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ABSTRACT

Raman Spectroscopic Study of Solid Solution Spinel Oxides

by

Brian D. Hosterman

Dr. John Farley, Examination Committee Chair

Professor of Physics

University of Nevada, Las Vegas

Solid solution spinel oxides of composition MgxNi1−xCr2O4, NiFexCr2−xO4, and

FexCr3−xO4 were synthesized and characterized using x-ray diffraction and Raman

spectroscopy. Frequencies of the Raman-active modes are tracked as the metal

cations within the spinel lattice are exchanged. This gives information about the

dependence of the lattice vibrations on the tetrahedral and octahedral cations. The

highest-frequency Raman-active mode, A1g, is unaffected by substitution of the di-

valent tetrahedral cation, whereas the lower frequency vibrations are more strongly

affected by substitution of the tetrahedral cation. The change in wavenumber of many

phonons is nonlinear upon cation exchange. All detected modes of MgxNi1−xCr2O4

and FexCr3−xO4 exhibit one-mode behavior. Additional modes are detected in the

NiFexCr2−xO4 series due to cation inversion of the spinel lattice.

Results from the FexCr3−xO4 spinels are then applied to identifying the corrosion

layers of three stainless steel samples exposed to lead-bismuth eutectic in a high-

temperature, oxygen-controlled environment. The Raman spectrum of the outer cor-
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rosion layer in all steels is identified as Fe3O4. The wavenumber of the A1g mode

for the inner corrosion layer indicates an iron chromium spinel oxide. Micro-Raman

spectroscopy proves capable of determining structural and compositional differences

between complex corrosion layers of stainless steels.
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CHAPTER 1

INTRODUCTION

The term “spinel” originated as a name for a typically red gemstone, though the

gem also occurs in varying shades of pink, purple and blue. Spinels with a deep

red color were often mistaken for rubies, and many large red gemstones in medieval

jewelry and crowns are actually spinel instead of ruby. Although ruby and spinel look

similar to the eye, the periodic arrangement of the atoms within these crystals are

very different. Spinel, MgAl2O4, exists as a crystal lattice that has now simply been

termed the spinel structure, which many compounds of the form AB2X4 share. Ruby,

Al2O3, with chromium impurities, exhibits the crystal structure known as corundum.

The common red rust, α-Fe2O3, also crystallizes into the corundum structure [1].

Metal oxides having the spinel structure, AB2O4, are important materials of

technological and geological interest. Many varieties of spinels appear within the

Earth’s crust, whose properties must be understood for geological considerations [2,3].

MgCr2O4, MgAl2O4, FeCr2O4, and Fe3O4 are all common minerals of the Earth’s

crust. The low solubility of chromium within basaltic magma leads to the crystal-

lization of chromite [4]. Olivine, (Mg, Fe)2SiO4, belonging to another class of crystal

structures related to spinel, is the most abundant mineral within the upper mantle,

and at high pressure undergoes a phase transition to the spinel structure [5–7]. This

high-pressure phase of olivine is known as Ringwoodite. Olivine can also contain

small amounts of other elements such as nickel and manganese [8].

Spinel oxides have been discovered in Martian meteorites [9]. The iron oxide spinel
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magnetite, Fe3O4, named for its magnetic properties, provides evidence for magnetism

on the red planet [10].

Spinels also hold much interest for technological applications. MgCr2O4 and

MgAl2O4 are stable at high temperatures and have low coefficients of expansion,

making them effective refractory materials, important to the steel, cement, and cop-

per industries [11–13]. Recently, there has been much interest in the LiMn2O4 spinel

as a low cost, safer cathode material for lithium batteries [14–16]. In addition to

magnetite, many spinels have many interesting magnetic properties. Nickel and zinc

ferrites have been studied for use as transformer cores and components in radio fre-

quency coils [17]. Ultra-fine particles of ZnFe2O4 possess larger magnetism than bulk

ZnFe2O4 [18].

In many circumstances, natural spinels are solid solutions of two or more AB2O4

spinels, where the mixing happens within the crystal structure. These are called solid

solutions and are also of interest for their technological applications and geological

relevance. The common mineral iron chromite, from which metallic chromium is

extracted, is found in peridotite within the Earth’s mantle. Chromite ore is rarely

pure FeCr2O4 and instead contains significant amounts of magnesium and aluminum

to create a solid solution (Fe,Mg)(Cr,Al)2O4 [4, 9, 19]. The opposite end of this solid

solution leads again towards the MgAl2O4 mineral, while containing minor inclusions

of iron and chromium.

Many solid solution series are interesting to study because of magnetic or electro-

chemical properties of the ionic systems that arise from cation substitution. Magnetic

properties of Zn1−xNixFe2O4 are sensitive to atomic composition [17,20]. Other met-

als, such as cobalt and nickel, have been examined as substitutes for manganese in

LiMn2O4 and for alternative materials in rechargeable lithium batteries [15, 16].

NiFexCr2−xO4 has been considered for use as a cheap cathodic material for the
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reduction of NOx gases [21]. This series is also an interesting case to study ferri-

magnetism effects and the differences between the magnetic properties of ferrites and

chromites [22]. Ferrites exhibit strong ferrimagnetic ordering between the octahe-

dral and tetrahedral sites, but the addition of chromium leads to antiferromagnetic

interactions [23].

Corrosion

Corrosion is the oxidation reaction of a metal to form a metal oxide. Most people

are familiar with corrosion and the damage this process causes to metals. A piece

of unprotected iron develops flaky red spots and degrades over time. This occurs

because the pure iron reacts with oxygen in air to create the common red rust known

as hematite, α-Fe2O3. α-Fe2O3 has little structural integrity, and crumbles away to

expose fresh iron underneath to the same oxidation conditions. Over time, the entire

piece of iron will oxidize and fail.

Fewer people realize that oxidation is also necessary to protect materials. The ad-

dition of chromium to iron led to the development of the stainless steels. Chromium

reacts with air much faster than the iron-air reaction and forms Cr2O3, which, unlike

α-Fe2O3, is strong and protective in normal conditions. This surface chromium oxide

layer acts as a passivation layer that protects the underlying alloy from further oxida-

tion. Unfortunately though, in extreme conditions such as high temperatures, even

this chromium oxide layer can fail, and non-protective oxides begin to form, leading

to the eventual failure of the alloy.

Spinel structured metal oxides are a major product formed during corrosion.

Magnetite, Fe3O4, is often reported during the corrosion of high-iron stainless steels

[24, 25]. NiCr2O4 is a common product formed from high-nickel alloys in oxidizing

environments [26–28]. MnCr2O4 has also been reported to be produced on nickel-
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based and high-nickel alloys in corrosive environments, [29], and even as an agent for

further corrosion [30].

Hemmi et al. report that a NiFe2O4 layer passivates the surface of a nickel and

cobalt alloy by restricting the dissolution of metals [31]. A protective layer containing

MnCr2O4 is found during the corrosion of nickel-based alloys in a high-temperature

steam environment [32].

Corrosion of complicated alloys is not completely understood. Alloys are often

developed via “cook and look” methods, where many different alloys are created and

the alloys with desirable properties are selected without a complete understanding of

the mechanics of corrosion. To fully understand the corrosion process, it is necessary

to know the chemical species of the oxides within the corrosion layers. Corrosion is also

a large concern for the nuclear industry, and materials must be engineered to maximize

the lifetime of reactors, where high temperatures lead to corrosive environments.

Transmutation

Even if the public recovers from the recent nuclear catastrophe in Japan, in or-

der for a nuclear power revival to occur, public fear regarding nuclear waste must

be addressed. Projects such as Yucca Mountain were proposed to deal with long

term storage of radioactive nuclear waste. Because the Yucca project is indefinitely

abandoned, other methods of dealing with the long term dangers of nuclear waste

storage need to be developed. A facility designed to store untreated nuclear waste

must protect against radiation from the nuclear waste products, which can have very

long lifetimes. If a full nuclear revival does happen, a single site such as Yucca moun-

tain will be inadequate, and many more storage facilities will be required to store the

increasing amount of waste. The negative attitude that the public holds towards such

storage facilities is an enormous roadblock that will be difficult, if not impossible, to
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overcome.

Only about one percent of the fission products within spent nuclear waste creates

issues with long term storage. The majority of nuclear waste is in the form of ura-

nium, which can be recycled or disposed of as low level waste. The storage problem

arises with plutonium and other minor actinides (neptunium, americium, curium),

which have half-lives on the order of hundreds of thousands of years. Engineering

containment vessels, in addition to a storage facility to house these vessels, that are

safe for such a long period of time, is very difficult.

Transmutation provides an alternative solution for dealing with radioactive waste.

Transmutation is the process of changing one element into another via nuclear reac-

tions. The problematic, long-lived actinides can be transmuted into elements with

much shorter half-lives. This is achieved in high-Z materials via neutron bombard-

ment. The absorption of neutrons by the nucleus of an atom leads to instability,

and the atom decays to a more stable, less radioactive isotope. As evident from Fig-

ure 1, the toxicity of these dangerous transuranics are reduced by several orders of

magnitude via transmutation [33].

Lead-bismuth eutectic (LBE) has been proposed as both a spallation target for

the production of neutrons, and as a coolant in nuclear reactors. LBE is an alloy

containing 45 percent lead and 55 percent bismuth by weight. LBE is classified as an

eutectic because its melting point (124◦C) is less than the melting point of either pure

lead (327◦C) or pure bismuth (271◦C), and is the lowest melting point for any mixture

of lead and bismuth. This low melting point, along with its boiling point (1670◦C)

gives the material a wide range of operating temperatures. LBE is also inert to both

air and water, giving it an advantage over other available liquid-metal coolants, such

as sodium, which violently reacts with water. However, in a nuclear environment, the

LBE will be heated to a high temperature and can potentially corrode the stainless
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Figure 1. Radiotoxicity of nuclear waste with and without transmutation [33].

steel pipes through which the liquid metal flows.

Metallics such as iron will dissolve in the liquid LBE at the operational temper-

atures of the nuclear facility. This dissolution corrosion can be mitigated by the

formation of a passivating, protective oxide layer. If small amounts of oxygen are

added to the LBE, oxide layers are formed that inhibit the dissolution corrosion.

However, the mechanics of the corrosion, and the actual oxides produced, is not com-

pletely understood. The present work will examine these corrosion layers formed on

three grades of stainless steel exposed to lead-bismuth eutectic in a high-temperature,

oxygen-controlled environment.
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CHAPTER 2

CRYSTAL STRUCTURE AND VIBRATIONS

The arrangement of atoms into molecules or crystal lattices is fundamentally im-

portant to the physical, electronic, and chemical properties of a material. A crystal is

a solid constructed from a periodic array of atoms. A lump of pure iron has a crystal

structure, as the iron atoms organize into a periodic arrangement to minimize free

energy.

Vibrations

The vibrational properties of different molecules and crystal structures are unique,

and can also be used to identify the composition and structure of a material. Group

theory provides a mathematical tool for studying vibrational properties of crystal

structures. A group is a set of elements and an operation, such that the operation

combines two elements of the group into an element of the group. A complete dis-

cussion on group theory is unnecessary here, but a few concepts need to be presented

as relevant terms will be used during the discussion of theory and data. Other au-

thors have presented detailed introductions of group theory and its application to

vibrations [34–36].

Molecules and crystals have geometries with varying degrees of symmetry. Symme-

try operations, such as rotations, are geometric transformations that leave a molecule

indistinguishable from its original orientation. For example, if one rotates a cube

with 6 identical surfaces 90 degrees about any axis normal to, and in the center of a

square surface, the new position is equivalent to the original orientation. However,
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if one dimension of the cube is lengthened, creating rectangles out of four of the six

sides, some of the symmetry elements of the cubic system are lost. The system is

now indistinguishable from the original orientation when rotated 90 degrees about an

axis normal to the two remaining square faces and 180 degrees when rotated about

an axis normal to the rectangular face.

There are seven basic crystal systems: cubic, hexagonal, rhombohedral, tetrag-

onal, orthorhombic, monoclinic, and triclinic. These systems are constructed from

characteristic symmetry elements, created by a periodic arrangement of identical

particles. The cubic system is created by translating a particle along the x, y, z axes

at a periodic distance. The tetragonal system is created similarly, except that the

distance along one axis differs from the other two. Some of the crystal systems have

different arrangements that still obey the same symmetry elements. For example,

a cube constructed with a particle at each corner, can also have a particle in the

center of each face. This face-centered system still obeys all the symmetry elements

of the cubic system. There are 14 distinct geometries, associated with arrangement

of identical particles, distributed among the seven crystal systems called the Bravais

lattices.

Most natural occuring crystal systems are not Bravais lattices. Instead of a single

particle at each lattice site, the system contains an identical group of particles at

each lattice site. These systems are constructed using the basis vectors of the Bravais

lattice.

A total of five symmetry elements lead to 32 crystallographic point groups. The

identity operator, E, leaves the structure unchanged. The rotation operator, Cn,

rotates the structure through an angle of 360◦/n about an axis, where n is an integer.

Vertical and horizontal mirror plane operators, σv and σh, reflect all atoms in the

structure about a plane. A center of inversion operator, i, reflects all points in the
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structure across a center of symmetry. The rotation reflection operator, Sn, also

known as an improper rotation, involves both a rotation and a reflection.

The symmetry elements of a point group may be combined into classes. The

ammonia molecule has both a rotation of 120◦ and a rotation of 240◦ around its

principal axis as symmetry elements. It also has three mirror planes that intersect

the principal axis. These elements form two separate classes.

The symmetry operations can be represented by matrices. A set of matrices that

describe the symmetry operations is known as a representation. A representation

will depend upon the choice of basis coordinates. To prevent confusion as to which

representation is being used, irreducible representations are introduced. Any arbi-

trary representation can be described by a linear combination of these irreducible

representations. The trace of a matrix is the sum of its diagonal elements and is

called a character. The character of a representation is independent of the choice of

basis coordinates. The number of irreducible representations belonging to a point

group is equal to the number of symmetry classes of the point group. This allows the

construction of a square character table that lists the characters of each symmetry

class for every irreducible representation. There are the same amount of irreducible

classes as there are symmetry classes of the point group.

As an example, the character table of the C2v point group is shown in Table 1.

Water, H2O, belongs to this point group and thus, all vibrational modes of gas phase

water are well known. The top header row of the character table labels the point

group and identifies which, and how many, symmetry elements belong to the group.

The C2v point group contains the identity element, a rotation of 180 degrees, and two

orthogonal vertical mirror planes. The remaining four rows identify the characters of

the orthogonal irreducible representation matrices. A and B are one-dimensional rep-

resentations. Other point groups may have two and three dimensional representations,
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C2v E C2 σv(xz) σv(yz)

A1 +1 +1 +1 +1 Tz αxx,αyy,αzz

A2 +1 +1 −1 −1 Rz αxy

B1 +1 −1 +1 −1 Tx, Ry αxz

B2 +1 −1 −1 +1 Ty, Rx αyz

Table 1. The character table for the C2v point group.

which are identified by the E and F labels, respectively. Any normal vibration of the

molecule can be represented by one of these irreducible representations. Herzberg’s

equations and knowledge of the atoms within the molecule can be used to determine

the number of vibrations in each representation [35]. Using the equation for the C2v

group, water has two A1 vibrations and a single B2 vibration.

The two rightmost columns of Table 1 give the infrared and Raman activity of

the representations. A vibration is infrared-active if the vibration species contains a

translational motion (Tx, Ty, Tz) and Raman-active if the vibration species contains

an element of the polarizability tensor, αij . For the water molecule example, the

A1 and B2 species have both translational and polarizability elements. Therefore,

all three vibrational modes of water are infrared and Raman-active. If the structure

contains the center of inversion symmetry element, then modes can only be Raman-

active or infrared-active, but not both. These selection rules will be discussed in more

detail in the following chapter.

Factor group analysis is another common approach for determining the vibrational

modes of a crystal [37]. The factor group is isomorphic to the point group. This

analysis examines how many times an irreducible representation is contained in the

general reducible representation for the crystal. White and DeAngelis utilize this

analysis for the spinel lattice to identify the normal modes of the lattice [38].
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The five symmetry elements discussed above completely describe molecular sym-

metry. However, to describe an infinite crystal lattice, two additional symmetry

elements are required. A particle can also be translated along an axis of the crystal.

The two extra symmetry elements that result are the screw axis and the glide plane.

A screw axis is a translation along an axis, followed by a rotation about that axis.

The glide plane also involves a translation along an axis, but is instead followed by a

reflection about a plane parallel to the axis. This leads to a total of 230 space groups

required to describe the structural symmetry of crystals [39].

Phonons

The quantized modes of vibrations in a crystal lattice are called phonons. A

phonon represents the collective motion of the entire lattice from one normal mode

of vibration, which can be represented by one of the irreducible representations.

Phonons can interact with other particles, such as photons and electrons. The photon-

phonon interaction is the basis for vibrational spectroscopy techniques used to study

crystals, such as Raman scattering and infrared absorption. Phonons contribute to

the specific heat of crystals, as the energy added to a crystal can create phonons.

The phonon density of states of different materials has been extensively studied and

reported.

Spinel structure

The spinel class of oxides, AB2O4, where A and B represent differing cations and O

is oxygen, belongs to space group Fd3m (Oh
7), a cubic lattice consisting of 8 molecules

within the unit cell, for a total of 56 atoms. This space group belongs to the Oh point

group, having the character table shown in Table 2. The unit cell of spinel is shown

in Figure 2.

Because of the large number of atoms within the spinel unit cell, it is common to
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E 8C3 6C2 6C4 3C2 i 6S4 8S6 3σh 6σd

A1g 1 1 1 1 1 1 1 1 1 1 x2 + y2 + z2

A2g 1 1 -1 -1 1 1 -1 1 1 -1
A1u 1 1 1 1 1 -1 -1 -1 -1 -1
A2u 1 1 -1 -1 1 -1 1 -1 -1 1
Eg 2 -1 0 0 2 2 0 -1 2 0 (2z2 − x2 − y2, x2 − y2)
Eu 2 -1 0 0 2 -2 0 1 -2 0
F1g 3 0 -1 1 -1 3 1 0 -1 -1 (Rx, Ry, Rz)
F1u 3 0 -1 1 -1 -3 -1 0 1 1 (x, y, z)
F2g 3 0 1 -1 -1 3 -1 0 -1 1 (xz, yz, xy)
F2u 3 0 1 -1 -1 -3 1 0 1 -1

Table 2. The character table of the the Oh point group, to which the spinel system
belongs.

Figure 2. The unit cell of a normal AB2O4 spinel contains 8 molecules. The A2+ and
B3+ cations occupy the tetrahedral and octahedral sites, respectively. To simplify
the image, only the front half of the unit cell’s interior is shown. The tetrahedral
cations are bonded to four oxygen atoms, whereas the octahedral cations are bonded
to six oxygen atoms, shown to the right of the unit cell.
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identify sub-units within the spinel unit cell, also displayed in Figure 2. A tetrahedral

unit, AO4 is comprised of the cation at the center of a cube and four oxygen atoms

in the nonadjacent corners. The octahedral unit consists of a cation surrounded by

six oxygen atoms, two along each dimensional axis, to form a BO6 octahedron.

The tetrahedra within the spinel lattice are isolated from one another. No sides

of a tetrahedron are in contact with other tetrahedra. The octahedral units, on the

other hand, do share a single edge. Two oxygen atoms are shared between adjacent

octahedra.

Atoms other than oxygen can occupy the anion position of the spinel lattice.

Sulfur and selenium belong to the same periodic group as oxygen and many spinels are

composed of these elements. A class of compounds known as the “cyanospinels” with

formula, A2M(CN)4, also exist. Spinels containing oxygen are exclusively examined

in the present work, though work on spinels composed of sulfur and selenium will be

referenced.

In a normal spinel, shown in Figure 2, the A2+ cations occupy the tetrahedral

positions, and the B3+ cations occupy the octahedral positions. A completely inverse

spinel places one half of the B3+ cations onto all of the tetrahedral positions and the

remaining half on the octahedral sites, while the A2+ cations fill up the remaining half

of the octahedral positions. Spinel systems may exist in a state between completely

normal and inverse, and thus an inversion parameter is defined, ξ, which indicates

the fraction of A2+ cations occupying octahedral positions.

Spinels often have cations with valences other than +2 or +3. Different classes

of spinels are often defined by the valences of the spinel’s cations. The spinels in

the present work belong to the normal and inverse class of II-III spinels, as they

contain cations with valences of +2 and +3. γ-Ni2SiO4, containing Ni2+ and Si4+,

is an example of a II-IV spinel. LiMn2O4 is constructed with Li1+ occupying the
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tetrahedral sites of the lattice, and Mn3+ and Mn4+ occupying the octahedral sites.

Many cation deficient spinels also exist, such as γ-Fe2O3, having octahedral vacancies.

Inversion of the spinel lattice leads to the existence of BO4 tetrahedra and AO6

octahedra. Inversion occurring in usually normal spinels is often referred to as cation

disorder. Cation disorder has been reported to cause discrepancies in the vibrational

spectra of spinels. The extra observed peak in synthetic spinels has often been at-

tributed to aluminum cations occupying the tetrahedral position [2, 7, 40]. Many of

the extra peaks in the inverse spinel NiAl2O4 are reported to be a result of the ran-

dom distribution of the divalent nickel within the octahedral sites, where each cation

configuration contributes locally to the additional peaks [41].

Although 56 atoms are present within the spinel’s unit cell, only 14 atoms are

necessary to construct the simplest primitive cell. The factor group analysis presented

first by White and DeAngelis [38] shows that the 42 normal modes of spinel, 3 acoustic

modes and 39 optical modes, belong to the symmetry species

A1g(R) + Eg(R) + F1g + 3F2g(R) + 2A2u + 2Eu + 5F1u(IR) + 2F2u. (2.1)

The (R) and (IR) identify Raman- and infrared-active vibrational species, respec-

tively. The Eg and F2g modes are doubly and triply degenerate, respectively. The

three acoustic modes belong to a single F1u species. A common notation exists in most

of the literature to distinguish between the Raman and IR modes belonging to the

same representation, and will be used in the present work. The three Raman-active

F2g modes are labeled F2g(1), F2g(2), and F2g(3), where F2g(1) is the lowest-frequency

F2g mode and F2g(3) is the highest-frequency mode of this vibrational species. Con-

versely, the four IR-active F1u modes are labeled ν1, ν2, ν3, and ν4 in descending value

of frequency. ν1 is the highest-frequency F1u mode, whereas ν4 is the lowest-frequency

mode.
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Because the spinel structure has an inversion symmetry element, the active modes

are mutually exclusive. Thus, the vibrational modes are either infrared- or Raman-

active, but not both.

The atomic positions within a crystal can be defined as a fraction of the lattice

parameter of the unit cell, a. The ideal spinel lattice assumes that the oxygen atoms

are arranged as a cubic close-packed array. However, the oxygen position of many

spinels deviates slightly from this ideal geometry, and instead are displaced along a

direction perpendicular to the diagonal of the cube, and an oxygen parameter, u,

is defined, where u = 3/8 for the ideal structure. Hill et al. list the mathematical

expressions for calculating distances between neighboring atoms within the spinel

lattice. The A-O and B-O bond distances are given by

A-O : a
√

3(u − 0.125) (2.2)

B-O : a
√

3u2 − 2u + 0.375, (2.3)

where a is the lattice parameter, and u is the oxygen parameter [42].

Corundum structure

Corundum is the name originally given to Al2O3, which, though similar to the

term spinel describing the structure adopted by many AB2O4 compounds, is also

the generic term that applies to isomorphic compounds of Al2O3, having the general

formula B2O3. α-Fe2O3 and Cr2O3 adopt the corundum structure, a hexagonal lattice

belonging to the R3c space group. The structure is a hexagonal close-packed array of

oxide ions with two-thirds of the octahedral sites being filled with the B3+ cations.

The vibrational spectra of corundum-structured oxides are well known [1, 43, 44],

and will not be studied in depth here. Two corundum-structured oxides, α-Fe2O3

and Cr2O3, will be discussed when relevant to discussions on oxides. Several authors

have reported data on the FexCr2−xO3 solid solution series [45, 46].
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Solid solutions

Solid solutions are mixtures of different pure compounds where the mixing occurs

within the crystal lattice as opposed to crystals of one pure spinel mixed with crystals

of the other pure spinel. A solid solution of Mg0.5Ni0.5Cr2O4 is a normal spinel

lattice with one half of the tetrahedral sites occupied by nickel and the remaining

half occupied by magnesium. A solid solution is very different from a simple 50-50

physical mixture of pure MgCr2O4 and NiCr2O4, as the latter contains two different

normal spinel lattices: one with all of the tetrahedral sites occupied by nickel, and

the other with all of the tetrahedral sites occupied by magnesium.

Vibrational data on spinels and solid solution spinels of the form AxB1−xCyD2−yO4

can give a tremendous amount of information regarding phonon dependencies on

different elemental composition of the spinel lattice. Experimental data may support

or refute current vibrational models.

Three different spinel solid solution series were synthesized and examined in the

present work. MgxNi1−xCr2O4 was studied first because the cation substitution is

relatively simple. Both MgCr2O4 and NiCr2O4 are normal spinels [47, 48]; only the

tetrahedral divalent cation is being exchanged from Ni2+ to Mg2+. This gave us an

opportunity to examine the impact of the divalent cation on the vibrational modes.

The second synthesized series was NiFexCr2−xO4. This series involves the substi-

tution of the trivalent cation from Cr to Fe within the spinel lattice. In addition, the

role of inversion upon the vibrational modes can be studied, as NiFe2O4 is an inverse

spinel [49]. Cr3+ has the largest octahedral site preference of the three cations, but

Ni2+ has a larger octahedral preferences than Fe3+ [50]. Because of the this, as the

amount of iron, x, is increased, the series transitions from a normal spinel lattice to a

completely inverse spinel lattice. In NiFe2O4, the Ni2+ cations occupy one half of the

octahedral positions, and Fe3+ occupy the remaining half of the octahedral sites and
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all of the tetrahedral sites. Mixed spinels of the form NiFexCr2−xO4 could be likely

products in the corrosion of nickel-based alloys.

The third solid solution series studied in this work was FexCr3−xO4. This series is

the most relevant to the corrosion research on iron-based stainless steels exposed to

LBE. FeCr2O4 is a normal spinel, and Fe3O4 is an inverse spinel [51,52], so vibrational

spectroscopy of this series can also investigate the role of lattice inversion on the

vibrational modes.

The Jahn-Teller effect

Some spinels exhibit slight distortions from the spinel structure. In many in-

stances, this is due to the Jahn-Teller effect involving degenerate electron orbital

energy states. The valence electrons of the transition metals fill various levels within

the d orbitals. Jahn and Teller showed that a nonlinear molecule will distort along

a vibrational coordinate to remove the orbital degeneracy of an electronic state [53].

Electrons that do not contribute to the molecular binding do not produce this distor-

tion. The degeneracy is created by a crystal having multiple electronic configurations

with the same energy. Dunitz and Orgel explain these Jahn-Teller distortions by

applying crystal field theory to the spinel structure [54]. Their discussions of crystal

field stabilization are applicable to comparing members of the same crystal structure

and their arguments will be summarized.

In an octahedral or tetrahedral field, the energy levels of the d orbitals are split

into a doublet, eg (dx2
−y2 , dz2), and a triplet, t2g (dxy, dxz, dyz). In the octahedral

arrangement, the eg orbitals point directly at the anions, which causes destabilization.

For this octahedral configuration, the eg doublet has a higher energy than the t2g

triplet. The t2g orbitals are more stable in this configuration because the orbitals

point between the axes of the anions. For the tetrahedral configuration, the energy
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levels are inverted: the t2g orbitals have a higher energy than the eg orbitals.

For the triply degenerate lower t2g level of the tetrahedral configuration, a tetrag-

onal distortion removes the degeneracy by splitting the energy levels into a singlet

and a doublet. The new tetragonal unit cell has two lattice parameters, c and a,

instead of just a, though the unit cell is redefined so that as it approaches cubic,

the a parameter is equal to the lattice parameter of the spinel lattice divided by
√

2.

For such comparisons to the cubic lattice, the c/a ratio of the distorted cell is often

compared to this factor of
√

2. The energy level arrangement is determined by the

c/a ratio of the tetragonal geometry.

Dunitz and Orgel further hypothesize that the distortion has no directional prefer-

ence, and will be along any of the three coordinate axes, independent of the neighbors

of the tetrahedral or octahedral unit [54]. This randomness indicates that the over-

all lattice still appears cubic, though the x-ray diffraction peaks may be broadened.

However, as the temperature is lowered, the interaction between neighboring distor-

tions becomes more significant, and a transition temperature exists distortions occur

in a single direction.

An excellent example of the Jahn-Teller effect in spinels is Ni2+ in the tetrahe-

dral configuration. Ni2+ in the tetrahedral configuration has eight electrons in the d

orbitals. The lower eg doublet is completely filled with four electrons, but the upper

t2g triplet will be degenerate because there are three orbitals for the four remaining

electrons. After an electron occupies each triplet level, a single remaining electron

is available to occupy any of the three orbitals of this triplet, all of which have the

same energy. This degeneracy is lifted by elongating the bonds along the z-axis. As

a result, the dxy orbital becomes a single lower-energy, non-degenerate state occupied

by the single remaining electron.

Nickel is mentioned because NiCr2O4 was studied and a Jahn-Teller distortion of
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the lattice is expected. This distortion to the I41/amd space group will be discussed

with the results of NiCr2O4. Another nickel spinel studied in the present work,

NiFe2O4, is a completely inverse spinel structure, in which the eg doublet of Ni2+

in an octahedral configuration contains a single electron in each level, indicating the

absence of a Jahn-Teller distortion for NiFe2O4.

Cr3+ has five electrons in the d orbital. In either the octahedral or tetrahedral

configuration, there will be one electron filling each of the eg and t2g orbitals. This

configuration has no degeneracy, and thus there is no Jahn-Teller distortion for Cr3+

in the octahedral site.

Fe2+ and Fe3+ have 6 and 5 electrons, respectively, when bonded in a tetrahedral

or octahedral configuration. A 5-electron configuration has no Jahn-Teller distortion

in either the tetrahedral or octahedral configuration. For the 6 electrons of Fe2+ in

the octahedral configuration, the degeneracy exists in the mostly non-bonding t2g

orbitals, leading to only small Jahn-Teller distortions. Likewise, in the tetrahedral

configuration, the degeneracy occurs in the eg orbitals, which are mostly non-bonding.

Any Jahn-Teller distortion due to iron in the octahedral or tetrahedral sites will be

too small to detect [54].

X-ray diffraction

The atoms within a crystal lattice form regular planes with spacing d between each

plane. Coherent x-rays incident upon these regular planes can reflect off these planes

and constructively interfere if the path length difference is a multiple of the wave-

length of the light. Knowing the angle at which the light scatters from these planes

allows determination of the distance between each plane. Many different planes may

exist in a regular crystal lattice, defined by coplanar atoms in the various crystal sites

throughout the lattice. The incident x-rays will therefore be capable of scattering
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off all these planes which leads to constructive interference at many different an-

gles. Information about the crystal structure can be determined from this diffraction

pattern.

The spacing between atomic planes, d, is determined using Bragg’s law,

2d sin θ = mλ, (2.4)

where θ is the angle between the incident light and the lattice planes, m is an integer

describing the order, and λ is the wavelength of the incident light. X-rays are used

because, to achieve measurable diffraction, the wavelength must be on the order of d.

Because the x-ray diffraction (XRD) spectrum and structure of spinel are well known,

the lattice parameter can be calculated by knowing the Miller indices of each spinel

diffraction peak.

Miller indices are reciprocal fractions along each dimension that define a plane

within the lattice, and are commonly denoted as three numbers, hkl, that represent

the fraction in each dimension of the lattice. For the cubic system, the dimensions

are the standard cartesian coordinates x, y, z. For example, the (100) represents a

plane in the yz plane. The (200) surface would be a yz plane halfway along the x

dimension of the crystal.

For a cubic lattice, the diffraction spacing, d, can be related to the lattice param-

eter, a, and the Miller indices, (hkl), by

d =
a√

h2 + k2 + l2
(2.5)

Intensities of the x-ray diffraction peaks are affected by many variables such as

the electron distribution around any atom or ion and the structure of the crystal.

Scattering of the x-rays occur from the electron cloud surrounding the atom or ion,

and therefore the intensities are a sum of all scattering from the electron cloud.

Because the spacing within the electron cloud is smaller than the wavelength of the
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incident x-ray, partially destructive interference occurs from the sum, and an atomic

scattering factor, f0, can be calculated for atoms and ions. The structure factor,

Fhkl, describes how the atomic arrangement of the crystal affects the x-ray diffraction

peaks. The Rietveld refinement method, named for Hugo Rietveld who developed the

method, incorporates all of the variables that affect diffraction peaks, and involves a

least squares fit to refine structural information of the sample [55].

X-ray diffraction is a common and powerful tool for determining the crystal struc-

ture of a material. However, sample preparation is crucial, and the technique cannot

examine all varieties of samples. The sample must be a single crystal, a uniform

surface, or a powder, all of which require long-range order for coherent x-ray diffrac-

tion. Vibrational spectroscopy can thus be a more practical approach to the study of

corrosion layers upon a steel, or any non-uniform sample, because it is a more local

probe.
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CHAPTER 3

RAMAN SCATTERING AND INFRARED ABSORPTION

The Raman effect, named for the Nobel prize work by Chandrasekhra Venkata

Raman in 1928 [56], is an inelastic light scattering effect resulting from the excitation

or de-excitation of vibrational modes. In the simple case of a single molecule, Figure 3,

an incident photon can either scatter elastically, known as Rayleigh scattering, or

scatter inelastically and excite or absorb a vibrational mode of the molecule. In a

crystal lattice, the photon may scatter from a lattice phonon that will change the

energy of the phonon. The energy loss or gain of the inelastically scattered photon

corresponds to the energy of a vibrational level, or phonon level, of the system. If

a phonon is created at a higher energy state, then the scattered photon will have

less energy than the incident photon. Alternatively, a phonon can be annihilated,

resulting in a scattered photon having greater energy than the incident photon.

Raman scattering is a phenomenon with a low probability of occurrence. Only one

in 106 of incident photons is inelastically scattered. Because the majority of incident

light is Rayleigh scattered, Raman detector systems must remove this elastically scat-

tered light from the collected light, or else the Rayleigh scattered light can overwhelm

the weaker Raman signal.

Raman scattering is typically performed non-resonantly, meaning that the energy

of the incident photons does not equal any energy difference between any phonon

levels of the lattice. In the most common conceptual description, the photon excites

the system to a virtual state before decaying to the ground state (Rayleigh) or an
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Figure 3. The cartoon displays Rayleigh and Raman scattering processes. An
incident photon can either scatter elastically or inelastically from a molecule. Most
often, the inelastic process results in a vibrating molecule and a photon of less
energy [56].

excited vibrational state (Raman). This can be seen in Figure 4.

Stokes scattering and anti-Stokes scattering are the terms applied to whether

a phonon is created or annihilated, respectively. Anti-Stokes scattering is a much

weaker effect than Stokes scattering. All Raman data collected in this study, used for

purposes of determining peak positions, are Stokes signals, corresponding to scattered

photons of lower energy than the incident photons.

Raman Scattering

In a classical approach [35], the oscillating electric field E of the incident light

with frequency ν0 and amplitude E0 can be written as

E = E0 cos 2πν0t. (3.1)

This electric field interacts with and distorts the electron cloud of the lattice, inducing

an electric dipole P given by

P = αE, (3.2)
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Figure 4. (a) Rayleigh scattering - absorption and re-emission of a photon of iden-
tical energies. (b) Stokes - Raman scattering involving the emission of a photon
of lower energy than the absorbed photon. The vibration level n = 1 becomes ex-
cited. (c) Anti-Stokes - Raman scattering involving the emission of a photon having
greater energy than the absorbed photon. The vibrational level n = 1 was initially
occupied.

where α is the polarizability of the lattice.

If the lattice is vibrating with frequency νm and amplitude q0, then the nuclear

displacement can be written as

q = q0 cos 2πνmt. (3.3)

For small amplitudes, α is a linear function of q, and can be expanded as

α = α0 +

(

∂α

∂q

)

0

q + . . . , (3.4)

where the partial derivative is evaluated at the equilibrium nuclear position.
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Combining equations 3.1, 3.2, 3.3, and 3.4 gives

P = αE0 cos 2πν0t

P = α0E0 cos 2πν0t +

(

∂α

∂q

)

0

qE0 cos 2πν0t

P = α0E0 cos 2πν0t +

(

∂α

∂q

)

0

q0E0 cos 2πν0t cos 2πνmt

P = α0E0 cos 2πν0t

+
1

2

(

∂α

∂q

)

0

q0E0[cos{2π(ν0 + νm)t} + cos{2πν0 − νm)t}], (3.5)

where the first term on the right side of the equality in Equation 3.5 is the Rayleigh

scattering term, which has a frequency equal to the incident frequency, ν0. The

Stokes and anti-Stokes terms, having frequencies shifted from the incident frequency,

are ν0 − νm and ν0 + νm, respectively. The partial derivatives of the polarizability act

as coefficients for the Stokes and anti-Stokes terms, thus indicating that these Raman

terms are non-zero only if there is a change in the polarizability (∂α/∂q 6= 0) when

the molecule vibrates. If the polarizability does not change during a vibration, this

coefficient is zero, and the vibration is not Raman-active.

Polarizability tensor

Electron clouds are three-dimensional entities, and an incident electric field can

induce a dipole in directions perpendicular to the direction of polarization. Therefore,

Equation 3.2 must be a tensor to incorporate the x, y, and z directions. In matrix

form, this equation can be written as




Px

Py

Pz



 =





αxx αxy αxz

αyx αyy αyz

αzx αzy αzz









Ex

Ey

Ez



 , (3.6)

where the 3×3 matrix on the right side of Equation 3.6 is called the polarizability

tensor, αij . The polarizability tensor is symmetric, obeying

αij = αji. (3.7)
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If any of the components of this tensor change during a vibration, the vibration is

Raman-active. The intensities of the Raman fundamentals are therefore determined

by ∂αij/∂Q where Q is a normal coordinate of the lattice. Even though αij is sym-

metric, ∂αij/∂Q may not be symmetric.

Approaching Raman scattering using quantum mechanics requires the use of the

Kramers-Heisenberg formula for a two-photon scattering process [36]. The virtual

state that the system transitions to is unknown, and so all virtual states must be

summed over. In addition, the excitation to and relaxation from the virtual state

occurs simultaneously. This Kramers-Heisenberg formula can be shown to be related

to the classical polarizability tensor.

Infrared absorption

A quantum mechanical treatment [36] of the vibrations of a crystal as a harmonic

oscillator shows that phonon energies are quantized, with

Ei = (ni +
1

2
)hνi, (3.8)

where ni is the quantum number and νi is the normal frequency associated with the

normal coordinate Qi [34].

A crystal is capable of directly absorbing a photon that corresponds to an energy

of vibration, given in Equation 3.8. Because photons are polarized, the electric field

of the photon must be capable of interacting with the vibration. An electric field will

create a force on charged particles, such as the positive and negative ions constituting

the crystal. As the electric field points in one direction, the electric dipole may be

stretched along an axis of the crystal. As the electric field points in the opposite

direction, the electric dipole becomes compressed. This results in a vibration of

the system. This photon-dipole interaction leads to the selection rule for infrared

absorption. Vibrations are infrared-active if there is a change in the dipole moment
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during the vibration. If the dipole is not changed during the vibration, an incident

photon will not be capable of exciting the vibration.

Wavenumbers

Raman and infrared spectra are often plotted as intensity versus wavenumber

(cm−1). A wavenumber can easily be calculated from a known light frequency ν,

using

wavenumber =
1

λ
=

ν

c
(cm−1) (3.9)

where ν is the frequency of the photon, and c is the speed of light in a vacuum,

2.998 × 1010 cm/s.

For Raman spectra, the wavenumber shift relative to the wavenumber of the inci-

dent laser is usually plotted. This Raman shift, ν, can be calculated in wavenumbers

using

ν =
∆ν

c
=

νi − νs

c
(3.10)

where νi and νs are the frequencies of the incident and scattered photons, respectively.

The Raman shift is the difference between the wavenumbers of the Raman-scattered

photon and the Rayleigh-scattered photon.

27



CHAPTER 4

PREVIOUS WORK

The present work was partly motivated by an ambition to augment the results from

our group on the LBE-corroded steels acquired with scanning electron microscopy

(SEM), energy dispersive x-ray spectroscopy (EDX), and x-ray photoelectron spec-

troscopy (XPS) done before, and in parallel, with the present work [57–59]. The work

then expanded into a more comprehensive account of the vibrational properties of the

spinel system, as uncertainty regarding the assignment of the vibrational modes of

spinel is apparent. As such, a summary of the previous work from our research group

will be presented, as well as a summary of the large amount of experimental data

and theoretical models on the vibrational modes of the spinel lattice. Doing so will

highlight the gaps in knowledge that the present work will attempt to complete.

LBE-corroded steels

Our previous work characterized the compositional and morphological properties

of the corrosion layers of stainless steel samples exposed to lead-bismuth eutectic

(LBE) [57–59]. One of the conclusions was that the surface treatment of the steel

was crucial to reducing the severity of corrosion damage sustained by the steel [59].

Cold-rolling the surface of the stainless steel leads to a better preservation of the

chromium oxide layer.

SEM images from our previous work also clearly show that at least two corrosion

layers are formed during the corrosion process on these steels exposed to LBE [57].

A cross-section SEM image of a LBE-corroded stainless steel sample is shown in
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Figure 5. SEM image of a cross section cut from a stainless steel. A dual oxide layer
is visible [60].

Figure 5. The outer oxide layer grows outwards from the original surface, while the

inner oxide layer grows inwards.

In energy dispersive x-ray spectroscopy (EDX), the sample is bombarded by elec-

trons, and the resulting characteristic x-rays emitted by the sample are used to pro-

duce an elemental map of the sample. Different SEM images highlighting the ele-

mental composition of the corrosion layers are shown in Figure 6. The image proves

that the outer corrosion layer contains only iron and oxygen, while the inner layer

also contains chromium. Nickel is enchanced in the inner oxide layer compared to the

bulk metal.

In x-ray photoelectron spectrometry (XPS), the sample is bombarded by x-rays,

and the energies of the resulting photoelectrons from the top few atomic layers are
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Figure 6. SEM image using the elemental mapping capabilities of EDX [60].

analyzed. XPS is capable of determining oxidation states of elements, which can

give clues to the molecular species existing within a sample. In previous work by

our group, XPS studies of LBE-corroded steels observed that iron and chromium are

oxidized, while the nickel within the inner corrosion layer is metallic [60].

As powerful as SEM, EDX, and XPS techniques are, structural and chemical

ambiguities can remain. These techniques can accurately identify the existence of

iron, chromium, oxygen, and other elements within the corrosion layer, but cannot

accurately differentiate between α-Fe2O3, Fe3O4, or other oxidation products. Fortu-

nately, vibrational spectroscopy is a technique capable of determining the vibrational

modes of a solid, and these vibrational modes are strongly dependent of the crystal

symmetry.
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Identifying corrosion layers using Raman spectroscopy

Many researchers have used Raman spectroscopy to study the corrosion layers on

alloys exposed to a variety of extreme conditions. The common method to identify

corrosion products is to compare Raman spectra of the unknown corrosion layers with

the known spectra of standard oxide compounds, such as α-Fe2O3, Fe3O4, Cr2O3, and

other compounds [25,61–65]. The best-matching spectral “fingerprint” then identifies

the chemical species within the corrosion layer.

For example, Cunha et al. studied the oxides formed on 316L stainless steel in a

high-temperature pressurized water reactor environment and determined the corro-

sion layer to be composed of spinels of nickel, iron, and chromium [24]. Kim et al.

studied NiCr2O4 and NiFe2O4 powders to identify corrosion layers of a nickel-based

alloy in a high-temperature water environment [64]. Renush et al. examined the cor-

rosion layers on Fe-Cr-Ni alloys at various temperatures and reported the formation

of α-Fe2O3, Fe3O4, and Cr2O3 [66]. Boucherit et al. examined Fe and Fe-Mo alloys

and observed evidence of spinel layers formed over the bulk iron [67]. Gardiner et al.

identified the spinel and corundum phases in the corrosion layers formed on Fe-Cr

stainless steels [25]. Other studies have shown evidence of the formation of spinels

such as FeCr2O4 [68] and MnCr2O4 [30, 69] as corrosion products.

All of these studies, with the exception of Cunha et al. [24], assumed that the cor-

rosion products identified are pure end-member chromites and ferrites, as opposed to

a solid solution of two or more end-member oxides containing iron, nickel, chromium,

or other elements from the alloy. The use of Raman spectroscopy to identify solid

solutions requires a database of experimentally measured Raman spectra of standard

compounds.
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Theoretical work of the spinel system

A database of experimentally measured Raman spectra of standard compounds is

valuable for identifying chemical species, but a purely experimental database would

suffer from some definite limitations. There are a very large number of possible solid

solutions, and accordingly, a purely empirical approach is a large undertaking. The

development and testing of theoretical models of such solid solutions can lead to

insight and the recognition of series regularities. Many researchers have worked to

develop and use models to calculate the vibrational modes of spinels [8,70–77]. Such

calculations can provide crucial support in the assignment of vibrational modes as

correct calculations could predict frequencies, intensities, and atomic motions of the

vibrations of solid solution spinel systems.

Before the development of computers to perform calculations, researchers used

group theory to investigate the vibrations of spinel. In early work, Waldron assumed

the primitive cell of spinel was composed of two tetrahedral AO4 units and a B4

unit [78]. The nearest-neighbor interactions from the octahedral cations were as-

sumed to be small and ignored. This approach allowed all of the vibrations to be

identified from the Td point group of the AO4 tetrahedron. The interaction between

neighboring tetrahedral units was also assumed to be small. This approach predicts

eight infrared-active F2 modes, however only four distinct infrared-active modes are

typically reported for spinels.

White et al. approached the spinel lattice with a group theoretical analysis of

the spinel unit cell [38]. Their method predicted the observed four infrared and five

Raman-active modes. They assumed the atomic motions derived from Waldron’s two

AO4 and B4 units. Verble employed a similar approach in a study of Fe3O4 [79], which

includes diagrams of the vibrations. Similar to the models by Waldron and White et

al., the octahedral cations remain at rest during all vibrations. Similar calculations of
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the atomic motions were performed by Yamanaka et al. in a study of the vibrations

of γ-Ni2SiO4 [8].

Vibrations of spinel sulfides and selenides ACr2X4, with X being S or Se, mainly

chalcogenides, with A being Cd, Fe, Mn, and Zn, were calculated by Gupta et al.

[73–75] who find the B-X interaction to dominate the A-X interaction. Gupta et

al. and also Sinha, in a study of chromites, support the hypothesis that the B-O

interaction is more important than the A-O interaction [77,80]. Recently, Kushawaha

et al. have performed calculations on several chromites, ACr2O4, with A = Co, Mn,

Zn [81, 82]. They report stronger interactions for the octahedral B-O bond than the

tetrahedral A-O bond. However, work by Sinha et al. has shown stronger A-O force

constants for MgAl2O4 and ZnCr2O4 [83].

Wakamura et al. performed calculations to model the behavior of Zn1−xCdxCr2S4

[84]. The low-frequency mode ν4 was observed to have a large discontinuity in

wavenumber as zinc was substituted for cadmium. They concluded that the be-

havior of this mode results from large differences in the force constants of the two

end members.

Assignment of the vibrations of spinel

The literature is inconsistent with regard to the assignment of the specific atomic

motions within the spinel lattice during the Raman-active vibrations. However, the

common atomic motions assigned to the vibrations of spinel from the literature will

be summarized.

The highest-frequency A1g mode is assigned as the symmetric breathing mode of

the AO4 unit within the spinel lattice [7, 8, 79]. The oxygen atoms move away from

the tetrahedral cation along the direction of the bonds. Neither the tetrahedral nor

octahedral cations are in motion during this vibration.
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The second highest-frequency Raman-active mode is the F2g(3) mode. The litera-

ture disagrees about the assignment of atomic motions during the vibration, which has

been reported as either the antisymmetric breathing mode of the AO4 unit [8,79], or

as an asymmetric bending motion of the oxygens bonded to the tetrahedral cation [7].

The F2g(2) mode was shown by Verble to be a translation along one direction

of the lattice, with the cation and oxygen atoms moving in opposite directions [79].

Verble also assigns the Eg mode as a symmetric bending motion of the oxygen anions

within the AO4 unit [79]. This assignment is supported by other researchers [14,85].

Most of the literature agrees that the lowest-frequency Raman-active mode, F2g(1),

is a complete translation of the AO4 unit within the spinel lattice [8, 14, 79, 85, 86].

There is very little discussion of the motion of the octahedral cations during these

vibrations. This results from the assumption that the simplest unit of the spinel

lattice is composed of two AO4 tetrahedra and a B4 tetrahedron. Many researchers

seem to use this assumption in assigning all vibrational modes to motions involving

solely the AO4 unit [7,8,79,87]. The octahedral cations are assumed to remain at rest.

Every oxygen atom is bound to three octahedral cations and only a single tetrahedral

cation. Even if the cation remains at rest, the bonding force between octahedral

cations and the oxygen atoms must be relevant for determining phonon energies.

However, as Preudhomme et al. have shown with extensive experimental data in

their series of infrared studies on spinels, the assumption that the higher-frequency

vibrations depend solely upon the tetrahedral cations may be incorrect, at least for

the normal II-III spinels, and instead depend more strongly on the nature of the

octahedral cation [88].

Marinković Stanojević et al. assign many vibrations to octahedral cations in their

study of ZnCr2O4 [89]. All high-frequency modes, Raman and infrared, are assigned to

vibrations involving the CrO6 octahedron, and the low-frequency modes are assigned
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to the ZnO4 tetrahedron. The A1g mode is assigned to the symmetric breathing mode

of the octahedral unit. The Raman-active Eg mode is assigned as a complex vibration

involving both zinc and chromium atoms. The lowest-frequency infrared-active mode,

ν4, is assigned as a bending mode of the chromium octahedron.

Laguna-Bercero et al. studied the NiAl2O4 inverse spinel and argued that the A1g

mode depends upon the octahedral cations [41]. They predict that the complicated

A1g mode is due to the random occupation of the octahedral sites by the Ni2+ and

Al3+ cations. The possible configurations lead to slight differences in the energies of

this vibrational mode, creating the multiple A1g modes.

Hwang et al. examined chromium substituted LiMn2O4, a spinel containing both

Mn3+ and Mn4+ in the octahedral sites [90]. Li2+ occupies all tetrahedral sites. They

interpret the two A1g modes as resulting from tetragonally distorted Mn3+O6 and

undistorted Mn4+O6 octahedra.

Additional modes may appear in vibrational spectra due to local distortions of

the crystal lattice. These defects do not affect the long-range ordering of the system,

and are often undetectable by x-ray diffraction. However, vibrational spectroscopy is

very sensitive to these defects. The additional modes due to local distortions of the

lattice are known as local modes.

Preudhomme et al. argued that, as the cations are exchanged in these mixed spinel

systems, there are three different ways that the vibrational modes can vary [91]. They

define the terms localized and complex to describe two behaviors, with a third being

a combination of localized and complex. The term localized can be confused with

the common usage of local modes, as described above. Chang et al. define the terms

one-mode behavior and two-mode behavior [92] to describe the same phenomena that

Preudhomme et al. emphasized, which have become more common in the literature.

One-mode behavior describes phonons in mixed systems that vary continuously
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from the frequency of one end member to the frequency of the other end member.

Alternatively, two-mode behavior of a mixed crystal system possesses two distinct

vibrational modes, close to the frequency of both end members, with intensities pro-

portional to the fraction of each pure member within the mixed system. Both one-

and two-mode behavior can occur where the two distinct modes also shift in frequency

upon cation substitution. Two-mode behavior may be evidence of local crystalliza-

tion of the two end members within the sample. This may occur on a scale small

enough to not be resolvable using x-ray diffraction.

Experimental work on the spinel vibrations

Many Raman studies of pure spinel oxides, AB2O4, have appeared in the literature.

The wavenumbers of the five Raman-active modes for various spinel oxides are shown

in Table 3. These data allow investigation of the Raman-active modes for any patterns

due to replacement of the tetrahedral and octahedral cations.

The chromites are all normal II-III spinels and vary only by the divalent cation

occupying the tetrahedral sites. Cr3+ has a greater preference for the octahedral site

that other cations [50, 103]. The A1g mode for all chromites, with the exception of

cadmium, varies significantly less than the other Raman-active modes. This could

indicate that this mode is mostly independent of the divalent cation species. The

change in the A1g mode for CdCr2O4 from the other chromites is only approximately

7%. The F2g(1) mode seems to have a much greater dependence on the divalent

cation: The F2g(1) modes of CdCr2O4 and MgCr2O4 differ by approximately 40%.

The F2g(2) and F2g(3) modes of CdCr2O4 are similar to the other chromites, even

with the much heavier cadmium atom occupying the octahedral site. The F2g(1), Eg,

and A1g modes are all lower than the respective modes of the other chromites.

Many of the ferrites exhibit inversion of the cations between the tetrahedral and
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Spinel F2g(1) Eg F2g(2) F2g(3) A1g

Chromites

CdCr2O4 [93] 134 343 499 600 647
CoCr2O4 [81] 454 692
CuCr2O4 [94] 190 623 680
FeCr2O4 [45] 686
MgCr2O4 [48] 227 447 544 614 687

MnCr2O4 [76, 80] 457 511 600 671,685
NiCr2O4 [47] 181 425 511 580 686

ZnCr2O4 [93, 95] 180 430,457 511 605 687

Ferrites

CoFe2O4 [96] 210 312 470 576 624sh, 695
MgFe2O4 [97] 217 333 486 554 646, 715

Fe3O4 [51] 193 306 538 668
NiFe2O4 [64] 460sh, 492 574sh, 595 654sh, 702
ZnFe2O4 [98] 221 246 355 451 647

Aluminates

CoAl2O4 [99] 201 516 615
MgAl2O4 [87] 311 410 492 671 772
ZnAl2O4 [100] 197 417 509 658 758

Other Spinels

CoCo2O4 [101] 194 482 522 618 691
ZnGa2O4 [102] 638 467 611 714

Table 3. Compiled Raman data from the literature on AB2O4 spinels. Shoulders of
peaks are marked with sh. Data from the present work are not included.
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octahedral sites. NiFe2O4 and Fe3O4 are completely inverse spinels [104]. MgFe2O4

has an inversion parameter of ξ = 0.90 [105, 106]. At ambient conditions, CoFe2O4

has an inversion parameter of ξ = 0.95 [96]. Raman spectra of these inverse spinels is

more complicated and show additional Raman-active modes over the five predicted

by group theory.

Unlike the other ferrites in Table 3, ZnFe2O4 is a normal spinel [18]. However,

nanostructured powders of various synthesis and treatment methods have exhibited

differing degrees of inversion [107]. As a normal spinel, ZnFe2O4 can be compared to

ZnCr2O4 to examine the effect of only replacing the octahedral cation on the Raman-

active modes. The A1g mode is located at 647 cm−1, a much greater departure from

any of the A1g modes of the other chromites, with the exception of CdCr2O4. This

suggests that the A1g mode has a greater dependence upon the octahedral trivalent

cation than the tetrahedral divalent cation. MgAl2O4 and MgCr2O4 can also be

compared as both are normal spinels and differ only by the octahedral cation. The

A1g mode of MgAl2O4 has a 12% greater frequency than the A1g mode of MgCr2O4.

The Eg, F2g(2), and F2g(3) modes of ZnFe2O4 differ greatly from the other chromites

and ferrites. However, Wang et al. made these assignments from powder samples [98],

and the assignments need confirmation by polarization studies on a single crystal sam-

ple.

The wavenumber of the A1g mode varies more strongly among the ferrites than

the chromites. If this mode is dependent only on the AO4 unit of the lattice, the

frequency should be nearly identical for all ferrites, because they, with the exception

of ZnFe2O4, are inverse spinels with Fe3+ in the tetrahedral position. From these

compiled results on chromite and ferrites, the A1g mode appears to depend more on

the octahedral cation than the tetrahedral cation. The F2g(1) mode remains similar

to the other ferrites, as well as the chromites. The other three modes, Eg, F2g(2), and
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F2g(3), are dramatically lower than the corresponding modes in any of the chromites.

Figure 7 is a plot of the wavenumbers of the Raman-active modes from the litera-

ture, versus the reciprocal of the square root of the mass of the tetrahedral cation for

various chromites in the literature. This simple “mass on a spring” model predicts a

wavenumber proportional to the reciprocal of the square root of the cation mass. The

data show a linearly increasing Raman shift for the F2g(1) and F2g(2) modes. The

wavenumber of the A1g and Eg phonons remain mostly constant, with only cadmium

chromite having a significantly smaller frequency. The F2g(3) mode shows no overall

dependence on the mass of the tetrahedral cation. Malavasi et al. create a similar

plot for what they label “peak 2” of some normal AMn2O4 spinels, where A = Mn,

Mg, and Zn [108]. The wavenumber of this mode is in the 470-510 cm−1 range, which

suggests that it may be the F2g(2) mode. If this assignment is correct, it is consistent

with the behavior of the F2g(2) mode for the chromites with different tetrahedral

composition.

Figure 8 is a plot of the wavenumbers of the A1g modes versus the reciprocal

of the square root of the octahedral cation mass for various MgB2O4 and ZnB2O4

spinels. The figure shows a similar dependence upon substitution of the octahedral

cation within the normal spinel lattice. Only ZnGa2O4 breaks the trend seen in both

plots. MgFe2O4, unlike the other spinels plotted in Figure 7, is an inverse spinel.

However, Wang et al. report an unidentified peak at 646 cm−1 on the low frequency

side of the A1g mode, similar to the shoulder of the A1g mode on NiFe2O4. This data

point is included to test the validity of the common interpretation that shoulders on

the A1g mode of the inverse spinels are due to the two distinct octahedra formed

by the divalent and trivalent cations occupying the octahedral site of the inverse

spinel lattice. The MgFe2O4 data are consistent with this argument, as assigning the

646 cm−1 mode to the A1g behavior of the FeO6 unit in the inverse lattice agrees very
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Figure 7. The wavenumbers of the Raman-active modes, from the literature, of
various chromites plotted versus the reciprocal of the square root of the tetrahedral
cation mass. Data from the present work on NiCr2O4 and MgCr2O4 is also included.

well with the ZnFe2O4 data. If this lower frequency feature can be assigned to the

FeO6 of the inverse lattice, the higher frequency A1g feature, 715 cm−1 for MgFe2O4

and 702 cm−1 for NiFe2O4, should be assigned to the divalent cation occupying the

octahedral position.

Raman spectra of the CoFe2O4, MgFe2O4, and NiFe2O4 inverse spinels exhibit

shoulders on the A1g mode [96, 97, 109]. A common interpretation of these shoulders

is that the distinct AO6 and BO6 octahedral units within the inverse lattice create the

two features. However, as Laguna-Bercero et al. point out, if this were the case, the
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Figure 8. The Raman shifts of the A1g mode of some (a) MgB2O4 and (b) ZnB2O4

spinels show a large, but similar dependence on the octahedral cation. The Raman
spectrum of MgFe2O4 displays two possible A1g modes.
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ratio of intensities of these features should be proportional to the amount of inversion

within the spinel [41], and this is not seen in any of the inverse spinels in Table 3.

Fe3O4, although an inverse spinel, does not contain these dual A1g features. This may

be attributed to fast electron hopping between the Fe3+ and Fe2+ cations occupying

the octahedral sites [23, 51]. As a result, a valency of +2.5 is often quoted for the

octahedral site of Fe3O4.

Laguna-Bercero et al. report that the A1g mode of NiAl2O4 contains more than two

shoulders, and perform a fit using four peaks to the broad A1g mode [41]. They argue

that modeling the mode as solely based on the two distinct octahedra is insufficient.

Instead, they argue that the mode is due to the tetrahedra, but the octahedral cations

neighboring the tetrahedra must also be accounted for. Because the Al and Ni cations

randomly occupy these neighboring sites, there are several different configurations,

which create the four components of the broad A1g mode.

In their study of NiAl2O4, Laguna-Bercero et al. report that the compilation of

II-III spinel oxides show that the Eg mode is closely related to the bond distance

between the octahedral cation and the oxygen [41]. Laguna-Bercero et al. report

that the normal spinels have a slightly larger oxygen coordinate, u, than the inverse

spinels, which leads to a large difference in the Eg mode of the inverse NiAl2O4 and

normal MgAl2O4. Specifically, the longer bond distance of the inverse spinels leads to

a smaller frequency of the Eg mode. Table 3 supports this claim, as the inverse ferrites

all have lower, but similar Eg frequencies. The normal chromites, with the exception

of CdCr2O4, also have similar Eg frequencies. The solid solutions studied in this work

provide a good opportunity to examine this effect and the results will be presented in

Chapter 8. Because structure is determined by x-ray diffraction, the bond distances

can be determined directly from measurements of the lattice parameter, a, and the

oxygen parameter u [42].
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The F2g(1) mode of the inverse ferrites, if only a translation of the tetrahedral unit

within the lattice, should not vary greatly. With the exception of Fe3O4, many of the

ferrites do have a similar F2g(1) frequency. Interestingly, even the normal ZnFe2O4,

has a similar F2g(1) mode.

Gasparov et al. reported small shifts in the A1g and F2g(3) modes for Fe3O4 with

small substitutions (1-4% by molar amount) of aluminum, nickel, and manganese

[110]. One of their main conclusions was that the frequency of these two modes

decreases as the ionic radius of the dopants increase. Work by Malavasi et al. on

AMn2O4 (A = Mn, Mg, Zn) shows a decrease in wavenumber of one of their reported

Raman-active modes upon an increase of the ionic radius [108]. Figure 9 plots the

wavenumbers of the Raman-active modes from the literature versus the ionic radii

(in pm) [111] for different chromites. The A1g, Eg, and F2g(2) modes decrease in

frequency with increasing ionic radius, but the decrease is entirely due to the Cd

cation. The F2g(3) mode shows no dependence on the ionic radius, with or without

the Cd data points.

The wavenumber of the spinel vibrational modes depend upon the lattice pa-

rameter of the spinel lattice. The lattice parameter of spinel decreases with in-

creasing pressure [112]. Wang et al. has performed many studies of various spinels

and reports that all of the detected vibrational modes increase with increasing pres-

sure [47, 48, 95, 97, 98]. As the distance between the positive and negative cations

gets smaller, the resulting electrostatic force will increase. The high pressure data on

chromites presented by Sawaoka et al. shows that the volume of MgCr2O4 decreases

by 5% as the pressure is increased to 8 GPa. [112] Wang et al. reports wavenumber

increases of 2 to 4 cm−1 per GPa for the Raman-active modes of MgCr2O4, NiCr2O4,

and ZnCr2O4 [47, 48]. Combining these two changes, using

∆ν

∆V
=

∆ν

∆P

∆P

∆V
, (4.1)
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Figure 9. The Raman frequencies of various chromites plotted versus the ionic radius
of the tetrahedral cation.

yields an approximate increase in the Raman shift of 0.32 to 0.64 cm−1 per 0.1%

decrease in unit cell volume.

Experimental work on solid solution spinels

Although there has been a large amount of experimental work on pure spinels, solid

solution spinel systems have not been examined to the same extent using vibrational

spectroscopy. The relationship between the vibrational modes and cation substitution

is complicated, as the vibrational modes can be dependent upon the mass of the

cations, the bonding forces, and the ionic radii. All these variables change with
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substitution of one cation with another.

Infrared absorption data exist on some spinel solid solutions. Preudhomme et

al. studied zinc spinels, chromites, and rhodites, which are all normal spinels, using

infrared spectroscopy [88]. They presented the dependence of the four infrared-active

modes upon the methodical exchange of either the divalent or trivalent cation for the

MgxCo1−xCr2O4 and ZnCrxRh2−xO4 series.

Basak and Ghose studied infrared spectra of three different substituted CuCr2O4

spinels [113]. Two of the solid solutions substituted the Cu2+ cation with Mg2+ and

Cd2+. The third substituted Cr3+ with Rh3+. They report a broadening of the ν1,

ν2, and ν3 modes for any lattice containing more than one atomic species of cation

on either the tetrahedral or the octahedral site.

The two higher frequency infrared-active modes are often broad [88]. Preudhomme

et al. instead refer to these two modes as regions of absorption as they notice distinct

shoulders or even splitting of these modes. They provided evidence that, for the

normal II-III spinels, these modes are dependent upon the trivalent octahedral cation.

Preudhomme et al. also examined the infrared-active modes of different II-III spinels

to test if the infrared-active modes depend upon the mass of the divalent or trivalent

cation [88]. For the compiled infrared data on different chromites, ACr2O4 with A =

Mg, Zn, Co, Ni, Mn, and Cd, they concluded that the lower-frequency infrared-active

modes have a small dependence on the mass of the divalent cation.

Work by Gupta et al. on mixed chalcogenides has shown good agreement for the

infrared-active modes [73]. Sinha also observed agreement with measured higher-

frequency infrared-active modes of the CuxMg1−xCr2O4 series, although a third mode

of lower frequency showed less agreement [77]. Himmrich et al. also performed cal-

culations on ZnCr2O4 which showed good agreement with experimental infrared and

Raman spectroscopic results [114].
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Raman spectroscopic studies of solid solutions of spinels is less common than

infrared absorption data. McCarty et al. studied the spinel system FexCr3−xO4 [45]

over the range of 1 ≤ x ≤ 3. Only the A1g mode was visible in all of their Raman

spectra. They observed that the wavenumber of the A1g mode is inversely proportional

to the lattice parameter of the FexCr3−xO4 system.

Nakagomi et al. studied the MgxFe3−xO4 spinel system and reported two A1g

phonons that they suggest to result from coexisting MgO4 and FeO4 tetrahedrons

[106]. They argue that the two-mode behavior results from the large mass difference

of the Fe and Mg cations. They also conclude that the increased tetrahedral site, due

to substituting Fe3+ with Mg2+, decreases the frequency of the vibrational modes.

Recently, Bahlawane et al. studied the cobalt-iron system Co3−xFexO4 and re-

ported the most significant effect on the A1g mode during the initial substitution at

the octahedral site of the spinel lattice, before the iron began entering the tetrahedral

sites and inverting the lattice [115]. The A1g mode developed a shoulder on the high-

frequency side of the mode, once inversion of the lattice began occurring. The Eg

mode suffered a smaller change, but this change was also observed during the initial

substitution, before inversion of the lattice occurred.

Malézieux et al. studied the MgCrxAl2−xO4 system by examining both natural and

synthetic spinel samples [116]. The A1g mode of their synthetic samples also shows

an inverse relationship between the wavenumber of this mode and the lattice param-

eter. The lattice parameter increases linearly, while the position of the A1g mode

decreases linearly from 760 cm−1 at the MgAl2O4 end of the series to 685 cm−1 at the

MgCr2O4 end. Malavasi et al. examined the tetragonally distorted Mg1−xMnxMn2O4

spinel system [108]. Their data also support the A1g mode wavenumbers as inversely

proportional to the lattice parameter of the spinel, although the shift in wavenumber

of the Raman-active mode is only approximately 1%.
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Identification of solid solutions in corrosion layers requires knowledge of the be-

havior of the vibrational modes over the entire range of composition. For example,

Cunha et al. made the assumption that the Raman peaks of solid solutions could

be fitted linearly between the two pure end-member spinels [24]. They wanted to

identify unknown oxide layers on corroded 316L stainless steel and recognized that

a solid solution spinel may be formed in the corrosion layer. They identified the in-

ner oxide layer as a mixture of Fe3O4, FeCr2O4, and Cr2O3 [24]. They reported an

outer oxide layer, consisting of Ni0.75Fe2.25O4 inverse spinel, with Fe3O4 also forming

in the intermediate layer. This identification of Ni0.75Fe2.25 will be inaccurate if the

frequencies of the Raman-active modes do not shift linearly upon nickel substitution

in Fe3O4.

Raman spectroscopic data are available in the literature for a number of pure

AB2O4 spinels oxides, but certainly not all. However, Raman data of solid solutions

is much more limited and fragmentary. In a solid solution of spinels, the wavenumber

shifts in vibrational modes upon composition change are not known experimentally,

or understood theoretically. Experimental data will be an invaluable asset for those

checking models and calculations of the vibrational modes of spinel.

Trends noticed from the compiled data of the Raman-active vibrations of spinels

can be examined from data on solid solutions. In addition, conclusions made by

other researchers regarding the behavior of these modes can be tested for general

application on all spinels.
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CHAPTER 5

EXPERIMENTAL SETUP

Three series of solid solution spinel oxides were synthesized, in order to study

the effect of cation substitution on the vibrational modes of spinel. A micro-Raman

spectrometer was constructed for the purposes of this research and will be discussed

in detail below. A Varian FTS FTIR spectrometer, fitted with a photoacoustic de-

tector, was also used for taking complementary infrared-absorption spectra on the

MgxNi1−xCr2O4 series. X-ray diffraction was performed on all samples using a Bruker

AXS D8 Advance Vario diffractometer with a Johannson-type primary monochroma-

tor.

LBE-corroded stainless steels were obtained from the Institute of Physics and

Power Engineering (IPPE) in Obninsk, Russia, on contract from Los Alamos National

Lab. The compositions of the three stainless steels are shown in Table 4. 316L

stainless steel is a stainless steel containing small amounts of carbon. D9 is a nuclear

grade stainless steel containing small amounts of titanium to help reduce void swelling

of the steel in a reactor environment [117]. Void swelling results from the neutron

flux within a reactor displacing atoms within the stainless steel lattice, creating voids.

HT9 stainless steel is a ferritic alloy which is common as cladding and structural

components because of its high-temperature strength and radiation tolerance.

Samples of these stainless steels were exposed in a LBE loop at the IPPE at

temperatures of 550◦C for 1000, 2000, and 3000 hours. The oxygen concentration

in the LBE was controlled and maintained at levels of 10−6% by weight. The steel
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Steel Fe Cr Si Ni C Mo Mn Ti W V

316L 66.12 17.3 0.35 12.1 0.02 2.31 1.8 - - -

D9 68.4 13.6 0.85 13.6 0.04 1.11 2.1 0.3 - -

HT9 84.65 11.95 0.4 0.5 0.2 1.0 0.57 - 0.4 0.33

Table 4. Elemental composition as a weight percent of 316L, D9, and HT9 stainless
steels.

samples were rods and hollow tubes of approximately 10 cm in length and 1 cm in

diameter. Cross sections were cut from the steels and mounted in epoxy so that the

corrosion layers could be better examined. Sample polishing was performed on the

samples using increasingly smaller grit. The final polish was performed with a 5 µm

diamond dust. Sample preparation was previously performed by Koury [60].

Spinel synthesis

Synthesis of the pure and solid solution spinels studied here closely follows a

simple combustion method described by other researchers [118, 119]. In a 100 ml

beaker, stoichiometric amounts of metal nitrates, purchased from Alfa Aesar and

of 98% or greater purity, was mixed with urea and a small amount of water, just

enough to dissolve the ingredients. The solution was then placed in a furnace set

to a temperature of approximately 375◦C for 15 to 20 minutes. In order to protect

the inside of the furnace from contamination caused by the explosive combustion

reaction, the 100 ml beaker was placed on top of another wide dish containing a

small amount of quartz wool at the base. Another beaker was then placed upside

down over the top of the 100 ml beaker. This setup allowed gases to escape from

the reaction through the quartz wool, but also filtered any spinel from being expelled

during the combustion. This multiple beaker setup can be seen in Figure 10.

The recipe for NiCr2O4 will serve as an example of the calculations necessary for

the synthesis of the spinels. A redox reaction of nickel(II) nitrate, Ni(NO3)2 · 6H2O,
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Figure 10. The combustion synthesis was contained within a series of beakers and
quartz wool. This setup was then placed and heated inside a furnace.

chromium(III) nitrate, Cr(NO3)3 · 9H2O, and urea, CO(NH2)2 yields NiCr2O4, CO2,

N2, oxygen, and water. The Ni2+ and Cr3+ remain at the same oxidation state, but

the nitrogens in the nitrates change from +5 to 0, while the nitrogens in the urea

change from −3 to 0. The carbon and hydrogen remain at +4 and +1, respectively.

Thus, every nitrogen from the nitrate requires five electrons to change from +5 to 0.

5e− + NO3 ⇒
1

2
N2 + 3O2− (5.1)

Every nitrogen from the urea gives up 3 electrons to change oxidation state from −3

to 0, for a total of 6 electrons from every urea molecule.

3O2− + CO(NH2)2 ⇒ CO2 + N2 + 2H2O + 6e− (5.2)

One Ni2+ and two Cr3+ ions are required for the spinel, indicating a total of 8 nitrogens

from the metal nitrates. These 8 nitrogens require a total of 40 electrons to change

to an oxidation state of 0, which are given up by 40/6 = 6.67 molecules of urea. The
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Figure 11. The foamy product of NiCr2O4 spinel immediately after synthesis.

resulting mole ratio of nickel nitrate : chromium nitrate : urea is 1:2:6.67.

The actual weights of the compounds must be calculated using the molecular

weights of the reagants, including the waters of hydration, as appropriate. The wa-

ters of hydration pass through the reaction without change. For NiCr2O4, 0.73 g of

Ni(NO3)2 · 6H2O, 2.00 g of Cr(NO3)3 · 9H2O, and 1.00 g of urea are required to bal-

ance the stoichiometry. The reactions of any of the other spinels and solid solution

spinels are essentially the same, since the number of nitrates do not change when

different cations of the same charge are selected. Reagents for synthesis of all spinels

were measured within 0.2% of the desired weight.

The combustion reaction produces a light, fragile foam that is easily crumbled

into a powder. The foam product is shown in Figure 11. The chromium end spinels
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produce a very light foam, whereas the iron end spinels are much more dense.

MgxNi1−xCr2O4 was synthesized using the above described method without need

for any additional treatment to the samples. 22 samples of this series were synthesized,

varying the magnesium content in increments of ∆x = 0.1, and each composition

being synthesized twice. The NiFexCr2−xO4 and FexCr3−xO4 series required additional

preparation to achieve the spinel phase for all samples within these two series.

On the high iron end of the NiFexCr2−xO4 series, the combustion synthesis did not

result in a high-crystalline spinel phase. XRD patterns of the as-synthesized samples

contained broad and weak diffraction peaks. Ramalho et al. synthesized NiFe2O4

and calcined the powder at 700◦C for two hours after the combustion reaction [120].

The samples in this series were all heated to 700◦C for 12 hours in air immediately

following the combustion synthesis. After this calcination, XRD patterns showed

more intense and sharp diffraction patterns, characteristic of the spinel phase. A

total of 22 different NiFexCr2−xO4 samples over the entire range of 0 < x < 2 were

synthesized and calcined. The iron content was varied by 0.1 between each sample,

with an additional sample having x = 0.05, to investigate only a small substitution

of iron into the NiCr2O4 lattice.

The FexCr3−xO4 system also required additional preparation after the combustion

process. Similar to the NiFexCr2−xO4 series, acquired XRD spectra of these samples

possessed only weak spinel phase diffraction peaks. As an example, Figure 12 displays

the XRD spectrum of an FexCr3−xO4 sample with x = 2.2 immediately after the

combustion reaction. Some samples also had crystallized with significant impurities

of a corundum phase instead of being entirely spinel. The XRD spectrum of a sample

of this series with x = 0.6 is shown in Figure 13. The peaks are characteristic of the

corundum phase. This was not too surprising as Fe3O4 is known to oxidize to the

α-Fe2O3 at high temperature [1, 121].
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Figure 12. X-ray diffraction pattern of the as-combusted Fe2.2Cr0.8O4. The diffrac-
tion spectra of many as-combusted FexCr3−xO4 samples were similar and exhibit
very weak spectra.

A reduction environment was assembled to reduce the secondary phase within

the as-combusted FexCr3−xO4 powders from the corundum phase to the spinel phase.

In a reducing environment, the following reaction occurs, which converts corundum

phase hematite into spinel phase magnetite:

6Fe2O3 ⇒ 4Fe3O4 + O2 (5.3)

This reaction can be performed using hydrogen gas, which removes oxygen from the

corundum phase to produce water and the iron-chromium spinel.

A sketch of the apparatus making up the reducing furnace can be seen in Figure 14.

A stainless steel guard tube, open at one end, was placed inside a Thermodyne 79300

vertical tube furnace. Inside this guard tube, a 2” diameter quartz tube was inserted,
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Figure 13. The XRD patterns of some FexCr3−xO4 samples were characteristic of
the corundum phase, instead of the spinel phase, immediately after combustion.

also open at the top. The open end of the large quartz tube was covered with an

attachment having two ports, to allow a reducing gas to flow in and out of the guard

tube. For holding a small amount of the powder sample, a 0.25 in. quartz tube was

sealed at one end, and a window was cut 1” from the end, where the powder could

be stored. This quartz tube was slid into one of the ports on the top of the 2” quartz

tube. The reducing gas was a mixture containing 2% H2 and 98% argon. The gas

flow was controlled at 20.0 sccm with a MKS Mass-Flo gas flow controller. The gas

inlet was connected directly to the 0.25 in. quartz tube containing the sample. The

window allowed gas to escape the quartz tube and eventually exit the system through

the second port on the top piece. The temperature of the furnace was set to 700◦C.

The sample was allowed to reduce overnight and cooled to room temperature over a
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Figure 14. Schematics of the reducing furnace. The FexCr3−xO4 series required
heating to 700◦C in a reducing environment of a hydrogen and argon gas mixture.
The sample was placed at the bottom of the quartz tube.

period of eight hours under gas flow.

The literature examines the iron content range of 1 ≤ x ≤ 3 for FexCr3−xO4

[122–124]. This begins with FeCr2O4, where Fe2+ occupies the tetrahedral position.

From 1 ≤ x ≤ 3, Fe3+ is substituted for Cr3+. Samples over the range of 0.8 ≤ x ≤ 3,

and in increments of 0.2, were synthesized and studied in this work.

X-ray diffraction

The Bruker D8 Advance diffractometer uses a copper source with Kα1 wavelength

of 1.54063 Å. Scans were done over a 2θ range of 10 to 120 degrees with a step size
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of 0.008 degrees. Acquisition time was four hours. Topas 4.2 software was used to fit

the x-ray diffraction patterns using the Pearson VII peak function, an approximation

of the Voigt function.

X-ray diffraction was performed on all synthesized samples to prove that the syn-

thesis process actually produced the desired spinel phase. X-ray diffraction patterns

were calibrated using a high-crystalline silicon standard. The silicon powder was

mixed with the spinel powder in an approximate 1:5 weight ratio of silicon to spinel.

The mixture was then mixed and ground in an agate mortar before being placed

onto the sample stage. A few drops of alcohol were then added onto the powder to

create a slurry that could be evenly spread across the surface of the sample stage.

The alcohol does not react with the any of the spinel samples. The Topas software

was used for the analysis of the diffraction data and for determining the lattice pa-

rameters of the spinels. The silicon standard is exclusively fitted first to provide the

calibration for the x-ray diffraction pattern. The x-ray diffraction pattern of silicon is

well known [125]. The NIST-quoted positions of these lines using the Kα1 radiation

of copper are shown in Table 5.

The diffraction spectrum of spinel is very different than the spectrum of another

common phase of metal oxides, the corundum phase, shown in Figure 13. A diffraction

spectrum acquired with the Bruker diffractometer of Fe1.4Cr1.6O4, containing the

silicon standard used for calibration, is shown in Figure 15.

Typically, the XRD pattern of most of the samples showed that a very small

amount of the crystalline sample, usually less than 3%, of the powder, existed as the

corundum phase. The most likely product would be either Cr2O3 for the chromite

samples and α-Fe2O3 for the ferrite samples, or a solid solution of α-Fe2O3 and Cr2O3.

56



hkl Angle (2θ)
111 28.439

220 47.297

311 56.115

400 69.120

331 76.365

422 88.017

511 94.937

440 106.690

531 114.071

620 127.516

533 136.858

Table 5. The XRD spectral lines of the silicon standard used for calibration.

Determination of lattice parameters

Spinel is a cubic lattice, and thus only a single lattice parameter is required to

define the dimensions of the unit cell. As described above, knowing the angle of

the diffraction peaks for all of the Miller planes determines the lattice parameter a.

Because each peak gives a value for the lattice parameter, an average can be calculated

using all of the diffraction peaks from a diffraction spectrum. The Topas software

uses the Rietveld refinement method to determine the lattice parameter of the crystal

structure [55]. The oxygen parameter u was also refined during the process. The x-

ray diffraction spectrum of MgCr2O4 with a silicon standard, the Rietveld fit and

residual is shown in Figure 16.

Table 6 shows good agreement of the lattice parameters of the pure AB2O4 spinels

synthesized in this work with values reported from literature. The weighted profile

R-factors for refinements from all samples were usually between 1.0 and 3.0. The full

results of the Rietveld refinements can be seen in Appendix A
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Figure 15. X-ray diffraction pattern of Fe1.4Cr1.6O4 spinel powder mixed with a
high-crystalline silicon standard. The x-ray diffraction data is in black. The Rietveld
fit and residual is in red and blue, respectively. Full Rietveld refinement results is
located in Appendix A.

Infrared photoacoustic spectroscopy

Fourier transform infrared spectroscopy (FTIR) is a common technique used for

measuring the infrared-active vibrational modes of a sample. Light from a broad

spectrum infrared source is collimated and sent into an interferometer. The interfer-

ometer contains a beamsplitter that divides the light into two separate paths where

one light path is reflected from a movable mirror. The other beam is reflected from a

fixed mirror. A path length difference between the two beams creates an interference

pattern when the beams recombine, which contains the intensity information of all

wavelengths from the infrared source. A computer can then calculate the Fourier
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Figure 16. X-ray diffraction pattern of MgCr2O4. The fit from the Rietveld refine-
ment is shown in red and the residual is shown in blue. The Rwpfor the fit is 2.90.
Full Rietveld refinement results are located in Appendix A.

Spinel This work literature

MgCr2O4 8.3344(2) 8.3329(1) [52], 8.3341 [126]

NiCr2O4 8.3185(3) 8.3186 [127]

NiFe2O4 8.3389(2) 8.3391 [127]

FeCr2O4 8.3771(2) 8.3765(2) [52]

Fe3O4 8.3908(4) 8.398(1) [45]

Table 6. Lattice parameters of synthesized spinels. Full Rietveld refinement results
are located in Appendix A.

59



transform of the detected signal to determine the intensities of all of the frequencies

contained within the infrared light.

Photoacoustic spectroscopy is a method for measuring the infrared absorption of a

sample by detecting induced heating within the sample. The induced heating creates

thermal waves that transfer to a gas that fills the sample chamber. A microphone

detects the acoustic waves from the gas.

Infrared data on the MgxNi1−xCr2O4 series were acquired with a Varian FTS FTIR

spectrometer equipped with a photoacoustic detector. The low frequency limit of the

equipment is 375 cm−1, above the lowest-frequency IR-active mode. Therefore, only

three of the four infrared-active modes are reported for the MgxNi1−xCr2O4 series.

Raman microscope

Raman microscope systems have the advantage of obtaining good spatial resolu-

tion by focusing to a spot size on the order of only a few micrometers using a focusing

objective lens. However, lasers are intense sources of light, and this small spot size

creates a very high power density on the sample, which can lead to significant sample

heating. Heating of the sample results in broadening of the Raman-active modes,

as well as shifts to lower frequencies, due to the vibrational modes of a heated sam-

ple requiring less energy to excite. This heating may also lead to oxidization of the

sample.

The Raman microscope system was constructed specifically for use in the present

work, and thus will be explained in detail. A simple diagram of the major components

of the micro-Raman system is shown in Figure 17, and a picture of the laboratory

setup is shown in Figure 18.

The excitation source is a Lexel RamanIon krypton ion laser tuned to 647.1 nm.

The power output was most commonly set to a very low power of about 5 mW,
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Figure 17. Schematic of the micro-Raman spectrometer.

though the power was further reduced by neutral density filters, to prevent heating

effects, as described above, that could lead to shifted Raman peaks or damaged

samples. There is also access to a Spectra-Physics BeamLok argon ion laser tuned to

514.5 nm. This gives the option for an alternative excitation source if fluorescence or

other problems arise with the krypton laser. For example, the fluorescence from the

green-colored Cr2O3 powder due to excitation from the krypton ion laser overwhelmed

the Raman spectrum. However, the excitation with the argon laser does not result in

the fluorescence, and the Raman spectrum is easily detected from the background.

The laser light passes through a spatial filter containing a 10 µm pinhole, be-

fore being sent to the entrance port of a Nikon MM-40 Measuring Microscope. A

beamsplitter with an anti-reflective coating on one side, to prevent interference from

reflections at both the top and bottom surfaces, directs the light down through the

microscope objective to be focused onto the sample. The objective also collects the

scattered light from the sample, where the light travels back up through the beam-
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Figure 18. Photograph of the micro-Raman spectrometer. The krypton ion laser
is located underneath the optical table. The beam is directed up through the hole
seen at the bottom right corner of the image.

splitter to the exit port of the microscope.

A 50X objective was used for most data collection. In the event of sample heating,

detected in the FexCr3−xO4 series by the appearance of Raman-active modes char-

acteristic of the corundum phase, a 10X or 20X objective or neutral density filters

were used to further cut down the power density. If used, the neutral density fil-

ters were placed between the spatial filter and the entrance port of the microscope.

Alternatively, the sample could be left out of the field of focus to reduce the laser

intensity. These methods reduce the intensity of the Raman signal and require longer

acquisitions to compensate for the weak signal. Acquisition times of fifteen minutes

were required for many samples.

An experiment was performed to determine the focused spot size of the laser
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Figure 19. The spot size of the focused laser was determined by a simple razorblade
experiment.

on the sample. The laser was focused through the 50X microscope objective onto

a razorblade. The intensity of laser reflection was recorded as the razorblade was

moved out of the beam path in 0.25 µm increments. The micrometer drive was only

accurate down to 0.5 µm increments, so a simple lever arm was constructed to reduce

the effective movement by a factor of two. This procedure was performed five times,

giving a spot size of 3.3 ± 0.2 µm. Results from one of the trials can be seen in

Figure 19.

The lowest power setting available to the krypton laser is approximately 5 mW.

However, after passing through the spatial filter and beamsplitter within the micro-

scope, only about 1 mW is incident upon the sample. Even with this low power, the

focused laser spot leads to an intensity of approximately 25 W/mm2, high enough

to cause noticeable heating effects or thermal broadening on many samples. Two
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neutral density filters could be placed in the beam path to further cut down the

power to approximately 0.5 mW or 0.1 mW, if necessary. Most spectra were acquired

with 0.5 mW of laser intensity at the sample. The FexCr3−xO4 series was especially

sensitive to laser power, and the power was kept to 0.1 mW to prevent sample heating.

The microscope objective collects and collimates the scattered light. This light

passes through the beamsplitter within the microscope and exits the upper port of

the microscope, where it is directed to the monochromator. A double convex lens of

focal length 45 mm focuses the light onto the entrance slit of a Horiba Jobin-Yvon

Triax 550 monochromator. The monochromator contains a grating of 600 lines/mm

and is blazed at a wavelength of 500 nm. The collimated light from the 50X objective

has an approximate diameter of 2 mm at the 45 mm focal length lens. This setup

adequately matches the 6.4 f-number of the monochromator to fill the mirrors within

the monochromator. The f-number f/# of an optical system is given by

f/# =
f

A
, (5.4)

where f is the focal length of the lens and A is the aperture diameter of the light.

A Princeton Instruments liquid nitrogen cooled Spec 10 CCD detector was used for

photon counting. The temperature of the CCD was maintained at -120◦C during data

acquisition. The CCD has a width of 1340 pixels that must be manually calibrated

for wavelength position.

A Kaiser Optical Systems, Inc. holographic notch filter was placed in the light path

between the exit port of the microscope and the focusing lens into the monochromator

to eliminate the intense Rayleigh scattered light, which would quickly saturate the

detector, and hide any Raman-scattered light at small wavenumbers. The notch filter

allows the monochromator to detect Raman-scattered photons as low as 100 cm−1.

The microscope stage accommodates for a wide range of sample sizes. A large

1” thick sample is as easily accommodated as a microscope slide. The stage has
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micrometer drives for three-axis motion. The standard oxide powders and synthesized

spinel powders were placed on a microscope slide and put under the objective of the

Raman microscope. The microscope has a viewport for visual inspection of focusing

the laser upon the sample. This allows different spots on a sample to be inspected,

such as the cross-section samples of the LBE-corroded stainless steels, where the

different corrosion layers may give different Raman spectra.

Software and calibration

The WinSpec software used for data acquisition from the CCD can communi-

cate with the detector, but cannot communicate with the monochromator. Separate

software controls the grating within the monochromator, and allows a selected wave-

length to be centered on the detector. However, the software does not know this

position or the dispersion of the grating. Therefore, any time the grating position is

adjusted, the spectral range falling on the detector must be calibrated. Calibration

is achieved using a UVP brand neon pen-lamp. Neon has many emission lines in the

650-700 nm range [128], where Raman shifts from the 647.1 nm excitation source are

located. This range of wavelengths corresponds to Raman shifts of approximately

50 to 1500 cm−1. The neon spectral lines are fitted with a Gaussian profile. A new

calibration is acquired every day, even if the grating was not moved from the previous

day.

To check the accuracy of the calibration, the emission lines of argon visible at a

grating position of 705 nm, were examined. The neon calibration spectrum, shown in

Figure 20, was analyzed and used as a calibration for the argon spectrum, shown in

Figure 21. As can be seen in Table 8, the agreement between these lines and literature

is very good.

To check the precision of the calibration method, several neon spectra were ac-
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Neon lines (nm)

653.29

659.90

667.82

671.70

692.95

702.41

703.24

705.91

717.39

Table 7. Neon emission lines used for calibration of spectrometer at grating positions
of 670 nm and 700 nm [128].

quired and fitted. During the course of a single day, five new neon calibration spectra

were acquired without moving the grating within the monochromator. At the grating

position of 670 nm, four neon lines are detected within the 1340 pixel width of the de-

tector. The standard deviation of the positions of these lines is 0.6 pixels. These neon

calibration spectra were then applied to a previously acquired α-Fe2O3 spectrum to

check the variability in the Raman peak centers after WinSpec had performed a linear

fit using data from each individual neon calibration. The standard deviation in the

α-Fe2O3 Raman-active modes using the five different neon calibrations is 0.3 cm−1.

This is the same deviation arrived at for the uncalibrated system, because at this

grating position, each pixel represents approximately 0.5 cm−1.

Peak fitting

SeaSolve PeakFit software was used for fitting of all spectral peaks, to determine

wavenumbers and intensities of spectral lines. The background is fitted with a third

order polynomial and subtracted from the spectrum. The spectra are also cleaned

of random noise spikes with the software. As phonons behave identically throughout
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Figure 20. Uncalibrated neon emission spectrum at a grating position of 705 nm.
The x-axis represents the 1340 pixel width of the CCD detector.

the crystal system, Raman peaks are fitted using Lorentzian profiles. Emission lines

from the neon pen lamps were fitted with Gaussian line profiles, due to the thermal

broadening of the heated neon gas within the lamp.

As an example of an extreme background subtraction, a raw spectrum of Cr2O3

using the krypton laser is shown in Figure 22. This spectrum has a large slop-

ing background due to sample fluorescence from the 647.1 nm excitation line. The

flourescence is caused from the laser energy exciting an electronic level of Cr2O3 and

emitting photons of longer wavelengths as the electrons relax to the ground state.

The same spectrum, with a third order polynomial fitted to the background and

subtracted, is shown in Figure 22. A random noise spike, that is also seen at low

wavenumbers in the original spectrum, has also been removed with the program.
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Figure 21. Argon spectrum at a grating position of 705 nm. The x-axis has been
calibrated to the neon lines visible in this spectral range.

This work NIST [128]

696.56(2) 696.54

703.02(8) 703.03

706.68(2) 706.72

714.70(2) 714.70

Table 8. Argon emission lines, in nm, measured in this work compared, to NIST
spectral tables.
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Error analysis

Raman data was acquired at several spots on all samples studied. Raman spectra

were fit using the PeakFit software which calculates the standard error of the peak

centers used in the fit. A weighted mean was calculated for the Raman shift of all

modes of the synthesized solid solutions using the peak centers and uncertainties

determined by PeakFit for all acquired spectra. The weighted mean is given by

x =
Σ(xi/σ

2
i )

Σ(1/σ2
i )

, (5.5)

where xi is the wavenumber of the mode from each fitted peak, and σi is the uncer-

tainty in the position of each peak. The uncertainty of the peak center is calculated

using the standard deviation of the average added in quadrature with the uncer-

tainty of the weighted mean. This was done because the peak centers of any given

composition were occaisonally outside of the uncertainties reported by PeakFit.

69



100 200 300 400 500 600 700 800

 

In
te

ns
ity

Raman Shift (cm-1)

(b)

 

In
te

ns
ity

(a)

Figure 22. (a) Using PeakFit, a third order polynomial has been fitted to the
background and subtracted from the Raman spectrum of Cr2O3 acquired using the
krypton laser as the excitation source. (b) The raw spectrum of Cr2O3 showing the
fluorescence background resulting from the krypton laser.
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CHAPTER 6

OXIDE STANDARDS

Standards are used to confirm that the micro-Raman system is working properly

as the vibrational spectra of common standards are well characterized, and acquired

data can be compared to literature. Several powder oxide standards were purchased

and studied with the Raman system developed in the present work. The α-Fe2O3,

Fe3O4, and Cr2O3 powder standards are brand Alfa Aesar and are greater than 99.9%

pure.

Hematite, α-Fe2O3

Hematite, α-Fe2O3, is the common culprit when iron rusts and erodes. The powder

sample from Alfa Aesar is a red powder, and thus is a very strong Raman scatterer

under the red 647.1 nm excitation source. Because of the strong Raman signal,

α-Fe2O3 was often used as a quick signal check to verify that the Raman system was

aligned and working properly.

The spectrum of α-Fe2O3, shown in Figure 23, is well known and will not be

examined in detail [1]. However, the spectrum does give a good opportunity to

recognize the resolution capabilities of the micro-Raman system. This spectrum was

acquired at a very low laser power of 0.1 mW, achieved with neutral density filters.

Without the neutral density filter, there is enough heating of the sample that thermal

broadening makes the 291 and 298 cm−1 modes difficult to resolve. In agreement with

de Faria et al., the peak at approximately 295 cm−1 is identified as a superposition of

the 291 and 298 cm−1 peaks. This peak resolved into two peaks is shown in Figure 24.
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Figure 23. Raman spectrum of α-Fe2O3. The laser power at sample is approximately
0.1 mW. The red lines indicate the position of the intense α-Fe2O3 modes and will
be used in other figures for reference.

The Raman spectrum of α-Fe2O3 is well known, and as evident from Table 9, there

is very good agreement of the seven Raman-active modes between data acquired in

this work and the literature [1].

Magnetite, Fe3O4

Magnetite is an inverse spinel structured oxide, containing both Fe3+ and Fe2+

cations. The inversion indicates that the Fe3+ cations occupy the tetrahedral and half

of the octahedral sites, whereas the Fe2+ iron cations occupy the remaining octahedral

sites. The formula for magnetite is occasionally written as Fe3+(Fe2+Fe3+)O4, where

the parentheses represent equal occupancy of the octahedral site by the divalent and

trivalent iron. The extra electron on the octahedral site can move around and thus
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Figure 24. The two α-Fe2O3 modes at 291 and 298 cm−1 can be fit accurately with
two peaks using PeakFit.

This work de Faria et al. [1]

226.0(3) 226.7

245.4(4) 245.7

291.8(3) 292.5

298.6(3) 299.3

410.8(3) 410.9

498.5(5) 497.1

612.8(4) 611.9

Table 9. Raman-active phonons, in cm−1, of α-Fe2O3 compared to literature.
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Figure 25. Raman spectrum of Fe3O4. The blue lines indicate the positions of the
Fe3O4 modes, and will be used in other figures for reference.

a valency of +2.5 is occasionally stated for the average valency of the iron occupying

the octahedral site.

A Raman spectrum of Fe3O4 is shown in Figure 25. The Raman spectrum of

Fe3O4 is also relatively well known, though there is no universal acceptance for the

wavenumbers of the lower frequency modes, as evidenced in Table 10. Most of the

literature reports a large peak around 670 cm−1 as the A1g phonon. This peak is

easily observed with the Raman microscope in this experiment. Intensities of the

other phonons are very weak, and only the Eg and F2g(3) phonons were detected in

the present work.

Fe3O4 easily oxidizes into α-Fe2O3 upon heating in air, which has been reported

numerous times [1,51,121,129]. The effect is easily observed with our Raman system,
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This work [45] [1] [51]

F2g(1) - - 193

Eg 295(2) - 301.6 306

- - 513.0 -

F2g(3) 531(2) 542 533.6 538

A1g 667(1) 671 662.7 668

Table 10. Raman-active phonons of Fe3O4, in cm−1, compared to literature.

as shown in Figure 26. Increasing the laser power that illuminates a sample of pure

Fe3O4 powder begins to show α-Fe2O3 modes in the Raman spectra above approxi-

mately 1 mW of laser power. The peaks shift to lower wavenumbers with increasing

temperature resulting from the increasing laser power. Also, a visible red-colored

spot appears on the black-colored magnetite sample where the laser is incident on the

powder. The oxidation to α-Fe2O3 is permanent; lowering the laser power does not

cause the sample to revert to Fe3O4.

Fe3O4 does not immediately transition to α-Fe2O3. The literature reports an

intermediate transition through maghemite, γ-Fe2O3 [1]. γ-Fe2O3 also crystallizes

into the spinel structure containing only Fe3+, with 1/6 of the octahedral sites vacant

[129, 130]. The Raman spectrum of maghemite has three broad features located at

350, 500, and 700 cm−1 [1, 67, 131] and is easily recognized in Figure 26.

The temperature at which these conversions occur is only a few hundred degrees

above room temperature. The literature differs slightly on the exact temperature.

De Faria et al. reports that the conversion of magnetite to maghemite occurs at

approximately 200◦C, and the subsequent conversion to hematite occurs at 400◦C [1].

Shebanova et al. studied magnetite at increasing laser powers and report that the

hematite conversion began at 300◦C, but did not report an intermediate γ-Fe2O3

phase [121].

75



200 300 400 500 600 700 800 900

M

H
H

H

H

In
te

ns
ity

Raman Shift (cm-1)

in
cr

ea
si

ng
 la

se
r p

ow
er

low laser power

-Fe2O3

H

Figure 26. Raman spectra of Fe3O4 as a function of increasing laser power from
the krypton ion laser. γ-Fe2O3 features appear just before the α-Fe2O3 features
dominate the spectrum, indicating permanent conversion to α-Fe2O3. In the top
spectrum, (H) marks α-Fe2O3 modes and (M) marks the only visible Fe3O4 mode.

Spectra acquired from a single spot on Fe3O4 powder, taken as a function of in-

creasing laser power, can be seen in Figure 26. The broad maghemite features appear

just before the intense hematite modes dominate the spectrum. The permanence of

the conversion is evident. The Raman spectrum is still characteristic of hematite

after lowering the laser power back to the original low power, as evident in the top

spectrum of Figure 26. Nevertheless, the sample is not completely converted. The

main A1g peak of the Fe3O4 powder is still visible in all spectra.

The A1g mode of the intermediate γ-Fe2O3 phase was fitted with two peaks, to

represent the occupied and unoccupied octahedral sites. The low-frequency side of

the mode has a frequency of 669 cm−1, in agreement with the A1g mode of Fe3O4,
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647.1 nm 514.5 nm Mougin et al. [44]

305 310 296.3

353 351 350.4

530 531 528.5

556 552 554.2

617 609 615.0

Table 11. Raman-active phonons, in cm−1, of Cr2O3, acquired with the krypton
(647.1 nm) and argon (514.5 nm) lasers, compared to literature.

which would represent the octahedral sites occupied by iron. The high-frequency side

of the mode is located at 710 cm−1, in agreement with Boucherit et al., who also

report 710 cm−1 for the high-frequency side of this mode [67]. This may be evidence

of this shoulder of the A1g mode being due to vacancies on some of the octahedral

sites.

Chromium oxide, Cr2O3

The green chromium oxide powder, Cr2O3, also has a well characterized Raman

spectrum [44]. The powder fluoresces under the red 647.1 nm excitation source and

the large amount of longer wavelengths emitted from the fluorescence creates a large

background that overwhelms the Raman spectrum, as shown previously in Figure 22.

This motivated the use of the argon ion laser, tuned to 514.5 nm. The spectrum is

seen in Figure 27, demonstrating that the use of the green excitation source eliminated

the fluorescence background from the Raman spectrum of Cr2O3. The Cr2O3 lines

detected with both the krypton laser (Figure 22) and argon laser (Figure 27) agree

well with the literature, as seen in Table 11.
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Figure 27. Raman spectrum of Cr2O3 taken with the 514.5 nm emission line of an
argon laser. The green lines represent the positions of Cr2O3 Raman-active modes
and will be used in other figures for reference.
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CHAPTER 7

CHROMITES & FERRITES

All of the spinels synthesized and studied in the present work are II-III spinels,

having +2 and +3 cations occupying the tetrahedral and octahedral sites of the

lattice. The lattice parameters of all synthesized AB2O4 spinels, determined from the

x-ray diffraction data, are shown in Table 6 and agree well with the literature. Full

Rietveld refinement results are shown in Appendix A.

FeCr2O4

Iron chromite, FeCr2O4, is a normal spinel, with Fe2+ occupying all of the tetra-

hedral sites of the lattice. FeCr2O4 is a very common element within the Earth,

and it is surprising that little Raman data exists on this mineral in its pure form.

Existing data is often from natural chromite ore samples containing magnesium and

aluminum impurities. The Raman-active modes from different studies are listed in

Table 12. FeCr2O4from the present study is also included. The FeCr2O4 data from

Wang et al. is obtained from a sample that contains 3.5% Al2O3 by weight, and 8%

Mg in the tetrahedral sites [9]. The meteorite sample from Chen et al. contains ap-

proximately 2.5% MgO, 3% TiO2, and 6% Al2O3, by weight percent [19]. McCarty

et al. only assign the intense peak at 686 cm−1 as the A1g mode [45].

The Raman spectrum of FeCr2O4 can be seen in Figure 28. The spectrum is very

similar to the Raman spectrum of Fe3O4. Only two modes are intense enough to be

distinguished from the background noise. The A1g phonon is located at 678 cm−1,

greater than the A1g position of Fe3O4, located at 667 cm−1.
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This Work [45] [9] [19]

F2g(3) 531(1) 522 500

595

shoulder 635(2) 639 631

A1g 678(1) 686 684 677

Table 12. Raman-active phonons, in cm−1, of FeCr2O4 compared to literature.
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Figure 28. Raman spectrum of FeCr2O4.
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Figure 29. X-ray diffraction spectrum of MgCr2O4.

MgCr2O4

Magnesium chromite, MgCr2O4, is also a normal spinel. The x-ray diffraction

spectrum of MgCr2O4, characteristic of all of the spinels, can be seen in Figure 29.

The synthesized spinel contains less than 2% corundum phase impurity. Four out of

the five predicted Raman-active modes, reported by Wang et al. [48], are detected.

These detected modes of MgCr2O4 are shown in Figure 30, and agree well with the

literature [48].

Acquired spectra from multiple spots on the sample demonstrated nonuniformity:

two additional modes were detected in some of the spectra, as shown in Figure 30(a).

Wang et al. suggest that the 361.9 and 792.1 cm−1 features they detected may be

due to partial inversion of the Mg2+ and Cr3+ cations [48]. Cation disorder has often
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Figure 30. Two different Raman spectra of MgCr2O4: one (a) with additional
Raman-active mode, and (b) after heating the sample to 700◦C for 24 hrs, the extra
modes are not detected. The green reference lines indicate the wavenumbers of the
Raman-active modes of Cr2O3.

been attributed as the cause of the extra features in the Raman spectrum of MgAl2O4

spinel [2,7,40]. The second additional feature is a shoulder on the high-frequency side

of the F2g(2) mode. This shoulder was detected in all spectra showing the 351 cm−1

feature, indicating that they are due to the same phenomenom. This phonon was

not reported by Wang et al. in their work [48]. The wavenumbers of these additional

modes match very well with the spectrum of Cr2O3, and are indicated by the green

lines in Figure 30. The additional features are removed after heating the sample to

700◦C for a period of 24 hrs and all spectra acquired from different spots on the

sample then resemble Figure 30(b).

Extra phonons in the Raman spectra of MgAl2O4 have been previously attributed
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This work Wang et al. [48]

- 226.5

350(2) 361.9

446(1) 446.9

542(1) 544.1

612(1) 614.1

685(1) 686.8

- 792.1

Table 13. Raman-active phonons of MgCr2O4 compared to literature.

to cation inversion [2,7,40]. However, work by Cynn et al. who show that the cation

disorder occurs in natural spinels after increasing the temperature to 1200K and

remains so after quenching [7]. Because no additional features appear after heating

the sample to 700◦C, the extra modes are probably not a result of cation disorder,

and instead due to the small amount, roughly 3%, of Cr2O3 detected in the sample

by x-ray diffraction.

The Raman-active mode reported by Wang et al. at 226.5 cm−1 [48] was not

detected in the spectrum of pure MgCr2O4 acquired in this study. The feature is

probably too weak to be distinguished from the background, since Wang et al. also

show a very weak intensity for this mode [48]. Evidence that a feature exist in this

area is supported by examining the entire MgxNi1−xCr2O4 series, presented in the

next chapter, and noticing that the lowest F2g(1) mode increases from 190 cm−1 at

x = 0 to 210 cm−1 at x = 0.9. This F2g(1) mode decreases in intensity as the

magnesium content is increased.

NiCr2O4

NiCr2O4 undergoes a first order phase transition to spinel at approximately 310 K

from the tetragonal space group I41/amd [132–134]. This is due to a Jahn-Teller dis-
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tortion of the Ni2+ tetrahedron [54]. As Dunitz et al. report, the Jahn-Teller distortion

exists above the 310 K, but the random orientation of the distortion within the spinel

lattice makes the lattice appear statistically as spinel phase [54]. Only below the tran-

sition temperature does the lattice become ordered enough to identify the tetragonal

distortion. As the transition temperature is very close to room temperature, XRD

data reflects the presence of the tetragonal NiCr2O4 phase.

Wojtowicz reported the coexistence of cubic and tetragonal phases of NiCr2O4

between 27◦C and 34◦C [134]. At 27◦C, the c/a ratio of the tetragonal phase is 1.022,

and never decreases below 1.016 within the phase transition temperature range.

Several NiCr2O4 samples were synthesized and treated differently following the

combustion synthesis. Several samples were left untreated following the combustion.

Two samples were heated in air: one was heated to a temperatures of 400◦C, the

other heated to 700◦C. One sample was cooled to -10◦C by placing it into a common

freezer for 48 hrs. Another sample was placed into the reducing environment of

flowing hydrogen and argon gas at a temperature of 500◦C for 24 hrs, as detailed in

the synthesis section. X-ray diffraction was performed on all of these samples and

repeated on some of the untreated samples. Both the spinel and tetragonal phases are

detected in all samples in varying amounts. Performing a Rietveld refinement with

only the I41/amd or spinel phase results in a very poor fit compared to the refinement

using both cubic and tetragonal phases. Repeated data on untreated samples showed

inconsistent ratios between cubic and tetragonal NiCr2O4. This may be a result of

fluctuating temperatures within the XRD laboratory. The temperature of the room is

controlled by the air conditioning unit of the room. The temperature of the samples in

the Bruker instrument was not measured by the instrument. It is also possible that

the grinding the powder for prepartion may trigger the tetragonal transformation.

Full Rietveld refinement results on the NiCr2O4 samples is shown in Appendix A.
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Figure 31. Diffraction spectrum of NiCr2O4 heated to 700◦C in air. A smaller angle
selection is shown to emphasize the splitting of the NiCr2O4 diffraction peaks, which
is due to the presence of tetragonal phase NiCr2O4, in addition to the spinel phase.

The diffraction spectrum of NiCr2O4 heated to 700◦C in air can be seen in Fig-

ure 31, which is characteristic of all NiCr2O4 samples. The samples were fitted with

both spinel and tetragonal phases within the powder samples, indicating varying

ratios of spinel to tetragonal phase present. However, the lattice parameters are

consistent among the different samples and agree well with the literature. Table 14

displays some of the prepared NiCr2O4 samples compared to previous work.

The c/a ratio for the tetragonal phase of all samples is between 1.022 and 1.016,

lending support to the hypothesis that the samples are within the two-phase region

of the transition range. During this two-phase regime, there should be a correlation

between the amount of cubic and tetragonal phases, and the c/a ratio of the tetragonal
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lattice parameter (Å)

NiCr2O4 spinel tetragonal

Crottax et al. [132] a = 8.3155(7) a = 5.8369(4)

c = 8.4301(6)

Ziemniak et al. [127] a = 8.3186 a = 5.8418

c = 8.4337

Untreated sample a = 8.3178(3) a = 5.8412(2)

c = 8.4275(4)

Cooled to -10◦C for 48 hrs a = 8.3185(3) a = 5.8405(2)

c = 8.4329(4)

Reduced at 500◦C for 24hrs a = 8.3189(3) a = 5.8414(3)

c = 8.4290(5)

Table 14. Lattice parameters of cubic and tetragonal NiCr2O4. The first two are
values reported from the literature [127,132] while the latter three are samples from
the present work.

phase, although, as Wojtowicz reports, the ratio should not fall below 1.016 [134].

Figure 32 plots the c/a ratio versus the ratio of the amount of cubic phase to tetragonal

phase. The correlation is not strong, but is consistent with a decreasing c/a ratio as

the proportion of spinel phase NiCr2O4 increases. The uncertainties of each ratio were

calculated by summing the individual percent uncertainties of a and c in quadrature.

The introduction of another cation into the tetrahedral position of the lattice, such

as Fe3+ or Mg2+, removes the Jahn-Teller distortion at this temperature. No XRD

spectra on Mg0.1Ni0.9Cr2O4 or NiFe0.05Cr1.95O4 exhibited the tetragonal distortion,

and instead resemble the x-ray diffraction spectrum shown in Figure 29.

The Raman spectrum of NiCr2O4 is shown in Figure 33. Four of the five Raman

lines predicted for spinel are detected here. The Eg and F2g(2) modes agree well

with the spectrum reported by Wang et al. [47], shown in Table 15. There is a small

deviation to smaller wavenumber for the F2g(1) and A1g modes. The F2g(3) mode

was too weak to be distinguished from the background. Wang et al. locate this mode
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Figure 32. c/a ratio of tetragonal phase NiCr2O4 as the amount of cubic phase
increases. A line is drawn as a rough guide for the eye.

at a Raman shift of 580 cm−1.

NiFe2O4

NiFe2O4 is an inverse spinel, with the tetrahedral sites completely filled with

Fe3+, and the octahedral sites occupied in equal molar amounts by the remaining

Fe3+ and Ni2+ cations. This inversion occurs because nickel has a higher preference

for the octahedral sites than iron [50]. The Raman spectrum of NiFe2O4 is shown

in Figure 34 and agrees well with the literature [64]. The F2g(2), F2g(3), and A1g

modes all have shoulders. Graves et al. examined a single crystal sample of NiFe2O4

to identify the character of some of these shoulders [109]. They assigned the low-

frequency shoulder of the A1g mode as having Eg character and the low-frequency
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Figure 33. Raman spectrum of NiCr2O4.

NiCr2O4 This work Wang et al. [47]

F2g(1) 191(1) 181

Eg 429(1) 425

F2g(2) 508(1) 511

F2g(3) - 580

A1g 676(2) 686

Table 15. Raman-active phonons of NiCr2O4 compared to literature.
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Figure 34. Raman spectrum of NiFe2O4.

shoulder of the F2g(3) mode as having A1g character. The position of the Raman

lines and shoulders can be seen in Table 16.

A possible explanation of these extra modes is the inversion of the NiFe2O4 lattice.

The existence of both Fe3+ and Ni2+ occupying the octahedral sites leads to separate

vibrational frequencies for the NiO6 and FeO6 octahedra. The A1g mode of LiMn2O4

has a similar structure as NiFe2O4, which Hwang et al. attribute to the presence of

Mn3+O6 and Mn4+O6 [90]. These additional modes will be examined further in the

discussion on NiFexCr2−xO4.
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NiFe2O4 This Work Kim et al. [64] Graves et al. [109]

shoulder 189(2)

F2g(1) 211(1)

Eg 333(1) 339

shoulder 456(1) 460

F2g(2) 487(1) 492 490

shoulder 568(1) 574 579 (A1g)

F2g(3) 590(1) 595

shoulder 663(2) 654 666 (Eg)

A1g 704(1) 702 700

Table 16. NiFe2O4 Raman-active phonons compared to literature.
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CHAPTER 8

SOLID SOLUTION SPINELS

A solid solution assumes substitution on the octahedral or tetrahedral sites with

a different cation species. This is very different than a simple mixture of the two

end-member crystals. The solid solutions synthesized from the combustion reaction

must be tested whether or not the solid solution is actually formed, or if only a

heterogeneous mixture of two pure spinels is created. This was directly tested using

the NiFexCr2−xO4 system. Pure NiCr2O4 and NiFe2O4 were mixed in a 3:1 ratio and

compared to NiFexCr2−xO4 with x = 0.5. Raman spectra of each sample are shown

in Figure 35 and show that the mixture is a sum of the two pure spinels NiCr2O4 and

NiFe2O4. Lines from both pure NiCr2O4 and NiFe2O4 are present in the spectrum.

Summation of the two individual spectra of NiCr2O4 and NiFe2O4 does not result in

the same spectrum as the solid solution sample..

Cunha et al. assumed a linear change in phonon frequency for the different mixed

oxides as the Ni2+ cation is substituted for Fe2+ in the NixFe3−xO4 system [24].

The Raman spectra of pure spinels are well known in the literature, but complete

vibrational data is lacking for many of these mixed metal oxides. As will be seen

from data presented in this chapter, the change in wavenumber of the Raman-active

vibrations is not necessarily linear for these mixed spinels as cation content is varied.

MgxNi1−xCr2O4

Both MgCr2O4 and NiCr2O4 are normal spinels. The MgxNi1−xCr2O4 series pro-

vides a good opportunity to examine how the vibrational modes of a normal II-III
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Figure 35. (a) Raman spectrum of a synthesized solid solution of NiFexCr2−xO4

with x = 0.5, and (b) a mixture containing 25% NiFe2O4 and 75% NiCr2O4 by
weight (bottom).

spinel are affected as only the divalent cation is exchanged from nickel to magnesium.

The octahedral position is occupied by the trivalent chromium cation for all x in

the series. Nickel has a significantly larger mass than magnesium. Therefore, from

a simple mass on a spring model, substitution of the nickel atoms with the lighter

magnesium atoms should lead to higher vibrational frequencies.

All samples of the MgxNi1−xCr2O4 series were synthesized twice to confirm consis-

tency of the synthesis method. The lattice parameters from both sets of synthesized

samples are consistent and increase as nickel is substituted by magnesium. This in-

crease in the lattice parameter, shown in Figure 36, deviates from linear, given (in

Ångstroms) by: y = 8.31882(9) + 0.02054(4)x− 0.00506(4)x2, where x is the amount
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Figure 36. Lattice constants of MgxNi1−xCr2O4. The dashed line represents a linear
guide for the eye.

of magnesium in MgxNi1−xCr2O4. The numbers in the parentheses represent the error

in the last digit.

The Raman spectra of the MgxNi1−xCr2O4 series can be seen in Figure 37. All

Raman-active modes are detected, though some modes are very weak and difficult

to distinguish from background noise across the entire series. The highest-frequency

F2g(3) mode is undetected in NiCr2O4 and only appears in the high chromium end of

the series, emerging at a magnesium content of x = 0.9, and with a wavenumber of

611 cm−1 in the pure MgCr2O4 sample. Wang et al. report this mode to be located

at 580 cm−1 for pure NiCr2O4 [47].

The wavenumbers of all Raman-active modes, and of the infrared-active ν3 mode,

of MgxNi1−xCr2O4 are plotted versus magnesium composition in Figure 38. All
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Figure 37. Raman spectra of MgxNi1−xCr2O4.

Raman-active modes display an increase in wavenumber as the nickel cation is re-

placed with magnesium. The wavenumber of the F2g(2) mode increases fairly lin-

early. However, the Eg and F2g(1) modes exhibit nonlinear behavior. Only a small

increase in wavenumber occurs until approximately x = 0.6. Above this iron con-

tent, the wavenumbers of the modes increase to the wavenumbers of the end member

MgCr2O4, x = 1. The increase in wavenumber of the F2g(1) mode is discontinuous

at x = 0.6.

The largest overall change in Raman phonon frequencies is found from the lower-

frequency modes, F2g(1), Eg, and F2g(2), with respective percent changes of 8.4%,

4.0%, and 6.6%. In contrast, the A1g mode only changed by 1.1%. This supports

the claim put forth by Preudhomme et al. that the high-frequency phonons have a
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Figure 38. Vibrational mode peak positions of MgxNi1−xCr2O4.

stronger dependence on the octahedral cations and the lower frequency vibrations

depend more strongly upon the tetrahedral cations [88]. Exchanging the octahedral

cation, as in the MgCrxAl2−xO4 series studied by Malézieux et al., shows an 11%

increase in the A1g mode [116].

The F2g(2) mode, located in the 500-550 cm−1 range, has a slight dependence on

the tetrahedral cation. However, this mode is reported to be located at 492 cm−1 for

MgAl2O4 [87]. This is a 10% shift from the peak position in MgCr2O4, again showing

a greater dependence on the octahedral cation.
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The Eg mode of MgxNi1−xCr2O4 changes by 4% upon magnesium substitution.

Malézieux et al. show that MgAl2O4 exhibits a larger dependence on the octahedral

cation with an increase of about 7% in the frequency of this mode [116]. Gupta et al.

calculate an expression for the Eg mode that shows negligible dependence on the force

constant of the oxygens bonded to the tetrahedral cation [135]. Laguna-Bercero et al.

argue that the Eg mode is strongly correlated with the bond distance of the oxygen

atoms bonded to the octahedral cations and that the decrease in the Eg position of

NiAl2O4 is due to a longer B-O bond [41]. These two ideas suggest that substitution

of the tetrahedral cation should have little influence upon the wavenumber of the Eg

mode. The B-O bond distance can be calculated using the a and u parameters of the

spinel lattice from Equation 2.2 [42]. This bond distance is shown in Figure 39 for the

MgxNi1−xCr2O4 series. In contrast to what Laguna-Bercero et al. argue for NiAl2O4,

the B-O bond distance increases as the magnesium content increases, corresponding

with an increase in the Eg mode. The B-O bond distance increase is relatively linear,

unlike the increase in wavenumber of the Eg mode, which dramatically increases at

x = 0.7.

As previously stated, most literature suggests that the F2g(1) mode is a transla-

tional motion of the entire tetrahedral AO4 unit within the lattice [8, 79, 114]. Our

data support the view that this vibration involves the tetrahedral cation, as this mode

shows the largest percent change in wavenumber of all Raman-active modes. How-

ever, the change is not linear. There is only a small change in the wavenumber of this

mode up until a magnesium content of x = 0.6.

Three of the four IR bands can be seen in the spectra of the MgxNi1−xCr2O4

series, shown in Figure 40. Preudhomme et al. report IR bands for numerous normal

II-III spinels [88]. The ν3 position of MgCr2O4 and NiCr2O4 agrees well with their

reported values, 430 and 374 cm−1, respectively. Our data shows a MgCr2O4 peak
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Figure 39. The B-O bond distance of MgxNi1−xCr2O4.

at 429 cm−1. Because the IR data is limited to a lowest frequency of 375 cm−1, this

peak is not completely visible. However, because the high frequency side of the peak

is visible, and in view of the general trend of the peak with increasing magnesium

content, this data is consistent with other work at the pure NiCr2O4 end. Using

this assumption, the frequency of the ν3 mode increases approximately 15%. This

supports the common assignment of this mode as a vibration involving the tetrahedral

cation [89], though Preudhomme et al. argue that this mode also depends upon the

octahedral cation [88].

The two high frequency infrared bands, ν1 and ν2, are relatively broad and are

difficult to fit. These two bands are consistent with the values reported by Preud-

homme et al. who report ν1 and ν2 frequencies of 625 (647) and 512 (525) for NiCr2O4
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Figure 40. Infrared spectra of MgxNi1−xCr2O4. The vertical lines are drawn as a
guide to the eye.

(MgCr2O4), respectively [88]. There is a slight shift to higher wavenumber as the

nickel is replaced with magnesium, similar to the Raman-active modes (Figure 40).

NiFexCr2−xO4

The NiFexCr2−xO4 system is interesting because NiCr2O4 is a normal spinel and

NiFe2O4 is an inverse spinel [136]. Although the transition from NiCr2O4 to NiFe2O4

is complicated because of the cation inversion between the octahedral and tetrahedral

sites, the inversion occurs during the initial substitution of iron, 0 ≤ x ≤ 1 [136–138].

Within this range, the entering trivalent iron has a lower preference for the octahedral

sites than the divalent nickel, and thus the nickel occupies the octahedral sites [50].

This forces the entering iron to occupy the tetrahedral site instead. Once an iron
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content of x = 1 is reached, all tetrahedral sites are filled with the trivalent iron,

and the substituting iron must occupy the remaining octahedral sites vacated by

chromium.

This inversion during the initial iron substitution is supported by theoretical cal-

culations and experimental data. Park et al. calculated the cation distribution of

NiFexCr2−xO4, and saw that at an iron content of x = 1, nearly all the nickel had

been displaced from the tetrahedral sites [136]. Less than 2% of the nickel remained

on the tetrahedral sites. The inversion follows linearly with the iron substitution

from 0 ≤ x ≤ 1. The same conclusion is reached by Allen et al. in their study of

numerous nickel-chromium-iron spinels [137]. Rais et al. used XRD and Mössbauer

spectroscopy to measure the cation inversion and show that the solid solution was

completely inverse above x = 1 [138]. Unfortunately, the researchers did not examine

the high chromium content of x < 0.6.

Because the cation inversion occurs entirely within 0 ≤ x ≤ 1, there are two

distinct ranges of cation exchange to examine. For x ≤ 1, the effect of inversion of

the trivalent and divalent cations between the tetrahedral and octahedral sites can

be studied. For x ≥ 1, only the octahedral trivalent chromium is exchanged for the

trivalent iron.

The two ranges can be observed from the behavior of the lattice parameter of the

series. The lattice parameter of NiFexCr2−xO4 can be seen in Figure 41. This data

agrees well with previous work, with the exception of an iron content of x = 1 [127].

The lattice parameter decreases until an iron content of x = 1 is reached, at which

point it begins to increase linearly.

A temperature dependence study on cation inversion of MgFe2O4 shows that

the lattice parameter decreased as the inversion parameter increased [105]. For the

NiFexCr2−xO4 series, the inversion parameter increases from 0 to 1 as the iron con-
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Figure 41. Lattice parameters of NiFexCr2−xO4. The circles represent the data
from the present work. Error bars are approximately the size of the points. Squares
represent the data from Ziemniak et al. [127].

tent x increases from 0 to 1. Figure 41 also shows a decrease in the lattice parameter

during the inversion of the NiFexCr2−xO4 spinel in the initial 0 ≤ x ≤ 1 iron content

range. This could be a result of tetrahedrally coordinated Fe3+ having a smaller ionic

radius (63 pm) than either Ni2+ (69 pm) or Mg2+ (71 pm) [111]. However, this does

not explain why the lattice parameter increases above an iron content of x = 1, as the

ionic radius of the substituting octahedrally coordinated Fe3+ is 69 pm while Cr3+

has an ionic radius of 76 pm [111].

The Raman spectra of the NiFexCr2−xO4 series can be seen in Figure 42. All

five Raman-active modes are detected, although the F2g(3) only becomes observable

from the background above an iron content of x = 1. As iron is substituted into the

system, the A1g, F2g(2), and F2g(3) modes develop large shoulders. The F2g(1) mode
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Figure 42. Raman spectra of a NiFexCr2−xO4.

also develops a shoulder on the high frequency side of the mode, which becomes the

more dominant feature in the spectrum as the iron content of the solid solution is

increased.

The phonon frequencies of all modes and shoulders over the entire series are plotted

in Figure 43. The A1g is the only Raman-active mode that increases in wavenumber

with increasing iron content. The wavenumbers of the F2g(2) and Eg modes decrease.

The F2g(3) mode also decreases in wavenumber over the region of iron content that

the mode is detected. The A1g mode has the most dramatic change during the

inversion range of 0 ≤ x ≤ 1. Above x = 1, the position of this mode remains

relatively constant. This suggests that the valency of the cation has a larger impact

on the wavenumber of this mode than the small mass difference between iron and
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Figure 43. Raman peak positions of NiFexCr2−xO4.

chromium. Above an iron content of x = 1, the Fe3+ is only replacing Cr3+ in the

octahedral sites. However, there is very little change in the wavenumber of the mode

during this range. This seems to contradict the view that the A1g mode depends on

the octahedral cation. Preudhomme et al. argue that the valency of similar cations

is the most important factor for determining the vibrational frequencies [139]. This

may be the main reason that the initial iron substitution exhibits a larger change in

the wavenumber of this mode.

The A1g mode develops a shoulder with the introduction of iron into the lattice.
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Figure 44. Raman spectra of NiFexCr2−xO4 having an iron content of 0 ≤ x ≤ 0.2.

Interestingly, the intensity of the shoulder does not seem dependent upon the amount

of iron in the lattice. Figure 44 shows that the shoulder appears with a significant

intensity at only 5% iron substituted. As shown in Chapter 4, the lower frequency

A1g mode for the inverse MgFe2O4 was consistent with it being due to a local mode

of FeO6. For the NiFexCr2−xO4 series, the shoulder is detected with only a modicum

of iron substituted into the system, and the wavenumber of the shoulder remains

relatively constant over the entire range of iron composition. This series shows that

the shoulder cannot be assigned to the FeO6 unit, as no FeO6 exist in the 0 ≤ x ≤ 1

region of iron content, as iron occupies the tetrahedral site of the lattice in this region.

The F2g(3) mode cannot be identified from the background at the low iron end

of the series and is only detected above x = 0.9. Wang et al. report the mode at

580 cm−1 for pure NiCr2O4 [47]. This mode is very broad when it becomes identifiable
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and at the NiFe2O4 end has been fitted with two peaks in the literature [64]. The

wavenumbers of these modes decreases by 2 and 4% for the two different peaks as

iron increases, as shown in Figure 43. Assuming 580 cm−1 is the phonon frequency

at x = 0 for NiFexCr2−xO4, there is the greatest change in the frequency of this mode

from 0 ≤ x ≤ 1, where it increases to 600 cm−1. Above x = 1, the mode decreases

back down to 590 cm−1. This is an inverse relationship to the lattice parameter of

the series, though unlike the change in lattice parameter, the greater change occurs

in the 0 ≤ x ≤ 1 region.

The F2g(2) mode is the only mode that has a uniform change over the entire iron

content range. The wavenumber decreases linearly by approximately 4.4%. Above an

iron content of x = 0.7, a lower frequency shoulder is detected. This F2g(2) shoulder

decreases in wavenumber by nearly 8%.

The behavior of the Eg mode shows strong evidence of two-mode behavior. The

two distinct Eg modes have a large difference in the wavenumber of the vibration.

This two-mode behavior occurs during the inversion of the lattice, indicating that

this mode has a large dependence upon the valency of the cations occupying the

tetrahedral site. From 0 ≤ x ≤ 1, the wavenumber of the Eg mode of NiCr2O4 varies

little as chromium is substituted for iron. However, the intensity decreases, and at

an iron content of x = 0.5, a lower-wavenumber mode at approximately 362 cm−1

appears, which decreases slightly for x > 0.5 until the wavenumber matches the Eg

mode of NiFe2O4, 333 cm−1. This lower-frequency Eg mode also increase in intensity

as x increases. This strong dependence on the tetrahedral cation contradicts the

calculations by Gupta et al., which showed a negligible dependence on the A-O force

constant for the Eg mode [135].

In the iron content range of 1 ≤ x ≤ 2, the Eg mode can be characterized by

one-mode behavior and decreases in wavenumber by approximately 6%. This region
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Figure 45. The B-O bond distance of NiFexCr2−xO4.

only substitutes the octahedral cation, and has a slightly larger effect than the 4%

change seen in this mode in the MgxNi1−xCr2O4 series, where only the tetrahedral

cation was exchanged. This decrease in wavenumber is consistent with the change in

mass of the octahedral unit, chromium is replaced by a slightly heavier iron cation.

As previously noted, Laguna-Bercero et al. argued that the wavenumber of the Eg

mode was inversely proportional to the B-O bond distance [41]. This bond distance

is shown in Figure 45 for the NiFexCr2−xO4 series. While the Eg mode decreases over

the entire range of iron content as the B-O bond distance increases, the trends of each

behave very differently. The large discontinuity at x = 0.4 is not seen in the B-O

bond distance. There is also an obvious discontinuity in the slope of the B-O bond

distance at x = 1, which is not seen in the position of the Eg mode at the same iron
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content.

The F2g(1) mode develops a shoulder on the high-wavenumber side of this mode.

The intensity of this shoulder increases to become the stronger of these two features.

The wavenumbers of both of these modes does not vary significantly as the iron

substitutes chromium. Similar to the A1g mode, the inversion of the lattice seems to

create the largest change in the Raman spectrum, with the development of the two

distinct peaks, due to the presence of Fe3+ and Ni2+ occupying the octahedral sites

of the lattice.

FexCr3−xO4

The FexCr3−xO4 system of spinels is the most relevant for application to corrosion

of stainless steels, and it is surprising there exists little Raman work on the system in

the literature [45]. The reduction process was not ideal for the synthesis of this series.

The synthesis of samples having an iron composition below x = 1 and above x = 2

contained either corundum phase or metallic iron impurities. The XRD spectrum

of the x = 2.4 sample showed evidence of approximately 9% metallic iron along

with the spinel phase. This has a small impact on the overall stoichiometry of the

sample. Removing 10% of the iron from the stoichiometry of the spinel gives an iron

to chromium ratio of

Fe

Cr
=

3 − z

z
=

2.2

0.6
. (8.1)

This leads to an iron content of only x = 3−z = 2.36 instead of the intended x = 2.40.

Most samples in the 0.8 ≤ x ≤ 3 iron composition range exhibited less than 3%

corundum phase. FexCr3−xO4 samples were reduced multiple times if high amounts

of corundum or metallic iron were present in the sample. The lattice parameters of

samples with and without impurities were fairly consistent, though outside the uncer-

tainties of the measurements. Full Rietveld refinement results, including the amount
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of secondary phase present in each FexCr3−xO4 sample, are shown in Appendix A. The

largest difference in lattice parameter of samples containing impurities is the x = 1.0

sample. However, the difference is still very small, with only 0.03% difference. These

samples were reduced from the same as-synthesized batch, however. Some samples

were synthesized twice however, and after reduction, even with negligible amounts

of impurities, have a larger varying lattice parameter than samples with impurities

reduced from the same as-synthesized batch. Two different samples of x = 1.6 were

reduced from two different as-combusted samples. The lattice parameter of these two

samples is 8.3907(2) and 8.3985(1), a difference of 0.09%.

Due to the ratio of the synthesis reagants, the corundum phase likely has an iron

to chromium ratio similar to the spinel phase. However, the most extreme scenario

would be a corundum phase composed entirely of α-Fe2O3. Similarly to Equation 8.1,

this leads to an actual iron composition of x = 2.54 instead of the intended x = 2.60.

Di Cerbo et al. report lattice parameters for the α-Fe2O3-Cr2O3 solid solution

series, with a decreasing from 5.0343 Å for α-Fe2O3 to 4.9591 Å for Cr2O3 [46]. The

lattice parameters from the corundum phase component of the synthesized spinel

powders fall within the range of lattice parameters of the α-Fe2O3-Cr2O3 series. To-

wards the iron end of the FexCr3−xO4 series, the corundum phase lattice parameters

approach the α-Fe2O3 values, while those closer to FeCr2O4 exhibit lattice param-

eters closer to Cr2O3. The x = 2.6 sample contained 8% corundum phase with an

a lattice parameter equal to 5.0302 Å, which would place it on the iron end of the

α-Fe2O3-Cr2O3 series. The corundum phase of the x = 0.8 sample, making up 23%

of the sample, had an a lattice parameter of 4.9656 Å, signifying the corundum phase

contains mostly chromium.

There are numerous experimental data on the lattice parameter and cation distri-

bution of FexCr3−xO4 [23, 122, 123]. The literature examines the solid solution series
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Fe2+Fe3+
y Cr2−yO4, with 0 ≤ y ≤ 2. Only the trivalent chromium is substituted for

trivalent iron. The series transitions from the normal FeCr2O4 spinel to the com-

pletely inverse Fe3O4. The site occupation of substituted iron in FexCr3−xO4 is not

as straightforward as the NiFexCr2−xO4 series. Robbins et al. define three regions for

FexCr3−xO4 in the iron content range of 1 ≤ x ≤ 3 [23]. In region 1, 1 ≤ x ≤ 1.68, the

substituted Fe3+ enters the octahedral sites of the lattice, replacing Cr3+. The lattice

parameter increases linearly during this region. This increase occurs despite octahe-

drally coordinated Fe3+ having a smaller ionic radius, 0.69 Å, than Cr3+, 0.76 Å [111].

This increase is similar to the cation substitution in the NiFexCr2−xO4 series when

Fe3+ replaces Cr3+ at the octahedral site. In region 2, 1.68 ≤ x ≤ 2.38, the Fe3+

instead begins to occupy the tetrahedral sites, thus displacing the Fe2+ to octahedral

sites. The lattice parameter decreases in this region. Above x = 2.38, region 3, the

octahedral sites contain similar amounts of Fe2+ and Fe3+, and the remaining Fe2+

cations are displaced from the tetrahedral site at x = 3. The lattice parameter again

increases in this region.

Earlier work on the lattice parameter of the series by Yearian et al. and Francombe

also show a similar behavior of the lattice parameter [122,123]. Unlike the three zones

described by Robbins et al., these researchers divided the the final region of Robbins

et al. into two regions where the lattice parameter stays relatively constant from

x = 2.2 to x = 2.6, and then increases above x = 2.6 [23].

The lattice parameter of the FexCr3−xO4 series synthesized in the present work,

for an iron content of 0.8 ≤ x ≤ 3.0, can be seen in Figure 46. This data suggests

inconsistency of samples with the same iron content, x. The lattice parameter varied

from sample to sample, greater than the uncertainty of each individual sample. The

agreement with the literature values of the lattice parameters is fair [122, 123]. The

three regions of behavior are also seen in the change in lattice parameter from the
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Figure 46. Lattice constant of FexCr3−xO4. The circles are data from the present
work with uncertainties on the order of the size of the circles. A dotted line is drawn
as a guide for the eye. The single triangle at x = 3.0 represents the lattice parameter
of the Fe3O4 standard purchased from Alfa Aesar. The solid line represents data
from Robbins et al. [23] and the squares are data from McCarty et al. [45].

synthesized FexCr3−xO4 spinels. An increase in the lattice parameter is seen in the

iron content range of 0.8 ≤ x ≤ 2.0. A decrease then occurs from x = 2.0 to x = 2.4,

where the lattice parameter increases again until the end of the series at Fe3O4. In

the work by Robbins et al. and Yearian et al., the lattice parameter reaches a value

of approximately 8.410 Å at an iron composition of x = 1.7 [23, 122]. The x = 1.8

sample from this work has a lattice parameter of 8.395 Å. Yearian et al. reported

lower lattice parameters for FexCr3−xO4 samples with cation vacancies.

There are no reported studies on the FexCr3−xO4 series for x < 1. This range

of iron content would indicate that chromium cations occupy the tetrahedral sites.

All synthesized samples with an iron content of x = 0.8 contained 20 to 50% of
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the corundum phase in addition to the spinel phase. Stubican et al. report divalent

chromium occupying the tetrahedral sites of the magnesium chromium spinel [140].

However, the synthesis occured in a reducing environment with a temperature of

1800-2000◦C. Pinch et al. reported divalent chromium on the octahedral sides of

some indium substituted chalcogenide spinels [141]. From this data, it is difficult

to discern whether or not Fe0.8Cr2.2O4 is created, with some form of chromium on

the tetrahedral sites, or instead a mixture of FeCr2O4 and Cr2O3 is formed. In the

present work, samples synthesized with iron contents less than x = 1 were green after

synthesis, suggesting the presence of Cr2O3, as powdered Cr2O3 is green in color.

McCarty et al. studied the FexCr3−xO4 series from FeCr2O4 to Fe3O4 with iron

contents of x = 1, 1.4, 1.8, 2.2, 2.6, 3 [45]. They claim that the A1g mode is inversely

proportional to the lattice parameter.

The Raman shifts of the A1g and F2g(3) modes for the FexCr3−xO4 series are

plotted as a function of iron content in Figure 47. Data acquired from the Alfa Aesar

Fe3O4 standard, as well as values reported by McCarty et al. are also included in the

figure. The extrema of the A1g mode do not completely correspond to the extrema

of the lattice parameter for the same iron content. The lattice parameter has local

extrema at iron contents of x = 1.8 (maximum) and x = 2.4 (minimum), whereas the

A1g mode has local extrema at iron contents of x = 1.6 and x = 2.6.

Fe3O4 is an inverse spinel, and the inversion occurs in the iron content range

1.7 ≤ x ≤ 2.4. The A1g mode of the NiFexCr2−xO4 series develops a shoulder on the

low wavenumber side after substituting just a small amount of iron for nickel. This

shoulder remains over the entire compositional range of the series. A shoulder on the

high wavenumber side of the A1g mode was occasionally detected in the FexCr3−xO4

series, but this shoulder was not consistent in all spectra acquired throughout the

sample. Several spectra were acquired for all samples, with multiple spectra being
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acquired at the same spot as a function of laser power. This allowed for potential

heating damage to be examined, similar to what was seen in Chapter 6, with the

conversion of Fe3O4 to γ-Fe2O3 and α-Fe2O3. As laser power was increased on the

sample, this shoulder would appear, if non-existent in the low power acquisition, or

increase in intensity, if already detected in the low power spectrum. The shoulder

remained present as the power was decreased to the original low power of 0.1 mW.

This suggests that the peak is due to irreversible local heating damage of the sample.

The wavenumber of the A1g mode has the largest change, though only a 1.1%

decrease, in the iron content range 1 ≤ x ≤ 1.6, which Robbins et al. report to be the

range in which the substituting Fe3+ replaces Cr3+ at the octahedral site [23]. This

supports the idea of the octahedral site being a significant factor in the determination

of the A1g phonon energy. However, this is very different from the NiFexCr2−xO4

series, for which the A1g mode remained relatively constant above an iron content of

x = 1, where Fe3+ also replaces Cr3+ at the octahedral site.

Beyond an iron content of x = 1.8, inversion begins to occur, with the trivalent

iron occupying the tetrahedral sites and pushing the divalent iron to the octahedral

sites. A very small shift in wavenumber occurs for the A1g mode during the inversion

of the lattice. Again, this is a departure from the behavior of the A1g mode of the

NiFexCr2−xO4 series, where the inversion of the lattice had a larger effect on the

phonon energy.

The F2g(3) mode was not consistently detected in all samples above an iron content

of x = 1.8, and several of the plotted points for this mode represent only one or two

detected peaks from the numerous acquired spectra. No obvious trend is observed

from the behavior of this mode upon iron substitution.

The A1g mode exhibits a drastic change from an iron content of x = 2.8 to x = 3,

decreasing from 672 cm−1 to 665 cm−1, whereas the position of this mode from the
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Figure 47. Raman shifts of the A1g and F2g(3) modes of FexCr3−xO4. Data from
this work is shown in solid circles, whereas data from McCarty et al. [45] is shown in
solid squares. Data acquired on the Alfa Aesar Fe3O4 standard is shown as a solid
triangle at x = 3.0.

Alfa Aesar Fe3O4 standard was 667 cm−1. The synthesized Fe3O4 sample showed

significant amounts of wüstite, FeO. The Raman spectrum of FeO is similar to Fe3O4,

as shown by de Faria et al., but shifted towards a lower frequency of 650 cm−1 [1]. FeO

impurities from the reduction process could explain the slightly lower wavenumber of

the A1g mode determined in the present work.
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Discussion on solid solutions

Examining the vibrations of the three spinel solid solutions studied here gives

information regarding the cation dependency of the phonons. The data can also be

used to check conclusions made by other researchers regarding the spinel phonons.

The increase in wavenumber of all the F2g(2) and ν3 vibrational modes of the

MgxNi1−xCr2O4 series as the lighter magnesium replaces nickel can be described suf-

ficiently well by a simple mass on a spring inverse relationship of the vibrational

frequencies on the mass of the cation. The A1g mode is relatively unaffected by the

large mass difference. The low-wavenumber Eg and F2g(1) modes have a nonlinear

response to the mass increase. This is difficult to test with the NiFexCr2−xO4 and

FexCr3−xO4 series as these two series substitute cations of similar mass. Inversion of

the lattice also occurs for both series, which has a much larger effect on the vibrational

modes.

As examined earlier in this work, high-pressure data on spinels shows that the

energy of the spinel vibrational modes is inversely proportional to the lattice pa-

rameter. McCarty et al. observe this effect for the A1g mode from the FexCr3−xO4

series [45] and the data from this work on FexCr3−xO4 supports that observation.

From this work, the lattice parameter has extrema at an iron content of x = 1.8

and x = 2.4, with the wavenumber of the A1g mode having extrema at nearly the

same iron content. However, data from the MgxNi1−xCr2O4 and NiFexCr2−xO4 series

show that this relationship is not generally obeyed for all mixed spinel systems, or

that there are other variables with larger effects on the vibrational energies. For the

MgxNi1−xCr2O4 series, the wavenumber of the A1g mode increases slightly as the lat-

tice parameter also increases. The increase in lattice parameter of this series is only

0.2% and the relatively large difference in mass of the Mg and Ni has the larger effect

on the vibrational modes. The 0 ≤ x ≤ 1 region of the NiFexCr2−xO4 series shows an
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increase in the wavenumber of this mode as the lattice parameter decreases, but the

mode remains constant above x = 1, when the lattice parameter increases linearly.

The change above x = 1 is larger than the decrease below x = 1.

The high-pressure data on various chromites indicate an inverse relationship of

approximately 0.32 to 0.64 cm−1 increase in wavenumber of the Raman-active modes

per 0.1% decrease in unit cell volume of the chromite. Using the lattice parameters

from the various series, the significance of this effect can be considered. The volume

of the unit cell in the MgxNi1−xCr2O4 series changes by 0.5% as magnesium replaces

nickel at the tetrahedral sites. From this contraction of the lattice, it should be

expected that the Raman-active modes will increase by 1 to 4 cm−1, significantly less

than any of the wavenumber changes in this series.

The NiFexCr2−xO4 series exhibits a similar change in unit cell volume in the

0 ≤ x ≤ 1 region. The volume in 1 ≤ x ≤ 2 region increases by a larger 1.3%, which

corresponds to decreases in the Raman-active modes up to 8 cm−1. The Eg, F2g(2),

and F2g(3) modes decreased in wavenumber in this range. The A1g and F2g(1) modes

remained constant during this region.

The small changes in volumes of the solid solution series presented in this work

suggest that the change in Raman-active modes due to the change in unit cell volume

alone is small, and other factors are the main contributors to the large changes in

Raman-active modes seen in these series.

Nakagomi et al. argued that the large mass difference between Fe and Mg and

the coexistence of FeO4 and MgO4 tetrahedra leads to two distinct A1g phonons

of MgxFe3−xO4, explaining the existence of the extra mode detected in the Raman

spectrum [106]. The MgxNi1−xCr2O4 series substitutes Ni, slightly heavier than Fe,

with the lighter Mg into the tetrahedral sites. All Raman-active modes of this series

exhibit one-mode behavior and no extra modes are consistently found throughout the
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entire range of composition. The large mass difference of Ni and Mg does not recreate

the additional A1g mode, as seen in the MgxFe3−xO4 series. Only the inverse ferrites,

with two different cations occupying the octahedral sites, exhibit shoulders on the A1g

mode. Ni and Fe are similar in mass, but Raman spectra of NiFe2O4 exhibit an A1g

splitting similar to MgFe2O4, suggesting that the splitting is a result of two different

valences occupying the octahedral site of the spinel lattice. All Raman-active modes

of NiFexCr2−xO4 exhibited shoulders.

It should also be noted that MgFe2O4 has an inversion parameter of ξ = 0.90

[105, 106], and significant amounts of Mg2+ would not enter the tetrahedral site in

the MgxFe3−xO4 series until x > 1. Above x = 1, the lattice would require oxygen

vacancies to compensate to keep the stoichiometry correct, as Nakagomi et al. show

in their study [106].

Nakagomi et al. also conclude that the larger ionic radius of tetrahedrally coor-

dinated Mg2+ compared to Fe3+ leads to a decrease in frequency of the vibrational

modes for the MgxFe3−xO4 series [106]. Figure 9, a compilation of the Raman-active

modes presented in the literature for various chromites, shows that the modes do not

depend strongly upon the ionic radius of the tetrahedral cation. The MgxNi1−xCr2O4

series presented here shows an opposite response of all vibrational modes, as the ionic

radii of Ni2+ and Mg2+ are 0.69 and 0.71 Å, respectively [111]. All phonon frequen-

cies increase as nickel is replaced by magnesium. For the NiFexCr2−xO4 series in the

1 ≤ x ≤ 1 range, the Raman shifts of the Eg, F2g(2), and F2g(3) modes decrease,

showing that no inverse relationship exists for the octahedral cation. The ionic radic

radii of Cr3+ and Fe3+ is 0.76 and 0.69 Å, respectively.

From the results of the NiFexCr2−xO4 series, changing the valency of the tetrahe-

dral and octahedral sites has a greater effect on the A1g, Eg, and F2g(1) modes. This

is not surprising as phonon energies are dependent upon the force constants between
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the cation and oxygens in the lattice. This force is most dramatically changed by

changing the valency of the cation occupying a specific site. The wavenumber of

the F2g(2) mode decreases nearly linearly over the entire range of composition. The

F2g(3) mode was not detected from the background noise for the range of inversion.

Iron is only slightly heavier than chromium, so the direct substitution should not

strongly affect the frequencies for x > 1. The wavenumbers of the F2g(1) and A1g

modes remain constant for x > 1. However, the wavenumbers of the Eg, F2g(2), and

F2g(3) modes decrease in this same region. This may be a result of the increase in

the lattice parameter in this region.

The Eg mode behaves differently for the MgxNi1−xCr2O4 and NiFexCr2−xO4 series.

This mode, in the MgxNi1−xCr2O4 series, follows one-mode behavior as it smoothly

transitions from the wavenumber of NiCr2O4 to the wavenumber of MgCr2O4. For

NiFe2O4, the mode exhibits two-mode behavior, as there is a discontinuity located at

an iron content of x = 0.5, and both modes coexist at this iron content. This mode

shows a strong dependence on the nature of the tetrahedral cation, as the wavenumber

was affected by both a change in mass of cation, and the valency of the tetrahedral

cation. From the results on MgxNi1−xCr2O4 and NiFexCr2−xO4, the Eg mode does

not seem related to the B-O bond distance as argued by Laguna-Bercero et al. [41].

The question of whether the two-mode behavior of the Eg mode occurs due to

the presence of distinct octahedral and tetrahedral units within the spinel lattice, or

because very small crystals of one pure end-member coexisting with crstals of the

other end-member is not conclusively resolved from the NiFexCr2−xO4 data.

The additional shoulders appearing in the spectra of the NiFexCr2−xO4 series could

be due to local symmetry breaking of the system, which would not appear in x-ray

diffraction patterns. The lowering of the symmetry could split the degeneracy of the

Eg and F2g modes, which would explain the shoulders observed on all the modes.

116



The A1g mode is not degenerate, however polarization studies were not performed on

a single crystal, and the shoulder appearing on the low-wavenumber side of the A1g

mode is not conclusively of the A1g species.
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CHAPTER 9

LBE-CORRODED STAINLESS STEELS

Three types of stainless steel, exposed to lead-bismuth eutectic (LBE) in a high-

temperature, oxygen-controlled environment, develop corrosion layers as previously

stated in Chapter 1 [58–60, 142]. Characterization of the corrosion layers developed

on the stainless steel is needed, and micro-Raman is a potential tool for that purpose.

Raman spectra of the corrosion layer on 316L, D9, and HT9 stainless steel samples

exposed to LBE at high temperature for 3000 hours show strong evidence for the

presence of spinel oxide layers. SEM images show that a multiple layer oxide is

formed [57, 60, 142]. One layer grows outwards from the original steel surface while

the other grows inwards into the bulk of the steel. Raman spectra from these two

layers of HT9 stainless steel, exposed to LBE for 2000 hrs at 550◦C, are shown in

Figure 48, and are characteristic of the Raman spectra from all LBE-exposed stainless

steel samples. The largest peak of these spectra, located around 670 cm−1, is strong

evidence of Fe3O4 or a solid solution close to the composition of Fe3O4.

Work by Hosemann et al. on HT9 stainless steel shows an outer magnetite layer

and an inner chromium enriched layer, which they suggest may be Cr2O3 or FeCr2O4

[57]. Raman spectroscopy can easily differentiate between Cr2O3 and FeCr2O4. Ra-

man spectra from this inner layer, shown in Figure 48(a), signifies that the layer is

a chromium-rich spinel. The amount of chromium depends upon the exact positions

of the Raman-active modes. These positions can be compared to results from the

FexCr3−xO4 series, and the wavenumber position of the A1g mode can be used for a
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Figure 48. Raman spectra of the (a) inner and (b) outer corrosion layers of HT9
stainless steels exposed to LBE for 2000 hrs at 550◦C, show characteristic peaks of
the iron-chromium spinels.

identification of the oxidation layer.

Raman spectra were also collected with the 514.5 nm argon laser source to test for

the presence of Cr2O3, as Cr2O3 gives a much more intense signal with the 514.5 nm

excitation than the 647.1 nm wavelength of the krypton laser. All acquired spectra

from the corroded stainless steels show no evidence of Cr2O3 Raman-active modes,

indicating that no significant amounts of Cr2O3 exist within the corrosion layers.

The Raman spectra of the outer corrosion layer from all three stainless steel sam-

ples are shown in Figure 49. Previous work showed that the outer corrosion layer

contained only iron and oxygen [59], suggesting the presence of Fe3O4. The A1g

mode, located at approximately 668 cm−1 for all LBE-exposed steels, agrees very
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Figure 49. The outer corrosion layer of the 316L, D9, and HT9 stainless steels
exposed to LBE for 3000 hrs at 550 ◦C share similar Raman spectra that are very
representative of Fe3O4, indicated by the blue lines. Red lines indicate positions of
the Raman-active modes of α-Fe2O3.

well with the A1g mode of Fe3O4. A mode located at 306 cm−1 exists for all samples,

which is also in good agreement with the Eg mode in Fe3O4. The F2g(3) modes of the

three corroded steels has a small amount of variance, with wavenumbers of 532 cm−1

for 316L, 530 cm−1 for HT9, and 537 cm−1 for D9. These are all in good agreement

with the same mode in magnetite located at 533 in Fe3O4.

The inner oxide layer presents a more complicated scenario. The inner layer has a

weaker Raman signal than the outer corrosion layer, and thus the lower-wavenumber

Raman-active modes are not distinguishable from the background. Spectra are similar

to the outer layer, but a slight shift in the wavenumber of the main A1g Raman

peak, shown in Figure 50, suggests a difference from pure Fe3O4 in the oxide layer.
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Figure 50. The wavenumber of the A1g mode for the inner corrosion exhibits shifted
to a slightly larger value than the povalue of the outer corrosion layer.

It is known that iron and oxygen are present in this inner oxide layer. However,

other elements are also present within the inner corrosion layer. XPS and EDS show

that oxidized chromium exists within the inner layer, as shown in Figure 5 [60]. A

spinel belonging to the FexCr3−xO4 series is thus a likely candidate. As the results

on FexCr3−xO4 have shown, substituting chromium into Fe3O4 slightly increases the

frequency of the intense A1g mode.

The Raman spectrum of a spot focused on the inner corrosion layer of the the

steel samples exposed to LBE at 550◦C for 3000 hrs is shown in Figure 51. The A1g

mode is located at 676 cm−1. This peak has a shoulder located at 631 cm−1. This

same peak is located at 672 and 671 cm−1 for the D9 and HT9 stainless steels exposed

to LBE at 550◦C for 3000 hrs. Referring to Figure 47, the position of this A1g mode
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for 316L indicates a FexCr3−xO4 spinel with 2.0 ≤ x ≤ 2.4. The x = 1.4 is also a

good fit for the position of the A1g mode. Data from Koury shows that there is only

a slight enhancement of chromium in the inner oxide layer of the D9 sample [60].

The A1g mode of the D9 and HT9 samples exposed for 3000 hrs at 550◦C have a

smaller wavenumber of 672 and 671 cm−1. Weight percents of the inner corrosion

layer measured by Koury suggests that the iron to chromium ratio is consistent with

this layer being Fe2.2Cr0.8O4 in the D9 sample [60]. This assumes that the layer is

composed entirely of the Fe-Cr spinel, and assumes the absence of Cr2O3, which is

not detected in any Raman spectra of the samples. Hosemann et al. also studied D9

samples exposed for 1000 and 2000 hrs, and found slightly higher chromium contents

that would correspond to an iron content of approximately x = 2 [142]. They also

report a chromium enriched inner oxide layer for HT9 samples cut from the same

tube studied in the present work [57].

Even though nickel is enhanced in the inner corrosion layer, there is no evidence

of NiCr2O4 or NiFe2O4 modes in any of the Raman spectra from this layer of any

of the steel samples. The most intense peak of NiFe2O4 is located at 706 cm−1,

above the position of the A1g mode in all the corrosion layers. The intense peaks

of NiCr2O4 at 190 and 508 cm−1 are also not present in any of the corrosion layers.

This supports earlier conclusions from XPS studies that found only metallic nickel

in the inner corrosion layer [60]. Raman spectra of the corroded D9 and HT9 steels

are very similar despite the large difference in nickel compositions, 13.6% and 0.5%,

respectively, indicating that no solid solution of nickel is formed.
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Figure 51. The Raman spectrum of the inner corrosion layer of the 316L, D9, and
HT9 stainless steels exposed to LBE. The spectra are much less consistent than
the outer corrosion layer. The wavenumber of the A1g mode is indicative of an
iron-chromium spinel from the FexCr3−xO4 series.
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CHAPTER 10

CONCLUSIONS

The solid solution spinel oxides MgxNi1−xCr2O4, NiFexCr2−xO4, and FexCr3−xO4

were synthesized, and then characterized using Raman and x-ray diffraction. Vi-

brational data from the end members of these series agree well with the literature.

Raman data of the MgxNi1−xCr2O4 and NiFexCr2−xO4 spinels are reported for the

first time. Raman data on FexCr3−xO4 agree with the literature and completes gaps

in the compositional range discussed in the literature.

The vibrational modes do not necessarily change linearly as one cation is ex-

changed with another. Cunha et al. made this assumption for their identification of

a NixFe3−xO4 oxide [24]. This signifies the importance of having solid solution data

before attempting to make identifications of solid solutions from vibrational data such

as Raman and infrared.

A review of the literature on spinels has demonstrated that the vibrational spec-

tra of this structure is not completely understood. The literature is inconsistent in

assigning the vibrational modes to the octahedral or tetrahedral units within the lat-

tice. Phonon dependence on the octahedral and tetrahedral bonds is complicated.

However, some of the Raman-active modes of spinel display greater influence from

either the tetrahedral or octahedral lattice sites.

The A1g mode is mostly independent of the divalent metal occupying the tetrahe-

dral site. All of the chromites have a similar A1g wavenumber. The aluminates with

the normal spinel structure, MgAl2O4, NiAl2O4, and CoAl2O4 also have similar A1g
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features, located in the 755 to 772 cm−1 range. Exchanging the octahedral cation

has a much greater effect upon the wavenumber of this mode than exchanging the

tetrahedral cation.

In addition, inversion of the spinel lattice, with a trivalent cation occupying the

tetrahedral site, has a large impact upon the position of this mode. The two different

valences of the cations occupying the octahedral site of the inverse lattice create two

distinct A1g modes.

The Eg mode depends upon both the octahedral and tetrahedral cations. This

disagrees with the expression given by Gupta et al. that shows a negligible dependence

upon the A-O force constant [135]. The mode is also seemingly independent of the

B-O bond distance, as argued by Laguna-Bercero et al. [41], as the wavenumbers of

this mode in the MgxNi1−xCr2O4 and NiFexCr2−xO4 systems increase when the B-O

distances increase.

In agreement with much of the literature on spinels, the data in the present work

supports the argument that the F2g(1) mode is strongly dependent upon the tetrahe-

dral cation, as both the MgxNi1−xCr2O4 and NiFexCr2−xO4 series show a large change

in this mode upon tetrahedral cation exchange. This mode showed relatively little

change in the NiFexCr2−xO4 series for x > 1, where only the octahedral cation was

exchanged from chromium to iron.

Analysis of 316L, D9, and HT9 stainless steels corroded in a high temperature,

oxygen controlled LBE environment was performed by comparing the Raman spectra

from the different corrosion layers of the steel samples to the Raman spectra of the

solid solution spinel series FexCr3−xO4. The frequency of the strong A1g mode of

the Raman spectra can be used to estimate the amount of chromium within the

iron-chromium spinel. This identifies an outer corrosion layer of Fe3O4 and an inner

corrosion layer comprised of an iron chromium spinel, FexCr3−xO4, having an iron
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content of approximately x = 2.2. This indicates an enhancement of the chromium

over the amount of chromium within the bulk steel, which is in agreement with results

from other methods by other researchers [57, 60, 142].

The application of micro-Raman spectroscopy to corrosion research is very useful.

The 3.5 µm spot size gives capability of obtaining spatial resolution to differentiate

compositions of complex oxide layers. Subtle differences between Raman spectra

can be exploited to gain information regarding the composition of complex corrosion

layers. The most common assignment of corrosion products has been pure, one- or

two-element oxides, such as α-Fe2O3, Fe3O4, or FeCr2O4. However, the complicated

composition of different stainless steels suggests that mixed spinels could be formed.

The techniques presented in the present work will lead to better identifications of

such mixed oxide systems. Knowing the specific composition and structure of the

corrosion layers can lead to the development of steels with more resistance to corroding

conditions.

The methods and analysis detailed within this study are applicable to the numer-

ous spinels existing with varying cations and anions occupying the tetrahedral and

octahedral sites. ZnFexCr2−xO4 would be a good candidate to study the effect of

substitution of just the octahedral cation of the spinel lattice, as both ZnCr2O4 and

ZnFe2O4 are normal spinels. ZnxNi1−xCr2O4 and MgFexCr2−xO4 are similar spinel

series as MgxNi1−xCr2O4 and NiFexCr2−xO4, respectively, and may provide similar

results for the behaviors of the Raman-active vibrational modes.

Theoretical models of the spinel vibrations must be checked against experimental

data. The data contained in the present study may encourage further theoretical and

experimental exploration on the interesting spinel crystal system.
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APPENDIX A

RIETVELD REFINEMENT RESULTS

The results from the Rietveld refinements are presented in the following tables

for every spinel sample synthesized in the present work. The Rwp and χ2 for each

sample are listed. Most samples contained small amounts of a secondary phase, which

are also listed in the following tables. Corundum, space group R3c, and metallic

iron, space group Im3m, were the most common secondary phases present with the

spinel powders. The Fe3O4 sample also contained significant amounts of FeO as an

additional phase.

The tables list the lattice parameter a and oxygen parameter u for all of the

synthesized samples. Table 17 also lists the lattice parameters of the tetragonal

phase present in the NiCr2O4 samples. The oxygen parameter u for the spinel phase

was not refined, and instead set at u = 0.386 for all NiCr2O4 samples. Many samples

of identical x were synthesized for some of the series, and are all listed in the following

tables.
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NiCr2O4

NiCr2O4 secondary Lattice parameters (Å)
preparation phase spinel tetragonal Rwp χ2

as-synthesized 1.4% R3c a = 8.3185(3) a = 5.8415(8) 3.42 1.21
c = 8.4265(1)

as-synthesized 4.3% R3c a = 8.3178(3) a = 5.8412(2) 3.43 1.24
c = 8.4275(4)

as-synthesized 3.7% R3c a = 8.3181(2) a = 5.8443(6) 3.27 1.22
c = 8.4185(9)

as-synthesized 2.2% R3c a = 8.3187(3) a = 5.8467(5) 3.19 1.55
c = 8.4119(8)

as-synthesized < 0.1% R3c a = 8.3183(3) a = 5.8388(2) 3.38 1.25
c = 8.4365(4)

as-synthesized < 0.1% R3c a = 8.3191(2) a = 5.8406(3) 3.37 1.25
c = 8.4329(5)

-10◦C in air < 0.1% R3c a = 8.3185(3) a = 5.8405(2) 3.54 1.28
c = 8.4329(4)

400◦C in air 1.2% R3c a = 8.3188(3) a = 5.8395(3) 3.43 1.23
c = 8.4337(5)

700◦C in air 1.1% R3c a = 8.3184(3) a = 5.8379(2) 3.87 1.37
c = 8.4405(3)

400◦C in 2%H/Ar < 0.1% R3c a = 8.3189(3) a = 5.8414(3) 3.66 1.33
c = 8.4290(5)

Table 17. Rietveld refinements for as-synthesized NiCr2O4 samples and NiCr2O4

samples that recieved additional treatment after the combustion synthesis. The fits
contain both spinel and tetragonal phases.
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MgxNi1−xCr2O4

Magnesium secondary Lattice oxygen
content phase parameter parameter Rwp χ2

x a(Å) u(Å)

0.0 See Table 17
0.1 2.8% R3c 8.3209(1) 0.3818(3) 3.34 1.20
0.1 2.1% R3c 8.3209(1) 0.3830(2) 3.15 1.13
0.2 3.4% R3c 8.3224(2) 0.3813(3) 3.16 1.14
0.2 1.8% R3c 8.3229(1) 0.3817(2) 3.21 1.12
0.3 3.6% R3c 8.3244(1) 0.3805(2) 3.07 1.09
0.3 1.6% R3c 8.3246(1) 0.3820(2) 2.96 1.12
0.4 1.7% R3c 8.3262(1) 0.3798(2) 3.08 1.10
0.4 1.9% R3c 8.3260(1) 0.3803(2) 2.95 1.13
0.5 5.4% R3c 8.3282(1) 0.3799(2) 3.05 1.11
0.5 2.3% R3c 8.3276(2) 0.3802(2) 3.02 1.10
0.6 3.1% R3c 8.3293(2) 0.3776(2) 3.11 1.15
0.6 3.0% R3c 8.3292(1) 0.3794(2) 3.00 1.08
0.7 3.7% R3c 8.3308(4) 0.3784(2) 2.94 1.14
0.7 1.8% R3c 8.3306(2) 0.3816(3) 3.23 1.11
0.8 2.5% R3c 8.3319(2) 0.3783(3) 2.96 1.14
0.8 1.9% R3c 8.3319(1) 0.3804(2) 2.55 1.10
0.9 3.6% R3c 8.3335(3) 0.3803(4) 3.46 1.14
0.9 2.2% R3c 8.3333(2) 0.3799(2) 2.71 1.08
1.0 2.4% R3c 8.3341(3) 0.3781(3) 2.83 1.11
1.0 2.0% R3c 8.3346(2) 0.3783(2) 2.90 1.10

Table 18. Rietveld refinements for MgxNi1−xCr2O4.
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NiFexCr2−xO4

Magnesium seconday Lattice oxygen
content phase parameter parameter Rwp χ2

x a(Å) u(Å)

0.0 See Table 17
0.05 2.2% R3c 8.3188(1) 0.3839(2) 2.70 1.17
0.1 < 0.1% R3c 8.3188(1) 0.3830(2) 3.29 1.16
0.2 < 0.1% R3c 8.3182(1) 0.3830(2) 3.00 1.17
0.3 < 0.1% R3c 8.3171(1) 0.3821(2) 3.05 1.17
0.4 1.3% R3c 8.3154(1) 0.3829(2) 2.81 1.16
0.5 < 0.1% R3c 8.3126(1) 0.3811(2) 3.02 1.18
0.6 < 0.1% R3c 8.3106(1) 0.3831(2) 2.77 1.19
0.7 < 0.1% R3c 8.3074(1) 0.3805(2) 2.81 1.17
0.8 < 0.1% R3c 8.3055(2) 0.3800(2) 2.72 1.17
0.9 < 0.1% R3c 8.3042(2) 0.3791(2) 2.66 1.15
1.0 < 0.1% R3c 8.3028(2) 0.3774(2) 2.73 1.14
1.1 < 0.1% R3c 8.3036(1) 0.3773(2) 2.50 1.11
1.2 < 0.1% R3c 8.3055(1) 0.3777(2) 2.32 1.12
1.3 14.9% R3c 8.3101(1) 0.3776(2) 2.58 1.13
1.4 2.0% R3c 8.3142(2) 0.3781(2) 2.36 1.13
1.5 1.5% R3c 8.3175(2) 0.3781(2) 2.25 1.11
1.6 1.7% R3c 8.3218(2) 0.3778(2) 2.22 1.15
1.7 6.2% R3c 8.3256(1) 0.3767(2) 2.15 1.10
1.8 3.1% R3c 8.3299(1) 0.3779(2) 2.09 1.11
1.9 2.7% R3c 8.3343(1) 0.3773(3) 2.02 1.12
2.0 8.4% R3c 8.3390(3) 0.3757(7) 2.09 1.11

Table 19. Rietveld refinements for NiFexCr2−xO4.
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FexCr3−xO4

Magnesium seconday Lattice oxygen
content phase parameter parameter Rwp χ2

x a(Å) u(Å)

0.6 62.6% R3c 8.3729(4) 0.386(fixed) 3.11 1.23
0.8 22.6% R3c 8.3742(4) 0.3864(4) 2.43 1.23
0.8 51.3% R3c 8.3800(2) 0.3865(4) 1.62 1.19
0.8 47.9% R3c 8.3789(1) 0.3849(3) 1.68 1.19
1.0 33.1% R3c 8.3784(3) 0.3849(5) 2.35 1.13
1.0 33.8% R3c 8.3832(5) 0.3832(5) 2.44 1.10
1.0 36.2% R3c 8.3798(3) 0.3862(2) 1.54 1.16
1.0 15.0% R3c 8.3772(2) 0.3844(2) 1.47 1.11
1.2 < 0.1% R3c 8.3818(2) 0.3851(3) 2.30 1.08
1.4 1.3% R3c 8.3904(1) 0.3839(2) 1.36 1.11
1.6 1.3% R3c 8.3907(2) 0.3831(2) 1.56 1.27
1.6 2.3% Im3m 8.3985(1) 0.3801(2) 1.39 1.15
1.8 3.7% Im3m 8.3946(2) 0.3836(3) 2.50 1.69
1.8 5.0% Im3m 8.3979(1) 0.3806(2) 1.48 1.17
2.0 3.9% Im3m 8.3977(6) 0.3799(1) 1.32 1.17
2.0 5.9% Im3m 8.3911(1) 0.3792(2) 1.39 1.10
2.2 < 0.1% R3c 8.3919(1) 0.3791(3) 1.64 1.06
2.4 11.0% Im3m 8.3864(1) 0.3787(2) 1.29 1.19
2.4 23.9% Im3m 8.3860(2) 0.3795(4) 1.89 1.08
2.6 8.0% R3c 8.3880(1) 0.3801(4) 1.68 1.54
2.8 26.8% Im3m 8.3888(1) 0.3780(3) 1.47 1.35
2.8 33.1% Im3m 8.3881(1) 0.3783(4) 1.40 1.36
2.8 12.6% Im3m 8.3885(7) 0.3774(3) 1.33 1.24
3.0 22.7% Im3m 8.3908(4) 0.3792(2) 2.11 1.55

40.5% FeO

Table 20. Rietveld refinements for NiFexCr2−xO4.
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[86] P. Brüesch and F. D’Ambrogio. Lattice dynamics and magnetic ordering in
the chalcogenide spinels CdCr2S4 and CdCr2Se4. Physica Status Solidi B 50,

513–526 (1972).

[87] M. P. O’Horo, A. L. Frisillo and W. B. White. Lattice vibrations of MgAl2O4

spinel. Journal of Physics and Chemistry of Solids 34, 23–28 (1973).

[88] J. Preudhomme and P. Tarte. Infrared studies of spinels III: The normal II-III
spinels. Spectrochimica Acta 27A, 1817–1835 (1971).
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Manjón, D. Errandonea, E. Rusu and V. V. Ursaki. Lattice dynamics of
ZnAl2O4 and ZnGa2O4 under high pressure. Annalen der Physik (Berlin) 523

(1-2), 157–167 (2011).

[101] V. G. Hadjiev, M. N. Iliev and I. V. Vergilov. The Raman spectra of Co3O4.

Journal of Physics C: Solid State Physics 21, L199–L201 (1988).

[102] G. G. P. Van Gorkom, J. H. Haanstra and H. v. d. Boom. Infrared and raman
spectra of the spinel ZnGa2O4. Journal of Raman Spectroscopy 1, 513–519

(1973).

[103] Roger G. Burns. Crystal field effects in chromium and its partitioning in the
mantle. Geochimica et Cosmochimica Acta 39, 857–864 (1975).

[104] Sonal Singhal and Kailash Chandra. Cation distribution and magnetic proper-
ties in chromium-substituted nickel ferrites prepared using aerosol route. Journal

of Solid State Chemistry 180, 296–300 (2007).

[105] H. S. C. O’Neill, H. Annerstein and D. Virgo. The temperature dependence of the
cation distribution in magnesioferrite (MgFe2O4) from powder XRD structural
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