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ABSTRACT

Parker Winds Revisited: An Extension to Disk Winds

by

Timothy R. Waters

Dr. Daniel Proga, Examination Committe Chair
Associate Professor of Physics & Astronomy

University of Nevada, Las Vegas

A simple 1D dynamical model of thermally driven disk winds is proposed, based on the

results of recent, 2.5D axi-symmetric simulations. Our formulation of the disk wind problem

is in the spirit of the original Parker (1958) and Bondi (1952) problems, namely we assume

an elementary flow configuration consisting of an outflow following pre-defined trajectories

in the presence of a central gravitating point mass. Viscosity and heat conduction are

neglected. We consider two different streamline geometries, both comprised of straight

lines in the (x, z)-plane: (i) streamlines that converge to a geometric point located at

(x, z) = (0,−d) and (ii) streamlines that emerge at a constant inclination angle from the

disk midplane (the x-axis, as we consider geometrically thin accretion discs). The former

geometry is commonly used in kinematic models to compute synthetic spectra, while the

latter, which exhibits self-similarity, is likely unused for this purpose, although it easily

can be with existing kinematic models. We make the case that it should be, i.e. that

geometry (ii) leads to transonic wind solutions with substantially different properties owing

to its lack of streamline divergence. Pertinent to understanding our disk wind results,

which are applicable to X-ray binaries, active galactic nuclei, and circumstellar discs, is a

focused discussion on lesser known properties of Parker wind solutions. Parker winds are of

wide applicability and have recently been used to predict photoevaporative mass loss rates

from protoplanetary discs, but not without shortcomings, as we address. In addition, the
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analytical solutions of Parker winds are ideal for assessing and validating the accuracy of

hydrodynamical simulations. Geometry (i) contains the spherically symmetric Parker wind

solution as a special case, while one instance of geometry (ii) has been used as a testbed

problem for hydrodynamic simulations performed in cylindrical coordinates. We present a

parameter survey of our analytical solutions to facilitate their usage for numerical testing

purposes, and show that, for a subset of the parameter space, Keplerian rotation allows for

two transonic wind solutions for the same set of parameters.
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CHAPTER 1

INTRODUCTION

The classic Parker model has served as a paradigm wind solution for over half a century now.

First developed for the Sun as a model of the solar wind, it shows the essential features of

one-dimensional (1D), steady state wind models, namely that transonic solutions typically

involve a transition through a critical point and have an X-type solution topology. The

analytic solutions to both the original isothermal (with adiabatic index γ = 1) Parker wind

(Parker, 1958) and its polytropic fluid (1 < γ < 5/3) extension (Parker, 1960) serve a

dual purpose. On the one hand, they are beneficial for obtaining insight into the theory

of outflows in general, as well as for gaining intuition into the subtleties that arise when

solving wind equations analytically (for an in depth perspective see Königl & Salmeron 2011

and references therein). On the other hand, Parker wind solutions have proven useful for

assessing the accuracy of numerical simulations (e.g., Keppens & Goedbloed 1999; Font et

al. 2004; Stone & Proga 2009). To that end, one goal of this paper is to present a simplified

dimensionless formulation of Parker winds and to provide formulae commonly used for

numerical testing purposes. At the same time, we address certain aspects of the polytropic

Parker problem that have been a source of confusion in the literature. Specifically, we clarify

the properties of spherically symmetric Parker winds in the range 3/2 < γ < 5/3 and the

corresponding range of γ when angular momentum is added to the problem.

The primary focus of this paper is to present solutions to Parker-like winds emanating as

a biconical flow, the geometry commonly used to model accretion disk winds. As we discuss

in §3.2, Parker winds have been instrumental in uncovering other physical processes that

can drive winds in stars, and led to the development of both line-driven (Castor et al. 1975,

hereafter CAK) and magneto-centrifugally driven (beginning with the solution of Weber &

1



Davis 1967) wind theory. The current state of the art in stellar wind theory owes much

of its development to the systematic assessment of how the inclusion of various physical

terms and geometrical effects in the hydrodynamic equations alters the solutions of Parker

winds. Studies of disk winds stand to benefit from rigorously repeating this procedure using

counterpart, 1D analytical disk wind models.

Developing concrete baseline models analogous to Parker winds has proven to be a diffi-

cult task. A major roadblock has been the uncertainty in the streamline geometry, i.e. the

actual trajectory traversed by material flowing out from the disk, as well as in the gravi-

tational potential along these streamlines. Another obvious and related difficulty is posed

by the fact that accretion disks span many more orders of magnitude in physical size than

do stars, and they can host radically different, spatially and temporally variable, thermo-

dynamic environments. Indeed, the outer radius of an accretion disk ranges from parsec

scales for active galactic nuclei down (AGN) to within 1 AU for some circumstellar disks

and the diverse physical conditions permit anything from infrequent outbursts to highly

relativistic, steady jets. It should come as no surprise then, that despite clear observational

evidence of outflows from many systems, identifying the actual driving mechanisms, as well

as determining the wind geometry, remains a challenge.

Studies of disk winds therefore rely heavily on kinematic models in order to quickly

explore the parameter space without assuming a particular driving mechanism. For ex-

ample, kinematic models have been employed to produce synthetic spectra for cataclysmic

variables (CVs), systems in which even key properties such as the geometry, ionization

structure, and mass-loss rates remain difficult to constrain (e.g., Noebauer et al. 2010 and

references therein). Early kinematic models assumed spherically symmetric outflows for

simplicity (Drew & Verbunt 1985; Mauche & Raymond 1987). The consensus picture of a
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Figure 1.1. Pictorial representation of the streamline geometry addressed in this paper.
Neighboring streamlines diverge from each other in the (a) Parker and (b) Converging
models, whereas in (c), the Constant Inclination Angle (CIA) model, there is no adjacent
streamline divergence.

biconical mass outflow originating from the inner disk was born out of the observed char-

acteristics of resonance lines in CVs (Córdova & Mason 1985, Drew 1987). This geometry

was developed into a robust kinematic model by Shlosman & Vitello (1993), who calculated

the ionization structure of CV disk winds and solved a radiative transfer problem in lines

using the Sobolev approximation. Their kinematic model allowed for an arbitrary amount

of streamline divergence.

Knigge et al. (1995) developed a different (Monte Carlo) code to solve the radiative

transfer exactly. Their choice of wind geometry is one instance of what we refer to as the

Converging model, in that the streamline divergence is just such that all streamlines con-

verge to a geometric point located a distance d below the disk, as illustrated in Figure 1.1b.

The Converging model, which has been called the “displaced-dipole” model by others, has

been used in conjunction with sophisticated radiative transfer simulations to model accre-
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tion disk spectra from massive young stellar objects (Sim et al. 2005), active galactic nuclei

(Sim et al. 2008), CV disk winds (Noebauer et. al 2010), classical T Tauri stars (Kurosawa

et al. 2011), and young intermediate-mass Herbig Ae stars (Grinin & Tambovtseva 2011).

Typically, these simulations use Monte Carlo procedures that can account for nearly all of

the prominent resonance lines and thereby accurately calculate the ionization balance of the

wind. The Converging model has even been employed to calculate the neutron structure of

neutrino-heated MHD disk winds associated with gamma-ray bursts (Metzger et al. 2008).

In this paper we develop a simple dynamical disk wind model that amounts to a gener-

alization of the Parker model. Rather than positing a velocity law as is done for kinematic

models, the purpose of a dynamical model is to impose the physical conditions and solve

for the wind velocity as a function of distance along a streamline. This necessarily requires

identifying a driving mechanism, i.e. a heating source in the case of thermally driven winds.

Much of the groundwork theory for the source of heating was laid down by Begelman et al.

(1983, hereafter BMS83), who showed that Compton-heated coronae are qualitatively the

same for both quasars and X-ray binaries. This is because both galactic X-ray sources and

the inner regions of AGN are expected to be heated via irradiation from a central X-ray

source to high enough temperatures that thermal expansion alone gives rise to a disk wind.

As discussed by BMS83, very similar physics underlies photoionization heating, albeit

the cooling mechanism is significantly more complicated (line-cooling and recombination

vs. inverse Compton). A decade passed before it was realized that photoionization heating

resolved a paradox involving the ultracompact HII regions observed around ∼ 10% of O

stars, as what were thought to be numerous, nearly static HII regions confined by some

unknown source of back-pressure turned out be the continuous replenishment of hot ionized

gas from the surface of photoevaporating protoplanetary disks (Hollenbach et al. 1993).
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Subsequent studies revealed that the latter process is ubiquitous and can be a dominant

disk dispersal mechanism (see the review by Armitage 2011). Adams et al. (2004) used

isothermal Parker wind solutions to estimate the mass-loss rates from the edges of photoe-

vaporating protoplanetary disks around low mass stars, and the relationships they derived

were utilized recently by Gorti & Hollenbach (2009 hereafter GH09) to treat the hydrody-

namics aspect of their coupled radiative transfer and hydrodynamic approach to modeling

the global disk dispersal process for a range of stellar masses (we discuss this application

further in §3.3 and §6.1).

Even though the underlying physics is very similar for Compton vs. photoionization

heating, it might come as a surprise that the functional form for how the mass flux density

scales with radius ro along the disk plane is identical in both the works of BMS83 and

Adams et al. (2004), especially given the fact that utilizing isothermal Parker winds in the

context of Compton heating amounts to a significant simplification of the theory developed

by BMS83. We can account for the agreement by contrasting the two approaches used

to treat the thermodynamics. The simplicity of invoking Parker winds resides in the use

of a polytrope (P ∝ ργ , where P is pressure and ρ is density), the conventional means

for bypassing the heat equation when the source of heating is very complicated or poorly

understood — not the case with Compton-heated coronae, in which the thermodynamics

can be conveniently handled via an entropy equation. If it is assumed that no heat is

transferred via conduction or viscous dissipation to or from outflowing gas, conservation

of energy dictates that the entropy production is proportional to the heating rate, Γ. For

optically thin gas heated to temperatures T & 106 K, the net heating and cooling rate is

proportional to the difference T − TIC (e.g., Krolik et al. 1981), where TIC is the inverse
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Compton temperature, defined by

kTIC =
1

4
〈hν〉 . (1.1)

Here, k is Boltzmann’s constant and 〈hν〉 is the average photon energy from an isotropic

radiation source of luminosity L, namely

〈hν〉 = 1

L

∫ ∞

0
hνLν dν. (1.2)

We therefore see that when the heating rate is high throughout the entire subsonic wind

region, so that there is a near balance of heating and cooling, then an isothermal (γ = 1)

Parker wind with T = TIC will be a good approximation to the strong gravity, nearly

isothermal regime identified by BMS83 (see their solution regime E).

The scaling relationships for the mass flux density also agree in the opposite regime of

adiabatic flow. A γ = 5/3 polytrope results when the entropy production is zero — when

the flow is isentropic. In the framework of BMS83, this can effectively occur when the heat-

transport can altogether be ignored (Γ ≈ 0), meaning that the heating time-scales are long

compared to the flow time-scales. More specifically, γ = 5/3 applies to gas with no internal

degrees of freedom that is heated to a high temperature T . TIC in, say, a thin layer of

the optically thick disk, that from there expands outward, loses additional pressure support

upon being slowed by gravity, and thereby adiabatically cools. In §6.1, we explicitly show

that the functional form of the mass flux density for a γ = 5/3 Parker wind is identical to

the prediction given by BMS83 for their solution regime C.

Such agreement constitutes an encouraging basis for the present study, as the hydro-

dynamic formulation of BMS83 established that it suffices to estimate 2D global wind

properties with a 1D model that captures the essential physics. Indeed, many predictions

given by BMS83 were later confirmed by followup works that focused on the inherently two-
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dimensional radiative transfer problem (e.g., Ostriker et al. 1991, Woods et al. 1996, Proga

& Kallman 2002). Of special interest here is the work by Woods et al. (1996), who added to

the basic theory of BMS83 based on the outcome of their time-dependent, 2.5D simulations

of thermally driven winds from AGN heated by Compton as well as non-Compton processes

such as photoionization and line-cooling. They provided an improved formula for the mass

flux density as a function of disk radius and presented a detailed study of the flow topology

and sonic surfaces for various spectral energy distributions.

Both the results of Woods et al. (1996) and those of the more recent 2.5D time-

dependent simulations of a thermally driven wind carried out by Luketic et al. (2010,

see Figure 1.2 here) indicate that the streamline geometry is rather simple, displaying two

distinct flow patterns. Moreover, their results suggest that the Converging model may not

be well-suited for sampling the entire wind, but rather only the inner portions of it. The

outer portion is better approximated by a model in which streamlines emerge at a constant

inclination angle to the midplane (hence the name, the CIA Model — see Figure 1.1c).1 It

is our intention to study how this difference in geometry affects the hydrodynamics indepen-

dent of the explicit heating mechanism taking place; we merely assume that the boundary

of the flow (the disk midplane) has been heated to a high enough temperature to drive a

Parker-like disk wind.

This paper is organized as follows. In §2, we define and quantify the notion of rapid

hydrodynamical escape and discuss the hydrodynamic foundations of wind theory. We then

review the most common applications of Parker winds and summarize the background work

on disk winds that this thesis builds upon. In §4, we present the streamline geometry used in

this work and compare our choice to previous works in §4. Our formulation for solving both

1The kinematic model used by Shlosman & Vitello (1993) can accommodate CIA streamlines by setting
θmin = θmax.
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Figure 1.2. Flow streamlines that resulted from the time-dependent, hydrodynamical
simulation of a thermally driven wind (Luketic et al. 2010). The z-axis is the rotation axis,
while the x-axis is the disk midplane. Streamlines at x & 5RIC , where RIC is the Compton
radius, are self-similar. This figure gave motivation for the CIA model.

isothermal and polytropic thermally driven wind equations assuming an arbitrary amount

of streamline divergence is given in §5. We adhere to the CAK approach of analyzing

the momentum equation in terms of the singularity and regularity conditions. We also

compactly solve the isothermal equations in terms of the Lambert W function. In §6,

we present our results, beginning with an assessment and generalization of the scaling

relationships derived by Adams et al. (2004). A parameter survey of our disk wind solutions

for 1 < γ ≤ 5/3 is given in §6.2, where we also compare specific transonic wind solutions

for the CIA and Converging models. In §7 we discuss subtle aspects of the classic Parker

problem that are relevant to disk winds and reveal the effects of adding rotation. We

conclude by summarizing our results and discussing the implications of our findings for

kinematic models in §7.5.
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CHAPTER 2

STATIC ATMOSPHERES VS. PARKER WINDS

Parker winds describe a highly idealized fluid phenomenon: the steady state, spherically

symmetric, hydrodynamic escape of an ideal gas with zero viscosity. With these simplifi-

cations, and further supposing a fluid composed of only one species of gas, the Eulerian

equations become analytically tractable. A complete isothermal Parker wind solution con-

sists of the density ρ and velocity v as a function of radius r. Polytropic Parker wind

solutions also include a temperature profile T (r). The solution topology is almost the same

as that of the classic Bondi problem. Namely, for every value of the mass loss rate less

than some maximum rate, there are four solution branches, consisting of an everywhere

subsonic velocity profile, an everywhere supersonic velocity profile, and two (unphysical)

double-valued solutions for v(r), one confined to radii within the sonic point rc and one

with r > rc everywhere. The maximum mass loss rate is obtained by the two transonic

solutions, formed when any pair of the aforementioned solution branches continuously join

at the sonic point. Of these two solutions, the transonic Parker wind solution is the one

which is subsonic at small radii and supersonic at large radii. The family of isothermal

(γ = 1) transonic Parker wind solutions depends solely on one parameter, which is often

called the hydrodynamic energy parameter (HEP) and is defined as

λo =
GM∗mpµ

γkToro
. (2.1)

Here, G is the gravitational constant, M∗ is the central body’s mass, mp the proton mass,

µ is the mean molecular weight, and To is the temperature at the base of a streamline,

i.e. at the boundary radius ro. A polytropic equation of state (EoS) introduces a second

dependence on the adiabatic index γ. The choice to incorporate γ into the HEP was not
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made in the early papers on the solar wind, but it makes the dimensionless equations less

cluttered.

It has not been emphasized in the literature that the Parker problem differs from the

Bondi problem in one important respect that pertains to the boundary conditions. In the

Bondi problem, the boundary is at infinity and as a consequence, the density boundary

condition ρ(r → ∞) = ρ∞ is automatically satisfied. On the contrary, the Parker problem

has an inner boundary condition, which causes there to be two sets of critical point solutions

to choose from for every value of the adiabatic index in the range 1 < γ < 5/3 (except for

γ = 3/2). More specifically, the equation governing the location of the sonic point has

two roots and each one yields a family of solutions with the topology described above.

Ultimately, therefore, there are two transonic Parker wind solutions to choose from; only

one of them satisfies the density boundary condition ρ(r → ro) = ρo. This occurrence is

accounted for mathematically in Appendix D.

Physically, Parker wind solutions model atmospheric coronae in hydrodynamic equilib-

rium just as a familiar barometric law, which yields the variation of density with radius,

models an atmosphere in hydrostatic equilibrium. Indeed, an isothermal barometric law

(albeit one that accounts for a varying gravitational potential) can be considered the trivial

Parker wind solution with v(r) = 0, T (r) = To = constant, and

ρ(r) = ρo exp [λo(ro/r)− λo] , (2.2)

where ρo is taken to be the known density at a reference radius ro. Equation (2.2) is most

commonly recognized as the solution to the equation of hydrostatic equilibrium,

dP

dr
= −GM∗ρ

r2
(2.3)
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for the special case of an ideal gas with a pressure P = ρkTo/mpµ. However, equation (2.2)

is readily seen to be the density profile found by taking the limit of a Parker wind solution

with a slowly expanding atmosphere (v → 0) and a small mass-loss rate (corresponding

to an everywhere subsonic solution—see §5.7 for more discussion). Recovering a static

atmosphere from a slowly expanding one hints at a correspondence between thermal escape

processes in kinetic theory and fluid dynamics.

2.1 Rapid Hydrodynamical Escape

Parker winds capture the simplest example of a more general thermal escape process

characterized by hydrodynamical escape. We will use the term rapid hydrodynamical escape

when we are explicitly referring to flows that are transonic. Modern, more realistic models

can account for additional physical processes and non-spherical geometries, but the under-

lying hydrodynamic, thermal escape mechanism is effectively isolated by Parker winds.

The relevant thermal escape process in a static atmosphere is sometimes referred to

as hydrostatic escape to distinguish (and emphasize) its relation to what we are calling

hydrodynamic escape (e.g., Seager 2010). Hydrostatic escape is more commonly called

evaporation or Jeans escape, which is the slow escape of particles in the high energy tail of

a Maxwellian distribution, as described by kinetic theory. A parameter common to both

the kinetic theory and fluid dynamics approaches to deriving a barometric law for a static

(i.e. slowly evaporating) atmosphere is what we call the thermal energy parameter (TEP),

τ ≡ |Φ|
c2s

= λo
ro/r

T (r)/To
, (2.4)

where cs =
√

γkT/µmp is the speed of sound. The TEP is by definition a measure of

the thermal energy of gas at every location in a central gravitational field, and the second

equality permits us to interpret the HEP as just the TEP evaluated at some reference level

ro, at which the temperature is To ≡ T (ro). The magnitude of the HEP at this level governs
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which approach, fluid or kinetic, better models the escape process. As a concrete example,

consider a planetary atmosphere having a Maxwellian temperature profile T (r) and let ro

represent the radius of the exobase, beyond which particle collisions are negligible. Then

vth =
√

2kTo/mpµ is the most probable velocity of thermalized particles at the bottom

of the exosphere. From equation (2.1), the HEP can be written as λo = v2esc/v
2
th, where

vesc =
√

2GM∗/ro is the escape velocity at the exobase. Evaporation is the dominant

process when vth << vesc, i.e. when λo >> 1, so that only the highest energy particles

can escape. If, for example, the atmosphere is both opaque to and subjected to a high

flux of extreme ultraviolet (EUV) radiation, allowing vth ∼ vesc (λo ∼ 1), then rapid

hydrodynamical escape is expected to dominate. In that case, the overall escape process is

more appropriately governed by the equations of hydrodynamics.

We should stress that rapid hydrodynamical escape implies a vanishing pressure at

infinity (Parker 1958, 1960, 1965). In contrast, a static atmosphere can only be held static

if there is a finite inward pressure exerted on it at large radii. In other words, the isothermal

barometric law of equation (2.2) must break down at large radii because it tends to a finite

pressure at infinity, irrespective of the presence of any outside medium that can balance this

pressure.2 The absence of this medium in essence provided the physical basis for Parker’s

original transonic solar wind solution, as the hydrostatic conduction model of Chapman

(1957), the model of the extended solar corona that Parker’s model superseded, implicitly

featured a non-vanishing pressure at infinity. Parker pointed out that the vacuum-like

conditions of the interstellar medium cannot possibly provide the necessary back pressure

to keep the Sun’s atmosphere in hydrostatic equilibrium.

2The density in equation (2.2) at r = ∞ is ρo exp(−λo) and for baratropic flow, the pressure is a function
only of density. See Chamberlain (1963) for a detailed discussion of the breakdown of a barometric law using
a kinetic theory approach.
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More rigorously, we can exploit the TEP to identify a threshold temperature decline

that determines whether or not an atmosphere can be held static. Integration of equation

equation (2.3) over a non-isothermal atmosphere that extends from ro (where ρ = ρo and

T = To) to some radius r can be written (c.f. Parker 1965),

ρ(r)T (r) = ρoTo exp

[
−
∫ r

ro

τ(r′)
r′

dr′
]
, (2.5)

where we have taken the pressure as P (r) = cs(r)
2ρ(r). In order for equation (2.5) to

describe an atmosphere in hydrostatic equilibrium, the density must vanish at infinity,

implying that the integral inside the exponent must be divergent at large r. Conversely, a

Parker wind is the steady equilibrium state of an atmosphere if the integral is convergent. In

terms of the TEP, ρ vanishes at infinity if τ is an increasing function of r, while the density

tends to a finite value if τ(r) is decreasing. Physically, therefore, a static atmosphere is

possible only if the gravitational potential energy of the gas outweighs its thermal energy

at large radii. For the critical case in which these energies are in balance, i.e. when τ(r) is

constant, we see from equation (2.4) that the temperature profile satisfies T (r)/To = ro/r

and from equation (2.5) that the integral diverges logarithmically. Incidentally, a lively

historical controversy concerning the transonic nature of the solar wind involved a competing

hydrodynamical model due to Chamberlain (1961) with just this temperature dependence.

Chamberlain’s everywhere subsonic solution has been called the solar ‘breeze’.3 In §7.2, we

show that there are no transonic Parker wind solutions with a 1/r temperature dependence,

which occurs when γ = 3/2.

Importantly, γ = 3/2 is the critical adiabatic index that divides the solution space

of transonic polytropic Parker winds and corresponds to the constant velocity solution

3Debate of its credibility persisted until 1962 when the Mariner 2 probe definitively established the
existence of a continuous solar wind with an average supersonic solar wind speed of 500 km s−1 at Earth
(Brandt 1970).
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Table 2.1. Parameter Space of Spherically Symmetric Parker Wind Solutions:

Polytropic Permitted TEP Hydrostatic Transonic
Index HEP Range Behavior solutions? solutions?

γ = 1 [2,∞] dτ/dr < 0 No Yes
1 < γ < 3/2 [2, 1/(γ − 1)] dτ/dr < 0 No Yes
γ = 3/2 λo = 2 dτ/dr = 0 No (Breeze) No

3/2 < γ < 5/3 [1/(γ − 1), 2] dτ/dr > 0 Yes Yes
γ = 5/3 [1.5, 2] dτ/dr > 0 Yes No

v(r) = co, where co =
√

γkTo/µmp is the adiabatic sound speed at the base of the flow. For

a given set of physical parameters it must be checked that there are viable solutions in the

parameter space (λo, γ), which is coupled in a simple way. Namely, spherically symmetric

transonic Parker wind solutions only exist when λo lies within the range [2, 1/(γ − 1)] if

γ < 3/2 and within [1/(γ − 1), 2] if γ > 3/2. These HEP bounds are derived in §7.2.

We relate this parameter space to the properties of the TEP in Table 1. Furthermore, in

Table 1 we compare parameter regimes giving rise to valid hydrostatic solutions (which have

dτ/dr > 0 according to equation (2.5)) vs. transonic Parker wind solutions.

We mention here that the critical HEP bound analogous to λo = 1/(γ − 1) for the

parameter space of our transonic disk wind solutions (which assume Keplerian rotational

velocities) is given by λo = 2/(γ − 1). That this value is doubled for disk winds is a man-

ifestation of the fact that the gravitational binding energy is halved for gas in a Keplerian

disk. It should be noted that it is merely coincidental that in kinetic theory, the expression

2/(γ−1) corresponds to the number of degrees of freedom n for a gas with polytropic index

γ = 1 + 2/n (see e.g., Chakrabarti 1990).
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CHAPTER 3

APPLICATIONS OF PARKER WINDS

3.1 Planetary Winds

Despite their applicability to planetary studies, Parker winds were not immediately

utilized to model planetary atmospheres. Hunten (1973) was among the first to directly

address the thermal, non-evaporative loss of hot neutral gases from the terrestrial planets

of our solar system, showing that the escape process is analogous to the transonic hydro-

dynamical escape of (ionized) solar wind particles. Gross (1974) adapted the Parker wind

solution for a polytropic fluid to study the loss of hydrogen from Jupiter. When hydrogen

is undergoing rapid hydrodynamical escape, it can drag heavier species of gas along with

it; the term ‘blowoff’ has been used to denote the net outflow (e.g., Hunten 1982, 1990).

Achieving conditions to make rapid hydrodynamical escape more efficient than non-

thermal escape processes for our solar system’s planets requires a very high energy input

from the Sun. The opacity to EUV radiation is too small to sufficiently heat the innermost

planets, while the flux of radiation is too low to meet the energy input demands of the

outer planets. Losses via non-thermal processes were eventually shown to dominate in the

atmospheres of the terrestrial planets, the gas giants, and various satellites (e.g., Hunten

1982, 1990). While planetary Parker-like winds are probably only relevant for modeling the

dense, primitive atmospheres of our solar system’s planets, rapid hydrodynamical escape is

believed to be efficient in the atmospheres of many close-in exoplanets.

For planetary applications, a major limitation of the polytropic EoS employed by Parker

winds is that its use ultimately results in a temperature profile being assigned to the flow.

Consequently, a specific spatial dependence is imposed on the energy input, one which

need not even closely approximate the heating from in situ absorption throughout the
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atmosphere. The usefulness of Parker winds to model the rapid hydrodynamical escape of

gas from planets is therefore mainly qualitative. A more realistic time-independent solution

for the rapid hydrodynamic escape problem was worked out by Watson et al. (1981).

They developed a method that employs the hydrodynamic energy equation, which differs

from a polytropic relation by a nonzero net volume heating rate. Compared to obtaining

Parker wind solutions, obtaining transonic solutions with this method is a difficult numerical

problem (Kasting & Pollack 1983, Tian et al. 2005). This method is better suited for

studying subsonic hydrodynamic escape, as carried out by Kasting & Pollack (1983), due

to the high sensitivity of the location of the critical (sonic) point to the boundary conditions.

Judging by the work done to explain the observations of the transiting ‘hot-Jupiter’

HD 209458b, it is clear that time-dependent simulation is the preferable tool for developing

multi-dimensional models that move beyond a simple EoS (Tian et al. 2005, Munoz 2007,

Murray-Clay et al. 2008, Stone & Proga 2009). Here again, Parker winds play a pivotal

role. As we mentioned in the introduction, the analytic solutions to Parker winds are

ideally suited for assessing the accuracy of the numerical schemes used in hydrodynamic

simulations. For instance, Stone & Proga (2009) tested their methods by showing that their

spherically symmetric computational models of escaping atmospheres from hot-Jupiters

agreed with Parker wind solutions to better than 1%.

For reference, we provide a numerical value of λo appropriate for exoplanets (using

parameters for Jupiter)

λo ≃
22µ

γ

(
To

104K

)−1( ro
RJ

)−1(M∗
MJ

)
. (3.1)

We have assumed a relatively high effective temperature of T = 104 K for exoplanets, as

might be met for hot-Jupiters subjected to intense, EUV radiation from its parent star (e.g.,

Yelle 2004). Notice, in particular, that for there to be transonic Parker wind solutions for

16



exoplanet applications (within the parameter space [2, 1/(γ − 1)]), γ must be very nearly 1

unless the gas is sufficiently ionized so that µ is reduced significantly below 1. Furthermore,

for 3/2 < γ < 5/3, the bound 1/(γ − 1) < λo < 2 implies an exospheric temperature in the

range [11µ/γ, 22µ(γ − 1)/γ] × 104 K for Jovian parameters. The temperature ranges are

reversed for 1 < γ < 3/2.

3.2 Stellar Winds

Stellar wind theory has undergone many advances by way of making detailed observa-

tional and theoretical comparisons with Parker winds, as substantial departures from its

predictions indicate that other forces or processes are at work. For example, simply scaling

up the parameters of Parker winds cannot explain the observed mass-loss rates and terminal

velocities of O stars, which ruled out thermal driving for these stars and eventually led to

the highly successful theory of radiatively driven mass loss (CAK). As another example,

the observations of Kraft (1967) showing that late type stars in young clusters have faster

rotation rates than our sun led investigators to find other wind-launching mechanisms, as

the mass-loss rate from Parker winds (even accounting for rotation) is insufficient to shed

significant angular momentum over the sun’s lifetime. Weber & Davis (1967) discovered the

effect of magnetic braking and explained the slow rotation of the sun as due to the ‘effective

co-rotation’ of the solar wind within the Alvén radius. In so doing, their analysis revealed

the essential features of magneto-centrifugally driven wind models.

The solar wind, defined by Parker himself as “simply the outward extension of the quasi-

static corona of the sun” (Ch. 1 of Jokipii et al. 1997), is observed to be a very dynamic

phenomena governed by turbulent magnetohydrodynamics throughout (e.g., Biskamp 2003).

The details of the actual heating processes leading to the formation of the corona constitute
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the still debated ‘coronal heating problem’. Despite the Sun’s magnetic nature, if the

dynamo process were to suddenly come to a halt, leaving only the residual heat, a Parker

wind would persist until the heat had dissipated. Magnetic fields mainly divert or confine

the flow, shaping the wind into a ‘Parker spiral’ on scales of ∼ 1 AU, while creating both

a fast wind and a slow wind (depending on whether the flow originates from regions with

open or closed magnetic field lines) on similar scales.

The fact that magnetic fields are not the dominant influence over the solar wind beyond

∼ 10R⊙ provides theoretical support for the transonic nature of the solar wind (Brandt,

1970). In the coronal regions, the plasma beta (the ratio of thermal to magnetic pressure)

is small and the magnetic field structure controls the wind dynamics, as it would at larger

radii if the wind remained subsonic (e.g., Cravens 1997). The point being, the flow is driven

primarily by thermal pressure gradients, so the solar wind is described by a Parker wind

as a first approximation that can capture the essence of the dynamics and provide order of

magnitude estimates of the wind velocity and mass-loss rate.

The solar wind occupies a radial distance of ∼ 100 AU, while the sonic point is located

within a few R⊙, meaning that the heating takes place in a relatively tiny layer in the

subsonic regions of the expanding corona. As a consequence, the temperature profiles

resulting from the use of a polytropic EoS pose fewer limitations and actually have predictive

power. For instance, Leer and Holzer (1979) exploited the temperature profile of a γ = 1.1

wind solution to place strong constraints on the coronal temperatures of our Sun in the

subsonic flow regions, within the confines of the polytropic Parker model. Without any

knowledge of solar wind properties at 1 AU, we can illustrate the constraints imposed by

the Parker model just by considering the parameter space of valid transonic wind solutions.

18



The numerical value of λo appropriate for stars is

λo ≃
14

γ

( µ

0.6

)(
To

106K

)−1 ( ro
R⊙

)−1 (M∗
M⊙

)
. (3.2)

For 1 < γ < 3/2, the bound 2 < λo < 1/(γ − 1) implies a coronal temperature in the range

[14(γ − 1)/γ, 7/γ] × 106 K for solar parameters, so for γ = 1.1 the coronal temperature

should lie in the range 1.4− 6.4 × 106 K.

It has long been known, however, that any constant γ fails to reproduce both the

measured solar wind flux at 1 AU and the correct solar wind parameters close to the sun

(Weber & Davis 1967). The observations can be reconciled with multidimensional MHD

models that allow for a radially varying polytropic index, γ = γ(r) (Tsinganos 1996). State

of the art, 3D MHD global solar wind models implement such a prescription (e.g., Roussev

et al. 2003, Cohen et al. 2007; see Ofman 2010 for a recent review of solar wind modeling).

3.3 Disk Winds

Magneto-centrifugally driven winds are often invoked as candidate mechanisms for ex-

plaining outflows from accretion disks. In systems or regions of systems where magnetic

forces might be dynamically unimportant, thermal driving is a likely contender (e.g., Proga

2007 & references therein). Just as Parker winds are useful for modeling outflows from any

spherical astrophysical body thought to be hot enough to exhibit a non-explosive, thermal

expansion of gas, the Parker-like disk winds addressed in this paper can be expected to

approximate thermally driven winds from the coronae of accretion disks associated with

AGN, CVs, X-ray binaries, and protoplanetary disks. Our models can also be applied

to unmagnetized protostellar disks, as their disk winds are typically modeled assuming a

bipolar outflow.

Due to the diversity of physical scales spanned by accretion disks, a preliminary step
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is to identify a characteristic radius for invoking thermal driving, in order to calculate the

HEP. First, it is worth emphasizing that the escape velocity for disks varies with distance

ro along the disk midplane, so the HEP must be considered a function of ro. The distance

ro is therefore utilized to measure the height of the exobase for planets, the coronal radius

for stars, and the distance to the ‘footprint’ of a given streamline for disks. In interpreting

the parameter space of our solutions, it should be noted that there is an intrinsic difference

between 1D disk wind models and 1D spherical wind models. Namely, the boundary of

a spherically symmetric wind model spans no dimensions and is simply a point located

at ro, whereas the boundary of an infinitely thin disk, assuming axial symmetry, spans

one dimension, viz. the x-axis—see Figure 4.1. Consequently, for a given mass M∗ and

characteristic launching radius ro for a star or planet, varying the HEP samples different

temperatures of the stellar corona or exosphere. Meanwhile, varying the HEP for a given

central object mass for disk winds corresponds to altering either the temperature at a fixed

distance along the midplane or the distance at a fixed temperature—or both.

As we mentioned in the introduction, isothermal Parker winds have already been utilized

to study the dispersal of protoplanetary disks via photoevaporative winds, so it is worth

discussing this application in more detail. The characteristic length scale for protoplanetary

disks is ‘the gravitational radius’, rg = GM∗/c2o, the distance where the gas becomes un-

bound because the escape velocity from the disk is equal to the thermal velocity of the gas

(i.e. λo ≈ 1). Early semi-analytic work concentrated on the radiative transfer problem of

heating regions of protoplanetary disks beyond rg; these studies established that photoevap-

orative heating creates physical conditions resembling HII regions, i.e. high energy (EUV)

photons produce a hot and nearly isothermal (T ∼ 104 K) ionized layer of hydrogen. The

process can be subclassified as either internal or external photoevaporation (see Armitage
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2011), depending on whether the ionizing source of radiation is primarily a central massive

star (Shu et al. 1993, Hollenbach et al. 1994) or nearby massive stars (e.g., Johnstone et al.

1998), respectively. Since photoevaporation was considered to be significant at radii ro & rg

in these early works, the gas was not subjected to any gravitational forces. The dominant

disk dispersal mechanism in the inner disk region ro << rg, where the gravity of the central

star cannot be neglected, is commonly referred to as viscous evolution and is believed to be

a combination of dissipative and magnetic processes (leading to accretion onto the central

star) and protostellar outflows (Hollenbach et al. 2000).

Subsequent studies indicated that photoevaporation can compete with viscous evolution

to disperse the inner disk well within rg. Isothermal Parker wind solutions played a central

role in the work by Adams et al. (2004), who derived scaling relationships for the mass flux

density of so-called ‘subcritical’ disks, those with outer disk radii rd << rg, based upon the

functional dependence of the isothermal ‘Keplerian’ Parker wind solution (a radial Parker

wind with a Keplerian azimuthal velocity component). Adams et al. (2004) took the outflow

boundary to be a spherical surface subtending some solid angle δΩ at a radius ro, i.e. they

envisioned a flared disk and showed that an outflow emanating radially outward from the

extended edge of the disk can dominate the ‘vertical’ wind from the disk surface. Using time-

dependent hydrodynamic simulations, Font et al. (2004) confirmed that photoevaporation

can lead to rapid hydrodynamical escape both within and beyond rg, albeit for an un-flared

disk. Our models therefore make it possible to move beyond a spherical wind boundary and

analytically investigate Parker-like winds from the surface of the disk rather than from the

disk edge.

The appropriate length scale used to calculate the HEP for AGN and X-ray binary disk

winds is the Compton radius, the radius where the gravitational and thermal pressures are
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equal:

RIC ≡ GM∗
c2IC

=
GM∗mpµ

kTIC
. (3.3)

Here, cIC is the isothermal sound speed for gas heated to the inverse Compton temperature,

which can be ∼ 108 K depending on the spectrum of radiation. As discussed by BMS83,

regardless of magnitude of the luminosity, at radii beyond RIC the gas cannot remain quasi-

static; the corona is itself unbound and better described as a vigorous wind region. Weak

outflows are possible at smaller radii, down to ξ ≡ ro/RIC ∼ 0.1 (Woods et al. 1996; see

also Proga & Kallman 2002). In terms of ξ, the HEP is

λo =
1

γξ

(
TIC

To(ξ)

)
. (3.4)

Depending on the luminosity, the wind regions to either side are RIC are further divided;

BMS83 identified five solution regimes in all (see also Woods et al. 1996). Each has an

associated mass flux density, determined by ξ and L/Lcr, where Lcr is a critical luminosity

defined by

Lcr =
1

8µ

(
c

cIC

)(
me

mp

)
LE. (3.5)

Here, LE is the Eddington luminosity, c the speed of light, and me the electron mass;

Lcr/LE < 0.1 for TIC & 107 K, so that thermal pressure dominates radiation pressure.

Parker-like disk winds are most applicable in the regions affected by gravity, which includes

the two weak wind regions with ξ < 1, labelled D and E by BMS83 with L/Lcr < 1

and L/Lcr > 1, respectively, as well as the ‘gravity inhibited’ strong wind region (labelled

C) with ξ > 1 and L/Lcr << 1. The remaining two regions A & B have high enough

luminosities that gravity is dynamically unimportant and adiabatic losses insignificant in

the subsonic flow regime. The scaling relationships of isothermal Parker-like disk winds can

capture the mass flux density to an order of magnitude in regions A & B, but the results
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derived by Adams et al. (2004) apply to the isothermal region E.

We can now make an explicit comparison between equation (3.4) and the HEP for

protoplanetary disks, which is simply

λo =
rg
ro
. (3.6)

For a constant temperature on the disk midplane (appropriate for a disk surface heated

by EUV radiation to ∼ 104 K or Compton heated to To(ξ) ∼ 107 K), rg is constant, and

we see that photoevaporative winds are qualitatively similar to Compton heated winds

in the sense that rg plays the role of RIC . In either case, λo decreases as r−1
o due to

the reduced escape speed. However, a quantitative difference arises when rg is constant

because a vigorous wind region is expected to lie beyond rg, where λo < 1. The parameter

space for a Keplerian Parker wind only permits transonic solutions for λo & 10, for at

smaller HEP, the flow would no longer be launched subsonically. In other words, if the

subcritical disks modeled by Adams et al. (2004) had a constant rg, the bound λo & 10

would necessarily lead one to predict the launching of initially supersonic flows at radii

ro > rg/10. For Keplerian rotation more generally, the HEP parameter space of polytropic

solutions is (λo)min < λo < 2/(γ − 1), where (λo)min is the model-dependent minimum

HEP value that yields a transonic solution; for constant rg, supersonic winds are expected

at radii ro > rg/(λo)min. Detailed hydrodynamic simulations indicate that flows within and

beyond rg are more likely to have subsonic initial velocities around vo = 0.4co (e.g., Font

et al. 2004), although substantially higher launching velocities, even supersonic ones, are

not unprecedented (see, e.g., Alexander et al. 2006). In general, therefore, the disk must

be assigned a temperature profile To = To(ro), and with rg ∝ T−1
o not being constant, the

parameter space of transonic solutions can be applied to a larger range of protoplanetary

disk radii.
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GH09 utilized the scaling relationships derived by Adams et al. (2004) to derive mass

loss rates (and accompanying disk dispersal time-scales) along the entire protoplanetary

disk surface. Using the thermo-chemical disk model presented in Gorti & Hollenbach (2008),

they self-consistently calculated the decline of the gas temperature along the disk, which

was subjected to EUV as well as far-ultraviolet (FUV) and X-ray irradiation. Upon ap-

plying Parker wind solutions to treat the hydrodynamics, they encountered temperatures

corresponding to HEP values outside of the permitted parameter space for a Keplerian

Parker wind. We can quantify this difficulty, as the bound λo > (λo)min translates into the

following requirement on the temperature at the base of the flow:

To <
5.4× 104 K

(λo)min

( ro
1 AU

)−1
(
M∗
M⊙

)( µ

.5

)
. (3.7)

GH09 quoted a gas temperature of ∼ 1000 K at 10 AU for a solar mass star. Since the

Keplerian Parker wind solution has (λo)min ≈ 10, the temperature bound implies that

transonic solutions only exist for To < 540 K at this radius. To circumvent this difficulty

and calculate mass-loss rates for all radii intermediate to the radius where they assumed

the flow is launched with vo = co, GH09 extrapolated between the critical point equation

of a Keplerian Parker wind and that of a spherically symmetric Parker wind, which has

(λo)min = 2 (and thus a less stringent temperature requirement). Ercolano et al. (2009)

caution against the procedure of extracting ‘global’ mass loss rates from an admixture

of 1D Parker wind solutions, advocating instead a coupled hydrodynamic and radiative

transfer approach that entails finding sonic point distances according to a self-consistently

determined streamline geometry. We share this sentiment, but it is certainly hopeful that

a simplified hydrodynamics approach can provide adequate mass-loss rate estimates. We

return to this topic in §6.1, where we show that GH09’s specific extrapolation procedure

leads to reasonable values of the magnitude of the initial Mach number, which is the relevant
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quantity for incorporating the hydrodynamics.

GH09 point to a need for an alternative approach, suggesting the use of non-isothermal

solutions such as those presented in the present work. Indeed, use of the CIA model, which

has (λo)min ≈ 2.5 for all 1 < γ < 5/3, would permit an extrapolation procedure to be

avoided. To facilitate such an application of our disk wind models, in §6.1 we present

polytropic scaling relationships for the mass-flux density, analogous to those derived for

γ = 1 by Adams et al. (2004). We emphasize, however, that our solutions were developed

for flows emerging from the midplane of geometrically thin disks. The photoevaporative

flow surface of protoplanetary disks can extend to significant heights above the midplane.

For example, GH09 find this surface to reside at a height of ∼ ro/3 above their fiducial

disk. Since this height is within the scale height H =
√

2/λoro of an isothermal corona

when λo < 18, we expect our models to be approximately valid.
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CHAPTER 4

STREAMLINE GEOMETRY

As discussed in BMS83, there are two routes to take in regards to specifying a geometry

when finding solutions to wind equations: (i) assign some trajectory to the flow emanating

from the disk or (ii) self-consistently solve for that trajectory. The first entails that an

expression be provided for the flow tube area A that enters the steady state continuity

equation ρvA = constant. By adopting the geometry of the models discussed in the intro-

duction, we necessarily take route (i). As shown in Figure 4.1, our geometry is comprised of

streamlines that are straight lines in the (x, z)-plane. By rotating these straight streamlines

around the z-axis, the actual trajectory traversed by the gas as it rises above the disk can be

visualized; it spirals about a cone that widens according to the inclination angle i. Besides

being observationally motivated, a biconical flow area is the simplest possible choice, for

the distance along a streamline l = l(x, z) can be used as the sole variable instead of seeking

some relationship between the cylindrical coordinates x and z. Our coordinates are related

by x = ro+l cos i, z = l sin i, and r =
√

r2o + l2 + 2lro cos i. CIA streamlines are self-similar,

while Converging streamlines are not. We find A(l) for each configuration in §5.1.

BMS83 and Fukue (1989) also took route (i) by assuming a flow configuration. Fukue

(1989) adopted an area function similar to that used by BMS83, but he did not self-

consistently implement the polytropic EoS when he followed BMS83 in requiring that the

wind be launched from rest from the disk midplane. (No restriction is imposed on vo for the

entropy equation used by BMS83.) In our notation, BMS83 chose a generic area function

aimed at parametrizing the streamline divergence: A(l) = (1 + l/ro)
q. The parameter q is

constrained to lie between 0 (vertical flow) and 2 (spherical flow). In §5.1, we show that

the Parker and Converging models have q = 2, while the CIA model has q = 1.
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Figure 4.1. The biconical outflow of our ‘global’ disk wind model is shown schematically
on the left. On the right, we depict our coordinate system and the streamline geometry of
the CIA and Converging models. In the fourth quadrant, we illustrate the geometry used
to arrive at an expression for A(l), which can be visualized as the area swept out around
the z-axis by any two neighboring streamlines at a fixed distance l. This notion becomes
exact in the differential limit of closely spaced streamlines.
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Alternatively, route (ii) can be followed, in which an attempt can be made to calcu-

late A(l) as part of the solution. This involves either solving the fully 2D, 2.5D, or 3D

problem using numerical techniques or it requires making an extra assumption, such as

self-similarity or force balancing. The latter route was taken by Takahara et al. (1989),

who arrived at an expression for A(l) by assuming that the centrifugal force balances the

component of the gravitational force perpendicular to the flow velocity at every distance l

along the streamline.4 As discussed by BMS83, this is a valid approximation regardless of

the streamline trajectory close do the disk midplane if angular momentum is conserved. It

was soon pointed out by Fukue & Okada (1990) that Takahara et al. (1989) misrepresented

the gravitational force in calculating this force balance.5 The correct expression for A(x, z),

obtained by Fukue & Okada (1990), is significantly more complicated; it suffices to consider

the shape of their streamlines in the (x, z)-plane. At every footprint distance ro, the local

streamline is found from

r =
ro + cz

2


1 +

√
1−

(
2z

ro + cz

)2

 , (4.1)

where r =
√
x2 + z2 is the spherical position coordinate. The parameter c is an integration

constant that resulted from the correct treatment of the force balance, which entailed solving

an ordinary differential equation for dx/dz. Hence, c is related to the slope—the opening

angle of the streamline—and defines a family of streamlines at every footprint radius ro.

See Figure 1 in Fukue & Okada (1990) for a plot comparing their streamlines for various

values of c with the self-similar streamlines found by Takahara et al. (1989). By observing

that the concavity or convexity of the streamlines in Figure 1.2 is pronounced only near the

4In the MHD literature, balancing forces perpendicular to the streamlines leads to the Grad-Shafranov
(or transfield) equation.

5Takahara et al. (1989) used the x-component of the gravitational force rather than the component per-

pendicular to the streamline, to arrive at a self-similar streamline trajectory given by z = x
√

(x/ro)2/3 − 1.
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midplane, we can conclude that using equation (4.1) would not be an improvement over our

choice of geometry, as equation (4.1) does not capture this feature.

Nevertheless, the findings of Fukue & Okada (1990) provide a physical argument sup-

porting our choice of geometry. Examination of equation (4.1) reveals that close to the

disk midplane, their streamline function is indeed just a straight line.6 In other words,

balancing the gravitational and centrifugal forces perpendicular to the flow implies straight

streamlines close to the x-axis. Equivalently, conical streamlines define the path of mini-

mum effective potential near the disk midplane. Moreover, Fukue & Okada showed that

streamlines curve back on themselves (and intersect the z-axis) if c < 2. For streamlines

to extend to infinity, it is required that c ≥ 2. This is the requirement that the inclination

angle i . 27◦ (see footnote 6), which is approximately the opening angle of the self-similar

streamlines obtained by Luketic et al. (2010) and shown in Figure 1.2. Note, however, that

the square root in equation (4.1) spoils the self-similarity that the streamlines would possess

if the radical were zero.

One would expect that a model featuring streamline curvature in the (x, z)-plane would

lead to significantly different wind solutions if the area function A(l) directly determined

the critical point location. This is not the case, however, as the well known rocket-nozzle

analogy in stellar wind theory revealed that (the effective) gravity, more so than the flow

tube area, plays the role of the converging-diverging nozzle to facilitate a transition from

subsonic to supersonic flow (e.g., Lamers & Cassinelli 1999; we define the equivalent nozzle

function in §6.1). To stress this point, consider how the area term enters the equation of

motion per elimination of the density gradient (by taking a logarithmic derivative of the

6To see this, note that to first order in z, when z << ro, r ≈ x and the right hand side of equation
(4.1) is ≈ ro + cz. Hence, x = ro + cz, which is just our x-coordinate, provided we identify the constant as
c = 1/ tan i. Thus, c ≥ 2 implies i ≤ tan−1(.5) = 26.57◦.
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continuity equation),

1

ρ

dρ

dl
= −1

v

dv

dl
− 1

A

dA

dl
. (4.2)

The first term on the right hand side exemplifies the outcome of adopting a fluid treatment:

the density gradient (and hence the pressure gradient for a polytropic EoS) itself depends

on the flow acceleration. It is this term that gives rise to a singularity upon solving the

equation of motion for dv/dl. In turn, the second term, d lnA/dl, which is more a measure

of streamline divergence than of the area between streamlines, influences the position of this

singularity—the location of the critical point. This location would not change by much had

we analytically modeled the exact area in Figure 1.2, as azimuthal streamline divergence is

well accounted for using straight streamlines.

Despite the location of the critical point being reasonably well determined, our neglect of

the initially vertical trajectories of the streamlines as well as any ‘compression’ of streamlines

upon bending radially, features that are more prominent in the streamline plots of Woods

et al. (1996) than in Figure 1.2, may have important ramifications for the behavior of the

bulk flow velocity and Mach number profiles near the midplane. Namely, these features may

contribute to making the profiles monotonic, so that the gas continually accelerates upon

rising off the disk. As it is, gas on Keplerian orbits will, in the steady state, momentarily

decelerate upon leaving the midplane for each of our geometries. In order for the flow to

accelerate, it is required that d lnA/dl < 0, which cannot be accomplished using straight

streamlines (for they would have to intersect). This situation results from the balance

between centrifugal and gravitational forces on the disk midplane, leaving only the area term

d lnA/dl to determine whether or not the equivalent nozzle function is initially converging

(if q < 0) or diverging (if q > 0), the latter implying that the bulk velocity and Mach

number profiles will exhibit minima. The extent of the deceleration is sensitive to γ — we
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plot representative disk wind solutions in §6.1, and in §7.3, we treat the rotating Parker

problem to uncover just what rotation rates lead to a loss of monotonicity.
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CHAPTER 5

HYDRODYNAMIC FORMULATION

In this section we present a general formalism for solving 1D thermally driven wind equa-

tions under either spherical or axial symmetry. We adopt all of the simplifications of the

classic Bondi and Parker problems, namely we consider the hydrodynamic limit, assuming

a single-fluid treatment and inviscid, barotropic flow. Imposing these restrictions allows

the vector Eulerian momentum equation to be integrated and the problem solved using a

simple Bernoulli function, constant along a given streamline. The forces acting on a fluid

element are: the force of gravity from a central source, gas pressure, and the centrifugal

force when there is nonzero rotation. We use the conventional polytropic EoS in lieu of

the energy equation. We only relax the assumption of spherical symmetry by adding an

azimuthal velocity component, conserving the specific angular momentum of the fluid, and

we allow for arbitrary amounts of streamline divergence.

Our formulation is an extension of the classic isothermal and polytropic Parker problems

into cylindrical symmetry. Because of the equivalence of wind and accretion equations,

our problem is also a generalization of the classic Bondi problem (Bondi 1952). Bondi’s

analysis entailed applying boundary conditions at infinity, where both the velocity and

gravitational potential vanish. Our solution allows boundary conditions to be applied at

any finite distance away from the central gravitating object. Although we do not address

the generalized Bondi problem because our focus is on winds, it should be kept in mind that

any explicit reference to boundary conditions taken at ‘the base’ — be it the disk midplane

or the surface of the central object — can equally well denote ‘outer’ boundary conditions

appropriate to accretion problems.
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5.1 The Continuity Equation

In Appendix C, we show that for the geometry of Figure 4.1, the steady-state continuity

equation can be written as

dṀ = ρ(l)v(l)A(l), (5.1)

where dṀ is the differential mass-loss rate at the location ro. The area between stream-

lines, A(l), can be determined from equation (C.10), after specifying di/dro, the adjacent

streamline divergence. The CIA model has no streamline divergence (di/dro = 0), giving

A(l) = 2πdro(ro + l cos i) sin i. (5.2)

We see by Figure 4.1 that the total midplane area occupied by the CIA model, obtained by

letting l = 0, sin i = 1, and integrating over dro from RCIA to ROUT is correctly given as

ACIA = π(R2
OUT −R2

CIA).

The Converging model, with geometry obeying tan i = d/ro, has streamline divergence

di/dro = − cos i sin i/ro, so

A(l) =
2πdro(ro + l cos i)2 sin i

ro
. (5.3)

Notice that for the same ro, both the CIA and Converging models have a differential base

area given by Ao ≡ A(l = 0) = 2πrodro sin i. The total midplane area hosting a Converging

wind is ACon = π(R2
CIA −R2

Con).

The Parker Model from the Converging Model with i = 0◦

Only ratios of the area appear in the equations governing the flow, as in

1

A(l)

dA(l)

dl
=

(
q cos i

ro + l cos i

)
, (5.4)

where q = 1 for the CIA model and q = 2 for the Converging model. The flow quenching

factor sin i does not enter the disk wind problem except when calculating Ṁ . We see,
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therefore, that the Converging model contains the Parker model as a special case, for when

i = 0◦, d = 0, bringing the converging point to the source of gravity. Then ro + l is just the

spherical coordinate r, ro representing the coronal radius rather than the footprint distance.

The only distinction that needs to be made is that equation (5.3) formally does not apply in

that case since A(l) = 0 — in cylindrical symmetry, there is no width between streamlines

because they all overlap on the x-axis. This can be thought of as a collapse to spherical

symmetry, so the Parker model results, albeit with the adjustment that the differential

base area becomes Ao = 2πr2o sin θdθ, where θ is the spherical polar coordinate, instead of

Ao = 2πrodro sin i.

Cylindrical Parker Winds: The CIA model with i = 0◦

Since the (rotating) Parker wind solution is recovered from the Converging model at

i = 0◦, it is reasonable to ask if the solution to the CIA model at i = 0◦ bears any

significance. It turns out that this solution was obtained by Skinner & Ostriker (2010) and

included as a testbed problem in their extension of the MHD code Athena into cylindrical

coordinates. This ‘cylindrical version’ of a rotating Parker wind, as they referred to it, can

be viewed as a wind flowing perpendicular to the symmetry axis of evenly spaced concentric

cylinders (with Ao = 2πrodz). Skinner & Ostriker’s (2010) rotating wind test demonstrated

cylindrical Athena’s ability to maintain steady state, transonic flows and conserve angular

momentum in cylindrical symmetry. Our solutions for both the Converging and CIA models

with i > 0◦ open up the possibility of allowing this test to incorporate the z-dimension.

As we demonstrate, the proper procedure for wind equations is to take reference quan-

tities at the footprint of a given streamline. The equations obtained for the CIA model at

i = 0◦ by Skinner & Ostriker (2010) are seemingly the same as ours, yet the problem as

they pose it is poorly formulated because they used reference quantities defined at infinity,
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where the pressure (and hence sound speed for a polytropic EoS) vanishes. Specifically, they

normalized the Bernoulli function to c2∞/(γ − 1), which should equal 0. Their solutions do

not suffer from this choice due to their assigning a value to the Bernoulli constant (thereby

setting the location of the sonic point) a priori. These considerations reflect the notion that

‘the boundary’ where the Bernoulli function is evaluated should be located in the subsonic

(causally connected) flow region and therefore can only lie at infinity for accretion problems

or for everywhere subsonic flows.

5.2 The Bernoulli Function

By Bernoulli’s theorem, the Bernoulli function is a constant on a streamline:

1

2
v2 +Φ+ h = constant, (5.5)

for enthalpy h =

∫
dP/ρ and bulk flow velocity v =

√
v2x + v2φ + v2z =

√
v(l)2 + v2φ. We

denote the Bernoulli constant as Bo and emphasize that, while it is to be evaluated at the

boundary,

Bo ≡
(
1

2
v2 +Φ+ h

) ∣∣∣∣
BDY

, (5.6)

it is a priori unknown because v(l = 0) is unknown.

To define Bo, both the temperature T and density ρ at the base of every streamline

must be specified. We take these quantities to be To and ρo, respectively. For an ideal

gas EoS, this is equivalent to specifying the pressure at at every footprint location ro. The

baratropic assumption, dP = (∂P/∂ρ)dρ, is satisfied by an ideal gas EoS combined with

the polytropic fluid relation, T = To(ρ/ρo)
γ−1. Explicitly we have P = ρokTo(ρ/ρo)

γ/µmp,

which gives

h =

∫
1

ρ

dP

dρ
dρ =

c2o

ργ−1
0

∫
ργ−2 dρ =

{
c2s ln(ρ/ρc) if γ = 1

c2s/(γ − 1) if γ > 1,
(5.7)
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provided that we absorb into Bo the constant term c2s ln(ρc) for γ = 1, as well as the

constants of integration.

For rotational motion in a plane under a central force, the specific angular momentum

L is a constant of the motion: L = xvφ, where x = ro + l cos i. We will present our disk

wind results for a disk rotating at Keplerian velocities, in which the disk angular velocity

at any location ro is ΩK =
√

GM∗ro/r2o . However, for treating Parker winds we follow

Keppens & Goedbloed (1999) in allowing for arbitrary rotation rates Ω, parametrizing vφ

on the equatorial plane by some factor ζ of the adiabatic sound speed at the base, i.e.

vφ(l = 0) = Ωro = ζco, giving

vφ = Ωro

(ro
x

)
= ζco

(
ro

ro + l cos i

)
. (5.8)

Keplerian rotation corresponds to ζ =
√

GM∗/roc2o =
√

λo. Rotation therefore enters the

problem as an effective potential,

Φ → Φeff = −GM∗
r

+
v2φ
2

= − GM∗√
r2o + l2 + 2lro cos i

+
ζ2c2o
2

(
ro

ro + l cos i

)2

.

(5.9)

For γ > 1 then, the Bernoulli function reads

Bo =
1

2
v(l)2 +Φeff (l) +

cs(l)
2

γ − 1
. (5.10)

We treat the isothermal (γ = 1) case in §5.7.

5.3 The Equation of Motion

The equation of motion, which we will sometimes refer to as F (l, v, dv/dl) = 0, con-

tains the velocity gradient. Critical points arise whenever the velocity gradient becomes

undefined, i.e. when dv/dl = 0/0. Hence, the Bernoulli function must be accompanied
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by F (l, v, dv/dl) = 0 to seek out these critical points. F (l, v, dv/dl) = 0 is found by first

differentiating equation (5.10) to give

dBo

dl
= v

dv

dl
+

dΦeff

dl
+

c2s
ρ

dρ

dl
= 0, (5.11)

and then by eliminating the density gradient using the continuity equation. The relevant

derivative is given in equation (4.2). Further dividing by c2s gives

F (l, v, dv/dl) ≡
(
1− c2s

v2

)
v

c2s

dv

dl
+

1

c2s

dΦeff

dl
− 1

A

dA

dl
= 0. (5.12)

5.4 Dimensionless Formulation

Our disk wind problem depends on a total of three parameters, namely, λo, γ, and i.

We find it natural to normalize distances to the gravitational radius,

rg = λoro =
GM∗
c2o

. (5.13)

Justification for this choice is obtained by shifting one’s viewpoint to consider all subscripts

‘o’ as standing for ‘outer’ rather than midplane boundary conditions. Then in the limit

co → c∞, rg is the so-called Bondi length. Since we will discuss results for both spherical

winds and disk winds, we will differentiate disk wind bulk velocities by normalizing to

Vesc =
√

GM∗/ro, the escape velocity from a thin Keplerian disk at a distance ro along the

disk, instead of vesc =
√
2Vesc. Recall that the HEP has several different guises in terms of

these characteristic quantities, namely

λo =
V 2
esc

c2o
=

v2esc
2c2o

=
rg
ro
. (5.14)

Unknown Critical Point Quantities

We introduce a quantity analogous to λo, defined by

λc ≡
V 2
esc

cs(lc)2
, (5.15)
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where cs(lc) is the sound speed at the critical point. Since cs(lc) is in a one-to-one rela-

tionship with the critical point distance lc, λc is a central unknown. In general, λc can

only be solved for numerically. Many quantities of interest such as the mass loss rate, the

initial velocity, and the terminal velocity can be simply expressed in terms of the ratio

λc/λo = To/Tc, where Tc is the temperature at the critical point. Note that λc = λo in

the isothermal case. For 1 < γ < 5/3, the ratio λc/λo is equal (by construction) to the

fundamental constants of the problem,

λo

λc
=

(Bo/c
2
o)

ec
, (5.16)

where ec = ec(λc, χc) is the critical point constant, defined as

ec =
Bo

c2s

∣∣∣∣
χ=χc

. (5.17)

Evaluated at the critical point (see §5.5), ec is a constant independent of Bo, which is

evaluated at the boundary. Therefore, ec and Bo together determine cs(χc)
2 = Bo/ec

as well as λc. It will be seen in fact that equation (5.16) combined with the singularity

condition (discussed in §5.5) determines the location of the critical point (see §5.5).

Dimensionless Equations

We now rewrite the governing equations into a form suitable for numerical implemen-

tation. We begin by introducing the following dimensionless variables:

distance along a streamline: χ =
l

rg
,

specific kinetic energy: y =
1

2

v2

cs(χc)2
,

Mach number: M =
v

cs
,

Mach number squared: w = M2,

sound speed squared: s =
c2s

cs(χc)2
.
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Here, χc = lc/rg is the dimensionless critical point distance. The variables y, w, and s are

related by

y =
sw

2
. (5.18)

We prefer simply keep ρ/ρo and A/Ao instead of renaming the density and flow tube area.

Then the continuity equation becomes

ṁ

ρocs(χc)
=

√
2y

A

Ao

ρ

ρo
, (5.19)

where the mass flux density, ṁ, is defined as

ṁ ≡ dṀ

Ao
. (5.20)

Note that ṁ = ρovo = ρocoMo, where Mo is the initial Mach number. The polytropic

relation is now

s = so

(
ρ

ρo

)γ−1

=
λc

λo

(
ρ

ρo

)γ−1

, (5.21)

where by construction so ≡ s(χ = 0) = λc/λo.

Dividing equation (5.10) by the unknown quantity cs(χc)
2 gives the dimensionless Bernoulli

function,

ec = y +
λc

λo
Ueff +

1

γ − 1
s, (5.22)

where
Ueff = U + Ucentrif

= − 1√
χ2 + 2χf cos i+ f2

+
1

2

(
ζf

f + χ cos i

)2

,
(5.23)

and we have introduced the following quantities:

gravitational potential: U =
Φ

c2o
, (5.24)

centrifugal potential: Ucentrif =
v2φ
c2o

, (5.25)

inverse HEP: f =
1

λo
. (5.26)
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The above equations take their simplest form by eliminating any reference to ρo and Ao. Ex-

pressed this way, the equations depend only on the ratio λc/λo and values taken at the criti-

cal point, making it clear that the accretion equations (with outer boundary condition λo →

0 at Ao → ∞ but with finite λc/λo and Ac) are identical to the wind equations. First we

square equation (5.19) and express it in terms of w: ṁ2 = sw(ρoco)
2(λc/λo)(A/Ao)

2(ρ/ρo)
2.

The polytropic EoS, equation (5.21), permits substitution for ρ/ρo. Further evaluating ṁ2

at the critical point where sc = wc = 1 yields the combined continuity equation/polytropic

EoS in terms of ṁ2
c ,

ṁ2 = ṁ2
c

A2

A2
c

ws
γ+1
γ−1 . (5.27)

Defining

Λ ≡ ṁ

ṁc
, (5.28)

equation (5.27) becomes

Λ2 =
A2

A2
c

ws
γ+1
γ−1 . (5.29)

Rewriting the dimensionless Bernoulli function written in terms of s and w gives

ec =
sw

2
+

λc

λo
Ueff +

1

γ − 1
s, (5.30)

and equations (5.29) and (5.30) together comprise an algebraic system of two equations for

the two unknowns s and w. Once ec is evaluated, an explicit solution for w can be found.

The equation of motion, equation (5.12), becomes

F ≡
(
1− s

2y

)
1

s

dy

dχ
+

1

s

λc

λo

dUeff

dχ
− 1

A

dA

dχ
= 0. (5.31)

This can be further simplified by letting y′ = dy/dχ, A′ = dA/dχ, and by defining the

(minus of the) effective gravitational force as

g =
dUeff

dχ
=

χ+ f cos i

(χ2 + 2χf cos i+ f2)
3
2

− (ζf)2 cos i

(f + χ cos i)3
. (5.32)
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F (χ, y, y′) = 0 now reads

F ≡ (1− s

2y
)
y′

s
+

g

s

λc

λo
− A′

A
= 0. (5.33)

5.5 Critical Point Conditions

The Critical Point Constant

The value of the critical point constant ec is found from equation (5.30) evaluated at

the critical point,

ec ≡
sw

2
+

λc

λo
Ueff +

1

γ − 1
s

∣∣∣∣∣
χ=χc

. (5.34)

Again since sc = wc = 1, we have that

ec =
1

2

(
γ + 1

γ − 1

)
+

λc

λo
Ueff (χc). (5.35)

In general, therefore, ec depends on the critical point distance χc. It is easily seen that

despite the fact that the classic Bondi and Parker problems can have very different Bernoulli

constants Bo, they both have the same value of ec = Bo/cs(χc)
2. The singular nature of

their equations at the critical point are identical. In that spherically symmetric case, ec is

independent of χc and λc:

ec =
1

2

(
5− 3γ

γ − 1

)
(for spherical symmetry only). (5.36)

Rotation breaks this equivalence because then ec = ec(χc), and χc depends on the boundary

conditions.

The Singularity and Regularity Conditions

The singularity condition identifies all points at which the flow acceleration is undefined,

i.e. all values of χ for which F (χ, y, y′) = 0 is independent of y′:

∂F

∂y′
= 0. (5.37)
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From equation (5.33), the set of possible points picked out by equation (5.37) are those that

satisfy y = s/2 (or in physical units, v = cs) at χc. The regularity condition, in turn, defines

the acceleration at this point as the slope of F in the (χ, y)-plane: y′ = −(∂F/∂χ)/(∂F/∂y),

or as it is more commonly stated,

∂F

∂χ
+ y′

∂F

∂y
= 0. (5.38)

Equation 5.38 is formally derived by ensuring that dF (χ, y, y′)/dχ = 0 all along the so-

lution curve, which is equivalent to requiring a finite jerk, i.e. that y′′ is bounded at χc

(Lamers & Cassinelli 1999, §8.7). The role of the regularity condition is to ensure the

continuity of the solution at the critical point. Since this point coincides with the sonic

point for our problem, it marks the region where the flow loses communication with what

is happening downstream. In the neighborhood of this point then, there could potentially

be thermodynamically different situations, which would result in a shock— a discontinuity

in y′. Physically, therefore, the regularity condition prevents shocks, i.e. it demands that

nothing special happens with the flow at the critical point. For more complicated equations

of motion, e.g. with line-driving included, explicit use of the regularity condition is required

to determine the location of the critical point (CAK). For thermally driven winds, it is not

needed, but we will make use of it in §7.3 to interpret the negative root of the isothermal

critical point equation.

The Relation Between λc and χc

The singularity condition combined with the equation of motion yields a relationship be-

tween χc and λc; it does not directly determine the location of χc (except for the isothermal

case when λc = λo). With y = s/2 at the critical point, equation (5.33) gives,

λo

λc
= gc

Ac

A′
c

. (5.39)
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Here, gc = g(χc) and Ac/A
′
c = (f + χc cos i)

q/(q cos i), where q = 1 for the CIA model and

q = 2 for the Parker (i = 0◦) and Converging models.

The Location of the Critical Point(s)

It was mentioned in §5.4 that the innocuous looking equation ec = (λc/λo)Bo/c
2
o com-

bined with equation (5.39) determines the location of the critical point. Equivalently, we

can evaluate equation (5.30) at the lower boundary,

ec =
λc

λo

[
wo

2
+ Ueff,o +

1

γ − 1

]
, (5.40)

where, using the definitions of y and s, we have factored out so = λc/λo. A relation between

wo and λc follows from equation (5.29):

wo =

(
Λ
Ac

Ao

)2 (λo

λc

) γ+1
γ−1

(5.41)

With equations (5.41) and (5.35) both substituted into equation (5.40), and noting that

Ueff,o = −λo + ζ2/2, the general equation that must be satisfied by a critical point is

λo

λc

[
1

2

(
γ + 1

γ − 1

)
+

λc

λo
Ueff (χc)

]
=

[
1

2

(
Λ
Ac

Ao

)2 (λo

λc

) γ+1
γ−1

− λo +
ζ2

2
+

1

γ − 1

]
.

(5.42)

All appearances of λo/λc in equation (5.42) are to be eliminated using equation (5.39). The

resulting equation can only be solved numerically—with a root finder capable of detecting

multiple roots—except for the classic Bondi problem. The roots of equation (5.42) are all X-

type critical points, in contrast with the isothermal critical point equation, equation (5.39),

which can have roots that topologically resemble ‘O-type’ critical points but correspond to

the location of velocity minimums.

We solved equation (5.42) for all of its roots using simple bracketing and bisection with

a tolerance of 10−8 (Press et al. 1992). Once a numeric value for χc ≡ lc/rg is determined,
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the location of the critical point in units of ro is

lc
ro

= λoχc. (5.43)

In Appendix D, we explain why equation (5.42) must always possess an X-type root yielding

a transonic wind solution that does not satisfy the boundary condition ρ(χ = 0) = ρo.

These are not acceptable critical point solutions, although they can easily be mistaken as

such because the resulting transonic Mach number profiles appear identical.

5.6 The Polytropic Fluid Solution

Rearranging equation (5.30) to isolate s gives

(
w−1

γ − 1
+

1

2

)
sw = ec −

λc

λo
Ueff . (5.44)

An explicit solution to the problem, i.e. a solution comprised of separated functions of the

dependent and independent variables, follows from substituting equation (5.29) solved for

s into equation (5.44) and multiplying both sides by (ΛAc/A)
−2γ−1

γ+1 :

F (w) = Λ−2γ−1
γ+1X(χ), (5.45)

where

F =

(
w−1

γ − 1
+

1

2

)
w

2
γ+1 ,

X =

(
A

Ac

)2γ−1
γ+1

(
ec −

λc

λo
Ueff

)
.

Note that an explicit solution cannot be found in terms of the kinetic energy (y = sw/2),

as ridding the left hand side of equation (5.44) of χ-dependence to give F = F (y) is not

possible. Also note that insofar as there are solutions for which the ratios λc/λo and A/Ac

are the same regardless of whether inner our outer boundary conditions will be applied,
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the explicit solution is completely independent of the boundary conditions. Hence, inner or

outer boundary conditions need to be applied separately to pick out the inflow or outflow

solutions, respectively.

As Bondi pointed out in his 1952 paper, Λ = ṁ/ṁc acts as an eigenvalue in that each

value of Λ corresponds to a unique set of branches, or sets of points in the (χ,w)-plane that

correspond to the two roots of the non-linear function R(w,χ) ≡ F (w)−Λ−2γ−1
γ+1X(χ) = 0.

He was the first to show that the solution possesses an X-type topology containing both

(physically acceptable) single-valued branches for Λ < 1 and (unphysical) double-valued

branches for Λ > 1. For Λ < 1, one root defines a subsonic branch with w < 1 and the

other a supersonic branch in which w > 1 everywhere. This property makes the root-finding

procedure for w straight forward, since for a given χ, the two roots w1 and w2 are always

bracketed by 0 < w1 < 1 and 1 < w2 < 10+. For the unphysical Λ > 1 solutions, one root

defines a sub-critical branch with χ < χc and the other a super-critical branch with χ > χc

always. As Λ → 1 from slightly above or below 1, either pair of branches approach each

other, bending ever more toward the critical point, and finally join each other at the single

point χc for Λ = 1, thus forming the transonic solutions. See Parker (1960) or Holzer &

Axford (1970) for plots of the solution topology just summarized.

The Transonic Solutions

Bondi (1952) also explained why the maximum value of Λ occurs for the branches that

pass through the critical point. We reiterate his logic linking the maximum moss-loss rate

to the transonic solution, since it follows from simple mathematical considerations. For

γ > 1, both F and X are well-behaved functions with minimum values, so a solution ceases

to exist when the right hand side of equation (5.45) becomes smaller than the minimum of

the left hand side, Fmin. The product Λ−2γ−1
γ+1X(χ) is made smallest for some Xmin and
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Λmax. Therefore,

Λmax =

(
Fmin

Xmin

) γ+1
2(γ−1)

. (5.46)

It is easily seen that Fmin occurs for w = 1, i.e. w = wc, at which value Fmin = .5(γ +

1)/(γ − 1). Evidently, Xmin = Fmin is found at χc, which can readily be verified because

equation (5.39) must hold at the critical point. Thus,

Λmax ≡ Λc = 1. (5.47)

The double-valued solutions that occur for Λ > 1 must accordingly have X > Xmin, or

equivalently χ < χc or χ > χc for all χ, to satisfy equation (5.45), this property having just

been mentioned.

In practical terms, we have just shown that physically acceptable solutions obey Λ ≤ 1

and that to obtain the transonic solutions, simply set Λ = 1. Of course, hindsight into the

nature of the problem led to this convenient choice of Λ, also made by Holzer & Axford

(1970).

Our formulation of the problem for 1 < γ < 5/3 is now complete. In Appendix A, we

provide formulae to compute all other variables and quantities of interest from the ones

already given. We apply our formalism to recover the solution of the Bondi problem in

Appendix B.

5.7 The Isothermal Solution

For an isothermal (γ = 1) EoS, the entire problem can be compactly solved in terms

of the Lambert W function.7 Also aptly called the product logarithm, the Lambert W

7The Wolfram demonstration project entitled ‘The Solar Wind’
(http://demonstrations.wolfram.com/TheSolarWind/), contributed by Ana-Maria Piso, alerted us to
the use of the Lambert W Function to solve the isothermal equation of motion.
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function is really a set of functions, defined as those satisfying

W (z) exp[W (z)] = z, (5.48)

z being the independent variable. In general, both z and W (z) are complex variables. The

many properties of W (z) and several of its uses in physics can be found in (Valluri et al.

2000 and references therein). The essential properties of the Lambert W function, for our

purposes, occur when z = χ is real. In that case, equation (5.48) can have two real solutions,

conventionally referred to asW0(χ) andW−1(χ). W0(χ) turns out to contain the everywhere

subsonic branch of the transonic solution, and W−1(χ) the everywhere supersonic branch.

The advantage of using the Lambert W function is that both W0(χ) and W−1(χ) are built

in to Mathematica, Maple, and MATLAB. We used this solution method to expediently

survey the parameter space of our disk wind results, to visualize our isothermal solutions,

and to calculate the results presented in §6.1. In addition, having a solution in terms of the

Lambert W function is certainly advantageous for pedagogical purposes.

We can arrive at the isothermal solution by taking the limit as γ → 1 of our explicit

solution to the polytropic problem, equation (5.45). It follows more readily, however, by

integrating the equation of motion, which for γ = 1 is reduced to

F ≡
(
1− 1

w

)
w′ + 2

(
g − A′

A

)
= 0. (5.49)

Recalling that g = dUeff/dχ, we obtain

lnw − w = 2[Ueff − ln(A/Ao)] + constant, (5.50)

where we have absorbed a factor of lnA−2
o into the constant. Exponentiating and multiply-

ing by −1 gives

−w exp(−w) = −Γ2
B

(
exp[Ueff ]

A/Ao

)2

. (5.51)
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Here, ΓB is a constant; it turns out to be the initial Mach number in a generalized Bondi

problem (where Ao is the area at the outer boundary, not necessarily located at ro = ∞), in

that dṀc = ρocoAoΓB gives back the known accretion rate of the isothermal Bondi problem

(see Appendix B). The magnitude of ΓB can be large (∼ 102) when Ao represents the area

of the inner boundary. The value of ΓB is obtained by evaluating equation (5.51) at the

critical point, giving

ΓB =
Ac

Ao
exp

[
−1

2
− Ueff (χc)

]
. (5.52)

‘Operating’ on both hand sides of equation (5.51) with the Lambert W function isolates

−w. Hence, the solution in terms of the Mach number M =
√
w is

M(χ) =

√√√√−W

[
−
(
ΛΓB

exp[Ueff (χ)]

A(χ)/Ao

)2
]
. (5.53)

We have re-introduced Λ into equation (5.53) to distinguish the transonic (Λ = 1) solutions

from the everywhere sub/supersonic solutions (Λ < 1). Here again, setting Λ > 1 yields

nonphysical, double-valued solutions.

The location of the critical point is obtained directly from equation (5.39); χc must

satisfy

gc =
A′

c

Ac
. (5.54)

For our disk wind models, gc is given by equation (5.32) and A′
c/Ac = q cos i/(f +χc cos i),

where q = 1 for the CIA and model and q = 2 for the Converging model. Due to the

non-linear dependence on cos i, χc must again be solved for numerically. For the spherically

symmetric Parker model, meanwhile, A′
c/Ac = 2/(f +χ) = 2/(r/rg) (recall that rg = λoro),

while the gravitational force is simply g = 1/(r/rg)
2. We immediately recover the well

known sonic point distance rc = rg/2 from equation (5.54). The cylindrical Parker wind

model (i.e. the CIA model at i = 0◦) discussed in §5.1 also has g = 1/(r/rg)
2, while
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A′
c/Ac = 1/(r/rg), giving rc = rg. We can therefore in general expect the CIA model to

have critical points approximately twice as distant from those of the Converging model.

The mass loss rate is calculated from dṀ = ṁAo by knowing the mass flux density,

ṁ = ρocoMo. From equation (5.53), we find that

Mo =
√

−W [−(ΛΓB)2 exp(−2λo + ζ2)]. (5.55)

It remains to solve for the critical mass flux density, ṁc, by way of the equation of motion,

and show that it is consistent with Mo when Λ = 1. To proceed, recall that the enthalpy

h = c2s ln(ρ/ρc) rather than c2s/(γ − 1) [see equation (5.7)]. We also have that λc = λo for

γ = 1 because the sound speed is constant. Then the dimensionless Bernoulli equation is

ec =
M2

2
+ Ueff + ln(ρ/ρc). (5.56)

The critical point constant, when evaluated at the critical point, again results in an inde-

pendent constant,

ec =
1

2
+ Ueff (χc). (5.57)

However, the correspondence of equation (5.57) with the the critical point constant of our

polytropic solution is far from exact due to the liberty we took in defining the enthalpy as

ln(ρ/ρc). With this choice, ec < 0, implying a negative Bernoulli constant Bo, whereas ec

tends to infinity for γ → 1 in equation (5.35). The diskrepancy arises because the internal

energy density is infinite for an isothermal EoS, allowing gas to still escape to infinity

regardless of whether or not it is gravitationally bound. Suffice it to say that transonic

solutions do not exist for 1 < γ < 5/3 unless Bo is positive (Holzer & Axford 1970), and

furthermore, Bo should increase as γ decreases from 5/3 to 1 (e.g., Blandford & Begelman

1999), as seen by equation (5.35).
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Comparing equation (5.57) with equation (5.52), we can now write the generalized Bondi

accretion rate as simply

ΓB = (Ac/Ao) exp (−ec). (5.58)

The density at the critical point is found by evaluating equation (5.56) at the lower bound-

ary,

ρc
ρo

= exp (−ec) exp

[
−λo +

ζ2

2
+

M2
o

2

]
. (5.59)

In turn, ρc/ρo is used to evaluate the critical mass flux density. From the continuity equa-

tion, ṁc = ρoco(Ac/Ao)(ρc/ρo), or

ṁc = ρocoΓB exp

[
−λo +

ζ2

2
+

M2
o

2

]
. (5.60)

This equation for ṁc can be rewritten as a non-linear equation for Mo because Mo =

ṁc/ρoco. As mentioned above, it is required that equation (5.60) be consistent with equation

(5.55) when Λ = 1, which can readily be verified using the Lambert W function. To an

excellent approximation when Mo << 1 (valid when λo >> 1),

ṁc = ρocoΓB exp

[
−λo +

ζ2

2

]
. (5.61)

We see that ṁc is always smaller than ρocoΓB because the highest rotational velocity is

typically the Keplerian value, ζ2 = λo (corresponding to the breakup speed for stars).

With ṁc in hand, the density distribution follows immediately from the continuity

equation,

ρ(χ)

ρo
=

ΛΓB exp
[
−λo + ζ2/2 +M2

o/2
]

(A(χ)/Ao)M(χ)
. (5.62)

It should be verified that ρ(χ = 0)/ρo = 1 upon implementation of these equations.

The barometric law that we quoted in §3 is derived from equation (5.62). We consider

a spherically symmetric (ζ = 0) Parker wind applied to a isothermal planetary atmosphere.
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Taking ro to be the radius of the exobase, ρo is the density at this height. Such an atmo-

sphere can be modeled as a transonic Parker wind if, in the steady state, the top level of the

atmosphere is itself moving at speeds approaching the speed of sound at the exobase. On

the other hand, a static atmosphere, undergoing mass loss via evaporation, should approx-

imately resemble a Parker wind solution with ṁ << ṁc (corresponding to an everywhere

subsonic solution with a finite density at infinity). Looking to equation (5.53), we see that

for small mass-loss rates (Λ << 1), the argument of W is small and it is valid to expand

W to leading order.8 Thus, equation (5.62) becomes

ρ = ρo exp
[
λo(ro/r)− λo +M2

o/2
]
. (5.63)

For a strictly static atmosphere (Mo = 0), we recover a barometric law, but one derived

from hydrodynamic (rather than hydrostatic) equilibrium.

8W (x) ≈ x− x2 − 3

2
x3 + . . .
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CHAPTER 6

RESULTS

6.1 Global Scaling Relationships

The issue we address here is how the functional forms of our solutions can be used as

scaling relationships to calculate the properties of a multi-dimensional ‘global’ disk wind

model. This topic is especially relevant to studies of protoplanetary disks, as discussed in

§3.3. Of primary importance in this regard is the mass flux density for transonic winds,

ṁc = ρoco(Ac/Ao)(ρc/ρo). Significant diskrepancies in the integrated (global) mass-loss

rate, Ṁ = 4π

∫ rout

rin

ṁc sin i rodro can arise from model-dependent differences in the assumed

or calculated value of the initial velocity (see, e.g. Figure [7] in Font et al. 2004). In other

words, the primary source of uncertainty resides in the determination of the initial Mach

number of the flow, since ṁc = ρocoMo, and both ρo and co are ordinarily determined

or prescribed by independent means. For instance, GH09 combine a realistic treatment

of the photevaporative heating process in protoplanetary disks by separately calculating

the isothermal EUV ionization front and the FUV and X-ray heated neutral flow surface,

thereby self-consistently determining the base density and temperature on the flow bound-

ary, which extends spherically through some solid angle above and below the disk midplane

at the location r = ro, and hence provides ρ(r = ro) = ρo(z) and cs(r = ro) = co(z). Since

their radiative transfer calculation assumed hydrostatic equilibrium (Mo = 0), the hydrody-

namics had to be included separately to calculate Mo. Employing isothermal Parker wind

solutions offer a convenient way to accomplish this, for co enters only through the HEP and

the solutions are independent of ρo. Given a value of the HEP, isothermal Parker wind solu-

tions uniquely specify the sonic point distance from equation (5.54) and the corresponding

initial Mach number, equation (5.55).
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Figure 6.1. Mo vs. ro/rg for the extrapolated streamline function of GH09. The dashed
curve is the approximate initial Mach number, given by equation (6.2), which is smaller
than that derived from the scaling relationships used by GH09 (solid line) by a factor of
exp (−0.5). The dotted curve is the exact Mo (equation (5.55)) in terms of the Lambert W
function, which naturally terminates at Mo = 1 because the Lambert W function becomes
complex. This plot shows that GH09’s extrapolation procedure gives sensible predictions
for Mo, but the integrated mass-loss rate can nevertheless differ substantially from that
calculated using the exact solution in the region 0.1rg < ro < rg/2.
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In estimating global mass loss rates from protoplanetary disk winds with Parker winds,

however, several difficulties present themselves: (i) Mo depends sensitively on the the

effective potential and the area occupied by the flow at the sonic point (see equation (5.52));

(ii) the parameter space of isothermal Parker wind solutions is 2 < λo < ∞ if there is no

rotation and ∼ 10 < λo < ∞ for Keplerian rotation9, implying for rg = constant that Mo

can only be evaluated out to a distance of ro = rg/2 and ro = rg/10, respectively, while

for rg = rg(ro), the temperature constraint given by the inequality (3.7) must be satisfied;

(iii) the boundary of a Parker wind is a spherical surface at the footprint of the radial

streamlines and cannot be used to realistically approximate a ‘vertical’ outflow. Difficulty

(iii) limited the studies of Adams et al. (2004) and GH09, in that they could only consider

radial outflows through some solid angle. Our models retain the simplicity of Parker winds,

while providing a geometric boundary on which to apply physical conditions for biconical

outflows.

As we described in §3.3, GH09 extrapolated between the critical point equations of

various Parker wind solutions to overcome difficulty (ii). Specifically, they approximated

the sonic surface with the formula

rc
ro

=





λo(1 +
√

1− 8/λo)/4, if λo ≥ 8

(λo/2 + 2)/3, if 2 ≤ λo < 8

1, if λo < 2

(6.1)

Using equation (6.1) along with their numerical results for ρo and co, GH09 obtained the

mass flux density as a function of ro by utilizing the scaling relationship for ṁ derived

by Adams et al. (2004). The latter is essentially equation (5.61), rewritten in terms of

9Despite there being well-defined critical points down to λo = 8 as implied by the critical point equation
for an isothermal Parker wind with Keplerian rotation, rc/ro = (λo/4)(1 +

√
1− 8/λo), by plotting the

isothermal solution presented in §5.7, it can be seen that there is not actually a continuous transonic solution
for λo < 9.83.
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Mo = ṁ/ρoco with Keplerian rotation (ζ =
√

λo) assigned:

Mo ≈ ΓB exp(−λo/2), (6.2)

where

ΓB =

(
rc
ro

)2

exp

[
λo

(
rc
ro

)−2(rc
ro

− 1

2

)
− 1

2

]
. (6.3)

It is informative to assess the global wind properties that arise from this extrapolation

procedure, all of which can be derived from Mo. We therefore confine our attention to

calculating Mo, and for simplicity we consider a disk with a constant temperature profile

so that rg is constant.

As stated in Adams et al. (2004), equation (6.2) is strictly valid when ro << rg, i.e.

when λo >> 1, but approximately holds for larger ro also. In Figure 6.1, we illustrate the

error arising from this approximation to the exact solution, as well as the error resulting

from the use of the extrapolated sonic point function. The three curves shown are the initial

Mach number given by equation (6.2) (dashed line), the exact relation for Mo (dotted line)

in terms of the Lambert W function, equation (5.55), and the expression that we derived

for Mo based on equations (3)-(5) in GH09 (solid line), which does not include the factor of

exp (−0.5) that enters through ec. We see that our approximate and exact expressions for

Mo are equivalent until Mo ≈ 0.5, and differ substantially at larger radii due to difficulty

(i). The Lambert W function solution terminates once Mo = 1 at ro ≈ rg/10 (and we

extended the curve to remain at Mo = 1 thereafter). The dashed line peaks at λo ≈ 5.4,

for which value Mo ≈ 1.05, while the solid line peaks at Mo ≈ 1.5 and for ro > rg/2 takes

the constant value 1.0. This plot indicates that use of equation (6.1) without the factor of

exp (−0.5) will lead to an overestimate of the total mass-loss rate (and an underestimate

with this factor) compared to a calculation that implements exact Keplerian Parker wind
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Figure 6.2. Equivalent nozzle function, N(χ), vs. χ, normalized so that N(χc) = Mo

as given by equation (6.2). The topmost dashed-dotted curve is the nozzle function for
a Keplerian Parker wind, followed by that of the Converging (dashed) and CIA (solid)
models for i = 60◦. The bottom dotted curve is for the spherically symmetric Parker wind.
Rotating these nozzle functions about the χ-axis sweeps out the area of the de Laval Nozzle,
one with steady-state flow properties identical to that of the wind. The horizontal lines
give the exact value of the initial Mach number, calculated using equation (5.55). They are,
from top to bottom, Mo = [0.497, 0.134, 0.036,&0.002], with corresponding critical points
(throat positions) χc = [0.290, 0.333, 0.779, 0.409]. All nozzle functions were calculated with
λo = 11. The hump on the topmost curve is a bulk velocity minimum, located at χ = 0.029.
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solutions based on the Lambert W function. In other words, the simplest way to overcome

difficulty (ii) is to merely assume that Mo = 1 for ro & rg/10. Again, this example assumed

that rg is constant, so it is merely illustrative and may not have a direct bearing on the

results of GH09.

The Equivalent Nozzle Function

A useful proxy for gauging the error in the initial Mach number more generally, and to

thereby further address difficulty (i), is obtained by defining the equivalent nozzle function.

The well-known equation of motion for the de Laval nozzle is, in our notation,

(
1− 1

w

)
w′ = 2

N ′

N
, (6.4)

56



where N = N(χ) is the cross-sectional area of the nozzle at any distance χ. Making the

comparison with equation (5.49), N(χ) is obtained by solving d lnN = d lnA−dUeff , giving

N(χ) =
A(χ)

Ao
exp

[
−Ueff (χ)−

(
λo −

ζ2

2
+

1

2

)]
. (6.5)

We have normalized N(χ) so that at the critical point, χc, it equals the approximate Mo,

given by equation (6.2). Since the critical point occurs at the ‘throat’ of the nozzle, where

the cross-sectional area is a minimum, N(χ) is a visual tool that can be used to find both

the sonic point and the approximate initial Mach number (and hence mass-flux density)

by inspection. In Figure 6.2, we plot the nozzle functions of the Keplerian rotating Parker

wind (dashed-dotted line), the Converging Model at 60◦ (long-dashed line), the CIA model

at 60◦ (solid line), and the spherically symmetric Parker wind (dotted line) for λo = 11.

The horizontal lines correspond to the exact value of the initial Mach number from equation

(5.55). We see that all of the horizontal lines except that of the Keplerian Parker wind with

Mo ≈ 0.5 intersect very near the minimums of the nozzle functions, showing that equation

(6.2) is a very good approximation when Mo is small.

A noticeable feature of the nozzle functions is the initial hump close to the opening

(near χ = 0) for the models undergoing Keplerian rotation. The spherically symmetric

Parker wind nozzle is everywhere converging before the throat and diverging thereafter,

thus ensuring that the flow will never decelerate. The presence of the humps indicates that

the flow is entering a diverging nozzle (N ′ > 0), so that for initially subsonic flow, we must

have w′ < 0 by equation (6.4): the flow decelerates until reaching the top of the hump where

N ′ = 0. The flow is still subsonic at this location, implying that the acceleration must be

zero (w′ = 0), i.e. the flow has reached its minimum velocity. The flow then proceeds to

accelerate with the converging nozzle, traverse the sonic point at the throat where w = 1

and N ′ = 0 (but w′ 6= 0), and continues to accelerate supersonically (w′ > 0 and w > 1) in
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the diverging region where N ′ > 0. Hence, we can understand the general characteristics

of the wind velocity profile simply by examining the shape of the nozzle function.

Moreover, plotting N(χ) allows one to easily infer the effects of altering the geometry

of the flow or the effective potential. For instance, the humps practically disappear by

setting A(χ) = Ao. Recalling Figure 1.2, the streamlines found by Luketic et al. (2010)

first originate from the disk midplane in a more vertical fashion before bending radially,

implying that the area between streamlines indeed behaves as if A(χ) = Ao for very small χ.

Therefore, it is likely that the velocity minimums would not occur in a model that captures

this feature, although it is worth noting that Luketic et al. (2010) observe non-monotonic

radial velocity profiles in their fiducial run (see their Figure 5).

Comparing the nozzle functions of the CIA and Converging models, it is clear that the

former model has a sonic point about twice as distant as the latter, as expected. Closer

sonic points imply smaller initial Mach numbers for a given HEP, and since Mo is a direct

gauge of the mass flux density, the total mass loss rate for a CIA wind will also be smaller

in general. These differences all result from the halted expansion room of the CIA model,

as will become clear in §6.2. Both winds experience a reduced centrifugal force at i = 60◦,

explaining why the Keplerian Parker wind has a significantly higher initial Mach number.

We can therefore arrive at the result that the mass flux densities of our disk wind models

are always bounded from below by that of the spherically symmetric Parker wind and above

by that of the Keplerian Parker wind.

The Mass Flux Density for Isothermal vs. Polytropic Winds

From equation (6.2), the initial Mach number of our isothermal solutions scale as

exp (−λo/2), and this term controls the mass flux density (ṁ = ρocoMo) for large HEP. The

exponential dependence results from the logarithmic enthalpy term and acts to suppress the
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wind whenever when the thermal energy of the gas is small compared to the escape velocity,

e.g. when the gas is deep in the potential well of the inner disk region and shielded from

high energy photons. Adams et al. (2004) explored the dependence of the mass loss rate

on the factor exp (−λo/2) in detail, showing that sub-critical disks that are subjected to

modest to high FUV radiation field intensities can undergo total mass loss rates on the

order of 10−7 M⊙ yr−1 if their host stars have masses under 1 M⊙, implying disk dispersal

time-scales of ∼ 10 Myr — roughly the time-scale for planet formation.

As we mentioned in the introduction, BMS83 found the same exponential dependence

in their isothermal wind region E, namely ṁ ∝ exp (−Tg/2TIC), where Tg is the ‘escape

temperature’ defined by kTg = µmpV
2
esc. To make the comparison explicit, we must recall

equation (??), which for γ = 1 and ξ = ro/RIC = TIC/Tg, says that the HEP is simply

λo = Tg/To. For a tightly bound corona heated to the Compton temperature, To = TIC <

Tg, and we can indeed identify the HEP as being equal to Tg/TIC .

Similar agreement can be found using polytropic models, which are able to sample a

larger range of thermodynamic conditions and can therefore lead to more accurate disk

dispersal time-scale estimates. The procedure for incorporating the hydrodynamics ‘by

hand’ using Parker wind or Parker-like disk wind models is the same as that given above, the

only change being that the initial Mach number is now given byMo = (Ac/Ao)(λo/λc)
γ+1

2(γ−1) .

(Correspondence with the isothermal result can be obtained using ρc/ρo = (λo/λc)
1/(γ−1).)

Thus, for polytropic winds, the exponential terms in equation (6.2) are replaced by a strong

functional dependence on the temperature at the sonic point (λo/λc = Tc/To), so the mass

flux density scales as

ṁ = ρoco(Ac/Ao)

(
Tc

To

) γ+1
2(γ−1)

. (6.6)

For γ = 5/3, we recover the temperature dependence found by BMS83 in their Region C,
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namely ṁ ∝ (Tc/To)
2 . (To make the comparison with BMS83, Tc is to be associated with

their ‘characteristic’ temperature Tch and To with Tg, obeying Tch < Tg < TIC .)

By equation (5.39), we can instead express the initial Mach number as

Mo =
Ac

Ao

(
gc
Ac

A′
c

) γ+1
2(γ−1)

. (6.7)

Recalling difficulty (i), we see thatMo now depends sensitively on the effective gravitational

force instead of exp (−Ueff ), as well as on the ratio of the flow tube area and the streamline

divergence at the critical point.

From this section it should be clear that the full range of initial Mach numbers from

nearly 0 to 1 can result from a relatively small range of HEP values, the lowest of which

yield winds launched from nearly sonic speeds. This sensitivity becomes more extreme

as the polytropic index is increased from 1 to 5/3. In the remainder of §6, we explore the

parameter space of polytropic transonic solutions in detail, to convey a sense of the diversity

of wind solutions that are mathematically permitted.

6.2 Parameter Survey of Polytropic Transonic Disk Wind Solutions

The parameter space of our disk wind models is all values of (γ, λo, i) that lead to

transonic solutions. We limit our attention to two intermediate angles i = 30◦ and i = 60◦.

We survey this parameter space in Figure 7.1 by plotting critical point distances (λoχc =

lc/ro) vs. HEP for select γ ranging from nearly isothermal (γ = 1.01) to adiabatic (γ = 5/3).

The top most panel of Figure 7.1 shows that for the Converging model, nearly isothermal

winds become sonic slightly within a distance of lc/ro = λo/2 − 1 from the disk midplane,

while the CIA model has a sonic distance about twice a great. For comparison, recall from

§5.7 that spherically symmetric isothermal Parker winds have rc/ro = 1 + lc/ro = λo/2.

As γ increases, subsequent panels show that CIA critical points are shifted still further
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downstream of Converging model critical points. Also, transonic solutions at higher γ

require progressively smaller HEP values, only the smallest of which yield critical points

under ∼ 10ro. Transonic solutions with the least distant critical points have very high initial

Mach numbers and delimit the edge of the parameter space. Two plots of Mo vs. λo are

shown by the inset plots on the γ = 1.2 and γ = 1.5 panels. Mo typically ranges from ∼ 1

for the closest critical points to less than 10−3 for the most distant critical points.

The inset plot in the γ = 1.2 panel of Figure 7.1 demonstrates the primary effect of

changing the inclination angle. For a given HEP in either model, e.g. λo = 8, the i = 60◦

solutions are launched with smaller initial Mach numbers than the i = 30◦ solutions. This

is a simple consequence of the reduction in centrifugal force at larger inclination angles.

The extra rotational energy raises Mo for i = 30◦ above Mo for i = 60◦. Conversely, the

reduced centrifugal force for i = 60◦ permits critical points to extend to smaller HEP (e.g.,

higher temperatures) before reaching Mo ≈ 1.

A peculiar feature of Figure 7.1 is the appearance of a ‘tail’ on the critical point curves,

signifying that at the lowest HEP for any given curve with γ & 1.2, there are two transonic

solutions. The tail transonic solution has its sonic point in close proximity to the disk and

therefore has a higher initial Mach number than the second solution. As γ increases, this

tail grows in length, while the ‘normal’ critical point curve shrinks. Only the tail extends

beyond the vertical lines at λo = 2/(γ − 1); to the right of this line, solutions have higher

initial velocities than they do terminal velocities. Notice that the normal critical point

curve has the property that the sonic point distance increases with increasing HEP (e.g.,

with smaller temperatures), as one would intuitively expect. Meanwhile, the tail displays

the opposite behavior, so that more distant sonic points with lower initial Mach numbers

have higher temperatures. We postpone further discussion of these features, as they are
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addressed in §7.

Our parameter survey reveals that disk winds possess solutions for γ = 5/3, in contrast

to Parker winds (both with and without rotation). Figure 7.2 shows that the Converging

model has solutions to the right of the vertical line for a narrow range of HEP around

λo = 3.9 ± 0.05 for i = 60◦. The bottom panel reveals that these solutions also have

Mo ≈ 1, making them very unrealistic. There are no solutions for the Converging model

at i = 30◦ for γ = 5/3 (at least not within l = 103ro). Meanwhile, the CIA model has

viable transonic solutions to the left of the vertical line (i.e. with vo < v∞), permitting

small initial Mach numbers.

Overall, this parameter survey indicates that purely geometric differences, attributable

to the CIA model’s lack of streamline divergence, give rise to the more versatile CIA wind.

At small γ (i.e. in the top three panels of Figure 7.1), the CIA model has transonic solutions

that begin for λo about half as small as the minimum HEP allowed for the Converging model.

At larger γ, the critical points for the CIA model span a more appreciable range of HEP

and altogether dominate for γ = 5/3.

Physically, these geometric effects are a manifestation of the rate of enthalpy dissipa-

tion. Just considering the Bernoulli function, it is clear that the more rapidly that heat

is liberated, the faster the flow must become to keep Bo constant. Converging streamlines

exhibit both lateral expansion due to streamline divergence and azimuthal expansion as the

wind cone widens, so the enthalpy can dissipate faster than it can with the CIA model.

Conversely, the confined expansion imposed by the CIA streamline configuration allows

the flow to retain more of its enthalpy as it expands, so that the flow can be launched at

smaller λo before the initial Mach number approaches unity. As γ increases and the flow

starts off with less enthalpy, a smaller compensatory reduction in HEP is required to launch
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transonic solutions compared to the Converging model. These considerations imply that

the acceleration zones of these two models will be substantially different, which is our next

result.

6.3 Disk Wind Acceleration Zones

Each critical point location given plotted in 7.1 has an associated acceleration zone,

which we define as the distance where the flow reaches 90% of its terminal velocity, i.e.

the location l at which v(l)/vesc = 0.9
√

ec/λc (see equation (A.3)). In Figure 7.3 we plot

the wind acceleration zone as a function of HEP for i = 60◦ and various γ intermediate

between the isothermal and adiabatic flow regimes. This plot is useful for understanding

the dependence of the flow behavior on the polytropic index for either disk wind model.

A nearly isothermal wind has its temperature held constant to very large distances, so the

acceleration zone extends far beyond a closer to adiabatic wind whose temperature falls off

rapidly.

Figure 7.3 further illustrates how the CIA model gives rise to a very different wind than

does the Converging model, again attributable to the CIA model’s geometrical confinement

curtailing adiabatic expansion. The acceleration zone of the CIA model lies beyond l =

107 ro for γ = 1.1, whereas the Converging model has an acceleration zone within l = 105 ro

for λo < 10. We noted from Figure 7.3 that the sonic surface of the CIA model is roughly

twice as distant as that of the Converging model. Apparently, a factor of two increase in

the critical point distance translates into a two order of magnitude gain in the extent of

the acceleration zone! As γ increases, the acceleration zone becomes progressively closer to

the disk midplane, but there remains a two order of magnitude separation between our disk

wind models.
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Together, Figures 7.1 and 7.3 indicate that Parker-like disk wind solutions encompass

a vast range of initial conditions and thermodynamic environments (by way of λo and γ).

Owing to the variety of astrophysical systems and physical scales that we have in mind, it

is certainly reasonable that the criteria for judging realistic solar wind solutions, namely

Mo << 1 and lc/ro . 10, should to be relaxed somewhat. While solutions that become sonic

at great distances from the midplane need not be outright rejected, their flow parameters

are in an implausible range, one that may have some bearing on the stability of the wind.

Physically, distant sonic points imply that the outflowing subsonic gas will be subjected

to disturbances that would not disrupt a flow with a smaller HEP or γ that is already

supersonic. We therefore see that viable wind solutions probably possess a substantially

more narrow HEP range than the full range yielding critical point solutions in each panel.

It is hoped that the solution properties laid out here can help to interpret the results

of self-consistent, multi-dimensional, hydrodynamic simulations of disk winds. Such sim-

ulations typically calculate both the sonic surface and the acceleration zone, as these are

fundamental properties of transonic wind solutions. Given the sonic point distance and the

radial extent of the acceleration zone, our Figures 7.1 and 7.3 together yield the correspond-

ing HEP and γ of a Parker-like disk wind solution. Further examining the shape of the

streamlines calculated in the simulations, the inclination angle and streamline divergence

can be estimated, thereby permitting the simulation results to be approximated by either

the CIA or the Converging model. By comparing the velocity, density, temperature, and

Mach number profiles of the simulation results with our 1D models, it is then possible to

systematically address the effects of taking into account additional processes in the simula-

tions. In the remainder of this section, we tabulate and plot illustrative transonic disk wind

solutions.
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6.4 The CIA vs. the Converging Model

Here we compare transonic solutions for our two streamline geometries. Recalling our

Figure 4.1, the 2D disk wind model that we are attempting to explore with our 1D solutions

is comprised of two wind regions. The inner region hosts Converging streamlines beginning

at i ≈ 60◦, that then diverge out to some distance along the midplane until the inclination

angle coincides with that of the outer wind region, occupied by CIA streamlines at i ≈ 30◦.

We first make a comparison between the angles i = 30◦ and i = 60◦ for the same set

of parameters (λo, γ) for either model. In Figure 7.4 we show the Mach number in the

subsonic flow regions (upper panel), as well as the velocity and density profiles on a larger

scale (lower panel), for solutions with λo = 8 and γ = 1.2. The properties of these solutions

are tabulated in Table 2. The most striking difference between these models is the order of

magnitude difference in their initial velocities. Since kinematic models typically assume a

velocity law based solely upon vo, v∞, and a parameter controlling the slope of the velocity,

the values of these quantities are sensitive to the type of wind geometry. Flow launched from

i = 30◦ in either geometry have higher initial velocities due to the increased centrifugal force,

in agreement with the γ = 1.2 panel of Figure 7.1. Despite having substantially different

initial velocities, all four solutions tend to nearly the same terminal velocity because the

Bernoulli constant Bo = v2∞/2 should be unchanged for a similar set of wind parameters.

Note that this is not obvious from the middle panel of Figure 7.4, as the CIA model, with

its extended acceleration zone, has only reached ∼ 50% of its terminal velocity while the

Converging model is within ∼ 25% of v∞/vesc. What is apparent from this panel is that

the inclination angle only affects the transonic solutions in the subsonic flow regions.

The bottom panel of Figure 7.4 shows that the density of CIA model varies asymptot-

ically as ρ ∝ l−1, whereas the Converging model has ρ ∝ l−2 (the dotted lines are plots
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of 1/(1 + l/ro)
q, with q = 1 or 2 for comparison). This is a simple consequence of the

continuity equation, the CIA model having an area term A ∝ l asymptotically. We see that

the density at the critical point is smaller in the CIA model because the CIA wind remains

subsonic out to distances three times as large as the Converging wind; the flow has a larger

distance over which to expand. This difference also accounts for why the CIA model has

a larger critical point constant and a smaller temperature at the critical point (recall that

λc/λo = Tc/To) — see Table 2.

Comparing the slopes of bulk velocity profiles in Figure 7.4, it would appear as if the

CIA wind has a higher velocity gradient. This is not the case, however, because the sonic

points of the two wind geometries do not coincide. To accurately contrast the two flow

accelerations, we must consider transonic solutions with the same sonic point distance. In

Table 3 we list the properties of solutions that have lc/ro ≈ 10 for two polytropic indices,

γ = 1.01 and γ = 4/3. The velocity and density profiles for each solution is plotted in

Figure 7.5. It is clear that the nearly isothermal Converging wind has the largest velocity

gradient. The γ = 1.01 CIA wind requires a higher launching velocity due to its smaller

value of the HEP. From Table 3, we see that the HEP of a nearly isothermal CIA wind must

be about half that of a γ = 1.01 Converging wind. This has the following implication: for

flow emerging from a region with the same escape velocity, the temperature must be twice

as large to launch a CIA wind that becomes sonic at the same distance as a Converging

wind. Conequently, the confined expansion results in a much denser nearly isothermal CIA

wind at l & ro.

The density contrast between these two models at γ = 4/3 is reduced to within an

order of magnitude. From the top panel, we see that the situation is somewhat reversed

from the nearly isothermal case. Most obviously, it is required that the initial velocity be
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substantially greater to compensate for the reduced energy input. This in turn requires

higher temperatures or lower escape velocities, as reflected by the smaller values of the

HEP in Table 3. It is evident from Figure 7.5 that the CIA model at γ = 4/3 has the

larger velocity gradient and the smaller initial velocity. Furthermore, velocity minimums,

which are barely visible for γ = 1.01, are now a prominent feature of the velocity profile.

We mentioned in §4 that gas rotating at Keplerian speeds must initially decelerate upon

leaving the disk, independent of the flow parameters. This is a simple consequence of

equation (5.33); evaluated at χ = 0 for ζ2 = λo, we have that y′ < 0 provided q > 0, and

q = 1 for the CIA model and 2 for the Converging model. For the γ = 4/3 Converging

wind, the amount of deceleration is quite pronounced, persisting out to l ≈ ro.

6.5 Degenerate Transonic Solutions

As a final demonstration of our disk wind results, we focus on the solutions for the CIA

model with γ = 5/3. Referring to to Figure 7.2, we aim to examine the two solutions that

arise for the same HEP values for either angle shown. We selected λo = 2.3 for i = 60◦

and λo = 2.9 for i = 30◦ — see Table 4 for an indication of how these degenerate solutions

differ. Mach number and density profiles are plotted in the top two panels of Figure 7.6. In

the bottom panel we plot the corresponding temperature profiles (T (χ)/To = (ρ(χ)/ρo)
γ−1)

appropriate for a photoionized disk heated to ∼ 104 K to illustrate the dilemma posed by

degenerate solutions: if dust formation is to be taken into account, which of the two profiles

are we to believe? The inset plots show a peculiar feature of the solutions lying on the tail

of the critical point curves in Figure 7.2, those labelled (1): the temperature (and hence

density) undergoes a substantial climb upon rising above the midplane, by as much as 700

K for the i = 60◦ tail solution. This behavior is not unique to γ = 5/3 and can be explained

67



as follows. Since the area made available to the flow upon just rising above the midplane is

roughly constant, the continuity equation implies ṁ ≈ ρv. A decrease in velocity will thus

be accompanied by a slight increase in density, in general. The magnitude of this effect is

then dependent on the initial velocity. For the i = 60◦ solutions, vo is only slightly below co

for (1), so only a marginal increase in velocity is needed to reach to sonic point. The increase

in temperature then acts to prevent the flow from immediately becoming sonic. Similarly,

for the i = 30◦ solutions, (1) actually has the higher initial velocity, but (2) goes sonic first

because (2) adiabatically cools, whereas (1) undergoes adiabatic heating for l . 0.2ro.
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CHAPTER 7

DISCUSSION

As it stands, we have solved and graphically analyzed the Eulerian equations for polytropic

winds undergoing Keplerian rotation and traversing the geometry of Figure 4.1. To fully

uncover the new aspects of our solutions, we must revisit the spherically symmetric Parker

problem, as well as the ‘rotating’ Parker problem (i.e. a Parker wind following trajectories

that conserve specific angular momentum). Analytical considerations of the behavior of

Parker winds at higher γ constitute the basis of our discussion.

Recalling Figure 7.1, the critical points lying to the right the vertical dotted lines at

λo = 2/(γ−1) for γ & 4/3 correspond to transonic solutions with initial Mach numbers just

slightly below unity. We described these points as originating on a ‘tail’ of the critical point

curves to the left of the vertical line; they correspond to a second transonic solution for the

same set of parameters. The lengthening of this tail with increasing γ happens gradually,

and the tail points represent the only transonic solutions once they lie to the right of the

vertical line.

In this section we account for this behavior, by first showing that critical point solutions

to the right of the vertical line have initial velocities exceeding their terminal velocities.

We classify solutions with this property as being in the ‘enthalpy deficit regime’, defined

in §7.1. The role of enthalpy will become clear in §7.2, where we examine the simplest

class of transonic solutions in the enthalpy deficit regime: those with 3/2 < γ < 5/3 in

the spherically symmetric Parker problem. Considerations of this regime with the rotating

Parker problem allow us to uncover the origin of the tail points and to explain the presence

of minimums in the transonic velocity and Mach number profiles of our disk wind solutions.
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This section is geared toward investigators interested in the mathematical properties of

Parker winds. Readers more interested in the observational implications of our results are

referred to our Conclusions.

7.1 The Enthalpy Deficit Regime

Depending on whether the sum of the enthalpy and the effective potential energy terms

at the boundary is positive or negative, we define the flow as having an enthalpy surplus

or deficit, respectively. By our dimensionless Bernoulli function, ec = y + (λc/λo)Ueff +

h/cs(χc)
2, if the sum of the second and third terms is negative at χ = 0, the kinetic energy

y must decrease as the sum becomes less negative at χ > 0 to keep ec constant. Hence,

the flow will initially decelerate in the enthalpy deficit regime and we can expect the bulk

velocity profile to possess a minimum, in general. The flow can still be transonic because

the sound speed (eventually) decreases faster than does the velocity.

Since h(χ = 0)/cs(χc)
2 = so/(γ − 1) and Ueff (χ = 0) = −λo + ζ2/2, where so = λc/λo,

the defining condition for enthalpy deficit flow places the following requirement on the HEP:

λo >
1

γ − 1
+

ζ2

2
. (7.1)

For Keplerian velocities (ζ2 = λo), this condition is simply λo > 2/(γ− 1). We see that this

regime is encountered only for γ sufficiently larger than 1. From Figure 7.1, the Converging

model enters this regime for γ ≥ 4/3, while the CIA model only enters it for γ ≈ 5/3 (see

Figure 7.2).

As discussed by Holzer & Axford (1970), transonic winds require a positive Bernoulli

constant, i.e. ec = Bo/c(χc)
2 > 0. The Bernoulli function thereby permits an alternative

definition of the enthalpy deficit regime, namely yo > ec. Equivalently, since v∞/vesc =

70



√
ec/λc (see equation (A.3)),

vo > v∞. (7.2)

In terms of the initial Mach number, this lower bound reads Mo >
√

2ec(λo/λc). However,

λo/λc is just the ratio of the temperatures at the critical point and the footprint of the

streamline. Tc must certainly be less than To for 1 < γ < 5/3 due to adiabatic cooling.

Therefore, the bound λo/λc < 1 implies that ec < M2
o/2. Since transonic solutions must

by definition obey Mo < 1, yet another condition for enthalpy deficit flow is

ec <
1

2
. (7.3)

The mathematical implication of there being a nonzero lower limit placed on vo or Mo

naturally leads to the conclusion reached by Parker (1960) that viable solar wind solutions

satisfy 1 < γ < 3/2. Only this class of solutions can have vanishingly small initial velocities,

criteria that Parker imposed as a boundary condition. For the same reason, the class of

3/2 ≤ γ < 5/3 solutions were overlooked in followup treatments, e.g. that of Carovillano

& King (1965). Adhering to the physical assumption that the gas is launched from highly

subsonic speeds automatically excludes the enthalpy deficit regime.

Even if phenomenologically motivated, diskounting the enthalpy deficit regime prohibits

insight into the full nature of the problem. Namely, we benefitted from the realization that

Parker winds undergo a regime change because the flow must tap into its own kinetic

energy to become transonic.10 It is informative to view the γ-dependence of the classic

Parker problem from an enthalpy standpoint.

10In stark contrast, spherically symmetric (Bondi) accretion flow is safely in the enthalpy surplus regime
for all γ since both the potential and velocity vanish at the boundary, taken to be infinity.
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7.2 The Role of Enthalpy: Spherically Symmetric Parker Winds

In the classic Parker problem, the transonic bulk velocity profile is a monotonically

decreasing function of r for γ > 3/2 (see e.g., Lamers & Cassinelli, 1999). It follows

that this class of solutions has vo > v∞ and should therefore lie in the enthalpy deficit

regime. To show this explicitly, we merely note that the value of the critical point constant,

ec = (5 − 3γ)/2(γ − 1), combined with the inequality (7.3) yields γ > 3/2. Furthermore,

the inequality (7.1) with ζ = 0 allows us to infer the following allowed HEP ranges (already

quoted in Table 1),

2 < λo <
1

γ − 1
, if γ <

3

2
;

1

γ − 1
< λo < 2, if γ >

3

2
. (7.4)

The enthalpy deficit regime therefore consists of decelerating transonic solutions confined

to a very narrow range of small HEP values.

This much has been emphasized in textbook treatments of the classic Parker problem:

γ = 3/2 is the one value for which all of the enthalpy is used up to lift the gas out of the

potential well, with none left over to supply kinetic energy (Lamers & Cassinelli 1999). The

complete story is told by the dimensionless Bernoulli function, manipulated to read

λc

λo
=

ec[
1

γ−1 − λo

]
+M2

o/2
. (7.5)

We can look upon equation (7.5) as either the temperature ratio To/Tc, or as representative

of the critical point distance, as rc/ro = λc/2. Comparing the bracketed term in the

denominator of equation (7.5) with the allowed HEP ranges allows us to infer the behavior

of the critical point as γ increases. For transonic flows with a high energy input, meaning

that γ is close to 1, there is always a significant excess of enthalpy beyond that used to

combat gravity that can contribute to increasing the kinetic energy of the gas. Regardless of
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the HEP, Mo is small because the high energy input permits vo << co. The bracketed term

is made smallest for large λo, i.e., for lower coronal temperatures, so we have the intuitive

notion that the smaller the coronal temperature, the more distant the sonic point and the

smaller the initial Mach number.

As γ → 3/2 from below, progressively smaller HEP are required to compensate for the

lower energy input into the wind as it expands. This is shown by curves on the right half

of Figure 7.7. There remains a small enthalpy excess, so higher temperatures still lead to

higher initial Mach numbers and less distant sonic points. We show representative initial

Mach numbers at rc/ro = 3 and rc/ro = 30 for γ = 1.48 to illustrate that Mo can be

almost as small as when γ is much less than 3/2, but only if the sonic point is very far away.

(For comparison, for γ = 1.1, rc/ro = 3 corresponds to λo = 4.145 and has Mo = 0.185,

while rc/ro = 30 corresponds to λo = 8.76 and has Mo = 1.5 × 10−6). Realistic solutions

that traverse the sonic point within a few ro therefore require relatively high initial Mach

numbers compared to those when γ is small.

For the special case γ = 3/2, the bulk velocity is a constant at all radii. The inequality

7.2 reveals that the HEP is confined to the single value λo = 2. We show in Appendix D

that for this particular value, v(r) = co, i.e. Mo = 1 and rc = ro. The flow behavior for the

class of accelerating solutions 1 < γ < 3/2 can therefore be summarized as transitioning

from an extreme surplus of enthalpy near γ = 1 that permits Mo ≈ 0 at low temperatures,

to a scarcity of enthalpy near γ = 3/2 that requires high temperatures and results in barely

accelerating transonic solutions.

We then reach the high temperature regime (> 4 × 106 K for solar parameters) of

decelerating flow. This class of critical point solutions with 3/2 < γ < 5/3 was found by

Dahlberg (1964) using a highly implicit formulation. Parker, responding to this finding,
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stated “it would be interesting to work out what conditions the solutions would fit to at

the base of the corona where they start” (Parker 1965). Surprisingly, this never appears to

have been done!

We duly noted that the high temperature regime is characterized by an enthalpy deficit.

As shown by the curves to the left of λo = 2 in Figure 7.7, critical point distances vary

oppositely with HEP than for γ < 3/2; as the temperature decreases for a given γ, so

does the sonic point distance, while the initial Mach number increases. These features

are easily explained. Loosely speaking, since the flow is slowing down, not speeding up,

the gas can become sonic sooner only if the sound speed can quickly drop below the local

magnitude of the bulk velocity, a scenario that is expedited if co is smaller (λo larger) to

begin with. More rigorously, the bracketed term in equation (7.5) is negative, so lowering

the temperature (increasing λo) forces the initial Mach number to be higher, as only a

high launching velocity can compensate for the enthalpy deficit. As a secondary effect, the

temperature is so high that lowering it somewhat contributes to increasing Mo. Smaller

sonic point distances follow. We do note, however, by our representative values of Mo at

rc/ro = 3 and rc/ro = 30 for γ = 1.48, that the initial Mach number in this regime does

not greatly exceed Mo for γ < 3/2. Indeed, Mo can be much less than 1, but only for very

distant sonic points.

Comparing Figure 7.7 with Figure 7.1 for γ = 1.5, we see that the sonic points for our

disk wind models are not at all symmetric in the neighborhood of the vertical lines, as

they are in Figure 7.7 around λo = 2. Moreover, the regime change to enthalpy deficit flow

occurs significantly below γ = 3/2, and its onset is marked by the occurrence of velocity

minimums, indicating that the flow is decelerating. Velocity minimums arise by adding

angular momentum to the problem.
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7.3 The Appearance of Velocity Minimums: Parker Winds with Rotation

We can analytically investigate the effects of including angular momentum by consid-

ering the ‘rotating Parker problem’, in which the streamlines are radial and spherically

divergent but rotate rigidly with velocity uφ = ζco. Since stars differentially rotate, this

solution is valid near the equatorial plane only. In a disk wind context, this solution can be

viewed as a wind emanating from the edge of a flared, rigidly rotating disk; the differentially

rotating, ‘Keplerian Parker wind’ solution of §6.1 corresponds to the special case ζ =
√
λo.

Results for the spherically symmetric Parker problem are recovered by setting ζ = 0.

We begin by finding the relationship between r̂c and λc, where we are calling r̂ = r/rg =

(r/ro)/λo. The effective gravitational force is g = [1 − (ζ2/λ2
o)/r̂]/r̂

2 (see equation (5.32)),

so we have by equation (5.39) that

λc

λo
=

2r̂c
1− (ζ/λo)2/r̂c

. (7.6)

This equation is quadratic in r̂c with solution,

rc
ro

=
λc

4

[
1±

√
1− 8

(ζ/λo)2

λc/λo

]
. (7.7)

Only the positive root is satisfied by the location of the critical point. Is there any meaning

to the negative root? In the isothermal (λc = λo) case, in which the positive root of

equation (7.7) directly yields the location of the critical point, the negative root gives the

radius where the bulk velocity reaches its minimum value:11

rmin

ro
=

λo

4


1−

√
1− 8

(
ζ

λo

)2

 . (7.8)

11We are only concerned with the locations of local minimums, but equation (7.8) yields the location of
local maximums also. Indeed, in the limit ζ → 0, rmin = 0 is a velocity minimum for γ < 3/2 and a velocity
maximum for γ > 3/2. Note that purely decelerating flows, which are mathematically equivalent to having
bulk velocity minimums at infinity (or maximums at rc/ro < 1), do not occur for sufficiently high rotation
rates.
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This occurrence can be accounted for mathematically by recalling the derivation leading

up to equation (5.39). As we discussed in §5.5, the critical point must satisfy both the

singularity and regularity conditions. The latter defines y′ when y = 1/2. The former simply

picks out all points for which the equation of motion does not depend on the acceleration,

a condition that is also satisfied if the acceleration is 0, i.e. at points where the velocity

is a local maximum or minimum. In other words, while the location of the critical point

must satisfy equation (7.6), there exist rotation rates when λc = λo in which points where

y′ = 0, not critical points where y = 1/2 (and y′ = 0/0 by equation (5.33)), also obey this

equation.

For the polytropic case, the equation governing the location of bulk velocity minimums

has the same form as equation (7.7), but involves smin ≡ s(χ = χmin):

rmin

ro
=

λc

4smin

[
1±

√
1− 8

(ζ/λo)2

λc/λo
smin

]
. (7.9)

In general, this location can only be solved for numerically, as smin is a function of both

w(χmin) and A(χmin). However, equation (7.8) still approximates this location when rmin .

2ro if the flow is close to being isothermal, say γ . 1.1. In that circumstance, smin ≈ so =

λc/λo, and the negative root of equation (7.9) reduces to equation (7.8).

Analyzing equation (7.9), velocity minimums will not arise unless rmin/ro > 1, implying

the bound

smin >
λc

2

(
1− ζ2

2

)
. (7.10)

As it is, this inequality is not very insightful since λc is unknown, but since the flow will

adiabatically cool, we must also have smin < so = λc/λo. Combining these two inequalities,

we can conclude that for a given rotation rate, velocity minimums will not be present unless

λo < 2 + ζ2. (7.11)
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This criteria follows more directly from the equation of motion, as it is the condition for the

flow to decelerate off the midplane, i.e. for y′(χ = 0) < 0. Hence, inequality (7.11) is the

statement that flows undergoing deceleration must be of very high temperature! It certainly

contradicts our intuitive notion that higher temperatures give rise to winds with steeper

positive velocity gradients. Evidently, the enthalpy deficit regime must have λo < 2 + ζ2,

and the appearance of velocity minimums is to the rotating Parker problem what purely

decelerating flow is to the spherically symmetric Parker problem. Recall that solutions in

the latter problem with γ > 3/2 still have monotonically increasing Mach number profiles;

never does the bulk velocity decrease faster than the sound speed, which would cause M

to decrease. An effect of rotation is to allow this happen, as pointed out by Keppens &

Goedbloed (1999). Of course, the locations of Mach number minimums and bulk velocity

minimums do not coincide. It will be seen below that Mach number minimums imply

accompanying bulk velocity minimums, but the converse is not true.

Notice that for Keplerian rotation (ζ2 = λo), the inequality (7.11) is always satisfied,

explaining why the bulk velocity profiles of our disk wind solutions possess minimums at

all γ. It remains to explain the occurrence of tails on the disk wind critical point curves,

which imply that there are two transonic solutions for the same set of parameters. For this,

we must carefully study the enthalpy deficit regime of the rotating Parker problem.

7.4 The Enthalpy Deficit Regime with Rotation

The value 2 + ζ2 is the critical HEP below which the bulk velocity must initially decel-

erate before becoming transonic. Each rotation rate must correspondingly lead to a unique

polytropic index, γt say, that determines the onset of enthalpy deficit flow. By the inequality
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7.1,

γt = 1 +
1

2 + ζ2/2
. (7.12)

Necessary (but not sufficient) criteria to reach the enthalpy deficit regime is for both λo <

2 + ζ2 and γ > γt. Sufficient criteria is, by definition, that λo > 1/(γ − 1) + ζ2/2. The

inclusion of rotation lowers γt below 3/2, which may seem counterintuitive. Physically, due

to the boost from the centrifugal force, winds must be launched with lower temperatures

overall. This in turn reduces the enthalpy at the base (h ∝ T ), so a compensatory reduction

in γ is required for the enthalpy deficit regime to occur because the magnitude of the effective

potential is reduced with rotation.

Another effect of rotation is to smooth the transition from ‘normal’ critical point be-

havior, that with rc/ro increasing with HEP, to enthalpy deficit behavior. This situation

is shown in Figure 7.8, which is the rotational analogue to Figure 7.7. In both figures,

λo = 2 + ζ2 marks the critical HEP below which rc/ro begins to decrease as λo increases.

An obvious difference is that in Figure 7.8, two wind solutions arise for the same HEP

to left of the vertical dotted line, reminiscent of our disk wind results. Despite these tail

critical points displaying enthalpy deficit behavior, never do they correspond to transonic

solutions with vo > v∞ if γ < γt = 1.4. Only the (parts of) curves that are bolded have

λo > 1/(γ − 1) + ζ2/2. (The tail of the γ = 1.41 curve is the first to have points with

λo > 1/(γ − 1) + ζ2/2.) As the fully enthalpy deficit regime is approached, the tail grows

in length and the normal critical points begin to disappear altogether.

The HEP bounds reflect these considerations. If γ < γt and there is only one transonic

solution per HEP (i.e. if the curve has no tail), then

2 + ζ2 < λo <
1

γ − 1
+

ζ2

2
. (7.13)
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Whenever there are two critical points per HEP, the normal critical points have

λo,min(γ, ζ) < λo <
1

γ − 1
+

ζ2

2
. (7.14)

The minimum HEP attained, λo,min(γ, ζ), appears to be a priori unknown and is a function

of both γ and ζ. The points lying on the tail, meanwhile, have

λo,min(γ, ζ) < λo < 2 + ζ2. (7.15)

Only once γ is high enough above γt such that there is again only one critical point per

HEP do we encounter the fully enthalpy deficit regime. In that case, the tail becomes the

entire critical point curve and the HEP bound is

1

γ − 1
+

ζ2

2
< λo < 2 + ζ2. (7.16)

Since γt is the polytropic index at which 1/(γ − 1) + ζ2/2 = 2 + ζ2, it marks where the

upper bounds switch places.

Another look at the transition from enthalpy surplus to deficit flow given in Figure 7.9.

Rather than changing γ for a fixed rotation rate, we set γ = 1.46 and vary the rotation

rate from 0 from to ζ = 1.5. In this way, the enthalpy deficit regime is gradually reached

as γt drops from 1.5 for ζ = 0 to 1.32 for ζ = 1.5. Notice that the enthalpy surplus critical

point curves, the first of which begins at rc/ro ≈ 1.02 for ζ = 0, steadily shift upward to

begin and end at higher sonic point distances as the rotation rate is increased. Slightly past

ζ = 1, however, the HEP range becomes maximally confined by λo,min(γ, ζ) < λo < 2 + ζ2,

and only enthalpy deficit roots are allowed. The latter make an appearance on the tail of

the ζ = 0.6 curve, the first curve to have λo < 2 + ζ2 = 2.36 and γ > γt = 1.4587.

Figure 7.9 reveals that, at a fixed energy input (i.e. constant γ) near the enthalpy deficit

regime, increasing the rotation rate steadily increases the minimum HEP for which critical
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point solutions exist and pushes the lowest sonic point distance to higher values. That

is to say, the centrifugal force permits transonic solutions to arise at lower temperatures

overall. The flow remains subsonic out to progressively larger radii because a balance must

be struck between keeping the flow subsonic at these (still high) temperatures under low

effective gravity and simultaneously supplying enough energy to launch a transonic wind

when there is little energy injected into the flow at these high γ.

We have selected critical points at rc/ro ≈ 11 in Figure 7.9 to illustrate the effect that

rotation has on the Mach number profiles. These critical point solutions have the properties

listed in Table ?? and are plotted in Figure 7.10. Curves with higher rotation rates always

have larger initial Mach numbers, as expected. Bulk velocity minimums occur whenever

the HEP is less than 2 + ζ2, met by solutions (4) and higher, while we see that the Mach

number profiles have minimums only for the three solutions in the enthalpy deficit regime,

namely (5), (6) and (7). However, having vo > v∞ is not a necessary condition for there

to be a Mach number minimum, only a sufficient one. Indeed, all critical points on the

tail curves exhibit Mach number minimums at the rotation rates that we sampled. At even

higher rotation rates, Mach number minimums occur for points on the normal critical point

curves. The appearance of Mach number minimums for our disk wind solutions is therefore

solely an effect of the high Keplerian rotation rate.

7.5 Summary & Conclusions

We have described in a unified fashion how Parker winds are applicable to modeling

the rapid hydrodynamical escape of gas in stars, planets, and accretion disks. Accretion

disk winds distinguish themselves in that Parker-like disk winds can result both when (i)

the density structure is that of a nearly hydrostatic corona, as with stars and planets
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and when (ii) the gas is only slightly inhibited by gravity, residing for example, at radii

ro > RIC for Compton heated coronae. When the HEP lies outside the parameter space

of transonic Parker wind solutions, it indicates either that gravity is too strong (and the

heating insufficient) to drive a wind or, when the HEP falls below the lower bound, that

gravity is unimportant and the gas is free to expand upon being heated. In the latter case,

the initial Mach number is 1 according to Parker wind solutions, implying a mass flux density

of ṁ = ρoco. We showed by way of a simple example that the extrapolation procedure used

by GH09 to extend the parameter space of Parker wind solutions is unnecessary. A more

conservative and likely more accurate estimate of the global mass loss rate is obtained by

simply assuming that ṁ = ρoco in their extrapolated region.

Our main objective was to investigate the dynamical properties of two axially symmetric,

thermally driven disk wind models, one with significant adjacent streamline divergence (the

Converging model) and another with a complete lack thereof (the CIA model). We made

no attempt to construct a ‘global’ disk wind model by combining the CIA and Converging

models in accordance with Figure 4.1. (It would be straight forward, for example, to assign

a temperature profile to the disk midplane and calculate the equivalent variation of the HEP

as a function of ro.) Nevertheless, we surveyed the full parameter space of possible transonic

wind solutions for both the CIA and the Converging models, so our results embody such a

global model.

Since the CIA and Converging models only differ by their respective amounts of stream-

line divergence, we can attribute the differences in the properties of their solutions as being

solely due to geometric effects. Our results have implications for kinematic models that

adopt a similar flow geometry for the purposes of computing synthetic spectra to compare

with observations. Namely, use of the Converging model will significantly overestimate the
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acceleration of the flow if the true wind configuration more closely resembles the CIA model.

The latter model features a greatly extended acceleration zone, a more distant sonic surface,

and a smaller mass flux density than the Converging model for similar footprint conditions.

We emphasize that detailed hydrodynamical simulations show that by taking into ac-

count the interactions of neighboring flow tubes, a self-similar streamline geometry emerges

(recall Figure 1.2). We have neglected to mention elsewhere that CIA-like streamlines have

also been found analytically from similarity solutions of idealized models for galactic super-

winds. Both the self-similar solutions of Bardeen & Berger (1978), which took into account

a gravitational potential, and those of Zirakashvili & Völk (2006), which did not involve

gravity, are examples. The sonic surface found by Zirakashvili & Völk (2006) bears remark-

able resemblance to that obtained in several of the 2.5D simulation runs of Woods et al.

(1996) and in the fiducial run of Luketic et al. (2010) (and see also Figure 1 of Font et al.

2004). Namely, the simulations revealed that regions of self similar flow have zc ≈ 0.25x for

cylindrical coordinates x and z in units of RIC . The sonic surface of a similarity solution is

necessarily a straight line, but that the slope is also about 1/4 in arbitrary units is certainly

uncanny (see Figure 1 in Zirakashvili & Völk 2006 and also the discussion in Woods et al.

2006). This connection deserves further attention because the mass loss rate is essentially

set by the location of the sonic surface.

We plan to follow up this work with calculations of synthetic line profiles for the geometry

of Figure 4.1, to gauge whether adding a CIA-type wind in addition to an inner, Converging

wind will significantly alter the line profile characteristics. Kinematic models typically

approximate the velocity profile of the flow using a beta-law appropriate for a line-driven

stellar wind (CAK), e.g. v(l) = vo + (v∞ − vo)(1 − ro/(ro + l))β , where β is an ad-hoc

parameter controlling the slope of the velocity with distance. The velocity profiles of our
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disk wind models are only well-approximated by this monotonic velocity-law beyond l ≈ ro.

The presence of velocity minimums implies that the flow can undergo significant deceleration

for l < ro. We showed this to be an effect of our assumed geometry and will likely not occur

if streamlines instead originate from some elevated flow surface above the disk midplane.

On the other hand, our discussion of the spherically symmetric and rotating Parker wind

solutions showed that deceleration is associated with a flow regime characterized as having

an enthalpy deficit over an appreciable range of the parameter space. It is not inconceivable

this type of outflow can be realized in an astrophysical setting, but consider what it would

entail: the wind would have to reach a steady state in which the flow is launched with

a higher initial velocity than its terminal velocity. A more realistic 1D treatment could

shed light on this issue. That would require exploring different effective potentials and flow

geometries. We showed that the equivalent nozzle function can be helpful in this regard,

as a means to gauge whether or not the flow is monotonic without actually finding the

transonic solutions.

Additionaly, solving the time-dependent problem is likely to yield insights into the full

domain of viable wind solutions. Especially considering that we found degenerate transonic

solutions, uncovering the effects of time-dependence is a worthwhile task, one that we plan

to undertake in a future work.
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Table 7.1. Properties of the γ = 1.2, λo = 8.0 transonic solutions plotted in Figure 7.4:

Model, i lc/ro λc ec Mo vo/Vesc v∞/Vesc

Con, 30◦ 11.626 27.194 3.436 0.1464 0.0518 0.5027
Con, 60◦ 11.303 27.731 3.470 0.0475 0.0168 0.5003
CIA, 30◦ 33.979 35.910 4.489 0.0079 0.0028 0.5000
CIA, 60◦ 33.054 35.909 4.489 0.0045 0.0016 0.5000

Table 7.2. Properties of the i = 30◦ transonic solutions plotted in Figure 7.5:

Model, γ λo lc/ro λc ec Mo vo/Vesc v∞/Vesc

Con, 4/3 5.695 10.0128 23.989 1.425 0.6098 0.2555 0.3447
CIA, 4/3 4.304 10.0107 11.992 2.463 0.2678 0.1291 0.6409
CIA, 1.01 11.370 10.0087 11.990 99.463 0.0464 0.0138 4.0731
Con, 1.01 21.710 10.0033 23.970 98.425 0.0044 0.0010 2.8657

Table 7.3. Properties of the degenerate γ = 5/3 transonic solutions for the CIA model
plotted in Figure 7.6:

i, Label λo lc/ro λc ec Mo vo/Vesc v∞/Vesc

30◦, (1) 2.9 7.7097 9.7132 0.9517 0.6843 0.4018 0.4427
30◦, (2) 2.9 44.5443 46.4707 0.9915 0.1541 0.0905 0.2066
60◦, (1) 2.3 1.9071 3.3360 1.1330 0.9286 0.6123 0.8242
60◦, (2) 2.3 2.9101 4.5759 1.0790 0.6203 0.4090 0.6867

Table 7.4. Properties of the γ = 1.46 transonic solutions plotted in Figure 7.10:

Label ζ γt λo (λo)
∗
crit rc/ro λc ec Mo vo/vesc v∞/vesc

(1) 0. 1.5 2.137 2.1739 11.1673 22.3347 0.6739 0.2348 0.1136 0.1737
(2) 0.25 1.4923 2.169 2.2052 10.9180 21.8939 0.6713 0.2463 0.1183 0.1751
(3) 0.5 1.4706 2.268 2.2989 11.1108 22.4442 0.6639 0.2690 0.1263 0.1720

(4) 0.75† 1.4384 2.435 2.4551 11.1302 22.7323 0.6527 0.3154 0.1429 0.1694
(5) 1.0 1.4 2.677 2.6739 10.9287 22.6310 0.6385 0.3965 0.1714 0.1680
(6) 1.25 1.3596 3.009 2.9552 11.0326 23.1550 0.6245 0.5196 0.2118 0.1642
(7) 1.5 1.32 3.485 3.2989 11.0584 23.4881 0.6119 0.7441 0.2819 0.1614

∗ (λo)crit = 1/(γ − 1) + ζ2/2
†For λo = 2.435, there are two wind roots; the second has rc/ro = 6.2391, Mo = 0.4455, & λc = 12.958
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Figure 7.1. Distance to critical (sonic) points from the disk midplane for the CIA and
Converging models in units of ro (that is, λoχc = lc/ro) for two inclination angles, i = 30◦

and i = 60◦, as a function of the HEP, λo = v2esc/2c
2
o. Vertical lines mark the value

λo = 2/(γ − 1); critical points to the right of this line correspond to transonic solutions
with vo > v∞. The inset plots display Mo vs. λo and show that the smallest critical
point locations have initial Mach numbers approaching unity. The effect of increasing the
inclination angle (reducing the centrifugal force) is to allow transonic solutions at smaller
HEP.

lc/ro

lc/ro
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Figure 7.2. Critical point locations (top) and initial Mach numbers (bottom) vs. HEP for
γ = 5/3. See Figure 7.1 for a legend. The Converging model has no solutions for i = 30◦

(nor does the Parker model with or without rotation). For i = 60◦, the Converging model
has transonic solutions with very high initial Mach numbers and vo > v∞ for a small range
of HEP around λo = 3.9. Owing to its lack of streamline divergence, the CIA model has
solutions for a substantial range of HEP to the left of the vertical line, meaning that these
solutions have vo < v∞. Compared to a nearly isothermal wind, the distance to the critical
point and the initial Mach number are both very sensitive functions of λo. Moreover, they
are double-valued for the lowest HEP values at a given angle, meaning that two different
transonic solutions arise for the same λo.

χc

Mo

λo

86



Figure 7.3. The acceleration zone, defined as the distance l/ro where v(l) = 0.9 v∞, of the
CIA model (solid) and Converging model (long-dashed) for i = 60◦ vs. HEP. The vertical
scale is the same for each panel and ranges from 1.0 ro to 1010 ro. The acceleration zone of
the CIA model is consistently 2−3 orders of magnitude greater than that of the Converging
model for each γ.

log10(l/ro)

λo
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Figure 7.4. Transonic disk wind solutions for the Converging and CIA models for γ = 1.2
and λo = 8. The top panel is the Mach number as a function of l/ro, while the middle and
bottom panels are the bulk velocity (in units of vesc) and the density (in units of ρo) vs.
l/ro, respectively. The dotted lines in the bottom panel are plots of 1/(1 + l/ro)

q to show
the asymptotic slopes of CIA model (q = 1) and the Converging model (q = 2). Properties
of these solutions are given in Table 2.
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Figure 7.5. Transonic disk wind solutions for the Converging and CIA models for param-
eters γ, λo yielding the same sonic point distance, lc/ro ≈ 10—see Table 3.
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Figure 7.6. Transonic disk wind solutions for the CIA model with γ = 5/3. Solutions
(1) and (2) for either angle have the same set of parameters (γ, λo, i); solutions labelled (1)
lie on the tail of Figure 7.2. These tail solutions have substantially different properties—
see Table 4. The inset plots zoom-in to the region lc < ro and show that the density and
temperature of the highest velocity solutions actually increase in the region of deceleration
(i.e. the gas can be adiabatically compressed).

90



Figure 7.7. Location of critical (sonic) points for the spherically symmetric Parker problem
as a function of the HEP in the neighborhood of γ = 3/2. The vertical, dotted line at λo = 2
separates the enthalpy surplus and enthalpy deficit regimes. Critical points curves in the
latter regime (those with λo < 2) have a negative slope (so that higher temperatures lead
to more distant sonic points) and correspond to decelerating transonic solutions, implying
that vo > v∞.
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Figure 7.8. Location of critical (sonic) points vs. HEP for the Parker problem with
rotation, where the (rigid) rotation rate is ζ = 1.0. This plot is to be compared with
Figure 7.7 which has γt = 1.5 and ζ = 0. Here, γt = 1.4 and the enthalpy deficit regime sets
in for HEP values to the left of the vertical dotted line at λo = 2 + ζ2 = 3, which divides
transonic solutions with bulk velocity minimums from those without. Only the bolded sonic
points have transonic solutions in the enthalpy deficit regime with vo > v∞.
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Figure 7.9. Location of critical (sonic) points vs. HEP for γ = 1.46 for various rotation
rates ζ = uφ/co ranging from 0 up to 1.5 for the Parker problem with equatorial rotation.
The effect of rotation is to shift the enthalpy deficit flow regime to smaller γ, so that this
regime (bold curves) is entered by holding γ fixed and increasing ζ. We placed a vertical
line at λo = 2.36 to illustrate the tendency toward the upper bound 2 + ζ2. The numbered
crosses have the properties tabulated in Table 5 and correspond to the transonic solutions
plotted in Figure 7.10.
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Figure 7.10. Transonic Mach number (top) and bulk velocity (bottom) profiles for the
rotating Parker problem with γ = 1.46. The numbered solutions have the properties listed
in Table 5; each solution has a sonic point near rc/ro = 11. Solutions (5)-(7), bolded,
are in the enthalpy deficit regime with λo > 1/(γ − 1) + ζ2/2 and vo > v∞. In contrast
to the spherically symmetric Parker problem, bulk velocity profiles are not monotonically
decreasing in this regime. The bolded curves also have Mach number minimums, although
this is due more to the increased rotation rate, i.e. enthalpy surplus solutions can also
display Mach number minimums if ζ & 1.
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APPENDIX A

FORMULAE FOR THE POLYTROPIC SOLUTION

To facilitate the usage of our solutions for numerical testing purposes, we first sketch the

solution procedure. All quantities given in Appendix A follow algebraically from the Mach

number,M =
√
w, which can be determined numerically from the explicit solution, equation

(5.45), for 1 < γ ≤ 5/3. Since there are multiple values of χc satisfying equation (5.42),

when solving for w, the rootfinder should separate wind roots, those with ρ(χ = 0)/ρo = 1

— according to equation (A.3) — from all other roots (see Appendix D). For every critical

point χc, there is a unique quantity λc given by equation (5.39).

A.1. The Bulk Velocity, Sound Speed, Density, & Internal Energy Profiles

We use as a characteristic velocity, vesc =
√

2GM∗/ro, in terms of which the HEP is

given by λo =v2esc/2c
2
o. For disk wind solutions, simply make the substitution vesc →

√
2Vesc,

as the appropriate escape velocity for a Keplerian disk is Vesc =
√

GM∗/ro.

The bulk velocity is obtained from the specific kinetic energy y = λc(v/vesc)
2/2, which

can be found by eliminating s from (5.29) via y = sw/2, giving

v

vesc
=

√
1

2λc

(
Λ
Ac

A

) γ−1
γ+1

M
2

γ+1 . (A.1)

The sound speed is then simply cs/vesc = (u/vesc)/M by definition, or explicitly from

(5.29),

cs
vesc

=

√
1

2λc

(
Λ
Ac

A

1

M

) γ−1
γ+1

. (A.2)

The above equations reduce to identities in the isothermal γ = 1 case in which λc = λo.

The density follows straightforwardly from the polytropic EoS,

ρ

ρo
=

(√
2λo

cs
vesc

) 2
γ−1

=

(
λo

λc

) 1
γ−1

(
Λ
Ac

A

1

M

) 2
γ+1

, (A.3)
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where the second equality makes for an interesting comparison with the isothermal result,

equation (5.62). Note that ρc/ρo = (λo/λc)
1/(γ−1). The temperature profile is readily

obtained from equation (A.2) but is most simply expressed in terms of the density profile

as T/To = (ρ/ρo)
γ−1.

Finally, the internal energy density E is found from P = (γ − 1)E combined with

c2s = γP/ρ:

E

ρov2esc
=

1

γ(γ − 1)

ρ

ρo

(
cs
vesc

)2

=
1

2γ(γ − 1)

(
λo

λγ
c

) 1
γ−1

(
Λ
Ac

A

1

M

) 2γ
γ+1

.

(A.4)

In terms of the footprint value Eo ≡ E(χ = 0), the internal energy density is simply

E

Eo
=

(
Λ
Ao

A

Mo

M

) 2γ
γ+1

. (A.5)

Using equation (A.2), we find that at the critical point, Ec/Eo = (λo/λc)
γ/(γ−1).

A.2. The Mass Loss Rate, Initial Velocity, & Terminal Velocity

From equations (5.19) and (5.21) evaluated at the critical point, we find the critical

mass flux density

ṁc = ρoco
Ac

Ao

(
λo

λc

) γ+1
2(γ−1)

. (A.1)

Recalling that Ao is a differential flow area, the total mass loss rate is found from Ṁ =
∫

ṁAo, where the integral is taken over the wind region on the disk midplane (Ao =

2πrodro sin i) or spherical boundary (Ao = 2πr2o sin θdθ). Since ṁ = ρocoMo, the initial

Mach number is Mo = (Ac/Ao)(λo/λc)
γ+1

2(γ−1) , from which we get the initial velocity in

escape speed units (co = vesc/
√

2λo):

vo
vesc

=
√

2λo
Ac

Ao

(
λo

λc

) γ+1
2(γ−1)

. (A.2)
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Equations (A.1) and (A.2) both apply to γ = 1 when casted in terms of the density using

ρc/ρo = (λo/λc)
1/(γ−1). The terminal velocity is found by evaluating equation (5.22) at

infinity, where both the effective potential and pressure (and hence s) vanish, giving

v∞
vesc

=

√
ec
λc

. (A.3)
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APPENDIX B

THE BONDI PROBLEM

It is instructive to apply our dimensionless formulation to the classic Bondi problem, in

which the boundary conditions are evaluated at infinity. As mentioned at the beginning of

§5.4 , rg → rB = GM/c2∞ in that limit. With r̂ = r/rB , the potential is simply U = −1/r̂

(and so g = 1/r̂2), and the critical point must obey equation (5.39), giving

r̂c =
1

2

λc

λo
. (B.1)

In light of equation (B.1), the potential at the critical point can be written as Uc = −2λo/λc.

Inserting this into equation (5.35) gives

ec =
1

2

(
5− 3γ

γ − 1

)
. (B.2)

Equations (B.1) and (B.2) are the critical point conditions and are the same as those of the

classic Parker problem.

Determining an explicit expression for the location of the critical point requires knowing

both the critical point constant, ec, and the Bernoulli constant, Bo. We can then eliminate

λc/λo from equation (B.1) by recalling that λc/λo = ec/(Bo/c
2
o). Equivalently, λc/λo can

be found directly be evaluating the dimensionless Bernoulli function, equation (5.22), at

infinity; we require y∞ = U∞ = 0, and so

λc

λo
=

5− 3γ

2
. (B.3)

Since λc/λo = c2∞/cs(rc)
2, equation (B.3) gives a pre-determined relationship between the

sound speed at the critical point and the sound speed at the boundary, a situation unique to

the Bondi problem. It is a consequence of letting w∞ = 0 and is contrary to wind problems

in which wo is nonzero and tied to the location of the critical point. With equation (B.3)
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substituted into equation (B.1), we have r̂c = (5− 3γ)/4, which in physical units is the well

known result

rc =
GM

c2∞

5− 3γ

4
. (B.4)

The Bondi accretion rate is recovered from equation (A.1), which in terms of the critical

differential mass-loss rate reads

dṀc

ρ∞c∞
= Ac

(
λo

λc

) γ+1
2(γ−1)

. (B.5)

With Ac = 2πr̂2c r
2
B sin θdθ, we obtain after substituting in equations (B.1) and (B.3),

dṀc

2πr2B sin θdθρ∞c∞
=

1

4

(
5− 3γ

2

)−
(

5−3γ
2(γ−1)

)

. (B.6)

For the isothermal (γ = 1) case, r̂c = 1/2 and so the Bondi rate is given by equation (5.52)

as ΓB = (2πr2B sin θdθ/Ao)e
3/2/4. With dṀc = ρocoAoΓB, we see that there is no issue

with calculating Ṁ despite Ao → ∞ because there is no actual dependence on the area

at the boundary. In other words, we formally have ΓB = 0 in the Bondi problem, as it is

simply the initial Mach number of the flow (since dṀc = ρ∞c∞A∞M∞, which is still valid

at infinity because the product A∞M∞ is finite).

The isothermal Mach number profile is, from equation (5.53),

M(r̂) =

√√√√−W

[
−(Λe3/2/4)2

(
exp[−1/r̂]

r̂2

)2
]
, (B.7)

and the corresponding density distribution is

ρ(r̂)

ρo
=

Λe3/2/4

r̂2M(r̂)
. (B.8)

The X-type solution topology for various values of Λ can readily be explored by plotting

equations (B.7) and (B.8).
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APPENDIX C

THE CONTINUITY EQUATION

Here we derive the continuity equation appropriate for any axially-symmetric streamline

geometry consisting of straight streamlines in the (x, z)-plane. See Fukue (1990) for the

appropriate generalization when streamlines possess curvature. In stellar wind equations

with spherical symmetry, the continuity equation is usually stated as

Ṁ = 4πr2ρ(r)v(r). (C.1)

The task is to arrive at the appropriate differential area function A(l) that yields the area

between streamlines for the disk wind geometry of Figure 4.1. The continuity equation then

takes the form

dṀ = ρ(l)v(l)A(l). (C.2)

We begin with the steady state continuity equation in its coordinate-free, differential

form,

∇ · j = 0, (C.3)

where j ≡ ρv. Hence by the divergence theorem,

∫

V
∇ · j dV =

∮

S
j · n̂ dS, (C.4)

the area occupied by streamlines pointing along j that cross a surface S with surface normal

n̂ is equivalently obtained from
∮

S
j · n̂ dS = 0. (C.5)

The spherically symmetric case (j · n̂ = j(r)) is easily treated by considering the flow

passing through two small solid angles dΩ1 and dΩ2 at two different radii r2 > r1. The

surface integral must vanish at both r1 and r2 separately, so

j(r1)r
2
1dΩ1 = j(r2)r

2
2dΩ2. (C.6)
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Since these radii are arbitrary, each side must equal a constant, dṀ , so that at any radius,

dṀ = ρ(r)v(r)r2dΩ. (C.7)

To capture the entire flow area giving Ṁ , we recover equation (C.1) by integrating over all

solid angles at constant r.

Generalizing to the area contained between two wind cones at some height along the

z-axis, we now work in cylindrical coordinates in which n̂ = ẑ, j(l) · ẑ = j(l) cos(π/2 − i) =

j(l) sin i, and dS = xdxdφ. Evaluating the surface integral in equation (C.5) on a circular

slice at some arbitrary height z1 between two wind cones x2 > x1 gives

dṀ =

∫

l=const
j(l) · n̂ dS = j(l) sin i

(
πx2

) ∣∣∣
x2

x1

. (C.8)

From Figure 4.1, we see that the integration limits are from x1 = ro + l cos i to x2 =

x1 + dro + dri, where the dro step sweeps out the increase in area from moving further out

along the disk, while dri tracks the area swept out from streamline divergence alone. The

latter can be related to di by projecting the arc length distance l di onto the bold horizontal

line:

dri = − ldi

sin i
. (C.9)

The negative sign accounts for the decrease in the angle i farther out along the midplane,

as we take di to be positive. After some algebra we arrive at

A(l) = 2πdro(ro + l cos i) sin i

[
1− l(di/dro)

sin i

]
. (C.10)

This formula for the differential area traversed by the flow between two straight neighboring

streamlines with an arbitrary amount of streamline divergence was obtained by Feldmeier

& Shlosman (1999)—see their equation [19].12

12Note that this is only half the flow area needed to account for a biconical wind and hence to compute
the actual mass loss rate.
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APPENDIX D

A SECOND CLASS OF ALWAYS PRESENT CRITICAL POINTS

In the spherically symmetric Parker problem, two relationships between the location of

the critical point and the initial Mach number can be obtained. The first is equivalent to

equation [6] in Keppens & Goedbloed (1999), whose quoted solutions we used to verify our

numerical results. It follows from the singularity condition, equation (5.39), taken together

with equation (5.41), the combined polytropic/continuity relation. Again calling r̂ = r/rg,

the effective gravitational force is simply g = 1/r̂2, and a = r̂2, as in the Bondi problem.

Subsituting λo/λc = 1/2r̂c into equation (5.41) gives, since Ao = f2 = λ−2
o ,

Mo = 2−
1
2

γ+1
γ−1λ2

or̂
− 5−3γ

2(γ−1)
c . (D.1)

A second relation between r̂c and Mo is found from equation (7.5):

r̂c =
(5− 3γ)/4

(γ − 1)
[(

1
γ−1 − λo

)
+M2

o/2
] . (D.2)

As a first indication that these equations, when combined, possess multiple critical points,

consider the special case γ = 3/2. Equations (D.1) and (D.2) reveal that

r̂c =
1

8

(
λo

2
+ 1

)[(
λo

2

)2

+ 1

]
. (D.3)

Substituting this back into equation (D.2), we arrive at

Mo =
4(λo/2)

4

(λo/2 + 1)
[
(λo/2)

2 + 1
] . (D.4)

For λo = 2, the only viable HEP value (see Figure 7.7), we immediately see that r̂c ≡

rc/(λoro) = 1/2, that is, rc/ro = 1 and Mo = 1. There are thus no transonic wind solutions

for γ = 3/2. Values of λo > 2 do, however, yield the locations of the second class of critical

points addressed in this appendix.
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The combined equations (D.1) and (D.2), and more generally our critical point equation

for disk winds, are numerically seen to always possess a second root besides the one leading

to a transonic wind solution for all adiabatic indices 1 < γ < 5/3. We do find mention

of these roots in the original published account implementing a polytrope (Parker, 1960).

Parker’s analysis is insightful, using only Descartes’ rule of signs, so we reproduce it in our

notation. For γ < 3/2, equations (D.1) and (D.2) can be manipulated to read

2

(
1

γ − 1
− λo

)
r̂

5−3γ
γ−1
c − ecr̂

2(3−2γ)
γ−1

c +
λ4
o

2
γ+1
γ−1

= 0. (D.5)

From the HEP bound for γ < 3/2, we see that the first coefficient is always positive and

so there are two sign changes, meaning there are always two critical points.13 For γ > 3/2,

the exponent of the second term in equation (D.5) is negative, so the appropriate equation

is now

2

(
1

γ − 1
− λo

)
r̂c +

λ4
o

2
γ+1
γ−1

r̂
2(2γ−3)

γ−1
c − ec = 0. (D.6)

In this case, the factor 2(2γ − 3)/(γ − 1) is never an integer in the range 3/2 < γ < 5/3, so

this line of analysis will not work.

As will become clear in the next section, this second class of critical points is required

to exist by a mathematical symmetry argument. Because these are genuine critical points,

they come complete with an associated family of solutions (depending on the value of Λ),

including X-type inflow and outflow transonic solutions. In total, therefore, there are four

transonic Mach number profiles, two with Mo < 1 and two with Mo > 1. Only one of

the Mo < 1 solutions is a sought after wind solution satisfying ρ(χ = 0)/ρo = 1. Hence,

it is not enough to simply solve for the transonic Mach number and velocity profiles; the

corresponding density profiles must be included to correctly solve the problem.

13Of course, Descartes rule only applies to polynomials, so this analysis applies to the infinite number of
γ in the range 1 < γ < 3/2 that lead to integer exponents for the two r̂c terms.
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D.1. Properties of the ‘Inflow’ Solutions

The nature of the second root to the critical point equation is easily accounted for math-

ematically. The X-type behavior of the solution topology shows that transonic solutions

always come in pairs. Referring to the notation of our explicit solution, for every outflow

solution with w << 1 at small χ extending to w >> 1 at large χ, there is an accompanying

inflow solution with the opposite behavior. What has been un-emphasized is that the cor-

responding density profiles do not both satisfy ρ(χ = 0)/ρo = 1; only the outflow solution

does. Owing to the mathematical equivalence of the wind and accretion equations, why

should the density boundary condition preferentially be satisfied by the outflow solution

alone? In this view, there must be second critical point such that ρ(χ = 0)/ρo = 1 for

the curve with w >> 1 at χ = 0. The resulting transonic solution has two interpretations,

one of them unphysical and the other physically acceptable but very unrealistic. The latter

case corresponds to a second outflow solution, in which the flow starts out highly super-

sonic and reaches a subsonic terminal velocity. The former possibility is that of a transonic

inflow solution obeying inner boundary conditions. This is clearly physically unacceptable

because transonic flows are insensitive to conditions downstream of the critical point. The

Bondi problem is not to be solved by enforcing a particular density of the flow just outside

the central object! Nevertheless, we choose to interpret these points as inflow solutions for

the sake of classification and comparison. With that choice, subsonic flow resides at χ more

distant than the inflow critical point.

To illustrate the behavior of these inflow roots, we limit our attention to the spherically

symmetric Parker problem. In Figure D.1 we plot loci of critical points — all the roots,

rc/ro, of the combined equations (D.1) and (D.2) — vs. HEP for various values of the

adiabatic index. Critical points for winds, i.e. those that satisfy ρ(χ = 0)/ρo = 1, are
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plotted in bold, while the inflow roots are unbolded. Wind solutions can traverse the sonic

point very close to the star if the temperature is high enough but must become sonic within

rc = 400ro or no solutions exist, as evidenced by the termination of the bold lines at

1/(γ − 1). On the other hand, the inflow lines do not terminate, meaning that the sonic

point can reside well past 1000ro, as in the Bondi problem, because the flow is subsonic

beyond that. A low HEP for inflow solutions is interpreted as establishing a large back

pressure which can prevent the flow from becoming sonic until it is very close to the star.

The inflow roots tend to the wind roots as γ → 1 and degenerate into one root in the

strictly isothermal case in which the critical points are all located at rc/ro = λo/2. (Our

symmetry argument does not apply for γ = 1 because the logarithmic enthalpy term makes

the wind and accretion equations distinguishable and only the solution withMo < 1 satisfies

ρ(χ = 0)/ρo = 1.) Finally, notice that there is no regime change around γ = 3/2 for the

inflow roots, and for γ = 3/2, r̂c vs. HEP and Mo vs. HEP are a priori known and given

by equations (D.3) and (D.4), respectively.

As a closing comment on this inflow critical point discussion, we note that this second

class of critical points will also arise in a generalized Bondi problem (in which the outer

boundary is not taken to be infinity and the gas does not start from rest, in order to satisfy

the polytropic EoS). There will again be four transonic solutions to choose from, and only

one inflow solution will satisfy the outer boundary condition ρ(χ = χouter) = ρo. This outer

boundary condition will also be satisfied by a transonic outflow solution. Analogous to our

case above, it seems reasonable to simply reject the outflow solution on the grounds that

it is unphysical, as the flow cannot be aware of the conditions upstream of the sonic point.

Nevertheless, it would be interesting to investigate the time-dependent problem, as these

unphysical solutions may manifest themselves as transient phenomena. They may even be
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a further indication that inflow and outflow solutions are intimately coupled in such a way

that the starting conditions of an accretion flow can lead to the subsequent onset of a wind

(e.g., Blandford & Begelman 1998).
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Figure D.1. Location of all critical (sonic) points vs. HEP for the spherically symmetric
Parker problem. Bold curves denote the locus of critical points leading to wind solutions,
i.e. solutions that satisfy the density boundary condition ρ(r = ro) = ρo. Unbolded curves
do not satisfy this boundary condition and must be rejected. All plots in the main text
display only wind critical points.
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