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Abstract 

Many intermetallic solids containing elements from the rare earth series show 

interesting and unusual behavior associated with 4f electrons.  This behavior includes 

unusual magnetic order, strongly correlated electrons, intermediate valence, heavy 

fermions, the Kondo effect, superconductivity, and non-Fermi liquid (NFL) to name a 

few. When long range magnetic order is suppressed to T = 0 K by the application of an 

external tuning parameter such as pressure, magnetic field, or chemical doping, a 

quantum critical point (QCP) appears in which strong quantum fluctuations give rise to 

many of the mentioned unusual properties.   

Most of the past studies on unusual 4f materials focus on those containing Ce and 

Yb with less work on Eu. However, europium intermetallic compounds also show a wide 

range of physical and magnetic properties as well as intermediate valences between the 

Eu2+ and Eu3+ configurations. A europium ion can be either divalent (Eu2+:S = 7/2, L = 0, 

J = 7/2) or trivalent (Eu3+:S = L = 3, J =0).  Divalent europium has a larger volume and 

magnetic moment (7 µB/Eu), while trivalent europium has a smaller volume and no 

magnetic moment. This has profound consequences on both the physical and magnetic 

properties of europium materials, especially under pressure.  This dissertation studies 

three europium compounds, EuMn2Si2, EuCo2Si2, and Eu5In2Sb6, in which europium 

exhibits mixed valence states. Samples were obtained through collaboration with Los 

Alamos National Laboratory.  Specific heat and magnetic susceptibility measurements 

were performed at UNLV.  High pressure powder X-ray diffraction (HPXRD) and high 

pressure X-ray resonant emission spectroscopy (HPRXES) were performed at Argonne 

National Laboratory at the High Pressure Collaborative Access Team (HPCAT).  
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Analysis of the data from these experiments furthers the understanding of the valence 

behavior of europium in these materials and gives insight to future theoretical predictions 

of critical behavior of mixed valence systems. 
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Chapter I – Introduction and Background 

Overview 

Intermetallic solids containing elements from the rare earth series show 

interesting and unusual behavior associated with 4f electrons.  This includes Kondo 

screening, heavy fermion behavior, and intermediate valence behavior, sometimes 

accompanied by competing magnetism and superconductivity.   In heavy fermion 

materials, the strong electronic correlations lead to a Fermi liquid where the electron 

becomes a quasi-particle with a renormalized mass.  When magnetism is suppressed to T 

= 0 K by the application of an external tuning parameter such as pressure, magnetic field, 

or chemical doping, a quantum critical point (QCP) appears in which strong quantum 

fluctuations give rise to unusual or non-Fermi liquid temperature dependencies of the 

physical properties. Competing low-energy scales set by the rare earth valence 

fluctuations, the f to conduction electron hybridization, the crystal fields, the exchange 

interactions, and the spin fluctuations contribute to interesting and varied phase diagrams.  

For this reason, mixed valence 4f electron systems have been of great interest recently.   

One of the new areas of focus has been on the rare-earth intermetallic compounds 

containing europium.  These europium intermetallic compounds show a wide range of 

physical and magnetic properties as well as intermediate valences between the Eu2+ and 

Eu3+ configurations. A europium ion can be either divalent (Eu2+: 4f7, S = 7/2, L = 0, J = 

7/2) or trivalent (Eu3+:4f6, S = L = 3, J =0).  Divalent europium has a larger volume and 

magnetic moment (7 µB/Eu), while trivalent europium has a smaller volume and no 
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magnetic moment. This has profound consequences on both the physical and magnetic 

properties of europium materials, especially under pressure. 

This valence transition is similar to the Kondo effect, where the magnetic moment 

from localized f electrons is quenched due to strong electron-electron correlations 

(leading to the common phrase correlated-electron system).[11] For rare-earth and 

actinide compounds, the competition between the Kondo effect and Ruderman–Kittel–

Kasuya–Yosida (RKKY) interaction induces phenomena such as heavy fermion, 

unconventional superconductivity, and non-Fermi liquid behavior.  In many correlated-

electron systems, the low temperature state is that of a Fermi liquid where the electronic 

correlations lead to the electrons behaving as a quasiparticle with an enhanced mass in 

thermodynamic measurements. Many Ce- and Yb-based heavy fermion compounds have 

been extensively examined.  Unlike Ce or Yb, Eu has a multiple electron or hole 

occupancy of its 4f shell, and the magnetic Eu 2+ state has no orbital component in the 

usual LS coupling. 

This dissertation studies three europium metallic compounds in which europium 

exhibits mixed valence states.  These materials are EuMn2Si2, EuCo2Si2, and Eu5In2Sb6. 

Samples were obtained through collaboration with Los Alamos National Laboratory.  

Specific heat and magnetic susceptibility measurements have been performed at UNLV.  

High pressure powder X-ray diffraction (HPXRD) and High pressure X-ray resonant 

emission spectroscopy (HPRXES) have been performed at Argonne National Laboratory 

at the High Pressure Collaborative Access Team (HPCAT).  The data and from the 

measurements and its analysis provide an understanding of the valence behavior of 
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europium in these materials and allows for theoretical predictions of critical behavior of 

mixed valence systems.  

This dissertation focuses on examining the Eu-based compounds to determine if 

the valence instabilities result in interesting electronic and magnetic states that have been 

seen in other heavy fermion compounds.  In order to fully understand the mixed valence 

europium compounds studied here and to be able to make predictions about other mixed 

valence systems, a complete thermodynamic model of the magnetic and valence 

transitions must be established.  We need to know how the valence changes with 

temperature as well as the energy associated with the change and how the magnetic 

properties are affected.  Presented here is the necessary background in order to model the 

system and understand the data collected.  Specific heat and magnetic susceptibility can 

be measured directly.  Valence can be inferred from resonant HPRXES.  The equation of 

state can be determined using HPXRD.  These measurements together are used to form a 

coherent understanding that will allow us to determine possible critical behavior under 

certain conditions. 

Specific Heat 

Specific heat measurements are a pivotal experimental technique for 

characterizing the fundamental excitations involved in a phase transition.  Phase 

transitions involving spin, charge, phonons, orbital degrees of freedom, the interplay 

between ferromagnetism and superconductivity, Schottky-like anomalies in doped 

compounds, electronic levels in correlated systems, among other features, can be 

captured by means of high-resolution calorimetry.  The entropy change associated with 
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temperature, including large changes due to a phase transition, no matter its nature, can 

be directly obtained upon integrating the specific heat over temperature, i.e. C(T)/T as a 

function of temperature. 

Heat capacity of phonon modes in a crystal 

The Debye model is a method developed in 1912 by Peter Debye for estimating 

the phonon contribution to the heat capacity of a solid.  Consider the regular lattice of 

atoms in a uniform solid material.  Atoms in this solid oscillate about their equilibrium 

positions.  Since they are bound together, they usually do not vibrate independently.  The 

vibrations take the form of collective modes, which propagate through the crystal.  The 

propagation speed is the speed of sound in the propagation direction for the material.  

These vibrational energies are quantized and treated as quantum harmonic oscillators.   

The evidence of the behavior of vibrational energy in periodic solids is that the 

collective vibrational modes can accept energy in only discrete amounts.  These quanta of 

energy are called phonons.  Similar to photons, they obey Bose-Einstein statistics. The 

energy of a phonon in an isotropic material can be written in terms of the vibrational 

modes in a solid  

𝐸 = ℎ𝑣 =  !!!
!
= !!!!

!!
 ,       Equation 1 

where vs is the speed of sound in the solid.  Using Bose-Einstein statistics, the total 

energy of the lattice vibrations takes the form 

𝑈 = 3 !
!! !"!!

𝑑𝐸!!"#
! .      Equation 2 
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In terms of the phonon modes 

𝑈 = !!
!

!!!!
!!

!!

!!!!! !!"#!!
𝑑𝑛!!"#

! .     Equation 3 

The integral can be simplified into its standard form by substituting  

𝑥 = !!!!
!!"#

         Equation 4 

𝑥!"# =
!!!!!"#
!!"#

= !!!
!!"

!!
!"

! !
= !!

!
 ,    Equation 5 

where TD is the Debye temperature associated with the highest allowed mode of vibration.  

This gives us 

𝑈 = !!"!!

!!
!

!!

!!!!
𝑑𝑥!! !

! .       Equation 6 

To find the specific heat for a constant volume, 

𝐶! =
!"
!"
= 9𝑁𝑘 !

!!

! !!!!

!!!! ! 𝑑𝑥
!! !
! .    Equation 7 

This expression is the Debye model and can be evaluated numerically for a given 

temperature. 

Usually it is much easier to measure the specific heat of a material at a constant 

pressure.  

𝐶! =
!"
!"
= !"

!"
+ 𝑝 !"

!"
        Equation 8 

The change in volume with temperature is usually small in solids, however it can be 

measured directly or estimated by using the thermal expansion coefficient αV where 
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𝛼! =
!
!
!"
!"

         Equation 9 

The differences usually are negligible and can be safely ignored for incompressible 

materials.  However, if there is a significant volume collapse due to thermal changes, it 

may be worthwhile noting the difference.  If the pressure is effectively zero for the solid 

in question, then there is no difference.  Atmospheric pressure is effectively zero pressure 

for most solids as well all the materials that are studied here. 

When looking at the specific heat of a real material, it is often difficult to separate 

the various contributions.  If there is a way to theoretically calculate the specific heat 

from data from different measurements, then it should be possible to isolate the various 

contributions.  Several relations have been derived which correlate the Debye 

temperature and elastic constants.  Madelung and Einstein derived separate relations for 

cubic systems that can be written in the form 

𝑇! = 𝐶!
!
!

! !
!

! !
       Equation 10 

where Cb is a constant, h is Planck’s constant and k is Boltzmann’s constant, a is the 

lattice parameter of the unit cell, B is the bulk modulus and M is the molecular weight of 

the material.   

With the advent of computers, more accurate methods of calculating the Debeye 

temperature are possible.  The basic procedure is to average the contributions of the 

characteristic phonon modes over the Brillouin zone using symmetry arguments. [29]  

These methods involved some approximations, but comparison of such TD values with 



 7 

those obtained from specific heat measurements showed a satisfactory agreement in most 

cases. [29] 

The other standard way to isolate the Debye temperature is to measure it in the 

low temperature limit.  If T << TD then equation 7 can be evaluated as 

𝐶!~
!"!!

!
!
!!

!
.       Equation 11  

Heat capacity of electrons in a metal 

The electronic specific heat only becomes significant at low temperatures.  The 

Fermi energy is much greater than kT such that the overwhelming majority of the 

electrons cannot receive thermal energy since there are no available energy levels within 

kT of their energy.  Because of this, ALL of the presented electronic specific heat 

measurements are in the low temperature limit. The small fraction of electrons that are 

within kT of the Fermi level does however contribute a small specific heat, which is 

derived here. 

The internal energy U of a system within the free electron model is the sum over 

one-electron levels times the mean number of electrons in that level. 

𝑈 = 2 𝜀! 𝒌 𝑓(𝜀 𝒌 ),       Equation 12 

where f(ε) is the Fermi function 

𝑓 𝜀 = !
!(!!!) !!!!!

 .       Equation 13 

For a large but finite system, we can approximate this by the integral 
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𝑈 = 𝑉 𝑑𝒌 𝜀 𝒌 𝑓(𝜀 𝒌 ).      Equation 14 

Dividing by the volume V gives us the energy density u. 

𝑢 = !𝒌
!!!

𝜀 𝒌 𝑓(𝜀 𝒌 ).      Equation 15 

This integral depends only on k through the electronic energy ε.  This gives us 

𝑢 = 𝑑𝜀 𝑔 𝜀 𝜀 𝑓(𝜀)!
!! ,      Equation 16 

where g(ε) is the density of energy levels per volume  

𝑔 𝜀 =  !!
!!!

!
!!

! !
 , 𝜀 > 0; 0, 𝜀 < 0.     Equation 17 

 The integral can be approximated using a Sommerfield expansion for small T 

since for the temperatures of interest the Fermi temperature is much larger than T.  This 

give us   

𝑢 = 𝑢! +
!!

!
𝑘!𝑇 !𝑔(𝜀!),      Equation 18 

and 

𝐶! =
!"
!"
= !!

!
𝑘!

!𝑇𝑔 𝜀! .       Equation 19 

In terms of the Fermi temperature, TF, 

𝐶! = 𝐶! 𝑛 = !!

!
!!!
!!

= !!

!
!
!!

       Equation 20 

Heavy fermion materials have a low-temperature specific heat whose linear term 

is up to 1000 times larger than the value expected.  In correlated electron systems, 
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electron interactions are strong enough that electrons cannot be treated as independent 

entities but have to consider their correlated behavior.  Landau–Fermi liquid theory is a 

theoretical model that describes interacting electrons at low temperatures.  Electrons are 

described as quasi-particles with the same quantum numbers and charge but an effective 

mass that differs from a free electron.  The density of energy levels per volume, g(εF), can 

be greatly enhanced leading to an effective mass much larger than an electron.  

The Fermi energy is inversely related to the electrons mass. 

𝜀! =
ħ!!

!

!!
       Equation 20a 

This into equation 20 explains the large increase in the linear component of the 

specific heat.  

Heat capacity of a two-state system 

At low enough temperatures, there are circumstances within solids where only the 

lowest two energy levels are involved.  These two energy levels can be associated with 

spins, lattice instabilities, impurity states and others. Especially important are solids 

where each atom has two levels with different energies depending on whether the 

electron of the atom has spin up or down.  Consider a set of N distinguishable atoms each 

with two energy levels.  The atoms are identical but are distinguishable by their fixed 

location within a crystal lattice. The energy of the two levels are ε0 and ε1.  The partition 

function for an atom with two states can be written as 

𝑍 = 𝑒!!! !!! + 𝑒!!! !!! = 𝑒!!! !!! 1+ 𝑒!! !!!    Equation 21 
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where ε is the energy difference between the two levels.  At thermal equilibrium, the 

occupation numbers in the two levels is 

𝑛! =
!
!
𝑒!!! !!! = !

!!!!! !!!
       Equation 22 

𝑛! =
!
!
𝑒!!! !!! = !!!! !!!

!!!!! !!!
       Equation 23 

At low temperatures almost all of the particles are in the ground state while at 

high temperatures there is same number of particles in the two levels.  The transition 

between these two extremes occurs roughly when kBT ≈ ε or T ≈ θ = ε/kB, where θ is the 

scale temperature. The internal energy can be expressed as 

𝐸 = 𝑛!𝜀! + 𝑛!𝜀! = 𝑁 !!!!!! !!!!!!!!!! !!!

!!!! !!!!!!!! !!!
= 𝑁𝜀! +

!"!!! !

!!!!!/!
  Equation 24 

The internal energy is a monotonous increasing function of temperature that starts at Nε0 

and approaches N(ε0+ε/2) at high temperatures. 

Given the internal energy of a system, calculating heat capacity is straightforward  

𝐶 = !"
!"
= 𝑁𝑘!

! ! !!!! !

!!!!! ! !        Equation 25 

The heat capacity has a maximum of order NkB at a temperature T ≈0.417 θ.  This 

behavior for a two-level system is called a Schottky anomaly.  

Heat capacity of a three level system 

Consider a case where the each atom in a crystal has a localized electron that can 

be either in a spin up or spin down configuration.  The heat capacity of such a system we 
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have discussed previously for a two state system.  Now complicate the system such that 

each atom can either have this localized electron or it can be part of the valance and that 

the probability of this is dependent on the temperature.  What is the heat capacity of such 

a system?  The first goal is to write down the partition function for the atom.  It 

immediately becomes clear that there are three possible configurations the atom can be 

in: spin up, spin down, and no spin.  This is nothing more complicated than a three state 

system.   

In a canonical ensemble, the sum of over the states is the partition function (Z) of 

the system.   

𝑍 ≡ 𝑇𝑟 𝑒!!! = 𝑒!!!!! = 𝑒!!! !!!! ,    Equation 26 

where εn is the nth energy level or nth eigenvalue of the system’s Hamiltonian.  The 

partition function encodes all information of the physical system from which all 

thermodynamic observables can be calculated.  For a three-level model, the partition 

function is given by 

𝑍 = 𝑒!!"! + 𝑒!!"! + 𝑒!!"! = 𝑒!!"! + 𝑒!!(!!!!!) + 𝑒!!(!!!!!)  Equation 27 

This assumes that the energies involved are independent of the temperature, which may 

or may not be valid depending on the system.  For solids, this is a reasonable assumption 

given relatively small thermal expansions. 

Calculating the specific heat we use the equations 

𝐸 = !
!"
(ln𝑍),        Equation 28 
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and 

𝐶 = −𝛽! !"
!"

        Equation 29 

This gives us 

𝐶 = 𝛽! !!!!!!!!!!!!!!!!!

!!!!!!!!!!!!!
! +

!!! !!!!! !! !!!!! !!! !!!!!
!!!!!!!! !!!!!

!    Equation 30 

For an ensemble of N particles in terms of two characteristic temperatures θ1 and θ2 we 

have  

𝐶 = !"
!!

!!!!!!! !!!!!!!!! !

!!!!!! !!!!!! ! ! +
!! !!!!! ! !! !!!!! !!! !!!!!

!!!!!! !! !!!! ! !   Equation 31 

Total heat capacity 

The total heat capacity for a system is the sum of the heat capacity of all its parts.   

𝐶! = 𝐶!!!"!" + 𝐶!"!#$%&'(# + 𝐶!"#$%&'(     Equation 32 

For example, a metallic solid with a two state magnetic component, we have 

𝐶! = 9𝑁𝑘 !
!!

! !!!!

!!!! ! 𝑑𝑥
!! !
! + !!

!
!
!!
+  𝑁𝑘 ! ! !!!! !

!!!!! ! !    Equation 33 

This looks rather complicated, however, there are only three independent variables, the 

Debye temperature TD, the Fermi temperature Tf and the scale temperature θ.  This 

expression can be used to fit experimental specific heat data using relatively 

straightforward computational techniques.  
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For a metal with a three state magnetic component this gets slightly more 

complicated in appearance, but only adds one additional independent variable.  The total 

heat capacity for a mixed valence europium metallic compound should be  

𝐶! =

9𝑁𝑘 !
!!

! !!!!

!!!! ! 𝑑𝑥
!! !
! + !!

!
!
!!
+

 !"
!!

!!!!!!! !!!!!!!!! !

!!!!!! !!!!!! ! ! +
!! !!!!! ! !! !!!!! !!! !!!!!

!!!!!! !! !!!! ! !     Equation 34 

This can be used to fit the experimental specific heat data measured for the materials 

presented to find the Fermi temperature Tf, the Debeye temperature TD and the two 

magnetic ordering temperatures θ1 and θ2.  A good initial guess will necessary to properly 

fit data.  If this information is available from other measurements, then it should be 

possible to calculate the heat capacity. 

Magnetic Density and Susceptibility 

The magnetization density M(H) of a system with volume V in a uniform 

magnetic field H, where M is parallel to H and E0(H) is in the ground state energy in the 

presence of a that field is defined to be 

𝑀 𝐻 ≡ − !
!
!!!
!"

        Equation 35 

For a system that is in thermal equilibrium at some temperature T, the 

magnetization density is defined to be the thermal equilibrium average of the 

magnetization density of each excited state En(H).19 
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𝑀 𝐻,𝑇 ≡ !!(!)!!!! !"
!

!!!! !"!
       Equation 36 

where 

𝑀! 𝐻 ≡ − !
!
!!!(!)
!"

        Equation 37 

In terms of the Helmholtz free energy F, defined by the statistical mechanical relation  

𝑒!! !" = 𝑒!!!(!) !"!        Equation 38 

The magnetization can be written as 

𝑀 = − !
!
!"
!"

         Equation 39 

The susceptibility is defined as 

𝜒 = !"
!"
= − !

!
!!!
!!!

        Equation 40 

In the presence of a uniform magnetic field, the Hamiltonian of an atom is 

modified to include the interaction with the spin and angular momentum of the electrons.  

The interactions are small and perturbation theory can be used to calculate the changes in 

energy of the atomic states.  The equation below is the result and it is the basis for the 

theories of magnetic susceptibility of individual atoms, ions, and molecules.19 

𝛥𝐸! = 𝜇!𝐇 ∙ 𝑛 𝐋+ 𝑔!𝐒 𝑛 + ! !!𝐇∙ 𝐋!!!𝐒 !!
!

!!!!!!
!!!! + !!

!!!!
𝐻! 𝑛| (𝑥!! + 𝑦!!)! |𝑛   

          Equation 41 
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This equation can be applied to solids in which the individual ions are assumed to 

be only slightly deformed in the material and the susceptibility is computed by summing 

over the ions in a lattice. 

Filled Electronic Shells: Larmor Diamagnetism 

In the simplest case in which all electronic shells are filled, the ion has zero spin 

and the orbital angular momentum is in its ground state. 

𝐉 0 =  𝐋 0 = 𝐒|0 = 0       Equation 42 

Only the third term in the equation contributes to the field induced shift.  At all but 

extremely high temperatures, there is only negligible probability of an atom not being in 

its ground state.  This leads to the a susceptibility known as the Larmor diamagnetic 

susceptibility where 

𝜒 = − !
!
!!!!!
!!!

= − !!

!!!!
!
!
0| 𝑟!!! |0      Equation 43 

Partially Filled Electronic Shells: Paramagnatism and Curie’s Law 

For ions or atoms with unfilled shells with negligible magnetic interactions 

between ions, it is more complex.  Single electron levels are characterized by the orbital 

angular momentum l.  For a given l, there are 2l+1 values lz can have and two possible 

spin directions for each lz.  In an atom or ion, if the electrons were non-interacting, the 

ground state would be degenerate, however, electron-electron Coulomb interactions and 

spin orbit interactions lift this degeneracy for the most part.19 Forgoing the complex 

computations or the atomic spectra measurements, the f-electron results from the rules for 
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filling orbitals, known as Hund’s rules, are presented in table 1.   This is sufficient for our 

purposes as this is the only important part to consider for magnetic interactions.  

 There are two cases to consider for the susceptibility of an insulator with partially 

filled shells.  First let us consider J = 0 in the case where the shell is one electron short of 

being half filled.  This is the case of the Eu3+ ion.  The ground state is not degenerate and 

the linear term vanishes.   Unlike the case of a filled shell, the second term does not 

necessarily vanish and the shift in the ground state energy is given by 

𝛥𝐸! =
! !!𝐇∙ 𝐋!!!𝐒 ! !

!!!!!! + !!

!!!!
𝐻! 0| (𝑥!! + 𝑦!!)! |0    Equation 44 

With N/V ions per unit volume and noting the En > E0, the susceptibility can be written as 

𝜒 = − !
!
!!!!
!!!

= − !
!

!!

!!!!
0| 𝑟!!! |0 − 2𝜇!!

! !!𝐇∙ 𝐋!!!𝐒 ! !

!!!!!!   Equation 45 

The first term is the Larmor diamagnetic susceptibility again.  The second term favors 

alignment of the moment parallel to the field.  This is the paramagnetic correction to the 

Larmor diamagnetic susceptibility known as Van Vleck paramagnetism.  This is only 

valid if the ground state at thermal equilibrium is the only appreciably occupied state. 

 If the shell does not have J=0, then the first term is the energy shift does not 

vanish and will be much higher than the other two terms that they can be ignored.  The 

ground state is (2J+1)-fold degenerate in zero field.   We can write 

𝐋+ 𝑔!𝐒 = 𝑔 𝐽𝐿𝑆 𝐉       Equation 46 

where 
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𝑔 𝐽𝐿𝑆 = !
!
𝑔! + 1 − !

!
(𝑔! − 1)

! !!! !!(!!!)
!(!!!)

   Equation 47 

If only the lowest 2J+1 sates are thermally excited with appreciable probability, 

the free energy is given by 

𝑒!! !" = 𝑒!!(!"#)!! !"!
!!!!! = !!"#(!!

!
!)!!!!"#(!!

!
!)

!!"#!!!!"#
   Equation 48 

where 

𝛽 = !
!"

 , and 𝛾 = 𝑔(𝐽𝐿𝑆)𝜇!       Equation 49 

The magnetization of N such ions in a volume V is 

𝑀 = − !
!
!"
!"
= !

!
𝛾𝐽𝐵!(𝛽𝛾𝐽𝐻) ,     Equation 50 

where the Brillouin function BJ(x) is defined as 

𝐵! 𝑥 = !!!!
!!

coth !!!!
!!

𝑥 − !
!!
coth !

!!
𝑥.     Equation 51 

When γH << kT , the small x expansion for the Brillouin function is valid resulting in  

𝜒 = − !
!
(!!!)!

!
!(!!!)
!"

.        Equation 52 

This is Curie’s law and characterizes paramagnetic systems.  It is commonly written in 

the form  

𝜒 = − !
!!

!!!!!

!!!
        Equation 53 

where 
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𝜌 = 𝑔 𝐽𝐿𝑆 [𝐽 𝐽 + 1 ]!/!       Equation 54 

For Eu2+, we can calculate ρ to be ρ = √63 ≈ 7.94. 

Susceptibility of Metals: Pauli Paramagnetism 

Lastly, for electrons in the conduction band of a metal it can be shown that the 

susceptibility is independent of temperature since the only interaction is the spin of each 

electron. 

𝜒 = 𝜇!!𝑔(𝜀!)        Equation 55 

where g(εF) is the density of states at the Fermi energy.  This is known as the Pauli 

paramagnetic susceptibility.  Similar to what happens with the linear component of the 

specific heat, in correlated electron systems, g(εF) can be greatly enhanced.  This leads to 

a larger than normal susceptibility as temperature approaches zero for heavy fermion 

materials. 

Magnetic Ordering 

 If there were no magnetic interactions, individual magnetic moments would, in 

the absence of external magnetic field, be thermally disordered at any temperature and 

the previous discussion of Pauli paramagnetism applies.  Solids in which individual 

magnetic moments have nonvanishing average moments below some critical temperature 

Tc, such as those studied here, will become magnetically ordered. The critical temperature 

Tc above which magnetic ordering vanishes is known as the Curie temperature in 

ferromagnets and the Neel temperature in antiferromagnets.  In ferromagnets, there is a 

spontaneous magnetization due to the ordering of local moments in the same direction.  
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In antiferromagnets, there is no spontaneous magnetization since the sum of the spin 

vectors is zero.  This differs in what we have presented so far in which the interactions 

between magnetic moments have not been considered at all. 

Thermodynamic Properties of Magnetic Ordering 

The observed magnetization below a magnetic ordering temperature Tc can 

usually be well described by a power law. 

𝑀(𝑇)~(𝑇! − 𝑇)!!        Equation 56 

where β is between 0.33 and 0.37 [19]. 

 The onset of magnetic ordering can be seen as the temperature drops to Tc from 

above.  In the absence of any interactions, the susceptibility should vary inversely with 

temperature at all temperatures.  This was derived as Curie’s law in the previous section.  

In a ferromagnet, the susceptibility is observed to diverge as the temperature approaches 

Tc from above.   This can be described the following power law: 

𝜒(𝑇)~(𝑇 − 𝑇!)!!       Equation 57 

where γ is typically between 1.3 and 1.4. [19] 

Mean Field Theory and Susceptibility Above Tc 

 Mean field theory is usually inadequate to describe almost any magnetic system 

well.  It is the simplest and earliest attempt at quantitative analysis of a ferromagnetic 

transition done by P. Weiss.  It fails to predict behavior near the critical temperature.  The 
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theory averages the field of all other ions on individual ions as Heff.  Skipping the details, 

the result of this is the modification of Currie’s law to the Currie-Weiss law. 

𝜒 = !
!!!!

         Equation 58 

This is only reliably useable when significantly higher than Tc.  The next best approach 

without resorting to computational techniques is to simply use the critical behavior term 

already mentioned to fit magnetic susceptibility near Tc.  

𝜒 = !
!!!! !        Equation 59 

The Curie constant C is given by  

𝐶 = !!!

!!!

!
!
𝑔 𝐽𝐿𝑆 !𝐽 𝐽 + 1 =  !!

!

!!!

!
!
𝜌!    Equation 60 

In S.I. units this is, 

𝐶 = !!!!!

!!!

!
!
𝜌!       Equation 61 

 

For EuMn2Si2, assuming all europium ions are in the 2+ state, C is calculated to be 

0.9966 K A/(T m). For Eu5In2Sb6 , assuming all europium ions are in the 2+ state, C is 

calculated to be 1.9474 K A/(T m).. 

Critical Point Phase Transition 

Critical point phase transitions differ from first-order transitions in that there is no 

difference in the specific entropy of the two phases at the transition. [27] An example is 
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the normal fluid–superfluid transition in liquid He. The heat capacity of liquid 4He at the 

super-normal transition temperature, the lambda point, is shown in figure 1.  As a critical 

point is approached, various properties, such as the heat capacity or the compressibility, 

go to infinity or zero as power laws in t, where 

 𝑡 = !!!!
!

         Equation 62 

The heat capacity or other quantity near a lambda transition can be written in terms of the 

critical exponent α, such as 

 𝐶~𝑡!!         Equation 63 

Heavy Fermions and Quantum Critical Points 

The Kondo effect is a key part in understanding the behavior of metallic systems 

with strongly interacting electrons.  It describes a scattering mechanism of conduction 

electrons in a metal due to magnetic impurities.  It can be used in a more general way to 

describe a many-bodied scattering process from impurities or ions that have isolated 

magnetic moments.  With this more general approach, the behavior of metallic systems 

with strongly interacting electrons can be understood. 

The dominant contribution to the electrical resistivity in metals arises from the 

scattering of the conduction electrons by lattice vibrations (phonons).  As lattice 

vibrations become more pronounced and more phonon modes become accessible with 

increasing temperature, the electron-phonon scattering increases.  This results in a 

monotonically increasing resistivity with temperature in most metals.  However, at very 

low temperatures, when most lattice vibrations should be energetically inaccessible, a 



 22 

resistance minimum was observed in gold by de Haas, de Boer, and van den Berg in 1934 

indicating that some other scattering process must exist [31].  Many other observations of 

a resistance minimum in metals have been observed since.  It was much later that the 

resistance minimum was attributed to magnetic impurities.  In 1964 Kondo showed 

scattering processes from magnetic impurities in which the internal spin state of the 

impurity and scattered electron are exchanged, gives rise to a resistivity contribution 

behaving as log(T) [30]. 

The Kondo temperature is defined by 

𝑇! ≈ 𝐷 − 𝜀! 𝑒! ! !       Equation 68 

where D is the highest energy an electron can accept, ρ is the electron density of 

states, and J is the electron-electron interaction strength.  Below this temperature, the 

conduction electron spins begins to effectively screen the magnetic moments. 

In the simplest case where the magnetic impurity has an unpaired spin S=1/2, the 

moment is gradually screened out by the conduction electrons as the temperature is 

lowered.   As T approaches zero, it behaves effectively as a non-magnetic impurity.  This 

results in a temperature independent contribution to the resistivity as opposed to 

logarithmic or linear.  These impurity contributions to the magnetic susceptibility, 

specific heat, and other thermodynamic properties, could all be expressed as universal 

functions of T/TK. 

The aforementioned Kondo effect was calculated only to systems with dilute non-

interacting magnetic impurities.  As one moves away from the dilute limit, the magnetic 

impurities will interact through the RKKY interaction.  This interaction tends to magnetic 
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order is in competition with the Kondo interaction. However, there are non-dilute alloys 

with magnetic ‘impurities’ at each lattice site referred to as a Kondo lattice.  

The RKKY (Ruderman-Kettel-Kasuya-Yosida) interaction is a coupling 

mechanism in which localized magnetic moments such as nuclear magnetic moments, f-

electron spins, or inner shell d-electrons interact through the conduction electrons.  The 

theory uses perturbation theory to describe how a spin of a nucleus or localized electron 

interacts through the hyperfine interaction with a conduction electron.  This conduction 

electron then interacts with a different localized electron or nuclear spin in the same way 

creating a correlation between the two nuclear or localized electron spins.  A schematic 

of the RKKY exchange interaction can be seen in figure 2. 

In many correlated-electron rare earth and actinide compounds that have ions with 

magnetic moments but do not magnetically order or order only at very low temperatures, 

the scattering of the conduction electrons with the magnetic ions results in a strongly 

enhanced effective mass.  The effective mass can be of the order 1000 times that of the 

real mass of the electrons and are known as heavy fermions or heavy electron systems.  

The low temperature behavior of many of these compounds can be understood in terms of 

a Fermi liquid of heavy quasiparticles, with induced narrow band-like states in the region 

of the Fermi level.  Heavy fermions are quasiparticles similar to how phonons are 

quasiparticles and are the effective charge carriers in these metals.  The Fermi liquid is 

qualitatively similar to a Fermi gas in that the dynamics and thermodynamics at low 

temperatures and excitation energies, the non interacting fermions are replaced with 

quasiparticles with the same spin, charge, and momentum but posses a renormalized 

mass.   
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A quantum critical point in general is a point in the phase diagram of a material in 

which a continuous phase transition happens at zero temperature.  These phase transitions 

are accomplished by tuning some non-temperature parameter such as pressure, chemical 

doping, or magnetic field.  A schematic of this can be seen in figure 3.  As mentioned 

earlier, the RKKY interaction leads to magnetic ordering.  Kondo screening is a directly 

competing interaction and moves the antiferromagnetic ordering Neel temperature to 

lower temperatures.  These interactions can be tuned with pressure or chemical doping 

and such that the Neel temperature goes to zero resulting in a quantum critical point 

shown in a Doniach diagram in figure 4. 
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Chapter II – Experimental Details and Techniques 

Specific Heat 

 Specific heat was measured using a Quantum Design Physical Properties 

Measurement System (PPMS).  The system uses a standard relaxation technique.  A 

sample is placed upon a small alumina stage that is suspended by gold-palladium alloy 

wires attaching a heater and a thermometer in thermal contact with the stage.  Good 

thermal contact between the sample and the stage is maintained by the use of thermal 

grease.  A heat pulse is generated in the heater and the temperature response is measured.  

The target temperature rise in the sample is about 2% of the baseline temperature of the 

sample.  This puts a fundamental resolution constraint on these measurements.  Smaller 

heat pulses can be used, however, this increases relative measurement errors from the 

thermometer.  The response to the heat pulse is fitted to a theoretical model, which yields 

the heat capacity [9].  Before this measurement can be made, the sample must first be 

kept at a stable baseline temperature. 

 Temperature is controlled in two main steps.  Figures 5 and 6 show diagrams of 

the experimental arrangement.  Several heaters and an impedance tube connected to the 

helium bath control temperature inside the sample space.  When the impedance tube is 

open, He-4 from the reservoir is allowed into the cooling annulus.  Warming the 

impedance tube above the boiling point of helium forms a gas bubble inside the tube 

which provides for a method of closing it.  Temperatures between 400 K and 4.18 K are 

achieved by opening the impedance tube or activating the series of heaters and waiting 

for the desired temperature to stabilize.  Temperatures below 4.18 K can be achieved by 
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lowering the pressure inside the sample space with a vacuum pump.  This lowers the 

boiling point of helium.  This is called evaporative cooling and is limited by the 

effectiveness of the pumps.  In practice this allows for a temperature inside the sample 

space of about 2 K to be achieved.  To further lower the temperature, a He-3 probe is 

used inside the sample space.  He-3 has a boiling point of 3.20 K.  Using a turbo pump 

for the next stage of evaporative cooling using He-3, a temperature of about 0.35 K can 

be reached. 

Magnetic Measurements 

Magnetic susceptibility measurements were performed using a Quantum Design 

Physical Properties Measurement System (PPMS).  A small AC drive magnetic field is 

superimposed on a DC field, causing a time-dependent moment in the sample. The field 

of the time-dependent moment induces a current in the pickup coils, allowing 

measurement without sample motion. The detection circuitry is configured to detect only 

in a narrow frequency band, normally at the fundamental frequency of the AC drive field.  

This arrangement is illustrated in figure 7. 

Diamond Anvil Cell 

 High-pressure angle-dispersive powder X-ray diffraction measurements were 

performed using a diamond anvil cell (DAC).  The design of the cell is a Princeton 

symmetric type design depicted in figure 8 [20].  A DAC generates pressure to a sample 

through the use of two opposing diamond anvils where the force is supplied through the 

tightening of a series of screws or a membrane as shown in figure 9. [21].  The small area 
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of the culet compared to the area of the back of the diamond enables the creation of very 

large pressures with modest force.   

The first step when preparing this type of DAC is to adhere the diamonds to the 

backing plates and then aligning the diamonds to be as perfectly parallel as possible and 

centered on each other.  Any deviation from parallel of the culet of the diamonds will 

result in the fracturing of the diamonds at relatively low pressures.  Adjusting the 

mounting screws and observing interference patterns while the diamonds are touching 

accomplishes alignment.  This must be done with care to not damage the diamonds. 

A metallic gasket with a small hole drilled out is placed between the opposing 

anvils.  This provides a sample chamber filled with sample, pressure marker and pressure 

transmitting fluid that supports the pressure applied by the diamonds. The gasket is 

prepared by first pre-indenting it by placing it between the diamonds and compressing it 

from a starting thickness of about 250 µm to 20 to 50 µm.  Using a laser-drilling system 

to drill a hole in the center of the pre-indent, the sample chamber is created. The diameter 

of the sample chamber is cut to be about a third of the diameter of the culet.  After the 

hole has been drilled in the pre-indented gasket and has been cleaned, it is positioned on 

one of the two diamonds mounted in the DAC and held temporarily in place using clay. 

The sample must be very finely ground in a mortar and pestle before being placed 

into the sample chamber.  The grains should be small enough such that greater than 

roughly 10000 grains are in the X-Ray beam.  This will enable a clean powder X-ray 

diffraction pattern.  Failure to do this results in a spotty pattern. The finely ground sample 

and several ruby spheres are placed into the sample chamber.  A pressure transmitting 
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media (PTM) of some kind is introduced to the sample chamber to completely fill the 

hole.  It is important to make sure that the sample does not contact both diamonds to 

ensure the most hydrostatic measurements possible. Most of the measurements in this 

study used a gas-loading system located at GSECARS to load the DACs with neon. [22] 

Silicone fluid was used for the low temperature REXS measurements. 

 The ruby spheres placed into the sample chamber are used to make in-situ 

pressure measurements by measuring the shift in ruby fluorescence.  Previous studies 

have been performed to determine the relationship between the spectral shift of the 

emission lines and pressure and temperature [23, 24]. 

Angle Dispersive Powder X-ray Diffraction  

In 1912 W. H and W. L Bragg found that substances that had macroscopic 

crystallinity scattered X-rays in characteristic patterns in sharp wavelengths unlike those 

of liquids or amorphous materials.  These peaks are now known as Bragg peaks.  

Diffraction occurs when light is scattered by a periodic array with long-range order, 

producing constructive interference at specific angles.  For constructive interference to 

occur from scattered light, the Bragg condition  

𝑛𝜆 = 2𝑑 sin𝜃.        Equation 69 

must be met. The integer n is the order of the reflection, d is the spacing between periodic 

planes of points and θ is the angle of incidence. 

Atoms in a crystal are arranged in a periodic array and can therefore diffract light 

with a wavelength that is of the order of the atomic spacing.  The scattering of X-rays 
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with wavelengths between about 0.02 Å and 100 Å from atoms produces a diffraction 

pattern with sharp peaks in a plot of scattered intensity versus angle of incidence, which 

contains information about the atomic arrangement within the crystal.  Amorphous 

materials do not have a periodic array with long-range order and do not produce a 

diffraction pattern with sharp peaks but rather show broad features indicative of a 

distribution of atomic separations. 

The unit cell of a crystal is the basic repeating unit that defines the crystal 

structure.  This unit cell has the maximum symmetry that uniquely defines the structure 

and may contain more than one molecule or atom of the same type.  The lattice 

parameters describe the size of the unit cell.  Crystal structures have symmetry elements 

that define the atomic arrangement.  Crystalline materials are separated into 7 crystal 

different system: triclinic, monoclinic, orthorhombic, tetragonal, trigonal, hexagonal, and 

cubic.  There are 32 possible crystallographic point groups, a set of symmetry operations 

such as reflections or rotations.   Any crystal is part of a particular group. 

The distance between parallel planes of atoms determines the positions of the 

diffraction peaks.  The angles at which constructive interference produces peaks is given 

by Bragg’s law 

𝜆 = 2𝑑!!"𝑠𝑖𝑛𝜃       Equation 70 

The vector dhkl is drawn from the origin of the unit cell to intersect the crystallographic 

plane (hkl) at a 90°angle and its magnitude is the distance between parallel planes of 

atoms. 
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 The intensity of the diffraction peaks is dependent upon the scattering atom as 

well as the arrangement of atoms in the crystal.  The amplitude of scattered light from a 

crystal plane is determined by where the atoms are on the crystal plane and the scattering 

efficiency of the electrons in each atom.  The intensity for a particular crystal plane Ihkl is 

proportional to the square of the structure factor Fhkl. 

𝐼!!"  ∝ 𝐹!!" !        Equation 71 

The structure factor Fhkl is the sum of the scattering of all of the atoms in the unit cell a 

particular crystal plane. 

𝐹!!" = 𝑁!𝑓!!
!!! 𝑒!!"(!!!!!!!!!!!)     Equation 72 

Where xj, yj, and zj are the fractional coordinates of the atoms, fj is the scattering 

efficiency of the atom, and Nj is the fraction of equivalent positions of the atoms on the 

plane. 

 An ideal powder diffraction sample contains sufficient randomly orientated 

crystals such that a continuous ring of angles is created.  This condition is met when 

roughly greater than 10000 grains are in the X-Ray beam.    X-rays are thus diffracted in 

a sphere around the sample.  An image plate or detector is placed such that the peaks can 

be recorded such that the angles can be measured.  The geometry of such as device can be 

seen in figure 10 [33].  Example image data is shown in figure 11. 

Each peak in the image corresponds to a particular spacing between crystal planes.  

Using software tools developed to simulate a pattern of a particular unit cell by 
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calculating all of the spacing between crystal planes and the corresponding magnitude of 

the peak, a measured diffraction pattern can be used to infer the actual lattice parameters. 

X-Ray Absorption and X-Ray Fluorescence 

Materials exposed to X-rays or gamma rays may often experience ionization of 

those atoms.  Ionization is when one or more electrons from the atom are ejected.  This 

requires the photon to have a higher energy than the atom’s ionization energy and results 

in the absorption of the photon.  The exact energy to ionize the various electrons inside 

an atom are characteristics of the atom and the electron’s quantum numbers. X-rays and 

gamma rays can be energetic enough to eject electrons from the inner orbitals of the atom.  

This leaves the electronic structure of the atom unstable and electrons in higher orbitals 

go into the lower orbitals to fill the hole left behind. The energy released is in the form of 

a photon with energy equal to the energy difference of the two orbitals involved. Thus 

emitted radiation from a material has energy characteristic of the atoms present. The 

term fluorescence refers when absorption of radiation of a specific energy results in the 

emission of radiation of a usually lower energy photon due to an electron dropping to a 

lower energy state to fill the hole left by the ionized electron. 

X-ray absorption spectroscopy (XAS) data collection requires tuning X-ray 

photon energy using a crystalline monochromator to selectively choose X-ray energies 

from a synchrotron source that contains a range of photon energies. The energies are 

chosen that will excite core electrons in the various elements in studied compounds.  This 

is in the range of 0.1–100 keV.  Photo-diodes before and after the X-ray beam hits a 

sample are used to measure the incident and non-absorbed photon count respectively.  
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The spectrum seen from materials has sharp edges at places where the energy to excite a 

core electron exist.  The edges are named according to the principal quantum number of 

the core electron excited where n = 1, 2, and 3 correspond to the K-, L- and M-edges.  

This is illustrated in figures 12 and 13.  The specific edges for europium are shown in 

table 2. 

Near the edges, the absorption spectrum are dependent on the atomic environment.  

This is known as X-ray Absorption Near Edge Spectroscopy (XANES).  Slightly higher 

than the absorption edge is the extended X-ray absorption fine structure (XAFS) from 

about 150 eV to 2000 eV above the absorption edge that gives information regarding the 

local structure around the atom.  There are many details to these measurements and what 

information can be gained that is the source of many books and papers.  Since this 

measurement is not used in this study, it is only mentioned due to its similarity to 

Resonant X-ray Emission Spectroscopy (RXES) discussed later. 

Resonant X-ray Emission Spectroscopy 

Resonant X-ray Emission Spectroscopy (RXES) is the broader term that 

encompasses resonant inelastic X-ray scattering (RIXS) which is a probe of electronic 

excitations.  A core electron is excited by an incident X-ray near the absorption threshold.  

The excited state decays by emitting an X-ray photon.  This is a second order optical 

process in contrast to X-ray absorption spectroscopy (XAS) and therefore the signals are 

much weaker.  High brilliance X-ray sources, such as new synchrotron sources, and very 

sensitive, low noise detectors are required.   In principle it is possible to measure the 

energy, momentum, and polarization change of the scattered photons [34].  This change 
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in energy, momentum, and polarization of the photon are due to the excitations of the 

material.  This measurement can therefore give information about those excitations.  It is 

referred to as resonant because the energy of the incident photon is tuned to that of one of 

the atomic X-ray transitions of the system.  The resonance can greatly enhance the 

inelastic scattering cross-section by many orders of magnitude.[34]  If the initial and final 

state are not the same, the process is called resonant inelastic x-ray scattering (RIXS) 

RIXS is divided into two categories depending on the electronic levels 

participating in the transition of X-ray emission.  In the first category, the transition 

occurs from a valence state to a core state.  This leaves no core hole left in the final state.  

The difference of the incident and emitted X-ray energies correspond to the energy of 

electronic elementary excitations. [26] The energy of the emitted X-ray would be 

dependent upon the valence state of the atom due to the difference in screening between 

different valence states.  Compared with the conventional (non-resonant) inelastic X-ray 

scattering, RIXS has larger intensity and depends on each intermediate state, which is 

convenient to identify the character of electronic excitations.  The second category of 

RIXS is when decay happens from one core state to another core state such that a core 

hole is left.   Absorption occurs from a core electron with energy Ec to a valence state 

with energy Ew.  Radiative decay occurs from the transition from a core level with energy 

Ec from a core level with energy Ec’. 

0
!"#

𝐸! − 𝐸!
!"#

𝐸! − 𝐸!!  

The resulting emitted photons are highly dependent on the local conditions of the 

atom or ion.  This provides a very clear way to measure the valence of an ion.  There is 
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certainly a wealth of information that can be gained from performing these measurements 

about the local conditions, however the primary purpose for this work is to distinguish 

between the different valance states of europium ions in metallic compounds. 

The experimental arrangement used here is shown in figure 14.	 A diamond anvil 

cell is place on top of a micro-controlled stage that is used to control its position to an 

accuracy of 1µm in all three spatial directions.  X-rays from the synchrotron source go 

through optics to select the desired incident energy photons.  They pass through a diode 

to sample the incident count rate and are then collimated before heading to the DAC.  

The detector array is arranged such that it can measure the scattered photons at 90 

degrees from the incident beam thus ensuring only fluorescence is measured   After the 

photons are scattered, it is important to attempt to count as many as possible.  The count 

rate for our RIXS measurements, being inelastic, will be very low and therefore the 

measurement time can be very long, between 1 and 8 hours.   The space between the 

DAC and the detector is filled with helium to avoid attenuation from the atmosphere.  

Photons that pass through the DAC are then sampled again by a diode to measure 

absorption. 

Understanding RIXS Data Beyond Valence 

For direct RIXS, the incoming photon promotes a core-electron to an empty 

valence band state.  An electron from a different state in the valence band decays and 

annihilates the core hole. This is shown in figure 15.  For this transition to be possible, 

the transition from the core state to a valance state and a different valence state back to 

core state (hole) must be allowed.  The net result is a final state with an electron-hole 
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excitation, since an electron was created in an empty valence band state and a hole in the 

filled valence band. The electron-hole excitation can propagate through the material, 

carrying momentum ħq and energy ħω. Momentum and energy conservation require that 

q = k’− k and ω = ωk’ − ωk.  The momentum and energy of the incoming photon are ħk 

and ħω and the momentum and energy of the outgoing photon are ħk’ ħω [34].  Although 

the direct transitions into the valence shell dominate the spectral line shape (which is why 

data appears similar to X-ray absorption), the spectral weight can be affected by 

interactions in the intermediate state. [34] 

For indirect RIXS, the incoming photon promotes a core-electron into an empty 

state several electron volts above the Fermi level. Subsequently the electron from this 

same state decays to fill the core hole.  In the intermediate state the core hole is present, 

which exerts a strong potential valence electrons, that tend to screen the core hole.  The 

core-hole potential scatters these valence electrons creating electron-hole excitations in 

the valence band.  This is shown in figure 16. 

To fully understand RIXS data beyond a simple tool used to identify valence state 

as is done in this study, the RIXS scattering amplitude must be derived.  RIXS refers to 

the process where the material first absorbs a photon and is then in a short-lived 

intermediate state, from which it relaxes by radiating a photon.  RIXS intensity can be 

calculated starting with the Kramers-Heisenberg formula for describing the cross section 

for scattering from an atomic electron [34].  Even using this as a starting point, 

calculating the RIXS cross section is a very long derivation that uses many 

approximations some of which are close to being not valid for heavier atoms.  Even after 

these approximations, ultimately, numerical methods would have to be used to calculate 
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what the RIXS cross section would look like for a given material.  Such calculations are 

currently an active field of research [36].  As such research progresses, RIXS data from 

this study and others using RIXS to probe valence states should be further analyzed. 

Fitting RXES data to find Valence 

RXES experiments results can be represented by 2D images of photon counts 

where the incident energy is on one axis and the detector angle (emitted photon energy 

measured after diffracting through a monochromator crystal) is the other axis.  The shape 

of the peaks seen in these measurements is dependent upon local conditions of the atom 

being probed.  When an electron decays and emits a photon, the energy of the photon is 

the energy of the atomic transition.   From the uncertainty principle, 

𝛥𝐸𝛥𝑇 ≥  ħ        Equation 70 

This defines the minimum line width possible and has a Lorenztian shape.  The 

centered Lorentzian profile is 

𝐿 𝑥, 𝛾 = !
! !!!!!

      Equation 71 

  Collisional and pressure broadening also have a Lorenztian shape.  Thermal 

motion would result in Doppler broadening that has a Gaussian line shape where  

 𝐺 𝑥,𝜎 = !
! !!

𝑒!!! !!!     Equation 72 

The Voigt profile is the convolution of these two functions where 

𝑉 𝑥:𝜎,𝑦 = 𝐺 𝑥!,𝜎 𝐿 𝑥 − 𝑥!, 𝛾 𝑑𝑥′!
!!    Equation 73 
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In RIXS measurements, incident photons are tuned to just below the lowest 

possible absorption energy of a particular core electron (the energy between the core 

electron energy and the lowest valence band), then tuned to past the ionization energy.  

The absorption threshold is determined by the transition to the lowest unoccupied states. 

The absorption spectrum while rising is therefore like the rising states of the Fermi 

energy in an arc-tangent shape in metals.  This can be closely approximated by a 

sigmoidal function. 

𝑆 𝑥, 𝑐 = !
!!!!!"

        Equation 74 

The emitted photon will have this absorption distribution as part of its spectral 

intensity since emission requires incident absorption in RIXS.  When the incident photon 

is past the ionization energy, a valence electron decays emitting a photon with a mostly 

Lorenztian distribution.  This combined with the width of the valence and the peak 

positions µx,and µy gives us a peak shape of 

𝑃! 𝑥,𝑦 = !
!

!
!!

!!!! !! !
!!

!
!

!!!!! !!!!
     Equation 75 

When the incident energy is very close to the edge, the resonance can greatly 

enhance the inelastic scattering cross-section, sometimes by many orders of magnitude. 

[34]  The first assumption is to assume this resonant peak would have a Gaussian or 

Lorenztian distribution in both the incident energy axis and the emitted energy axis.  

However, upon examining the data, there appears to be a correlation in the incident 

energy and the resonant emitted energy.  It other words, how much the energy of the 

incident photon is above the ionization energy influences which electron in the valence 
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band decays to fill the hole. This results in an apparent slant to the peak and was not 

assumed in the theory.  If the signals were purely Gaussian in nature then a 2D Gaussian 

would be the ideal function to describe this scenario given by 

𝐺! 𝑥 − 𝜇! ,𝑦 − 𝜇! ,𝜎! ,𝜎! ,𝜌 =  !
!!!!!! !!!!

𝑒
! !
!(!!!!)

!!!! !

!!!
!

!!!!
!

!!!
!
!! !!!! !!!!

!!!!  

         Equation 76 

This adds the term ρ in equation 76.  If ρ = 0, there is no correlation between the 

incident energy and the emitted energy to is maximum as ρ approaches 1.   

 Unfortunately, the peak shapes are far more Lorenztian.  A convolution of these 

functions would be needed to accurately describe the peak shape in one dimension.  In 

two dimensions this is complicated.   This would give the function  

𝑉! 𝑥,𝑦 = 𝐺! 𝑥!,𝑦!,𝜎! ,𝜎! ,𝜌 𝐿 𝑥 − 𝑥!, 𝛾! 𝐿 𝑦 − 𝑦!, 𝛾! 𝑑𝑥′𝑑𝑦′!
!!

!
!!   

         Equation 77 

The alternative, and much quicker calculation, is to just use the 2D Gaussian such 

that 

𝑃! 𝑥,𝑦 =  !
!!!!!! !!!!

𝑒
! !
!(!!!!)

!!!! !

!!!
!

!!!!
!

!!!
!
!! !!!! !!!!

!!!!  Equation 78 

This may result in the shapes of the fit to not quite match the actual data, but does 

accurately estimate ρ.  The sum equations 75 and 78 were used to the fit the ambient data 

for Eu5In2Sb6 shown in figure 23.  The fit residual suggests that this method is not ideal, 

however should sufficiently describe the peaks to obtain relative valence. Using equation 
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76 for P2 would likely result in more accuracy and will be a future project for 

programming that utilizes massively parallel computation. 

In a mixed valence system, there should be a peak corresponding to each valence 

state.  The position of these peaks can be inferred from materials with single valence 

states.  If the different valance states occupy the same site in the crystal unit cell, the peak 

shape should be the same, however the position in the 2D RXES data should be different.  

If there are multiple sites in the crystal unit cell occupied by the same ion type, then the 

peak shapes could be noticeably different.  A good example of data with different shaped 

peaks in the same data set can be seen in figure 30 discussed later.  By fitting each peak 

and comparing the relative magnitude of each, we can find the proportion of which 

valence states are occupied.  A numerical method to fit these peaks was written using 

JavaScript for this dissertation and published on a website for use.  This uses the simpler 

equations 75 and 78.  It can be found at https://futureoutput.com/RXESfit3.html.   
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Chapter III – Materials and Data 

Crystal Growth 

EuMn2Si2 and EuCo2Si2 polycrystalline samples were prepared by induction 

melting the appropriate ratio of starting elements in a graphite crucible and inert argon 

atmosphere.  The mixture was heated up to 1100 +/- 50-degree C, temperatures 

determined using an optical pyrometer, and then rapidly quenched.  The sample was 

subsequently characterized by powder X-ray diffraction (XRD), which showed a single-

phase formation for the sample with the ThCr2Si2 type tetragonal crystal structure (space 

group 139, I4/mmm).  This structure can be seen in figure 36. 

 Eu5In2Sb6 crystalizes in the orthorhombic (space group 55, Pbam) Ca5Ga2As6 

crystal structure and is the only known rare earth analogue to it. [35].  A single crystal 

was made by mixing the correct stoichiometry of europium and antimony with a large 

amount of indium used as flux.  It is sealed in a tantalum tube with an arc-melter and 

placed in an induction furnace.  It is heated up to 1100 to 1200 C in increments of 50 C 

with 5 minute intervals and then slowly cooled down again in 5 minute intervals.  After 

cooling, the Ta tube is broken and the contents etched in acid.  The crystals are hand 

picked from the bulk and excess indium is physically removed. 

All the samples were grown in collaboration with Los Alamos National 

Laboratory. 
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EuT2M2 systems 

EuT2M2 systems undergo temperature-induced valence transitions that have been 

investigated by a variety of techniques.4 EuMn2Si2 and EuCo2Si2 crystallize in the body-

centered tetragonal ThCr2Si2 structure common to many compounds in the rare earth “1-

2-2 class”.  

The Mn sublattice of EuMn2Si2 orders antiferromagnetically at TN =395 K.[6] At 

lower temperatures - 107 K, 65 K, and 32 K- spin reorientation transitions with a 

ferromagnetic component have been reported.[6]  Neutron diffraction experiments have 

shown that EuMn2Si2 orders in a collinear antiferromagnetic arrangement of 

ferromagnetic (001) Mn layers coupled antiferromagnetically along the c axis with the 

Mn moments directed parallel and antiparallel to the c-axis.[4] Clear evidence of a 

thermally driven valence transition from nearly trivalent Eu at low temperatures (T< 90 

K) to an intermediate state at higher temperatures has been demonstrated by 151Eu isomer 

shift measurements as well as neutron diffraction patterns of  153EuMn2Si2. [4,6] 

Temperature dependent RXES measurements shown in this work mostly agrees with 

these findings.  The temperature-induced valence transition has been reported to inhibit 

the magnetic transition, causing EuMn2Si2 to have a relatively low value for its 

antiferromagnetic ordering temperature at TN = 391 K. [4]   

The divalent state can become unstable with decreasing temperatures.  EuMn2Si2 

can change from an almost divalent state at high temperatures to a trivalent state at low 

temperatures, with the probability of finding it in a divalent state decreasing with 

temperature.  
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Valence Changes measured by RIXS 

 The effect of pressure and temperature on the valence of the europium ion in 

EuMn2Si2, EuCo2Si2, and Eu5In2Sb6 was inferred from fitting RIXS measurements under 

pressure and at different temperatures.  Many partial fluorescence yield (PFY) 

measurements were done in between complete RIXS scans to increase the number of data 

points.  PFY scans are much faster and can be correlated to the full RIXS scans.  A 

complete RIXS scan is required to tell the true valence value.  PFY scans are only useful 

to measure the change in valence.  RIXS scans inside a diamond anvil cell can take 

between 3 and 8 hours at HPCAT (Sector 16) at the Advanced Photon Source (APS) at 

Argonne National Lab. PFY scans are taken at a single incident energy and therefore take 

a fraction of the time of the full RIXS scans.   

These high-pressure resonance X-ray emission spectroscopy experiments were 

performed at Sector 16 ID-D of the APS.  The incident X-ray beam was focused to 

dimensions of about 4 x 7 µm FWHM at the Eu L3 absorption edge (6.9769 keV) with an 

energy resolution of 1 eV.  The emission X-rays observed is the L-α1 line (5.849 keV). 

Spectra acquisition must be done off-axis from the incident beam during RXES 

measurements.  For this reason, measurements were taken in a panoramic-style DAC 

paired with a beryllium gasket.  The beryllium metal was pre-indented to approximately 

50 microns, with a laser-drilled 150 µm diameter sample chamber.  EuMn2Si2, EuCo2Si2, 

and Eu5In2Sb6 powder and ruby spheres were loaded with silicone oil as the pressure-

transmitting medium.  Partial fluorescence yield (PFY) spectra were collected in intervals 

between full RIXS scans. In PFY scans, the intensity of the emitted Eu L3 fluorescence 

was measured while scanning the energy of the primary beam in 0.5 eV steps. Presented 
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here are the data and the calculated valence changes in figures 17 – 35 for all three 

samples.   

EuCo2Si2 

 RIXS data shown in figures 17 and 18 show EuCo2Si2 completely trivalent at 

ambient temperature and at both ambient pressure and 10.5 GPa.  Increasing the pressure 

and decreasing the temperature should move the valence from 2+ to 3+.  High 

temperature measurements could possibly show the valence shift to 2+ similar to what is 

seen in other europium 1-2-2 compounds.  All the measurements performed here are 

effectively in the low temperature regime showing only trivalent europium.  It is possible 

that the Eu3+ state is stable throughout the entire range of temperatures the material is in 

this phase.  A good indicator of a mixed valence state is if it changes with pressure or 

temperature but is structurally unchanged.  This is not observed for EuCo2Si2.  Other 

work has showed that divalent peaks seen in EuCo2Si2 were from small clusters of 

europium oxide impurities. [12] 

 EuCo2Si2 turned out to be a good reference material for this study which 

attempted to find ‘anomalous’ behavior, like correlated-electron effects, that will only 

occur when Eu moves away from its J=0 trivalent state. Since EuCo2Si2 is trivalent at 

ambient conditions, increasing pressure at ambient temperature (which should make the 

system tend TOWARDS the 3+ state) should have no effect on valence as is seen. 

EuMn2Si2 

The PFY spectra for pressures up to 25 GPa are shown Figure 21 for EuMn2Si2.  

The divalent (E = 6.975 keV) and trivalent (E = 6.983 keV) contributions may easily be 
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differentiated in the PFY spectrum as well as the RIXS scans in figures 19 and 20.  The 

intensities of the divalent and trivalent peaks are estimated by first fitting the RIXS scans 

with the method describe previously and then fitting multi-peak functions to the 

corresponding PFY spectrum.  After normalizing the values of the PFY scans to the 

RIXS data, the intensities of the complete PFY data set are then used to estimate the 

average valence of Eu at each pressure.  Energy resolution of the incoming beam is 2.2 

eV. The spectrometer energy resolution is 0.7 eV. The core-hole lifetime broadening 

from the Eu L3 edge is 3.91 eV.[10]  The total broadening is  4.6 eV. [10] 

The average effective europium valence obtained from PFY experiments are 

plotted as a function of pressure in figure 22.   The trend shows increasing europium 

valence from +2.77 approaching +3 at 25 GPa.  As this system displays intermediate 

valence (with a magnetic moment on the Eu site), it is ideal to look for correlated-

electron behavior. The temperature induced valence shift in Europium is very similar to 

the pressure induced valence shift.  Decreasing temperature or increasing pressure both 

move Europium into a trivalent state.   

Eu5In2Sb6 

Eu5In2Sb6 is more complicated than EuMn2Si2 or EuCo2Si2 due to the lower 

symmetry of the crystal structure.  There are three distinct site locations for europium in 

its crystal structure as seen in figure 42.  The fit and RXES measurement at ambient 

conditions are shown in figure 23 and 24.  Two distinct peaks can be seen corresponding 

to the Eu2+ and Eu3+ states.  The shape of the trivalent peak indicates that there may be 2 

different site locations that are trivalent as demonstrated in figure 25.  Fits to this data 
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show that the net valence is +2.63. Like EuMn2Si2 the mixed valence state is worth 

investigating for correlated-electron behavior. 

A series of PFY scans for Eu5In2Sb6 were performed similar to EuMn2Si2 and is 

shown in figure 34.  The PFY scans are more complicated compared to the other studied 

Eu systems primarily due to the different peak shapes seen at different energies 

associated with the different Eu sites and valences.  The detector was set to the Lα1 line 

(5.845 keV), which completely misses the location of peaks seen in RXES data at higher 

pressures.  This is a good illustration as to why full RXES scans are vastly superior to 

PFY scans.  PFY scans should never be used to measure valence independent of a RXES 

measurement.  In cases where there are different site locations for an element, there will 

almost certainly be different peak shapes associated with each site.  These different peak 

shapes will result in different apparent measured valence for a one dimensional PFY scan 

heavily dependent on the set point energy of the detector.  A plot of the valence versus 

pressure with just the RXES data is therefore shown in figure 35.  

Fits to RXES measurements at 5.86 GPa and 9.5 GPa accurately show the net 

valence of +2.69 and +2.73 respectively shown in figures 26 - 28.  This is negligible 

change in valence and within the error of the experiment.  At 16 GPa a phase transition is 

observed corresponding to one seen in HPXRD measurements shown later.  Three 

distinct peaks are visible in figure 29.  The simplest explanation for this is that a 

europium site in this new phase has a partial valence +4 state.  Fits to the data indicate a 

valence state occupancy of 0.23 Eu2+, 0.58 Eu3+ , and  0.18 Eu4+ giving a net valence of + 

2.94.  A Eu4+ state would possess a J=5/2 moment.  As the pressure is increased to 35 

GPa, and we fit to three peaks again, we get occupancy of 0.23 Eu2+, 0.67 Eu3+ , and  
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0.09 Eu4+ giving a net valence of +2.86.  The divalent occupancy remains unchanged with 

pressure, and the Eu4+ state seems to be moved into the Eu3+ state.  This effective 

quenching of the magnetic moment of one of the europium sites with pressure, but 

strangely lowering the valence is unique.  This phase of the material likely has very 

interesting magnetic and electron transport properties that should be investigated further. 

Low temperature RIXS measures at 15 K and at 1.0 GPa and 19 GPa do not see 

the same structure.  Only the two peaks corresponding to Eu2+ and Eu3+ can be seen as 

seen in figures 32 and 33.  Measurements at higher pressure may reveal the same 

structure, but it is unlikely since increasing the pressure moves the theoretical Eu4+ state 

to the Eu+3.  The valence at 15 K moves from +2.83 at 1.0 GPa to +2.87 at 19 GPa.  This 

a measurable but very small change.  The valence at low temperatures indicates that the 

divalent site may become a mixed valence site with it transitioning to Eu3+.  The 

measurable shift in valence with pressure also indicates movement toward the trivalent 

state, and further measurements at intermediate temperatures are warranted to fully 

determine this behavior.   

There are ten europium atoms in the unit cell with three distinct sites, four 

europium in one and three in each of the other two.  This is important to interpret the data.  

If we fit instead fit three peaks for the ambient image in figure 23 with two different but 

overlapping Eu3+ peaks instead of just two peaks, we get occupancy of 0.40 Eu3+, 0.30 

Eu3+ and 0.30 Eu2+ with a net valence of 2.70.   This is shown in figure 25.   This matches 

perfectly the site location distribution.  This implies that this really is not a system with 

mixed valence, but one in which different sites possess different valence.  As pressure is 

increased, we do see a shift, but it is very small and still fits with this picture of a system 
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with different europium sites having a definite valence.  The high-pressure phase is 

different though.  We definitely see a shift in valence from Eu4+ to Eu3+ while the Eu2+ 

remains unchanged and can confidently determine that there is a mixed Eu4+ to Eu3+ 

valence state with a strong effect on it with pressure.   

High Pressure X-ray Diffraction Experiments 

High-pressure XRD experiments were carried out in a symmetric-type diamond 

anvil cell (DAC).  These experiments were in an angle dispersive geometry at Sector 16 

ID-B of the Advanced Photon Source.  EuMn2Si2, EuCo2Si2, and Eu5In2Sb6 powder were 

ground for several hours in an agate mortar and pestle.  The fine powder was packed in to 

a thin dense pellet, from which pieces were removed for sample loading.  A rhenium 

gasket was pre-indented to approximately 50 µm thickness, with a 135 µm diameter 

sample chamber drilled using the HPCAT laser drill. [18]   The samples were gas loaded 

with neon as a pressure transmitting medium and 2-3 ruby spheres (approximately 10 µm 

in diameter) for measuring pressure using the ruby fluorescence technique.  HPXRD 

measurements were done at ambient temperatures as well as in a cryostat.   Diffraction 

images were collected using a MAR-345 imaging plate with an incident wavelength of λ 

= 0.4216 Å and integrated using the Dioptas software. [7] The sample-to-detector 

distance was calibrated using a CeO2 standard. The integrated diffraction patterns were 

further analyzed using Rietveld (RIETICA) package. [8]  

Both EuMn2Si2 and EuCo2Si2 showed the single-phase ThCr2Si2 type tetragonal 

structure with space group 139, I4/mmm throughout the experiment, as shown in figures 



 48 

37-39 from the raw HPXRD waterfall plots.  The pressure versus volume data for 

EuCo2Si2 at ambient temperature is shown in figure 40.   

The pressure versus volume for EuMn2Si2 at both 7 K and ambient temperatures 

is shown in figures 41. A second-order Birch-Murnaghan equation of state (EOS) is fitted 

to the experimental data.   We expect that the higher temperature sample should be more 

compressible than the low temperature sample, as going from Eu2+ to Eu3+ should result 

in a significant volume decrease.  This is clearly evident from the data presented.    

  The bulk modulus and its pressure derivative are found to be B0 = 72 ± 6 GPa 

and B0’ = 11 ± 2 at ambient temperature, and B0 = 121 ± 4 GPa and B0’ = 4.9 ± 0.5 at T = 

7 K.  There are no anomalies in the compressibility that would indicate a volume collapse 

associated with a first order transition.  EuMn2Si2 remains in the same phase throughout 

all the pressures and temperatures measured here.  This indicates the transition from Eu2+ 

to Eu3+ appears to be continuous in nature as was also evident in the RXES 

measurements. 

X-ray diffraction measurements show Eu5In2Sb6 in the rather complex 

orthorhombic (space group 55, Pbam) Ca5Ga2As6 crystal structure shown in figure 42. 

High pressure X-ray diffraction measurements are shown in figures 48 and 49.  A 

structural phase transition to a yet to be determined structure is seen between 13.4 GPa 

and 17.1 GPa.  This matches the phase transition seen in RXES data.  Measurements at 7 

K only were performed up to 15 GPa and no evidence of the phase transition was seen. 

RXES measurements showed no change up to 19 GPa at 15 K.  Further low temperature 

measurements are required to determine where the phase boundary is. 
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EuMn2Si2 Magnetic Susceptibility and Specific Heat 

Heat capacity measurements performed on EuMn2Si2 are shown in Figure 45. 

Magnetic susceptibility measurements are shown in figure 52.  The peak at 62 K 

corresponds to an antiferromagnetic transition and is seen in the magnetic susceptibility 

data as well.  Susceptibility measurements below 62 K do not match well with those 

reported by Nowik.[6] This can be explained by sample variation.   Below an 

antiferromagnetic transition, susceptibility can vary significantly depending on the local 

crystallite directions relative to the excitation field.  Neutron diffraction experiments did 

not find evidence for the reorientation transitions in EuMn2Si2 at 107 K, 65 K, and 32 K, 

reported previously.[4,6]   Shown in figure 52 is a fit to the Currie-Weiss (equation 58) 

that gives TN = 56.225 ± 0.07 K and a Currie constant of C = 4.894  ± 0.05 emu/mol K 

above about 60 K.  Below what is assumed to be an antiferromagnetic transition we see 

what appears to be a second magnetic transition.  A fit was done using the Currie-Weiss 

equation but does not yield any information.   

Evidence for the reorientation transitions in EuMn2Si2 at 107 K, 65 K, and 32 K, 

reported previously were not found by neutron diffraction experiments.[4,6] 

Susceptibility measurements shown here in Figure 36 do not match well with those 

reported by Nowik.[6]  

Neutron diffraction has been used by Hofman et al. to make direct measurements 

of the magnetic ordering in EuMn2Si2−xGex at x = 0, 2.[4] They showed that the magnetic 

structures adopted by the Mn sublattices in the two compounds were simple 

commensurate antiferromagnetic structures.  The magnetic order differs going from Ge to 

Si. for EuMn2Ge2, the Mn moments are arranged antiferromagnetically both within the 
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ab-plane and along the c–axis, while for EuMn2Si2, the Mn moments form ferromagnetic 

ab-sheets that are coupled antiferromagnetically along the c–axis.[4] 

 In EuMn2Ge2, the europium ion is firmly divalent and the Eu sub-lattice orders 

incommensurately at 9.8 K.[17] This differs greatly from EuMn2Si2 where neutron 

diffraction measurements show no ordering in the europium sublattice above 1.8 K.[4] 

This result is expected since as europium becomes trivalent, there is no net moment to 

order.  

Fitting equations 33 or 34 to the specific heat data fails to fit the features seen at 

all.  This is not surprising since these would describe the heat capacity of completely non 

interacting spins.  A Debeye temperature of 366 K can be fit somewhat poorly.  This is 

not a surprise since the Debye model assumes that the phonon energies are constant with 

Temperature.  Given how the shift in valence with temperature significantly alters the 

bulk modulus, assuming that the phonon energies are constant is an extremely poor 

approximation and the Debeye model is not valid.  A polynomial fit was performed in 

order to attempt to isolate the specific heat of the transition near 60 K.  This is shown in 

figure 46.  The resulting non-lattice contribution is shown in figure 47.  The entropy of 

this transition is then calculated and shown in figure 48.  We see a very small amount of 

entropy from this transition that corresponds to about 0.03 R ln 8, implying that only 3% 

of europium is still divalent at this point. 

Figure 53 shows the susceptibility plotted along side the non-lattice specific heat.  

This shows the transition seen matches the magnetic ordering.  A second smaller peak in 

the specific heat matches with the peak of the unknown magnetic ordering.  This is 
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perhaps a ferromagnetic ordering of canted antiferromagnetic europium.  This is 

supported by the dependence of the susceptibility for this peak with the excitation field.  

Significant differences between the magnetic susceptibility measurements 

between different groups suggest that this material’s magnetic behavior is highly 

dependent on small impurities or site location disorder, especially below 65 K and/or 

texture in the samples.   Europium is also an extremely volatile metal and there is 

difficulty in making samples without oxide impurities.  Different techniques can result in 

different possible site location disorder even if the stoichiometry is exact.  

Eu5In2Sb6 Specific Heat and Magnetic Susceptibility 

The specific heat data is shown in figure 49 with a fit to the Debeye model.  A 

Debeye temperature of 158 K is found.  Subtracting the Debeye fit from the specific heat 

gives us the non-lattice contribution to specific heat shown in figure 50.  Two sharp 

lambna peaks are easily identified.  It appears that there is a Shottkey like peak that is 

overlapping with this.  The entropy for this peak is shown in figure 51.  The total entropy 

is almost exactly 5 R ln 8.  If these peaks are only from magnetic ordering, it implies all 

the europium is divalent, which we know is not true.  These transitions require further 

study to determine their nature. 

Magnetic susceptibility was performed on a 3.2 mg Eu5In2Sb6 sample.  This data 

is shown in figure 54.  The signal from this small amount of sample was at the limit of 

what the Physical Properties Measurement Systems (PPMS) AC susceptibility options 

capabilities.  To compensate for the noise, a robust amount of data was collected.  The 

magnetic susceptibility behaves with Curie-Weiss behavior above a temperature of 14.2 
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K and can be fit with equation 58. The susceptibility after the transition temperature 

drops like a power law implying that the sample orders antiferromagnetically.  A fit to the 

Curie-Weiss equation, shown in figure 38, gives us TC = -6.49 ± 0.09 K indicative of AF 

correlations and a Curie constant of C = 8.05 ± 0.03 emu/mol Eu.  This indicates an 

antiferromagnetic transition.  Figure 55 shows the susceptibility, specific heat and DC 

magnetization plotted together.  From this it is clear that the sharp lamda transition seen 

is associated with the antiferromagnetic ordering seen in the susceptibility.  The second 

sharp transition corresponds to a maximum in the DC magnetization. 

At 3.40 K we see a sharp superconducting transition begin.  This is likely due to 

impurities of indium as this is the superconducting transition temperature of elemental 

indium.  This sample was grown in an indium flux and even a tiny fraction pure indium 

as an impurity in the sample would dominate the single with a superconducting transition.  

Any magnetic signal below this temperature is effectively screened by the indium 

impurity superconducting response. 
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Conclusions 

EuMn2Si2 and EuCo2Si2 

EuCo2Si2 was shown to not be a mixed valance system and having a stable Eu3+ 

valence state within the pressures and temperature ranges measured here.  It remains in 

the ThCr2Si2 type tetragonal crystal structure up to highest pressures measured of 60 GPa.  

An equation of state fit gives us B0 =161 ±4 GPa and B0’ = 4.0 ± 0.3. 

EuMn2Si2 is shown to be a mixed valence system with valence dependent on both 

temperature and pressure.  No structural phase transitions are observed up to 32 GPa at 

ambient temperatures and also at 7 K.  Equation of state fits give us B = 72 GPa and B’ = 

11 at ambient temperature while at 7 K we get B = 121 GPa and B’ = 4.9.   The large 

difference between the ambient temperature and low temperature equations of state fits 

can be explained by the shift in valence.  At low temperatures, europium is completely in 

the trivalent state making the material much less compressible.  At high temperatures, the 

europium larger divalent state is moved into the smaller trivalent state under pressure. 

Specific heat measurements show a peak at about 60 K which matches a change 

in the paramagnetic response seen in magnetic susceptibility.  The Debeye model poorly 

fits specific heat measurements due to changes in temperature resulting in significant 

changes in the elastic constants because of a shift in valence from divalent to trivalent.  

Magnetic susceptibility measurements show a paramagnetic response above 58 K.  

Between 58 K and 30 K we see a different possibly paramagnetic response with a 

different Tc and Currie constant perhaps indicating a ferromagnetic ordering of canted 

antiferromagnetic ordering. 
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Eu5In2Sb6 

Eu5In2Sb6 is shown to not be a mixed valence system in the ambient pressure 

phase at ambient temperature.  The changes in valence due to pressure are negligible and 

within the error of the measurement.  There are three different site locations for the ten 

europium atoms in the unit cell.   Seven of the sites are Eu3+ and three are Eu2+.  The Eu2+ 

sites antiferromagnetically order at 14.2 K with a very weak magnetic response.  At 15 K 

there is some indication that the Eu2+ site becomes an intermediate valence state.  The 

occupancies no longer match those of the crystal structure.  Pressure moves the net 

valence from Eu2+ to Eu3+ a small but measurable amount.  Further valence 

measurements at a range of intermediate temperatures and lower temperatures than 15 K 

are required to determine this. 

In the high-pressure phase above 16 GPa, we see what is most likely a mixed 

valence state between Eu4+ and Eu3+.  Increasing pressure moves the mixed valence state 

from Eu4+ to Eu3+.  The Eu2+ site is unaffected by pressure and it assumed to not be in a 

mixed valence state.  The decreasing of valence with pressure is not something 

commonly observed nor was it expected.  Further study of this high-pressure phase is 

warranted and could possess very unique electronic and magnetic properties.    

 The specific heat data show a good fit to the Debeye model.  The series of peaks 

seen at low temperatures correspond to magnetic ordering seen in susceptibility 

measurements.  Antiferromagnetic ordering is likely.  The nature to the two lambda 

transitions is unkown.  It is possible that at low temperatures, the europium valence 

becomes unstable.  This is supported by the RXES measurements done here.  Lower 
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temperature measurements of the valence as a function of temperature would shed some 

clarity on this. 
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Appendix 

n lz = 3, 2, 1, 0, -1, -2, -3 S 𝐿 = 𝑙!  J Symbol 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

⇓ 

⇓     ⇓ 

⇓     ⇓     ⇓ 

⇓     ⇓     ⇓     ⇓ 

⇓     ⇓     ⇓     ⇓     ⇓ 

⇓     ⇓     ⇓     ⇓     ⇓     ⇓ 

⇓     ⇓     ⇓     ⇓     ⇓     ⇓     ⇓ 

⇓⇑   ⇑     ⇑     ⇑     ⇑     ⇑     ⇑ 

⇓⇑  ⇓⇑    ⇑     ⇑     ⇑     ⇑     ⇑      

⇓⇑  ⇓⇑   ⇓⇑    ⇑     ⇑     ⇑    ⇑ 

⇓⇑  ⇓⇑   ⇓⇑   ⇓⇑   ⇑     ⇑     ⇑ 

⇓⇑  ⇓⇑   ⇓⇑   ⇓⇑  ⇓⇑   ⇑     ⇑   

⇓⇑  ⇓⇑   ⇓⇑   ⇓⇑  ⇓⇑  ⇓⇑    ⇑ 

⇓⇑  ⇓⇑   ⇓⇑   ⇓⇑  ⇓⇑  ⇓⇑  ⇓⇑ 

1/2 

1 

3/2 

2 

5/2 

3 

7/2 

3 

5/2 

2 

3/2 

1 

1/2 

0 

3 

5 

6 

6 

5 

3 

0 

3 

5 

6 

6 

5 

3 

0 

5/2

4

9/2

4

5/2

0

𝐽 = |𝐿 − 𝑆| 

7/2 
6

15/2

8

15/2

6

7/2

𝐽 = 𝐿 + 𝑆 

0 
 

2F5/2 
3H4 
4I9/2 
5I4 
6H5/2 
7F0 
8S7/2 
7F6 
6H15/2 
5I8 
4I15/2 
3H6 
2F7/2 
1S0 

Table 1.  Ground states of ions with partially filled f-shells constructed from Hund’s 

rules. 
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Figure 1. Heat capacity of the lambda transition in 4He. 

This is the heat capacity of liquid 4He at the superfluid to normal transition temperature.  

It is called the lambda point due to the shape of the peak being similar to the greek letter 

λ.  It is an example of a second order phase transition in which there is no entropy 

difference between the two phases at a single temperature.  Image from Cochran (1966) 

[32]. 
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Figure 2.  RKKY Interaction 

JRKKY (r) ~ − J2ρ (cos 2kFr)/kFr, TRKKY = J2ρ. In dense systems, the RKKY interaction 

typically gives rise to an ordered antiferromagnetic state with a Neel temperature TN of 

the order J2ρ 
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Figure 3.  Quantum critical point diagram 

This is a schematic of a generalized quantum critical phase diagram.  The quantum 

critical point (QCP) is formed by tuning some combination of external parameters such 

as pressure and magnetic field.  This point is where a continuous phase transition takes 

place at zero temperature.   New phases are often found surrounding the QCP.  Image 

taken, A. P. Mackenzie, s. A. Grigera, from A Quantum Critical Route to Field-Induced 

Superconductivity Science 26 AUG 2005 : 1330-1331 
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Figure 4.  Doniach diagram  

This shows the competing RKKY interaction with Kondo screening resulting in a 

quantum critical point.  F Steglich et al Magnetism, f-electron localization and 

superconductivity in 122-type heavy-fermion metals. 2012 J. Phys.: Condens. Matter 24 

294201 
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Figure 5.  Physical Properties Measurement System (PPMS) probe chamber. 

This illustrates the probe and sample chamber that use used for both magnetic 

susceptibility and calorimeter measurements. 
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Figure 6. Physical Properties Measurement System (PPMS) He-3 and calorimeter 

puck. 

The He-3 refrigerator with the calorimeter puck is shown here.  Temperatures down to 

0.35 K can be reached.  The samples are placed on the sample stage and are adhered with 

thermal grease. 
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Figure 7. Physical Properties Measurement System (PPMS) magnetometry system. 

A sample is placed inside a capsule that is attached to a non-magnetic rod.  The sample is 

inserted into the ACMS coil with the rod attached to the drive motor positioned above the 

sample chamber and the sample is centered.  Both DC magnetization or AC susceptibility 

can be measured.  Images were taken from the Quantum Design PPMS megnetometry 

brochure.    



 64 

 

Figure 8. Princeton symmetric type diamond anvil cell (DAC) 

This is a picture of the diamond anvil cell used for all high pressure measurements 

performed here. 
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Figure 9. Diamond anvil cell schematic 

A DAC generates pressure to a sample through the use of two opposing diamond anvils 

where the force is supplied through the tightening of a series of screws or a membrane.  

The small area of the cullet compared to the area of the back of the diamond enables the 

creation of very large pressures with modest force.  The diamonds also proved convenient 

windows to visually inspect the sample space or perform optical measurements.   The 

gasket material is usually steel or rhenium.  If beryllium is used, the gasket can be a 

convenient window for X-ray measurements.  Using a small ruby sphere and measuring 

the shift in its fluorescence, pressure can be measured.  Performing XRD measurements 

on a gold or other standard can be done to measure pressure as well.  
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Figure 10.  X-ray diffraction geometry. 

Shown here is the standard geometry used to create x-ray diffraction images.  The 

incident beam is refracted off of the crystal structure and the scattered light is collected 

on a plate or detector.  From this geometry, the angle of refracted light can be measured 

with each angle resolved peak corresponding to a particular spacing between planes of 

the crystal.   Figure taken from Fundamentals of Powder Diffraction and Structural 

Characterization of Materials [33]. 
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Figure 11. X-Ray diffraction image 

This is an example powder diffraction image.  This particular sample is EuMn2Si2 inside 

a diamond anvil cell.  The raw data shown requires software to integrate the rings into a 

diffraction pattern and then also to analyze the pattern to obtain lattice information.   
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Figure 12. X-ray absorption spectroscopy (XAS) edges. 
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Figure 13. X-ray absorption spectroscopy (XAS) edges by atomic number. 

Energy of the K, L1, L3, M1, and M5 X-ray absorption edges as a function of atomic 

number.  This image was taken from Brink, Jeroen van den, Resonant Inelastic X-ray 

Scattering on Elementary Excitations 
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Edge  keV  Å      

K          48.5190     0.2555      

L-I        8.0520     1.5398      

L-II       7.6171     1.6277      

L-III      6.9769     1.7771      

M1         1.8000     6.8880      

M2         1.6139     7.6823     

M3         1.4806     8.3739      

M4         1.1606    10.6828      

M5         1.1309    10.9633 

Table 2.  Europium absorption energies and wavelengths. 
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Figure 14.  Resonant X-ray emission spectroscopy (RXES) apparatus. 

This is inside the measurement hutch at IDD sector 16 at the Advanced Photon Source 

and Argonne National Laboratory.  The High Pressure Collaborative Access Team 

(HPCAT) maintains this instrument.  At almost the exact center of the image is the 

diamond anvil cell on top of a stage used to control its position.  The large bag is filled 

with helium to reduce the attenuation of scattered photons by the atmosphere.  The large 

green arm holds the detectors at the desired angles.  On the far right is where the X-ray 

beam comes in and is diffracted through silicon crystals to select the desire energy.  It is 

then collimated immediately before the DAC.  Diodes before and after the DAC are 

present to perform X-ray absorption measurements and sample locating.  
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Figure 15.  Direct resonant inelastic X-ray spectroscopy (RIXS) 

In a direct RIXS process the incoming X-rays excite an electron from a deep-lying core 

level into the empty valence. The empty core state is then filled by an electron from the 

occupied states under the emission of an X-ray. This RIXS process creates a valence 

excitation with momentum ħk’ − ħk and energy ħωk − ħωk’. [34]  This image was taken 

from Brink, Jeroen van den, Resonant Inelastic X-ray Scattering on Elementary 

Excitations. 
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Figure 16.  Indirect resonant inelastic X-ray spectroscopy (RIXS) 

In an indirect RIXS process the incoming X-rays excite an electron from a deep-lying 

core level into the empty valence. [34]  This image was taken from Brink, Jeroen van den, 

Resonant Inelastic X-ray Scattering on Elementary Excitations. 
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Figure 17. Ambient RIXS data for EuCo2Si2 

Europium RIXS data for EuCo2Si2 is shown at ambient conditions.  There is only one 

visible peak in the Eu3+ configuration.  The strange shape of the peak is unknown but 

could be due to disorder in the crystal structure.  



 75 

 

 

Figure 18. RIXS data for EuCo2Si2 at 10.5 GPa and ambient temperatures  

Europium RIXS data for EuCo2Si2 is shown at 10.5 GPa and ambient temperature.  There 

is only one visible peak and is only in the Eu3+ configuration.  
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Figure 19. Ambient RIXS data for EuMn2Si2 

Europium RIXS data of EuMn2Si2 at ambient conditions is shown.  Two distinct peaks 

can be seen corresponding to the Eu2+ and Eu3+ states.  Fits to this data show that the 

valence at ambient conditions is mostly trivalent at +2.76. 

  



 77 

 

Figure 20. RIXS data for EuMn2Si2 at 13.1GPa at ambient temperature. 

Europium RIXS data of EuMn2Si2 at 13.1 GPa and ambient temperature is shown.  Two 

distinct peaks can still be seen corresponding to the Eu2+ and Eu3+ states.  Fits to this data 

show that the valence at ambient conditions is almost completely trivalent at +2.93. 
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Figure 21. Partial fluorescence yield (PFY) data for EuMn2Si2 at multiple pressures 

at ambient temperature. 

Europium PFY data of EuMn2Si2 at multiple pressures and ambient temperature is shown.  

Two distinct peaks can still be seen corresponding to the Eu2+ and Eu3+ states in the PFY 

data.  An example fit to the PFY data can be seen in the inset.   
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Figure 22. Europium valence as a function of pressure in EuMn2Si2 

Plotted here is the europium valence of EuMn2Si2 as function of pressure at ambient 

temperature.  The europium valence clearly approaches +3 as pressure increases. 
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Figure 23. RIXS data for Eu5In2Sb6 at ambient temperatures and pressures. 

Europium RIXS data for Eu5In2Sb6 is shown at ambient temperature and pressure.  Two 

distinct peaks can be seen corresponding to the Eu2+ and Eu3+ states.  The shape of the 

trivalent peak indicates that there may be 2 different site locations that are trivalent.  Fits 

to this data show that the net valence is +2.63 or +2.70 if three peaks are used. 
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Figure 24. fit of RXES data for Eu5In2Sb6 at ambient temperatures and pressures. 

The first image is the actual data, the second is the fit of two peaks using equations 75 

and 78.  The third image shows the residual of the fit. 
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Figure 25. RIXS data for Eu5In2Sb6 at ambient temperatures and pressures showing 

three possible peaks. 

Europium RIXS data for Eu5In2Sb6 is shown at ambient temperature and pressure.  Two 

distinct peaks can be seen corresponding to the Eu2+ and Eu3+ states.  The shape of the 

trivalent peak indicates that there may be 2 different site locations that are trivalent.  

Fitting three different peaks gives occupancy of 0.40 and 0.30 Eu3+ and 0.30 Eu2+.  This 

matches exactly the different site locations present in the ambient crystal and implies that 

this system is not actually a mixed valence system, but a system with different sight 

locations having different valence.  The net valence from this fit is +2.70. 
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Figure 26. RIXS data for Eu5In2Sb6 at ambient temperatures and 5.86 GPa. 

Europium RIXS data for Eu5In2Sb6 is shown at ambient temperature and 5.86 GPa.  Two 

distinct peaks can be seen corresponding to the Eu2+ and Eu3+ states.  Fits to this data 

show that the valence is +2.69 showing that continued increasing pressure moves the 

valence towards +3.  Two different Eu3+ peak shapes still appear to be present. 
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Figure 27. fit of RXES data for Eu5In2Sb6 at ambient temperatures and 5.86 GPa. 

The first image is the actual data, the second is the fit of two peaks using equations 75 

and 78.  The third image shows the residual of the fit. 
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Figure 28. RIXS data for Eu5In2Sb6 at ambient temperatures and 9.5 GPa. 

Europium RIXS data for Eu5In2Sb6 is shown at ambient temperature and 9.5 GPa.  Two 

distinct peaks can be seen corresponding to the Eu2+ and Eu3+ states.  Fits to this data 

show that the valence is +2.73 showing that continued increasing pressure moves the 

valence towards +3.  Two different Eu3+ peak shapes still appear to be present. 
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Figure 29. RIXS data for Eu5In2Sb6 at ambient temperatures and 16 GPa. 

Europium RIXS data for Eu5In2Sb6 is shown at ambient temperature and 16 GPa.  A 

phase transition is observed, as all of the peaks have completely changed shape. Two 

peaks can be seen corresponding to the Eu2+ and Eu3+ states.  A third peak higher in 

energy emerges as well. This could possibly be evidence of a Eu4+ state.  With a fit to 3 

peaks, we get occupancy of 0.23 Eu2+, 0.58 Eu3+ , and  0.18 Eu4+ giving a net valence of 

+2.94. 
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Figure 30. fit of RIXS data for Eu5In2Sb6 at ambient temperatures and 16 GPa. 

The first image is the actual data, the second is the fit of two peaks using equations 75 

and 78.  The third image shows the residual of the fit. 
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Figure 31. RIXS data for Eu5In2Sb6 at ambient temperatures and 35 GPa. 

Europium RIXS data for Eu5In2Sb6 is shown at ambient temperature and 35 GPa.  The 

material appears to remain in the same phase as at 16 GPa.  The two peaks that are 

corresponding to the Eu2+ and Eu3+ states are visible in addition to the 3rd peak at higher 

energy.  With a fit to 3 peaks, we get occupancy of 0.23 Eu2+, 0.67 Eu3+ , and  0.09 Eu4+ 

giving a net valence of +2.86.  This implies that the Eu2+  state is  unaffected by pressure, 

however there is a shift from the Eu4+ to Eu3+ with increasing pressure. 
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Figure 32. RIXS data for Eu5In2Sb6 at 15.25 K and 1.0 GPa. 

Europium RIXS data for Eu5In2Sb6 is shown at 15.25 K and 1.0 GPa.  Two distinct peaks 

can be seen corresponding to the Eu2+ and Eu3+ states.  The shape of the trivalent peak 

indicates that there may be 2 different site locations that are trivalent as was the ambient 

temperature data in figure 16.  Fits to this data show that the net valence is +2.83.  

Lowering the temperature moves europium from the Eu2+ state to the Eu3+ state.  It is 

unclear if this is due to one of the transitions seen at low temperatures in the specific heat 

that has caused the valence to become unstable. 
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Figure 33. RIXS data for Eu5In2Sb6 at 15.25 K and 19 GPa. 

Europium RIXS data for Eu5In2Sb6 is shown at 15.25 K and 19 GPa.  Two distinct peaks 

can be seen corresponding to the Eu2+ and Eu3+ states.  The shape of the trivalent peak 

indicates that there still may be 2 different site locations that are trivalent as was the 

ambient temperature data in figure 16.  We noticeably do not see the same phase 

transition at low temperature at this pressure.   Fits to this data show that the net valence 

is +2.87.  Increasing the pressure at low temperature moves europium from the 2+ state to 

the 3+ state slightly.  This is in contrast to the ambient temperature results.    
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Figure 34. Partial fluorescence yield (PFY) data for Eu5In2Sb6 at multiple pressures 

at ambient temperature. 

Europium PFY data of Eu5In2Sb6 at multiple pressures and ambient temperature is shown.  

Two distinct peaks can still be seen corresponding to the Eu2+ and Eu3+ states in the PFY 

data.  The other features seen in the full RIXS data above 10 GPa is not as apparent 

indicating the structure may be to complex too accurately measure valence with PFY 

scans. 
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Figure 35. Eu5In2Sb6 valence versus pressure. 

In the ambient phase, no shift in valence is seen within the experimental error.  It is 

determined here that Eu5In2Sb6 is not a mixed valence system in the ambient phase, but 

does have europium at different sites possessing different valence.  The high-pressure 

phase does show a measurable shift in valence with a theorized Eu4+ and Eu3+ mixed 

valance state that moves from Eu4+ to Eu3+ with increasing pressure.  
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Figure 36.  EuMn2SI2 crystal structure 

EuMn2Si2 and EuCo2Si2 crystalize in the ThCr2Si2 type tetragonal crystal structure (space 

group 139, I4/mmm)  
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Figure 37. High pressure X-ray diffraction data for EuMn2Si2 at ambient 

temperatures. 

No phase transitions are seen throughout the experiment.  The structure remains in the 

ThCr2Si2 type tetragonal structure. 
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Figure 38. High pressure X-ray diffraction data for EuMn2Si2 at 7 Kelvin. 

No phase transitions are seen throughout the experiment.  The structure remains in the 

ThCr2Si2 type tetragonal structure.  



 96 

 

Figure 39. High pressure X-ray diffraction data for EuCo2Si2 at ambient 

temperature. 

No phase transitions are seen throughout the experiment.  The structure remains in the 

ThCr2Si2 type tetragonal structure.  
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Figure 40. Equation of state for EuCo2Si2. 

The Birch-Murnaghan equation of state was fit to the HPXRD data with B =150 ±3 GPa 

and B’ = 5.0 ± 0.3 
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Figure 41. Equations of state for EuMn2Si2 at ambient temperature and 7K 

The Birch-Murnaghan equation of state was fit to both the 7K and the ambient 

temperature data.   A large difference is immediately apparent and is almost certainly due 

to the europium valence already mostly in the 3+ state in the low temperature data at 

ambient pressure.  The volume collapse from 2+ to 3+ is significant. 
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Figure 42. Eu5In2Sb6 crystal structure 

Eu5In2Sb6 has 26 atoms per unit cell.   It crystalizes in the orthorhombic (space group 55, 

Pbam) Ca5Ga2As6 crystal structure and is the only known rare earth analogue to it.  There 

are 10 europium atoms in the unit cell.  It is difficult to see, but there effectively only 3 

different distinct site locations in the unit cell.  There are four europium in one and three 

in each of the other two.   Image borrowed from Chanakian, High temperature 

thermoelectric properties of Zn-doped Eu5In2Sb6, J. Mater. Chem. C, 2015,3, 10518-

10524. [35] 
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Figure 43. High pressure XRD for Eu5In2Sb6 at ambient temperatures. 

The sample starts out in the orthorhombic (space group 55, Pbam) Ca5Ga2As6 crystal 

structure.  It goes through a structural phase transition at about 16 GPa. 
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Figure 44. High pressure X-ray diffraction data for Eu5In2Sb6 at 7 Kelvin. 

The sample starts out in the orthorhombic (space group 55, Pbam) Ca5Ga2As6 crystal 

structure and stays there up to 15.1 GPa. 
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Figure 45. Specific heat over temperature of EuMn2Si2 

Specific heat over temperature is shown with a fit to the Debeye model.  As expected, the 

Debeye model is a poor fit to the lattice contribution from these materials.  The 

temperature shift in valence causes a temperature dependence of the phonon density of 

states.  The Debeye model assumes constant phonon modes. 
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Figure 46. EuMn2Si2 specific geat over T fitted to a polynomial approximation 

In order to separate the small transition seen from the lattice, a polynomial was fit to 

segments surrounding the transition.  This fit can then be used to subtract from the data to 

isolate the non-lattice contribution. 
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Figure 47.  Approximate non-lattice specific heat EuMn2Si2 

This is the approximated non-lattice specific heat remaining after subtracting the 

polynomial fit. 
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Figure 48.  Approximate non-lattice entropy of EuMn2Si2 

Integrating the data in figure 47 gives us the entropy.  We see here that the entropy is 

only 3% of what would be expected from fully divalent europium.  This implies that the 

valence is almost completely trivalent.  Note that the ordering temperature does not 

change, only the magnitude of the signal seen.  Using a tuning parameter to change the 

valence from Eu2+ to Eu3+ will not result in the same type of quantum critical point seen 

from the Kondo-RKKY systems. 

  

0.03	R	ln	8 
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Figure 49. Specific heat over temperature of Eu2In2Sb6 

Specific heat over temperature is shown with a fit to the Debeye model.  A reasonable fit 

of TD = 158K is found.  This is expected since the same type of temperature dependence 

of the europium valence was not seen.  The molar fraction was added to the fit to account 

for significant indium inclusions in the material.  
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Figure 50. Non-lattice specific heat over temperature of Eu2In2Sb6 

The non-lattice specific heat over temperature is shown.  There appears to be two lamba 

type transitions and a Shottkey like peak overlapping.  
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Figure 51. Non-lattice entropy of Eu5In2Sb6 

The entropy of Eu5In2Sb6 was found by integrating the data shown in figure 50.  The total 

entropy approaches about 86 J/mol K.  This is about 5 R ln 8.  This is strange since that 

would imply that all of the europium is divalent which we know is not true.   
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Figure 52. Fits to magnetic susceptibility of EuMn2Si2 

A fit to the Currie-Weiss (equation 58) gives TN = 56.23 ± 0.07 K and a Currie constant 

of C = 4.89  ± 0.05 emu/mol K above about 60 K.  Below what is assumed to be an 

antiferromagnetic transition we se what appears to be a second unknown ordering 

transition.  A strong dependence of the susceptibility (not shown) with excitation field 

indicates that this could be ferromagnetic.  Sample variation below the ordering 

temperature inhibits any conclusions about this though. 
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Figure 53.  Comparison of non-lattice specific heat and susceptibility EuMn2Si2. 

The peak seen in the heat capacity clearly lines up with the magnetic ordering seen in the 

susceptibly data.  A very small peak amongst the noise in the specific heat can be seen to 

line up with the peak of the susceptibility as well.  
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Figure 54. Magnetic susceptibility of Eu5In2Sb6 

The magnetic susceptibility behaves with Curie-Weiss behavior above a temperature of 

14.2 K.  A fit to the Currie-Weiss equation is shown. 
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Figure 55. Comparison of specific heat and susceptibility Eu5In2Sb6 

The sharp peaks seen in the specific heat correspond to a peak in the susceptibility as well 

as the DC magnetization.  The magnetic ordering that is occurring here is unknown but 

could indicate a low temperature destabilization of the valence as was indicated by the 

low temperature RXES.  
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