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ABSTRACT

MEASUREMENT SYSTEM FOR HIGH PRESSURE CHARACTERIZATIONS
OF MATERIALS

by

Matthew K. Jacobsen

Dr. Andrew Cornelius, Examination Committee Chair
Associate Professor of Physics and Astronomy

University of Nevada, Las Vegas

Thermoelectric materials have long been investigated for possible use as power

sources. This application was recently put to use in the Voyager space program,

powering the deep space probes. Despite the usefulness of these materials, the use

of pressure to investigate the material properties has only recently become inter-

esting. As such, the work in this document was to developing a system for con-

currently measuring the necessary properties. This system is capable of measuring

the electrical resistivity, thermal conductivity, and Seebeck coefficient in the pres-

sure range from 0 - 10 GPa. The results for zinc, almandine garnet, and nickel are

presented and demonstrate the capabilities of the system. In addition, results are

presented for selected established (Bi2Te3, Sb2Te3, BiSbTe3) and potential (GaTe,

InTe, and InGaTe2) thermoelectric materials. The measurements have been made

with pressure up to 10 GPa (transport properties, except heat capacity) or 20 GPa

(structure). From these measured properties, it is possible to evaluate how pres-

sure effects the interactions.
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CHAPTER 1

INTRODUCTION

For the better part of the past 200 years, there have been studies into the unique

properties of materials capable of converting energy to heat. As one will find in any

of the works on this type of material, the research on this topic is in the improve-

ment of the conversion efficiency of these materials. However, thermoelectric ma-

terials have many factors important to the properties that govern this conversion

efficiency. The fundamental parameter of interest for studies of these materials is

the thermoelectric figure of merit, represented by Z, or the dimensionless figure of

merit, represented by Z T, with T being the temperature in Kelvin. This parameter

is defined as

ZT =
α2σT

λ
(1.1)

with α being the Seebeck coefficient of the material, and σ and λ being the electrical

and thermal conductivities, respectively.

Upon inspection of the previous equation, it can be determined that the best

case for the Z T parameter is to have a minimum thermal conductivity and a max-

imum electrical conductivity and Seebeck coefficient. The simplicity of this state-

ment belies the inherent difficulty in actually optimizing a material to an effective

level for Z T (typically between 2-3 or higher). This is due to the interdependence

of all three properties. As an example of this, metallic substances are characterized

by electron domination of the transport properties. The electrical conductivity is

directly affected by changes in electron density and mobility, whereas the thermal

conductivity is also strongly dependent on the concentration of electrons present,

as they conduct the majority of the heat through the material. The net result is that

an improvement in the electron concentration or mobility would also increase the

thermal conductivity through the sample, making the effort itself a rather moot
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point. In addition to this, the Seebeck coefficient, which is a measure of the ability

ot support an internal electric field, depends on the material’s ability to separate

charge. If the electrical conductivity increases, the magnitude of the Seebeck coef-

ficient decreases.

The first real attempt at a theory regarding the transport properties of metals

was made by P. Drude in the early 1900’s. It considers the system as a group-

ing of ions (with core electrons) that have given up their outermost electrons to

form a conduction electron gas inside the material. Further, the ions and electrons

are considered to be solid spheres (ions are considered stationary), in the classical

sense, that are allowed to undergo brief collisions with each other, but cannot in-

teract other than that. As such, there are no forces acting on either the ions or the

electrons unless a collisional process is underway. In this manner, Drude created a

simplified solid that has the desired macroscopic property of being electrially neu-

tral, while allowing for the possibility of electrical conduction through the system.

Although the theory regarding transport properties has come further than the

initial attempt by Drude in the early 1900’s, the theory’s basic tennants have re-

mained in place. The classical theory developed in an attempt to describe the elec-

trical resistance properties of materials was the first to consider a material as a

grouping of bound ions with a cloud of free electrons around it. This picture has

since been disregarded, as the interactions involved are far more complicated than

this simple picture could ever have described, the ideas it started with have been

modified to create the theories currently used to describe the transport phenomena

of materials. In conjunction with this, the development of new ways of investigat-

ing the properties of materials has been consistently under development during

much of the same time period.

The most common method of investigating properties of materials has and still

remains to be chemical substitution. However, there are new methods that can
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help to better understand how transport phenomena evolve in a system as the

physical properties change. A few of these include the use of nanocrystallites, pres-

sure induced structural changes, and pressure induced non-structural changes. It

is well known that the properties of a bulk material differ, in many cases strongly,

from the properties of the corresponding nanocrystal material [9]. In addition to

this, several groups have turned to the use of pressure to test different structures

of certain elements[10]. The application of pressure causing a phase transition

has been reported to improve the thermoelectric performance of many materials.

Beyond just structural transitions, there are reports dealing with topological tran-

sitions ([11], [12]) in materials, as will be dicussed in Chapter 3. Based upon this,

the use of pressure to study thermoelectric materials could result in the discovery

of new, more useful materials.

Figure 1 Improvement of maximal ZT value versus time [1]

Despite this, the improvement of the properties of thermoelectric materials

have steadily progressed over the last fifty years or so, as is shown in Figure 1,
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with a rapid increase in the last decade. The investigations performed on ther-

moelectrics have ranged from general sample studies under ambient conditions

([13],[14]) to the more comprehensive studies at varying conditions [15]. It is these

investigations, coupled with the lack of a comprehensive theory regarding these

properties, which makes studies of these materials interesting.

In this document, it is assumed that the reader has a general knowledge of

transport phenomena and solid state physics, as reference to ideas and concepts

from these areas will be referred to without detailed presentation of the ideas. The

rest of the document is organized as follows: Chapters 2-4 will deal with discus-

sions of the background theory regarding transport properties. Following this,

Chapters 5 and 6 will deal with the experimental setup, process, and data analysis

procedures, along with calibration results. Chapters 7-12 will present sample re-

sults. Finally, Chapter 13 will draw some conclusions on the system operation and

on the data collected for the samples.
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CHAPTER 2

THERMAL CONDUCTION IN MATERIALS

This chapter will deal with the thermal conduction properties of materials, with

specific focus on the ability to conduct heat. The important parameters will be de-

fined and the kinetics presented for the primary carriers. Emphasis will be placed

on results that are important to this work.

Thermal Conductivity

The essential parameter for determining a materials ability to conduct heat is

the thermal conductivity, defined as

λ =
1

3
Cvνl (2.1)

and is determined by the heat capacity (Cv), the mean velocity of the energy car-

rier (ν), and the mean free path of that carrier (l). For solid materials, it is well

understood that the energy carriers for the system are comprised of electrons and

phonons. As the system can be described through these carriers, it is possible to

separate the components of the thermal conductivity and write

λ = λe + λp + λother (2.2)

with the subscripts referring to the electrons, phonons, and other contributions

(defects, boundaries, impurities) that are usually small temperature independent

contributions and are generally ignored.

Anharmonic Effects

The introductory theory of the crystalline lattice, as presented in Kittel [16] and

Ashcroft [17], is incredibly useful as a starting point. However, it is based on two
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assumptions, one of which is a source of problems. In the model perfect crystal, the

potential used to describe the interatomic interactions is assumed to be harmonic.

If this were true of a real crystal, it would be unable to expand with temperature

or to impede the flow of a heat current through the lattice. This assumption results

in an infinite relaxation time, as the carriers never interact, resulting in an infinite

thermal conductivity.

To remedy this, it is necessary to modify the interatomic potential to become

Uint−atm = U0 + Uharm + Uanharm (2.3)

with the first two terms being the usual harmonic approximation. From this for-

malism, it becomes possible for the energy carriers to interact, limiting the value

of the thermal conductivity.

One of the immediate consequences of such a change is in the heat capacity.

Since the system is now capable of altering its shape through expansion, it is rea-

sonable to presume that this will have an effect of the Debye temperature of the

system. From derivations in several texts ([17],[16]), the rate of change of the De-

bye temperature with volume is defined as the Gruneisen parameter, represented

as

γ = −
∂ln(θd)

∂ln(V )
(2.4)

and can be used to computer the volumetric thermal expansion coefficient as

β =
γCv

3B0

(2.5)

where B0 is the isothermal bulk modulus. A typical value for the Gruneisen pa-

rameter for phonons is 1.

Although the system is now allowed to be anharmonic, it is still subject to the
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conservation rules regarding momentum for the phonons, electrons, or interac-

tions between the two. In the case of a crystal, this is referred to as the conservation

of crystal momentum and is described by

k − k
′

± q = G (2.6)

with k, k
′

, and q being wavevectors of the lattice. The initial and final state of the

system are represented by k and k
′

, with q being the momentum absorbed or re-

leased through the interaction. G is a reciprocal lattice vector that can take on any

interger value. It is this G that distinguishes the types of interactions that can occur

in materials. If G is zero, the interaction process is a normal or N process. In this

case, all of the energy of the interaction returns to the system. If G is non-zero, the

interaction is a Umklapp or U process. In this case, a portion of the energy, equiv-

alent to the value of G, is used by the interaction to move the resulting wavevector

to a new Brillouin zone of the material.

When talking about the temperature dependence of a property, it is the dis-

tiction between these processes that help to explain what occus. N processes, for

example, are all lower energy processes and can be expected to be present at all

temperatures, but will likely only dominate in lower temperature regimes. U pro-

cesses, on the other hand, are going to require a certain amount of thermal en-

ergy to occur. The higher the value of G, the higher the thermal energy required,

suggesting that these processes will become dominant in the system as the tem-

perature is raised. These processes are described in several texts ([18], [19], [20],

[2]) and produce forms for the transport phenomena in the different temperature

regimes. The discussion of the theoretical predictions for transport properties will

be divided into these different temperature regimes and also by the electrical class

of the material (i.e. Insulator, Semiconductor, Metal, Semimetal), where there is an

existing theory.
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Electrical Insulators (Phonon-Phonon Interactions)

For an electronic insulator, the dominant carrier is the lattice, so the phonon

contribution to the thermal conductivity should be the primary component. As

such, interactions between phonons will determine the mean free path for the sys-

tem. At low temperatures, the N processes will dominate, except these processes

don’t result in any significant scattering of phonons. So, the low temperature limit

is dominated by boundary scattering, which is proportional to T3 [2]. As the tem-

perature is raised, the U processes begin to affect the system. In this regime, it was

derived, by Leibfried and Scholmann, as mentioned in Ziman [2], that the thermal

conductivity would take the form

λp = a(
T

θd
)ne

θd
bT (2.7)

with constants a, b, and n determined from measurements.

As the temperature is moved into the high temperature regime, the distinction

between the processes becomes unimportant, due to the limiting behavior of the

phonon occupation number, which goes as

ns =
1

e
~ωs
kbT − 1

≈
kbT

~ωs
(2.8)

for state s with frequency ωs. From this, it is seen that the number of phonons

present is expected to increase linearly with temperature. This suggests that the

interations become more frequent, leading to a reduction in the heat flow. Thus,

the thermal conductivity in this regime would decrease inversely as T (λp ∝ T−x).

It has been shown by Ziman [2] that the power for this proportionality is one.

Further, he mentions other work from Leibfried and Scholmann regarding the high

temperature form for the thermal conductivity with a more specific result. Their

work derived that
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λp ∝
Dν3a

γ2T
(2.9)

for an insulating material of density D, lattice spacing a, and average sound veloc-

ity ν.

Electronic Conduction in Insulators (Electron-Phonon Interactions)

Although the discussion has dealt with only the interaction between phonons,

it is also possible for the phonon spectrum to interact with the electron spectrum.

In electric insulators, this contribution is usually small, but should be considered

regardless. It can be shown that the electronic contribution at low temperature is

proportional to T, with the absolute form being related to the low temperature heat

capacity. In the high temperature limit, the result is, as presented in Ziman [2]

λe =
2.5ν3Da

θd
(2.10)

with the parameters as previously defined. The value for this can easily be calcu-

lated and results in a value nearly one tenth of the intraphonon processes. This

demonstrates clearly that, for insulating materials, phononic conduction is the pri-

mary source of heat transfer across the sample.

Electrical Conductors (Electron-Defect Interactions)

In contrast to the electronic component for insulators, metals show the domi-

nant presence of electronic conduction. The derivation of the Drude model results

in an equation relating the electronic heat conduction to the electronic charge con-

duction as

L0 =
λe

σT
(2.11)
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with σ being the electrical conductivity and L0 being the Lorentz number. In this

form, the Lorentz number is a constant defined as L0 =
π2k2b
3e2

, with e being the

fundamental charge. It should be noted that, for Drude’s theory, the derivation

of this constant relation was made under the high temperature assumption and is

only true in that limit.

Of interest, phonons do affect and interact with the electrons, but do not change

the form of 2.11 at all. This is because the heat conducted by the electrons will

rise in direct proportion to the increase in phonons in the system. As such, the

system’s state remains balanced, resulting in 2.11 remaining a valid description of

the system.

In the low temperature regime, a form for the electronic contribution is derived

by Ziman [2], with the form

λe =
T

A+BT 3
(2.12)

with A and B being constants. In particular, the B constant is determined from

lattice interactions and is suggested to have the form

B =
12J5(∞)R2ρθ
π2Q2L0θ3d

(2.13)

with R, Q, and ρθ being constants and J5(∞) being the fifth order Bessel function.

This complicated form should be recognized as merely a qualitative representation

that works well.

Semiconductors

A form similar to 2.11 can be derived for semiconductors and semimetals under

the assumption that the Fermi energy is in the energy gap between bands and not

near either edge. For one type of carrier (either electrons or holes), this can be
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found, as done by Goldsmid and Nolas [18], to result in

L = (
kb
e
)2(r + 5/2) (2.14)

with r representing the power of the energy that the relaxation time is dependent

on. This form is only true in the non-degenerate approximation for the carriers,

resulting in a semiconductor. The previous form of 2.11 is again the result if the

degenerate solution is derived, suggesting that the semimetals can be expected to

display more metallic like behavior.

If the system is allowed to conduct both types of carrier, the situation becomes

more complicated. A derivation of this is shown in [18]. This results in

λe = λe,1 + λe,2 +
σ1σ2

σ1 + σ2

(α2 − α1)
2T (2.15)

with the subscripts relating to the carrier. As this shows, allowing the presence of

both of the electrical carriers makes the thermal conductivity dependent on both

of the other two transport properties discussed in this work.

High Pressure Effects

Electronic Component

To describe what is theoretically predicted to happen to the thermal conduc-

tivity with regards to changes in the system volume, it is useful again to consider

a separated system. So, for the electronic component of the thermal conductivity,

2.11 can be used to determine the pressure dependence of the system. This can be

done as

∂ln(λe)

∂ln(V )
=















−2γ T > θd

6γ T < θd

(2.16)
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if the assumptions of Ziman [2], as described in his text, are used. If Lawson’s [21]

theory is used instead, this derivative can be expected to be

∂ln(λe)

∂ln(V )
= −(2 + (

θd
T
)2γ)















−4/3γ T > θd

2/3γ T < θd

(2.17)

with the parameters as previously defined.

Lattice Component

For the lattice component, there are several models used. The theoretical basis

of the forms presented here is contained in Hofmeister’s [22] paper. The starting

point for all of the models is the equation

λp =
ρ

3ZM

3
∑

j=1

∑

i=1

3NZciju
2
ijτi (2.18)

with cij being the Einstein heat capacity, uij being the group velocity, τi being the

mean free lifetime, Z being the number of formula units per unit cell, N being the

number of atoms, and M being the molar formula weight. From this starting point,

four models (Acoustic, Dimensional Analysis, Bulk Sound, and Optic) have been

developed. The main difference between these models being the treatment of the

mean free lifetime.

For the Acoustic and Dimensional Analysis models, this lifetime was assumed

to go with an inverse T relationship, when above the Debye temperature. This

assumption yields a form of

λp =
B

T
(2.19)

with B being a constant (that may be volume dependent). In the acoustic model,

Julien, presented in [22], derived B to have the form
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B =
24

20

41/3

γ2
(
kbθd
h

)3ZMa (2.20)

with h being the Planck constant and everything else as previously defined. Roufosse

and Klemens [23] also arrived at a similar form as this, but with 1/7 the value of B.

From the Dimensional Analysis model, Dugdale and MacDonald [24] arrived

at

λp =
V KTua

3γ2T
(2.21)

with KT being the isothermal compressibility. In this form, it was assumed the unit

cell is cubic. From both models, Hofmeister derives a pressure effect of,

∂ln(λp)

∂P
≈

6

KT
. (2.22)

The remaining two models, both derived by Hofmeister in various papers ([25],[22]),

result in nearly identical pressure effects with the numercial value changing from

six to four. Unfortunantely, no discussion is given regarding low temperature

forms for the pressure dependence. It is possible to derive a form for the low

temperature expectations using the intermediate temperature equation in equa-

tion 2.7[2]. If this is done, the result is

∂ln(λp)

∂ln(V )
=

∂ln(λp)

∂ln(θd)

∂ln(θd)

∂ln(V )
= (

θd
bT

− n)γ (2.23)

with the parameters as previously defined.
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CHAPTER 3

ELECTRICAL CONDUCTION IN MATERIALS

As was discussed in the previous chapter, the study of transport properties of

materials requires additional terms for the interatomic potential to be included.

This is particularly true for electron transport, as the first picture one might con-

sider is an electron passing through a lattice, with static lattice points. Similar to the

phonons, this picture results in a system with no electrical resistance whatsoever.

As such, this chapter will present the consequences of the anharmonic contribution

to the electrical resistance.

Electronic Conduction in Metals

Lattice Resistivity (Electron-Phonon Interactions)

In conjunction with the thermal conductivity, allowing interactions between

the lattice and the electrons creates a component of the overall resistance due to

the lattice. Further, as this interaction can be expected to depend strongly on the

temperature, it is important to gain an understading of this contribution. This dis-

cussion is easiest to begin in the high temperature regime, where the quantization

of the phonons is unimportant.

In this limit, the scattering of electrons by phonons should be related to the

amplitude of the thermal vibration of the atoms. Thus, it should be expected that

the lattice contribution to the resistivity should behave as

ρp ∝ T (3.1)

with ρp being the lattice resistivity. If the system is considered to be in the low

temperature limit, the situation becomes considerably more complicated. This is

due to the quantization of the phonon states, which plays a much larger part as
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the temperature is lowered. This coupled with the lower energy of the phonons

present, would result in only small angle scattering occuring in the system.

From classical scattering theory, it is possible to show, as done by Ziman [2],

that the scattering angle will exhibit a squared dependence on temperature. This,

coupled with the cubic dependence from the Debye model, results in a low tem-

perature limit expected to be proportional to the fifth power of the temeprature.

As such, the temperature dependences of this contribution can be presented as

ρp =















4( T
θd
)5D5(θd/T )ρθ T < θd

T
θd
ρθ T > θd

(3.2)

with ρθ being a temperature independent constant and the D function being a De-

bye integral defined by

Dn(x) =

∫ x

0

znez

(ez − 1)2
dz. (3.3)

With a typical Debye integral, the x would be the Debye temperature parameter

divided by the sample temperature, and the z parameter is proportional to the

sample temperature, as can be seen in Kittel [16].

Electron-Electron Interactions

It is also reasonble to expect that the electrons in the system could interact with

each other. This possible interation is specifically addressed by Ziman, with the

derivation details presented in section 9.14 of his text [2]. The derivation results in

a form for this contribution of

ρee ≈
π2z

′

e2G2gR(kbT )
2

32vfE2
fq

2
(3.4)

with G being an interference factor and g, R, and q being constants.
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Despite the compactness of the results, Ziman mentions that no effect has ever

been observed for resistance with a squared power dependence of temperature.

This suggests that this contribution is either much smaller in magnitude that rea-

sonable values for the parameters would suggest or that this effect is non-existent.

Either result allows this effect to be disregarded.

Electronic Conduction in Semiconductors

The electrical conduction properties of semimaterials are slightly more compli-

cated that those of metals due to the presence of holes and the far smaller concen-

trations of free electrons present in them. As a result of the addition of another

carier, it is necessary to modify the initial equation governing the conduction of

electrons to include holes. As a result, the equation for the conductivity of a semi-

conductor is

σ = nheµh + neeµe (3.5)

where the n’s are the carrier concentrations and the µ’s are the mobility of that

carrier. As the carriers can have different masses and collision times, the mobility

factor is different for each of the carriers. It is futher metioned by Ziman [2] that

the collision/relaxation time is proportional to some power of the energy (τ ∝ Eχ),

which makes the mobility dependent on the same power of T. Thus, the general

expectations of a semiconductor system can be written as

σ ∝ (T χe + T χh). (3.6)

Lattice Scattering

The lattice scattering component for semiconductors deviates significantly from

the previous form from the metals section. This is due to the fact that interactions
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in semimaterials can take place in the normal manner, through the acoustic modes

of the system. However, they can also take place through the optical modes of

the system. This contribution does not show up significantly in metals due to the

symmetry of the lattice, as mentioned in the work by Kamal [26]. Dealing with the

acoustic contribution first, the mobility can be represented as

µl,acou =
23/2πDs2~4

3E2
1(m

∗)5/2(kT )3/2
(3.7)

where E1 is the deformation potential caused by dilatation of the phonon wave,

D is the mass density, and s is the velocity of sound in the solid. As a note, this

particular formula, derived in [2], was produced under the assumption of spherical

bands. This is not the case in general, for which no analytical solution exists.

The optical modes of the system can contribute to the overall lattice component

in two ways, depending on the type of crystal under study. If the crystal is polar in

nature (has a natural separation of charge with no field present), then the deriva-

tion results in a form for the mobility represented as µ = 1
ne

∑

n,n′ Jn(P
−1)n,n′Jn′ ,

which is horribly complicated and cannot be simplified for a general temperature.

As such, at high temperatures, the matrix for the mobility can be simplified to just

one element, resulting in a form for polar crystals of

µl,op,p,ht ≈
3γ(~ω)2

π1/229/2e(m∗)3/2(kT )1/2
. (3.8)

Whereas, at lower temperatures, the mobility becomes

µl,op,p,lt = A(e~ω/kT − 1) (3.9)

where A is a constant composed of terms invariant under pressure and tempera-

ture.
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If the crystal structure is covalently bonded, then the derivation becomes more

complex. This is due to the fact that there is no way to know the strength of the

perturbation potential, so it must be made an adjustable parameter. The derivation

is presented in Ziman[2] and results in an approximate high temperature form of

µl,op,cov,ht ∝
DA

(kT )3/2
(3.10)

The remarkable part of this is that the contribution due to the optical modes will

simply add to the acoustic modes in a covalent crystal. As such, the temperature

dependence should be the same. As was mentioned earlier, these derivations as-

sume that the system is in the spherical band model, which is most likely untrue

in any given sample. However, it is a good first attempt to describe the properties

of these materials.

Insulators

In general, textbooks will refer to insulating materials as non-conductive, illus-

trating the theoretical concept that the insulator is incapable of conducting elec-

trons of its own accord. This is due to the fact that insulators are composed of

closed shells (i.e. no free electrons). As such, one would expect an infinite resistiv-

ity in these materials regardless of temperature.

This is in contrast with experimental evidence that shows that, although markedly

small, there is some electrical conduction through insulating materials. As with

both metals and semiconductors, insulating materials will have defects and im-

purities present. The presence of these alterations can contribute either holes or

electrons to the crystalline structure and, as such, are the primary source of elec-

trical conduction in insulating materials. Therefore, one would expect that the

temperature dependence of such alterations would be descriptive of the temper-

18



ature dependence of the electrical resistivity of insulating materials. To describe

this, the effects of Mott’s rule can be referred to. This presents a T dependence for

the impurities present in the structure, as well as a Z2 dependence for valence dif-

ference between the host structure and the impurity. In this case, the host should

be neutral, so Z is simply the excess charge of the impurity.

High Pressure

In addition to the temperature effect on electrical conduction, pressure can be

expected to alter the resistance of a substance also. For metallic substances, as is

shown in Ziman[2], it is possible to derive a form for the resistivity being propor-

tional to eθd . So the expected pressure effect is

∂ln(ρ)

∂ln(V )
=

∂ln(ρ)

∂ln(θd)

∂ln(θd)

∂ln(V )
=















2γ T > θd

−6γ T < θd

(3.11)

where the numerical contribution comes from the power of θd in the resistivity.

This topic is also dealt with by Lawson [21]. In this case, to address the situation

by presenting that R = qC2

θ2dα
2k2b

. From this he derives that

∂ln(R)

∂ln(V )
=

∂ln(R)

∂ln(θd)

∂ln(θd)

∂ln(V )
+ 2

∂ln(C)

∂ln(V )
+ 2/3− 2

∂ln(α)

∂ln(V )
(3.12)

from which, he avoids Ziman’s assumption that the first derivative in the first term

is equal to negative two. It was mentioned that, for θd/T < 4, this term takes on

the value

∂ln(R)

∂ln(θd)
= −(2 +

θ2d
9T 2

). (3.13)

The relation is still used that the volume derivative of the Debye temperature

in the first term of equation 3.12 is proportional to the negative of the Gruneisen
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parameter. For free electrons, the α term is negligible. This leaves the C term in the

previous equation, which is strongly dependent on the model used. The models,

used by Lawson [21] and presented in other works also [27], have values for this

derivative between negative one and two-thirds, which yields

∂ln(R)

∂ln(V )
= (2 +

θ2d
9T 2

)γ















−4/3 T > θd

2/3 T < θd

(3.14)

It should be remembered that this is strictly for normal metals only (Pt, Cu, Ag,

Au, etc.). When the discussion moves to less normal metals (Alkali, Alkaline Earth,

and Rare Earth) and the semimetals (Bi, Sb), the discussion becomes more specu-

lation than anything else. There exists only cursory attempts to describe the pres-

sure effects of all of these materials, with a complete lack of explanation for the

semimetals.

Semiconductors

For semiconducting materials, the property that is most relevant to the change

in pressure is the piezoresistance. This property refers to the change of the resis-

tivity with volume change or application of strains/stesses. This discussion can be

divided into two categories, intrinsic semiconductors and extrinsic semiconduc-

tors. For an intrinsic semiconductor, the fact that all of the carriers are constituents

of the material itself makes the change only dependent on the energy gap of the

material. This can be represented as

d ln(ρ)

d ln(V )
≈

1

kT

∂Eg

∂∆
(3.15)

with Eg being the energy gap and ∆ being the volume collapse due to applied

pressure. Unfortunately, no predictions can be made regarding the direction or
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magnitude of the change in the resistivity, as this depends directly on what hap-

pens to the energy gap.

If the material is extrinsic instead of intrinsic (i.e. carriers due to dopants in

material), then the pressure dependence of the material’s resistivity is directly de-

termined by the minority carriers through the mobility. As is mentioned by Ziman

[2], the dialational coefficient of the piezoresistivity tensor in this situation is usu-

ally of small magnitude, resulting in a small change in the resistivity with pres-

sure. Thus, the application of hydrostatic, or quasi-hydrostatic, pressure results in

a small overall change in the resistivity of extrinsic semiconductors, but the exact

magnitude and size of the change depends on the dopant and on the host material

composition. An example of this is presented in Table 10.2 of Ziman’s text, where

he presents data from work by Smith regarding the coefficients of n and p doped

silicon and germanium.

Overall, the effect of pressure on an extrinsic semiconductor should be rather

similar to that of an insulator. This is due to the fact that the insulating material

has no conduction electrons of its own, so they must be provided by a dopant.

However, the concentration of such doped electrons should remain rather small

and result in a much smaller effect than that present in the extrinsic semiconductor.

Structure Based Electronic Effects

In addition to the general theory pertaining to the different types of electrical

conduction, it is possible for the changes due to pressure to indirectly influence

the electronic properties of materials. An example of this type of effect is a phe-

nomenon called an Electronic Topological Transition (ETT). This type of transition

is not well understood at this point in time, but has become a topic of interest to

several research groups around the world ([11], [12], [28], [29]). The current theory

on this is that the application of pressure to a material causes a reshaping of the
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Fermi surface of the material without changing the physical structure of the crys-

tal. As such, it is different from a pressure induced structure transformation, but

is still primarily looked for through structure data. This restructuring is theorized

in several papers ([12], [30]) to appear in structure studies of the material, but in a

more subtle way.

Normal structure studies would involve the determination of the unit cell pa-

rameters and volumes from x-ray measurements. Once this is done, the resulting

volumes and pressures, along with the bulk modulus and it’s pressure derivative,

can be converted to a different type of equation of state, similar to a stress plot

with pressure. The method of Garg et al. [11] uses equations of state developed by

Holzapfel and Vinet to convert to this type of plot, using the equations

V inet : ln(H0) = ln(B0) + η(1−X);H0 =
PX2

3(1−X)
, η =

3(B
′

0 − 1)

2
(3.16)

and

Holzapfel : ln(H0) = ln(B0) + C2(1−X);H0 =
PX5

3(1−X)
, C2 =

3(B
′

0 − 3)

2
(3.17)

with P being pressure, X = ( V
V0
)1/3 being the fractional volume collapse, with the

remainder as previously defined. If these plots cannot be fit by a single linear

equation for the entire pressure range, it is considered to be evidence of this type

of transition occuring the material. As this would constitute a restructuring of the

Fermi surface, it is highly likely that the occurance of this type of anomaly would

result in more dramatic changes in the electrical related properties of the material.
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CHAPTER 4

THERMOELECTRIC PHENOMENA IN MATERIALS

One of the more interesting transport phenomena involves the interplay be-

tween the previous two forms of transport. It is this property that is the primary

forcus for several studies of thermoelectric materials, as there is a lack of under-

standing regarding what causes a material to be a good thermoelectric material.

This chapter will present the current understanding regarding this phenomena.

Seebeck Effect

The Seebeck effect, discovered in 1821, is a potential difference across the junc-

tion of two materials when a thermal gradient is present. The Seebeck coefficent is

the proportionality constant between the potential difference and the temperature

difference. This results in the governing equation

∆V = α(T )∆T (4.1)

with α(T ) being the temperature dependent Seebeck coefficient, ∆T being the ther-

mal gradient between the junctions, and ∆V being the potential difference.

Similar to the Peltier coefficient, the Seebeck coefficient can be positive or nega-

tive depending on the materials chosen. Also, a Seebeck coefficient can be defined

for an individual material but has no real meaning without two or more materials

being involved in the process. Similar to the previous effects, the Seebeck effect

has a microscopic explanation also. It arises due to the fact that the charge con-

centration in any given material depends on the temperature. As such, a thermal

gradient across the material will result in a gradient in the charge concentration.

This produces an electric field in the material and results in a potential difference

between its ends. However, to notice the electric field, which is working to balance
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the charge separation, there needs to be two materials joined. This junction will

provide a method for the charges to nullify the electric field in the center, forcing

the charges on the ends of the material to conduct through an external circuit. If

one material were used alone, then the charges would recombine quite rapidly,

since there is nowhere for them to escape.

Thermopower of Materials

Insulators

As was previously discussed, the thermopower of any given material is de-

fined as the ratio of the potential difference to the temperature gradient across the

sample. In this manner it is easy to see that insulators are not expected to be very

good thermoelectric materials. This is due to the fact that insulators are remarkably

poor electrical conductors, leading to a large potential drop across the sample. In

conjuntion with this, they are also poor thermal conductors (with the exception of

diamond), resulting in a comparibly large temperature gradient across the sample.

From the definition for the thermopower, this would result in small values for the

Seebeck coefficient, making these materials ineffective. As there are no adequate

presentations regarding the theory of thermopower for insulating materials, the

discussion will move to more interesting materials.

Metals

The first attempt at a theory for the Seebeck effect in materials is attributed to

Drude’s free electron model. From Drude’s first step, the leap was made to define

the Seebeck coefficient as

α =
−π2k2

bT

3e
(
∂ln(ρ(E))

∂E
)E=EF

=
π2k2

bT

3e
(
∂ln(σ(E))

∂E
)E=EF

(4.2)
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Figure 2 Schematic Diagram of the Fermi surface in the Brillouin zone[2]

with EF being the Fermi energy of the material. This form is particularly impor-

tant to general transport theory due to the fact that this is the first time a transport

equation has relied on the first power of the electric charge, resulting in an intrin-

sic sign for the equation. The equation is defined such that the charge is for an

electron, making the derivative positive for a negative Seebeck coefficient.

The main problem comes from the fact that taking the derivative is not an easy

task. However, as mentioned in Ziman [2], it is possible to rewrite the derivative

in a slightly easier to deal with form,

∂ln(ρ(E))

∂E
=

∂ln(Λ)

∂E
+

∂ln(G)

∂E
, (4.3)

with Λ being the electron mean free path and G being the Fermi surface area of the

system. In this equation, the derivative involving the mean free path of a system

should be invariably positive due to the fact that electrons with higher energy are

less likely to be scattered in short distances, resulting in long mean free paths for

the system. The second term, however, presents some trouble as the area of the

Fermi surface can either increase or decrease with energy, depending on the energy

it is at. As an example, consider the following diagram from Ziman 1.

In Figure 2, it can be seen that, as long as the surface itself is not touching the

1Figure reproduced with permission of publisher.
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edge of the containing zone, the area will increase. However, the moment that

the surface touches the edge of the zone, its area will begin to decrease. As such,

the second term in the previous equation can take on either positive or negative

values and, possibly, become the dominant term in the equation. This could result

in a positive Seebeck coefficient for the material.

The obvious first type of metals to attempt to describe are those that behave like

free electron gasses, the alkali metals. In this situation, the Fermi energy is directly

proportional to the Fermi surface area. This results in

αF =
π2k2

bT

3eEF

(4.4)

with EF being the Fermi energy. With this, it is possible to obtain an order of mag-

nitude for the Seebeck coefficient in this type of system. In this system, the mean

free path is large and not highly dependent on energy at all, so the first term in

the previous equation is negligible in the overall scheme, making our system only

dependent on the energy change of the Fermi surface, which results in the esti-

mate for the Seebeck coefficient of αF = −2.45× 10−2 T
EF

µV
deg

. At high temperatures,

this results in a Seebeck coefficient predicted to be close to 3 αF . In general, this de-

scribes the magnitude and sign of the alkali metal quite well, with the unexplained

exception of Li, which has a positive value. For the noble metals, the situation be-

comes more interesting, as the Fermi surfaces touch the zone boundary in all of

them. This results in a positive Seebeck coefficient for each with values of α/αF

between -1 and -2.

For these cases, it is assumed that the metal under study is of impeccable purity

and monovalent. However, if the material is polyvalent, there is no simple form to

predict their thermopowers. Despite this, Ziman [2] mentions that divalent metals

seem to prefer a positive α, while trivalent metals seem to prefer negative values.
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One special subset of materials is the semimetals, consisting of the elements Bi,

Sb, Se, and Te. These materials are particularly interesting due to the extraordi-

narily high values for their Seebeck coefficients. In these materials, the presence

of both holes and electrons in the band structure, in conjuntion with the relatively

small effective masses and concentrations, is proposed to explain the inordinately

high values. For this situation, an effective energy must be introduced, creating a

representative form of

α =
π2k2

bT

3eEeff

me −mh

m
(4.5)

with Eeff = ~
2(3π2ne)2/3

2m
, ne being the concentration of electrons in the system, and

m being the normal mass of an electron.

Further oddness ensues upon consideration of the transition metals with their

d-band contribution. In the case of these metals, the value of the Seebeck coefficient

is also large and has a widely variable sign, which is considered to be caused by

the scattering of s electrons into the high density of states d-band. If this occurs, an

additional term to the mean free path shows up with Λ ∝ Nd(E)−1. This term will

contribute to the Seebeck coefficient in the form

−π2k2
bT

3e
(
∂ln(Nd(E))

∂E
) (4.6)

Low Temperature The theory behind the low temperature trends for the Seebeck

coefficient might be expected to be more straight forward than the high tempera-

ture results described already. However, due to quantization of the lattice waves,

this is far from the case. The results of a theory at low temperature result in the

expectation that the thermopower should fall linearly towards zero as the temper-

ature does. This is not the case in even the most simple metallic system. As it turns

out there is a peculiar effect that manifests in most systems referred to as phonon

drag that prevents this from occuring at low temperatures.
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Phonon Drag Phonon drag is physically rather similar to how it sounds. Up to

this point, it has been assumed that the transport of heat and flow of electrons

would be isolated circumstances. Phonon drag is an effect that requires the relax-

ation of this assumption. When a system is subjected to a thermal gradient, the

result is an obvious flow of heat through the phonon system. In addition, the flow

of electrons will frequently trade momentum with the phonons flowing in the sys-

tem, causing the electrons to be “dragged” along by the phonon spectrum as it

propagates.

Unfortunately, the addition of phonon drag to the system modifies all of the

transport property equations. However, as is mentioned in Ziman[2], the modifi-

cation to the thermal conductivity adds nothing of any consequence to the previ-

ous formulae. The addition to the resistivity results as

ρ = ρ0 + ρL(1−
P 2
1L

P11PLL

) (4.7)

where the P functions are variational functions. As it turns out, if the temperature

of the system is the Debye temperature, then the ratio of P’s has a value presumed

not greater than 0.1, making it rather negliglible in the overall state of things. As

the temperature is increased, it becomes less significant to the system.

The main contribution of phonon drag is in the Seebeck coefficient. The addi-

tion of phonon drag to this theory results in an additional term from the lattice of

the form

αL =















−kP1L

3naPLL
, T > θd

−4π4kT 3P1L

5enaθdPLL
, T < θd

(4.8)

with na being the number of free electrons per atom. Further, Ziman suggests that
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P11 = PLL = −P1L, so the actual forms for the previous equation become

αL =















k
3na

, T > θd

4π4kT 3

5enaθd
, T < θd

(4.9)

drastically simplifying the overall form. It is also mentioned, in Ziman’s text, that

the magnitude for this could be as large as 86 µV
deg

.

Semiconductors

The main change that comes about in moving from metallic systems to semi-

conductors is the common presence of both holes and electrons in the system. In

addition, the magnitude of the thermopower in these systems tends to be several

orders of magnitude higher than that for metals. This comes about primarily due to

the fact that semiconducting systems are more capable of maintaining a potential

difference between the ends of the sample. To begin with, if there is only a single

band present (i.e. only one type of electrical carrier), then the system produces a

rather simple form for the Seebeck coefficient. This form is

α =
1

eT
[
E2

e τ(Ee)

Eeτ(Ee)
+ ξe]. (4.10)

At this point, a fair assumption to make would be that τ(E) ∝ Eν . If this as-

sumption is made, then the previous equation reduces (using properties of the Γ

function) to

α =
k

e
[(ν + 5/2) +

ξe
kT

]. (4.11)

If the leading term is considered, the magnitude from this equation is a factor of

EF/kT larger than the value for metals. As Ziman [2] mentions, this puts the en-

ergy scale for semiconductors on the order of millivolts, compared with that from
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metals (microvolts).

However, this previous form is only true when one type of electrical carrier

is present (i.e. extrinsic semiconductor). When both are present, it is necessary

to consider both electronic and hole conduction through the sample, resulting in

bipolar conduction. In this case, the result is simply a superposition of the previous

equation with the equivalent form for the other carrier type. This results in

α =
1

eT
[
ne

me
(E2

eτe(Ee))−
nh

mh
(E2

hτh(Eh))
ne

me
(Eeτe(Ee))−

nh

mh
(Ehτh(Eh))

+
neµeEF,e − nhµhEF,h

neµe + nhµh
] (4.12)

with the n’s being the concentrations, µ being the mobility, and EF being the Fermi

energy for electrons (e) and holes (h). One particular consequence of this formula is

the explanation of the inversion temperature for intrinsic semiconductor systems.

It is a well known phenomenon that with the variation of temperature in these

systems, the Seebeck coefficient may start negative and transition to a positive

value as the temperature is raised. This turnaround point corresponds to a change

in the dominant carrier of the system.

For these systems, there is also a contribution due to phonon drag. As this

phenonmenon has already been discussed, the results of the derivation will be

presented here. For semiconducting systems, a temperature dependence is also

expected on the basis of the system reaching the boundary scattering condition

(specimen diameter is D). In this case, the result is

αL ∝















T−(9−ν)/2 T > θd

DT 3/2 T < θd

(4.13)

In the previous case, ν is the power of the energy creating the proportionality to

the relaxation time.
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Pressure Dependence

For the Seebeck coefficient, it is now possible to obtain some approximate forms

for the dependence with volumetric change in the system. First, since there is no

real theory decribing the thermopower of insulating systems, there is nothing that

can be said regarding these materials. However, there are several forms available

for different types of metals. Using the equations presented previously, the pres-

sure/volume dependence of alkali and noble metals (pure) can be expected to take

a form where

∂α

∂V
∝

1

EF

∂EF

∂V
∝ V 7/3. (4.14)

Semimetals, on the other hand, are slightly more direct, due to the direct volume

dependence in the equation. Inspecting the volume dependence of this equation,

it is easy to pick out that

∂α

∂V
∝ V −1/3. (4.15)

Although information was mentioned regarding the contribution of d-band effects

to the thermopower of transition metals, it is impossible to gain an approximate

form for the pressure dependence due to the lack of an analytical form for this con-

tribution. A similar situation presents itself for impurity systems, as it is highly

dependent on the materials contributing to this effect. However, there is a rather

definite form for the contribution due to phonon drag in the system. At low tem-

perature, this contribution will dominate and will become a linear offset at high

temperatures. This form results as

∂αL

∂V
∝















Constant T > θd

V T < θd

(4.16)

The final piece to consider is the effect pressure would have on semiconducting
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system. Due to the complexity of the bipolar form for the thermopower, it is rather

difficult to define an analytical form for this situation also. Some insight can be

gained by using the single band contribution, which results in

∂α

∂V
∝ V −1/3 (4.17)

Overall, the discussion presented in this and the previous chapters gives a brief

semblence of the complicated theory describing what is currently known regard-

ing the transport properties of materials. This information will become a valuable

asset later in determining what factors are of prime importance to the temperature

and pressure effects in materials. The next step in discussing the work performed

is to present the details regarding the experimental setup and processes for the

experiments performed.
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CHAPTER 5

EXPERIMENTAL DETAILS AND PROCEDURE

This chapter will deal with the experimental setups used, the measurement

theories applied to the resulting data, and the sample preparation techniques for

the work presented in this documnt. This begins with the preparation process used

to create the samples used for this study, including a description of the process

used to check the sample purity. Then, the process used for determining the heat

capacity of the various samples will be presented. Following this, the discussion

will move to the experimental details regarding the high pressure experiments and

how the sample properties are measured.

Sample Preparation

The samples chosen for this work are of the form ATe, with A being (Ga, In, or

Ga0.5In0.5), and the established thermoelectric materials Bi2Te3, Sb2Te3, and BiSbTe3.

The Ga and In containing compounds are of interest due to the low symmetry in

the crystalline structure of the Ga and In compounds. In addition, similar com-

pounds exhibit a markedly low lattice thermal conductivity [31]. As was discussed

in the introduction chapter and the theoretical chapters, the lattice thermal conduc-

tivity is, in theory, the only property that is independent of the other properties.

The Bi and Sb compounds have been relatively well studied under ambient con-

ditions and are currently commercially applied as thermoelectric generators and

coolers. As such, it was deemed interesting to investigate and see if their proper-

ties could be improved through the application of pressure.

The Bi and Sb compounds were purchased commercially, as shown in Table 1.

In contrast, the Ga and In samples, as well as the solid solution of the Bi and Sb

compounds needed to be prepared in lab. However, as Ga at room temperature

is a liquid (Tmelt = 29.78 ◦C), it is impossible to grind this elemental material into
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Table 1 Elements used for sample synthesis

Element Manufacturer Purity(Percent)
Ga Sigma Aldrich 99.999
In Sigma Aldrich 99.99
Te Spectrum Chemicals 99.5

Bi2Te3 Alfa Aesar 99.98
Sb2Te3 Sigma Aldrich 99

a powder. To accomplish the reaction, the tellurium powder was ground and pel-

letized in the stoichiometric amount. The raw materials and prepared compound

amounts were kept refrigerated to make preparation easier and keep the prepared

amounts from reacting until in the furnace. A portion of the solid gallium lumps

was cleaved off and weighed in the respective stoichiometric amount. This pro-

cess was repeated for the In material. These tubes were placed in a temperature

controlled tube furnace at 900 ◦C for 3 days, followed by a 2 day period below the

melting point of the sample to anneal it. The only deviation from this for the ma-

terials used in these investigations was the BiSbTe3 solid solution. This deviation

will be presented at the beginning of the chapter regarding this material.

After this process was complete, the sample was ground in a clean agate mor-

tar to randomize the powder and examined using x-ray facilities available through

the UNLV Geoscience department to verify composition. Some of the powder was

pelletized and cleaved into a rough square shape for the heat capacity experiments

described below. The remaining powder was divided, with some retained as pow-

der for the diffraction experiments and the rest was pelletized, cut, and buffed to

the appropriate size for the high pressure transport measurements.
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Ambient Pressure X-Ray Characterization

For the samples used in this study, x-ray diffraction (XRD) was used to verify

the crystalline structures and compositions under ambient conditions. The system

used (X’pert X-Ray Diffractometer) for this analysis is setup for angle dispersive

diffraction with a rotatable Cu K-α emitter and detector arms to allow a complete

range of ≈ 120 degrees of 2θ space. The spectrum gathered was then checked

using the software available with the system for composition and the structure

parameters determined from MDI’s Jade software package[32].

Ambient Pressure Heat Capacity Measurements

To measure the heat capacity, a Physical Property Measurement System (PPMS),

developed by Quantum Design Inc., is used. The sample measurements are made

through use of a small interface system, called a puck, which is imaged in Figure

3. This puck consists of a copper housing with internal wiring supporting an alu-

mina stage for the sample.

Figure 3 Heat Capacity Puck
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By using these leads, the system sends in a heat pulse to a resistive heater,

allowing the temperature of the alumina stage plus sample to rise a small amount.

Then, it measures the decay of the heat pulse back to the surrounding temperature.

By fitting this to two-tau (with tau being a characteristic exponential decay time)

response curves

Cplat
dTplat

dt
= P (t)− λw(Tplat(t)− Tb) + λgrease(Tsam(t)− Tplat(t)) (5.1)

and

Csam
dTsam

dt
= −λgrease(Tsam(t)− Tplat(t)) (5.2)

the system can determine the heat capacity of the sample. In these equations, the

subscripts sam and plat refer to the sample and the alumina platform, respectively.

In addition, the symbols C, T, λ, P, and t are heat capacity, temperature, thermal

conductivity, power, and time, respectively.

To perform the experiment, the sample puck is prepared with a small amount of

thermal grease (either Apiezon brand H or N grease) to assist with thermal contact

for the sample later. The stage and grease are run through the system separately

to measure the background heat capacity for all components of the system. After

measurement of this addendum, the sample is placed on the stage and put in good

thermal contact with the alumina support. Then, the system is prepared and run,

in the same manner as the addendum, to determine the heat capacity of just the

sample. The addendum values allow for the removal of any contribution from a

source other than the sample.
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High Pressure X-Ray Measurements

The high pressure x-ray structure measurements are performed using a dia-

mond anvil cell (DAC) of the Merrill-Bassett type. The pressure is applied to the

sample through the use of two opposed diamond anvils, with the force provided

through the use of three screws placed in the cell housing. A picture of the DAC

is presented in Figure 4. Between the diamonds, a metal gasket is placed to pre-

vent the diamonds from damaging each other through direct contact and to help

retain the pressure. This is accomplished by using the diamonds to ”pre-indent”

the working area of the gasket to a thickness between 50 and 100 microns thick.

This thickness allows enough remaining material to have the strength to retain the

pressure inside the cell.

Figure 4 Merrill Bassett type Diamond Anvil Cell (DAC)

This pre-indention is then centered under either a mechanical drill press or an

electric discharge machine (EDM) to drill a hole in the middle of the pre-indent

for the sample chamber. The sample chamber is then cleaned to be free of debris
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and filled with a small amount of sample, a pressure transmitting medium, and

a pressure marker. For the purposes of this experiment the pressure marker is a

ruby sphere, as the ruby can be fluoresced using a laser of short visible wavelength

(usually green or blue) providing two noticible emission peaks from the ruby, as

shown in Figure 5.
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Figure 5 Ruby Fluorescence Peaks

Several studies have been performed on the ruby demonstrating the shift in

these emission peaks with pressure fits a simple equation [33] of the form

P =
A

B
[1 + (

∆λ

λ0

)]B − 1 (5.3)

where is P is the pressure, ∆λ is the wavelength shift of the R1 fluorescence line,

λ0 is the initial wavelength of the R1 line at ambient pressure, and A and B are

constants determined by a least squares fit. These constants have values reported

by the authors of the paper as A = 19.04 Mbar and B = 7.665. With regards to the

pressure transmitting medium, it is usually liquid or gas as these provide nearly
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hydrostatic conditions for the sample. Typical pressure media are 4:1 by volume

Methanol to Ethanol, Silicone Fluid, or gaseous Neon or Argon.

To perform a diffraction experiment, the cell is placed in the path of a beam of

synchrotron x-rays focused to a spot on the sample. The sample is then exposed

for a certain period of time with the data being collected by either a CCD or an

image plate. The results of these exposures on a powder sample are ring patterns,

as pictured in Figure 6. These figures are of little direct use, but can be converted

into a more useful 2Θ versus Intensity plot, shown in Figure 7, using the program

Fit2D[34], which can be imported into MDI’s Jade [32] for structure determination

and parameter calculation.

Figure 6 Image Plate Exposure of Cerium Dioxide Calibrant Sample

For this work, use was made of the relationship between the High Pressure Sci-

ence and Engineering Center of UNLV (HiPSEC) and the High Pressure Collabo-

rative Access Team (HPCAT) at Argonne National Laboratory’s Advanced Photon

Source (APS). This relationship provides the opportunity to make these measure-

ments using the high intensity synchrotron souce and facilities available at the

beamlines run by HPCAT. The experiments were performed at beamlines 16-ID-B

(Angle Dispersive) and 16-BM-D (Energy Dispersive) at HPCAT. The experiments

were performed using a wavelength of 0.41198 Å(Gallium and Indium Samples) or
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Figure 7 Integrated 2-Theta versus Intensity of Cerium Dioxide Calibrant

0.40165 Å(Bi2Te3, Sb2Te3, BiSbTe3 samples) on ID-B and a detector angle of 12 de-

grees for BM-D. Any improtant particular details of the experiments are presented

in the results chapters for the individual samples.

High Pressure Transport Measurements

Cell Setup

As there are no experiment setups available at this point for the concurrent

measurement of electrical and thermal transport of materials under pressure, it

was necessary to develop the setup to perform these experiments. To accomplish

this task, several references were used ([35],[36],[37]) to determine the optimal

sample thickness, maximal pressure, and working faces of the anvils. Through

these references, it was determined that the cell should support a sample size of

roughly 1.5 x 1.0 x 0.15 mm in a bar shape.

With this sample size, a split gasket setup is used, with a two mm diameter
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steatite pressure transmitting disc, supported on the outside by a six mm outer di-

ameter pyrophyllite annulus for pressure retention. These materials are commonly

used for the purpose of creating high pressure environments inside opposed anvil

Bridgman cells. Thus, the working face of the anvils is set to be six mm, with the

pressure medium to retaining gasket ratio being determined from the references

previously mentioned. The anvils were shaped, using the information presented

in Yousuf’s work[37], to have a ten degree taper angle. This would maximize the

internal pressure of the cell, as determined by

Pmax =
1

2
B2 exp(Ba)

exp(Ba)−Ba− 1
(a+ Zbcot(α))

2SA (5.4)

from Yousuf’s paper, to be between 35 and 50 GPa. In this equation, a is the radius

of the working face of the anvil, Zb is the height of the tapered portion of the anvil,

α is the taper angle, B = 2µ/h, with µ being the coefficient of friction between the

anvil and gasket and h being the critical thickness of the gasket, and SA being the

compressive strength of the anvil. Pyrophyllite makes an ideal retention gasket,

as the material is an electrical and thermal insulator, which will assist in limiting

the loss of heat to the surroundings from the sample and prevent electrical short

circuits through the material. A schematic diagram of the cell is presented in Figure

8.

Pressure Determination

It is also important to know the internal pressure of the system. To accomplish

this, it is necessary to use resistive standards to calibrate the internal pressure to

an external gauge. In this case, the hydraulic press used to apply the pressure to

the cell was modified to use a pressure transducer and a low-speed, high-torque

stepper motor to control the pressure applied to the cell. The calibration of the

internal pressure can be done using standards defined by NIST and accepted by

41



the high pressure community, as listed in Table 2.

Figure 8 Schematic of Tungsten Carbide Cell

For this work, the pressure was calibrated up to 20 GPa using the Bismuth, Tin,

and Lead resistive transitions. Each material was measured twice, for repeatabil-

ity of the pressure transition. This was done with both copper and thermocouple

electrical leads to check for consistency between the leads and test if thermocou-

ples could be expected to produce accurate resistance results. Examples of results

on the calibrants is shown in Figures 9 and 10.

In addition to the high pressure check of the thermocouple resistance measure-

ments, ambient pressure checks were done using standard resistors with a five

percent nominal error in their value. These resistors were connected through pres-

sure contacts to the thermocouple bulb to see what resistance they measured. The

results of this test are shown in Table 3.

The calibrant samples resulted in the pressure calibration curve shown in Fig-
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Table 2 High Pressure Resistive Standards at 25 Celcius

Material Pressure (GPa)
Bismuth 2.550 (6) [38]
Bismuth 2.7 [39]
Thallium 3.68 (3) [38]
Barium 5.5 (1) [38]
Bismuth 7.7 (2) [38]

Tin 9.4 (3) [38]
Barium 12.3 (5) [38]

Lead 13.4 (6) [38]
Zinc Sulphide 15.4 (7) [40]

Gallium Phosphide 22.0 (8) [40]
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Table 3 Resistance Bridge Test Results

Nominal Resistance (Ω) Measured Resistance (Ω)
10 10.129

1000 990
100,000 99,210
680,000 674,400

1,000,000 975,300
5,000,000 4,855,000
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ure 11. The error in the pressure of the cell is determined through experimental

means, using the breadth of the resistive transition. In theory, resistive transitions

should be sharply defined and instantaneous. However, the measured resistance

curves show a breadth to the transition. By measuring this, a curve can be used to

correlate the error in the pressure measurement to the applied pressure in the cell.

This resulted in a linear relationship with the form
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Figure 11 Pressure Calibration Curve

∆P = 0.2213(1) + 0.01296(35)P. (5.5)

Internal Heating Setup

Temperature differences in the cell were provided by an externally controlled

heating element inside the sample chamber. This heating element is constructed

by spot welding a chromel wire of diameter 0.005 inches to copper wires with a

diameter approximately three times larger. This setup is connected to a computer
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controlled 150 watt DC power supply (10 V, 15 A) to provide the temperature dif-

ferential to the sample. The copper wire was tested prior to the taking of any data

to ensure it could handle the heat load required for this task. As the weld joints

are too large to place inside the sample chamber, these points were coated with an

electrically conducting silver epoxy and connected to aluminum foil. This arrange-

ment allows the heating element to short the current to the chromel wire inside the

sample chamber, preventing the chromel outside from overheating and becoming

a fuse.

Resistance Measurements

The resistance of the sample under study was measured using a pseudo four

wire probe through a Lakeshore Model 370 AC resistance bridge. The electrical

leads used were thermocouples, with the similar materials used for the paired

leads (i.e. chromel wires used for current leads). This device measures using an

AC current, which will eliminate the thermoelectric contribution to the resistivity.

From the measured resistance, the resistivity is computed using

ρ =
RA

L
(5.6)

with A being the cross sectional area, L being the distance between thermocouple

bulbs, and R being the measured resistance.

Error Determination in Resistivity The overall error in the system is represented

by the formula

σρ =
√

σ2
L + σ2

A + σ2
R (5.7)

with the σs being the respective errors in each of the measured quanities. It should

be noted at this point that the error in A is also a product of errors and was treated
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as such throughout these experiments. For these errors, the distances for A and

L were measured using a calibrated microscope with maximal resolution of 5 µm,

and the errors in the resistance were determined from the manufacturer provided

calibration table and from deviations in the measured resistance value.

Thermal Conductivity Measurements

In general, the study of thermal parameters for materials presents a significant

challenge to experimentalists. This is due to the inherent difficulty in the measure-

ment and accuracy of thermal parameters. Since any experimental setup for the

determination of these parameters will require a material with a differing thermal

conductivity than the sample under study, it is important to minimize the effects

such a combination will have on the system. As a result, a detailed study of litera-

ture regarding these experiments will present several accepted methods and styles

of measurement.

The temperature difference can be measured and used to determine the thermal

conductivity through the equation

λ =
P

A

∂x

∂T
(5.8)

with P being the power dissipated through the heater wire, A being the cross sec-

tional area of the sample, ∂x
∂T

being the length of the sample divided by the change

in temperature.

This particular equation for the thermal conductivity illustrates the two styles

of measurement typically used. In addition, the type of material and thermal pro-

file need to be considered in the measurement style. As a result, the guarded ver-

sus unguarded style of measurement needs to be addressed also. If the material

surrounding the sample is of much lower thermal conductivity (λsam >> λsur),
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then the system is using the unguarded (or standard) heat flow style. This means

that the heat flow into the sample will not appreciably flow out the sides of the

sample, due to the much higher thermal conductivity. In contrast, if the thermal

conductivity of the sample and surroundings are of the same order (λsam ≈ λsur),

then the system is using the guarded heat flow style. This means that the sample

and surroundings have similar thermal profiles and results in a consistent thermal

gradient across the sample.

For thermal experiments, the two common measurement styles are the steady-

state and the transient style. This really deals with the region of the heat versus

time curve used for measurement purposes. As illustrated in Figure 12, the tran-

sient heat flow method uses the thermal difference measured during the heating

process and uses the parameters ∆T and time to find the thermal conductivity.

This can be done in the previous equation, by replacing P with the abosrbed en-

ergy divided by the time. Thus, it would be expected to find a linear relationship

with the slope being related directly to the thermal conductivity. In contrast, if the

system is allowed to equilibrate, the measurement can directly use the previous

equation and is called steady-state. The steady-state method will provide a much

more consistent measurement of the thermal conductivity, but may have a larger

error than the transient method.

As was already mentioned, the heater is brought in through the sides of the

cell. The heater cannot be in direct contact with the sample due to interference in

the Seebeck and temperature measurements caused by the heater current flowing

through the sample. As such, care is taken in each experiment to ensure that the

heaters do not contact the sample. The setup is depicted in Figure 13.

For the considerations of the model, the system is operated in steady state

mode, so the power into any given portion of the sample chamber is equal to the

power out of that portion. As such, the model need only consider the portion of the
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Figure 12 Heat Flow Regions in Thermal Conductivity Experiments

sample chamber containing the actual sample. In this manner, if the power used in

the thermal conductivity equation is restricted to the power emitted directly into

the sample, it is possible to disregard the effect of the material directly surround-

ing the sides of the sample. To do this, a coupling factor needs to be introduced

to restrict the power to that emitted in such a way that it couples into the sample.

This factor is defined as γ in the following equations and has a value determined

from geometrical considerations as

γ =
Wsam

Laha

tan(Tsam/(2 ∗Dhs))

π
(5.9)

with the subscript sam applying to sample dimensions, Laha being the active length

of the heater wire, and Dhs being the distance between the heater and the sample.

The geometrical consideration uses the assumption that the heater wire dissipates

power uniformly along its length and in all directions.
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Figure 13 Setup of the High Pressure Transport Measurements

The active heater length is defined as the length of the chromel wire inside

the gasket, since the remainder of the heating element will dissipate a negligible

amount of energy in comparison. With this definition, the system measures the

temperature difference and the sample dimensions are measured prior to the ex-

periment using the setup previously described in the resistivity section. Then, the

thermal conductivity can be determined through

λ =
γV ILsam

TsamWsam∆T
(5.10)

with ∆ T being the measured temperature difference, V being the voltage drop

across the heater, and I being the dissipated heater current.

Error in Thermal Conductivity Measurements Similar to the errors for the high

pressure resistance measurements, the equations involved in the thermal conduc-

tivity setup are products of various measured parameters. As a result, the errors

for the setup is determined by

σλ =
√

σ2
L + σ2

∆T + σ2
V + σ2

I + σ2
T + σ2

W + σ2
γ (5.11)
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with the sample dimensional errors determined in the same manner as before.

The temperature and power errors are determined through statistical errors in the

values and measurement errors in the Keithley multimeter recording them.

Seebeck Coefficient Measurement

The measurement process for the Seebeck coefficient is a well documented pro-

cess. This process is decribed in several papers, including Polvani et al. [41]. By

measuring the potential difference between the two matched thermocouple wires

(i.e. the two alumel or chromel wires), the sample thermopower can be determined

through the following line of reasoning. The thermopower of each respective con-

tribution can be related as

Ss − SA,C =
∆EA,C

∆T
(5.12)

with the subscripts being for samples (s), alumel (A), or chromel (C) and ∆T being

the temperature difference between the two. By combining these two equations,

the final sample thermopower is

Ss =
SA − rSC

1− r
(5.13)

with r being the ratio of the alumel potential difference to the chromel (r = ∆VA

∆VC
).

In this equation, the Seebeck coefficients of the thermomaterials used is a function

of the average sample temperature. As the temperature of the sample changes, the

Seebeck coefficient of the thermoelements changes also. To account for this, data

was taken from Bentley [42] and Wang et al. [43] to provide curves for the Seebeck

coefficient of alumel and chromel as a function of temperature. In this manner, the

computed value of the Seebeck coefficient is compensated for the change in the

value for the thermocouple leads. The effect of pressure on the Seebeck coefficient

of the thermocouples has been disregarded as it amounts to less than the standard
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measurement error in the K type thermocouples used (K type standard error = 2.2

degrees C [42], pressure correction ≈ 2 degrees @ 10 GPa [44]).

Errors in Seebeck Coefficient Measurements Errors in the Seebeck Coefficient

can be determined in the usual manner, through the derivative of the previous

equation. By taking the derivative of this equation, the error is shown to be

σα = (
−SC

1− r
−

SA − r ∗ SC

(1− r)2
)
√

σ2
VA

+ σ2
VA,Null

+ σ2
VC

+ σ2
VC,Null

(5.14)

with the term in the square root being σr and the first term being ∂α
∂r

, since r is the

only variable parameter in this equation.

Setup of Measurement

To actually perform these measurements at high pressure, the following proce-

dure was used. The gasket materials are prepared, as described previously. First,

a six mm disk of the pyrophyllite is taken and, using a special gasket punch, has

a two mm disc removed from the center. This annulus is centered and adhered on

the working face of the anvil using superglue. Following this, one of the steatite

disks is subjected to the same process, with the two mm disc used to fill in the area

of the pyrophyllite disc already adhered to the anvil. This produces the lower half

of the gasket.

A pellet of the sample of interest is prepared and a bar shaped segment is cut off

to dimensions roughly around the design sample size for this system (1.5 (L) x 1.0

(W) x 0.15 (T) mm). A recess is carved into the steatite medium on the anvil to allow

the sample to sit slightly above the surface of the bottom half gasket. Once the

sample is placed inside this recess, grooves are carved in the gasket material from

the sample boundary out to the edge of the gasket to allow for lead placement.

These grooves are carved deep enough that the leads sit uniform with the top of
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the gasket. This prevents pinching of the leads during the initial pressurization of

the cell.

The leads are adhered to cut pieces of tape on the anvil surface outside the

pressurization region. Following this, a pyrophyllite annulus and steatite filler are

prepared in the same fashion as before. The pyrophyllite annulus’s hole is cen-

tered over the sample chamber and already assembled steatite filler and adhered

to the top of the lower gasket. Care is made here to ensure that superglue does

not flow into the grooves carved for the leads. Once the pyrophyllite is adhered to

complete the retaining gasket, the inner steatite disc is stamped into place and the

experimental setup on the anvil is ready.

The anvil is then carefully lowered into the cell housing. The leads are pulled

out through one of the side ports for the system and attached to the appropriate

connectors. The thermocouple leads are taken and matched with the opposite lead

to complete the thermocouple circuit and the thermocouples are connected to the

home-built thermocouple amplifier and switch box. For the heating element, the

power controller box is connected to horseshoe connectors and the stripped ends of

the copper leads from the heating element are placed on top of these horseshoes.

These fit into specially made standoffs attached to the side of the cell housing.

The plastic standoff ensures that the heater current does not short through the cell

housing. The upper anvil is lowered and fixed in place and the rest of the cell

assembled.

Equipment used in the Measurement Process Using the setup described above,

the measurements were taken using a variety of both home-built and store-bought

equipment. The system uses the following store-bought equipment for measure-

ment purposes:

1. Lakeshore Model 370 AC Resistance Bridge: used for the measurement of

52



sample resistance.

2. Keithley Model 2000 Multimeter with 10 channel switch: used for the mea-

surement of pressure, temperature, voltage drops, and current.

3. Transducer: used to convert applied pressure to a voltage.

4. Keithley Model 2100 Sourcemeter: used to control internal heating element.

5. Stepper Motor: used to automatically increase pressure applied to system.

6. Carver Presses 25 Ton Hydraulic Benchtop Press: used to apply the pressure.

With regards to the home-built equipment, with the assistance of the Physics and

Astronomy department’s electrical engineer, Bill O’Donnell, the following equip-

ment was developed

1. Stepper Motor Controller: used to control the stepper motor from the com-

puter.

2. Transducer Power Supply and Converter: used to power the pressure trans-

ducer and read the current pressure out from the multimeter.

3. Heater Control Box: used to control the power ouput to the heater and read

the dissipated current and voltage drop across the heater.

4. Thermocouple Amplifier and Switch Box (TC Amp): used to relay the ther-

mocouples for resistance readings (to the AC bridge) and amplify the signal

to measure the needed temperature and voltage drops.

Measurement Process All of the data collected by the system was collected and

recorded with the use of a specially built LabVIEW program. This program takes
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input parameters (sample dimensions, heater power steps, and pressure incre-

ments) from the user and performs the experiments in a semi-automated fashion.

The logic process used for this measurement process is as follows:

1. Program takes input parameters and calculates pressure intervals for use in

the program.

2. Program increases pressure to first measurement point, specified by user, by

turning the stepper motor.

3. The heater power is then increased, in the previously defined steps, with

measurements being taken at each step to the maximal value.

4. At each step, the system switches the TC Amp to resistance mode and passes

the thermocouple leads through the box to the AC Bridge.

5. After the specified number of readings are taken, an average and standard

deviation are computed and stored for later writing to the data file.

6. The TC Amp then switches back to temperature/potential drop mode and

measures the temperatures of each thermocouple, the offset for the poten-

tial voltage, and the potential drop across the sample for each pair of wires

(alumel and chromel) and then writes out all the values for that temperature

to the data file.

7. After completing the heater sweep up and down, the system increases to the

next pressure setpoint and repeats the process, until the maximum pressure

is reached.

The output for this program appears as shown in Figure 14. This lists all of the

measured properties, in the order that is listed in the column header. This is then

processed using a code written in Mathematica, resulting in data that appears in
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Figure 15. The result of this processing creates the plots in the results chapters. In

each of these, one measurement set is highlighted.

Figure 14 Example of Output for Transport Measurements

Figure 15 Example of Results for Transport Measurements

Ambient Pressure Transport Measurements

The theory used for the ambient pressure transport measurements is identical

to that used for the high pressure transport measurements. The only major change

is in the form of the coupling constant γ. This now takes on a value of
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γ =
1

5
∗

Wsam ∗ Tsam

Wheaterface ∗ Theaterface
(5.15)

with the numerical fraction from the ratio of the applied face of the heater versus

the total surface area. A large bar shaped sample is prepared of the sample material

and thermocouples are adhered to the ends of one face with a silver based epoxy.

This sample is then adhered, with the same epoxy to the flat surface of the resistive

heater. The epoxy is annealed in between each of the previous steps for maximal

stability and tested after the sample adhesion for electrical contact. The sample

setup, with the sample adhered perpendicular to the face of the heater, is placed

inside a vacuum oven and connected to the measurement apparatus for the high

pressure measurements. The oven is evacuated to a level of 20 inches of mercury

(≈ 250 torr). The system is then started and measures the properties in the same

fashion used for the high pressure measurements. A picture of the resistive heater

inside the oven is shown in Figure 16.

Figure 16 Ambient Pressure Setup for Transport Properties
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CHAPTER 6

SYSTEM CALIBRATION TESTS: NICKEL, ALMANDINE GARNET, AND ZINC

This chapter presents the results of three materials used to confirm the capabil-

ities of the system developed and the methods used. The materials were chosen

on the availability of reference data and, more specifically, for their thermal con-

ductivity values. The almandine garnet and zinc samples were chosen as specific

tests of the measurement theory behind the thermal conductivity and the Nickel

sample was chosen as a comprehensive test of the systems abilities. As such, the

discussion will begin with the zinc and garnet samples before moving into the

nickel sample results.

Zinc Calibrant

The first calibration sample used was zinc. The zinc sample was prepared by

taking a piece of bulk zinc and cleaving a piece of it into the appropriate dimen-

sions for the measurement system. It was loaded in the manner described in the

previous chapter. For this sample and the garnet sample, the measurement was

repeated three times with the results averaged. Zinc was chosen due to the re-

ported ambient value of its thermal conductivity being around 116 W/m-K, with

the Steatite thermal conductivity being approximately 2.44 W/m-K. This means

that the system would be operating in the unguarded setup mentioned in the pre-

vious chapter. The results of the measurement are shown in Figure 17. These

results are compared with results reported by Jacobsson et al.[45]. In his paper, he

reports results for his experiment and work done by Bridgman.

The work reported by Jacobsson and Bridgman covers the pressure range up to

2 GPa. However, the data collected by this system agrees well with the previously

reported values and the trend for the thermal conductivity agrees within the error

of the measurement.
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Figure 17 Thermal Conductivity of Zinc

Almandine Garnet Calibrant

The second calibration sample run was almandine garnet. The sample was

graciously provided by Dr. Clay Crow of the UNLV Geoscience department. This

sample was cut on a diamond saw to acceptable dimensions for the measurement

system. In this case, almandine garnet has a thermal conductivity value under am-

bient conditions being approximately 3.4 W/m-K. Since the thermal conductivity

for this sample is nearly the same as the gasket materials, this material can be used

to verify the guarded hot wire setup of the system. The results of the measure-

ments on this material are shown in Figure 18. These results are compared with

the work of Osako and Ito [46].

In this figure, as with the zinc sample, the errors are determined from statistical

variations of the measured quantities. It can be seen that for low thermal conduc-

tivity materials, the agreement is reasonably good between the two experiments.

It would be expected that the error originating from Osako and Ito’s data would

be lower than the error resulting from this work, as their experiment involved
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Figure 18 Thermal Conductivity of Almandine Garnet

transient measurements. However, these two samples show that the thermal con-

ductivity measurement setup is capable of reasonably consistent measurements of

the thermal conductivity.

Nickel Calibrant

In order to verify that the system as a whole is capable of measuring reason-

able values for the material parameters of interest, a nickel calibrant sample was

used. The nickel calibrant was obtained from Alfa Aesar with a purity of 99.994

percent. From this, two samples of the appropriate dimensions were cut and the

setup prepared with each. For the nickel sample, the heater cycling was tested

with a maximal dissipated heater power of approximately 14 W.

It should be noted that the electrical connections for the ambient pressure mea-

surements were made with solder, providing reasonable structural stability, but

this caused some problems with the stability of the resistivity measurements. As

such, the error bar for the ambient pressure resistivity measurement appear rather

large in comparison. The results of these experiments have been compared against
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results from Pu [47] and Sundqvist [48] (Resistivity), Ross et al. [49] (Thermal Con-

ductivity), and Chandra Sheekar et al. [50] (Seebeck Coefficient). Plots comparing

the results of these works with the results of this experiment are presented in Fig-

ures 19-21.
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Figure 20 Ni Thermal Conductivity
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Figure 21 Ni Seebeck Coefficient

As with the previous two samples, the results of this sample show reasonable

agreement with reference data. From these measurements, the ambient pressure
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Table 4 Ambient Pressure Transport Properties of Nickel

Property Measured Value Reference Value
ρ (µΩ - cm) 7.55 (83) 7.237 [48]
λ (W/m-K) 88.5 (70) 70 - 87.5 [52]
α (µV/K) -16.88 (2) -17.38 [50]

values were determined to be as shown in Table 4, compared with the previous

reference results. In addition to this data, the resistivity data can be used to get

an estimate of the Gruneisen parameter of nickel. This can be accomplished in

the following manner. As was mentioned in the chapter on electrical properties of

materials (Ch. 3), it is expected for metallic substances that equation 3.11 holds.

A graphical representation of this is shown in Figure 22. When the fit was per-

formed, statistical errors for the resistivity values were included. From this, it can

be obtained that the Gruneisen parameter should be equal to 1.86 (11), which is in

good agreement with the results of Bandyopadhyay et al. [51].
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Figure 22 Log-Log plot of Resistance versus Cell Volume for Nickel
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CHAPTER 7

SAMPLE RESULTS : BI2TE3

In this chapter and the following five, results for the samples measured in this

study are presented. This information will be organized in the following manner.

First, the heat capacity measurements and fit results will be presented. This will

be compared, when available, to reference data. Following this, the x-ray structure

measurements will be presented, including ambient values. Finally, the results

of the high and ambient pressure transport measurements will be presented and

compared with reference data, when available.

In this chapter, the focus will be on the established thermoelectric material

Bi2Te3. This material has been demonstrated to display the necessary qualities to

make it an effective thermoelectric material when doped to specific levels. How-

ever, fundamental studies on the undoped material have been rather sparse, leav-

ing some question as to whether the raw material itself is good or if the dopants

make it an effective thermoelectric. As such, it is of interest, from both basic theo-

retical and applied physics standpoints to investigate the material properties with-

out the intentional presence of dopants.

Ambient Pressure Heat Capacity

From the previously described setup for the PPMS system, the heat capacity

for Bi2Te3 has been measured on a 49.21 mg sample. This measurement was seg-

mented into two temperature regions, one from 2-250 Kelvin and one from 250-350

K, to account for a previously reported anomaly in the heat capacity of the ther-

mal grease used. As reported in a technical release from Quantum Design [53], the

heat capacity measured for Apiezon brand N-grease shown a significant anomaly

occuring around 280 K. To avoid an adverse effect on the data due to this, the tem-

perature range was divided and the upper temperature range was measured using
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Apiezon brand H-grease, which does not show this anomaly.

After collection of the data, the results were then analyzed with a Mathematica

program to determine a Debye fit to the data. This fit resulted in a Debye tem-

perature of 141 K ± 2 K and the curve shown in Figure 23. In this the measured

heat capacity at constant pressure was converted to constant volume using the

measured bulk modulus, molar volume, and temperature, and thermal expansion

data from Taylor [54]. This results clearly shows that, for all of the transport prop-

erties of this material, ambient temperature is in the high temperature regime. As

such, the theories that depend on this condition are valid.

0 50 100 150 200 250 300 350 400
0

20

40

60

80

100

120

140

 

 

 Converted C
p
 Data

 Debye Fit

C
v (J

/m
ol

-K
)

Temperature (K)

Figure 23 Heat Capacity of Bi2Te3

In addition to this, previous results on Bi2Te3 have been measured by Gor-

bachuk et al. [3]. A comparison of these results with the measured values show

a good agreement over the majority of the temperature region. It is unclear what

causes the sudden deviation in Gorbachuk’s values occuring around 65 K, but the

cause is likely experimental, as no trend has ever been reported for heat capacity

with this sudden drop.
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Figure 24 Comparison with Gorbachuk et al. Data [3]

Structure Measurements

Ambient Pressure

For use with the high pressure x-ray experiments, the ambient pressure charac-

terization was carried out using facilities in the Geoscience department at UNLV.

This characterization produced the diffraction plot shown in Figure 25. By using

Jade to analyze this pattern, it was found that the initial unit cell is a rhombohedral

structure in class R3m and has cell parameters as shown in Table 5. The ambient

pressure data has been found to be in good agreement with several temperature

related works on this material ([55], [56], [57]).

High Pressure

The high pressure measurements were performed as described in the experi-

mental details chapter. These measurements resulted in the discovery of two phase

transitions in the structure of Bi2Te3 under pressure. The pressure versus volume

data is shown in Figure 26 with the equation of state fits.
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Figure 26 Applied Pressure vs. Cell Volume for Bi2Te3

From the results of the measurements, it was determined that the high pressure

phase was likely the orthorhombic I222 space group. With the use of EOSFit, the

equation of state parameters for both were determined and are shown in Table 5

along with the cell parameter and volume data obtained from Jade. This data was
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Table 5 Bi2Te3 Structural Parameter Results

Parameter R3m I222
a (Å) 4.3860 (8) 11.66 (1)
b (Å) 4.3860 (8) 4.819 (1)
c (Å) 30.46 (1) 7.467 (1)

V0 (Å3) 507.5 (1) 445 (2)
B0 (GPa) 56.2 (1) 112 (6)

B
′

0 2.1 (3) 6.01 (63)
Transition Pressure (GPa) 7.8 16

fit using a 3rd order Birch-Murnaghan equation of state fit, which has the form

P (V ) =
3B0

2
((
V0

V
)7/3 + (

V0

V
)5/3)(1 +

3

4
(B

′

0 − 4)((
V0

V
)2/3 − 1)). (7.1)

In this table, the final row presents the pressure where the next phase of the sample

appears. The high pressure data for this sample was measured out to 20 GPa and

there is evidence of another phase transition that occurs around 16 GPa. However,

there is not enough data taken to obtain anything useful regarding this structure.

For the high pressure work, previous results published by Vereshchagin et al.

[58] and Khvostantsev et al. ([59],[60]) both report a resistive phase transition in the

Bi2Te3 structure occuring between 6.5 and 8.0 GPa. In these reports, studies on the

hydrostaticity of the measurement is not presented, so it is likely that this varia-

tion in the transition pressure is due to non-hydrostaticity of the pressure medium.

Regardless, the transition pressures reported in these two works agree well with

the measured transition pressure from this work. As neither work involved struc-

tural determinations of this material, it is impossible to test the agreement at this

point that the new structure is truly the I222 structure. However, the transitions

have been shown to be reproducible from x-ray work presented by Nakayama et

al. [61].
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Further investigations of the structure can take us to the ETT anomaly analy-

sis, presented in Chapter 3. Using equations 3.16 and 3.17, it becomes possible to

identify changes in slope of these state equations. A change in slope has been pro-

posed to be indicative of this type of transition in the material. To determine this,

the collected data has been converted and the plot is shown in Figure 27.
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Figure 27 ETT Equation of State Plot for Bi2Te3

This figure demonstrates that, for the initial phase of the material, there is a

discontinuous slope occuring around X = 0.0225, or a pressure of P ≈ 3 GPa. This

particular slope change is more obvious in the Holzapfel equation of state than in

the Vinet equation of state and is only slight in both cases. Furthermore, previ-

ous measurements by Itskevich et al. [62] and theoretical calculations by Larson et

al. [12] support the existence of this type of discontinuity and the potential for an

ETT. The work of Khvostantsev et al. [59] also has a measured phase line occuring

around this pressure value, as measured in his resistivity work. Nakayama et al.

[61] has come to the conclusion that there is some change in the electronic interac-

tions of this material as the pressure is increased. They measured that the structure

of this material has one bulk modulus value when the applied pressure does not
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increase above 2.5 GPa and takes on a completely different value when P is in-

creased above this point. As a result, there is very strong evidence that something

occurs in Bi2Te3 at this pressure, but further work needs to be done to understand

more completely what is occuring.

High Pressure Transport Properties

Using the setup described in the previous chapters, the high pressure resistivity,

thermal conductivity, and Seebeck coefficient were measured in the range from

ambient to 10 GPa. The results of these measurements are shown in Figures 28

and 29, with the ambient pressure values shown in Table 6.
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Figure 28 Resistivity and Seebeck Coefficient versus Pressure for Bi2Te3

Resistivity For the electrical resistivity, the pressure trend has been compared

with results from Vereshchagin[58] and shows a reasonable level of agreement, as

shown in Figure 30. In the data measured here, there is a shoulder between 2 and

4 GPa, corresponding reasonably well to the structure anomaly. In addition to this,

there is another discontinuity in the resistivity occuring around 8 GPa, with corre-
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Figure 29 Total and Electronic Thermal Conductivity versus Pressure for Bi2Te3

Table 6 Average Ambient Pressure Transport Properties for Bi2Te3

Property Measured Value
ρ (mΩ-cm) 5.35 (2)
λ (W/m-K) 2.47 (17)
α (µV/K) -91 (10)

lates well with the structural transition found in this work and by Nakayama[61].

Seebeck Coefficient The ambient pressure value measured for the Seebeck coef-

ficient of Bi2Te3 has been found to be in good agreement with the values reported

previously ([63],[64]). In addition to the anomaly in the resistivity data, the effect

of pressure on the Seebeck coefficient of this material shows a rather pronounced

shoulder, occuring around the location of the proposed ETT. It should also be noted

that there is no evidence in this property of the phase transition around 8 GPa. This

suggests that, in Bi2Te3, the structural phase transition preseves the ratio of the po-

tential difference to the temperature difference. This can be checked by using the

following relation
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α ∝
∆V

∆T
=

Iρλ

P
(7.2)

where I is the current, P is the heater power, and ρ and λ are the electrical resistivity

and thermal conductivity, respectively. A plot of ρλ is shown in Figure 31. As can

be seen in this plot, this slope remains unchanged between 7 and 9 GPa. This is a

very interesting result, as there is no reason to expect that a structural change in

the material will alter the electrical and thermal conductivity is such a way as to

leave the Seebeck coefficient unchanged.

Despite these interesting results, the data collected in this work does not agree

with the work of Ovsyannikov et al. [65]. The results from Ovsyannikov’s work

show that, for a p-type single crystal, the Seebeck coefficient increases to 2 GPa,

with vast swings in the value between 3 GPa and the limit of his experiment (8

GPa). It is unclear at this point what the cause of the discrepancy is, but it is likely

due to differences between the properties of the p-type material and the undoped

material and possibly due to differences between the pelletized powder sample
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Figure 31 ρλ versus Pressure for Bi2Te3

and the single crystal sample. Another possible cause for this is non-hydrostaticity,

which has been reported to cause conflicting results. An example of such a conflict

can be seen between the results of Vereshchagin[58] and Einaga[66], as both use

a multi-anvil apparati with solid pressure media (which is known to be quasi-

hydrostatic at best). Regardless of the cause, the fact that a difference is present

merits further investigation.

Going beyond this, for a semiconducting material (or even a semimetal), it is

possible to gain information regarding the shift in the position of the Fermi energy

with pressure from equation 4.11. From this equation, a pressure derivative can be

taken, which will relate the pressure slope of the Seebeck coefficient to the pressure

slope of the band gap energy. In this case, by band gap energy, the reference is to

the position of the Fermi level relative to the bottom of the conduction band. This

derivative results in

∂∆E

∂P
= −eT

∂α

∂P
(7.3)
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with e being the fundamental charge, T being the temperature of the system, and

∆ E being the band gap energy, as previously defined. This can be altered, by re-

moving the fundamental charge constant, to result in energies in electron volts. By

doing this, the result for Bi2Te3 is that the Fermi energy shifts towards the conduc-

tion band at a rate of 2.22 meV/GPa. As such, the carrier concentration in the ma-

terial is increasing with pressure. This can be concluded based on the fact that the

decreasing distance between the conduction band and the Fermi level will make

the thermal energy required to overcome the remainder of the band gap larger.

Thermal Conductivity The thermal conductivity of Bi2Te3 with pressure is shown

in Figure 29, and has been found to agree well with reports from Goldsmid [67] re-

garding the ambient pressure value for near intrinsic forms of this material. In

this figure, it is easily noted that the total thermal conductivity of this material has

a drastic change in slope occuring between 3 and 4 GPa. As with the previous

two properties, this corresponds well with the reported occurence of the electronic

topological transition and with the measured anomaly in the structure and resis-

tivity. This is interesting as it suggests that the phonon dynamics change in con-

junction with the Fermi surface shape for this material. In addition, the structural

transition shows a rather pronounced decrease in the thermal conductivity. It is

found by converting the electrical resistivity to the electronic thermal conductivity

through equation 2.11 that the high pressure phase of Bi2Te3 displays strong evi-

dence of a trend towards metallic behavior. As such, it would be of great interest

to investigate the second high pressure phase to see if this trend continues.

In addition to this information, it is possible to estimate the lattice thermal con-

ductivity of this material. This is accomplished by subtracting the electronic com-

ponent of the thermal conductivity from the total thermal conductivity. By doing

this, the result is plotted in Figure 32. From this plot, it is seen that the ambi-
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ent value appears to be somewhat high, or the phonon relaxation time decreases

rapidly under slight stress. From this, the value recovers and shows a slight in-

crease with pressure. If only the slight increase between 1 and 3 GPa is considered,

the slope of ln(λlat) versus P is found to be 0.102 ± 0.011, which is in close agree-

ment with the theoretical model of Hofmeister presented in chapter 2 with the

numerical constant being 6 (∂ln(λlat)
∂P

= 0.107). From this point, the effects of the

phase transition on the lattice conductivity is pronounced, as it increases dramat-

ically until the phase transition. From this pressure onward, the value decreases

steadily with further application of pressure.
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Figure 32 Lattice Thermal Conductivity of Bi2Te3

Conclusions

Depsite this occurance, this trend suggests that the higher pressure phases

should be expected to become less useful for devices with increasing pressure.

This is due to the discussion in the theoretical chapters regarding metallic sub-

stances. The lack of an ability to support a substantial potential difference, the
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high thermal conductivity, and the trend towards metallic behavior all suggest

that the optimal structure for this material is the ambient pressure form, or a neg-

ative pressure form. This could be achieved with the addition of atoms to force

the lattice further apart than it currently is. From the data taken, the overall trend

for the figure of merit parameter, ZT, is shown in Figure 33. It is easily seen in

this figure that the ZT for this material decreases from 0-2 GPa. The occurence of

the structural anomaly in the material improves the thermoelectric performance,

but further increase of the applied pressure destroys this enhancement and makes

Bi2Te3 a rather ineffective thermoelectric, decreasing the performance by a factor

of 10.
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Figure 33 ZT versus Pressure of Bi2Te3

It has further been found by Fleurial et al. [4] that the effect of the liquidus

composition of the melt material has a dramatic effect on the figure of merit of the

material. As such, the doping of the material has been demonstrated to have a

strong effect on the resulting thermoelectric material. The graph presented in his

paper regarding this is shown in Figure 34, with the bottom axis being the liquidus

composition of the melt.
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Figure 34 Figure of Merit versus Liquidus Composition [4]

As this graph shows, the doping of the material, whether intentional or not, has

drastic effects on the thermoelectric performance of the resultant material. This

lends further support to the previous result regarding the measured Seebeck coef-

ficient from this work and that presented by Ovsyannikov et al., with the difference

being likely due to the p-type nature of their single crystal. This also shows that

a slightly more n-type melt results in a significant improvement in the figure of

merit over the undoped sample.

There are several other reports regarding either solid solutions or doped ver-

sions of Bi2Te3 in various compositions. One of these that holds some particular

interest is the report by Zhu et al. [5], in which solid solutions of PbTe with this

material are investigated. This is of particular interest as PbTe has been shown

to demonstrate remarkable thermoelectric properties in the nanoscale form, as re-

ported by Harman et al. [9]. The resutls show that alloys of this type have no

significant effect on the overall thermal conductivity, but can improve the electri-

75



cal properties of the composite over PbTe on it own. Further, if the alloying is

not done to a large degree, this can result in no significant change to the Seebeck

coefficient, creating a material with a ZT that is better than that of undoped Bi2Te3.

Figure 35 Figure of Merit versus molar percent Bi2Te3 [5]

Finally, there has been some interest in doping single crystals of Bi2Te3 with Ga

[6]. In the work cited, they show that this doping can be used to shift the temper-

ature at which the material performs the best, to higher temperatures. The price

of this is that the maximal value at that temperature decreases with the increasing

dopant level. To compare these results with the data in this work, it is necessary

to use what is called the thermopower of the sample measured here. This prop-

erty is the Seebeck coefficient divided by the electrical resistivity and results in the

plots below, with the data from the reference put in as a function of temperature.

The doping levels of the individual samples is shown in Table 7, with the undoped

sample being p-type. Some of the samples measured in the reference work are n-

type, with the data in the graph being the absolute value relative to the starting

value.

It is interesting to note that the undoped sample used in this work exhibits a

resistivity close to that of both the p and n-type samples with dopant levels around

0.4 molar percent Ga. However, it is seen easily that the dopant level significantly

76



Table 7 Doping Level of Bi2Te3 with Ga [6]

Sample molar percent Ga
1 0.00 (p-type)
2 0.31 (p-type)
3 0.34 (p-type)
4 0.41 (n-type)
5 0.46 (n-type)
6 0.70 (n-type)
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improves the Seebeck coefficient values over the undoped samples.
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CHAPTER 8

SAMPLE RESULTS : SB2TE3

In this chapter, the discussion will focus on the results of experiments involv-

ing Sb2Te3. This material shows specific promise not on its own, but alloyed with

other thermoelectric materials. It has been shown experimentally, by Venkatasub-

ramanian et al. [68], that thin film alloys between this material and Bi2Te3 show

strong promise as efficient thermoelectric materials. As such, an investigation of

its properties under pressure was performed in an effort to better understand the

structure and properties of this material.

Heat Capacity

The heat capacity of Sb2Te3 has been measured, using the previously described

setup, on a 54 mg sample. This was measured in the range from 4 K to 390K. The

resulting data is plotted in Figure 38 with a Debye temperature fit to the data. The

fit resulted in an overall Debye temperature of 177.8 ± 1.5 K. As with Bi2Te3, the

measured bulk modulus, molar volume, and temperature were used to convert

from constant pressure to constant volume heat capacity. As there was no readily

available thermal expansion data on this material, it was assumed that the thermal

expansion coefficient was the same as that for Bi2Te3. While this is likely not the

case, it at least provides an estimate for the Debye temperature of this material.

This sample also lies in the high temperature regime for theoretical purposes.

Structure Studies

Ambient Pressure

As with Bi2Te3, Sb2Te3 crystallizes into the R3m structure under ambient con-

ditions. The structure was measured and verified using the facilities in the Geo-
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Figure 38 Heat Capacity versus Temperature for Sb2Te3

science department at UNLV. The ambient pressure pattern is shown in Figure 39,

with the hkl indicies for some of the peaks shown.
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Figure 39 Ambient Pressure Diffraction Pattern for Sb2Te3
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High Pressure

With the application of pressure to the material, it was found that the ambient

pressure structure remains until the pressure exceeds 9.5 GPa. At this point, the

structure undergoes a similar transition to that seen previously in Bi2Te3. It was

found that the orthorhombic high pressure structure remains until 20 GPa, where

there is another transition. This second high pressure phase is similar to the second

high pressure phase for the Bi sample and was indexed to the orthorhombic Ima2

space group. However, there was not enough data to make a reasonable fit for the

equation of state of this material. The pressure-volume data and Birch-Murnaghan

equation of state fits are shown in Figure 40. Cell data and fit results are shown

in Table 8. It was found with this material that release of pressure returns it to the

ambient pressure structure.
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Figure 40 Applied Pressure vs. Cell Volume for Sb2Te3

Previous results regarding structural measurements from Sakai et al. [69] agree

with the change of structure occuring around 9 GPa, but do not fit the structure.

There is also evidence of a structure anomaly in this material, as can be seen in Fig-
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Table 8 Sb2Te3 Structural Parameter Results

Parameter R3m I222
a (Å) 4.265 (1) 3.466 (2)
b (Å) 4.265 (1) 9.436 (5)
c (Å) 30.45 (1) 11.725 (7)

V0 (Å3) 479.0 (6) 440.4 (15)
B0 (GPa) 30.2 (14) 61 (3)

B
′

0 9.4 (11) 3.4 (4)
Transition Pressure (GPa) 9.5 20

ure 41. The marked point corresponds to a pressure of approximately 2.5 GPa. This

is in good agreement with the theoretical results of Larson [30] and of Bartkowiak

et al. [70]. The resistivity results of Khvostantsev et al. [60] also support this

anomaly’s occurance.
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Figure 41 ETT Equation of State Plot for Sb2Te3
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High Pressure Transport Properties

The results from the high pressure transport experiments are shown in Figures

42 and 43. The ambient pressure results for the transport properties were found

to be as shown in Table 9. It was found that these values agree well with pre-

vious reports from Sakai et al. [69] (Resistivity) and Ibrahim et al. [71] (Seebeck

Coefficient). The thermal conductivity value was found to agree well with the ex-

trapolated trend from Ismaiylova et al. [72].
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Figure 42 Resistivity and Seebeck Coefficient versus Pressure for Sb2Te3

Resistivity The resistivity of this material is shown to decrease is an uniform

fashion with applied pressure up to 9 GPa, where the resistivity makes a substan-

tial jump corresponding to the structural phase transition. In the case of this sam-

ple, there is no obvious evidence from the resistivity corresponding the the pro-

ported ETT for this material. The pressure trend for this material is also found to

be consistent with the results of Sakai et al. [69], as is shown in Figure 44. It is also

found to be consistent with the results of Khvostantsev et al. [60].
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Figure 43 Total and Electronic Thermal Conductivity versus Pressure for Sb2Te3

Table 9 Average Ambient Pressure Transport Properties for Sb2Te3

Property Measured Value
ρ (mΩ-cm) 2.42 (1)
λ (W/m-K) 1.22 (8)
α (µV/K) 89.5 (54)

Seebeck Coefficient As is shown in Figure 42, the Seebeck coefficient of Sb2Te3

shows some interesting pressure effects. First, the initial upturn in the value of

the Seebeck coefficient occuring at low pressures. This particular occurence may

be evidence for the ETT theorized for this material. However, it does not correlate

with the structural anomaly and occurs at a much lower pressure than supposed

by theory. In addition to this, there is a marked change in the Seebeck coefficient

occuring at nearly 8 GPa. It is the supposition here that this is due to the structural

transition, despite the fact that the structural transition occurs at a slightly higher

pressure. It seems plausible the precursors to a structural transition would man-

ifest in the electrical and thermoelectic properties of a material, with the Seebeck
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coefficient and resistivity being reasonable indicators. As with Bi2Te3, a plot can

be made with the resistivity times the thermal conductivity. This plot is shown in

Figure 45. As can be seen in the plot, one would expect that the Seebeck coeffi-

cient would display interesting behavior at pressures of 0.5 GPa and 9 GPa. While

the second point doesn’t match exactly with the upturn in the Seebeck coefficient

plot, it does agree fairly well with the phase transition. The first point, however,

reproduces the initial upturn in the Seebeck coefficient. It is reported, in the theo-

retical work mentioned previously, that the reason for the interesting low pressure

behavior is due to the collapsing of the band gap in this material under the initial

pressurization of the material.

As the sign of the Seebeck coefficient is positive, this indicates p-type conduc-

tion in the material. In this case, the energy gap defined in Chapter 7 is the distance

between the top of the valence band and the Fermi energy, since for p-type mate-

rials, the Fermi energy is closer to the valence band. It was found from a fit of the

Seebeck coefficient data, that the Fermi energy is moving towards the valence band

at a rate of 1.60 meV/GPa below 8 GPa. Once the system passes the structural tran-
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Figure 45 ρλ versus Pressure for Sb2Te3

sition effect, the rate increases to 2.49 meV/GPa. In both cases, the decrease of the

distance between the valence band and the Fermi energy, along with the decrease

in the electrical resistance of the material, suggest a trend towards metallicity.

Thermal Conductivity The thermal conductivity of Sb2Te3, as shown in Figure

43, shows no particular discontinuities in the pressure trend. In conjunction with

this, the electronic component of the thermal conductivity, calculated using equa-

tion 2.11, shows the obvious discontinuity associated with the phase transition.

This suggests that the phonon structure of the material compensates for the changes

in the electronic structure at the phase transition. In addition, the similarity be-

tween the slope of the electronic thermal and total thermal conductivities suggests

that this material is trending towards metallic behavior. As such, it would be ex-

pected that the second high pressure phase would likely become metallic.

As with Bi2Te3, the lattice component of the thermal conductivity was com-

puted for this material and is shown in Figure 46. It was found that the lat-

tice shows an increasing level of thermal conduction with pressure. In addition,
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there is no obvious change correlating with the phase transition, suggesting that

the phonon structure is unaffected by the transition. This material was found to

show a slope for ln(λlat) versus P of 0.076 ± 0.004 W/m-K-GPa, which is less than

Hofmeister’s [22] theory with a theoretical value of between 0.133 (n=4) and 0.199

(n=6), where n is a numerical constant with no set value (although theorized to be

either 4 or 6).
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Figure 46 Lattice Thermal Conductivity of Sb2Te3

Conclusions

From the results on this sample, it is easily seen that, as with Bi2Te3, the ambient

pressure structure has the better thermoelectric potential than the higher pressure

phase. This is clearly demonstrated on inspection of the plot of ZT versus pressure

in Figure 47. In contrast with the results from Bi2Te3, Sb2Te3 shows some initial im-

provement while compression is still in the low pressure region of this experiment.

This would suggest that the optimal properties for this material would be realized

with a slightly smaller structure than the ambient pressure structure has. In addi-
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tion, the initial evidence of the phase transition in the Seebeck coefficient causes an

obvious anomaly in the ZT parameter, returning the transitioning structure to an

efficiency nearly that of the slightly strained structure.
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CHAPTER 9

SAMPLE RESULTS : BISBTE3

In this chapter, the discussion turns to a solid solution between the previous

two materials. It has been reported in several places that solid solutions of these

two materials show improved thermoelectric performance over the individual com-

pounds. As such, it was deemed important to investigate the structure and trans-

port properties of the solid solution to further quantify the lattice and electron

dynamics in these materials.

Sample Synthesis

The material prepared and used for this sample was created by using a 50:50

ratio of Bi2Te3:Sb2Te3 mixed in an agate mortar and pestle until finely ground. The

material was then pelletized and reacted at 850 degrees C for 2 days, then annealed

at 550 degrees C for 6 days. Another batch of the powder was prepared in the

same manner and mechanically ball milled for 9 hours. It was found that the ball

milled material resulted in a better end sample than the solid state reaction did.

As a result, the ball-milled material has been used for all subsequent experimental

procedures.

Heat Capacity

The heat capacity of this material was measured in the temperature range from

2 to 390 K, using the method described in the previous chapters. The results for

this sample are shown in Figure 48, with a Debye temperature of 224.4 ± 2.4 K. Al-

though the Debye temperature is only 60 K below ambient, this is still enough for

the assumption that the material is in the high temperature limit for the purposes

of the transport experiments. As with Sb2Te3, there was no thermal expansion

data available to convert from constant pressure to constant volume heat capac-
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ity. It was assumed that the thermal expansion values of Bi2Te3 should be roughly

applicable to this sample also.
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Figure 48 Heat Capacity of BiSbTe3

Structural Characteristics

Ambient Structure

The ambient pressure structure for this material was found to be the hexagonal

space group R3m (166), with cell parameters as presented in Table 10. The ambient

pressure pattern with peak indices is shown in Figure 49. This pattern was found

to match reference patterns [73] available in the x-ray software.

In the heat capacity section of this chapter and the previous one, it was assumed

that the thermal expansion data for Bi2Te3 would be applicable to both samples.

This can be justified in part through the use of Vegard’s law. As can be seen in

Figure 50, there exists a linear relationship between the unit cell volume and the

fractional percentage of Sb2Te3 (or the Bi sample), which makes Vegard’s law valid

for this group of samples. It is therefore possible to assume that the thermal expan-
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Figure 49 BiSbTe3 Ambient Diffraction Pattern

sion coefficient for the solid solution and the antimony variant would be similar to

that for the bismuth sample, although the numerical value is likely different.
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Figure 50 Cell Volume versus Sb2Te3 concentration
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Table 10 BiSbTe3 Structural Parameter Results

Parameter R3m I222
a (Å) 4.333 (3) 11.581 (17)
b (Å) ————– 4.787 (7)
c (Å) 30.38 (1) 7.498 (15)

V0 (Å3) 494.14 (58) 441.06 (97)
B0 (GPa) 56 (2) 100.6 (29)

B
′

0 5.27 (84) 6.15 (31)
Transition Pressure (GPa) 7.3 ————–

High Pressure Structure

It was found under compression that this material transforms, as the two par-

ent compounds do, to an orthorhombic structure, with the best fit being the I222

space group. This was determined to occur at around 7.3 GPa. The limit for the

experimental study done here was 18 GPa and it was found that the high pressure

I222 structure remained until the limit of the experiment. It is not unreasonable

to expect that the transition seen in the parent compounds would occur with this

material also. The equation of state fits were done to a Birch-Murnaghan equation

of state, with the initial unit cell parameters and the fitted parameters presented

in Table 10. A plot of the measured data and the equation of state fits is shown in

Figure 51.

It is interesting to note that the evidence present in the previous two samples

regarding an ETT does not appear in this material. This can be seen on inspection

of Figure 52. The lines can be fit directly to the equations of state without any

obvious change in slope, suggesting that there is no change in the Fermi surface of

this material with increasing pressure.
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Figure 51 Applied Pressure vs. Cell Volume for BiSbTe3
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Figure 52 ETT Equation of State Plot for BiSbTe3

High Pressure Transport Properties

The results of the high pressure transport measurements are shown in Figures

53 and 54. The measured ambient pressure values are reported in Table 11. These

values have been compared with references and show good agreement with Kul-
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bachinskii et al. [7] and Jeon et al. [74] for the Seebeck coefficient and the resis-

tivity. The reported thermal conductivities vary between 0.99 W/m-K (Kulbachin-

skii) and 1.7 W/m-K (Jeon). The discrepancy between the values is reported to be

strongly related to growth conditions of the material, as reported by Cosgrove et

al. [75]. Regardless, the measured value here is in the range of values reported

previously.

0.0 1.5 3.0 4.5 6.0 7.5 9.0

0.9

1.0

1.1

1.2

 
 

P (GPa)

 (m
-c

m
)

0

25

50

75

100

125

 (
V/K)

Figure 53 Resistivity and Seebeck Coefficient versus Pressure of BiSbTe3

Resistivity It can be seen, in Figure 53, that the measured resistivity for this ma-

terial is found to decrease in a nearly linear fashion with pressure. Unfortunately,

there are no references to verify this trend, as this appears to be the first time that

this material’s transport properties have been measured as a function of pressure.

It is interesting to note that the structural phase transition does present some ev-

idence in the resistivity, with a temporary halt on the decrease of the resistivity

between 7 and 8 GPa. The cause of the initial drop in the resistivity is unknown at

this point, but is likely due to contact effects in the ambient setup.
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Figure 54 Total and Electronic Thermal Conductivity versus Pressure of BiSbTe3

Table 11 Average Ambient Pressure Transport Properties for BiSbTe3

Property Measured Value
ρ (mΩ-cm) 1.16 (5)
λ (W/m-K) 1.45 (10)
α (µV/K) 111 (17)

Seebeck Coefficient Evidence of the high pressure structural transition is more

prominent in the Seebeck coefficient results, in Figure 53. Inspection of this figure

shows three interesting features. First, between ambient and 2 GPa, the trend of

the Seebeck coefficient is curved more than the regon between 2 and 5 GPa. The

turnaround point is interesting as it corresponds to no particular occurance in the

structure of the material, but does correspond to the change in slope of the resis-

tivity. Further, it can be seen that the shoulder in the Seebeck coefficient should be

expected, on the basis discussed in the previous chapters, from the trend for the

resistivity times the thermal conductivity. It is clearly seen in this plot, Figure 55,

that there is a clear jump in the trend for this parameter from 0 - 2 GPa, with a cor-
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responding decrease in the value to a minimum around 5 GPa. The second point

occurs at 5 GPa, where this property shows a plateau. This is possibly caused by

the beginnings of the structure change at 9 GPa, but seems a little too much of a

stretch. It is more likely that the changes in this material cause this plateau, as the

material does not seem to get significantly worse as a thermoelement with increas-

ing pressure and the thermal conductivity shows a similar trend. Finally, there is a

slight jump in this properties trend between 7 and 8 GPa, correlating well with the

strcture transition.
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Figure 55 ρλ versus Pressure of BiSbTe3

As with the previous sample, the sign of the Seebeck coefficient here indicates

p-type conduction. Further, the effect of pressure on the distance between the

valence band and the Fermi energy has been found to decrease at a rate of 3.19

meV/GPa. With the distance between these being 38.5 meV[7] at room pressure, it

is likely that the high pressure phases will be found to be metallic. The cross over

point for this, assuming the trend continues, would be at nearly 11 GPa.
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Thermal Conductivity The thermal conductivity can be seen to shown only slight

evidence of the high pressure phase transition, with the change in the pressure

trend from 8 to 9 GPa. Of greater interest is the rapid increase at low pressure,

occuring prior to 1.5 GPa, followed by the decrease at 4 GPa. It is unclear what

the cause for this occurance is at this point. However, the fact that this trend oc-

curs in the total thermal conductivity and not in the electronic suggests that the

phonon structure of the material is altered in such a way as to reduce the scatter-

ing of phonons. This would suggest that the relaxation time, or the mean free path

for the phonons increases dramatically with a small applied pressure.

As with the other samples, the lattice component of the thermal conductivity

has been calculated from the measured results and is shown in Figure 56. In this

figure, the trend shown in the total thermal conductivity is seen quite clearly. As

this shows some interesting phonon dynamics, a fit to the low pressure data is

likely to be of no particular use. These results show some interesting and dramatic

evidence that has yet to be explained by the current models available.
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Figure 56 Lattice Thermal Conductivity of BiSbTe3
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Conclusions

As with Bi2Te3, the effectiveness of this material as a thermoelectric decreases

with pressure. Evidence of the thermoelectric feasibility of this material can be

seen in Figure 57. However, the interesting physics of the system under pressure

merits further investigation of the material properties. The changes in the structure

obviously lead to interesting phonon dynamics in the system, as was seen in the

thermal conductivity results. This would be beneficial to investigate further. Over-

all, the high pressure structure of this and the parent materials have demonstrated

themselves to become less effective as thermoelectric materials with applied pres-

sure.
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Figure 57 ZT versus Pressure of BiSbTe3

The results of this experiment can be compared with the results from work by

Kulbachinskii et al. [7], which studied a p-type version of this material doped with

gallium. In their work, it is shown that the doping of this material with gallium

results in a factor of nearly two increase in the ZT parameter. In addition to this,

it can be seen that the p-type doping of BiSbTe3 without any additional dopants
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results in a slightly improved ZT for this material. At 300 K, their work measures

a ZT for the Ga free sample of nearly 0.4, compared with the 0.225 measured for

the undoped version used in this work. As such, it is obvious that doping can be

used to greatly improve the effectiveness of this material as a thermoelectric.

Figure 58 ZT versus Temperature for Doped BiSbTe3[7]
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CHAPTER 10

SAMPLE RESULTS : INTE

InTe is a slightly layered compound, where the effects of the weaker bonds be-

tween layers is present, but to a lesser degree than in other materials, such as GaTe.

This material was chosen due to previous studies regarding similar compounds,

In2Te3 and the gallium variant of this, as reported by Kurosaki [31]. These ma-

terials were demonstrated in Kurosaki’s paper to be close to the theoretical limit

for the lattice component of the thermal conductivity. This would be a significant

result if present in the 1:1 compounds. As such, this material, the gallium variant,

and the solid solution between the two will be investigated here.

Heat Capacity

As with the other samples, a pellet of InTe was prepared and cut to the appro-

priate dimensions, with mass 32.23 mg, for measurement of heat capacity. The heat

capacity of this sample was measured in the range from 1.8 K to 300 K, with the

resulting data being processed using the Mathematica code previously mentioned.

From this fit, it was determined that the Debye temperature for this material was

162 ± 2 K. As with the previous samples, measured values were used for all but the

thermal expansion coefficient. In this case, the only available value for the thermal

expansion coefficient comes from the Landolt-Bornstein database of materials [76].

Structure Results

Ambient Pressure

InTe crystallizes in the ambient pressure tetragonal structure of space group

I4/mcm. The initial unit cell parameters have been verified against data available

in the Landolt-Bornstein database[77] and are presented in Table 12. The ambient
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Figure 59 Heat Capacity for InTe

pressure x-ray pattern is shown in Figure 61 with selected peaks marked with their

hkl values. A diagram of the ambient pressure structure is shown in Figure 60.

Figure 60 Ambient Structure of InTe (Yellow = In, Purple = Te)
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Figure 61 Ambient Pressure X-ray Pattern for InTe

High Pressure

Upon compression, the ambient structure remains until 6.1 GPa, when the

structure transforms to a high pressure cubic structure of space group Fm3̄m (225).

This structure remains until 13.5 GPa, when the structure transforms to a primitive

cubic cell of space croup Pm3̄m (221), which remains until the limit of the experi-

ment (17 GPa). Although there were too few data points taken on the second high

pressure structure, equation of state fits have been performed on the ambient and

first high pressure phase, resulting in the data presented in Table 12. The equation

of state fits and the data taken are shown in Figure 62.

The data obtained here was compared to previous data taken by Chattopad-

hyay [8]. In their study, they found that the initial phase remained until around

5 GPa, and the second phase remained until about 15 GPa. The results from their

data fits present the data shown in Table 13. As can be seen, the data they obtained

for the initial phase disagrees rather strongly with the data taken in this study. This

can likely be attributed to the fact that, upon inspection of the volume versus pres-
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sure fit presented in their paper, there are only three data points available to them

for fitting the initial phase, which will yield rather poor statistics for any attempted

fit.

Table 12 InTe Structural Parameter Results

Parameter I4/mcm Fm3̄m
a (Å) 8.436 (2) 5.969 (3)
c (Å) 7.126 (3) ————–

V0 (Å3) 507.29 (33) 229.73 (8)
B0 (GPa) 28.68 (54) 66.69 (50)

B
′

0 4.18 (27) 4.09 (12)
Transition Pressure (GPa) 6.1 13.5
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Figure 62 Applied Pressure vs. Cell Volume for InTe

The second phase transition point and bulk modulus agree. However, a dis-

crepancy is again seen in the pressure derivative of the bulk modulus. This is

likely due to the fact that the authors were using a first-order Birch equation of

state, which fixes the value of this pressure derivative to a specified value. In ad-

102



Table 13 InTe Structural Parameter Results from Chattopadhyay[8]

Parameter I4/mcm Fm3̄m Pm3̄m
B0 (GPa) 46.5 (5) 69.7 (11) 90.2 (25)

B
′

0 2.3 2.2 2.3
Transition Pressure (GPa) 5 15

dition to this, the authors also obtained the second high pressure structure, and as

their experiment went to 34 GPa, were able to obtain values for this high pressure

phase’s bulk modulus and pressure derivative. As the previous values are likely

off for the pressure derivative, this sample should be investigated further in the

high pressure regime to attempt a better fit of the high pressure data.

In addition to this, there is no evidence from the structure data that this material

undergoes an ETT while in the ambient structure. A plot of the pertinent equations

of state is shown in Figure 63. It is clear in this figure that the data can be fit to a

single line for the entirety of the region plotted.
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Figure 63 ETT Equation of State Plot for InTe
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High Pressure Transport Properties

The results of the high pressure transport measurements are shown in Figures

64 and 65. The measured ambient pressure values are reported in Table 14. These

values have been compared with references and show good agreement with Parlak

et al. [78] (Resistivity) and Spitzer et al. [79] (Thermal Conductivity) under ambient

conditions. In Spitzers report, the thermal conductivity is presented as between 1.7

[80]and 0.6 W/m-K, although it is not explained in his paper why the discrepancy

arises. Unfortuantely, the referenced paper for the latter result was unpublished

at the time that Spitzer published his work. In addition, Guseinov et al. [80] does

not describe the measurement system used for the former value. Regardless, the

measured value here is in the range of values reported previously.
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Figure 64 Resistivity and Seebeck Coefficient versus Pressure of InTe

Resistivity The resistivity for InTe is seen, with pressure, to decrease dramat-

ically in the range from 0 to 4 GPa. At 4 GPa, the resistivity makes a sudden

discontinuous drop, suggesting the onset of the structural phase transition. The
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Table 14 Average Ambient Pressure Transport Properties for InTe

Property Measured Value
ρ (mΩ-m) 1.35 (1)
λ (W/m-K) 1.32 (9)
α (µV/K) 98 (6)

structural phase transition has been reported to result in a metallic high pressure

phase of the material by Chattopadhyay et al. [8].

Seebeck Coefficient In contrast with the resistivity, the Seebeck coefficient does

not show any dramatic evidence of the structural phase transition. It does, how-

ever, agree with the supposition of a metallic high pressure phase. Since the See-

beck coefficient drops to around 10 µV/K, which is near the values of transition

metals. This suggests that the electronic structure becomes more like the transition

metals, such as Ni, but with a strong contribution to the conduction from electrons.

This is demonstrated by the sign of the Seebeck coefficient, as electrons produce a

positive coefficient and holes will produce a negative coefficient. As with the pre-
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vious samples, the product of the electrical resistivity and thermal conductivity

can give evidence to where anomalies can be expected in the Seebeck coefficient.

The plot of this is shown in Figure 66.
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Figure 66 ρλ versus Pressure of InTe

It is interesting to note that the sharp drop present in ρ does not seem to effect

the trend of the Seebeck coefficient in this case. This would suggest that the phonon

structure is compensating for the changes in the electrical structure. As such, the

coupling between the two is obviously stronger in this case than with some of

the other samples studied here and elsewhere. In addition to this information,

the slope of the Seebeck coefficient suggests that the distance between the valence

band and the Fermi level is decreasing at a rate of 6.22 meV/GPa.

Thermal Conductivity For the thermal conductivity of this material, the mea-

sured total thermal conductivity and the electronic component, from equation 2.11,

are shown in Figure 65. It is seen in this plot that the overall thermal conduction

increases steadily until 3 GPa. At this point, there appears to be a change in the

phonon dynamic of the system causing a rapid rise, relative to the previous rate.
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There is evidence present in this figure of the high pressure phase transition, as the

trend for the thermal conductivity turns over and briefly decreases between 6-7

GPa. It is possible that this change is due to the transition of the system from semi-

conductive behavior to metallic behavior, as the computed electronic component

has rapidly risen to a sizeable fraction of the overall thermal conduction.

The lattice thermal conductivity for this material, shown in Figure 67, shows

some interesting dynamics also. The phase transition is obvious in the lattice con-

ductivity again, with a sharp drop on the reorientation of the structure. A linear

fit was done on ln(λlat) versus P in the range from 0 to 4 GPa, with the resulting

slope being 0.165 ± 0.016 W/m-K-GPa. From Hofmeister’s [22] theory, the value

of the slope for this material should be between 0.139 (n=4) and 0.209 (n=6). This

material’s value lies somewhere in the intermediate range, but shows reasonable

agreement with the theory.
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Figure 67 Lattice Thermal Conductivity of InTe
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Conclusions

Despite the decrease of the Seebeck Coefficient and the increase in the thermal

conductivity, the drop in the resistivity has, for this material, shown to compensate

enough to produce a slight increase in the ZT parameter for this material at low

pressures. What is of greater interest here is the relative stability of the ZT param-

eter once the high pressure metallic phase is reached. As can be seen in Figure 68,

the phase transition appears to result in the minimum value for the ZT parameter

in the measured pressure range. It is interesting that the dynamics of this struc-

tural phase transition appear to cause the extreme reduction in the thermoelectric

ability of this material. Regardless of the thermoelectric efficiency of this material,

it would be useful to further investigate the properties in an attempt to understand

the interesting dynamics present with increasing pressure.
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CHAPTER 11

SAMPLE RESULTS : GATE

As has already been mentioned, the study of this sample is driven by the re-

markably low lattice thermal conductivity reported previously in the 2:3 com-

pounds of these elements. It was further noted that the Gallium variant exhib-

ited the lower of the two thermal conductivities. This would initally suggest that

the Gallium variant of the 1:1 compounds would also exhibit the more interesting

properties in the pair. This is also considered to be true to the more extreme level of

layering present in this material over the previous one. As such, this chapter will

discuss the various measurements made on this sample and discuss the results.

Ambient Pressure Heat Capacity

A small amount, of mass 18.32 mg, of the sample was pelletized and prepared

in the manner described in the experimental details section for a heat capacity mea-

surement. This measurement was performed in the temperature range from 1.8 K

to 300 K. The results of a simple Debye model fit resulted in a Debye temperature

of 240 ± 3 K. The thermal expansion data used to convert to constant volume heat

capacity was obtained from the Landolt-Bornstein database [77]. In addition, this

plot shows a Debye fit using the Debye temperature reported in work by Aydinli

et al. [81] (ΘD = 265 K).
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Figure 69 Heat Capacity and Basic fits for GaTe

Structure Results

Ambient Pressure

The GaTe sample was prepared by the synthesis method described in the ex-

perimental details chapter. The resulting sample proved to be the reported [76]

monoclinic structure, B2/m (12), with the cell parameters reported in Table 15.

The cell parameters were refined using reference data from [76] and MDI’s Jade.

A representation of the unit cell structure is shown in Figure 70. In this figure, the

red atoms are the tellurium and the green are the gallium atoms.

High Pressure

The high pressure structure of GaTe was probed in the pressure range from

ambient to 18 GPa. The initial structure, reported above, was found to remain

until around 7 GPa, where the x-ray patterns began to degrade in quality. From

7 GPa until 15 GPa, the measured structure remained in an intermediate state, to

which no consistent structure could be ascribed. At 15 GPa, the structure became
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Figure 70 Ambient Structure for GaTe (Green = Ga, Red = Te)
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Figure 71 Ambient Pattern for GaTe

a cubic structure with a few possibilities for the resulting space group. For the

purposes of this experiment, the structure was fit using the group Fm3̄m (225).

With decompression, the high pressure cubic structure remains until around 3 GPa,

where the diffraction patterns become amorphous with very low or nonexistent

diffraction intensities.

The data on this sample for both the ambient and high pressure phase are pre-

sented in Table 15. The equations of state and measured data are shown in Figure
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Table 15 GaTe Structural Parameter Results

Parameter B2/m Fm3̄m
a (Å) 17.228 (8) 5.502 (7)
b (Å) 10.391 (4) ————–
c (Å) 4.036 (2) ————–

γ (Deg) 104.63 (3) ————–
V0 (Å3) 698.94 (42) 204.4 (14)

B0 (GPa) 36.13 (37) 43.0 (23)
B

′

0 4.45 (12) 5.41 (61)
Transition Pressure (GPa) 7.05 N/A

72. In this figure, the red points are obtained upon decompression, with the red

and blue lines representing the equation of state fits to the data, resulting from

EOSFit.
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Figure 72 Applied Pressure vs. Cell Volume for GaTe (Red = Decompression))

In comparing this with previous works at high pressure on this material, it

was found by Schwarz et al. [82] that the sample used for his study transformed

from the ambient monoclinic to a high pressure cubic structure at approximately

10 GPa. His report also mentions that they were unable to index the patterns in
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the range from 8 to 10 GPa, which does correspond to the data taken in this exper-

iment. However, the region for which the data taken here is unindexable extends

to approximately 15 GPa. In addition, the values obtained for this sample’s bulk

modulus agrees well with both values quoted in Schwarz’s paper. The pressure

derivative of the bulk modulus measured here is somewhat less than the data they

reported, which could be due to the difference between the equation of state used

in each case, as they fitted using a third order Murnaghan equation of state. The

values measured for this high pressure phase differ somewhat, with the reported

value for the bulk modulus being 60 GPa, as opposed to the 43 GPa measured here.

It is also peculiar in this case as the transitions for this sample result in a higher de-

gree of symmetry, whereas it is more typical in high pressure studies for materials

to become less symmetric with pressure.

In contrast with the structure results from InTe, GaTe does show evidence of a

topological transition in the structure, occuring at nearly 1.1 GPa. This can be seen

clearly in Figure 73.
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High Pressure Transport Properties

The results of the high pressure transport measurements are shown in Figures

74 and 75. The measured ambient pressure values are reported in Table 16. These

values have been checked against literature values and found to agree well with

previous reports from Al-Ghamdi et al. [83] (Seebeck Coefficient), Mancini et al.

[84], Manfredotti et al. [85], and Milne et al. [86] (Resistivity), and Spitzer et al.

[79] (Thermal Conductivity). In the thermal conductivity, Spitzer lists values for

both the parallel and perpendicular directions to the c axis, with the corresponding

thermal conductivities being 1.4 W/m-K and 8.7 W/m-K. The anisotropy in this

property is prononuced and, in this case, the measured ambient value is closer to

the parallel direction. It is unclear at this point why the pelletized sample would

exhibit a thermal conductivity more similar to that along the c-axis, but it does

seem to suggest some interesting interactions present in the material used for this

study.
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Figure 74 Resistivity and Seebeck Coefficient versus Pressure of GaTe
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Figure 75 Total and Electronic Thermal Conductivity versus Pressure of GaTe

Table 16 Average Ambient Pressure Transport Properties for GaTe

Property Measured Value
ρ (Ω-m) 1.69 (1)

λ (W/m-K) 1.18 (8)
α (µV/K) 179 (30)

Resistivity The resistivity for GaTe with pressure shows similar trends to that

from InTe, with a sharp decrease occuring at around 4 GPa, with a steep drop with

the inital application of pressure. In both cases, there is no structure transition that

corresponds with this. It is postulated by Schwarz et al. [82], based on reflectivity

data, that the loss of structure and the high pressure cubic phase result in a metallic

material. This is supported by the resistivity data taken here.

Seebeck Coefficient For the Seebeck coefficient, the initial pressurization of the

material shows little effect. With increasing pressure, the decreasing trend corre-

lates well with the decrease in the electrical resistivity of the material. The change

in slope of the Seebeck coefficient upon the transition to the mixed phase suggests,
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in correlation with the results from InTe, that this material exhibits a similarity with

the transition metals in the high pressure phase. An inspection of the plot of the

product of the resistivity and thermal conductivity show that this material would

be expected to display anomalies in the Seebeck coefficient between 2 and 3 GPa

and under the inital pressurization. Although it is not a rapid decrease in the See-

beck coefficient, the inital plateau of this parameter with pressure does correlate

with this, as does the beginning of the decrease with pressure at 3 GPa.
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Figure 76 ρλ versus Pressure of GaTe

It is particularly interesting that the plateau at low pressures does correlate well

with the anomaly presented earlier in the ETT plot for this material. Further, the

trend for GaTe with pressure would suggest that the distance between the valence

band and the Fermi level is decreasing at a rate of 5.5 meV/GPa. This makes the

sudden decrease in the resistivity at 3 GPa even more interesting, as this suggests

that the structure transition may be driven by changes in the band structure of the

material, in a similar manner to InTe.
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Thermal Conductivity The thermal conductivity of this material shows no re-

markable features, but increases with pressure up to 8 GPa, where the slope of

the increase changes. This increase in slope corresonds well with the increase in

the electronic thermal conductivity (as calculated from equation 2.11). This would

suggest that, as with InTe, the high pressure phase will exhibit metallic properties.

Further, the lack of significant features in the thermal conductivity suggests that

the phonon structure of this material is either undergoing a continuous change, as

opposed to an abrupt change at the structure transition, or is not effected at all by

the increasing pressure (aside from the increase in relaxation time).

The lattice component of the thermal conductivity for this material shows no

obvious jumps or drops corresponding to the structure transition in this material,

as shown in Figure 77. The log plot of λlat versus P shows a dramatic slope change

at 2 GPa, which prevents fitting a single line to all the data. For the data points

below the slope change, it was found that the rate of increase was 0.198 ± 0.022

W/m-K-GPa. Above 2 GPa, the slope was found to become 0.089 ± 0.007 W/m-

K-GPa. From Hofmeister’s[22] theory, this material would be expected to show

a slope between 0.111 and 0.166 W/m-K/GPa. As such, this material shows a

slightly larger trend than would be expected from the theory below 2 GPa, and

a slightly smaller one above. This could be due to the reported anisotropy in the

thermal conductivity or is possibly caused by the layering of the structure, but the

exact cause will require further investigation.

Conclusions

It can be seen quite clearly from the previous results that GaTe is not expected

to be a useful thermoelectric material. This is further emphasized by the plot of

ZT versus pressure in Figure 78. However, it is interesting to note that, in contrast

with the previous samples, the ZT increases in this material on compression until
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Figure 77 Lattice Thermal Conductivity of GaTe

the ambient structure is lost, with a factor of nearly 14 increase in the efficiency

of this material. As such, it is plausible to conclude that structures that exhibit

a mixed phase structure might be considered to be more effective thermoelectric

materials. Despite this, the efficiency of GaTe as a thermoelectric is 3 orders of

magnitude below that of Bi2Te3.

0 2 4 6 8 10

0

1

2

3

4

5

6

7

8

 

 

ZT
 * 

10
5

P (GPa)

Figure 78 ZT versus Pressure of GaTe
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CHAPTER 12

SAMPLE RESULTS : INGATE2

The final sample studied in this work is the solid solution between the previous

two materials. As the two parent compounds exhibit interesting transport dynam-

ics, it would be expected that this material should also exhibit some interesting

behavior with the application of pressure. In addition to this, this sample is the

least investigated of all the materials presented in this document, with no pressure

studies being performed at all. As such, this study makes the first time that this

material has been investigated in this much depth.

Ambient Pressure Heat Capacity

A sample of mass 30.40 mg was prepared and measured using the PPMS sys-

tem, as described in the experimental details section. This sample was measured

in the range from 1.8 K to 300 K , with the data then processed using the aforemen-

tioned Mathematica code. This data produced a fit with a Debye temperature of

173 ± 2 K. In this case, this is a very rough estimate as there is no available thermal

expansion data for this sample, so the fit was performed to the constant pressure

heat capacity.

Structure Determination

Ambient Pressure

This material was synthesized using the procedure described in the experimen-

tal details chapter, with the resulting sample found to be the reported tetragonal

structure, I4/mcm (140), with the cell parameters reported in Table 17. The cell

parameters were refined using reference data from Deiseroth et al. [87] and MDI’s

Jade [32]. A representation of the unit cell structure is shown in Figure 80. In this
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Figure 79 Heat Capacity and Basic fits for InGaTe2

figure, the purple atoms are the tellurium, green is gallium, and yellow is indium.

For this material, Vegard’s law cannot be applied due to the structural difference

between the two parent compounds.

Figure 80 Ambient Structure for InGaTe2 (Yellow=In, Green=Ga, Purple=Te)

120



20 40 60 80

0

300

600

900

1200

1500

6 
0 

0

5 
2 

1

4 
2 

0
2 

1 
3

4 
0 

0

3 
1 

0
1 

1 
22 

1 
1

0 
0 

2

 

 

In
te

ns
ity

 (A
rb

. U
ni

ts
)

2  (Deg)
1 

1 
0

Figure 81 Ambient Pattern for InGaTe2

High Pressure

For the high pressure structure, the sample retained its ambient pressure struc-

ture up to 9.5 GPa. At this point the sample undergoes a relatively quick transition

to a slightly different tetragonal structure, of space group I4cm (108). This struc-

ture retains the original formula units per unit cell and remains until 13 GPa. The

structure then changes to a new high pressure monoclinic phase of space group

P21/c [b-unique] (14), which remains until the limit of the experiment performed.

A summary of the results of the equation of state fits for this sample are presented

in Table 17 with the equations of state plotted along with the data in Figure 82. No

comparison of this data with previous work can be done as, at the time of writing,

there is no published work available for comparison with.

In contrast with the parent material InTe, this solid solution exhibits structural

behavior more akin to the GaTe compound, suggesting that the dynamics involv-

ing Ga dominate the material. This can be seen in the plots relating to the ETT’s,

as presented for the previous materials. In this material, it is easily seen that the
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Table 17 InGaTe2 Structural Parameter Results

Parameter I4/mcm I4cm P21/c (b-unique)
a (Å) 8.391 (1) 7.618 (3) 6.73 (4)
b (Å) ————– ————- 3.575 (5)
c (Å) 6.854 (2) 6.566 (4) 5.36 (2)

β (Deg) ————– ————– 137.54 (24)
V0 (Å3) 483.01 (57) 457.3 (13) 111.36 (18)

B0 (GPa) 23.97 (56) 35.7 (12) 46.33 (53)
B

′

0 4.28 (22) 4.03 (29) 2.01 (5)
Transition Pressure (GPa) 9.46 13.11 ————–

equations of state, shown in Figure 83, suggest that there is an anomaly occuring

at ≈ 1.5 GPa.
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Figure 82 Applied Pressure vs. Cell Volume for InGaTe2

High Pressure Transport Properties

The results of the high pressure transport measurements are shown in Figures

84 and 85. The measured ambient pressure values are reported in Table 18. These
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Figure 83 ETT Equation of State Plot for InGaTe2

values have been found to be in good agreement with Gojaev et al. [88] (Resistivity)

and Guseinov et al. [89] (Thermal Conductivity) under ambient conditions.
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Figure 84 Resistivity and Seebeck Coefficient versus Pressure of InGaTe2
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Figure 85 Total and Electronic Thermal Conductivity versus Pressure of InGaTe2

Table 18 Average Ambient Pressure Transport Properties for InGaTe2

Property Measured Value
ρ (Ω-m) 0.54 (11)

λ (W/m-K) 1.31 (9)
α (µV/K) 150 (21)

Resistivity The resistivity, as measured here, displays a rather large error on the

ambient value of the resistivity. This is possibly due to contact issues between

the thermocouple, the conducting epoxy used to make the connection, and the

sample. This effect was found to be unrelated to any specific type of epoxy, as the

usual silver epoxy used with the previous samples was replaced with a graphitic

conductive paste for the second sample. This did not change the magnitude of

the variation in the resistance of this material. It is also possible that there is some

grain boundary effect in this material that could cause this. Further work will need

to be done on this material to determine what the cause of this is.

The pressure trend for this material shows a small shoulder in the resistivity
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occuring at 3 GPa. It is possible that this could be due to the structure anomaly, but

this is unclear at this point. There is evidence of the structural transition occuring,

which is more evident in the electronic component of the thermal conductivity,

discussed below.

Seebeck Coefficient The Seebeck coefficient for this material shows a downward

trend, in addition to the sign change for the 9 and 10 GPa data points. This would

correspond to a change in majority carrier in the system from electrons to holes.

However, the magnitude of the negative value is very small (-0.9 µV/K @ 10 GPa).

This suggests that the effect of pressure on this materials is actually forcing the

Fermi surface to cross the boundary between increasing area and decreasing area,

as discussed in the theoretical chapter on this property. This is of particular in-

terest, as there are not many reports of materials undergoing this change in the

Seebeck coefficient with pressure.

In contrast with the parent materials, this material does not show any pecu-

liarities in the plot of the product of electrical resistivity with thermal conductivity

besides the shoulder at 3 GPa. Since this shows no anomalies, this would suggest

either that changes in the other transport properties compensate for each other, or

that there is not a significant alteration in either one. The plot of this quantity is

shown in Figure 86.

As with GaTe, the slight discontinuity in this property of the material correlates

well with the anomaly in the ETT plot in the previous section. This is particularly

interesting, as there is no obvious change in the resistivity of the material that

correlates with this. From the slope of the Seebeck coefficient, it can be found that

the distance between the Fermi energy and the valence band in this material is

expected to decrease at a rate of 8.39 meV/GPa for pressures below 3 GPa and 2.12

meV/GPa for pressures above 3 GPa.
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Thermal Conductivity The plot of the thermal conductivity, shown in Figure 85,

demonstrates that the phonon structure of this material is not undergoing any sig-

nificant changes due to the phase transition at 9 GPa. Due to the similarity between

the ambient phase and the high pressure phase, an obvious transition between the

two structures was not expected to appear in the trend of this property. It is inter-

esting to note in the electronic thermal conductivity, as calculated from equation

2.11, that the electronic structure of this material shows a small change in the trend

occuring at 9 GPa, corresponding to this structure transition. This is of particular

interest as this pressure is also where the Seebeck coefficient changes sign. Al-

though there is not a dramatic change in the resistivity at this point, the transition

shows direct evidence on the electronic structure through the electronic thermal

conductivity. As this feature corresponds to the majority carrier becoming holes

over electrons, it is interesting to see that the holes initially conduct less heat than

the electrons do.

As with the previous results, the lattice component of the thermal conductivity

for InGaTe2 shows a greater resemblance to GaTe than to InTe, as shown in Figure
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87. Although it is possible that there is a slope change correlating with the structure

transition present here, the change would be so minute that it is nearly impossible

to see, except at the very highest pressure measured. As such, the phonon dynam-

ics appear to be unaffected by the structure transition, showing a linear trend to

the highest pressure. From this trend, the slope of the log plot was found to be

0.076 ± 0.005 W/m-K-GPa. From Hofmeister’s [22] theory, the slope for this ma-

terial should be in the range from 0.167 (n=4) to 0.250 (n=6) W/m-K-GPa. Thus,

this sample shows lattice pressure trends similar to InTe, with the measured trend

being about half of the theoretical approximation. This is in contrast to the pre-

vious properties, which show the strong influence of the Gallium present in the

structure.
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Figure 87 Lattice Thermal Conductivity for InGaTe2

Conclusions

As can be seen in Figure 88, the ZT parameter show that this material is not a

useful thermoelectric. However, the shoulder in the Seebeck coefficient at 3 GPa
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is seen to create a maxima in the thermoelectric performance. As this could be an

electronic topological transition, it would be of particular use to investigate this

phenomena further to learn if it can be used to improve the performance of ther-

moelectrics with a higher ZT parameter. It is also unclear why the ZT parameter

plateaus between 3 and 5 GPa.
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CHAPTER 13

CONCLUSIONS

One of the original goals of this work was to establish a measurement system

for the determination of material transport properties under pressure. This was

to include the high pressure measurement of electrical resistivity, thermal conduc-

tivity, and Seebeck coefficient, so that the results could be compared to structure

results obtained from other experiments. The result of this is the measurement

system described in the previous chapters. The development, testing, and use of

the system described herein has revealed its ability to quantify the desired material

properties in the pressure range from ambient to 10 GPa. This was checked with

calibration samples of zinc, almandine garnet, and nickel, with the results being in

good agreement with previously published results.

The measurement of material transport properties under pressure has proven

to be a useful, if under applied, tool for studying the dynamics of a system with

small changes in structure. As such, the system developed has been used to mea-

sure the transport properties of several potential and established thermoelectric

materials. This effort to test these materials under pressure is driven by a funda-

mental need for better information regarding the changes of material properties

with changes in structure. This correlation will likely assist in the development

and understanding of thermoelectric materials on a more fundamental level and

provide the necessary basis to predict what materials will likely show better prop-

erties.

This study began with the investigation of the established thermoelectric ma-

terials, of the form A2Te3 (A = Bi, Sb, Bi0.5Sb0.5). This study showed that, for these

materials, the application of pressure results in two structure changes. The first

transforms the inital R3m structure to the orthorhombic structure I222. In addi-

tion to the structure change, there is an anomaly present in particular forms of the

129



equation of state for the parent compounds around 3 GPa. This particular anomaly

is consistent with previous reports regarding electronic topological transitions in

these materials. The solid solution sample, in constrast, does not exhibit evidence

of this anomaly. When compared with the transport measurement results, there

were some interesting features.

In Bi2Te3, the resistivity decreased steadily with the increase of pressure, with

slight evidence of the structure transition. The thermal conductivity shows evi-

dence of the structure change also, as exhibited by the decrease in this parameter

at 8 GPa. The Seebeck coefficient, on the other hand, shows no direct evidence of

the structure change, but does respond to the anomaly present in the structure at 3

GPa. In addition to this, conversion of the resistivity to the electronic component

of the thermal conductivity results in a dramatic increase in the theoretical contri-

bution of electrons to the thermal conduction. Rising by a factor of nearly 7 over

this pressure range, this indicated strongly that this material was tending towards

metallic behavior with the applied pressure.

In Sb2Te3, the resistivity shows a steady downward trend until 9 GPa, when

there was a sharp rise in the value of the resistivity, corresponding to the struc-

ture change. The thermal conductivity was, however, unchanged by the structure

transition. The Seebeck coefficient also shows evidence of the transition, in a more

drastic manner. As such, the structure change in this material is likely driven not

by lattice dynamics, but by the electronic structure of the material. As with the

previous sample, this material shows evidence of a trend towards metallic behav-

ior, but the trend is not quite as fast as that present in the Bi sample, with the

magnitude of the increase of the electronic component of the thermal conductivity

changing by a factor of 6.

The solid solution shows the least drastic response to the applied pressure of all

three of these materials. The resistivity and Seebeck coefficient both show nearly
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linear trends with applied pressure. The Seebeck coefficient does show a slight

increase corresponding to the measured structural transition. The thermal con-

ductivity shows a rapid rise with applied pressure in the beginning of the pressure

graph. With further increases in pressure, the thermal condcutivity is found to

decrease slightly and then recover a linear trend until the structure changes at 9

GPa. In this case, the linear decrease in the resistivity suggests that this material

remains semiconducting over the entirety of the pressure range and shows no par-

ticular signature of a metallic high pressure phase, in contrast with the previous

two samples.

From these established materials, the study moved into samples that have a

lack of high pressure reference data. These materials, of the from ATe (A = Ga, In,

Ga0.5In0.5), are of particular interest due to the low dimensionality of the crystal

structures. The layered nature of the material is currently considered to be one of

the interesting and useful properties for potential thermoelectric materials. The

structure measurements for these three materials were presented and shown to be

different for each one. In GaTe, the ambient monoclinic B2/m structure was found

to enter an unindexible mixed phase at 7 GPa. This relaxed at 15 GPa into a cu-

bic Fm3m structure that remained until the limit of the experiment. In InTe, the

ambient tetragonal I4/mcm structure was found to remain until 6 GPa, where it

transitions to the same cubic structure as GaTe. There is further evidence that this

material transitions again at 15 GPa to a primitive version of the previous cubic

structure. The solid solution was found to transform from the ambient tetragonal

I4/mcm structure to a slightly different tetragonal structure at 8 GPa. This struc-

ture remained until 13 GPa, where the system transformed to a monoclinic P21/c

structure.

For InTe, the resistivity was found to decrease rapidly until 3 GPa. At this

point, the resistivity made a sudden drop and continued to decrease with applied
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pressure. The Seebeck coefficient exhibited a linear trend with applied pressure,

only deviating above 5 GPa, where the slope became nearly zero. The thermal

conductivity was found to increase linearly with pressure until the region of the

phase transition, where the trend plateaued and decreased slightly before a rapid

upturn. All of this evidence supports previous claims, by Chattopadhyay et al. [8],

that the first high pressure phase of this material is metallic.

For GaTe, there is evidence, as with Bi2Te3 and Sb2Te3, of an anomaly in some

of the equations of state associated with topological transitions. This was found

to occur at nearly 1 GPa. The resistivity showed a rather rapid drop with applied

pressure, similar to InTe, and a corresponding drop at 3 GPa. The Seebeck coef-

ficient exhibited an initial plateau with pressure until the previously mentioned

anomaly, when the trend became linear and downward until 8 GPa, where it lev-

elled out. The thermal conductivity was found to linearly increase, with the slope

changing slightly at the transition to the mixed phase at 8 GPa, where the slope in-

creased. This evidence would support a similar claim to that made for InTe, with

the high pressure mixed phase exhibiting metallic tendencies. This is especially

pronounced in the electronic thermal conductivity with the increase by a factor of

nearly 35 upon transition to the mixed phase.

Finally, the results for InGaTe2 exhibit some of the most interesting information.

The anomaly present in GaTe was found to be present in this material also. This oc-

curance appeared at approximately 1.5 GPa, only slightly higher than GaTe. This

correlated well with the Seebeck coefficient results, which show a slight decrease

until the 2 GPa data point, where the trend shows a rapid decrease in this param-

eter. The resistivity also shows this dramatic decrease in the electrical resistance

with pressure. The thermal conductivity, on the other hand, shows no evidence

of the phase transitions present in this material, with the increasing trend being

almost completely linear. In contrast with this, the converted electronic thermal
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conductivity shows a marked decrease occuring at the phase transition pressure,

in addition to a large increase in the contribution from electrons/holes. This, again,

suggests a trend towards metallicity, but the first high pressure phase appears to

still remain as a semiconductor. In addition to this, InGaTe2 was found to be the

only material that exhibited a Seebeck coefficient that changed sign with pressure,

suggesting a change in the Fermi surface of the material. In addition to the in-

formation presented so far, it was found that the lattice component of the thermal

conductivity for all of these samples followed a trend roughly similar to that theo-

rized by Hofmeister and others [22].

Despite these interesting changes, it was found that the application of pressure

did not significantly improve the performance of any of these materials. Although

pressure has demonstrated that the high pressure forms of these materials are not

effective as thermoelectrics on their own, the information gained from this study

may help to further understand the fundamental parameters of these material. As

such, further measurements are planned on materials that are reported to be effec-

tive thermoelectric materials under ambient conditions, doped versions of these

materials and others, and improvement of the measurement capabilities of this

system, along with inclusion of new measured quantities. From this, it may be

possible in the future to learn enough about these and other materials to improve

the current theories and assist in the prediction of the properties of materials as of

yet unstudied.
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