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ABSTRACT

DLA-LBG Cross-correlation and Basic Properties of Infrared Galaxies in

Cosmological Simulations

by

Tae Song Lee

Dr. Kentaro Nagamine, Examination Committee Chair
Assistant Professor of Astronomy
University of Nevada, Las Vegas

PART I

We calculate the cross-correlation function (CCF) between damped Ly-α systems

(DLAs) and Lyman break galaxies (LBGs) using cosmological hydrodynamic simula-

tions at z = 3. We compute the CCF with two different methods. First, we assume

that there is one DLA in each dark matter halo if its DLA cross section is non-zero. In

our second approach we weight the pair-count by the DLA cross section of each halo,

yielding a cross-section-weighted CCF. We also compute the angular CCF for direct

comparison with observations. Finally, we calculate the auto-correlation functions

of LBGs and DLAs, and their bias against the dark matter distribution. For these

different approaches, we consistently find that there is good agreement between our

simulations and observational measurements by Cooke et al. (2006a) and Adelberger

et al. (2005). Our results thus confirm that the spatial distribution of LBGs and

DLAs can be well described within the framework of the concordance ΛCDM model.

We find that the correlation strengths of LBGs and DLAs are consistent with the

actual observations, and in the case of LBGs it is higher than would be predicted by

low-mass galaxy merger models.
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PARTII

We present theoretical computational results of magnitudes, luminosity functions,

galaxy number counts, and redshift distribution in the 3.6, 4.5, 5.8, and 8.0 µms of

IRAC and 24, 70, and 160 µms of MIPS bands using cosmological hydrodynamic

simulations. We combine GADGET-3 with GRASIL spectrophotometic code to com-

pute galaxy spectral energy distribution. We compare our luminosity function (IRAC:

8µm and MIPS: 24µm) results with observational and sampling data (Caputi et al.,

2007; Rodighiero et al., 2009) from the Spitzer Space Telescope. We find that there

is reliable agreement with their results.
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CHAPTER 1

INTRODUCTION

ΛCDM is denoted as the standard model of big bang cosmology. This model

makes an effort to explain the existence and structure of the large structure of galaxy

clusters, cosmic microwave background (CMB), amount of hydrogen, helium, and the

expansion of the universe observed with the light from Type Ia supernova and distant

galaxies.

ΛCDM model incorporates an expansion of space that is mesured with the redshift

of spectral lines in the light from distant galaxies and with the cosmological time

dilation in the light degradation of supernovae (SN). The model is described under

an assumption of flat universe that space is defined by straight lines. The current

values of parameters indicate that the universe is expanding and accelerating. The key

parameters from Wilkinson Microwave Anisotropy Probe (WMAP) are summaried in

Table 1.

Parameters Valuses Description

t0 13.75 ± 0.13 Gyr Age of Universe
h 0.72 Hubble Constant
Ωm 0.26 Dark Matter Density
Ωb 0.044 Baryon Density
ΩΛ 0.74 Dark Energy Density
nx 0.96 Spectral Index
σ8 0.80 Fluctuation amplitude at 8 h−1 Mpc

Table 1 WMAP Parameters

Cold dark matter (CDM) is a invisible matter required to answer for gravitational

influences observed in large scale structures (e.g. the rotation velocity of galaxies
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and the gravitational lensing of light by galaxy clusters) that cannot be explained

by the amount of visible baryonic matters (protons and neutrons). Dark matter is

characterized as being non-relativistic in its velocity and non-baryonic. It cannot be

cooled by radiative processes and collisionless. The dark matters interact with each

other and other particles via gravity only.

ΛCDM model includes the cosmological constant which is linked to a dark en-

ergy (ΩΛ) inherent in a vacuum space. The dark energy describes the accelerating

expansion of space in opposition to the attractive force of gravity by the baryonic and

non-baryonic matters. The cosmological constant is interpreted as the fraction of the

total mass density of a flat universe. The current measured value of ΩΛ is stated in

Table 1.

The Big Bang cosmology with a cosmic inflation which is included in ΛCDM

model uses the Friedmann equations and cosmological equations of state to describe

the observed universe from the inflation epoch to present time and currently ΛCDM

model has been made the great successes and good agreements with the observations.

We made two theoretical approaches to explain the observations using the Smooth

Particle Hydrodynamic (SPH) Cosmological Simulations. First, according to the cold

dark matter (CDM) model of structure formation, the spatial distribution of galaxies

can be understood as a result of gravitational instability of density fluctuations in

the CDM, and the dark matter halo mass function can be well described by analytic

models (Sheth & Tormen, 1999). More precisely, hierarchical CDM models predict

that the massive galaxies at high redshift (hereafter high-z) are clustered together in

high-density regions, while low-mass galaxies tend to be more evenly spaced (Kaiser,

1984; Bardeen et al., 1986). Under the assumption that galaxies are produced from

primordial density fluctuations owing to gravitational instability, one can estimate

the average mass of galaxy host haloes based on clustering data. Second, it is well
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understood that massive galaxies have experienced a large portion of their star for-

mation (SF) at early epoch. Understanding the infrared emission from dust is very

important for theoretical predictions on when and how galaxies form. Deep surveys

(e.g. Infrared Space Observatory and Spitzer Space Telescope) probe SF rate

(SFR) in the distant galaxies with mid-infrared light. The evolution of the IR lumi-

nosity function has been measured up to z∼ 2.5 (Caputi et al., 2007; Rodighiero et

al., 2009).
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CHAPTER 2

PART I: INTRODUCTION

Damped Lyman-α systems (DLAs), defined as quasar absorption systems with

column density of NHI > 2 × 1020 atoms cm−2 (Wolfe et al., 1986), probe the H i

gas associated with high-z galaxies. Since stars are hardly formed in warm ionized

gas and are tightly correlated with cold neutral clouds, the amount of H i gas is

very important, being the precursor of molecular clouds (Wolfe et al., 2003). DLAs

dominate the H i content of the Universe at z ≃ 3 and contain a sufficient amount of

H i gas mass to account for a large fraction of the present-day stellar mass (Storrie-

Lombardi & Wolfe, 2000). The gas kinematics and chemical abundances of DLAs

can be measured and are documented in detail. However, the masses of DLA host

haloes (hereafter DLA haloes) remain poorly constrained, because only about 20% of

quasars exhibit DLA absorption per unit redshift (Nagamine et al., 2007), and the

scattered distribution of DLAs in quasar sight lines precludes the use of DLAs as

tracers of dark matter halo mass.

Alternatively, the mass of DLA haloes can be probed by the cross-correlation

between DLAs and a galaxy population whose clustering and halo mass are well

understood. Cooke et al. (2006a,b) used 211 LBG spectra and 11 DLAs to measure

the three dimensional (3-D) LBG ACF and DLA-LBG CCF (see also Gawiser et al.,

2001; Bouche & Lowenthal, 2004; Bouche et al., 2005). Their analysis started by

counting the number of LBGs in 3-D cylindrical bins centred on each of 11 DLAs,

following the method of Adelberger et al. (2003). They estimated the typical halo

mass of LBGs at z ∼ 3 to be 1010.8M⊙ ≤ Mhalo ≤ 1012 M⊙ from observations of

their auto-correlation function (ACF) and detected a statistically significant result of

DLA-LBG CCF, and estimated an average DLA halo mass of 〈MDLA〉 ≈ 1011.2M⊙,

assuming a single galaxy per halo.
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On the theoretical side, Nagamine et al. (2007) calculated the average DLA halo

mass using a series of cosmological hydrodynamic simulations with different box sizes,

resolution and feedback strengths. They found a mean DLA halo mass of 〈MDLA〉 =

1012.4M⊙ with their Q5 run which is somewhat larger than 〈MDLA〉 = 1011.2M⊙ of

Cooke et al. (2006a). More recent work by Pontzen et al. (2008) showed that the

DLA cross-section is predominantly provided by intermediate mass haloes, 109 <

Mvir/M⊙ < 1011. These results motivate us to further examine the distribution of

DLAs relative to that of LBGs. In this paper, we compute the DLA-LBG CCF

in cosmological SPH simulations, using the sample of LBGs and DLAs obtained by

Nagamine et al. (2004a,b). We compare our results with the observational results by

Adelberger et al. (2005) and Cooke et al. (2006a,b).

The part I is organized as follows. In Section 3, we briefly describe the features of

our cosmological SPH simulations used in this paper. In Section 4 and Section 5, we

describe and report the methodology, binning method, and the results for ‘unweighted’

and ‘weighted’ DLA-LBG CCF, respectively. We then discuss the projected angular

CCF for the direct comparison with observational result by Cooke et al. (2006a,b) in

Section 6. The ACFs of LBG-LBG and DLA-DLA are discussed in Subsections 7 and

7, while the bias results are reported in Section 8. Finally, we discuss the implications

of our work in Section 9.
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CHAPTER 3

SIMULATION

In the part I, we use two different cosmological smoothed particle hydrodynamics

(SPH) simulations (Springel & Hernquist, 2003a) performed with the GADGET-2

code (Springel, 2005). The simulation parameters of the two runs (named D5 and

G5) are summarized in Table 2. The same set of runs has been used by Nagamine

et al. (2004b,a, 2007) to study the global properties of DLAs, such as the DLA cross

section, incidence rate, and H i column density distribution functions.

The code we use is characterized by four main features. First, it uses an entropy-

conserving formulation of SPH (Springel & Hernquist, 2002), which explicitly con-

serves entropy of the gas where appropriate. Second, highly overdense gas particles

are treated with a sub-resolution model for the interstellar medium (ISM) (Springel

& Hernquist, 2003b). The dense ISM is assumed to be made of a two-phase fluid

consisting of cold clouds in pressure equilibrium with a hot ambient phase. Cold

clouds grow by radiative cooling, and form the reservoir of baryons for star forma-

tion. Once star formation occurs, the resulting supernovae (SNe) deposit energy into

the ISM, heating the hot gas environment, evaporating cold clouds, and transferring

cold gas back into the ambient phase. This establishes a self-regulation cycle for star

formation in the ISM, Additionally, the simulation keeps track of metal abundance

and the dynamical transport of metals. Metals are produced by stars and returned

into the gas by SNe.

Third, a model for galactic winds is included to study the effects of outflows

on DLAs, galaxies, and intergalactic medium (IGM). In this model, gas particles are

driven out of dense star-forming medium by assigning an extra momentum in random

directions (Springel & Hernquist, 2003b). It is assumed that the wind mass-loss rate

is proportional to the star formation rate, and the wind takes a fixed fraction of the
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SN energy. For the D5 and G5 runs, a strong wind speed of 484 km s−1 is adopted

(as opposed to the ’weak’ wind speed of 242 km s−1; Springel & Hernquist (2003b)).

The dependence of the wind models on DLA properties was discussed in detail by

Nagamine et al. (2007). Fourth, the code includes radiative cooling and heating with

a uniform UV background of a modified Haardt & Madau (1996) spectrum (Katz

et al., 1996; Davé et al., 1999), where the reionisation takes place at z ≃ 6.

We identify galaxies in our simulation by grouping the star particles. We then

calculate the luminosity and spectrum of individual star particles using the mass,

formation time, and metallicity. The spectrum of each galaxy is obtained by coadding

the spectrum of constituent star particles, and the broad-band colours are computed

by convolving with filter functions. The LBGs are then selected based on the UnGR

colour selection criteria as described in Nagamine et al. (2004).

In the part II, we utilize three different SPH simulations carried out under GADGET-

3 (Springel, 2005). GADGET-3 is the updated version of the smoothed particle hy-

drodynamics (SPH) code GADGET-2. A Tree-particle-mesh (TPM) algorithm is im-

plemented to compute the gravitational dynamics. An SPH-TPM simulation allows

a fast and reliable high-resolution calculation for gravitational and gaseous dynam-

ics. The TPM algorithm is divided into two parts. For the long-range gravitational

force, it uses a particle-mesh (PM) method by Hockney & Eastwood (1988), and the

short-range gravitational force is computed by a tree method (Barnes & Hut, 1986).

Advantages of using the TPM algorithm are: 1) the gravitational force calculation

can be performed faster than the Tree method alone, and 2) in the dense regions, the

TPM enables the higher force resolution than the PM method. The gas dynamics is

computed by an SPH method. Especially, the SPH is advantageous when the simu-

lation needs to deal with large dynamical extent such as the investigation of galaxy

formation and evolution in a cosmological setting.
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GADGET-3 uses an entropy-conserving formulation of SPH (Springel & Hern-

quist, 2002), which explicitly conserves entropy of the gas where appropriate. Highly

over-dense gas particles, star formation, and supernova (SN) feedback are treated

with a sub-resolution model for the interstellar medium (ISM) (Springel & Hern-

quist, 2003b). The dense ISM is assumed to be made of a two-phase fluid consisting

of cold clouds in pressure equilibrium with a hot ambient phase. Cold clouds grow

by radiative cooling, and form the reservoir of baryons for star formation. Once star

formation occurs, the resulting supernovae (SNe) deposit energy into the ISM, heat-

ing the hot gas environment, increasing thermal energy of the hot gas, evaporating

cold clouds, and transferring cold gas back into the ambient phase. The simulations

incorporate radiative cooling and heating processes for hydrogen and helium using a

method comparable to Katz et al. (1996). An external background radiation (ultravi-

olet) is considered as uniform photo-ionizing photons (Haardt & Madau, 1996). The

normalization has been adjusted to be compatible with the Lyα forest observations

(Davé et al., 1999). A single gas particle represents both hot and cold gas. The stars

are formed in the cold portion when the density exceeds a given threshold, which

is derived self-consistently within the sub-resolution model for the ISM. In addition

to the sub-resolution model, a phenomenological model for SN-driven galactic wind

(Springel & Hernquist, 2003a) is incorporated to the simulation. The galactic wind is

particularly important for studying the effects of outflows on Damped Lyα Systems

(DLAs), galaxies, and intergalactic medium (IGM), and for distributing the metals

carried by SNe into the IGM. The strong kinematic wind with a speed of 484 kms−1

has been adopted. The previous works (Nagamine et al., 2004a,b) have shown that at

z = 3 such model settings provide promising results for the luminosity function (LFs)

of Lyman-break galaxies (LBGs) at the bright-end and for the HI column density

distribution function, compared to the simulations without the galactic wind.
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Run Lbox Np mDM mgas ǫ

D5 33.75 2 × 3243 8.15 × 107 1.26 × 107 4.17
G5 100.0 2 × 3243 2.12 × 109 3.26 × 108 12.3

Table 2 Simulations employed in the part I. NP is the initial number of gas and dark
matter particles (hence ×2). mDM and mgas are the masses of dark matter and gas
particles in units of h−1M⊙, respectively. ǫ is the comoving gravitational softening
length in units of h−1kpc, which is a measure of spatial resolution. All runs adopt a
strong galactic wind feedback model.
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CHAPTER 4

DLA-LBG CROSS-CORRELATION

The probability of finding an object 1 in volume δV1 at a separation r from a

randomly chosen object 2 can be written as δP = n1 [1 + ξ12(r)] δV1 (Peebles, 1980).

The joint probability of finding an object 1 in volume 1 (δV1) and an object 2 in

volume 2 (δV2) at a separation r is defined as δP = n1n2 [1+ ξ12(r)] δV1δV2, where n1

and n2 are the mean number densities of the two population. For the cross-correlation,

we replace object 1 and 2 with DLA and LBG, then the joint probability between

DLA and LBG is

δP = nDLAnLBG [1 + ξDLA−LBG(r)] δVDLAδVLBG, (1)

where nDLA and nLBG are the mean number densities of DLAs and LBGs, and

ξDLA−LBG(r) is the cross-correlation function (CCF).

To estimate ξDLA−LBG(r), we use the method of Landy & Szalay (1993) and Cooke

et al. (2006a):

ξDLA−LBG(r) =

DDLADLBG − DDLARLBG − RDLADLBG + RDLARLBG

RDLARLBG

,

(2)

where DDLADLBG is the number of pairs between the two data samples of DLAs

and LBGs separated by a distance r ± δr, and likewise for other terms. The nota-

tion “RDLA”, for example, represents the DLA sample that has random coordinate

positions but with an equivalent number density as the original data sample “DDLA”.

The method of identifying DLAs in our simulations is described in detail in

Nagamine et al. (2004a) (See, also Katz et al. (1996a); Hernquist et al. (1996)).

Briefly, we set up a cubic grid that completely covers each dark matter halo, with

the grid-cell size equivalent to the gravitational softening length ‘ǫ’ of each run. We
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Figure 1 DLA-LBG CCFs at z = 3 calculated with the regular unweighted method
(Equation 2). The variance of CCFs computed with 100 different random seeds is
shown with vertical errorbars, and the open square symbols are the mean of 100
trials. The blue dashed line is the least-square fit to the open square points. The red
solid line and the short and long dashed lines are the angular and 3-D best-fitting
power-laws of Cooke et al. (2006a,b), respectively, and the yellow shade is their 1-σ
error range for the angular CCF.
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then calculate the H i column density NHI of each pixel (i.e., a grid-cell on one of the

planes) by projecting the H i mass distribution, and identify those that exceed the

DLA threshold of NHI > 2×1020 atoms cm−2 as ‘DLA-pixels’. This method allows us

to quantify the DLA cross-section ‘σDLA’ of each halo, and the number of DLA-pixel

is NDLA
i = σDLA/ǫ2. Here we focus on the correlation signal at r & 0.4 h−1 Mpc,

because this is the scale probed by Cooke et al. (2006a,b). Therefore in this paper

we are only concerned about the overall halo positions and not the exact locations of

individual DLA-pixel within each halo. The σDLA-weighted CCF will be discussed in

Section 5.

First, we select the LBGs that are brighter than RAB=25.5 magnitude in the D5

and G5 runs. There are 30 (4030) LBGs in the D5 (G5) run. Nagamine et al. (2004)

have shown that the brightest galaxies with RAB < 25.5 in our simulations satisfy

the UnGR colour selection criteria for LBGs (e.g., Steidel et al., 1999). Figure 2 of

Nagamine et al. (2004) shows that the D5 run underestimates the number density of

LBGs, while the G5 run agrees better with the observation.

There are 22616 (25683) DLA haloes with σDLA > 0 in the simulated volumes of

the D5 (G5) run. The ‘random’ catalogues of LBGs and DLA haloes with random

positions were created with a random number generator from Numerical Recipes

(Press et al., 1992). The selected LBGs were paired with DLA haloes, and the number

of pairs that reside in spherical shells of [log r, log r + ∆ log r] were counted. The

maximum pair separations probed for the D5 and G5 runs are 10 and 35 h−1 Mpc,

respectively, with 20 bins in a logarithmic scale of distance r. The periodic boundary

condition was taken into account appropriately, and the pair-search was extended to

the next adjacent box where needed.

We correct all ξ(r) values by the integral constraint (IC). This correction owes to

the finite size of the observed field-of-view, and it must be added to the computed
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Unweighted σDLA-weighted
Run r0 γ r0 γ

D5 2.66 ± 0.23 1.50 ± 0.17 3.37 ± 0.36 1.77 ± 0.21
G5 3.03 ± 0.04 1.64 ± 0.03 3.43 ± 0.06 1.66 ± 0.03

Table 3 Best-fitting power-law parameters of unweighted and σDLA-weighted DLA-
LBG CCFs at z = 3. The correlation length r0 is in units of h−1Mpc. The con-
fidence limit statistics for this work are described in Section 5. For comparison,
Cooke (private communication) obtained r0 = 2.91 ± 1.0h−1Mpc and γ = 1.21+0.6

−0.3

for the 3-D CCF calculated with spherical shells, and Cooke et al. (2006b) reported
r0 = 3.32 ± 1.25h−1Mpc and γ = 1.74 ± 0.36 for the angular CCF.

correlation function as follows:

ξ′(r) = ξ(r) + IC, (3)

where ξ′(r) and ξ(r) are the corrected and computed CCF (or ACF) respectively.

Following the method described in Adelberger et al. (2005) and Lee et al. (2006), we

calculate the value of IC and find that it changes ξ(r) only slightly in our simulations,

with IC ∼ 10−2 for the D5 run.

Figure 1 shows the DLA-LBG CCF computed with Eq. (2). We perform a least-

square fit to the measured values with a power-law ξ(r) = (r0/r)
γ, and find best-

fitting parameters equal to (r0[h
−1 Mpc], γ) = (2.66 ± 0.23, 1.50 ± 0.17) and (3.03 ±

0.04, 1.64±0.03) for the D5 and G5 runs, respectively. The fits are shown by the blue

long-dashed lines (see also Table 3), and the confidence limit statistics are described

in Section 5.

Landy & Szalay (1993) showed that the variance of ωp(rθ) obtained from Monte

Carlo calculations agrees quite well with the standard Poisson variance. Here, we

follow their method outlined in their Section 5.2 and repeat the calculation of the CCF
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100 times using different seeds for generating the random positions for the ‘random’

sample to examine the statistical variance of the measured CCF. The variance of

100 trials is shown as vertical errorbars, and the average of 100 trials is shown with

the open square data points. The red solid line and the yellow shade represent the

best-fitting result (r0 = 3.32± 1.25 and γ = 1.74± 0.36) and the 1-σ errors of Cooke

et al. (2006a,b) from their angular CCF result. The result of the G5 run agrees well

with that of Cooke et al.’s, and its variance is small owing to a larger sample than

in the D5 run. The result of the D5 run is somewhat shallower than that of the G5

run, which could simply owe to relatively small sample of LBGs in D5 and its small

box-size.

Cooke et al. (2006a,b) published only the angular CCFs. However, they can also

estimate the 3-D radial CCF using redshift information. The best-fitting parameters

to the radial CCF by Cooke (private communication) using spherical shells is r0 =

3.39 ± 1.2 h−1 Mpc and γ = 1.61 ± 0.3, which is shallower than the angular CCF

results. As we will further discuss in Section 6, the method of Adelberger et al.

(2003) adopts cylindrical shells at small distances, which have larger volumes than

spherical shells. The cylindrical shell method uses long cylinders at small rθ and

captures all the potential LBGs near the DLAs, whereas the spherical bins do not.

This effect seems to result in the slightly steeper γ in Cooke et al. (2006b) compared

to the above spherical shell case (Cooke; private communication). We regard the

comparison to the angular CCF of Cooke et al. (2006b) as the primary one, because

Cooke et al. argue that the angular CCF calculated by the method of Adelberger

et al. (2003) is more robust than the 3-D radial calculation with spherical shells, and

the values of (r0, γ) derived from both CCFs should be equivalent theoretically (see

Section 6).
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Figure 2 DLA-LBG CCF at z = 3 calculated by the σDLA-weighted method (Equa-
tion 1). The yellow shade shows the upper and lower limits of Cooke et al. (2006a,b)’s
best-fitting power-laws. The variance of the CCF using 100 random seeds shown with
vertical errorbars. The blue dashed lines are the best-fittings for this work, and the
red solid line and the short and long dashed lines are, respectively, the angular and
3-D best-fitting power-laws of Cooke et al. (2006a,b).
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CHAPTER 5

σDLA-WEIGHTED CCF

In Section 4, we calculated the CCF assuming that there is one DLA per halo.

This assumption is valid as long as we are concerned with the CCF at scales of

r & 300 h−1 kpc. However, Nagamine et al. (2004b, Fig. 1) showed that the DLA

clouds have extended distributions in massive dark matter haloes. Therefore, it may

be more desirable to take the DLA cross-section of each halo into account when

calculating the CCF, because the chance of finding a DLA in the actual observation

is already cross-section weighted. Ideally, we would use all the DLA pixels and find

pairs with the nearby LBGs, but this computation is prohibitively expensive owing

to the large number of DLA pixels.

A simple way to achieve this is to weight the number of DLA-LBG pairs by the

number of DLA-pixels of each halo. Since the displacement between DLA-pixels

within a single halo is typically much smaller than the distance between LBG-DLA

pairs, we do not count the individual pairs between LBG and DLA-pixels. Instead,

we treat it as if all DLA-pixels are located at the halo centre, and weight each DLA-

LBG pair-count by the number of DLA-pixels Ni (hereafter we drop the superscript

‘DLA’ for simplicity) and compute the σDLA-weighted CCF as

ξDLA−LBG(r) =

NiDDLADLBG−NiDDLARLBG−NiRDLADLBG+NiRDLARLBG

NiRDLARLBG

.

(1)

For the ‘random’ DLA dataset, we shuffle the original Ni list randomly and make new

pairs with different DLA haloes. Again, 10 realisations of the random dataset have

been used to examine the statistical variance of the estimated CCF.

The results for the σDLA-weighted CCF is shown in Figure 2. We find best-fitting

parameters of (r0 [h−1 Mpc], γ) = (3.37±0.36, 1.77±0.21) and (3.43±0.06, 1.66±0.03)
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for the D5 and G5 runs, respectively, as shown by the blue long-dashed line (see also

Table 3). (See Section 5 for the error estimates.) Both results show good agreement

with the best-fitting values of Cooke et al. (2006b, r0 = 3.32 ± 1.25 and γ = 1.74 ±

0.36). The result of D5 is somewhat noisy at r . 1 h−1 Mpc, which originates from

the noisy pair-count of NiDDLADLBG.

The parameter values given in Table 3 clearly show that the σDLA-weighted method

gives larger values of r0 and a slightly steeper power-law slope. In a CDM universe,

the number of low-mass haloes is far greater than that of massive haloes. Therefore,

even a small weighting by Ni boosts up the overall pair-count, yielding a stronger

correlation signal compared to the unweighted case. The larger LBG sample in the

G5 run makes its result more robust against the weighting procedure than that of the

D5 run. Therefore, the difference in the slope γ between the two calculation methods

is smaller in the G5 run than that of D5 run.

Confidence Limits

The χ2 test describes the goodness-of-fit of the model to the data. To determine

the confidence intervals of the two parameters (γ and r0), we use the minimum χ2

method. This statistic is written as

χ2 ≡
n

∑

i=1

(Oi − Ei)
2

σ2
i

, (2)

where Oi are the data points shown in the correlation figures, Ei are the expected

values in each bin i from the power-law, and σi is the standard deviations in each bin

obtained from the 100 Monte Carlo calculations, as described earlier.

The region of confidence limits (Avni, 1976) is given by

χ2
p = χ2

min + ∆(df, p), (3)

where p is a confidence level (0 < p < 1), and df is a degree of freedom written as

df = n−c, where n is the number of bins and c is the number of parameters. For this
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work, c = 2 and n = 13 for G5 DLA-LBG CCFs (un-weighted and σDLA-weighted),

G5 LBG-LBG ACF, and G5 DLA-DLA ACFs (un-weighted and σDLA-weighted);

n = 14 for D5 DLA-LBG 3D and angular CCFs (un-weighted and σDLA-weighted);

and n = 17 for G5 DLA-LBG angular CCFs (un-weighted and σDLA-weighted). The

value ∆(df, p) is the expected increment of χ2 to find the 68% and 95% confidence

limits above χ2
min. Its value is determined by the degree of freedom and probability

within 1 and 2-σ limits. We calculate the 1-σ confidence limits for all the correlation

cases using this method. As an example, we show the 1 and 2-σ confidence levels for

the weighted CCFs of D5 and G5 runs in Figure 3.
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Figure 3 Two parameter confidence limit contours for the weighted DLA-LBG cross
correlation case using the minimum χ2 method. The best fits of the two parameters
are indicated by the cross at the center of the contours, and 1 and 2-σ limits are
shown in black and red contour lines, respectively.
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CHAPTER 6

ANGULAR CROSS CORRELATION FUNCTION

In observational studies, a different method is usually used to obtain the values

of (r0, γ) compared with what we described in Sections 4 and 5, because the precise

estimation of any LBG position along the line of sight is difficult to achieve owing

to redshift uncertainties caused by peculiar velocities and galactic winds. With such

imprecision, it is not possible to measure the CCF at scales r . 1h−1 Mpc reliably.

Therefore, rather than attempting to estimate the 3-D distance between DLAs and

LBGs, observers usually employ the angular CCF using the projected data on the sky.

For example, Cooke et al. (2006a,b) computed the angular CCF using the method

proposed by Adelberger et al. (2003). In order to compare our results with those by

Cooke et al’s, we briefly describe the calculation method of Adelberger et al. (2003),

and then describe how we perform our measurement of the angular CCF.

With a power-law assumption, the expected number of pairs for the projected

angular CCF is

ωp(rθ < rz) =
rγ
0r

1−γ
θ

2rz
B

(

1

2
,
γ − 1

2

)

Ix

(

1

2
,
γ − 1

2

)

, (1)

where B and Ix are the beta and incomplete beta functions with (e.g., Press et al.,

1992)

x ≡ r2
z

(

r2
z + r2

θ

)−1
. (2)

Adelberger et al. (2003) proposed to count the number of pairs in cylindrical shells

of angular separation rθ ± δrθ and redshift separation rz ± δrz, rather than using

spherical shells. By setting rz to

rz = max

(

1000 km s−1 (1 + zx)

H(z)
, 7rθ

)

, (3)

the lower limit ensures that the redshift errors do not lead to the underestimate of
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the number of pairs, and the upper limit allows sufficient distances to include enough

correlated pairs (Adelberger et al., 2003).

For our calculations, we focus at z = 3 and thus rz = max(12.8 h−1 Mpc, 7rθ).

With simple algebra, Equation (1) can be converted to a more familiar power-law

form:

ξ(rθ) = 2rmax
ωp(rθ)

rθ

[

B

(

1

2
,
γ − 1

2

)

Ix

(

1

2
,
γ − 1

2

)

]−1

=

(

rθ

r0

)−γ

, (4)

where rz is set to rmax. We change from spherical coordinates to cylindrical coordi-

nates, and set the number of cylindrical bins to 20 in a logarithmic scale as before. All

pair searches are extended to the adjacent box using periodic boundary conditions,

if appropriate.

A few assumptions must be made while we deal with the beta and incomplete

beta functions. There are two parameters (γ and x) that must be given to calculate

the values of B and Ix. To calculate γ, we first plot Equation (4) without B and Ix

(i.e., 2rmaxωp(rθ)/rθ) and find the best-fitting value of γ. The value of x is determined

by rz and rθ as shown in Equation (1). By setting rz = rmax, the angular separation

will be divided into two different regimes. Within the smaller angular separation

range (100 h−1 kpc < rθ < 1.83 h−1 Mpc), the correlated pairs are counted up to the

maximum radial distance of rmax = ±12.8 h−1 Mpc for a cylinder centred on an LBG

or DLA, while in the larger separation range (rθ > 1.83 h−1 Mpc) all the correlated

pairs within rmax = ±7rθ are counted. We calculate the values of B and Ix (as well as

the IC correction) separately for the two different rθ regions. With the fixed values

of γ obtained above and 20 different values of x, B and Ix can be calculated for each

bin.

The angular CCF results of our calculations are shown in Figures 4 and 5 for
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Figure 4 DLA-LBG angular CCFs at z = 3 computed by the unweighted method for
the D5 and G5 runs. Other features are the same as described in Figure 1.
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Figure 5 DLA-LBG angular CCFs at z = 3 computed by the σDLA-weighted method
for the D5 and G5 runs. Other features are the same as described in Figure 1.
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Unweighted σDLA-weighted
Run r0 γ r0 γ

D5 2.75 ± 0.51 1.55 ± 0.20 3.30 ± 0.60 1.75 ± 0.23
G5 3.14 ± 0.28 1.65 ± 0.09 3.42 ± 0.32 1.69 ± 0.10

Table 4 Best-fitting power-law parameters for the angular CCF at z = 3. The units of
the parameters are the same as in Table 3. The confidence limit statistics are described
in Section 5. For comparison, Cooke et al. (2006b) reported r0 = 3.32±1.25 h−1 Mpc
and γ = 1.74 ± 0.36 for their angular CCF.

both the unweighted and the σDLA-weighted method. The best-fitting power-law

parameters are given in Table 4. Again, the agreement with the results of Cooke

et al. (2006a,b) is within a good range. Similarly to the 3-D CCF case, the σDLA-

weighted case gives a slightly larger r0 and steeper γ than the unweighted case. The

unweighted case of D5 is shallow with γ = 1.55, but in the σDLA-weighted case,

γ ≃ 1.75 is recovered.

24



CHAPTER 7

AUTO-CORRELATION FUNCTIONS

LBG auto-correlation

The auto-correlation function (ACF) also gives important constraints on the dis-

tribution of the population under study. In this section, we calculate the 3-D LBG

ACF by changing all subscripts in Equation (2) to ‘LBG’:

ξLBG−LBG(r) =

DLBGDLBG − 2DLBGRLBG + RLBGDLBG

RLBGRLBG

.

(1)

Our result for the ACF is shown in Figure 6, and the best-fitting power-law pa-

rameters (see Section 5 for confidence limit statistics) are r0 = 3.86 ± 0.13 h−1 Mpc

and γ = 1.60 ± 0.07. The last two data points were not included for the power-law

fit because they are likely underestimated owing to the limited box-size. Our values

of r0 and γ agree well with the observational estimates of Adelberger et al. (2003)

and Adelberger et al. (2005), who measured the values of r0 = 4.0 ± 0.6 h−1 Mpc

and γ = 1.57 ± 0.14 for the LBG ACF at z ∼ 3, with a correction for the integral

constraint.

The dark matter ACF (the red filled triangles in Figure 6) was also computed as

described in Nagamine et al. (2008) in order to calculate the bias of LBGs against

the dark matter distribution (see Section 8).

DLA auto-correlation

Similarly to the LBG ACF, it would be useful to compute the DLA ACF in order

to estimate the DLA host halo mass. Observers also may be able to calculate the DLA

ACF in the future when they accumulate a large enough sample of DLAs. In this
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Figure 6 LBG auto-correlation function at z = 3 for the G5 run. The yellow shade
shows the 1-σ range of the best-fitting power-law of Adelberger et al. (2005). The
variance of the ACF using 100 random seeds is shown with vertical errorbars. The
red solid and blue dashed lines are the best-fitting power-laws of Adelberger et al.
(2005) and this work, respectively. The last two data points were not included for
the power-law fit. The red filled triangles show the dark matter ACF at the same
redshift.
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section, we calculate the DLA ACF with both the unweighted and the σDLA-weighted

methods. By replacing all subscripts to ‘DLA’ in Equations (2) and (3), we obtain

ξDLA−DLA(r) =

DDLADDLA − 2DDLARDLA + RDLARDLA

RDLARDLA

(2)

and

ξweighted
DLA−DLA(r) =

NiNjDi
DLA

Dj

DLA
−2NiNjDi

DLA
Rj

DLA
+NiNjRi

DLA
Rj

DLA

NiNjRi
DLA

Rj

DLA

,

(3)

where NiNjD
i
DLADj

DLA and NiNjD
i
DLARj

DLA are the numbers of data-data pairs and

data-random pairs, weighted by the number of DLA pixels Ni and Nj. As before,

100 different realizations of random dataset have been used to examine the statistical

variance.

Our DLA ACF result is shown in Figure 7, and we find the best-fitting power-law

parameters (see Section 5 for confidence limit statistics) of r0 = 2.50 ± 0.03 h−1 Mpc

and γ = 1.63 ± 0.02 for the unweighted ACF, and r0 = 2.87 ± 0.05 h−1 Mpc and

γ = 1.63±0.03 for the σDLA-weighted ACF, as summarized in Table 5. The values of

γ are similar to those for the LBG ACF with γ ≃ 1.6, but r0 is much smaller. This

is owing to the lower average DLA halo mass compared to the LBG host haloes, as

we will discuss further in Section 8.
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Figure 7 DLA auto-correlation function calculated with unweighted and σDLA-weighted

method for the G5 run. The variance of ACFs using 100 random seeds is shown with
vertical errorbars. The blue dashed lines are best-fits for this work.
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r0 γ

LBG-auto 3.86 ± 0.13 1.60 ± 0.07
DLA-auto (unweighted) 2.50 ± 0.03 1.63 ± 0.02

DLA-auto (σDLA-weighted) 2.87 ± 0.05 1.63 ± 0.03

Table 5 ACFs of LBGs and DLAs for the G5 run. The results of unweighted and
σDLA-weighted methods are given for the DLA ACF. r0 is in units of h−1 Mpc. The
confidence limit statistics are described in Section 5. For comparison, Adelberger
et al. (2005) reported r0 = 4.0 ± 0.6 h−1 Mpc and γ = 1.57 ± 0.14 for the LBGs at
z ≃ 3.
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CHAPTER 8

BIAS AND HALO MASSES

Comparing the correlation functions of DLAs and LBGs with that of dark matter

gives the measure of ‘bias’ for the spatial distribution of these populations against

that of dark matter. Figure 8 shows the bias, defined as b ≡
√

ξi/ξDM, as a function

of distance r, where i = LBG or DLA. This definition is based on the linear bias

model,

ξi(r) = b2
i ξDM(r). (1)

The corresponding expression for the cross-correlation is (Gawiser et al., 2001)

ξDLA−LBG(r) = bDLA bLBG ξDM(r). (2)

Therefore, the two lines for the CCF in Figure 8 are in fact showing
√

bDLAbLBG,

as indicated on the axis on the right-hand-side. Taking the ratio of the above two

expressions gives (Cooke et al., 2006b)

ξDLA−LBG(r)

ξLBG
=

bDLA

bLBG
. (3)

In all cases shown in Figure 8, the bias slowly decreases with increasing distance.

The upturn at r = 20 h−1 Mpc for the LBG ACF is probably just noise. We take a

simple average of bias values across the logarithmic bins at r = 1.40 − 14.5 h−1 Mpc,

and find b̄ = 2.65, 2.48, 2.24, 2.17 and 1.94 for LBG ACF, DLA-LBG CCF (σDLA-

weighted), DLA-LBG CCF (unweighted), DLA ACF (σDLA-weighted), and DLA ACF

(unweighted), respectively. The values of r0 also reflect the sizes of average bias values.

We took the above range of scales for taking the average because most of the recent

observations are probing the scale of r ≃ 1 − 10 h−1 Mpc.

Gawiser et al. (2007) used the results of Adelberger et al. (2005) to obtain an

average bias of b̄LBG = 2.5 ± 0.4 for LBGs at z ∼ 3. Our average bias value of 2.60
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for the LBG ACF is very close to that of Adelberger et al. (2005), and at the lower

end of the estimate of b̄LBG = 3.0 ± 0.5 by Lee et al. (2006)

The model of Sheth & Tormen (1999) shows that an understanding of the un-

conditional mass function can provide an accurate estimation of the large-scale bias

factor. From our average bias, we calculate the mean halo mass for LBGs and DLAs

(using the unweighted and the σDLA-weighted results) based on the method described

in Mo & White (2002), as shown in Table 6. Our calculation of LBG halo mass is

very close to that by Adelberger et al. (2005), MLBG
halo = 1011.2 − 1011.8M⊙ (yellow

shade in Fig. 8), which is very encouraging. Finally, Bouche et al. (2005) estimated

〈log MDLA〉 = 11.13 ± 0.13 from observations and 〈log MDLA〉 = 11.16 from simula-

tions. These values are somewhat higher than the upper limit of our unweighted DLA

halo mass and close to our σDLA-weighted one. Cooke et al. (2006a) also obtained a

similar value of Mhalo ≃ 1011.2M⊙.

Alternatively, we can directly calculate the mean DLA halo mass using the simu-

lation result without going through the bias argument. For the G5 run, the mean is

log〈MDLA
halo 〉 = 11.5 and 〈log MDLA

halo 〉 = 11.3. These values are somewhat higher than

the mean halo mass reported in Table 6. However, the values of 〈Mhalo〉 in Table 6

are computed from the average bias within the range of r = 1.40− 14.5 h−1 Mpc, and

they could become higher if we included the bins at smaller scales. Since observers

probe mostly r ≃ 1−10 h−1 Mpc, the values reported in Table 6 are more appropriate

for comparison with observations.

Bouche & Lowenthal (2004) defined the parameter α as the ratio of correlation

functions: α ≡ bCCF(MDLA)/bACF(MLBG). If the value of α is larger (or smaller) than

unity, then the mean halo mass of DLAs is more (or less) massive than that of the

LBGs. The ratio of the average bias of LBG ACF and DLA-LBG CCF is α = 0.727

for our results. This value is in good agreement with the observational estimates of
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bias log〈Mhalo〉
LBG-auto 2.67+0.28

−0.06 11.53+0.22
−0.06

DLA-auto (unweighted) 1.94+0.11
−0.13 10.71+0.16

−0.19

DLA-auto (σDLA-weighted) 2.17+0.14
−0.13 11.02+0.14

−0.16

Table 6 Average biases and halo masses of LBGs and DLAs for the G5 run. The
plus and minus values next to the average bias show the upper and lower limits at
1.40 < r < 14.5 h−1 Mpc. Mean halo masses are computed from the second column
following Mo & White (2002) and given in units of M⊙.

α = 1.62 ± 1.32 (Bouche & Lowenthal, 2004), α = 0.73 ± 0.08 (Bouche et al., 2005),

and α = 0.771 (Bouche et al., 2005; Mo & White, 2002).
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Figure 8 The biases of all correlation functions at z = 3 that we computed in this
paper for the G5 run. The tick marks on the left-hand-side show the host halo masses
calculated with the method described in Mo & White (2002). The yellow shade shows
the upper and lower limits by Adelberger et al. (2005).
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Figure 9 Summary of best-fitting power-law parameters for all correlation functions
that we obtained in earlier sections. Long blue, red, and green dashed cross lines are
for the LBG ACF, the angular CCF, and the 3-D CCF of Cooke et al. (2006a,b),
respectively. The LBG ACF of Adelberger et al. (2003) is shown in a short blue
dashed line and of Adelberger et al. (2005) is shown in red.
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CHAPTER 9

PART I: SUMMARY AND CONCLUSION

Our study represents a first attempt to calculate the DLA-LBG cross-correlation

function at z = 3 using cosmological SPH simulations. We calculated the DLA-LBG

CCFs in several different approaches: 3-D, angular, unweighted, and σDLA-weighted.

We also computed the auto-CF of LBGs and DLAs, and the bias against dark mat-

ter. In comparison to the observational data by Adelberger et al. (2005); Cooke et al.

(2006a,b), we find good agreement between our simulations and observational mea-

surements. Our results suggest that the spatial distribution of DLAs and LBGs are

strongly correlated.

Let us summarize some of the main conclusions of this work. In the first part of

this paper, our results on the 3-D CCF calculated with spherical shells (Table 3) are

to be compared with the 3-D spherical shell result by Cooke (private communication),

r0 = 3.39 ± 1.2 h−1 Mpc and γ = 1.61 ± 0.3. Our results are consistent with Cooke’s

within the error. The shallow slope of Cooke’s above estimate probably owes to

the limited sample size in the spherical shell at small distances, as we discussed in

Sections 4 and 6.

In the second part, we have replaced the spherical shell method with the projected

approach used in Adelberger et al. (2003) and Cooke et al. (2006b), and calculate the

best-fitting values given in Table 4. Encouragingly, our results are within the upper

and lower limits of the observational measurement by Cooke et al. (2006a,b). We

corrected all CFs in this paper with the integral constraint.

Finally, we also analyzed the auto-correlation functions of LBGs and DLAs at

z = 3 (Table 5) found in our simulations. Our results for the best-fitting parameters

of the LBG ACF agree well with Adelberger et al. (2005). Our results show that

LBGs are more strongly correlated than DLAs, and have higher mean halo mass.
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Figure 9 summarizes the best-fitting power-law parameters for all the correlation

functions that we obtained in the earlier sections. In most cases, the slope γ falls

into the range ≈ 1.5− 1.7 and the variation is not very large. The correlation length

r0 shows a larger variation from 2.5 h−1 Mpc to 4 h−1 Mpc, depending on the sample

and calculation method. This trend is similar to that seen by Cooke et al. (2006b,

Fig. 8). In general, the σDLA-weighted method gives a larger r0 than the unweighted

method.

Finally, the LBG bias, derived from the LBG ACF in Section 8, has led to the

upper and lower limits of the LBG dark matter halo mass of log〈Mhalo〉 = 11.53+0.22
−0.06

(see Table 6). This result is consistent with observational estimates of the LBG halo

mass of Mhalo ∼ 1012M⊙, (e.g., Steidel et al., 1998; Adelberger et al., 1998) and

within the limit of Mhalo = 1011.2 − 1011.8M⊙ (Adelberger et al., 2005). Similarly, we

derived the DLA biases, and obtained the mean DLA halo masses as shown in Table 6.

Cooke et al. (2006a)’s measurement showed a DLA galaxy bias of bDLA ∼ 2.4 and an

average DLA halo mass of Mhalo ∼ 1011.2M⊙. Our average DLA bias (b = 1.94 and

b = 2.17 for un-weighted DLA ACF and weighted DLA ACF, respectively) and halo

mass estimates (log〈MDLA
halo 〉=10.71 and 11.02 for un-weighted DLA ACF and weighted

DLA ACF, respectively) are in good agreement with theirs. We also examined the

ratio of bias values defined as α ≡ bCCF/bACF (Bouche & Lowenthal, 2004), and found

that our value of α = 0.727 agrees well with the observational estimates. This again

shows that the mean halo mass of DLAs is less than that of the LBGs. The fact

that 〈MLBG
halo 〉 is greater than 〈MDLA

halo 〉 is a natural outcome because the LBG sample is

limited to the bright star-forming galaxies with RAB < 25 and M⋆ ≃ 1010 − 1011M⊙,

whereas the DLA H i gas is present in numerous lower mass halos below the LBG

threshold.

Our simulations are able to reproduce the physical properties of LBGs such as
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stellar mass, SFR, and colours (Nagamine et al., 2004). In this work, we followed

another observational method, i.e. DLA-LBG CCF, to examine the consistency be-

tween observations and simulations. We found good agreement between our results

and observations. Furthermore, there are accumulated evidences that suggest a high

halo mass for LBGs (e.g., Mo & Fukugita, 1996; Adelberger et al., 1998; Baugh et al.,

1998; Giavalisco et al., 1998; Steidel et al., 1998; Kauffmann et al., 1999; Mo et al.,

1999; Katz et al., 1999; Papovich et al., 2001; Shapley et al., 2001). Therefore, the

scenario that the majority of LBGs is merger-induced starburst systems associated

with low-mass haloes (Lowenthal et al., 1997; Sawicki & Yee, 1998; Somerville et al.,

2001; Weatherley & Warren, 2003) no longer appears to be a viable model for LBGs.

In our simulations, we estimated the H i column densities using a pixel size that

is much larger than the typical quasar beam size, which is of the order of parsecs.

This may have some impact on our estimates of NHI and the corresponding statistics

such as the H i column density distribution function. For example, if the ISM is

clumpy on smaller scales than our pixel size, there could be high-density neutral

clouds below our resolution scale that are self-shielded and contain larger amounts of

H i . Unfortunately, owing to limitations in computational resources, it is not possible

for us at the moment to run such a high-resolution cosmological simulation with the

same box size as we have used in this paper. In future work, we will nevertheless

attempt to check the dependence of our NHI estimates on numerical resolution, and

perform more rigorous resolution tests.
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CHAPTER 10

PART II: INTRODUCTION

Over two decades earlier than Spitzer Space Telescope (hereafter Spitzer), the

Infrared Astronomical Satellite (IRAS) observed the local universe (0 < z < 0.2)

(Hacking et al., 1987; Saunders et al., 1990) at far-infrared (60 µm), and Fang et

al. (1998) and Shupe et al. (1998) constructed models to estimate the mid-infrared

(12 µm and 25 µm) contribution to the total energy spectrum using a sample of

668 galaxies from the IRAS Faint Source Survey. The Infrared Space Observatory

(ISO) allowed the first deep surveys of galaxies in the mid-infrared (MIR) and far-

infrared (FIR) up to z ∼ 1 (Elbaz et al., 1999; Puget et al., 1999). The deepest survey

of 15 µm probed the evolution of Luminous Infrared Galaxies (LIRGs) and Ultra

Luminous Infrared Galaxies (ULIRGs), showing that the dust-enveloped starburst

galaxies are undergoing intense evolution in luminosity and in density (Elbaz et al.,

2002).

The significant improvement in sensitivity and resolution (from 3.6 µm to 160 µm)

of Spitzer over its predecessors has significantly extended the earlier IR astronomy.

The Spitzer observations by took in recent years at near-infrared (NIR), MIR, and

FIR wavelengths revealed that dust is an important component of the interstellar

medium (ISM) and the inter galactic medium (IGM) in the formation and evolution

of galaxies. The Spitzer surveys have enabled to observe the evolution of galaxy lu-

minosity function (LF). Using the 24 µm source catalogues with redshift information,

Le Floc’h et al. (2005) presented the evolution of IR LFs out to z ∼ 1 for 15 µm

and total IR. In the redshift range between 0 and 3, based on the IR photometric

redshift, Pérez-González et al. (2005) obtained the LF at rest frame 12 µm. The LFs

rest frame 8 µm of star forming galaxies at z ∼ 1 and z ∼ 2 have been presented by

Caputi et al. (2007). Babbedge et al. (2006) computed the MIR galaxy LF out to
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z ∼ 1 based on the SWIRE EN1 field dataset and using photometric redshifts.

Considering the dust extinction effect, a large portion of the energy emitted by

dust in galaxies has been discovered. The energy density under FIR is compara-

ble to that in the optical and NIR Hauser et al. (1998). This finding revealed the

importance of the IR radiation as much as the ultra-violet (UV) and the optical ra-

diation from galaxies. In particular a large fraction of UV emission from young stars

is absorbed by dust and re-emitted as an IR radiation, and the resulting shape of

spectral energy distribution (SED) is often times significantly altered from the origi-

nal SED. Therefore, it is crucial to correct for the IR dust emission when estimating

the star-formation rates and star-formation histories. The presence of dust promotes

star formation by shielding dense clouds from stellar UV radiation and keeping the

clouds of low temperatures.

Infrared emission reprocessed by dust is over a half of the total stellar energy

output in the Universe. The earlier work by Nagamine et al. (2004, 2005a,b) showed

a reasonable agreement between cosmological simulations and observations regarding

the space density of star-forming galaxies, but the differential distribution of sources

among different types (e.g. LBG vs. submm galaxies) was still unclear. Clarifying

the contribution of IR-bright galaxies to the total SFR is an important topic in galaxy

formation.

The part II of this dissertation is organized as follows. In Chapter 11, we describe

the features of the GRASIL code (Silva et al., 1998). In Chapter 12, we report

comparing results of computed galaxy LFs with the Spitzer observations. Finally,

we present and discuss our conclusion in Chapter 13.
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CHAPTER 11

SIMULATION

For the second part we utilize three different SPH simulations and use the com-

puted physical properties (e.g. stellar mass, formation time, and metallicity) of the

galaxy population at different redshifts carried out under GADGET-3 (Springel, 2005)

and combine it with the spectrophotometric code GRASIL (Silva et al., 1998) to com-

pute the detailed SEDs of model galaxies. The simulation parameters of the three runs

(N144L10w5psfmcvw1.5ME, N216L10w5psfmcvw1.5ME, and N400L100w5psfmcvw1.5ME)

are summarized in Table 7 and Table 8 (Choi & Nagamine, 2009a,b, 2010). In the next

two section we give an overview of GRASIL and the interfacing technique between

GADGET and GRASIL.

GRASIL

We compute the spectral energy distribution using the spectrophotometric GRASIL

code (Silva et al., 1998), which follows the evolution of the stellar population and SED

taking into account the extinction and emission by dust. During certain phases of

Run Lbox Np mDM mgas ǫ

N144L10 10.00 2 × 1443 2.42 × 107 3.72 × 106 2.78
N216L10 10.00 2 × 2163 5.96 × 106 1.21 × 106 1.85
N400L100 100.00 2 × 4003 9.12 × 108 1.91 × 108 6.45

Table 7 Simulations employed in the part II. NP is the initial number of gas and dark
matter particles (hence ×2). mDM and mgas are the masses of dark matter and gas
particles in units of h−1M⊙, respectively. ǫ is the comoving gravitational softening
length in units of h−1kpc, which is a measure of spatial resolution. All runs adopt a
strong galactic wind feedback model.
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High density Low density
Model η ζ η ζ

1.5ME Momentum 1.5 Energy 1

Table 8 The wind model adopted for the part II. The parameter η is the mass-loading
factor, and ζ is the scaling parameter for the wind velocity (Choi & Nagamine, 2009a).

galaxy evolution, AGN activity might contribute to shape the observed SEDs of the

galaxy and to provide an additional point-like source in the center of the galaxy and

to supply additional heating source of galactic dust, but presently, we do not consider

this complication, which we postpone to future investigation.

To estimate the SED of a galaxy at certain epoch tg, first, the history of the star

formation rate (SFR) φ(t), the initial mass function (IMF), the metallicity Z(t), and

the residual gas fraction must be determined. Second, the integrated SED of the

galaxy must be estimated by coadding the SEDs of all the stars.

The chemical evolution is a main step for spectrophotometric model. The code

describes one-zone (no dependence on space, only on time) open models with the

infall of primordial gas. According to the standard equations of galactic chemical

evolution, the total gas mass mg(t) and of the amount of certain gas element xi(t) in

terms of quantities at time t (i.e. as a function of the previous history of the galaxy):

ṁg,i = ṁg,i|SF + ṁg,i|FB + ṁg,i|Inf (1)

where ṁg,i|SF is the consumption of gas caused by the formation of new star, ṁg,i|FB

is the feedback to the ISM due to the final stages of stars, and ṁg,i|inf is the infalling

primordial gas to form the galaxy.

GRASIL assumes a Schmidt-type SFR that consists of two terms φ(t) = νmg(t)
k+

f(t). The first term is a Schmidt law, and the second term is an analytical function,

which is expressed as a constant or exponential function of time. The second term
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can be applied to introduce a burst of star formation over a quiet evolution. The

infall gas mass into galaxies is expressed as ṁg,i|inf = xi,infminfexp(−t/τinf ) where

xi,inf is the mass fraction of element i, minf is the infall mass at time tinf , and τinf is

the exponential infall timescale.

The single stellar populations (SSPs) incorporated in GRASIL are based on the

Padova stellar models (Bertelli et al., 1994) and deal with a large range in ages t,

from 1 Myr to 18 Gyr and in metallicity, Z(t) = 0.0001, 0.0004, 0.0008, 0.004, 0.008,

0.02, 0.05, to reproduce age and composition of the stellar content of galaxy (the

relative proportion of the metals equal to the solar matallicity). The SSPs cover the

asymptotic giant branch (AGB) isochrones that include handling of the dusty envelope

around AGB stars and have been corrected under the recent data of star clusters in

the large magellanic cloud (Marigo et al., 2008). Normally, the spectral synthesis

method consists in summing up the spectra of each stellar population provided by

a SSP of age and metallicity, weighted by the SFR at time of the star birth (e.g.,

Bressan et al., 1994):

Fλ(tg) =

∫ tg

0

SSPλ[tg − t, Z(t)]φ(t)dt, (2)

where tg is the age of the galaxy and t is the birth age of an individual SSP. But to

keep dust into account, GRASIL must be specified with a dust model and geometry

and solves the transfer equation for the radiation in presence of dust in the different

phases for the ISM.

GRASIL calculates the radiative transfer of the starlight, the heating of the gains

and the emission from these grains with a self-consistent calculation of grain temper-

ature for an assumed geometrical distribution of the stars and dust (a specific grain

model). The galaxy can be modeled in two main parts. To describe all different

types of galaxies, Silva et al. (1998) have introduced a general geometry consisting in

a disk and bulge system. The configuration of geometry and galaxy components is
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illustrated in Figure 10.

The disk is described by radially and vertically exponential profiles,

ρ = ρoexp(−R/Rsl)exp(−|z|/zsl), (3)

where the radial scale-length Rsl and vertical zsl are free parameters and can be inde-

pendently set for the three components. In the case of bulge (or elliptical) GRASIL

adopts spherical symmetric distributions with King Profile:

ρb = ρ0(r
2 + r2

c )
−3/2, (4)

where the scale-length rc is a core radius and free parameter.

The cold gas and dust in a galaxy are assumed to be in a two-phase medium.

The medium consists of dense gas in giant molecular clouds embedded in a lower

density diffuse component. Stars are assumed to be formed inside molecular clouds

(MCs) and continuously escape into the diffuse medium on a time-scale tesc. Dust is

assumed to be a mixture of carbonaceous and silicate grains and polycyclic aromatic

hydrocarbon (PAH) molecules. The carbonaceous grains are considered to have the

optical properties of randomly oriented graphite, and the silicate grains are considered

to have no clearly defined shape (their sizes vary between 8Å and 0.25µm). The

fixed grain size distribution is selected to match the mean dust extinction curve and

emission in the local ISM. Then, the SED of the dust emission is computed over

different types of grains from UV to the submm. GRASIL has been demonstrated

to provide an excellent match to the observationally measured SEDs (Bressan et al.,

2002).

43



Figure 10 Illustration of the adopted geometrical distribution (Silva et al., 1998)

Interfacing between GADGET and GRASIL

To compute the statistical properties of the galaxy distribution from hybridizing

GADGET and GRASIL codes, we first run GADGET and generate a set of data called

snapshot at certain redshift and then run GRASIL. The simulation will produce a

set of timeline snapshots with different box sizes and particle numbers. It will create

a star particle when a set of criteria (such as fast cooling and Jeans instability) is

satisfied in dense and cold gas clouds. Each star particle has properties of stellar

mass, formation time, and metallicity. A collection of star particles will be treated

as a galaxy, which can be indentified by a grouping algorithm. We compute SEDs

of different time epochs and obtain a good coverage of all the different metallicitis

with certain geometry of star particles under assumption of a Salpeter Initial Mass

Fuction (IMF). The main parameters we have used for this work are summarized in

Table 11. This set of SEDs acts as a look-up table that consists of the time evolutions

and metallicities. The outputs from GADGET compare with the SED look-up table,
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and we sum up each SED of star particles to create the final one. Once we calculate

the SEDs for the star particle group. We compute the luminosity and AB magnitude

in different observed IR bands (IRAC and MIPS) by combine the SED with the

filter/detector response function (Figure 11).

Parameters Valuses Definitions

tfin 13.0 final galactic age (Gyr)
isfrm 1.0 0 → nothing, 1 → simple Schmidt
isfrt 0.0 0 → nothing, 1 → constant, 2 → exponential
ksch 1.0 exponent of schmidt law
τinf 0.001 exponential infall timescale (Gyr)
minf 1.0E11 infall mass (M⊙)
tgal 13.0 Age of the model in Gyr
igeo 1 geometry setting

Table 9 Parameters for the GRASIL code
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Figure 11 Filter functions of IRAC and MIPS of Spitzer.
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CHAPTER 12

SPECTRAL ENERGY DISTRIBUTIONS

By modifying the GRASIL code, we are sequentially able to generate the time

evolution of spectral energy distributions (SEDs) of the specified metallicity and ge-

ometry. Figure 12 shows SEDs of the metallicity Z=0.0001 and time epochs from 1

to 12 Gyrs with 1 Gyr interval. The upper left panel shows the SEDs of starlight ex-

tincted, and the molecular clouds (MCs) and cirrus (diffuse gas) emissions are shown

in the upper right and lower left panels, respectively. The total of all three emissions

are illustrated on the lower right.

Luminosity Functions

Galaxies of all types come in a rage of luminosities, masses, and sizes. Among

these variables, the total luminosity of a galaxy is most directly measurable one and

supplies physical guideline at certain redshift z. In the following two sections, we show

a conversion method between an AB magnitude and the luminosity Lλ and apply to

snapshot data from GADGET. In the last section, we compare our computed results

with real estimates from Spitzer data.

Calculation of the AB magnitude

We start our investigation with galaxy luminosity function (LF). First, we use

two 10 Mpc h−1 box simulations at z = 3. The simulations contain 1443 (N144)

and 2163 (N216) initial particle numbers of gas and dark matter particles. After we

calculate total SED of each star particle cluster, the magnitude of star particles must

be identified. To achieve the apparent magnitude, one needs to consider an object

with SED Lλ(λ, t) at redshift z. The apparent magnitude of the galaxy correlated to

the collected photon at a certain redshift can be written as
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Figure 12 The time evolution of Spectral Energy distributions (SEDs) with starlight
extinction, molecular cloud (MC) emission, and cirrus (diffuse gas) emission.
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m(z, t) = −2.5log

∫

dν
ν

(1+z)Lν [ν(1+z),t]

4πd2

L

R(ν)
∫

dν
ν

CνR(ν)
, (1)

where d2
L is the luminosity distance, R(ν) is a filter function, and C(ν) is a fixed

reference spectrum. For AB magnitude, the above equation is change to (Fukugita

et al., 1996)

mAB(z, t) = −2.5log

∫

dν
ν

(1+z)Lν [ν(1+z),t]

4πd2

L

R(ν)
∫

dν
ν

R(ν)
− 48.6 (2)

with Cν correlated to the theoretical reference with constant flux density of 3.631 ×

10−20erg−1cm−2 Hz−1 (Oke & Gunn, 1983). Since SEDs from the GRASIL code are

based on the wavelength λ, we need to change the second equation in terms of the

luminosity Lλ. The converted AB magnitude is the following

mAB(z, t) = −2.5log

∫

dλ
(1+z)

(λLν [λ(1+z)−1,t]
4πd2

L

R(λ)
∫

dλ
λ

R(λ)
− 22.407. (3)

Application

Simulated Galaxy Luminisity Functions

Galaxy LFs in the four IRAC (3.6, 4.5, 5.8, and 8.0 µm) and three MIPS (24, 70,

and 160 µm) bands are illustrated in Figure 13. Comparing two simulations, we see

that the effects of the particle amounts on the apparent magnitude are noticeable.

N144 particle simulation shows slightly brighter than N216 simulation while N216

has higher luminosity. From two figures, we observe that the longer wavelengths

(MIPS bands) are significantly boosted. This comes from the bottom integral of AB

magnitude calculated from Lλ, a shape of the SED (Figure 14), and the redshift z.
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Figure 13 Galaxy number count in the four IRAC and three MIPS bands with particle
numbers of 1443.
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Figure 14 SED created by the GRASIL code at z=3 with 1443 particle numbers and
metallicity of Z=0.0001.

Mass, Metallicity, and Average formation time

The mass (MSP), metallicity (Z), and average formation time (tavg) have been

plotted against the AB magnitude. In Figure 15 the star particles (SPs) are dis-

tributed in a large mass range. The AB magnitude of N144 simulation SPs is higher

than N216 ones. This is consistent with a galaxy number count result. It shows

larger deviation at the lower mass. N216 simulation can resolve the low mass SP

cluster even though cannot create the missive SPs. In Figure 16 we notice that there

are two clearly separated groups of SPs in the N215 simulation. The majority of
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active galaxies has the higher metallicity. The N144 simulation also shares the same

trend as N216, but unlike N216 none of bright SP cluster in N144 reaches at the solar

metallicity (Z⊙=0.02) even with higher magnitude. Two graphs in Figure 17 provide

a solution to the above question. From first panel of Figure 17, none of N144 SPs has

the tavg older than 1 Gyr. Since N144 run has small particle numbers, the collapsing

time-scale is higher than N216, so it takes longer to form the SP clusters. Therefore,

N144 is populated with younger SPs than N216 simulation and doesn’t have enough

time to create high metallicity.

The galaxy luminosity function at different time epoch

With the larger box size (100 Mpc h−1) and more particle numbers (N400), we

examine the evolution of the LFs in wavelength range of 8 µm and 24 µm. Our

results in Figure 18 to Figure 19 are compared with available data in the published

papers. At 8 µm (first panel of Figure 18) the rest-frame LF results at z ∼ 2.0 from

the combined dataset in GOODS-N and GOOD-S (Caputi et al., 2007) and from

GOODS+VVDS-SWIRE (Rodighiero et al., 2009) are compared. We are in very

good agreement with Caputi et al. 2007. Within the limits, we have a reasonable

agreement with Rodighiero et al. 2009, still with some differences especially at the

higher and lower ends of Lλ values. The comparison with Caputi et al. support our

SPH simulations and the parameters used for the GRASIL code. At 24 µm (second

panel of Figure 19) Rodighiero et al. (2009) sample provides nearly consistent results

at the center part of their data with ours. The lower end is still a bit deviated from

our result but not as much as the case of 8 µm, and the higher end is lower than

52



Figure 15 The galaxy mass with respect to AB magnitude. Each color represents IR
wavelengths (in µm) of Spitzer
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Figure 16 The galaxy metallicty with respect to AB magnitude. Each color represents
IR wavelengths (in µm) of Spitzer
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Figure 17 The galaxy average formation time with respect to AB magnitude. Each
color represents IR wavelengths (in µm) of Spitzer
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our limit, but it might fall within their error if our simulation can resolve the higher

luminous galaxies.

Finally, we expend our comparison up to z ∼ 2.5. At high redshift (Figure 19)

only available data come from computed luminosities from GOODS+VVDS-SWIRE

sample by Rodighiero et al. (2009). The data published in their paper from first time

attempt under their sample and for both 8 µm and 24 µm their results support our

method by having pretty good agreement within the most data points except the

less luminous galaxies. This difference presumably results from some combination of

sample size and detection limit of less luminous galaxies because it consistently shows

that their values are lesser than our data at the lower L.
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Figure 18 LFs at z=2.0 for N400 simulation. First and second panel show 8 µm
and 24 µm, respectively. Our results are shown by the black solid line. The blue
filled circles with error bars are the sampling data from Rodighiero et al. (2009). The
observational data from Caputi et al. (2007) are shown in the opened square with the
error bars.
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Figure 19 LFs at z=2.5 for N400 simulation. First and second panel show 8 µm and
24 µm, respectively. Our results are shown by the black solid line. The blue filled
circles with error bars are the sampling data from Rodighiero et al. (2009)
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CHAPTER 13

PART II: SUMMARY AND CONCLUSION

This work makes a first effort to compute and predict the dust distribution at

different time epochs at 7 IR Spitzer bands (IRAC and MIPS) using cosmological

SPH simulations. We calculate the SEDs with the GRASIL code in multiple metal-

licities (Z=0.0001, 0.0004, 0.004, 0.008, 0.02, 0.05, and 0.1) and time range. GRASIL

computes the luminosities of the stellar population in galaxies and the reprocessed

radiation by dust including radiative transfer through a two-phase dust medium and

calculates the distribution of grain temperatures in each galaxy based on a balance

between heating and cooling.

We calculate the AB magnitude from Lλ based on Equation 3, which we convert

from Equation 2 (Fukugita et al., 1996). We observe that AB magnitude of the N144

simulation has slightly higher value than N216 in all seven wavelengths, and the two of

MIPS wavelengths (70 µm and 160 µm) show noticeably higher magnitude than other

wavelengths. Using the AB magnitude information, we plot the mass, metallicity,

and average formation time. They all show the same trend that the average AB

magnitude of the N144 simulation is higher than the N216 simulation. Due to the

longer collapsing time-scale (longer than 1 Gyr), SP Clusters in the N144 simulation

are occupied with the younger galaxies with the metallicty less than Z⊙=0.02.

For the galaxy LF, we start with the different simulation (4003 particle numbers

with 100 Mpc h−1 box) snapshot. We calculate rest-frame LFs at two wavelength

bands (8 µm and 24 µm) and two time epochs (z=2.0 and 2.5) for comparison to

the observational and sampling data. There was a slight disagreement especially at

lower luminosity with Rodighiero et al. (2009), but it might be caused by their sam-

pling limit from GOODS+VVDS-SWIRE data. Beside of the lower end, at both

wavelengths and time epochs, we find pretty good agreement between our GAD-
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GET+GRASIL simulations and previous measurements (Caputi et al., 2007) and

sampling data (Rodighiero et al., 2009).

Our GADGET+GRASIL code can produce reliable results (e.g. SEDs and LFs)

comparable to the real and sampling data. These preliminary results are encouraging

to explain the IR properties of high redshift galaxies under the framework of ΛCDM

model. This successful outcome can be extended to the further investigations such as

how our method is sensitive to the choice of different IMFs (we use Salpeter profile)

and how reliable at different time epochs and different wavelengths. In addition to

LFs, we can start our comparison against Spitzer data with the galaxy number counts

under the four IRAC and MIPS bands.
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