure dependence, and a couple even have 

a negative slope. Vibrations with negative mode Grüneisen parameters (235cm-1 and 

309cm-1) indicate lengthening of bonds and involve the aluminate octahedra, in the form of 

intra-octahedral bending or inter-polyhedral bending with SiO4 tetrahedra. The low 

wavenumber modes are mostly rotational or translational lattice modes and are strongly 

mixed as indicated in Table 14. As pressure is increased, they are not very influenced by the 

rotation of the tetrahedral chains and the corresponding decrease in cell volume. In both 

sillimanite and 2:1 mullite, starting from ~15 GPa we also observe the appearance of new 

vibrational bands between 300 and 350 cm-1. In sillimanite there are 3 rather sharp peaks, 

while in mullite there is one band around 310 cm-1, which coincides very well with the 

position of the sharp feature in sillimanite (Figure 34 (a)) as well as another broad band 
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~510 cm-1. These new features persist up to the highest pressure of the experiment in both 

materials.  New vibrational modes could point towards the beginning of a phase transition 

as was proposed by Oganov et al. 15  

 

Table 16. Correspondence of sillimanite and mullite Raman modes and Grüneisen parameters.  
This Table is limited to the correspondence between modes of sillimanite (experimental and theoretical) and 2:1 
mullite (experimental) found in Figure 34. Vibrations marked with * appear at higher pressures so νi is derived 
from an extrapolation to ambient pressure. Theoretical values are issued from calculations carried out by D. 
Többens, Helmholtz Zentrum Berlin (private communication). Also shown are Raman modes obtained by 
Mernagh and Liu,119 in a study of sillimanite only, on compression up to 15 GPa. 

Sillimanite – this work – K0 = 
167(7)GPa 

2:1 Mullite – this work – 
K0=162(7)GPa 

Sillimanite – 
Mernagh&Liu 119 

Theoretical Experimental Experimental  

νi  
(cm-1) γi  νi  

(cm-1) γi νi  
(cm-1) γi νi  

(cm-1) γi 

139.251 0.48 143.4(10) 0.20(1) - - 143 0.023(2) 
234.65 -0.61 235.9(10) -0.70(5) - - 236 -0.92(9)  
259.257 0.20 262.1 * (50) 0.26(2) 257.0(50) 0.35 - - 
309.786 0.44 310.6(20) 0.28(2) - - 311 -0.48(5) 
310.179 -0.27  309.0(10) -0.32(2) - - - - 
- - 302.9*(20) 0.85(6) - - - - 
- - 303.3*(50) 1.30(8) 306.7(20) 1.1 - - 
- - 306.8*(50) 0.06(1) 313.2*(50) -0.078 - - 
387.469 0.75 391.0(10) 0.76(5) 384.2*(10) 0.30 - - 
406.23 0.60 409.4(10) 0.55(4) 412.2*(30) 0.48 - - 
417.411 0.66 422.1(10) 0.66(4) 411.4(20) 0.67 421 0.83(8) 
445.774 0.25 456.5(10) 0.34(2) - - 456 0.29(3) 
447.883 0.43 463.8(10) 0.31(2 - - - - 
479.461 0.032 483.0(10) 0.44(3) - - 483 1.93(19) 
- - - - 514.8*(10) 0.013 - - 
592.75 0.51 594.2(10) 0.55(4) - - 594 0.70(7) 
601.77 0.87 600.2 *(13) 0.96(6) 612.0(50) 0.23 - - 
706.297 0.98 704.7(10) 0.89(6) - - 708 0.75(7) 
710.859 0.74 710.4(10) 0.91(6) 720.0(20) - - - 
874.665 0.62 872.3(10) 0.58(4) - - 871 0.96(9) 
903.423 0.97 907.3(10)  0.91(6) - - - - 
957.902 0.73 963.1(10) 0.75(5) 961.5(20) 0.76 962 0.97(10) 
1035.688 0.79 1035.0(10) 0.74(5) 1033.6(50) 0.69 - -- 
1130.151 0.50 1127.6(20) 0.51(3) 1130.9(20) 0.37 1126 0.62(6) 
1136.308 0.50 1136.8*(30) 0.48(3) - - - - 
 

As shown in x-ray diffraction investigations earlier in this text, unit cell volumes of 7:4 

mullite display a collapse with pressure and within the structure, the distortion of 

octahedra, coupled with the motion of tetrahedral sites towards the edge of the tetrahedra 

causes the tetrahedral sites and the O(1) oxygen sites to move closer. This could ultimately 

lead to formation of SiO5 and AlO5 distorted bipyramids, sharing an edge with the AlO6 

octahedra (Figure 38). A structural evolution of 7:4 mullite towards a possible formation of 
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AlO5 or SiO5 would be consistent with the pressure/coordination rule, which suggests that 

increasing pressure (or decreasing temperature) leads to formation of higher coordination 

groups. Oganov 15 proposed that in sillimanite there exists a critical bonding distance, for 

the Si–O  bond, above which atomic interactions cannot be considered as bonding. Our 

structural refinements show the T–O1 distance in 7:4 mullite at 24.7 GPa to be greater than 

the distance that would be necessary for the capture of a fifth oxygen (bonding interaction) 

and creation of AlO5 and SiO5. Nevertheless it can be thought that the crystal structure of 

mullite, under the influence of pressure, is evolving in the direction of a possible phase 

transition, with motion towards the formation of five-coordinated silica and alumina. 

However, the transition does not ultimately take place, because the process of 

amorphization takes over as seen with the disappearance of Raman bands in mullite and in 

sillimanite. Table 16 lists and attempts to match the vibrations found in 2:1 mullite with the 

experimental and calculated vibrations of sillimanite, and compares the values obtained in 

this work with those reported Mernagh and Liu. 119 The correspondence between 

theoretical and experimental mode Grüneisen parameters is very good above 380cm-1 and 

excellent above 500cm-1. There is also good agreement, for most values, with the data 

reported by Mernagh and Liu. 119 

 

4.3. High-Pressure Synchrotron XRD of Boron Mullites 

 

The samples of 7:4 mullite and B-mullite were compressed, in small pressure steps, 

up to 28.2 GPa and 28.8 GPa respectively, and then decompressed back to ambient pressure. 

Figure 35 shows X-ray diffraction patterns collected in situ in a DAC. As pressure is 

increased, all diffraction lines shift toward higher 2ϴ angles or lower d-spacings.  
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Figure 35. 7:4 mullite and B-mullite X-ray diffraction at high-pressures.  
Selected patterns of in situ synchrotron X-ray diffraction of 7:4 mullite and B-mullite in diamond anvil cell, for 
various values of increasing pressure. 
 

All along the compression both samples’ patterns were indexable in the mullite space group 

Pbam. Compression data were smooth up to about 19 GPa (~17 GPa for B-mullite), from 

which point the diffraction peaks appeared to broaden, and the refined unit cell parameters 

deviated significantly down from the compressional trend. At 24.7 GPa (24.6 GPa for B-

mullite) the diffraction patterns were not indexable anymore, suggesting X-ray 

amorphization or a phase transition underway.  

To follow the pressure evolution of unit cell parameters and unit cell volumes of 7:4 

mullite and B-mullite, Rietveld full-profile structural refinements were performed on X-ray 

diffraction patterns (see examples in Figure 36 and Table 17). Refinements were done 

starting from the structure of 3:2 mullite of Saalfeld and Guse, 103 which was transformed 

into the standard mullite setting. 
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Figure 36. Rietveld refinements of 7:4 mullite and B-mullite. 
Representative Rietveld refinements of 7:4 mullite and B-mullite at pressure 6.1 GPa and 10.5 GPa.  
Insets show portions of the original synchrotron X-ray diffraction images to illustrate the good quality of high 
pressure powder X-diffraction data. 
 

The structure was further adapted to reflect the 7:4 ratio of Al2O3:SiO2 composition. 

Since boron has a low scattering factor and hence its positions cannot be determined in 

using X-rays, the same starting structure was used for refinements of both samples. The 

displacement parameters of atoms forming the octahedra and those forming tetrahedra 

were refined in two groups.  



115 
 

Pressure-induced broadening and intensity loss of ADXRD lines limited the 

refinement of displacement parameters to 24.7 GPa for 7:4 mullite and 22.9 GPa for B-

mullite. Figure 36 shows representative Rietveld refinements at high pressures and insets 

show snapshots of portions of the original diffraction images with Debye rings.  Table 17 

shows the data of the Rietveld refinements from Figure 36. The statistically good quality of 

high-pressure X-ray diffraction data allowed us to extract reasonable trends in the 

pressure-driven evolution of atom positions and consequently trends concerning 

polyhedral distortion and tilting. 120 

 

Table 17. Results of Rietveld structural refinements of B-Mullite and 7:4 mullite from Figure 36. 
7:4 Mullite 

Crystal system orthorhombic  a (Å) 7.452(1)  p (GPa) 6.3(2)  
Space group Pbam (55)  b(Å) 7.581(2)  V (Å3) 161.0(1) 
Z 2  c(Å) 2.851(2)  Rwp 0.371 
 
Label Site x y z Atom Occ. B (temp.) 
Al1 2a 0.00000 0.00000 0.00000 Al+3 1 0.93(3) 
TAl 4h 0.1453(4) 0.3371(4) 0.50000 Al+3 0.5 0.93(3) 
TSi 4h 0.1453(4) 0.3371(4) 0.50000 Si+4 0.334 0.93(3) 
T* 4h 0.274(2) 0.198(2) 0.50000 Al+3 0.167 0.93(3) 
O1 4h 0.3487(5) 0.4192(4) 0.50000 O-2 1 0.93(3) 
O2 4g 0.1356(6) 0.2156(3) 0.00000 O-2 1 0.93(3) 
O3 2d 0.00000 0.50000 0.50000 O-2 0.501 0.93(3) 
O4 4h 0.428(4) 0.040(4) 0.50000 O-2 0.137 0.93(3) 
        
B-Mullite 

Crystal system orthorhombic  a (Å) 7.380(1)  p(GPa) 10.9(3) 
Space group Pbam (55)  b(Å) 7.526(1)  V (Å3) 156.78(9) 
Z 2  c(Å) 2.824(1)  Rwp 0.311 
        
Label Site x y z Atom Occ. B (temp.) 
Al1 2a 0.00000 0.00000 0.00000 Al+3 1 0.74 (3) 
TAl 4h 0.1506(2) 0.3356(3) 0.50000 Al+3 0.5 0.74 (3) 
TSi 4h 0.1506(2) 0.3356(3) 0.50000 Si+4 0.334 0.74 (3) 
T* 4h 0.267(1) 0.202(1) 0.50000 Al+3 0.167 0.74 (3) 
O1 4h 0.3606(4) 0.4172(3) 0.50000 O-2 1 0.74 (3) 
O2 4g 0.1301(3) 0.2113(2) 0.00000 O-2 1 0.74 (3) 
O3 2d 0.00000 0.50000 0.50000 O-2 0.501 0.74 (3) 
O4 4h 0.439(2) 0.071(2) 0.50000 O-2 0.167 0.74 (3) 
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The pressure-induced evolution of unit cell parameters a, b, and c and the relative 

fractional changes of these parameters are shown in Figure 37. For both 7:4 mullite and B-

mullite the lattice compression is anisotropic (Figure 37(a) and (b)). The lowest 

compressibility along the c axis is explained by firmly-bound, edge-sharing octahedra and 

corner-sharing tetrahedra running along this direction. 

 

 
Figure 37. Pressure-driven change of unit cell parameters. 
Relative, pressure-driven change of unit cell parameters of (a) 7:4 mullite and (b) B-mullite: comparison of all 
cell parameters for each sample. (c): Comparison of normalized unit cell parameters for the two samples. 

 

Further, the compression appears very slightly more anisotropic in B-mullite when 

compared to 7:4 mullite (Figure 37(a) and (b)). It has been shown that in borates the BO3 

and BO4 polyhedra change little upon heating, much like tetrahedra in silicates.97 In many 

borates this can lead to highly anisotropic thermal expansion or to negative thermal 

expansion. 121  We can then assume that the replacement of some of the SiO4 by BO3 in B-
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mullite also increases the anisotropic nature of compression in this material. On 

compression below ~15 GPa both mullites display nearly identical fractional pressure 

evolution (Figure 37(c)). On compression above ~20 GPa the lattice parameters (and 

correlated cell volumes) deviate significantly down from the compressional trend (Figure 

37(c)). This discontinuity is slightly stronger for B-mullite than for 7:4-mullite. 120 

 

4.3.1. Compression Mechanisms 

The pressure driven evolution of AlO6 octahedra may shed some light on the compression 

mechanisms. In any mullite structure the angle defined by octahedra in the a-b plane, 

constructed by drawing lines through the terminating oxygen atoms of the octahedra (O2 

oxygen sites), is called the inclination angle ω. Figure 38(a) shows the location of ω within 

the mullite structure. Figure 39 shows, for both samples, the pressure-driven change of the 

inclination angle ω (Figure 39(c)) as well as the indices of distortion (Figure 39(a) and (b)) 

of angles and distances within the AlO6 octahedra and SiO4/AlO4 tetrahedra, calculated after 

Baur. 121 For example, following Baur, the distortion index for distances within a 

tetrahedron is calculated as: 

𝐷𝐼(𝑇𝑇) = �∑ |𝑇𝑇𝑖 − 𝑇𝑇𝑚|4
𝑖=1 �/4𝑇𝑇𝑚         

where TOi is an individual distance from tetrahedral cation to an oxygen atom and m 

signifies the mean value for the polyhedron. Similar calculations are done for the octahedral 

distances and angles. 120 

It is observed that up to ~18 GPa for B-mullite (20 GPa for 7:4 mullite) the 

octahedral distances are almost not distorted, while angles present a greater, but rather 

constant distortion (Figure 39(a) and (b)). Minimal and constant distortion in octahedral 

distances and a constant distortion of angles in both samples implies that the increase in the 

angle ω, below ~18 GPa for B-mullite (20 GPa for 7:4 mullite), is related to the rotation of 
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AlO6 octahedra away from each other, in the a-b plane (Figure 38, Figure 39), rather than a 

distortion of the octahedra. 120 

 

 

 

 
 
Figure 38. The crystal structure of B-mullite at different pressures.  
(a) The crystal structure of B-mullite at 1 GPa. Also shown is the inclination angle ω, which illustrates the 
rotation of the AlO6 octahedra with respect to each other. (b): The crystal structure of B-mullite at 22.9 GPa 
illustrating the distortion of octahedra, the increase in the inclination angle ω and the evolution of AlO4 or SiO4 
tetrahedra towards distorted AlO5 or SiO5 bipyramids. (c): The pressure driven evolution of the tetrahedral site. 
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Above ~18 GPa for B-mullite (20 GPa for 7:4 mullite) the dramatic increase in ω 

(Figure 39(c)) can no longer be interpreted in terms of rotation of octahedra, but rather in 

terms of more pronounced distortion of octahedral angles and octahedral distances (Figure 

39(a) and (b). The  dramatic increase of ω (Figure 39(c)), corresponds to the pressure range 

where the refined unit cell parameters of both B-mullite and 7:4 mullite deviate 

significantly down from the compressional trend (Figure 37(a) and (b)). The more 

significant deviation of ω in B-mullite can be correlated with the higher compressibility of 

B-mullite (see chapter below) and the earlier onset of pressure-induced amorphization in 

this sample. 120 

The compression along a and b is overall greater than along c. At lower pressures b 

is slightly more compressible than a, but this is only true up to ~15 GPa for 7:4 mullite and 

up to ~7 GPa for B-mullite (Figure 37(a) and (b)). Above this threshold pressure the 

compressibilities cross-over and the a axis becomes progressively more compressible, 

indicating a change in the mechanism of compression. 120 

Yang et al. 17 investigated sillimanite on compression up to 5.29 GPa and proposed 

that the greater compressibility along b, in that low pressure range, is due to the 

compression of the long octahedral bonds, which are oriented closer to the b axis and 

therefore influence more its compressibility than that of the a axis. In the present work, in 

the case of both 7:4 mullite and B-mullite, it is observed that at pressures below 5 GPa the 

octahedral bonds Al1-O1 oriented closer to the a axis increase slightly under compression, 

while those oriented closer to the b axis, Al1-O2 decrease slightly (Figure 38(a)  and Figure 

40). This is consistent with the fact that, at low pressures, b is more compressible than a. 

However with increasing pressure the octahedra rotate away from each other, as shown by 

the evolution in the inclination angle ω (Figure 39(c)), and this rotation makes the Al1-O2 

bonds to orient more in the middle between the a and the b axes.  120 
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Figure 39. Indices of distortion in in 7:4 mullite and B-mullite.  
(a) and (b) The pressure-driven change in the index of distortion of distances and angles in the polyhedra and 
(c) of the inclination angle ω, in 7:4 mullite and B-mullite.  
 

Also under further compression the Al1-O1 and Al1-O2 bonds become 

approximately equal (Figure 40). Starting from 20 GPa in 7:4 mullite and 18 GPa in B-

mullite, the octahedral angles become distorted (Figure 39(a) and (b)), which makes the 

octahedral distance Al1-O1 decrease, while Al1-O2 increases (Figure 40). Since Al1-O1 is 



121 
 

oriented closer to the a axis this could explain the greater compressibility of a at higher 

pressures (above ~18 GPa). There can exist other mechanisms, at lower pressures, related 

to changes in inter-polyhedral bonds and angles that could shed further light on the 

difference in compressibility of a and b. 120 

 

 
Figure 40. Bond lengths in 7:4 mullite and B-mullite.  
Evolution of octahedral and tetrahedral bond lengths versus pressure, in 7:4 mullite and B-mullite. The location 
of specific atoms and bonds can be found in Table 17. 

 

In summary, compression in B-mullite and 7:4 mullite can be thought of as 

occurring in steps. Initially compression is dominated by a decrease in the longest 

(octahedral) bonds, coupled with a small rotation of octahedra away from each other 

(increase in ω). Octahedral distances are almost not distorted, while angles present some 

approximately constant distortion. In tetrahedra bond lengths decrease more slowly than in 
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the octahedra, and distortion in bond lengths and angles is present, but remains 

approximately constant, so the tetrahedra can be considered to behave as more rigid units, 

compared to octahedra, which is expected. As octahedra rotate under pressure, the b axis, 

initially more compressible, gives way to the a axis to became the most compressible, above 

~13 GPa for 7:4 mullite and ~7 GPa for B-mullite. The region above ~18 GPa for B-mullite 

(20 GPa for 7:4 mullite) can be thought of as the last stage of compression, with significant 

increase in distortion of all polyhedral bond lengths and angles, which causes a dramatic 

increase in the inclination angle ω. These changes are accompanied by a progressive, 

pressure-induced X-ray amorphization, discussed below. 120 

 

4.3.2. Mechanisms of Pressure-Induced Amorphization 

Above ~15 GPa we observe a gradual loss of long range order due to distortion 

(Figure 35), leading to pressure-driven X-ray amorphization at the highest pressures of 

compression, in both samples. It is found that B-mullite becomes almost completely X-ray 

amorphous at at ~25 GPa  while 7:4 mullite still has some residual crystallinity at 27.8 GPa. 

We previously observed X-ray amorphization in 2:1 mullite and 3:2 mullite above ~30 GPa 

and in the structurally similar sillimanite above ~40 GPa.122 The mullite-type Al5BO9 was 

also found to undergo complete X-ray amorphization, at ~26.7 GPa. 123 

Several factors appear to lead towards amorphization. At 24.7 GPa for 7:4 mullite 

and 22.9 GPa for B-mullite (last pressure where structural refinements were carried out) 

AlO6 octahedra are distorted, and the distortion appears most prominent in the ab-plane 

(Figure 38(b)). The inclination angle ω, which was, initially, increasing slowly, experiences a 

dramatic upturn starting from around 20 GPa (Figure 39). The most striking change occurs 

in the tetrahedra (Figure 38(b) and (c)), where the central atom (Si or Al) moves in the 

direction outward from the tetrahedron volume, all the while the O1 atom sites move closer 
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to the tetrahedral sites, due to the increase in distortion of octahedra (or of the inclination 

angle ω). It was proposed by Oganov 15 that the crystal structure of sillimanite can undergo 

a pressure-induced phase transition at ~35 GPa, having the same symmetry and similar 

structure, but characterized by the formation of AlO5 and SiO5 distorted bipyramids, which 

share an edge with the AlO6 octahedra. The formation of five coordinated Si and Al is 

achieved by pulling an extra O atom, initially not bonded to Si and Al inside the first 

coordination sphere of Si and Al2. Compression of silica glass was reported to increase the 

coordination number of silica 124 and fivefold coordination was reported starting around 12 

GPa. 125 Five-coordinated silica is also found in silicate and aluminate glasses 126, 127 and in 

calcium silicate CaSi2O5.128 AlO5 bipyramids are found in numerous crystal structures, e.g. in 

mullite-type Al5BO9 123 and Al4B2O9, 123 and in andalusite. 

In the present case of 7:4 mullite and B-mullite, it is observed that pressure appears 

to drive the crystal structures in the direction of what could ultimately become a phase 

transition. Unit cell volumes display a collapse with pressure and within the structure, the 

distortion of octahedra, coupled with the motion of tetrahedral sites towards the edge of the 

tetrahedra causes the tetrahedral sites and the O(1) oxygen sites to move closer. This could 

ultimately lead to formation of SiO5 and AlO5 distorted bipyramids, sharing an edge with the 

AlO6 octahedra (Figure 38). A structural evolution of B-mullite and of 7:4 mullite towards a 

possible formation of AlO5 or SiO5 would be consistent with the pressure/coordination rule, 

which suggests that increasing pressure (or decreasing temperature) leads to formation of 

higher coordination groups. Further, one could assume that in the case of B-mullite 

pressure would tend to create BO4 groups in place of the BO3 groups observed at ambient 

pressure and temperature conditions. Oganov 15 proposed that in sillimanite there exists a 

critical bonding distance, of 2.25 Å, for the Si–O  bond, above which atomic interactions 

cannot be considered as bonding. Our structural refinements put the T–O1 distance at 
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~2.70 Å in 7:4 mullite at 24.7 GPa and ~2.56 Å in B-mullite at 22.9 GPa (compared to 3.0 Å 

at ambient pressure), which is greater than the distance that would be necessary for the 

capture of a fifth oxygen (bonding interaction) and creation of AlO5 and SiO5. Nevertheless it 

can be thought that the crystal structure of B-mullite and that of 7:4 mullite, under the 

influence of pressure, is evolving in the direction of a possible phase transition, with motion 

towards the formation of five-coordinated silica and alumina. However, the transition does 

not ultimately take place, because the process of amorphization takes over. It can also be 

thought that process of shifting towards five-coordinated silica and alumina actually creates 

instabilities in the structure and contributes to the amorphization. However sillimanite, 

which does not have oxygen vacancies, also undergoes pressure driven amorphization 

above ~40 GPa. 122 So instabilities around oxygen vacancies are only one of the factors that 

contribute to an earlier pressure-induced amorphization in mullite. 120 

In recent shock experiments Atou et al. 122 proposed that oxygen vacancies in 

mullite act as initiation points for amorphization. In the present work it is found that B-

mullite (x≈0.4), which has more oxygen vacancies than 7:4 mullite (x=0.33), also undergoes 

amorphization at a lower pressure than 7:4 mullite, while the previously investigated 

sillimanite, 122  which does not have any oxygen vacancies, undergoes amorphization above 

~40 GPa. This is consistent with the idea the amorphization of mullite could be triggered by 

phase instability around these oxygen vacancies, which would then result in a 

crystallographically uncontrolled crystal collapse and localized amorphization. 120 

High-pressure, Synchrotron ADXRD patterns of 7:4 mullite and B-mullite were also 

collected in situ (DAC), during decompression runs from the highest pressures investigated 

down to ambient conditions. Comparative X-ray diffraction patterns of both samples 

decompressed to ambient pressure are shown in Figure 41. 120 It appears that B-mullite and 

7:4 mullite behave somewhat differently upon complete release of pressure. B-mullite 
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remains mostly X-ray amorphous upon decompression from 28 GPa (no diffraction lines 

visible, other than Al2O3 and Au). 

 

 
Figure 41. Decompression of 7:4 mullite and B-mullite.  
Comparison of XRD patterns of 7:4 mullite and B-mullite recovered after decompression with: the highest 
compression pressure pattern and the beginning of compression pattern. All patterns are background 
subtracted to facilitate comparison. Also visible are diffraction lines of Au and Al2O3 (pressure indicators), and 
Ne pressure transmitting medium. The recovered sample of B-mullite still displays diffraction lines of Ne due to 
residual stresses in the gasket.  

 

7:4 mullite however appears to partially recover some of its crystallinity upon 

decompression down from 28 GPa as is evidenced by a few diffraction lines attributable to 

the mullite structure. Figure 41 suggests that depending on the amount of oxygen vacancies 

and the top compression pressure, amorphization is partially reversible. In this light, the 

pressure driven amorphization can be thought of as an extreme distortion of bond distances 

and angles, or temporary loss of long range order (preserving at least a portion of the 
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bonds), which upon pressure release allows the crystal structure to partially recover (and 

in this sense recovery does not involve recrystallization). 120 

 

4.3.3. Equation of State and Axial Compressibilities 

When comparing the axial compression between 7:4 mullite and B-mullite, the 

evolution appears almost identical along c in the entire compression range, while along a 

and b the B-mullite is slightly more compressible above ~15 GPa (Figure 37). The overall 

similarity in compression is then observed in the volume evolution versus pressure (Figure 

42). The unit cell volume of B-mullite appears a little more compressible. A third order 

Birch-Murnaghan 110, 111, 113 equation of state (EoS) was fitted to the experimental pressure-

volume data (Figure 42) to determine the bulk modulus K0 and its pressure derivative K0′ at 

ambient conditions for 7:4-mullite and for B-mullite: 
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Figure 42. Pressure-volume plot and equation of state fits for 7:4 mullite and B-mullite.  
 



127 
 

The bulk moduli obtained from the Birch-Murnaghan fits, accounting for uncertainties in P 

and volume, are summarized in Table 18, together with our previous data for 3:2 and 2:1 

mullite, as well as literature data for synthetic boron-mullite Al5BO9 and sillimanite. For 

each sample, the EoS was fitted only up to the early onset of the pressure-induced 

discontinuities, beyond which the EoS breaks down (Figure 42). 120 It is possible to establish 

a trend of bulk modulus value versus the amount of oxygen vacancies. In fact we observe a 

slight decrease in bulk modulus with increasing number of oxygen vacancies x in the 

structure: sillimanite (x=0) ≥ 3:2 mullite (x=0.25) > 7:4 mullite (x=0.33) > 2:1 mullite 

(x=0.4) ≥ B-mullite (x≈0.4). Such ordering was suggested in first-principles modelling by 

Aryal 116 for sillimanite and several mullites. Interestingly, the inclusion of boron in the 

mullite structure makes the structure more compressible, probably due to the structurally 

less resilient BO3 triangles, which replace some of the SiO4 tetrahedra in B-mullite and the 

higher number of oxygen vacancies. 120 

 

Table 18. Bulk moduli of various mullites.  
Comparison of: bulk moduli (K0), their pressure derivatives (K0’) and unit cell volumes at ambient pressure (V0) 
obtained in the present work with available literature data. For a comprehensive list of bulk moduli of various 
mullite and of sillimanite, obtained by different methods, see Kalita et al. 75 

  K0 (GPa) K0’ K0’’ V0 (Å3)  Space Group 

3:2 Mullite - this work  173(6) 2.3(2) – 167.580 (1) Pbam (55) 
3:2 Mullite 116  173.2    Pbam (55) 
7:4 Mullite - this work  164(7) 2.7(1.7) – 167.401(1) Pbam (55) 

 160(5) 4 (fixed) – 167.401(1)  

2:1 Mullite - this work  162(7) 2.2(6) – 168.13(2) Pbam (55) 
2:1 Mullite 116  167.6    Pbam (55) 
B-Mullite - this work  148(7) 6.7(1.7) – 166.402(1) Pbam (55) 

 159(4) 4 (fixed) – 166.401(1)  
4:1 Mullite 116  151.3    Pbam (55) 
Al5BO9 (mullite-type)123  164(1) 4 – 657.3(2) Cmc21 (36) 
Sillimanite - this work  167(7) 2.1(4) – 331.459(3) Pbnm (62) 
Sillimanite 116  174.9    Pbnm (62) 
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The elastic anisotropy of B-mullite and 7:4 mullite can be described in terms of axial 

bulk moduli, which are obtained by applying a linearized Birch-Murnaghan EoS, 24 where 

virtual volumes a3, b3, or c3 must be used. The axial compressibilities, described as 

linearized bulk moduli obtained from the EoS fits are summarized in Table 19. 

 

Table 19. Axial compressibilities of various mullites. 
Axial compressibilities, described as linearized bulk moduli obtained from the EoS fits, obtained in the present 
work and compared with literature data. 

  Ka0 (GPa)  
Ka0’ 

 Kb0 (GPa)  
Kb0’ 

 Kc0 (GPa)  
Kc0’ 

7:4 Mullite - this work  139(3)  
2.7(5)  138(4)  

5.3(9)  173(6)  
8.3(1.0) 

B-Mullite - this work  109(4)  
8.0(1.0)  147(8)  

5.1(9)  198(15)  
8.8(1.0) 

Al5BO9 (mullite-type)123  244(9)  
4.6(9)  120(4)  

2.5(4)  166(11)  
6.9(9) 

Sillimanite - this work  163(1)  
2.1(3)  113.1(7)  

5.1(2)  297(1)  
11.1(4) 

          
 

The anisotropic scheme thus obtained is for 7:4 mullite: Ka0:Kb0:Kc0 = 1.007:1:1.254; 

β(a):β(b):β(c) = 1:245:1.254:1 (where β(n) =  1/(K0(n))); and for B-mullite: Ka0:Kb0:Kc0 = 

1:1.349:1.817; β(a):β(b):β(c) = 1.817:1.347:1. 120 

In situ high-temperature X-ray diffraction experiments performed by Lührs 29 on B-

mullite from 300oC up to 1000oC yielded the following thermoelastic anisotropy: 

α(a):α(b):α(c) = 1:1.29:1.18 with α(a)=4.5(1), α(b)=5.8(1) and α(c)=5.3(1)x10-6 oC-1  (where 

α(i) = 1/li(∂li/∂T) is the axial expansion coefficient). We can obtain a first approximation P–

T–V EoS of B-mullite by combining the elastic parameter obtained in this study with the 

thermal parameters of Lührs et al.: 29 

𝑑(𝑃,𝑇) ≅ 𝑑�𝑃0,𝑇0�[1− 𝛽∆𝑃 + 𝑞∆𝑇] = 𝑑�𝑃0,𝑇0�[1− 0.0067(1)∆𝑃 + 5.2(1) × 10−6∆𝑇]   

where  β=1/KT0 is in GPa-1 and α is in K-1. This equation is based on the assumptions that 

both thermal expansion and K’ are constant with pressure. It should also be noted that bulk 
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modulus data are associated with a ~10% volume compression whilst the thermal 

parameters area derived from a ~1% volume change. 120 

 

4.4. High-Pressure Behavior of PbMBO4 Synthetic Mullites 

 

4.4.1. High-Pressure Synchrotron XRD of PbFeBO4 

High-pressure ADXRD patterns of mullite-type PbFeBO4 phases were collected in-

situ in a DAC, on compression from 1.4 GPa up to 71.7 GPa. Figure 43 shows x-ray 

diffraction patterns measured for PbFeBO4. As pressure is increased all diffraction lines 

shift towards higher 2θ angles i.e. lower d-spacings. According to the ADXRD patterns the 

compression appears to be continuous up to the highest pressure investigated, although the 

diffraction lines display pressure-broadening and some changes in relative intensities. 

 In order to follow the pressure evolution of unit cell parameters and unit cell 

volumes of mullite-type PbFeBO4, Rietveld full-profile structural refinements were 

performed on all x-ray diffraction patterns collected. At ambient pressure and temperature 

PbFeBO4 has an orthorhombic crystal lattice and crystallizes in the space group Pnam (62). 

For starting the ambient pressure refinements we used the initial structure of Murshed et 

all, 104 which is in the usual mullite setting, i.e. with the octahedral chains running along the 

c crystallographic axis. The pressure-induced evolution of unit cell parameters a, b, and c 

and of cell volumes V are given in Figure 44, while relative fractional changes of unit cell 

parameters are shown in Figure 45. 

 Rietveld refinements of high-pressure X-ray diffraction data combined with analysis 

of Raman spectra helped to reveal some unexpected and interesting features of the process 

of compression.  
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Figure 43. High-pressure ADXRD patterns of the mullite-type PbFeBO4. 
The ADXRD patterns were measured in-situ in a DAC on compression from ambient pressure up to 71.7 GPa.  
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First of all, as the PbFeBO4 structure is compressed between ambient pressure and ~8GPa 

and while the a and c unit cell parameters decrease, on the contrary the b unit cell 

parameter increases. This expansion under pressure or negative axial compressibility is ~ 

1.5% (Figure 45). This feature, also referred to as negative linear compressibility (NLC), is 

discussed in detail in a section below. With pressure increase above ~8 GPa the b parameter 

slowly decreases by ~3.7% on compression up to 71 GPa.  

 

 
Figure 44. Pressure-driven evolution of unit cell parameters and volume of PbFeBO4.  
Open symbols refer to the high-pressure phase. 

 

The c unit cell parameter decreases by ~8% in the entire compression range, but 

displays a temporary slowdown in compression (between 8 and 18 GPa). The most 

compressible is the a parameter, decreasing by ~11% between ambient pressure and 11.8 

GPa. Above this pressure the compression of the a parameter slows down noticeably and it 

is only ~6% between 11.8 GPa and 71 GPa. Since compressibility along the a-axis is much 

higher as compared to the b-axis, it points to the fact that any major pressure-induced 

changes in the crystal structure of PbFeBO4 are likely to occur along the a- and c-axes. 
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Figure 45. Pressure-driven fractional change of unit cell parameters in PbFeBO4.  
Open symbols refer to the high-pressure phase. 
 

11.8 GPa is also the pressure threshold from which the unit cell volume curve 

appears to markedly change its rate of compression, all of which points to a structural 

rearrangement. In situ high pressure Raman spectroscopy studies carried out for this 

compound also indicate changes in vibrational modes around 12 GPa and the appearance of 

new vibrational modes (see the chapter on Raman spectroscopy studies).  

 

4.4.2. High-Pressure Synchrotron XRD of PbAlBO4 

High-pressure ADXRD patterns of mullite-type PbAlBO4 phases were collected in-situ in a 

DAC, on compression from 0.5 GPa to 111.8 GPa. Figure 46 shows x-ray diffraction patterns 

measured for PbAlBO4. As pressure is increased all diffraction lines shift towards higher 2θ 

angles i.e. lower d-spacings. According to the ADXRD patterns the compression appears to 

be continuous up ~54 GPa. Above this pressure we observe some changes in relative 

intensities and the appearance of new diffraction lines in the low 2θ region (Figure 46). The 

new lines appear to persist up to the highest pressure investigated, 111.8 GPa. 
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Figure 46. High-pressure ADXRD patterns of the mullite-type PbAlBO4. 
The ADXRD patterns were measured in-situ in a DAC on compression from ambient pressure up to 111 GPa. 
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In order to follow the pressure evolution of unit cell parameters and unit cell 

volumes of mullite-type PbAlBO4, Rietveld full-profile structural refinements were 

performed on all x-ray diffraction patterns collected. At ambient pressure and temperature 

PbAlBO4 has an orthorhombic crystal lattice and crystallizes in the space group Pnam (62). 

For starting the ambient pressure refinements we used the initial structure of Murshed et 

al., 104 which is in the usual mullite setting, i.e. with the octahedral chains running along the 

c crystallographic axis.  

 

 
Figure 47: Pressure-driven evolution of unit cell parameters and volume of PbAlBO4. 

 

The pressure-induced evolution of unit cell parameters a, b, and c and of cell 

volumes V are given in Figure 47, while relative fractional changes of unit cell parameters 

are shown in Figure 48. As with PbFeBO4, the Rietveld refinements of high-pressure X-ray 

diffraction data of PbAlBO4 helped to reveal some unexpected and interesting features of 

the process of compression. As the PbAlBO4 structure is compressed between ambient 

pressure and ~3GPa, the a and c unit cell parameters decrease, but the b unit cell parameter 

increases. This expansion under pressure or negative axial compressibility is ~ 0.15% up to 
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3 GPa (Figure 47). As with the previous sample, PbAlBO4 shows evidence of negative linear 

compressibility (NLC, discussed in detail in a section below), but in a smaller pressure range 

(up to 3 GPa vs. up to 8 GPa as observed for PbFeBO4).  

 

 
Figure 48: Pressure-driven fractional change of unit cell parameters in PbAlBO4. 

 

With pressure increase above ~3 GPa the b parameter slowly decreases by ~3.3% 

on compression up to 54 GPa. The c unit cell parameter displays a small discontinuity and 

decreases by ~2.3%  up to 11 GPa and by ~4% from 11 up to 54 GPa. The most 

compressible is again the a parameter, decreasing by ~7% between ambient pressure and 

11 GPa. Above this pressure the compression of the a parameter slows down noticeably and 

it is only ~4.7% between 11 GPa and 54 GPa. Since compressibility along the a-axis is much 

higher as compared to the b-axis, it points to the fact that any major pressure-induced 

changes in the crystal structure of PbFeBO4 are likely to occur along the a- and c-axes.  

11 GPa is also the pressure threshold from which the unit cell volume curve appears 

to change its rate of compression, all of which points to a structural rearrangement. In situ 

high pressure Raman spectroscopy studies carried out for this compound also indicate 
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changes in vibrational modes around 11 GPa and the appearance of new vibrational modes 

(see the chapter on Raman spectroscopy studies).  

 

4.4.3. High-Pressure Raman Spectroscopy of PbFeBO4 

Figure 49 shows the progression of Raman spectra of PbFeBO4 measured as a 

function of increasing pressure between ambient and 20.4 GPa. Figure 50 shows the 

pressure dependent shift of frequencies and the assignment of those frequencies to 

vibrations of specific groups. Raman (and infrared) mode assignment was previously 

published by the author and collaborators. 37 In the following discussion vibrational modes 

are referred by their ambient pressure position or by their position at the lowest pressure 

they become visible. 

Vibrations due to heavy molecular groups are located at lowest frequencies: Pb-O vibrations 

are between 50 and 280 cm-1 (Figure 50, panels a, b, c, and d); vibrations of the lighter Fe-O 

groups are located between 260 and 560 cm-1 and finally vibrations of the lightest B-O 

groups are clustered above 600 cm-1 and up to 1250 cm-1. Therefore the vibrations due to 

different molecular groups are rather well separated from each other.  

A phase transition is indicated by changes in vibrational modes prior to 12 GPa. 

Three modes disappear at 10 GPa: the O—Pb—O rocking at 191 cm-1 and at 193 cm-1 at 

~8GPa, the O—Fe—O symmetric stretching and the O—Pb—O asymmetric stretching at 

264 cm-1  at ~11 GPa  and finally the B—O asymmetric stretch at 1220 cm-1 at 11 GPa. Some 

vibrational energies decrease under applied pressure. Remarkably, the Pb-O stretching 

mode at 55 cm-1 softens up to ~8 GPa, but above that pressure it steadily increases towards 

higher frequencies. 
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Figure 49. Selected Raman spectra of PbFeBO4 measured as a function of increasing pressure. 
The range was between ambient pressure up to 20 GPa. Vibrational bands below 100cm-1 (not shown) were 
fitted after subtraction of peaks due to scattering from air.  

 

Another indication of structural changes around 12 GPa is given by the O-Pb-O 

wagging mode at 65 cm-1, which first experiences softening up to ~8 GPa and then above 

this pressure it linearly increases in frequency. The theoretical calculations of mode 

behavior versus pressure, and particularly the non-linear behavior of some modes, are 

consistent with experimental observations.  
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Figure 50. Pressure-dependence of Raman modes of PbFeBO4.  
Vibrations assumed new (due to the phase transition) are marked with star symbols. 
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The softening of vibrational mode frequencies reflects the expected symmetry lowering at 

the transition pressure. The pressure dependencies of the phonon frequencies revert to 

positive values in the high pressure phase. No new vibrational modes are observed in the 

pressure range up to 20.4 GPa.  

It is interesting to note that most changes in vibrational mode behavior are 

associated with changes around the Pb2+ cation. These point to the fact that Pb2+ plays an 

important role in the phase transition. 

Experimental and theoretical Raman modes for PbFeBO4 are shown in Table 20 

along with the experimental and theoretical mode-Grüneisen parameters. Also indicated are 

the mode type and symmetry for all modes. For the bulk modulus the experimental value of 

73(3) GPa (derived later in this work) was used. The values for νi were obtained from the 

Raman spectrum at ambient pressure or, in the case of non-linear modes, from the 

extrapolation of the linear fits of the pressure dependences of the Raman shifts to ambient 

pressure. In the case of non-linear modes two values of mode Grüneisen parameters are 

reported. Calculations for the mode Grüneisen parameter of any modes that appears above 

12 GPa (or changes its slope above 12 GPa) use the bulk modulus of the high pressure 

phase. The correspondence between calculated and experimental mode-Grüneisen 

parameters is good. With increasing pressure most Raman bands shift towards higher 

frequencies, i.e. show positive mode-Grüneisen parameters. However all the modes 

describing Pb—O vibrations (with one exception) show a negative value of mode-Grüneisen 

parameter before 12 GPa, which is the assumed pressure of phase transition. Except for 

modes which display softening (-1.6< γ < -0.2), the mode-Grüneisen parameters range from 

0.1 < γ < 0:8 with three modes having γ ~ 2 or 3. Most mode-Grüneisen parameters values 

are comparable to with typical values of alumino-silicate mullite and sillimanite.  
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Table 20. Raman modes for PbFeBO4 and its mode Grüneisen parameters. 
Experimentally obtained Raman modes for PbFeBO4 and mode Grüneisen parameters on compression to 88 GPa. 
Raman modes marked with * appear at higher p, so for those the ωi value is derived from an extrapolation to 
ambient p. Errors in refer to the last significant figure. Theoretical values are from calculations by Prof. Mendive 
and M. Curti. 37 

(ωi)DFT 

(ωi)P 
P=0.0001 
GPa 
T = 298  
K 

Pressure range 
for γi /GPa (dγi/dp)EXP (dγi/dp)DFT (γi)P (γi)DFT Irr. 

 Rep. Assignment 

56.8 55(2) 0.0 – 7.8 -0.75(9) -0.62 -1.0(1) -0.91(6) Ag Pb-O stretch 
56.8 55(2) 9.7 - 17.5 2.8(4) 1.5(2) 3.7(6) 2.2(3) Ag Pb-O stretch 
70.5 68(2) 0.0 – 7.8 -1.5(2) -1.79 -1.6(2) -2.1(1) B2g O-Pb-O wagg 
70.5 68(2) 9.7 - 17.5 2.2(2) 1.6(4) 2.4(3) 1.9(5) B2g O-Pb-O wagg 
97.4 100(1) 0 - 17.5 3.5(1) 2.9(2) 2.6(1) 2.5(2) Ag Pb-O stretch 
202.9 191(2) 0 - 7.8 -2.5(3) -1.8(2) -1.0(1) -0.74(9) B3g O-Pb-O scissor 
202.9 − 10.0 – 20.0 − -2.8(7) − -1.2(3)   
203.7 193(2) 0-7.8 -0.7(1) -0.2 -0.26(4) -0.08(1) B1g O-Pb-O rock 
203.7 − 10.0 – 20.0 − -3.8(6) − -1.6(3)   

269.7 264(2) 0.0 – 7.8 -1.7(3) -1.7(3) -0.47(9) -0.5(1) B1g 

O-Fe-O  
s. stretch 
+ O-Pb-O  
a. stretch 

269.7 264(2) 9.7 – 10.8 2.7(1) 3.3(2) 0.75(4) 1.02(9) B1g 

O-Fe-O 
s. stretch 
+ O-Pb-O  
a. stretch 

274.5 275(1)* 3.7 – 7.8* -0.9(2)* -1.2* -0.24(5) -0.36(2) B2g 
O-Pb-O  
a. stretch 

274.5 275(1)* 9.7 – 20.4* 2.4(2)* 1.6(2)* 0.64(6) 0.48(7) B2g 
O-Pb-O  
a. stretch 

298.5 288(1) 0.0 - 20.4 1.15(6) 1.3(1) 0.29(2) 0.36(4) Ag 
O-Fe-O  
scissor 

373.8 360(2) 0.0 - 20.4 4.1(2) 3.0(2) 0.83(5) 0.67(6) B1g 
O-Fe-O  
rock 

433.7 432(2) 0.0 - 20.4 3.04(8) 3.0(2) 0.51(3) 0.57(5) B3g 
O-Fe-O  
rock 

507.9 492(1) 0.0 - 20.4 2.1(1) 2.2(6) 0.31(2) 0.4(1) Ag 
O-Fe-O  
s. stretch 

507.9 − 10.0 – 20.0 − 0.80(1) − 0.13(1) Ag 
O-Fe-O  
s. stretch 

574.4 554(3) 0.0 – 14.6 2.4(2) 2.7(6) 0.32(3) 0.39(9) B1g 
O-Pb-O  
wagg 

574.4 − 10.0 – 20.0 − 0.672(2) − 0.10(1) B1g 
O-Pb-O  
wagg 

625.1 634(1) 0 - 20.4 1.55(9) 2.0(1) 0.18(1) 0.27(2) B1g 
O-B-O  
scissor 

682.8 665(2) 0 - 20.4 1.82(7) 1.8(2) 0.20(1) 0.22(3) B2g 
O-B-O  
scissor 

695.6 675(2)* 14.3 – 20.4 0.8(1)* 1.51* 0.23(4) 0.42(4) Ag 
O-B-O 
wagg 

1221.0 1178(1) 0 – 17.5 4.8(3) 3.6(3) 0.30(2) 0.24(3) Ag 
B-O 
a. stretch 

1240.2 1244(3)* 3.7 - 11.4 6.8(3)* 5.9(2)* 0.40(2) 0.39(3) B1g 
B-O  
a. stretch 
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In fact, the structurally related 2:1 mullite and sillimanite, an Al2SiO5 polymorph, show 

mode-Grüneisen parameter values 0.06 < γ < 1.3 (sillimanite) and 0.01 < γ < 1.8 (mullite) 

with typical values from 0.2 to 0.9 with the exception of some negative parameters at 

frequencies of 236 cm-1 and 311 cm-1.  

Mode Grüneisen parameters were previously published by the author and 

collaborators. 37 However, that work did not take into consideration the phase transition 

taking place ~12 GPa (and the associated high-pressure bulk modulus) as well as the non-

linear behavior of some modes.. Here any mode Grüneisen parameters with non-linear 

behavior were updated to display two values, one for each pressure range (see for example 

the first two entries of Table 20).   

 

4.4.4. High-Pressure Raman Spectroscopy of PbAlBO4 

Figure 51 shows the progression of Raman spectra of PbAlBO4 measured as a function of 

increasing pressure between ambient and 88 GPa. Figure 52 shows the pressure dependent 

shift of frequencies and the assignment of those frequencies to vibrations of specific groups. 

Raman (and infrared) mode assignment was previously published by the author and 

collaborators.38 In the following discussion vibrational modes are referred by  their ambient 

pressure position or by their position at the lowest pressure they become visible. As 

expected the vibrations of heavy molecular groups are located at lowest frequencies: Pb-O 

vibrations are between 50 and 280 cm-1; vibration of the lighter Al-O groups are located 

between 300 and 550 cm-1 and finally vibration of the lightest B-O groups are above 500 cm-

1. Vibrations due to different molecular groups are rather well separated from each other, 

which allows a more certain attribution of new vibrational modes appearing at during 

compression. The first phase transition is indicated by changes in vibrational modes around 

10 GPa. Three modes disappear at 10 GPa: the Pb-O stretching at 230 cm-1, O-B-O scissoring 
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at 675 cm-1, B-O stretching at 1224 cm-1. Some vibrational energies decrease under applied 

pressure. Interestingly the Pb-O stretching mode at 55 cm-1 softens slightly up to 10 GPa, 

but above that pressure it moves linearly towards higher frequencies.  

 

 
Figure 51. Raman spectra of PbAlBO4 measured as a function of pressure from ambient and 88 GPa. 

 

Another indication of structural changes around 10 GPa is given by the O-Pb-O scissoring 

mode at 174 cm-1, which first experiences softening between ambient pressure and 10 GPa 

and above this pressure linearly increases in frequency. Mode splitting is observed to occur 

for a few vibrations at different pressures: the 106 cm-1 Pb—O stretch splits into two modes 

~18 GPa,  the 80 cm-1 O—Pb—O wag splits into two at ~54 GPa, the Al—O stretch at 325 

cm-1 splits at ~26 GPa. 

It is interesting to note that most changes in vibrational mode behavior are 

associated with changes around the Pb2+ cation. This points to the fact that Pb2+ plays an  
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Figure 52. Pressure-dependence of Raman modes of PbAlBO4.  
Vibrations assumed new (due to the phase transition) are marked with star symbols. 
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important role in the phase transition. The softening of vibrational mode frequencies 

together with mode splitting reflects the expected symmetry lowering at the transition 

pressure. The pressure dependencies of the phonon frequencies revert to positive values in 

the high pressure phase.  

As shown earlier in high-pressure X-ray diffraction data a second structural phase 

transition occurs between 50 and 60 GPa. This is supported by several features observed in 

high-pressure Raman spectra. It is interesting to note that again the majority of new 

vibrational bands are associated with changes around the Pb2+ cation. These point to the 

fact that Pb2+ plays an important role in the phase transition. The phase transition is 

evidenced by the appearance of 7 new vibrational modes that are present all the way to 88 

GPa. Three new vibrational modes are observed as early as ~30GPa: 46 cm-1, 60 cm-1 in the 

region of Pb—O stretching and a mode ~574 cm-1 in the O—B—O scissoring region.  

New distinct Raman bands are also observed ~58GPa: a band at  ~ 55 cm-1 (most 

probably a Pb-O stretching), bands at 125 cm-1 and 131 cm-1 (which could be Pb—O 

stretching or wagging modes) and a mode at 173 cm-1 (in the Pb—O scissoring region). The 

band at 574 cm-1 could also be the result of pressure-driven splitting of Raman peaks 

composed of more than one vibration into separate peaks. With the second phase transition 

several modes disappear as well: the Pb—O stretch at 130 cm-1 disappears at ~62 GPa, the 

Pb—O—Al wag at 229 cm-1 disappears ~30 GPa, the Al—O stretch at 325 cm-1 and the Al—

O—Al wag at 363 cm-1 both disappear ~54 GPa, and finally the B—O stretch at 967 cm-1 

disappears ~44 GPa. 

Experimental and theoretical Raman modes for PbAlBO4 are shown in Table 21 

along with the experimental mode Grüneisen parameters. Also indicated are the mode type 

and symmetry for all modes. For the bulk modulus the experimental value of 79(6) GPa 

(derived later in this work) was used.  
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Table 21. Raman modes for PbAlBO4 and its mode Grüneisen parameters. 
Experimentally obtained Raman modes for PbAlBO4 as well as corresponding mode Grüneisen parameters 
obtained from compression to 88 GPa. Raman modes marked with * appear at higher pressures, so for those the 
νi value is derived from an extrapolation to ambient pressure.  Errors in parenthesis refer to the last significant 
figure. Theoretical values at ambient p and T are from calculations by C. Mendive and M. Curti. 38 

(ωi)DFT 
P = 0.0001GPa 
T = 0 K 

(ωi)P 
P = 0.0001GPa 
T = 298 K 

Pressure range 
for γi /GPa dγi/dp (γi)P Irr. Rep. Assignment 

– 41.2(8)* 30.7 – 75.0* 0.14(1) 0.66(8) – new 
– 49.1(7)* 30.7 – 88.2* 0.32(1) 1.3(1) – new 
59.54 55.4(9) 0.0 – 10.7 0.01(2) 0.01(1) Ag Pb-O stretch 
59.54 55.4(9) 13.0 – 34.0 0.65(5) 2.3(3) Ag Pb-O stretch 
– 60(3)* 58.0 – 88.2* -0.06(4) -0.19(4) – new 
77.42 80.3(2) 0.0 – 10.7 0.31(3) 0.32(4) B1g O-Pb-O wagg 
77.42 80.3(2) 13.0 – 25.9 0.86(2) 2.1(2) B1g O-Pb-O wagg 
77.42 80.3(2) 30.7 – 61.8  0.50(2) 1.2(1) B1g O-Pb-O wagg 
79.32 89(1)* 53.9 – 88.2*  0.31(2) 0.68(7) B2g O-Pb-O wagg 
104.33 106.3(2) 0.0 – 10.7 2.0(1) 1.6(1) B3g Pb-O stretch 
104.33 106.3(2) 13.0 – 81.6 0.39(2) 0.71(7) B3g Pb-O stretch 
– 113(3)* 58.0 – 88.2* 0.33(3) 0.57(7) – new 
– 115(2)* 58.0 – 88.2 * 0.18(2) 0.30(4) – new 
119.65 119(1)* 18.2 – 61.8 0.42(3) 0.68(8) B3g Pb-O stretch 
– 137(3)* 58.0 – 75.0* 0.63(4) 0.9(1) – new 
180.79 174.1(5) 0.0 – 10.7 -2.9(1) -1.4(1) Ag O-Pb-O scissor 
180.79 174.1(5) 13.3 – 34.1 1.17(2) 1.3(1) Ag O-Pb-O scissor 
180.79 174.1(5) 40.3 – 88.2 1.8(1) 2.0(2) Ag O-Pb-O scissor 
217.88 211.0(5) 0.0 – 10.7 -0.45(1) -0.18(1) B3g Pb-O stretch 
234.86 229.3(5) 0.0 – 30.7  0.22(3) 0.08(1) B2g Pb-O-Al wagg 
315.72 322.6(9)* 10.7 – 18.2 1.35(6) 0.35(3) B3g Al-O-Al wagg 
315.72 322.6(9)* 22.3 – 40.3 -0.02(1) -0.01(1) B3g Al-O-Al wagg 
349.81 346(4)* 25.9 – 53.9 0.76(9) 0.43(6) Ag Al-O-Al twist 
334.66 326(1) 0.0 – 10.7 2.6(2) 0.66(6) Ag Al-O stretch 
334.66 326(1) 13.0 – 53.9 1.33(7) 0.79(8) Ag Al-O stretch 
366.19 368.9(2) 0.0 – 22.3 2.40(7) 0.54(4) B2g Al-O-Al twist 
409.74 408.5(2) 0.0 – 2.6 3.8(3) 0.77(8) B1g Al-O stretch 
409.74 408.5(2) 34.1 – 75.0 1.02(6) 0.21(2) B1g Al-O stretch 

415.57 423.1(2) 0.0 – 34.1 2.81(8) 0.55(4) Ag 
Al-O-Al twist 
& O-B-O sci 

– 525(3) 34.1 – 53.9 1.44(6) 0.53(5) – new 
– 525(3) 58.0 – 88.2 0.16(4) 0.06(2) – new 
536.09 531.9(2) 0.0 – 53.9 1.75(4) 0.27(2) Ag O-B-O scissor 
536.09 531.9(2) 58.0 – 81.6 1.61(8) 0.59(6) Ag O-B-O scissor 
669.50 674.6(2) 0.0 – 13.0 1.5(1) 0.18(2) Ag O-B-O scissor 
712.33 714.9(2) 0.0 – 10.7 0.24(3) 0.03(1) B2g O-B-O scissor 
712.33 714.9(2) 13.0 – 25.9 2.47(9) 0.67(6) B2g O-B-O scissor 
712.33 714.9(2) 30.7 – 44.0  0.37(7) 0.10(2) B2g O-B-O scissor 
975.06 967.4(2) 0.0 – 44.0 3.11(9) 0.27(2) Ag B-O symm stretch 
1261.78 1225.1(2) 0.0 – 10.7 6.2(1) 0.42(3) B2g B-O assym stretch 
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The values for νi were obtained from the Raman spectrum at ambient pressure or, in the 

case of non-linear modes, from the extrapolation of the linear fits of the pressure 

dependences of the Raman shifts to ambient pressure. In the case of non-linear modes two 

values of mode Grüneisen parameters are reported. Calculations for the mode Grüneisen 

parameter of any modes that appear above 12 GPa (or changes its slope above 12 GPa) use 

the bulk modulus of the high pressure phase. 

With increasing pressure most Raman bands shift towards higher frequencies, i.e. 

show positive mode-Grüneisen parameters. However all the modes describing Pb—O 

vibrations (with one exception) show a negative value of mode-Grüneisen parameter before 

12 GPa, which is the assumed pressure of the phase transition. Except for modes which 

display softening, the mode-Grüneisen parameters range from 0.01 < γ < 1.5 with three 

modes having γ ~ 2. Most mode-Grüneisen parameters values are comparable to with 

typical values of alumino-silicate mullite and sillimanite and are also comparable to the 

mode-Grüneisen parameters obtained for PbFeBO4. 

The structurally related 2:1 mullite and sillimanite, an Al2SiO5 polymorph, show 

mode-Grüneisen parameter values between 0.06 and 1.3 (sillimanite) and between 0.01 and 

1.8 (mullite) with typical values from 0.2 to 0.9 with the exception of some negative 

parameters at frequencies of 236 cm-1  and 311 cm-1. Such values are comparable to the 

ones found for PbAlBO4 and PbFeBO4. 

 

4.4.5. Phase transition in PbMBO4 

4.4.5.1. Structural Phase Transition in PFeBO4 

The combination of the observations from results of high-pressure Raman 

spectroscopy and high-pressure X-ray diffraction of PbFeBO4 and a detailed analysis of 
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Rietveld structural refinements led the author to propose a new pressure-driven phase 

transition in PbFeBO4.  

 

 

 
 
Figure 53. Crystal structure of PbFeBO4 at 0.0001GPa and ~14 GPa.  
The top structures are for 0.0001 GPa and the bottom structures are for 14 GPa. Two orientations are shown: in 
the a-b plane and in the c-a plane. 
 

The crystal structure of PbFeBO4 at ~14 GPa is shown in Figure 53 and examples of results 

of Rietveld refinements for both phase-I and phase-II are shown in Table 22 and Figure 54 

and Figure 55. Around 11.8 GPa PbFeBO4 mullite undergoes a phase transition from the 

orthorhombic Pnma phase (space group #62) to another phase with orthorhombic 
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symmetry: the proposed space group for this transition is Pna21 (#33). Pna21 (referred to, 

from now on, as phase-II) is a maximal non-isomorphic subgroup of Pnma (referred to, from 

now on, as phase-I). The high pressure phase Pna21 remains stable up to at least 71 GPa. On 

pressure decrease the phase transition is fully reversible. 

 

Table 22. Results of Rietveld structural refinements of PbFeBO4 at high pressures. 
PbFeBO4 - 9.7 GPa 

Crystal 
system 

orthorhombic  a (Å) 6.344 (1)  p (GPa) 9.7(3)  

Space group Pnam (62)  b(Å) 8.474 (2)  V (Å3) 315.1(1) 
Z 2  c(Å) 5.861 (2)  Rwp 3.44 
 
Label Site x y z Atom Occ. B (temp.) 
Pb1 4a 0.01896(63) 0.63423(28) 0.25 Pb+2 1 0.23(8) 
Fel 4c 0 0 0 Fe+3 1 0.23(8) 
B 4c 0.276(16)    0.269(11) 0.25 B 1 0.23(8) 
O11 4c 0.3598(37) 0.5867(34)   0.25 O-2 1 0.23(8) 
O12 4c 0.2016(38)   0.0861(37)   0.25 O-2 1 0.23(8) 
O2 8d 0.2816(39)   0.3148(31)   0.0324(23)   O-2 1 0.23(8) 
        
PbFeBO4 - 14 GPa 

Crystal 
system 

orthorhombic  a (Å) 6.215(1)  p(GPa) 14.0(4) 

Space group Pna21 (33)  b(Å) 8.443(2)  V (Å3) 307.0(1) 
Z 2  c(Å) 5.851(2)  Rwp 2.77 
        
Label Site x y z Atom Occ. B (temp.) 
Pb1 4a 0.0131(60) 0.6296(23) 0.7325(30)   Pb+2 1 0.7 (1) 
Fel 4a 0.003(10)    0.0047(58)   -0.009(6) Fe+3 1 0.7 (1) 
B 4a 0.230(11)    0.2101(82)   0.722(37)    B 1 0.7 (1) 
O11 4a 0.4(1)   0.5788(32)   0.8326(51)   O-2 1 0.7 (1) 
O12 4a 0.2178(30)   0.0958(35)   0.6851(81)   O-2 1 0.7 (1) 
O2a 4a 0.2789(53)   0.3460(53)   1.0270(38)   O-2 1 0.7 (1) 
O2a 4a 0.7045(46)   0.6804(45)   0.0802(37)   O-2 1 0.7 (1) 

 

The crystal structure of phase II can derived from phase-I by moving the atomic sites of Pb1, 

Fe1, B1, O11 and O12 from special positions to free positions, while the O2 position is split 

into O2a and O2b. The coordination of the Pb2+ cation increases around the phase transition 

from [4] to [6 + 1]: three additional bonds are formed with O2a, O2b and O12 atoms. 
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Figure 54 Example of Rietveld refinements: the low-pressure structure of PbFeBO4 at ~9.7GPa. 

 

 

Figure 55. Example of Rietveld refinements: the high-pressure structure of PbFeBO4 at ~14GPa. 

 

In pressure dependent Raman spectroscopy measurements the softening of 

vibrational mode frequencies also reflects the expected symmetry lowering (mode splitting) 

at the transition pressure and it is accompanied by the appearance of new modes. The 

pressure dependencies of the phonon frequencies revert to positive values in the high 

pressure phase. 

4.4.5.2. Two Structural Phase Transitions in PAlBO4 

The combination of the observations from results of high-pressure Raman 

spectroscopy and high-pressure X-ray diffraction of PbAlBO4 and a detailed analysis of 
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Rietveld structural refinements led the author to propose this time not one, but two new 

pressure-driven phase transition in PbAlBO4.  

 

 

 

Figure 56. Crystal structure of PbAlBO4 at 0.0001GPa and ~14 GPa.  
The top structures are for 0.0001 GPa and the bottom structures are for 14 GPa. Two orientations are shown: in 
the ab-plane and in the ca-plane. 

 

Just as was the case for PbFeBO4 above, around 11.8 GPa PbAlBO4 mullite undergoes 

a phase transition from the orthorhombic Pnma phase (space group #62) to another phase 

with orthorhombic symmetry: the proposed space group is Pna21 (#33). Pna21 (referred to, 

from now on, as phase-II) is a maximal non-isomorphic subgroup of Pnma (referred to, from 
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now on, as phase-I). The high pressure phase Pna21 remains stable up to ~54 GPa. The 

crystal structure of phase II can derived from phase-I by moving the atomic sites of Pb1, Al1, 

B1, O11 and O12 from special positions to free positions, while the O2 position is split into 

two: O2a and O2b. The structure of phase-II is illustrated in Figure 56 and examples of 

Rietveld refinements for both phase-I and phase-II are shown in Figure 57 and Figure 58. 

Compared to ambient pressure the octahedral chains of phase-II structure have more of a 

zigzag-like shape. On pressure decrease both phase transition are fully reversible. 

 

 

Figure 57. Example of Rietveld refinements: the low-pressure structure of PbAlBO4 at ~9.7GPa. 

 

 

Figure 58. Example of Rietveld refinements: the high-pressure structure of PbAlBO4 at ~14GPa. 
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The phase transition in PbAlBO4 at ~12 GPa appears identical to the one observed in 

PbFeBO4 at ~12 GPa. Due to these similarities in the pressure-dependent behavior, the 

compression of the asymmetric environment of the Pb2+ ion and its 6s2 lone electron pair 

can be thought to be reason for the phase transition. The mechanisms and characteristics of 

the phase-I  phase-II transition are discussed further in a section below. 

In pressure dependent Raman spectroscopy measurements the softening of 

vibrational mode frequencies also reflects the expected symmetry lowering (mode splitting) 

at the transition from phase-I to phase-II and it is accompanied by the appearance of new 

modes. The pressure dependencies of the phonon frequencies revert to positive values in 

phase-II. 

 As shown earlier, PbFeBO4 mullite compressed smoothly up to 77 GPa after the 

phase transition. On the other hand PbAlBO4 undergoes a second pressure-driven phase 

transition at ~54 GPa, which can be readily seen from the change in relative intensity of 

diffraction lines and the appearance of new diffraction lines in the low 2θ region (Figure 

46). In phase-II, there are only 2 hkl reflections in the 2θ region between 4 and 6 degrees, 

but upon phase transition the appearance of new peaks suggests that the new phase should 

have a larger number of reflections than 2 in order to account for the observed peak profile. 

The significant line broadening makes it very difficult to propose a candidate structure for 

the second high pressure phase. However profile indexing results suggest that the new 

high-pressure phase – referred to as phase-III – has most probably a monoclinic Bravais 

lattice (or possibly triclinic). Phase-III persists up to the highest pressure investigated, 

111.8 GPa. Upon decompression to ambient pressure phase phase-II reverts back to phase-I, 

but with a slightly reduced unit cell. 

In pressure dependent Raman spectroscopy measurements the transition from 

phase-II to phase-III is accompanied by the disappearance of some vibrational modes and 
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the appearance of several new modes. For some modes the pressure dependencies of the 

phonon frequencies show a visibly different slope starting from, or even a few GPa prior to, 

the transition into phase-III. 

 Dinnebier et al. 129  reported the occurrence of two phase transitions in minium 

Pb3O4 upon compression to relatively low pressures. At ambient conditions the crystal 

structure of minium consists of infinite chains of distorted Pb4+O6 octahedra with a twist 

angle in the base plane of almost 20o. Within the chain, the polyhedra are connected via 

common edges of their base planes. Each chain of octahedra is surrounded by four 

neighboring chains which are rotated by 90o with respect to the central chain, 

corresponding to an expanded rutile structure. All Pb2+ ions are located in the planes 

spanned by the shared edges of neighboring chains of octahedra, thus forming bridges 

between the chains which run in a zigzag manner along the c-axis. The Pb2+ ions are 

coordinated by four O atoms forming an irregular Pb2+O4 pyramid with the four O atoms 

forming the non-planar base and the lead atoms sitting at the vertex.  

 Minium is therefore similar to PbMBO4 mullites, because of its Pb2+O4 polyhedra 

carrying a lone electron pair at the Pb2+ cation and because of the octahedral chains running 

along c, although the chains are PbO6 in minium but AlO6 or FeO6 in PbMBO4 mullite. At 

ambient pressure Pb3O4 crystallizes in space group P42/mbc (phase 1). Between 0.11 and 

0.3 GPa it exhibits a displacive second order phase transition to a structure with space 

group Pbam (phase 2). A second displacive phase transition occurs between 5.54 and 6.6 

GPa to another structure with space group Pbam (phase 3) but halved c dimension. 

 

4.4.6. The Influence of LEP on High-Pressure Behavior of PbMBO4 

The PbMBO4 mullite-type compounds are characterized by the presence of a “lone”, 

i.e., non-bonding electron pair (LEP) at the Pb2+ atom. At ambient conditions the 
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coordination of the Pb2+ ion is highly asymmetric due to the existence of the localized LEP. 

The free electron pair can be considered as an additional ligand, causing severe distortions 

of the coordination polyhedra. In compounds with significant covalent bonding 

contributions, the LEP can be strongly stereochemically active. Gillespie and Nyholm 130 state 

that a lone pair repels electron pairs more than a bonding pair of electrons and that the 

tendency of the electrons pairs in a valence shell to keep apart is mainly due to the 

exclusion principle.  

LEPs are considered as pseudo-ligands, able to replace one or more of the regular 

ligands in a given coordination sphere.131, 132  In many crystalline solids with cation-

centered lone pairs, the lone pair occupies the same volume as an oxide or fluoride ion. 

However the cation-lone pair distance (in Å) is much shorter than the cation-anion distance; 

Pb2+ -- LEP = 0.86Å (5d10 6s2). 133 Atoms with a LEP in the valence shell have an anisotropic 

local environment which leads to the formation of acentric or even polar crystal structures 

and influences dielectric properties. 134 The strong anisotropy of the Pb2+ coordination (due 

to the LEP) affects not only the geometry but is often the origin of interesting physical 

properties. For example, more than half of all non-centrosymmetric oxides contain lone 

electron pairs, 135 and the non-centrosymmetry is a precondition for ex. piezoelectricity, for 

optical activity and for optical second-harmonic generation.  

Cations with a LEP, such as Pb2+, display high polarizabilities and form relatively 

open structures, which makes them predisposed to pressure-driven phase transitions. Since 

in solids there is strong correlation between geometry and electronic structures, a 

pressure-driven change to a higher density structure should involve substantial changes in 

the electronic structure as well.  

Some of the following discussion singles out PbFeBO4 for the sake of simplicity, but 

all conclusions are also valid for PbAlBO4. The pressure dependence of the lattice 
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parameters of PbFeBO4 shows a distinct anisotropy, which could be related to the changes 

in the space requirements of the free electron pair of Pb2+. The abrupt changes in slope of 

compression of a, b and c (of more than an order of magnitude) are one more piece of 

evidence pointing to the phase-III transition. Specifically lattice parameter a decreases 

rapidly (–0.06 Å/GPa) with increasing pressure, with an abrupt decrease in slope at the 

phase I/II border (–0.006 Å/GPa). The b parameter first rapidly increases with increasing 

pressure (0.017 Å/GPa) with an abrupt sign change before the phase I/II border (–0.005 

Å/GPa). Lattice parameter c decreases (-0.01 Å/GPa) with increasing pressure up to about 

8, stays stable until 18 GPa, and then again decreases slowly (–0.007Å/GPa).  

Similarly in PbAlBO4 the lattice parameter a decreases rapidly (–0.04 Å/GPa) with 

increasing pressure, with an abrupt decrease in slope at the phase I/II border (–0.007 

Å/GPa). The b parameter first rapidly increases with increasing pressure (0.0027 Å/GPa) 

with an abrupt sign change before the phase I/II border (–0.006 Å/GPa). Lattice parameter 

c decreases (-0.01 Å/GPa) with an abrupt decrease in slope at the phase I/II border (–0.005 

Å/GPa). As aside note, the above mentioned temporary “slowdown” of compression appears 

to be a characteristic feature of the compression of the c-axis of mullite materials under 

compression and it was observed in this work for 2:1 mullite, 3:2 mullite and B-mullite. In 

general, for phase-II an almost uniform decrease of a, b, and c with increasing pressure up 

to 71 GPa is observed. 

The interest of the this project in examining  the effect of pressure on the crystal 

structures Pb2+ compounds like PbMBO4, stems from the fact that the lone electron pair is 

much more compressible and mobile with respect to space requirements of the lead 

coordination when compared to the large anions surrounding the Pb2+ cation. In phase-I of 

PbMBO4 mullites the Pb2+ ions are coordinated by four O atoms forming an irregular Pb2+O4 

pyramid.  
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Figure 59. Supercell of PbFeBO4 at ambient pressure  
The detail picture shows two neighboring Pb atoms with the orientation of their lone electron pairs (marked 
with ‘e’). The supercell is made of 2x2x2 unit cells.  

 
Figure 60. Supercell of PbFeBO4 at 14 GPa.  
The detail picture shows two neighboring Pb atoms with the orientation of their lone electron pairs (marked 
with ‘e’). The Pb2+O7 polyhedra are shown in grey. The supercell is made of 2x2x2 unit cells.  
 

The base of this pyramid is non-planar and is formed by the four O atoms while the lead 

atom sits at the vertex, showing that the LEP is stereochemically active. Three of the 

coordinating O atoms belong to the same octahedral (FeO6) chain; the fourth one belongs to 
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a neighboring chain of octahedra. The free electron pair of the Pb2+ ion points away from the 

four coordinating O atoms, thus forming large empty channels. It was reported 136 that a LEP 

cannot have purely s-character when it is stereochemically active and can be well 

understood by a mixing of s and p orbitals. The lack of inversion symmetry at the M-sites 

allows mixing between occupied metal 6s states and unoccupied 6p states thus lowering the 

internal electronic energy of the metal cations through a second order Jahn-Teller 

mechanism, and results in a directional sp hybrid orbital. Assuming a similar configuration 

in our PbMBO4 system the stereoactivity of the 6s2 LEP of the Pb2+ cation is directional, 

pointing towards the void of the structural channel. 104 According to the valence shell 

electron pair repulsion model (VSEPR) model, 137 a nonbonding LEP requires more space on 

the surface of the central atom forming the ligand than a bonding pair. Abnormal 

displacement parameters of the ligands may be associated with the crystal-chemical 

characteristics as long as LEPs are concerned. 104, 138 In the same way the orientation of the 

LEP and its large displacement may account for a larger displacement parameter of O2 

atoms which represent two apexes of the PbO4E polyhedron. The stereoactivity of the LEP 

affects the PBO4E geometry leading to an asymmetric PbO4E polyhedron with three types of 

Pb—O bond lengths. 

It was proposed above that the distinct anisotropy of the pressure dependence of 

the lattice parameters can be related to the changes in the space requirements of the free 

electron pair of Pb2+. In fact in phase-I the rapid decrease of the a parameter can be 

explained by the fact that decreasing a does not bring the Pb atoms much closer together so 

most of the compression occurs along a, instead of being shared by a and b, since 

compression along b would be countered by electrostatic repulsion of the LEPs (also see 

Figure 61). On the contrary, expansion instead of compression takes place along b since the 

Pb atoms and their LEPs - which are facing each other along b- fight against compression in 
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this direction. Along the c-axis the significantly lower compression is reasonable, because of 

the occurrence of the firmly bound, edge-connected octahedral chains in this lattice 

direction, which are cross-linked by rigid BO3 groups. 

In general it is anticipated that the application of pressure will lead to an increase of 

the symmetry of the coordination sphere and a simultaneous increase in symmetry of the 

electron distribution around the Pb2+ cation. This effect goes along with a decrease of the 

stereochemical activity of the LEP (as seen for example in the case 139  of CsGeCl3 or in the 

case 129 of Pb3O4). A high enough pressure can compel the lone electron pair into the s 

state,129 or semiconducting or metallic behavior  can be observed, if a broadening or overlap 

of the valence and the conduction band occurs. 140  

In phase-II the basic crystal packing of phase-I is preserved. The key difference in 

the crystal structure of PbMBO4 at pressures above ~12 GPa is the increase of the 

coordination number of Pb2+ from 4 to 6+1, forming distorted Pb2+O7 trigonal prisms with a 

pyramidal vertex “sitting upside-down” on a rectangular plane. The notation of ‘6+1’ is used 

instead of 7 because one of the oxygens is farther away from the Pb atom and contributes 

less than the other 6 to the bond valence sum. The now irregular Fe3+O6 octahedra still form 

infinite chains running along c, interconnecting consecutive layers of Pb2+O7 polyhedra. 

Each Pb2+O7 polyhedron shares two pyramidal edges with two consecutive Fe3+O6 

octahedra.  The large deviation of the Pb2+ central cation from the center of gravity of the 

trigonal prism indicates that the stereochemistry of Pb2+ in phase-II is similar to that of 

phase-I and thus that Pb2+ remains stereochemically active in the high-pressure structure, 

at least at up to 14 GPa (Figure 59 and Figure 60).  
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4.4.7. Bond Valence Model and Eccentricity Parameter  

Since Pauling’s electrostatic valence rule 141 the bond valence model (BVM) has been 

successfully used as an empirical method to interpret crystal structures. According to BVM 

an inorganic structure is considered as an arrangement of atoms linked by bonds between 

atoms with opposite signs of valences. The bond valence sum (BVS) of an atom Ai can be 

calculated from:  

𝐵𝑑𝐵𝑖 = ��
𝑒𝑥𝑝�𝑟0 − 𝐷𝑖𝑖�

𝑏
�

𝑖

 

Where Dij is the distance from atom Ai to its neighbor Xj, and r0 and b are empirical 

parameters derived from well refined structures. b=37 pm is considered to be independent 

of bond types and r0 is the bond valence parameter for each A—X pair. 142 143 

Furthermore bond valences can be corrected for pressure 144 by recognizing that the 

bond-valence parameter, r0  changes with pressure according to the equation: 

𝑑𝑟𝑜
𝑑𝑝

=
10−4𝑟04

1
𝐵 −

2
𝑟0

 Å 𝐺𝑃𝑐−1 

where r0 is the ambient pressure bond valence parameter and b (usually 0.37 Å) is the 

softness constant, and both values can be found in Brown (2002). 143, 144 

For most inorganic structures the calculated BVS are close to the integer valence of 

the atom concerned. Any large deviations of BVS between the observed value and the 

formal value can be attributed to chemical or steric reasons. 145 However systematic 

deviations of BVS from formal valences have been observed for cations with a lone electron 

pair.  In fact Wang and Liebau 146, 147, 148, 149, 150, 151 observed that the BVS calculated around a 

LEP cation increases as the cation’s coordination sphere experiences more distortion when 

the LEP is stereochemically active. To express the LEPs influence on BVS, Wang-Liebau 

devised a vector term eccentricity parameter Φi. The absolute value |Φi| measures the 
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deformation density of the LEP and the direction is considered along the along the line from 

the cation nucleus to the approximate center of the deformation density of the LEP. The 

absolute value of the eccentricity parameter |Φi| can be found from: 

𝜱𝑖 = −�𝒄𝑖𝑖
𝑖

 

where 

𝜑𝑖𝑖 = 𝑒𝑥𝑝 �−
𝐷𝑖𝑖
𝑔 � 

and where Dij is the distance from atom Ai to its neighbor Xj, and g=20pm is an empirical 

constant used by Wang and Liebau. The direction of Φi is along the line from the cation 

nucleus to the approximate center of the deformation density of the LEP. Following Wang 

and Liebau the structural bond valence sum for a cation with one LEP can be calculated 

using: 

𝐵𝑑𝐵.
𝑠𝑡𝑟𝑠𝜋 = �

𝐸|𝜱𝒔| + 𝐹 − 𝐷𝑖𝑖
𝑏

𝑖

 

 

where E and F are fit parameters which can be found in Wang and Liebau (2007). 149  

 

Table 23. Calculations of bond valence sums for PbFeBO4 and PbAlBO4. 
Errors are standard deviation values. 

  

 

As shown in Table 23 the correction for eccentricity gives larger BVS values than the 

correction for pressure. As expected the bond valence sum of Pb increases with pressures. 

PbFeBO4 PbAlBO4 
Pressure  

(GPa) 
BVS* 

(v. u.) 
BVS& 
(v. u.) 

Pressure  
(GPa) 

BVS* 
(v. u.) 

BVS& 
(v. u.) 

0.0  2.10(3) 1.82(3) 0.0  2.47(5) 2.13(4) 
1.5  2.28(8) 1.96(7) 2.2  2.56(2) 2.20(2) 
8.6 2.1(4) 1.8(3) 8.3 2.11(8) 1.78(7) 

14.0 2.5(3) 2.1(2) 14.1 3.0(3) 2.5(2) 
* Corrected for LEP eccentricity 
& corrected for the effect of pressure 



 

161 
 

With increasing pressure the four coordinated Pb2+ cation increases its coordination to 7 ‒

as demonstrated by the increasing BVS values ‒ and it is therefore reasonable to propose 

that pressure increase leads to the formation of a Pb2+O7 polyhedron in PbMBO4. The 

formation of a similar polyhedron was observed in minium on compression above 6.6 GPa.  

 

4.4.8. Large Negative Linear Compressibility in PbMBO4  

For nearly all known materials, an increase in hydrostatic pressure results in a 

shortening of their linear dimensions. This means that the volume compressibility, area 

compressibilities, and linear compressibilities are all positive. However, there are rare 

reports of crystals having negative linear compressibilities (NLC).  A solid increases density 

when stretched along an axis of negative linear compressibility, so it is equivalent either to 

say that a solid has the property of being stretch densified or that it has a negative linear 

compressibility.  

The magnitude of shortening of linear dimensions under pressure can be compared by 

means of the isothermal compressibilities: 

𝐾𝑙 = −𝜕ln (𝐿 𝐿0)⁄
𝜕𝑝

  

which uses the relative rate of change of length L/L0 with respect to pressure. 

Typical linear compressibilities for engineering materials such as metals, alloys and 

ceramics are K~5 TPa-1. 152 This means that there occurs a 0.5% reduction in length for each 

1 GPa increase in pressure.  

In contrast, for the handful of materials known to exhibit NLC, one or more of the 

compressibilities actually takes a negative value. For many years, only 13 NLC compounds 

had been identified. 153 Amongst these long-established, canonical NLC systems, the 

strongest effect observed 154 was for trigonal Se with KNLC = - 1.2 TPa-1. So in general NLC is 
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much weaker than the typical positive compressibilities of ordinary materials. Two recent 

reports of stronger NLC effects exploit structures with `wine-rack' topologies: methanol 

monohydrate 155 (KNLC = -2.6 TPa-1) and ammonium zinc formate 156 (KNLC = -1.8 TPa-1). Very 

recently it was reported that the molecular framework material zinc(II) dicyanoaurate(I), 

ZnTAu(CN)2U2, exhibits the most extreme and persistent NLC behavior yet reported: KNLC =-

45 TPa-1. 157 Under increasing hydrostatic pressure its crystal structure expands in one 

direction at a rate that is an order of magnitude greater than both the typical contraction 

observed for common engineering materials 158 and also the anomalous expansion in 

established NLC candidates. 153  

In NLC systems with “wine-rack” topologies, volume reduction is accommodated by 

simultaneous compression and expansion of the crystal lattice in orthogonal directions 

(that is, folding-up of the wine-rack). 153  Consequently the existence of NLC implies 

stronger positive linear compressibility (PLC) in directions perpendicular to the NLC axis. 

Remarkably the two PbMBO4 mullites are among the ~20 or so materials known to 

display NLC (Table 24), which is important not only because the NLC effect is very rare, but 

also because examples of inorganic materials are even fewer. In PbBFeO4 we observe a large 

NLC effect parallel to the b crystal axis (KNLC = -2.02(1) TPa-1) coupled with a strong positive 

compressibility along the a crystal axis (Ka = +26.90(1) TPa-1). The NLC effect persist 

throughout the stability field up to 8 GPa (within the stability field of phase-I) but ends 

abruptly ~8 GPa where it into PLC. The author proposes to use the term “large” to 

distinguish the NLC behavior of PbFeBO4 observed here, that is ~70% larger than that of the 

canonical systems described above (where the biggest was selenium with KNLC = -1.2 TPa-1), 

and which persists for the approximately 8 GPa, well over the range associated with typical 

high-pressure applications. 
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Table 24. About 20 materials known to possess negative linear compressibility.  

# Material KNLC 
(TPa-1) Notes Year 

1 Silver(I) hexacyanocobaltate(III) 
Ag3[Co(CN)6], -75 ‘wine-rack type’ 159 2008 

2 zinc dicyanoaurate Zn[Au(CN)2]2 ~-45 Metal-organic framework  
‘molecular honeycomb’ 157 2013 

3 MIL-53(Al) and NH2-MIL-53(Al)   -27 Metal-organic framework, 160 
‘wine-rack type’ 2015 

4 methanol monohydrate 
deuterated 1:1 methanol-water -2.6(3) simple molecular crystal 155 2011 

5 PbMBO4 -2.0(1) inorganic oxide! stable 
solid (this work) 

2015 

6 α-cristobalite structured BAsO4  
(also BPO4) -2 oxide 161 2003 

7 Minium Pb3O4 ~-2.0(5) inorganic oxide! 129 2003 

8 α’ – NaV2O5 -1.8 inorganic oxide, 
spin-Peierls compound 162 1999 

9 ammonium zinc formate, 
[NH4][Zn(HCOO)3]  -1.8(8) Metal-organic framework, 156 

‘wine-rack type’ 2012 

 
 
10~22 

Selenium (trigonal) 
Tellurium 
Mercurous iodide, Hg2I2 
Mercurous bromide, Hg2Br2 
3-Methyl 4-nitropyridine 1-oxide, 
C6N2O3H6 
Cadmium formate, Cd(COOH)2 
Calcium formate, Ca(COOH)2 
m-Dihydroxybenzene, C6H4(OH)2 
Cesium biphthalate, 
C6H4COOHCOOCs 
Tris-sarcosine calcium chloride, 
(CH3NHCH2COOH)3CaCl2 
Lanthanum niobate, LaNbO4 
Cesium dihydrogen phosphate, 
CsH2PO4 
Ethylene diamine tartrate,  
C6H14N2O6 

≦ -1.2 
 
 
 
 
 
 
 
 
 
 
 
-0.2 to - 1 

canonical materials 153 Up to 
1998 

 

In PbBAlO4 we observe strong positive compressibility along the a crystal axis (Ka = 

+9.36 TPa-1) together with a small NLC effect parallel to the b crystal axis (KNLC = -0.47 TPa-

1). The NLC effect persist throughout the stability field up to 8 GPa (within the stability field 

of phase-I), but ends abruptly ~8 GPa where it turns into PLC. Thermodynamically, the NLC 

we observe in PbMBO4 is not sustainable indefinitely. What limits the NLC along b to 8 GPa 

in PbFeBO4? Two factors could interplay synergically to create ideal conditions for negative 
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linear expansion: (i) a mechanism that opposes compression along b, together with (ii) a 

structural mechanism that allows expansion along b. 

Firstly, there is a factor opposing compression along b. At ambient pressure the 

Pb—Pb distance is 3.88Å and the LEPs of two neighboring Pb atoms face each other. At 14 

GPa the Pb—Pb distance is 3.66Å, but the LEPs point away from each other. It is proposed 

that up to 8 GPa the configuration of two neighboring Pb atoms is such that their respective 

LEPs face each other (Figure 59). Thus the stereochemical activity of the LEPs opposes 

compression in the b direction, because compression in b would bring them closer together. 

8 GPa is the threshold pressure starting from which the two neighboring Pb atoms and the 

orientation of their respective LEPs is such that further compression does not reduce 

significantly the distance between them (Figure 60 and Figure 61). Also the stereochemical 

activity is believed to decrease with pressure (Figure 61). Therefore the persistent (but 

weakened) stereochemical activity of the LEPs does not oppose as much the compression 

along the b direction any longer – albeit the compression along b is sluggish. Note that all 

along the compression in a is positive since shortening a does not change the distance 

between the two LEPs. The compression in c is also positive since along this direction single 

layers of Pb atoms are separated by layers containing the BO3 triangles.  

There is then a second factor, which is needed to create expansion along b. As 

pressure is applied the octahedral chains rotate towards each other in the a-b plane (thus 

decreasing the inclination angle ω). As the chains rotate, the longest bonds inside the 

octahedra align more and more with the b-axis (Figure 61). This causes the lengthening of b 

as the octahedra become more horizontal or aligned with the b. At higher pressures (> ~10 

GPa) the stereochemical activity of LEPs decreases and the opposition to compression along 

b disappears. It is also reasonable to assume that there is some limit up to which the 

structure can accommodate this effect and at some point it will be more energetically 
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favorable shorten bonds to accommodate compression. As the b axis switches form negative 

to the standard positive compressibility, we also observe and increase in coordination of 

the Pb2+ cation and a phase transition around 12 GPa (discussed in section 4.4.5). The same 

structural reasoning can be extended to the NLC effect observed in PbAlBO4.  

 

 

Figure 61. Synergical interplay of factors leading to negative linear compressibility along b.  
Top: crystal structure of PbMBO4 showing the inclination angle ω. Bottom: respective location of two 
neighboring lead oxide polyhedra within the crystal structure.  A mechanism that opposes compression along b 
(LEPs of neighboring Pb atoms facing each other - red arrows) together with a structural mechanism that allows 
expansion along b (the rotation of octahedral chains). At higher pressures the stereochemical activity of LEPs 
decreases and the opposition to compression along b disappears.  

 

PbMBO4 mullites bear some structural similarity with minium (Pb3O4, see section 

4.1.3). NLC was also observed in a study of static compression of minium by Dinnebier et al. 

129 Negative compressibility was observed along both the a and b lattice directions (as can 
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be seen in the figure of the referenced paper), but it was not discussed by the authors. By 

analogy to the mechanisms of NLC proposed here for PbMBO4 mullites, NLC in minium can 

be explained by the fact that in minium there are not two, but four Pb atoms in the 

interstices between the octahedral chains. They are located so that either compression 

along a or along b would tend to bring two of the opposing Pb atoms closer together. 

Therefore a negative linear compressibility is observed in minium both along a and along b 

up to a pressure threshold. 

4.4.8.1. Implications of the Large NLC Effect in PbMBO4 Compounds 

PbMBO4 mullites are negative thermal expansion materials (NTE). 37, 38 From a 

physics point of view it is rational to search for unusual pressure-dependent behavior in 

NTE materials (and NLC certainly qualifies as unusual). In fact, NTE materials, possess 

phonon modes with negative Grüneisen parameters (as it is the case of PbMBO4 - see results 

of high-pressure Raman studies above) and often have low-density structures. Although 

NTE and NLC are not thermodynamically required to coexist, it has been proposed that 

there exists a general correspondence between strong NTE materials and a strong NLC 

effect. 159 

Regardless of its rarity, NLC is a highly attractive mechanical property, with a key 

application being the development of effectively incompressible optical materials. 153, 163 

Applications would be centered on high-pressure working environments: (i) optical 

telecommunications devices that must function at deep-sea pressures >1,000 atm. (ii) 

ultrasensitive pressure detectors, such as interferometric optical sensors for sonar and 

aircraft altitude measurements. The NLC effect has also been found alongside the ‘‘auxetic’’ 

behavior, which is itself being used to improve shock resistance for ex. in body armor. 164 

Cation-centered lone pairs (often with Pb2+ as the central cation, but also Sn2+ and 

Bi3+) are tremendously important for applications requiring off-centered polyhedra and 
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their associated dipoles: ferroelectric and piezoelectric materials, actuators, multiferroic 

materials, non-linear optical materials, ionic conductors, high-refractive index materials 

(lead crystal), semiconductor/semimetal to insulator transitions. Conceivably the most 

direct application of NLC in PbMBO4 mullite-type materials is as the optical component in 

interferometric pressure sensors. Such sensors operate based on two effects: the rate of 

variation in refractive index, which is a function of volume compressibility and also the 

macroscopic path length, which is a function of linear compressibility. In conventional 

optical materials these two factors have an opposed relationship. Large volume 

compressibility in a material usually implies large PLCs, so that pressure increasing 

corresponds to the increase of the refractive index. Increase of refractive index produces an 

increase optical path length, but concurrently the material dimensions also decrease, which 

decreases optical path length. Therefore in conventional materials, the overall variation in 

optical path length is greatly reduced with pressure. The combination of large volume 

compressibility with a negative linear compressibility – as observed in PbMBO4 mullites - 

however, means that NLC materials become more dense while their length increases in one 

direction. Now the relationship between these two effects becomes synergistic and gives an 

increase in pressure sensitivity.153 For applications this effect would of course have to be 

associated with optical transparency in the desired optical region.  

From a fundamental physics point of view there are strong implications associated 

with understanding mechanisms of NLC. There are biological species thought to use NLC to 

translate variations in internally generated hydrostatic pressure into appendage 

contraction, analogous to muscular response.  Examples include the arms and tentacles of 

squid, octopus limb movement, and even elephant trunk contraction. 165 Mechanical 

amplification gained from linking small changes in cross-sectional diameter to large 
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variations in length means that these are widely considered to be very efficient biological 

structures. 

 

4.4.9. Equation of State  

A third order Birch-Murnaghan 110, 111, 112, 113, 114 equation of state (EoS) was fitted to 

the experimental pressure-volume data (Figure 62 and Figure 63) in order to determine the 

bulk modulus B0 and its pressure derivative B0’ at ambient conditions for PbFeBO4 and 

PbAlBO4: 
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The bulk moduli (B0) obtained from the Birch-Murnaghan fits are summarized in Table 25, 

37, 38, 75, 120 together with literature data for similar materials. For each sample, the EoS was 

fitted for phase-I and for phase-II, in their respective pressure ranges.   

 

 
Figure 62. Pressure-driven change of unit cell volume in PbFeBO4. 
The solid line is a 3rd order Birch-Murnaghan equation of state fit. The vertical dashed line separates the low 
pressure and high pressure phases and indicates the pressure at which the phase transition occurs. 
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Figure 63. Pressure-driven change of unit cell volume in PbAlBO4. 
The solid line is a 3rd order Birch-Murnaghan equation of state fit. The vertical dashed line separates the low 
pressure and high pressure phases and indicates the pressure at which the phase transition occurs. 
 

Table 25. Comparison of bulk moduli for PbMBO4. 
Comparison of: bulk moduli (B0), their pressure derivatives (B0’) and unit cell volumes at ambient pressure (V0) 
obtained in the present work for PbFeBO4 and PbAlBO4. 

Sample B0 B0’ V0 Method 
PbFeBO4 phase-I 73(3) 5.0(9) 349.0(4) exp., this work 
 75(2)  4 349.0(3) exp., this work 
 62  - 351.23 DFT 37 
 70(7) - - exp., author’s previous work 37 
PbFeBO4 phase-II 190(19)  3.8(9) 326(2) exp., this work 
PbAlBO4 phase-I 83(5) 5.7(9) 321.0(3) exp., this work 
 87(3) 4 321.0(3) exp., this work 
 77.35 6.51 321.95 DFT 38 
 79(6) 4.2(22) 320.0 exp., author’s previous work 38 
PbAlBO4 phase-II 194(17)  5.1(9) 306 (6) exp., this work 
 215(6)  4 305.2 (6) exp., this work 
Pb3O4 phase II 20.8(4) 4 511(1) exp. 129 
Pb3O4 phase III 98(3) 4 222(2) exp. 129 

 

The correlation between the unit-cell volume and the bulk modulus of PbMBO4 

synthetic mullites and of structurally related compounds is illustrated in Figure 64. A 

comparison with sillimanite and mullite shows that these compounds are less compressible 

than the Pb-based compounds of the mullite-type family. This difference can be related to 
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the higher compressibility of the larger and stereochemically active Pb2+ cation when 

compared to the other cations in the structure. 

 

 
Figure 64. Correlation between bulk moduli of PbMBO4 and of other mullite materials.  
Correlation (solid line) between the unit-cell volume and the bulk modulus of PbMBO4 synthetic mullites and of 
isotypic or structurally related compounds. Values for PbMBO4, 2:1 mullite., 3:2 mullite, B-mullite and sillimanite 
are from this work (dashed ovals). Values for Pb3O4 are from Dinnebier et al. 129 Values for Bi2M4O9 mullites are 
from Friedrich et al. 166 Values for Al5BO9 are from Gatta et al.  

 

One generally anticipates a reduction in magnitude of compressibilities at increased 

pressure and this is indeed shown by data in Figure 64: bulk moduli for the PbMBO4 

samples increase in phase-II with respect to phase-I. The bulk modulus of phase-I in 

comparison to the corresponding values of phase-II is about 3 times lower, indicating a 

much higher compressibility. This behavior can be related to packing effects of the Pb2+ 

polyhedra at low pressure due to a change in space requirements of the free electron pair. 
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In phase-I the free electron pair of the Pb2+ ion points away from the four coordinating O 

atoms, thus forming large empty channels in the structure, which also lead to a low space 

filling at ambient conditions. Space filling is increased upon compression to phase-II - see 

for example Figure 53 or Figure 56, where space filling is visibly larger comparing to the 

ambient pressure structure.  

 A comparison of the bulk moduli and the unit-cell volumes of the two isotypic 

PbMBO4 compounds agrees with the expected tendency that the lower bulk modulus is 

observed for the isostructural oxides with larger unit-cell volumes. 167 Following this trend 

PbFeBO4 is more compressible than PbAlBO4. The increase in unit-cell volumes is 

determined by the substitution of the metal cations Al3+ and Fe3+, which have increasing 

ionic radii (Shannon 1976).168 The same trends can be identified in Figure 64 for the 

Bi2M4BO9 mullite family and for the low and high-pressure phases of minium.   
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CHAPTER 5 – CONCLUSIONS 

 

5.1. Alumino-Silicate mullites and Sillimanite  

 

The main motivation for this part of the study was to understand the role of oxygen 

vacancies on the high-pressure behavior and structural integrity of mullite-type alumino-

silicates. Comparative studies were performed on mullite-type phases of general formula 

Al4+2xSi2-2xO10-x and differing in the amount of oxygen vacancies: 2:1-mullite (x = 0.4, i.e. 0.4 

oxygen vacancies per unit cell), 3:2-mullite (x = 0.25, i.e. 0.25 oxygen vacancies per unit cell) 

and sillimanite (x = 0, no oxygen vacancy). The structural stability of 2:1-mullite, 3:2-mullite 

and sillimanite was investigated as a function of pressure using in situ angle-dispersive, 

synchrotron x-ray diffraction and diamond anvil cells, in quasi-hydrostatic compression 

conditions. The structural stability was also investigated using in situ high-pressure Raman 

spectroscopy. To the best of the author’s knowledge this work presents the first Raman 

spectroscopy results of alumino-silicate mullite at high-pressures. Our studies show that the 

pressure-induced structural changes in 2:1-mullite, 3:2-mullite and sillimanite take place in 

several steps. The almost identical high-pressure compressibility of both mullites and of 

sillimanite on compression from ambient pressure up to 20 GPa implies that the observed 

behavior is mainly controlled by compression of the three-dimensional structural networks 

with compression of octahedra and inter-polyhedral angle distortion as probable main 

mechanisms.  

The pressure-driven evolution of vibrational modes was analyzed and mode-

Grüneisen parameters were obtained for 2:1 mullite and for sillimanite. Raman 

spectroscopy allows spotlighting of the local disorder of 2:1 mullite: in fact Raman spectra 

of mullite contrast starkly with those of the ordered sillimanite structure. The key 
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differences between the structure of mullite and sillimanite are the oxygen vacancies as 

well as the disorder in the tetrahedral sites. On the level of “long range order” both 

materials present very crystalline x-ray diffraction patterns where the above mentioned 

differences cannot be perceived. On the other hand when comparing Raman spectra of 

sillimanite and 2:1 mullite, the great structural differences are very readily apparent. 

Sillimanite has a set of very narrow vibrations and 2:1 mullite has instead several wide and 

overlapping bands, illustrating that the “short range order” of these materials is indeed very 

different. Close analysis of compression data below 20 GPa along the crystallographic c-axis 

of both mullites and of sillimanite, shows that the presence of oxygen vacancies does not 

have significant influence on the behavior of both mullites. Above 20 GPa 2:1 and 3:2-

mullite show a strong discontinuity of the volume compression, together with a dramatic 

intensity loss and important broadening of ADXRD lines which is attributed to a gradual and 

irreversible amorphization. The degree of x-ray amorphization of sillimanite above 30 GPa 

is only small, on the other hand, since the crystalline structure of sillimanite is mostly 

recovered upon decompression. Raman peak broadening in sillimanite and the shift of 

bands towards broad features in 2:1 mullite confirm the progress of amorphization in the 

two samples. The Raman spectroscopy results coincide with the results of in situ high 

pressure X-ray diffraction studies. In amorphization, the sharp X-ray diffraction lines 

disappear. On release of pressure, the amorphized phase is metastably retained down to 

ambient pressure, reverting gradually to a highly disordered, parent-like phase. The 

absence - in sillimanite or the presence - in mullites of oxygen vacancies does play a dual 

role on their pressure response on compression. First, pressure-induced effects, such as the 

slowdown of the compression of the c-axis (~10 GPa), appear at much lower pressures in 

both mullites than they do in sillimanite (~20 GPa), and are attributed to oxygen vacancies 

in the former. Second, the pressure-driven structural decomposition or amorphization is 
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strong in both mullites and occurs at lower pressures (~20 GPa) than in sillimanite (~30 

GPa). The lower stability of mullite in comparison to that of sillimanite is ascribed to the 

presence of oxygen vacancies in mullite, but not in sillimanite. 

 

5.2. Boron Mullites  

 

The high-pressure behavior, phase stability and mechanisms of amorphization of 

7:4 mullite and B-mullite, were investigated in situ by synchrotron powder X-ray diffraction 

with a diamond anvil cell in quasi-hydrostatic conditions. The samples were compressed, in 

small pressure steps, up to 27.8 GPa and 28.9 GPa respectively, and then decompressed 

back to ambient pressure. All along the compression both samples’ patterns are indexable 

with a modified 3:2 mullite structure. Compression data are smooth up to ~15 GPa, from 

which point the diffraction lines broaden, and subsequently refined unit cell parameters 

deviate significantly down from the compressional trend. Above ~15 GPa the distortion of 

the mullites and the proportion of amorphous phase progressively increases and above 

~23GPs diffraction patterns are not indexable anymore, suggesting X-ray amorphization. 

The c axis is the stiffest one due to edge-sharing firmly bound AlO6 octahedra and the 

tetrahedral double chains, which control the compression along that direction. The other 

two directions display greater compressibility. The compression along the a and b axes are 

similar, however with b being slightly more compressible at lower pressures and a 

becoming more compressible at higher pressures. Compression is dominated by a reduction 

in octahedral bonds and an increasing in the inclination of AlO6 octahedra away from each 

other in the a-b plane, while tetrahedra behave as rigid units. Above ~18 GPa for B-mullite 

(20 GPa for 7:4 mullite) distortion of all polyhedra becomes the main compression 

mechanism. Amorphization is driven by a significant increase in distortion of octahedra and 
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a dramatic increase in the octahedral inclination angle. It can be thought that the crystal 

structure of B-mullite and that of 7:4 mullite, under the influence of pressure, is evolving in 

the direction of a possible phase transition, with motion towards the formation of five-

coordinated silica and alumina, or very distorted AlO5 and SiO5 bipyramids sharing one edge 

with the AlO6 octahedra. However, the transition does not ultimately take place, because the 

process of amorphization appears to take over. Alternatively it can be thought that the 

process of going towards five-coordinated silicon and aluminum actually creates 

instabilities in the structure and helps to bring about the amorphization. For B-mullite 

amorphization upon compression is permanent, even upon return to ambient conditions. 

Even though 7:4 mullite appears mostly X-ray amorphous at 28 GPa, it is able to partially 

recover some crystallinity, indicating that the distortion-driven amorphization is at least 

somewhat reversible. A third-order Birch Murnaghan equation of state is fitted to the P-V 

data and experimental bulk moduli as well as axial bulk moduli are obtained for both 

mullites. A P-V-T equation of state is also proposed for B-mullite by combining 

compressibility data with thermal expansion results.  

 

5.3. PbMBO4 Synthetic Mullites   

 

To the best of the author’s knowledge this works present the first high-pressure x-

ray diffraction results, and the first high-pressure Raman spectroscopy results of PbMBO4 

mullite at high-pressures including: evidence of multiple phase transitions, evidence of 

significant negative linear compressibility and persistence of stereochemical activity of the 

Pb2+ lone electron pair and high pressures.  

ADXRD patterns of mullite-type PbFeBO4 phase were collected in-situ in a DAC, on 

compression from 1.4 GPa up to 71.7 GPa, and for the PbAlBO4 phase on compression from 
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0.5 GPa to 111.8 GPa. Raman spectra of PbFeBO4 were measured as a function of increasing 

pressure between ambient and 20.4 GPa, while Raman spectra of PbAlBO4 were measured 

between ambient pressure and 88 GPa. Rietveld refinements of high-pressure X-ray 

diffraction data combined with analysis of high-pressure Raman spectra helped to reveal 

some unexpected and interesting features of the process of compression. Also the pressure-

driven evolution of vibrational modes was analyzed and mode-Grüneisen parameters were 

obtained for both PbMBO4 mullites. Mode assignment is was presented.  

Changes in vibrational modes around 12 GPa, the appearance of new vibrational 

modes and the change in the rate of compression in the unit cell volume points to a phase 

transition in both PbMBO4 mullites. The combination of the observations from results of 

high-pressure Raman spectroscopy and high-pressure X-ray diffraction of PbFeBO4 and a 

detailed analysis of Rietveld structural refinements led the author to propose a new 

pressure-driven phase transition in PbFeBO4. Around 11.8 GPa PbFeBO4 mullite undergoes 

a phase transition from the orthorhombic Pnma phase (space group #62) to another phase 

with orthorhombic symmetry: the proposed space group for this transition is Pna21 (#33). 

The high pressure phase Pna21 remains stable up to at least 71 GPa.  

PbAlBO4 undergoes two new pressure-driven phase transition in PbAlBO4. Just as 

was the case for PbFeBO4, around 11.8 GPa PbAlBO4 mullite undergoes a phase transition 

from the orthorhombic Pnma phase (space group #62) to another phase with orthorhombic 

symmetry: the proposed space group is Pna21 (#33).PbAlBO4 undergoes a second pressure-

driven phase transition at ~54 GPa which can be readily seen from the change in relative 

intensity of diffraction lines and the appearance of new diffraction lines in the low 2θ 

region. The significant line broadening makes it very difficult to propose a candidate 

structure for the second high pressure phase. However profile indexing results suggest that 

the new high-pressure phase has most probably a monoclinic or possibly triclinic Bravais 
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lattice. The new persists up to the highest pressure investigated, 111.8 GPa. In both PbMBO4 

mullites the disappearance of some Raman modes and appearance of new ones, as well as 

softening of vibrational mode frequencies together with mode splitting reflect the 

occurrence of phase transitions on one side and, on the other side, the expected symmetry 

lowering at the transition pressure. It is interesting to note that most changes in vibrational 

mode behavior are associated with changes around the Pb2+ cation. These point to the fact 

that Pb2+ plays an important role in the phase transition. On pressure decrease all phase 

transition in PbMBO4 are fully reversible. 

The pressure dependence of the lattice parameters of PbFeBO4 shows a distinct 

anisotropy, which could be related to the changes in the space requirements of the free 

electron pair of Pb2+. The abrupt changes in slope of compression of a, b and c (of more than 

an order of magnitude) are one more piece of evidence pointing to the phase-III 

transition. 

Due to the similarities in the pressure-dependent behavior, the compression of the 

asymmetric environment of the Pb2+ ion and its 6s2 lone electron pair can be thought to be 

the reason for the phase transition. In phase-I of PbMBO4 mullites the Pb2+ ions are 

coordinated by four O atoms forming an irregular Pb2+O4 pyramid with the lead atom at the 

vertex, showing that the LEP is stereochemically active. In both PbMBO4 mullites the 

coordination of the Pb2+ cation increases around the phase transition from [4] to [6 + 1].  In 

phase-II the large deviation of the Pb2+ central cation from the center of gravity of the 

trigonal prism indicates that the stereochemistry of Pb2+ in phase-II is similar to that of 

phase-I and thus that Pb2+ remains stereochemically active in the high-pressure structure, 

at least at up to 14 GPa. 

A third-order Birch Murnaghan equation of state was fitted to the P-V data and 

experimental bulk moduli for the low- and the high-pressure phases of PbMBO4 were 
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obtained. The high-pressure phases display much smaller compressibility, most likely due 

to a change in space requirements of the free electron pair. There is a good correlation 

between the unit-cell volume and the bulk modulus of PbMBO4 synthetic mullites and of 

isotypic or structurally related compounds. 

The compression of PbMBO4 lattice parameters is highly anisotropic with a being 

the most compressible cell parameter and with b displaying expansion under pressure or 

negative axial compressibility at low pressures. Remarkably the two PbMBO4 mullites are 

among the ~20 or so materials known to display negative linear compressibility, which is 

important not only because the NLC effect is very rare, but also because examples of 

inorganic materials are even fewer. Negative linear compressibility in PbMBO4 is explained 

with two mechanisms, which interplay synergically: (i) the stereochemical activity of the 

LEPs opposes compression in one direction; (ii) the expansion of the lattice parameter 

(along the same direction where LEPs oppose compression) is due to the rotation of MO6 

octahedra and BO3 groups and the alignment of their longest bonds in one direction, leading 

to NLC. From a fundamental physics point of view there are strong implications associated 

with understanding mechanisms of NLC. In practice NLC is a highly attractive mechanical 

property, with a key application being the development of effectively incompressible optical 

materials.  

 

5.4. Global Conclusions 

 

Even though mullite occurs rarely in nature, it is perhaps one of the most important 

phases in both traditional and advanced ceramics. Existing and emerging applications of 

mullite and mullite-type materials include: high-temperature composites, aerospace 

materials, ballistic shielding for military applications and even non-linear optical materials. 
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There are many uncertainties regarding the basic physical properties of mullite-type 

materials, particularly in terms of their high-pressure structural stability and mechanical 

behavior that are important to address for emerging applications of mullites as engineering 

materials. Application of pressure provides a powerful way to produce a wide range of 

physical phenomena in a controlled environment. 

This work is the first reported comprehensive investigation of the high –pressure 

structural behavior of several different mullites and synthetic mullite-type oxides. The 

materials investigated are representatives of different structural and chemistry branches of 

the mullite family. The goal was to elucidate how the most fundamental building blocks of 

mullite oxides accommodate high pressure compression. Mullites and mullite-type oxides 

were investigated at extreme pressures using synchrotron x-ray diffraction and laser 

Raman spectroscopy. These experiments enable the extraction of the materials’ structure 

and its modifications in a function of increasing pressure: deformation of polyhedra, phase 

transitions, formation and breaking of bonds. The experimental techniques used here are 

ideally suited to provide a synergical interplay in the study of oxides under high-pressure 

conditions: Raman spectroscopy is a technique for investigating short range order 

phenomena while x-ray diffraction accesses structural changes occurring at the long range 

order.  

Among the variety of findings the following phenomena were discussed: phase 

transitions, equations of state, pressure-driven amorphization, and the very rare effect of 

negative linear compressibility. The unprecedented discovery of negative linear 

compressibility in mullite-type oxides presented here opens the door to military 

applications as incompressible optical materials. 
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