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Abstract 

Investigations into f- electron heavy-fermion materials have revealed a wide range of 

novel behavior.  Hydrostatic pressure is a valuable "clean" non-thermal parameter that can be 

used to systematically study them by tuning their ground state properties.  The rare earth 

compound CeCu2Ge2 shows an unusual two-domed region of unconventional superconductivity 

under pressure, similar to its isostructural counterpart CeCu2Si2.  While the lower pressure dome 

at about 10 GPa is caused by a magnetic quantum critical point (QCP), the higher one at about 

16 GPa is less well understood.  Previous structural measurements have indicated that it may be 

caused by critical valence fluctuations, so in this study the valence of CeCu2Ge2 is directly 

measured using X-ray Absorption Near Edge Spectroscopy (XANES) under pressure in a 

diamond anvil cell up to 20 GPa.   An expected valence discontinuity is not seen, but 

comparisons to CeCu2Si2 show interesting similarities.  Uranium's 5f electrons are intermediate 

between localized and delocalized.  Studying the degree of localization is vital to completely 

understand the properties of actinides.  Performing XANES and Partial Florescence Yield (PFY) 

measurements in a diamond anvil cell to tune the distance between uranium atoms, I have 

measured the energy shift in the white line of UCu2Si2, U3Ni5Al19, and UCd11 with pressure.  A 

positive shift in energy indicated a delocalization of 5f electrons, a change in 5f configurations, 

or a combination of both. 
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Chapter 1: Introduction 

Heavy Fermion Materials 

Strongly correlated electron materials are a general class of compounds that often have 

unusual electronic and magnetic properties.  When the electrons in a material are weakly 

correlated and can be modeled as non-interacting entities, such as a free electron gas in metallic 

solids [1], their behavior can be completely solved analytically.  Strongly correlated materials, 

however, are defined by the strong interactions between their electrons that cannot be ignored 

when describing their behavior [2].  The wide range of materials that fall under this class include 

high Tc superconducting cuprates, such as bismuth strontium calcium copper oxide [3], and Mott 

insulators, which should conduct electricity under conventional band theories but do not [4].  

Different methods are required in order to explain their behavior, such as the Landau Fermi 

Liquid model, where the ensemble of real particles is substituted by quasiparticles, which are 

long-lived excitations that weakly interact with each other via some effective interaction 

potential [5].  In the Fermi Liquid model, the electrons behave in the same manner as free 

electrons with the exception that the electron mass is renormalized. 

Heavy fermion compounds are a specific type of strongly correlated material that 

contains rare earth or actinide elements where the renormalized effective mass is very large 

(sometimes in excess of 1000 times the free electron mass).  The conduction electrons indirectly 

interact with each other by scattering off of the large magnetic moments of the unpaired 4f or 5f 

electrons.  This is called the Kondo effect, where at low enough temperatures (below the so 

called Kondo temperature TK) a magnetic spin and a correlated conduction electron cloud can 

bind very strongly to form a non-magnetic state.  This interaction forms a Fermi liquid with 

https://en.wikipedia.org/wiki/Electrical_conductivity
https://en.wikipedia.org/wiki/Electricity
https://en.wikipedia.org/wiki/Electronic_band_structure
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quasiparticles that have an effective mass much greater than electrons, which gives these 

materials their name [6].  The strength of this interaction between the f electrons and the 

conduction electrons (TK) can be found by many measurements.  One such measurement comes 

from a characteristic large linear term of the heat capacity of the material at low temperature, 

called the Sommerfield coefficient (γ), where       .  In fact, this value is an incredibly 

important factor related to all properties of a heavy-fermion material.  Some examples of low 

temperature heat capacity of heavy-fermion materials showing a high Sommerfield coefficient 

compared to a conventional material, copper, are shown in Figure 1 [7, 8, 9, 10].  The 

Sommerfield coefficient can also be used as an effective measurement of the localization of the f 

electrons [11].  It is proportional to the effective carrier mass, which means it is proportional to 

the density of states at the Fermi level [12].  Since a flat, atomic-like band corresponds to a high 

γ, this could be considered an indicator of more localized character due to a higher f-orbital 

occupancy [13].   

Quantum Critical Points 

The strong localized moments due to the unpaired f electrons in metals give rise to a 

mechanism that competes with the Kondo effect, called the Ruderman-Kittel-Kasuya-Yosida 

(RKKY) interaction [14, 15, 16].  The inner electron spins are coupled to conduction electron 

spins by the exchange interaction, and those conduction electron spins are coupled to other 

unpaired f electron spins in the lattice, thereby indirectly correlating the spins in the lattice.  At 

low enough temperature, this gives rise to a magnetically ordered state that competes with the 

non-magnetic Kondo state.  Tuning the relative magnitudes of these opposing effects by 

chemical substitution, applying magnetic field, or increasing pressure can cause a quantum 

critical point (QCP) to be formed, such as in CeCu2Si2. [17]. 



3 

 

A quantum critical point occurs when a continuous second order phase transition that 

occurs at finite temperature is driven to zero Kelvin [18,19].  Though it is possible for such a 

state to exist under normal conditions at low temperature, usually a tuning parameter such as 

pressure, magnetic field, or chemical substitution is used to drive the phase transition to zero 

Kelvin. A generalized phase diagram is shown in Figure 2 [20].  The collective quantum 

mechanical fluctuations control the physics of the material in the vicinity of the QCP.  This leads 

to unusual ground states with non-Fermi liquid (NFL) behavior that can have unusual magnetic 

structures and other characteristic effects such as a power law temperature dependence of the 

specific heat.  In fact, one signature of NFL behavior is a deviation from the Wiedemann-Franz 

law, which says that the ratio of a metal’s thermal conductivity to its electrical conductivity is 

linearly dependent on temperature, as these values are determined by the quasi-particles in a 

Fermi liquid [Amusia pg 251]. One extensively studied effect is the emergence of 

unconventional superconductivity near QCPs. 

Superconductivity in heavy-fermion systems has been the subject of intense study since 

the discovery of the first one, CeCu2Si2, in 1979 [21].  Other rare earth and actinide heavy 

fermion superconducting compounds have been discovered since.  They do not behave like 

conventional superconductors, in which Cooper pairs (the attraction of a pair of electrons into a 

single boson quasiparticle) are mediated by phonon interactions and long range magnetic order is 

generally not allowed.  The quantum fluctuations near QCPs may allow quantum-critical spin 

density waves to form which mediate formation of quasiparticles [17].   
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Intermediate Localization of Electrons 

In general, the 4f electron wave functions in lanthanides are held close to the atom and do 

not participate in bonding, giving rise to large well defined local moments.  In contrast, the d 

electrons in transition metals are delocalized and have wave functions with a  large spacial extent 

that overlap.  This leads to the various orbitals having their density of states as a function of 

energy occurring together.  This lets them interact strongly with ligand orbitals and the 

conduction band.  The 5f electrons in the light actinides, however, tend to extend farther than the 

4f electrons in lanthanides, but not as far as the d electrons in transition metals.  This can lead to 

behavior that is intermediate between the localized and delocalized, which cannot be explained 

entirely by the local moment behavior (governed by the Kondo effect and RKKY interactions) or 

by the intenerate magnetism seen in 3d, 4d, and 5d transition metals.  A few of the lanthanide 

ions also share this phenomenon, as shown in Figure 3.  Plutonium remains the most mysterious 

of the actinides, which is at least partly due to its presence directly on this transition from local to 

itinerant 5f electrons.  The result of this is a very complicated phase diagram (Plutonium has 6 

allotropes at ambient pressure, the most of any element), as well as an extreme sensitivity to 

chemical impurities leading to inconsistent studies with wildly different structural phases under 

the same conditions, and physical properties and magnetic states that do not fit to known theories. 

Uranium is much more studied, due to its importance in energy production and greater 

availability.  Its physical properties are of great interest by itself, but also as an analogue to 

plutonium.  Like plutonium, uranium has several common oxidation states.  It can commonly be 

found in 3+, 4+, and 5+ states concurrently, which can lead to complex magnetic behavior in a 

mixed valence compound, where some electrons are itinerant and others remain localized.  

Cerium, however, has only two common oxidation states: 3+ that is definitely magnetic, and 4+ 
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which is definitely not due to a complete absence of unpaired f electrons.  Most lanthanides are 

commonly only found in the 3+ state, but cerium, ytterbium, and europium have 2 common 

states due to the stability of the empty, half-filled, and completely filled valence shells, 

respectively.  This leads heavy fermion cerium and ytterbium compounds to having similar 

processes and effects to those seen in actinides, but in a simpler to study system.  It ia also 

interesting to study Ce and Yb compounds at pressure as Ce is driven away from a magnetic 

state while Yb is driven toward a magnetic state as pressure increases. 

Itinerant behavior of the 5f electrons is not usually expected in uranium compounds 

unless the inter-atomic spacing between the uranium atoms is below the Hill limit, which is 

about 3.4 to 3.6 Å [39].  This is usually independent of whatever other atoms are in the 

compound.  Below this spacing, the wave functions of the f electrons begin to overlap, the 

uranium atoms are usually nonmagnetic, and conventional superconductivity is possible.  Above 

this, the uranium atoms tend to be localized and magnetic.  Heavy fermion uranium compounds 

are an exception to this, as they can condense into a superconducting state around a QCP even if 

there is a large interatomic spacing, leading one to conclude that the superconductivity is 

unconventional in nature. 

Elements in a compound that exhibit different valence states will have a white line that 

shows multiple peaks when measuring XANES (explained later in this dissertation), with each 

peak corresponding to one of the multiple edge energies due to the different valence states 

present.  The relative intensities of those peaks are proportional to the occupancy of those 

valence states, so a ratio of the peak intensities can give the fractional valence of the absorbing 

atom.  For mixed valence cerium compounds at the L3 edge this is straightforward.  There are 

only two valence states and the white lines corresponding to the valence states are well separated 
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(~ 10 eV), while the core-hole lifetime broadening of the transition is only 3.48 eV [61], and 

instrumental broadening is typically on the order of 1 eV.   

The uranium L3 edge is different, as there are 3 possible states which are not as well 

separated (~5 eV between each), and the core hole broadening increases with the atomic number 

Z, going to 7.43 eV for uranium.  This makes the individual peaks wash out and not be 

distinguishable.  However, a fit of a single peak to the white line of uranium can give a general 

idea of the oxidation state.  As the oxidation state increases the peak will shift to higher energies, 

meaning that the electron occupancy decreases and therefore the shielding of the nucleus 

decreases.  Decreasing electron occupancy at the atom’s site implies the electrons are becoming 

more itinerant.  This means that the shift in edge energy and the Sommerfield coefficient should 

show a correlation, which has been investigated in Booth, et. al. [11].  As seen in Figure 4, the 

energy shift (ΔE) in the white line compared to the alpha uranium (α-U) white line was plotted 

vs. the Sommerfield coefficient (γ) of 17 heavy fermion intermetallic uranium compounds [11].  

The samples, which were all measured at ambient pressure and low temperature, show a mostly 

linear dependence between the parameters, with α-U having the lowest γ = 9.13 mJ/ mol-K
2
 , and 

UCd11 having by far the highest γ = 840 mJ/ mol-K
2
 at a ΔE = 6.6 eV [11].  Using the white line 

shift between uranium oxides with well-known oxidation states, a shift of about 4 eV 

corresponds to a change in occupancy of about 1 electron.  Varying screening effects from 

conduction electrons can cause deviations in this general trend, such as with UPd3 [22, 23], but 

they remain fairly constant between the metals.   
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CeCu2Ge2 

CeCu2Ge2 has the same ThCr2Si2 tetragonal crystal structure, seen in Figure 5, as the first 

heavy fermion superconductor discovered, CeCu2Si2 and the entire series Ce(Cu2(Si1-xGex)2 can 

be synthesized as Ge substitution expands the tetragonal lattice.  It has a complicated pressure vs. 

temperature phase diagram, shown in Figure 6 [24].  For ambient pressure at low temperature, 

the RKKY interaction dominates, leading to an antiferromagnetic magnetically ordered state.  As 

pressure is increased, the Kondo coupling begins to dominate, leading to a heavy fermion state.  

At the point where this transition is driven to zero Kelvin, a quantum critical point (QCP) is 

formed around 10 GPa and a superconducting dome appears.  It is an unconventional 

superconductor, as the cerium valence is nearly 3+ and therefore strong localized magnetic 

moments are present.  Strangely, the superconducting dome is very asymmetrical and has its 

highest Tc at 16 GPa.  This unusually shaped superconducting dome is also seen in CeCu2Si2, 

which has a similar phase diagram, where one needs to only shift down the superconducting 

dome to have a maximum Tc at about 5 GPa [25].  A study of CeCu2(Si0.9Ge0.1)2 revealed that by 

using chemical substitution to introduce disorder in CeCu2Si2 and effectively apply negative 

pressure (as mentioned Ge is bigger than Si), the superconducting region could be split into two 

separate domes, with non-Fermi liquid behavior between them, as shown in Figure 7 [26].  This 

gave strong evidence that a second QCP was present in both materials, giving rise to two distinct, 

overlapping superconducting states, as in Figure 8 [27].   

Due to a coincidence of peaks of the residual resistivity and the superconducting 

transition temperature, it was proposed that this could be due to a rapid valence change in the Ce 

ion [28, 29].  In an XRD measurement of CeCu2Ge2 at cryogenic temperatures Onodera et al. 

claimed to have seen an isostructural volume collapse in the crystal structure at about 16 GPa, 
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aligning with the maximum superconducting Tc, as seen in Figure 9 [30].  This would correspond 

to a sudden valence transition in the mixed valence state.  The localized magnetic Ce
3+

 ion has a 

larger ionic radius than the smaller Ce
4+

 ion that has had its f electron promoted to the 

conduction band, so it is natural for it to transition to a more Ce
4+

 like character as pressure is 

increased.  However, more recent XRD studies of CeCu2Ge2 and CeCu2Si2 have not revealed any 

similar volume collapse [32].    Vegard's law states that the lattice parameter of a solid solution 

of two materials with the same crystal structure is equal to a simple mixture of the two 

constituents [33], given by: 

         
             Equation 1. 

where          
is the lattice parameter of the solution,    and    are the lattice parameters of the 

pure forms, and x is the molar fraction of Bin the solution.  Therefore, the volume of a chemical 

mixture should be linearly between the two volumes of the pure unit cells.  Using average values 

for the ionic radii of cerium in oxides, the volume difference between purely Ce
4+

 and purely 

Ce
3+

 of the same CeCu2Ge2 structure would be ~20%.  In order to account for the 2% volume 

collapse reported in Onodear et al. [Onodaera], a 0.1 valence discontinuity should be seen.  A 

valence transition of that magnitude would easily be detected in a XANES measurement of 

CeCu2Ge2 under pressure. 

CeCoSi 

Among Ce based HF compounds, CeCoSi is particularly interesting since it has been 

shown to display complicated pressure dependent behavior typical of Ce HF systems[34].  Like 

other RCoSi materials, at ambient pressure CeCoSi crystallizes in a layered tetragonal structure 

(P4/nmm) with a = 0.4046 nm, c = 0.6969 nm) [35] shown in Figure 10.  Co is tetrahedrally 
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coordinated with Si atoms having a Co-Si distance of 0.238 nm.  These tetrahedra share corners 

and edges and arrange into a 2 dimensional array of pyramidal cavities.  Above the apices of 

these pyramidal cavities Ce resides with the shortest Ce-Si distance of 0.304 nm.  CeCoSi is 

antiferomagnetically ordered at ambient pressure with TN≈9 K [37].  High pressure 

measurements show a complex magnetic behavior with multiple phases with magnetism 

terminating in a quantum critical point (QCP) near 2 GPa [34].  It has a complex phase diagram 

containing signatures of a structural transition, valence transition, charge density wave, and 

superconductivity, shown in Figure 11 [36].  At pressures above 3 GPa a strong hysteretic phase 

transition was observed where there is a strong decrease in resistivity below Tv shown in Fig. RR. 

This behavior is similar to that observed in other systems where a valence transition is observed. 

Namely, valence transitions display a hysteretic (first-order) transition that is strongly pressure 

dependent. By 4 GPa, the transition moves above room temperature.  Because of this complex 

behavior, we have studied the electronic and structural properties of CeCoSi above the QCP at 

pressures to 10 GPa.  The interplay between the various structural and electronic properties 

points towards the formation of superconductivity far away from magnetic order in a charge 

density state. 

UCd11 

UCd11 is an interesting binary heavy fermion uranium intermetallic compound that has a 

very large nearest U-U spacing and, therefore, minimal 5f-5f orbital interactions.  It crystallizes 

in the cubic BaHg11-type structure with a lattice constant of 9.29 Å, shown in Figure 12, and has 

a nearest U-U neighbor distance of 6.56 Å [38].  This distance of 6.56 Å is very large compared 

to the Hill limit [39] and overlapping of neighboring 5f wavefunctions is expected to be minimal.  

In spite of the absence of direct 5f-5f interactions, it forms a complex magnetic ground state [40] 
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and orders antiferromagnetically at TN ≈ 5 K [38].  The magnetic susceptibility above 80 K 

follows a Curie-Weiss law with an effective magnetic moment of μeff = 3.45 μB/U whereas below 

80 K it deviates from the Curie-Weiss law and finally attains a constant value below 5 K [38].  

Low-temperature pressure and magnetic field dependent resistivity, specific heat and 

magnetization data revealed additional transitions below 5 K to a complex magnetically ordered 

ground state [40, 41, 42, 7].  Its electronic specific heat Sommerfeld coefficient, γ = 803 mJ/mol-

K
2
, in the paramagnetic region, is the highest for any ordered uranium heavy fermion system 

[43].  Despite being very localized compared to other heavy fermion uranium intermetallics, 

resonant X-ray emission spectroscopy (RXES) measurements show that its 5 f orbital has an 

occupancy of 2.7 ± 0.2, and so is not entirely in the U
3+

 configuration [11]. 

U3Ni5Al19 

The heavy fermion material U3Ni5Al19 crystallizes in the orthorhombic Ge3Ni5Al19 

structure [44] (space group Cmcm) with two inequivalent U sites (one U atom in 4c and two U 

atoms in 8f), shown in Figure 13.  It has a large unit cell at ambient pressure with lattice 

parameters a = 4.0850(2) Å, b = 15.9305(8) Å, and c = 26.959(1) Å [45].  Its nearest neighbor U-

U distance is 4.085 Å, which is above the Hill limit.  U3Ni5Al19 orders antiferromagnetically at 

TN = 23 K, as determined from a prominent feature in the magnetic susceptibility involving one 

of the two distinct U sites, while the other site showed no sign of magnetic order down to 50 mK.  

It has a Sommerfeld coefficient of γ = 80 mJ/mol-U K
2
, but shows evidence of critical spin 

fluctuations in the magnetic contribution to the specific heat and a power law dependence of the 

resistivity at zero pressure, indicating that there is a QCP near zero pressure [45].  A Fermi liquid 

ground state returns briefly as pressure is applied between about 4 and 5 GPa, but the power law 

dependence returns, indicating that a second antiferromagnetic QCP occurs near 6 GPa.  It is 
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unclear if either one or a combination of both of the inequivalent uranium sites is responsible for 

the antiferromagnetic order and the non-Fermi liquid behavior.   

UCu2Si2 

The heavy fermion material UCu2Si2 also crystalizes in the body centered tetragonal 

ThCr2Si2-type structure (space group I4/mmm)[46], shown in Figure 14. It has lattice parameters 

a = 3.985(1) Å and c = 9.945(2) Å, with a nearest neighbor U-U spacing of 3.985 Å, which is 

above the Hill limit, and has γ = 20 mJ /mol U-K
2
 [47].  It is a Kondo-like ferromagnet below 

about 105 K, but there has been some controversy over whether there is a transition to 

antiferromagnetic order at 50 K [48, 49].  Strong magnetic fluctuations appear to coexist with the 

long range magnetic order, indicating that there may be a superconducting transition at high 

pressure.  High pressure magnetic measurements were taken up to 2 GPa, but it was concluded 

that much higher pressure would be needed to reach a QCP [50]. 

X-ray Absorption Spectroscopy 

X-ray Absorption Spectroscopy (XAS) has become an enormously useful diagnostic tool.   

The fine structure around the absorption edges of metallic atoms was first noticed on 

photographic plates in 1913, fairly soon after the discovery of X-rays, and the basic theory 

behind it was explained about a decade later.  However, it was not until generated X-ray flux was 

increased with the development of high intensity synchrotron radiation sources with storage rings 

in the 1970’s that could replace discharge tubes and fast high resolution detectors that modern 

XAS took off [55].  It allows the local electronic and geometric structure around a specific type 

of atom in a material to be probed, as opposed to another common technique, X-ray diffraction 

(XRD), which obtains average values for a structure over a long range in a bulk material.  These 
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different techniques can often be used to complement each other in order to gain a much more 

complete understanding of the materials being studied. 

The process of XAS involves varying the energy of incoming monochromatic X-rays 

across an absorption edge of a desired atom, which is the energy required to excite a core 

electron to a higher unoccupied bound or continuum state leaving behind a core hole, and 

measuring the absorption profile of the material in one of several ways.  Every atom has multiple 

absorption edges at different characteristic energies, corresponding to different core electrons 

that can be excited.  The different absorption edges are defined by the starting states of the core 

electrons being excited.  The principal quantum numbers n= 1, 2, and 3 correspond to the K, L, 

and M edges, respectively. They are further divided by subscripts corresponding the azimuthal 

quantum number and spin orbit coupling, as shown in Figure 15 [56].  The K and L1 edges 

involve transitions from s to p states, while the L2 and L3 edges go from p to final states that are a 

mixture of d and s character.   

When the individual incoming photons reach and then exceed the energy required for that 

core electron to absorb one and become excited, a sudden step-like increase in the absorption is 

seen.  This resulting sudden increase in the absorption spectrum and the fine structure around it 

can give a large amount of information, as different processes dominate the fine structure 

depending on the energy range around the absorption edge being studied as shown in Figure 16 

[manchester]. The part of the spectrum roughly 50 eV above and below the absorption edge is 

referred to as X-ray absorption near edge structure (XANES), which corresponds to the point 

where the wavelength of the excited electron is about equal or less than the distance between the 

absorbing atom and its nearest neighbors [54]. The range from this limit up to about 1000 eV 

higher is referred to as extended X-ray absorption fine structure (EXAFS). 
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EXAFS 

EXAFS was first explained as weak single scattering of the excited electron off of 

neighboring atoms to the absorbing atom [58] [59].  The core electron is ejected and the left over 

energy above that required exciting it to an unbound state is transferred to that photoelectron.  In 

the EXAFS region of the absorption spectrum the wavelength of this electron is larger than the 

interatomic distance between the absorbing atom and its nearest neighbors, resulting in a lower 

likelihood of this photoelectron interacting with those nearest neighboring atoms.  The 

spectrum’s features are due to the wave nature of the excited photoelectron, with the fine 

structure of periodic peaks and valleys occurring as the backscattered and outgoing waves come 

in and out of phase.  A Fourier transform can be used to deconvolute the decaying sinusoidal 

signals and recover the frequency and intensity of the patterns that correspond to the different 

individual neighboring atoms [60].  This allows for the determination of interatomic distances as 

well as types and numbers of atoms at these distances surrounding the absorbing atom.  Because 

the effect is entirely dependent on backscattering from the absorbing atom’s immediate 

surroundings, EXAFS does not occur or have any meaning for isolated atoms.  This also means 

that the technique can be applied to amorphous and molecular materials just as easily as 

regularly repeating crystalline solids, as only the local structure around any single absorbing 

atom contribute to the effect. 

XANES 

XANES has difficulties compared to EXAFS, as the scattering in this energy range is 

stronger and more complex than in EXAFS.  Generally higher resolution spectra are also 
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required, with ~6 eV bandwidth being sufficient for EXAFS, but an order of magnitude higher 

resolution is preferable for XANES [51].   

In the region about 50 eV below the edge step, pre-edge features can often be seen.  

These usually correspond to the core electrons transitioning to bound states, according to the 

dipole selection rules:   

Δl= ±1, Δj= ±1, Δs= 0 Equation 2. 

Weaker forbidden transitions are often seen too, however, due to orbital mixing and quadrupolar 

coupling. 

In the energy range up to about 50 eV above the edge, the wavelength of the 

photoelectron is smaller than the nearest neighboring atomic distances, leading to strong 

scattering off of these neighboring atoms.  Multiple scattering effects due to higher order atomic 

correlations are significant, so the single scattering effects that dominate in EXAFS cannot be 

used to explain the fine structure.  A general example of the difference is show in Figure 17 [51].  

Every allowable scattering path off of multiple atoms adds to the interference pattern.  Not only 

the radial distances, but also local arrangements and bond angles become significant parameters.  

This can cause similar structures around an absorbing atom to have superficial similarities in the 

XANES fine structure that can be qualitatively compared. 

The core state being excited is essentially the same as in an isolated atom, though its 

environment affects the higher energy states to which the electron is being excited.  These 

possibly include unoccupied parts of s, p and d bands and low-lying continuum states.  The 

multiple scattering at lower energies in the XANES region also transitions smoothly to single 

scattering in the EXAFS region at higher incoming X-ray energies.  A theoretical analysis would 
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require solving the Schrödinger equation for a range of energies, where at lower energy the 

interaction of the electrons with these low lying energy states in the atoms is strong, to the higher 

energy limit at EXAFS, where the interaction with the atoms is weak [52].  Until the 

development of newer and more powerful computers and software relatively recently these types 

of calculations were not practical, though they still remain difficult for more complicated 

structures.  This leaves qualitative comparison of spectra to be the most useful analysis in some 

cases, as similar local structures can lead to distinct features.  

In the near edge region within about 8 eV is also where a quasiatomic effect called a 

“white line” occurs in transition metals and rare earth elements.  These are so named due to this 

large absorption peak being observed as an unexposed band on the photographic films first used 

to detect them [53].  The existence of a sharp intense absorption band indicates that the final state 

is highly confined by the potential it sees [63]. In this work, we will define the white line 

position by the local maximum that is observed in absorption versus energy plots, as seen in 

Figure 16.  The more localized d final states are less diffuse than the final p states, which can 

lead to sharper peaks for the L2 and L3 edges, though all K and L edges can show a well-defined 

white line.  At the L3 edge, this is due to the well-defined 2p to nd transitions.  The shape and 

intensity of the white line can also depend on the amount of hybridization between the p and d 

bands. In this region the photoelectron is scattered elastically by the valance electrons and its 

final states are near the Fermi level.  The fully screened core hole makes the transition atomic 

like, with the broadening of the peak mainly due to the core hole lifetime. In insulators, the core 

hole is only partially screened which causes a photoelectron- core hole Coulomb attraction, 

making the absorption threshold much less well defined and removing the distinct white line 

feature.  Changes in the charge distribution around a given atom due to its local environment will 



16 

 

alter the core-level binding energies, producing an edge shift in the absorption edge.  This makes 

the energy shift of the white line particularly useful in measuring the oxidation state of the 

absorbing atom. 

Measuring XAS 

Two different methods were used to measure the X-ray absorption spectra, each offering 

advantages and disadvantages over the other.   

Transmission mode 

The more commonly used technique is done in transmission geometry.  Two X-ray 

detectors are put in the path of the X-ray beam, one before the sample and one after.  Typical 

detectors are either diodes or ion chambers filled with air or some inert gas, depending on the 

energy range of the edge being probed.  The absorption profile is then calculated as a ratio of the 

intensity of the initial X-ray beam (Io) to the outgoing beam (I’), given by: 

     
  

  
 Equation 3. 

and is measured as a function of the energy of the incoming X-ray beam.   

Though the calculation is straightforward, care must be given to make sure that the 

sample is well prepared in order to extract good data.  The sample must be of uniform thickness 

and density over the entire area of the X-ray beam, or else the signal will be flattened due to an 

averaging of the different absorption lengths over the whole sample.  The sample does not need 

to be pure, however, as long as any material mixed with it is sufficiently transparent to the X-

rays and it does not contain any of the same absorbing element being investigated.  This can be 
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used to alter the density of the sample in order to bring it to a proper absorption length for a 

particular experimental arrangement. The absorption profile is essentially a measurement of the 

linear absorption coefficient (μ) according to the Beer-Lambert law [62]: 

        
  

 

 
    

 Equation 4. 

with: 

 

 
      

 

 
 
 
 Equation 5. 

where 
 

 
 is the total mass absorption coefficient of the sample at the incoming X-ray energy, ρt is 

the total density, x is the total sample thickness, and wi and  
 

 
 
 
 are the mass fraction and X-ray 

mass absorption coefficients of the individual elements making up the sample, respectively.  The 

characteristic absorption length is then defined as the sample thickness that reduces the incoming 

intensity of the X-ray beam by a factor of 
 

 
.  In a statistically ideal case, a sample with total 

thickness of 2.6 absorption lengths gives a good signal to noise ratio [64].  However, a sample 

will also have a change in absorbance going from below to above the absorption edge of the 

measured element as the energy is scanned, called the edge step: 

                  Equation 6. 

 where Ei and Eo are the energies just below and above the absorption edge.  Ideally, this is also 

about 
 

 
, where values as low as 0.1 and as high 1.5 can give acceptable signal to noise ratios.  

This leads to competition in the ideal sample thickness between the total absorbance of the 

sample and the edge step of the sample, and this means that individual sample geometries 
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involve tradeoffs.  Samples with dilute absorbing elements inside heavily absorbing mediums 

can be particularly challenging. 

Florescence Mode 

It can be useful to instead look at the fluorescence profile of the edge instead of the 

absorption profile.  Partial fluorescence yield (PFY), which is sometimes called XANES in 

fluorescence mode, indirectly probes the same dynamics, but can offer some advantages over the 

transmission method [65].  When the X-rays excite a core electron and leave behind a core-hole, 

another electron falls to the lower empty state and emits a photon, as in this example for the 

Uranium L3 edge in Figure 18 [11].  A high-resolution spectrometer is situated 90 degrees to the 

incoming X-ray beam and tuned to the emission wavelength of that falling electron, separating 

that particular signal from the total fluorescence of the sample.  This eliminates the need for the 

complicated sample geometry of the transmission mode measurements, as a completely uniform 

and flat sample is not needed.  This method does however require a much more complex 

experimental set-up, needing a sensitive proportional X-ray detector and curved silicon mirrors 

to focus the fluoresced X-rays into it.   A much higher flux 3rd generation insertion device 

beamline is also needed in order to carry out the experiment in a reasonable time with good 

statistics, giving sample signals on the order of hundreds of counts per second, as opposed to the 

hundreds of thousands of counts per second one would expect from the simpler ion chamber 

detectors of a transmission mode measurement.  The need for longer times required and more 

advanced, and therefore more over-subscribed, beamlines make getting synchrotron time for 

florescence measurements more difficult.  Ideally this emitted signal intensity from the 

florescence would be directly proportional to the absorption profile of the sample, but self-
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absorption effects can lead to a non-smoothly varying energy correction factor.  This can be 

avoided by using a sufficiently thin sample or dilute sample, rendering the correction negligible. 

XRD 

Powder X-ray diffraction is a well-established and commonly used technique at 

synchrotrons in high-pressure cells.  The high intensity X-rays allow for high quality diffraction 

patterns to be taken in seconds, and the greater penetrating power of higher X-ray energies (>10 

keV) than copper or molybdenum anode sources allow for measurements to be made through 

diamond anvil cells.  When the monochromatic beam hits the sample, diffraction occurs.  If the 

angle of the X-rays to the crystal lattice plane meets the Bragg condition for constructive 

interference: 

          Equation 7. 

Where d is the spacing between lattice planes, θ is the scattering angle, n is a positive whole 

number, and λ is the X-ray wavelength, as shown in Figure 19.  Typical values for λ are 10s of 

keV at a synchrotron.  If the powder sample has uniformly small grains compared to the beam 

area, then all possible orientations are represented at the same time.  This leads to cones of 

diffracted beams emanating from the sample corresponding to all possible lattice plane spacings 

as shown in Figure 20.   They then hit an intensity sensitive area detector directly behind the 

sample opposite the incoming beam, producing a ring pattern.  A raw sample image of U3Ni5Al19 

taken at a pressure of 5 GPa in a diamond anvil cell is shown in Figure 21.  Large spots outside 

the rings are due to diffraction off of large single crystals of the sample or the diamond anvil, 

which are removed during analysis.  A known sample, usually cerium dioxide, is used to 

determine the exact distance and angle of the area detector in relation to the sample, which is 
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then used to integrate the radial intensities of the ring pattern into a 2D intensity vs 2θ plot using 

Fit2D [68, 69].  The integrated sample pattern of the previous U3Ni5Al19 image is given in Figure 

22.  These peaks can be matched and refined to one of the 230 known types of crystal 

symmetries, fairly easily obtaining the unit cell lattice parameters if the crystal symmetry is 

already known.   Single crystal diffraction is better suited for determining an unknown structure, 

but powder diffraction is very useful for obtaining the equation of state of a material, which can 

be used to correlate interatomic spacings and possible structural changes in a material to changes 

in other properties. 

Particularly useful to high-pressure physics is the change in volume vs. pressure of a 

material referred to as the equation of state (EOS).  As the atoms in a material are forced closer 

together, its bulk structural and electronic properties can be radically changed.  A simple visual 

inspection of an EOS curve can often reveal indications of this, as discontinuities in the smooth 

curve or sudden volume collapses are signs of structural or electronic transitions.  In general, if 

there are no such discontinuities then the structure of the material remains the same as it is 

compressed.  It will in general become less compressible as pressure is increased, which can be 

quantified by fitting the data to either the Birch–Murnaghan isothermal equation of state [70] or 

Rose–Vinet equation of state [71].  The 4
th 

order Birch–Murnaghan equation is: 

     
   

 
  

  

 
 

 

 
  

  

 
 

 

 
    

 

 
   

      
  

 
 

 

 
     Equation 8. 

where Vo is the volume at zero pressure, the bulk modulus Bo is: 

         
  
 
   

 Equation 9. 

and the derivative of the bulk modulus Bo' is: 
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 Equation 10. 

The Rose–Vinet equation is a more universal modification of the Birch–Murnaghan 

equation that usually gives similar values for the bulk modulus: 

         
   

  
  

 

 
   

         
 Equation 11. 

where: 

   
 

  

 
 Equation 12. 

 

Diamond Anvil Cells 

Diamond anvil cells (DACs) are useful and versatile tools for exploring materials under 

extremely high pressures.  Diamonds are the only readily available material that has the 

extraordinary compression strength necessary to attain these pressures. Maximum pressures 

achieved have reached several million atmospheres (hundreds of GPa as 1 GPa = 10 kbar= 10,00 

atm) in carefully controlled instances using specialized anvils [72], but standard diamonds can be 

used to reliably and repeatedly reach pressures above 60 GPa.  Diamonds also conveniently have 

many other useful properties that make them ideal.   They have high transparency for making 

optical spectroscopic measurements and direct observation of the sample in situ.  They are 

electrically insulating, which can be useful when making electronic transport measurements.  

Despite being a good electrical insulator, they also have a very high thermal conductivity, which 

can be useful for controlling and measuring temperatures in high temperature and thermal 

transport measurements.   In general, DACs are also small enough to be easily transported and 



22 

 

put in small sample spaces (overall size less than an inch), such as cryostats, and can hold steady 

pressures for long periods of time.  There are several noticeable drawbacks, though.  Most 

notable is the limit of small sample size, with only a maximum of a few hundred microns at 10s 

of GPa, and only a few microns at 100s of GPa.  Also, the limiting angular openings and 

allowable energies that can pass through the diamonds make some types of experiments 

unfeasible.   

The basic parts of a DAC are show in Figure 23 [73].  Two opposed gem cut flawless 

diamonds are arranged in an apparatus with their culets (flat pressure transmitting surface) facing 

each other.  Typical culet diameters range from about 250 microns to a millimeter.  Larger culets 

offer more stability, at the cost of a lower maximum attainable pressure, working from the 

principle that the same force applied over a smaller area results in a higher pressure (pressure = 

force/area).  The diamonds are aligned on a smoothly polished backing plate with an aperture for 

optical access to the sample through the diamond, and then secured with epoxy.  Usually the 

backing plate is made from a strong material like tungsten carbide, but other specialty materials 

for various other applications can be used, such as copper beryllium for nonmagnetic purposes or 

beryllium for X-ray transparency.  If a DAC is meant for reaching pressures higher than about 20 

GPa, one backing plate will usually rest on a hemispherical rocker with tilt correction that allows 

the diamond faces to be aligned as parallel as possible.  Aligning the two diamond culets in the 

two halves of the cell body and tightening the two halves together with screws apply force.  

Typically this is done by hand, with screws that have alternating left and right handed treads to 

prevent torque effects on the diamond culets.  However, mechanical screw drives or gas 

membranes are often used for remote pressurization in synchrotron hutches or inside cryostats.   
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The sample chamber itself is made by pre-indenting a metallic gasket, usually about 250 

µm starting thickness, between the diamonds to a thickness of about 50 µm, then drilling a hole 

inside the gasket of about half to two-thirds of the culet diameter.  The gasket material is usually 

a hard malleable metal, with rhenium often used for the highest pressures and common steel 

being sufficient for lower pressures below 50 GPa.  Pure beryllium, though relatively soft and 

brittle, is also often used when it is necessary to send X-rays through the gasket, as its X-ray 

absorption coefficient is extremely low compared to other metals.  Specially machined flared 

gaskets are needed when this is done to ensure that the beryllium gaskets do not split during pre-

indenting.  Diamond or cubic boron nitride powder mixed with epoxy is also sometimes used 

when electrical insulating or non-magnetic materials are needed.  The method of drilling the hole 

for the sample chamber varies with material, with mechanical drills, electron discharge machines, 

and even laser beams being used.  Once drilled, the gasket is secured to one half of the DAC, and 

then the sample is loaded in the chamber with a manometer for measuring the pressure in situ.  

The chamber is finally flooded with a pressure transmitting medium (PTM), then both halves are 

brought together sealed.  Friction between the gasket and diamond faces prevents the sample 

chamber from flowing out from between the two diamonds. 

A PTM is needed to translate the uniaxial pressure from the opposed diamonds into 

hydrostatic pressure.   All PTMs eventually solidify and become non-hydrostatic, creating often 

undesirable strain in the sample, but the best PTMs remain quasi-hydrostatic long after they have 

begun to solidify.  Liquid media that can be loaded at room temperature are generally the easiest 

to work with, requiring no special equipment to load by hand, though one has to be careful not to 

wash the sample out of the sample chamber while loading.  Two of the most widely used liquid 

PTMs are a mixture of 4:1 Methanol:Ethanol (ME) and Silicone oil.  Both undergo a glass 
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transition at fairly low pressure (below 2GPa) but remain almost hydrostatic up to about 20 GPa 

[74], and both are fairly nonreactive.  The 4:1 ME mixture is the slightly better PTM of the two 

at low pressures and room temperature, but is volatile and evaporates quickly. The more stable 

silicone oil easier to work with overall, and at cryogenic temperatures is actually a better PTM 

above 20 GPa [75].  For higher pressures, no PTM is superior to gas mediums, most notably 

Neon and Helium.  Neon freezes at about 5 GPa and begins to show strain at 16 GPa, while 

Helium freezes at 12 GPa and remains quasi-hydrostatic until over 60 GPa, but both degrade 

very slowly afterwards and are always better than any liquid medium.   Neon shows diffraction 

peaks after solidifying which must be accounted for if doing XRD measurements, but the lighter 

Helium does not generally have this problem.  Loading gas mediums require either using 

cryogenic liquids or high pressure filling, which both present their own problems.  Cryogenic 

liquids are very volatile, can be dangerous to use, and presents the same sample positioning 

problems as using liquid media.  High-pressure gas loading systems, such as the one at 

GSECARS in beamline 13 at the Advanced Photon Souce [76], are very complex and labor 

intensive to maintain.  They pressurize gas until it becomes a supercritical fluid and allows the 

cell to be mechanically sealed from outside the pressure chamber while allowing sample 

positioning to be undisturbed.  Also, many such systems cannot be used with hazardous 

substances unless they were specifically built for such things.  In general, it is best to use the 

least complicated method needed in order to maintain hydrostatic conditions over your desired 

range, but considerations to the sample you are working with often limit the type of loading you 

can use.   

There are two common methods of measuring pressure inside a DAC.  If XRD is 

available, gold powder or some other material with a well know equation of state can be put 
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inside the sample chamber along with the sample and the measured known diffraction pattern is 

used as a calibrant.  However, this requires access to X-rays from a synchrotron or some 

similarly strong source.  While convenient if XRD in the DAC is already being done, this is not 

useful for other types of measurements. The second method takes advantage of the optical clarity 

of the diamond anvils to measure the shift in wavelength of the R1 fluorescence line of a piece of 

ruby in the sample chamber [77].  This can be done with a tabletop spectrometer along with a 

diode laser of lower wavelength or focused high intensity light source setup in any lab, such as 

the online ruby spectrometer at HPCAT 16-IDB at the Advanced Photon Source shown in Figure 

24, which is similar to the example diagram in Figure 25.  A good equation for the translating the 

ruby wavelength to absolute pressure up to 80 GPa is given by [78]: 

  
 

 
  

 

  
 
 

         Equation 13. 

where the fitted parameters A= 1904 and B= 7.665,and λo = 694.24 nm is the zero-pressure value 

at 298 K.  As the pressure medium becomes more non-hydrostatic, the ruby spectra will tend to 

become broader, giving a good qualitative indication of rising strain in the sample chamber.   
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Chapter 2: Experimental Procedure 

Cerium Samples 

Single crystals of CeCu2Ge2 and CeCoSi, synthesized using a metallic flux method as 

described elsewhere [79], were obtained from the Condensed Matter and Thermal Physics Group 

(MPA-10) at LANL.  The crystals were ground into a fine powder and passed through a 5 µm 

sieve.  For ambient pressure measurements, a thin layer of powder was brushed between layers 

of cellophane tape.  For high-pressure measurements, the sample was mixed with silicone oil in 

about a 7:1 oil to sample ratio by weight.  This oil/sample mixture served the dual purpose of 

creating a uniform material of proper absorption length and acting as a pressure-transmitting 

medium inside the diamond anvil cell (DAC).  The mixture was refined using trial and error by 

mounting it in the cell at near ambient pressure and then testing it in the beam until an edge step 

near unity was achieved.  A CuBe DAC with a built in gas membrane drive was used, 

manufactured by Almax-EasyLab, shown in Figure 26.  The Ce L3 edge (~5.7 keV) is low 

enough in energy that diamond begins to significantly absorb X-rays at this energy, with an 

absorption length of about only 300 µm, as seen in Figure 27.  Because of this, it was desirable 

to reduce the amount of diamond that the beam must travel through so that the maximum amount 

of absorption was due to the Ce in the sample.  To accomplish this, a combination of a diamond 

anvil partially perforated down to 100 µm wall thickness and a micro-diamond about 500 µm 

high mounted on a fully perforated diamond backing anvil were used as in figure 28.  The micro-

diamond arrangement allowed optical access to the sample chamber, where fluorescence of a 

ruby chip inside was used to determine the pressure, according to a standard ruby pressure scale 

[77].  To make the sample chamber, a rhenium gasket was pre-indented to 50 µm between the 

300 µm culets of the diamond anvils.  A 200 µm hole was laser drilled in the gasket indention, 



27 

 

into which the sample/oil slurry and ruby chip were then loaded.  The flat, well aligned faces of 

the diamonds also provided for a uniform thickness of the sample over the area of the X-ray 

beam. 

High pressure XANES was performed on the Ce L3 edge of the samples at beamline 4-

ID-D at the Advanced Photon Source (APS), Argonne National Laboratory.  Transmission 

geometry through the perforated diamond anvils was used, and diodes were used to measure the 

incoming and outgoing flux from the DAC.  The synchrotron radiation beam spot was focused 

by a Pd toroidal mirror and slit to about an area of 30 × 30 µm
2
.  In order to avoid diamond 

glitches caused by Bragg diffraction from the single crystal diamond anvils, the DAC was 

rotated small angles in a plane perpendicular to the x-ray beam until no undesired features were 

seen in the spectra as the incoming beam energy was scanned across the Ce L3 edge energy. 

In order to reach 10 Kelvin, a liquid helium flow cryostat with sapphire windows for 

optical access was used.  Instead of screws, pressure in the DAC was remotely regulated using a 

helium gas membrane drive similar to that shown in purple in the cutaway in Figure 29.  The thin 

membrane is actually two steel ring shaped discs welded together that inflate slightly as helium 

is pumped into it at up to 3000 psi, using a regulator similar to Figure 30.  Pressure was 

measured in situ using ruby fluorescence.  Once down to lowest temperature, pressure was 

increased in steps up to 20 GPa for CeCu2Ge2 XANES measurements were taken, then again as 

pressure was released.  Lower pressures below 7 GPa were unable to be obtained for CeCu2Ge2 

as thermal contraction of the DAC would cause an increase in pressure during the cooling 

process which could not be relieved while the DAC was inside the cryostat.  For CeCoSi, 

XANES measurements were taken at multiple temperatures: 12K , 100K, and 200K up to 11 

GPa.   Multiple scans, usually 5 to 7, were taken at each pressure step, then these were averaged 
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together in order to account for slight variations in beam position over a single measurement.  An 

energy range from 50 eV below to 100 eV above the cerium L3 edge at 5.72 keV was taken, 

using 0.5 eV steps.   

Powder XRD measurements on CeCoSi were performed in a DAC using silicone fluid as 

the quasi hydrostatic pressure medium.  For single crystal XRD measurements, small single 

crystal specimens were cleaved from the larger polycrystalline aggregate and were loaded in a 

specially designed DAC with He as a hydrostatic pressure transmitting medium with a wide 

opening to allow a 45
o
 angle sweeps to improve the accuracy.  Small anneled ruby spheres (<5 

µm diameter) were used for pressure determination using standard ruby fluoresence 

measurements [8].  Diffraction experiments were conducted at 16-IDB at the HP-CAT sector 16 

of the Advanced Photon Source and at beamline 12.2.2 at the Advanced Light Source.  The 

GSE-ADA RSV software package for peak fitting, integration, and indexing [81].  

Uranium Samples 

Single Crystals of uranium samples UCd11, UCu2Si2, and U3Ni5Al19 were synthesized by 

similar self-metallic flux methods [11, 38, 82] and obtained from the same group, the Condensed 

Matter and Thermal Physics Group (MPA-10) at LANL.  Samples were mixed in a ratio with an 

overabundance of flux: Cd, Si, or Al.  They were then sealed in an alumina crucible sealed under 

vacuum in a quartz tube, heated to over 1100 ºC and kept there for several hours, and then slowly 

cooled to an intermediate high temperature where the excess flux was separated from the crystals 

using a centrifuge.   

High-pressure uranium L3 edge X-ray absorption spectra in partial fluorescence yield 

mode (PFY-XAS) were taken on HPCAT 16-ID-D undulator beamline at the Advanced Photon 
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Source (APS).  A monochromatic X-ray beam was obtained using a Si (111) double crystal 

monochromator, focused to a beam size of 25×55 µm
2
 with meter-long horizontal and vertical 

Kirkpatrick-Baez mirrors.  For ambient temperature measurements, a Paderborn-panoramic style 

diamond anvil cell (DAC), equipped with Boehler-Almax anvils of 300 µm culet diameter and a 

beryllium gasket, was used to apply high pressure, similar to that in Figure 31.  For low 

temperature measurements, a Princeton Moa-type symmetric cell was loaded in a helium flow 

cryostat with Kapton windows using a gas membrane drive, also with a beryllium gasket, similar 

to Figure 32. The beryllium gasket was pre-indented to 50 µm thickness and a 100 µm diameter 

hole was drilled to serve as a sample chamber.  Annealed ruby spheres of ~ 5 µm diameter were 

placed in the gasket hole along with the sample as a pressure calibrant.  Samples about  ~ 30 µm 

thick were used: single crystal flakes for UCd11, and polycrystalline flakes for U3Ni5Al19 and 

UCu2Si2.  A 4:1 methanol-ethanol mixture was loaded as a pressure-transmitting medium for 

room temperature measurments, and silicone oil was used for all low temperature measurements.  

Radial scattering geometry was employed, where the incoming X-ray beam entered through the 

Be gasket in the radial direction and the secondary emission from the sample passed through the 

Be gasket to the spectrometer analyzer, as shown in Figure 33.  Inside the cryostat, due to space 

limitations, the incoming X-ray beam was directed through a diamond, but the X-ray intensity 

was not attenuated enough to be an issue.  Due to safety regulations ambient data was not taken 

on the same sample inside the pressure cell.  Therefore a separate sample of 15 µm thickness was 

used to take ambient PFY-XAS data in an aluminum gasket, double sealed with Kapton tape.  A 

Rowland circle spectrometer was used to analyze the secondary emitted fluorescence beam from 

the sample.   
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The spectrometer was comprised of a spherically bent Si (844) single crystal analyzer and 

Peltier-cooled silicon detector (AMPTEK XR_100CR).  The spectrometer utilized the Rowland 

circle geometry where the sample, the single crystal analyzer (1 meter bend radius) and the 

detector all lie on the perimeter of the Rowland circle with a diameter of 1 meter.  For PFY-XAS 

measurements, the intensity of the U Lα1, (3d5/2 - 2p3/2) (13.614 keV) fluorescence line is 

measured as a function of the incident photon energy varied from 20 eV below to 50 eV above 

the U L3 absorption edge (17.166 keV).  The acquisition time for each PFY-XAS spectrum at a 

given pressure was about 20 minutes.  The energy resolution of the incoming beam was about 

2.2 eV and the spectrometer energy resolution was about ~ 0.7 eV, giving a total estimated 

energy resolution of 2.3 eV.  The sample was aligned to minimize self-absorption.  Ideal sample 

size for XAS measurements in fluorescence mode should be either sufficiently thin or dilute to 

avoid self-absorption from the outgoing emitted beam [83].  The sample inside the pressure cell 

was 30 μm thick whereas the sample used for ambient data was 15 μm thick.  Although 

corrections for self-absorption effects exist in the thick limit, our samples were too thin to be 

considered in the thick limit; that is, they are in the intermediate thickness limit where correction 

factors do not currently exist. Consequently, there is no way to correct the in-cell data and the 

out-cell data.  However, although the two samples differ in thickness by 15 μm, a comparison 

between the data for UCd11 from the two samples and with the data in Ref [11] is reasonably 

good. Note that this correction is important primarily for comparing the ambient pressure data to 

the applied-pressure data sets. 

High pressure single crystal X-ray diffraction (XRD) measurements at room temperature 

were taken on UCd11, using a four-post wide-opening DAC equipped with Boehler-Almax 

diamond anvils of 600 µm culet diameter and a 70° aperture, similar to Figure 34.  A single 
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crystal of UCd11 (100 x 120 µm 
2
) was loaded into a rhenium (Re) gasket with pre-indented 

thickness of 70 µm and a 200 µm diameter drilled hole.  Two annealed ruby spheres of ~ 5 µm 

diameter were placed in the gasket hole along with the sample as a pressure calibrant.  A 4:1 

methanol-ethanol mixture was loaded as a pressure-transmitting medium in the DAC just as in 

the XANES measurements.  The data was collected at the HPCAT 16-ID-B undulator beamline 

at APS, at a range from 0-20 GPa in the angular dispersive mode with a monochromatic X-ray 

beam of λ = 0.4066 Å from a Si (111) double crystal monochromator. The diffraction patterns 

were collected using a MAR CCD, which was calibrated using a CeO2 standard through Fit2D 

software [68]. At each pressure a wide scan in ω in the range ± 38° as well as a step scan of 1° 

interval in the same angular range was taken. Each wide scan was also split into 4 intervals of 

19° for better statistics. GSE_ADA software [85] was utilized to extract the two peak coordinates, 

integrated intensities, 2θ and the azimuthal angle (χ) around the beam from the ± 38° wide scan. 

The stepped scans were used to extract the maximum intensity at each angle and the third spatial 

coordinate 'ω' which contains information needed to reconstruct the reciprocal space and index 

the diffraction pattern. Lorentz and polarization corrections were applied to the fitted peaks using 

GSE_ADA software. The refinement of the orientation matrix, lattice parameters and the 

reconstruction of reciprocal lattice were done using the RSV software [85]. For structure analysis 

in GSE_ADA, saturated peaks, overlapped peaks, diamond peaks and peaks at the edge of the 

wide scan range in ω were not considered. Absorption by the crystal was negligible and so was 

not considered. 

High-pressure powder XRD was taken on U3Ni5Al19 at room temperature again at 

HPCAT 16-ID-B at APS, using a Princeton Mao-type symmetric cell with 400 µm culet 

diamonds.  A rhenium gasket was pre-indented to 50 μm and drilled with a 200 µm hole.  A 
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polycrystalline 50 μm flake of U3Ni5Al19 was loaded in the sample chamber with 4:1 methanol-

ethanol used as a pressure medium and a ~ 5 µm annealed ruby sphere for pressure measurement.  

Powder XRD was performed in angle dispersive mode at pressures up to about 37 GPa, using an 

X-ray beam of λ=0.40662 Å with area about 10 x 15 μm, also using a CeO2 calibrant.  
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Chapter 3: Results 

Cerium Compounds 

Figure 35. shows the evolution of the CeCu2Ge2 L3 edge with pressure from ambient to 

20 Gpa.  It begins with only a single peak at ambient pressure, but the peak at about 5.737 keV 

can clearly be seen growing with pressure.  Each spectrum can be deconvoluted as a combination 

of an edge jump (arctangent normalized to unity) and two  distinct peaks – corresponding 

respectively to electronic f
0
 (tetravalent Ce

4+
) and f

1
 (trivalent Ce

3+
) configurations of the cerium 

atom.  As pressure increases we observe a clear increase in f
0
 spectral weight, while the f

1
 

component decreases continuously in intensity. Taken together, these changes suggest a valence 

moving from a nearly Ce
3+

 state towards a more Ce
4+

 configuration – consistent with an 

increased delocalization of the Ce 4f electrons in the high presure phase. This is mirrored in all 

the CeCoSi specrtra as well, as seen in Figure 36 using the lowest temperatuer data as an 

example. 

We can calculate the cerium valence by using a phenomenological approach which has 

been successfully applied in the case of metallic intermediate valence compounds. In this 

approach, the two white lines of the L3 edge spectrum are simply interpreted as f
1
 and f

0
 final 

states, and the average valence is simply obtained from the relative intensities of the two edges. 

The determination of the valence using this method on CeCu2Ge2 at 14.3 GPa and 10 K as an 

example is shown in Figure 37. All analysis of XANES data was done with Ravel and 

Newville’s Athena using IFEFFIT [84].  A psudovoight function is used for the peaks, in an 

attempt to satisfy the Lorentzian profile of the core-hole lifetime broadening and the Gausian 

instrmental broadening, which are about the same order of magnitude for the cerium L3 edge in 

this experimental setup.  The fractional valence can then be calculated as: 
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 Equation 14. 

where I3+ and I4+ are the intensities of the white lines corresponding to the Ce
3+

 and Ce
4+

 states 

respectively.  There are clearly no discontinuities in the measuremd valence versus pressure plots 

as seen in Figures 38 and 39.  Specifically, the lack of a sudden large valence discontinuity seen 

at 16 Gpa in CeCu2Ge2 puts doubt as to whether the Volume collapse seen by Onodera et al.[30] 

was real, though this is not unexpected as more recent measurements have already put that into 

question [32].  More surprisingly, there is also no noticable effect on the CeCoSi data as the 

system goes through the Tv transition for CeCoSi.  However, this lack of a discontinuity is 

similar to the results on the CeCu2Ge2 sample and CeCu2Si2 from Rueff et al. [86].  The CeCoSi 

valence also seems to show little to no effect due to temperature within the experimental 

accuracy, as all curves seem to conicide in Figure 39. 

Comparing the CeCu2Ge2 valence data directly to literature measurements of CeCu2Si2 

[86] gives some more insight into the process behind the superconducting state.  In Figure 40, the 

values of the pressure scale are adjusted to P – Pc for both compounds, where Pc is the pressure 

where the superconducting transition temperature (Tc) is at its maximum.  Doing this shows an 

overlap of the valences, crossing at exactly zero converted pressure, corresponding to the 

pressure at which the QCP is expected to occur.  This makes it appear that value for the 

fractional valence the cross happens at, about 3.1, is a threshold for some sort of slow first order 

valence transition.  CeCu2Ge2 is more compressible than CeCu2Si2 so the curves do not line up in 

Figure 40. In order to investigate the effect of cell volume, instead of scaling by pressure on the 

x-axis, the XRD data from Kobayashi et al. [32] was used to convert pressure to unit cell volume 
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for both compounds, and valence was converted to average f electrons per Ce site         using a 

weighted sum of the f states and: 

        
 

 
    

 

 
                                    Equation 15. 

This shows an even better agreement between the two analogous compounds in Figure 41. 

The single crystal X-ray diffraction (SXRD) measurements in a hydrostatic He pressure 

medium confirm the stability of the low-pressure tetragonal P4/nmm structure for the CeCoSi 

from ambient conditions up to about 4.5 Gpa. However, above 4.5 Gpa, changes in the XRD 

pattern where new diffuse spots appear indicate a discontinuous transition to a distorted high-

pressure phase, shown in the raw XRD image in Figure 42. The most important change observed 

is the formation of a superlattice-type structure in the high pressure phase via the tripling of the 

c-lattice parameter, c’ = 3c, shown in Figure 43. This results in reduction of the Brillouin Zone,  

and is likely related to the emergence of a charge density wave (CDW) state in the high pressure 

phase that is incommensurate with the original unit cell length c, that would in turn impact the 

electronic occupancy of the cerium.  The emergence of superconductivity around the same 4.5 

GPa pressure would strongly suggest that the valence state changes drive the superconducting 

transition in this compound. 

 Based on the reflections observed, the high-pressure phase is indexed to a weakly 

distorted P4/nmm structure. The distortion occurs mainly along the a lattice parameter.  As a 

result of this discontinuous distortion, the beta angle in the high pressure phase changes from 90
o
 

in the ambient pressure phase, to 90.5-93.5
o
 in the distorted high pressure phase. The transition 

appears to proceed without any apparent volume discontinuity (within the precision of this study) 
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as shown in Figure 44.  No other transitions were observed up to the maximum pressure of 

10Gpa.  

Uranium Compounds 

The XRD for both UCd11 and U3Ni5Al19 showed that the low pressure phases of both 

materials hold over the course of the experiment, with no phase transitions as the crystal lattices 

were contracted, seen in Figures 45 and 46.  Table 1 and Table 2 give the parameters for fits to 

the Birch–Murnaghan EOS and Vinet EOS fits, showing UCd11 to be very compressible with a 

relatively low bulk modulus, but otherwise no noteable or unexpected features.  A previous study 

confirmed the phase stability of UCu2Si2 up to 10 GPa at least [50].  UCd11 showed the highest 

relative compression to the other uranium compounds, with a 6.3% reduction in the interatomic 

U-U distance, but none of the them are compressed below the Hill limit.  This rules out structural 

transitions as cause for the electronic changes measured in the XANES experiments. 

The XANES data for all the U ranium compounds are shown in  Figures 47 through  52.  

Peaks were fitted to the XANES specra using the Athena software package with the same 

methods as the cerium compounds, only no individual peaks were assigned to the different 

valence states.  Instead one pusuedo voight function fitted along with a normalized arctangent 

fuction to account for the edge step was used.  The valence data show a relativelty modest but 

significant  increase in the whiteline energy, with a ΔE = 1eV for the U3Ni5Al19 sample and ΔE = 

1.3eV for the UCu2Si2.  UCd11 however, shows a very large increase of 4.1 eV over its pressure 

range.  In comparison to Figure 3, this indicates a change in f electron occupancy of 1 whole 

electron.  This is not explained by a simple linearly proportional change in the interatomic U-U 

distance compared to the other compounds.  The wave functions of the uranium f electrons do 
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not overlap significantly at this spacing, so 5f-4d hybridization is likely the dominant control 

parameter for the formation of the ground state as the U-Cd interatomic distance is reduced.  
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Chapter 4: Conclusions 

The XANES spectra of heavy-fermion materials CeCu2Ge2, CeCoSi, UCu2Si2, U3Ni5Al19, 

and UCd11 were measured to high pressures using a combination of transmission and florescence 

geometries.  This was used to directly probe the valence state at the cerium and uranium  sites in 

their respective compounds as a function of pressure.  These were correlated with structural 

XRD measurements of CeCoSi, U3Ni5Al19, and UCd11 made in this work and literature data for 

the others, and the bulk modulus from the equation of state was found for U3Ni5Al19 and UCd11.   

The lack of a valence discontinuity in CeCu2Ge2 debunks the controversial existence of a 

volume collapse reported in Onadrea et al.[30] that was associated with a QCP.  However , 

comparison with its isostructural analogue CeCu2Si2 reveals that a change in valence is essential 

to the formation of that QCP and the onset of a superconducting state.  A similar trend was found 

in CeCoSi, where magnetic resistance measurements showed evidence of a valence transition 

under pressure, but no valence discontinuity was seen.  More work on these compounds using 

chemical substitution to further tune the disorder and pressure in them would be useful. 

The change in energy of the white line peak with pressure in UCu2Si2, U3Ni5Al19, and 

UCd11 was used to measure the change in localization of the f electrons at the uranium sites.  A 

particularly large ΔE = 4.1 eV for UCd11 is notable, as its large interatomic distance makes it 

very localized but a modest decrease has caused a large change in its f electron occupancy.  As 

this in one of few heavy-fermion uranium materials where the f electron configuration at ambient 

pressure is well known from resonant X-ray emission spectroscopy (RXES), it would be a good 

candidate for further RXES measurements at high pressure.   
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Appendix: Figures 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Examples of Heavy-Fermion Materials with High Sommerfield coefficients. An 

extrapolation from higher temperatures is used for UCd11 which has a low temperature magnetic 

feature. 
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Figure 2. Phase Diagram showing a QCP in a heavy fermion material. There are many types 

of tuning parameters that can drive a transition to zero Kelvin and produce a QCP, from Tokiwa 

et al. [20] 
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Figure 3. A modified periodic table showing trends in localization. Strongly correlated 

electron behavior occurs in the transition area between localized and delocalized behavior, 

highlighted in yellow, adapted from Smith and Kmetko [87]. 
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Figure 4. Plot relating energy shift of the L3 edge to the Sommerfield coefficient. A higher 

Sommerfield coefficient corresponds to more localized f electron behavior [11]. 
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Figure 5. Crystal structure of CeCu2Ge2. 
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Figure 6. Phase Diagram of CeCu2Ge2. [24] 
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Figure 7. The Superconducting region split. [26] 
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Figure 8. The two distinct superconducting phases in CeCu2Ge2.[27] 
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Figure 9.  Proposed isostructural volume collapse in CeCu2Ge2. Equation of state of 

CeCu2Ge2 at 10 K. Each symbol is from separate series of experiments [30]. The Tc data are 

from Kobayashi et al. [32] (closed diamonds) and Jaccard et al. [24] (open diamonds). 
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Figure 10. The crystal structure of CeCoSi. The shifted-layer structure presents opportunities 

for mixing between the Ce 4f orbitals and the Co 3d orbitals contributing to the complex 

electronic landscape observed in this compound.   
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Figure 11. Phase diagram for CeCoSi. Determined by temperature dependent electrical 

resistance measurements [36].  Up to 2 GPa, magnetically ordered states are inferred from TN, T1 

and TS.  From 3-4 GPa a first order transition conststent with a valence transition Tv is observed. 

Above 4.5 GPa, data consistent with the onset of superconductivity Tc is seen. 
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Figure 12. Crystal structure of UCd11. 
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Figure 13. The crystal structure of U3Ni5Al19. 
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Figure 14. The crystal structure of UCu2Si2 
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Figure 15. XAS Edges.  The L3 edge was used for all samples in these experiments [56]. 
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Figure 16. General XAS profile. [57] 
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Figure 17. XAFS and XANES scattering pathways. [51] 
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Figure 18. The fluorescence energy level diagram of the uranium L3 edge. [11] 
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Figure 19. Braggs Law. [66] 
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Figure 20. High Pressure Powder Diffraction Geometry. [67] 
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Figure 21. An Example Raw Powder Diffraction Image. Large dark spots are scattering off of 

large single crystals in te sample or the diamonds and are removed for powder analysis. 
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Figure 22. An Example Integrated XRD Pattern. 
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Figure 23. A Cutaway diagram of a typical diamond anvil cell. Not to Scale. 
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Figure 24. The online ruby spectrometer at HPCAT sector 16-IDB. It can remotely be moved 

in and out, allowing for pressure to be completely measured and changed from outside the 

experiment hutch. 
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Figure 25. An example diagram of a ruby fluorescence detector. A CCD camera allows for 

aiming the laser and visual inspection of the sample as pressure is increased.  
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Figure 26. Almax-Easylab CuBe non-magnetic Pressure cell.  Has a build-in gas 

membrane drive. 
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Figure 27. The energy dependence of some absorption coefficients.  Diamond and 

Berylium are relevant to these high pressure experiments. 
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Figure 28. Perforated diamond anvils.  This setup reduces the amount of diamond in 

the X-ray beam path, while still allowing optical access to the cell for pressure measurements.  

 

 

 

 

Figure 29. A cutaway of a DAC with a gas membrane drive. [80] 
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Figure 30. A diagram of a gas membrane pressure controller. [80] 

 

 

 

Figure 31. A Paderborn-panoramic style DAC with beryllium gasket. 
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Figure 32. A Princeton Mao-type symmetric cell. 

 

 

 

Figure 33. The radial scattering geometry used in PFY acquisition.  
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Figure 34. A four-posts wide-opening DAC.  Designed for single crystal measurements. 
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Figure 35. The evolution of the CeCu2Ge2 L3 edge with Pressure at 10 K. 
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Figure 36. The evolution of the CeCoSi L3 edge with pressure.  12 Kelvin is the lowest 

temperature taken. 
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Figure 37. Example of the fit to the intensity of the white line for CeCu2Ge2. 
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Figure 38. The change in Cerium Valence vs. Pressure of CeCu2Ge2. There is no valence 

discontinuity that would correspond to a volume collapse.   
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Figure 39. Ce valence from XANES data as a function of pressure for CeCoSi.  Taken at 

different temperatures. There is no discernible valence discontinuity in the region of Tv shown in 

Fig.  RR, but rather there is a typical smooth increase in valence at all three temperatures, which 

have very little temperature dependence.   

 

 

 

 

 



75 

 

 

 

Figure 40. Comparison of Ce valence from CeCu2Ge2 with CeCu2Si2.  Pressure is scaled in 

relation to pressure at maximum superconducting transition temperature. The CeCu2Si2 data is 

from Rueff et al [86]. 
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Figure 41. Conversion to f electron occupancy vs. unit cell volume [86].   
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Figure 42. Single crystal XRD data of CeCoSi at 6 GPa.  Additional reflections (-2,0 -1 

shown) indicate a structural transition with a degree of disorder.  
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Figure 43. The a, b, and c lattice parameters in CeCoSi as a function of pressure.  The C 

parameter is reduced by a factor of 3 above the phase transition at 5 GPa, forming a superlattice. 

A weak monoclinic/orthorhombic distortion along A is also seen. 

 

Figure 44. Unit cell volume as a function of pressure of CeCoSi.  There appears to be no 

volume collapse after the 5 GPa transition, but experimental errors are large in the high pressure 

phase. 
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Figure 45. Equation of state for U3Ni5Al19. 
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Figure 46. Equation of state for UCd11. 
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Figure 47. Evolution of the white line under pressure for U3Ni5Al19. The position of the peak 

at highest and lowest pressure is shown by the vertical lines 
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Figure 48. The shift in the white line of U3Ni5Al19. The shift is fairly linear, and the single low 

temperature peak agrees with the room temperature data. 
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Figure 49. Evolution of the white line under pressure for UCu2Si2. The position of the peak at 

highest and lowest pressure is shown by the vertical lines. 
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Figure 50. The shift in the white line of UCu2Si2. The shift is fairly linear, and the low 

temperature data agrees fairlt well with the room temperature data. 
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Figure 51. Evolution of the white line under pressure for UCd11. A noticeable shift in the 

composite peak is seen. 
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Figure 52. Shift in White line peak from ambient pressure for UCd11.   A relatively large 

shift of 4.1 eV is seen, corresponding to roughly one less f electron occupancy at the uranium 

site. 
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Appendix: Tables 

 

Table 1. Fit parameters for the EOS of UCd11. 

 

Type of  equation 
of state 

 

Bulk   

modulus  
(K0) 

Bulk modulus    

derivative (K0') 

 

  

    3rd order Birch 

    Murnagahan        

 

 62 ± 1.0        4.9 ± 0.2   

    Vinet 62  ± 1.0            5.2 ± 0.2   

     

 

 

 

Table 2. Fit parameters for the EOS of U3Ni5Al19. 

 

Type of  equation 

of state 

 

Bulk   

modulus  

(K0) 

Bulk modulus    

derivative (K0') 

 

  

    3rd order Birch 

    Murnagahan       
 

 115 ± 14.9        4.9 ± 1.1   

    Vinet 114 ± 15             5.1± 1.1   
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