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ABSTRACT 

High-pressure Properties of Several Narrow Bandgap Semiconductors from First-Principles 

Calculations 

By 

Andrew Alvarado 

Dr. Changfeng Chen, Examination Committee Chair 

Professor of Physics 

University of Nevada, Las Vegas 

The electronic, thermodynamic, and structural properties of three semiconducting materials, 

ZnO, InN, and PbS, at high pressure are investigated utilizing first-principles calculations based 

on density function theory. The first two systems, ZnO and InN, crystalize as hexagonal 

structures at ambient conditions and transition to a cubic structure at higher pressures. The last 

system, PbS, is cubic at ambient conditions, but transitions to an orthorhombic structure at higher 

pressure. At ambient conditions, these materials are well known semiconductors with vast 

amount of research and a variety of wide ranging applications in electrical devices. However, 

there is a lack of understanding of their physical properties at high pressures. In this thesis, an 

attempt is made to establish an understanding of the fundamental properties of the high-pressure 

phase of these materials. DFT and Boltzmann transport theory are used to find how pressure-

induced phase transitions affect the electronic and heat transport of these materials. From 

harmonic approximations, a frozen phonon method is used to calculate the phonon frequencies 

and thermodynamic properties.   
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CHAPTER 1 

INTRODUCTION 

Semiconductors are used in nearly every electrical device in today’s world. There are many 

important semiconductors that are used in a variety of electrical devices. Silicon is one of the 

world’s most highly produced semiconductors. Silicon is seen from integrated circuit boards to 

solar panels. Like many other semiconductors, silicon has a variety of crystal structures at higher 

pressures, each with their own interesting physical properties. However, studies on 

semiconductors are done at or near ambient conditions due to experimental limitations. In this 

thesis ZnO, InN, and PbS are investigated because, like silicon, they are well understood in their 

ambient condition, but their behavior changes when they are introduced to pressure. A material 

that is a semiconductor at ambient condition may become metallic or an insulator when the 

pressure is increased. The band gap may either widen or become narrower. This can be due to a 

pressure-induced phase transition. 

 

In the second, the theory and background behind much of the calculations for each material are 

discussed.  The crystal structure of a material, density functional theory, and Boltzmann transport 

theory are examined to develop means of calculating physical properties. Understanding the 

crystal structure at various pressures of a material can help expand the knowledge of a material 

phase diagram. Density functional theory transforms the many-bodied Schrödinger equation to a 

single electron charge density dependent equation. Boltzmann transport theory and the 

Boltzmann equation provide the capability to determine interesting transport properties. Finally, 

software packages that implement the theory are introduced. 
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ZnO and InN both crystalize as a hexagonal wurtzite crystal structure in ambient conditions. It is 

experimentally shown that they transition to a cubic rocksalt structure at higher pressures. [1, 2] 

It is also shown that it is possible to stabilize their high-pressure structures much lower than their 

transition pressures through epitaxial stabilization. [3, 4] In the third and fourth chapter of this 

thesis, ZnO and InN, respectively, are investigated to compare their electrical and heat transport 

between their respected ambient and high-pressure phases both above and below the pressure 

transition. In addition to modeling their transport properties, calculations of the figure of merit 

ZT were performed to surmise the potential of these materials as thermoelectrics.  

 

In the fifth chapter an investigation in corroboration with experimentalists was made to find and 

characterize the intermediate structure of PbS. PbS is a narrow band gap semiconductor that 

belongs to a family of lead chalcogenides (PbS). This family is a sodium chloride structure in 

ambient conditions and transitions to a caesium chloride structure at higher pressures. However, 

PbS is shown to transition to an intermediate orthorhombic structure and then further to a 

caesium chloride structure. [5] Here, two plausible orthorhombic structures are investigated to 

see which of the two is more energetically stable, and then characterize its electronic and 

structural properties.    
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CHAPTER 2 

BACKGROUND AND THEORY 

In this chapter, the crystal structure, density functional theory, Boltzmann transport theory, and 

general phonon theory are discussed to provide the theory behind the study. The first section 

entitled crystal structure discusses the basic concept behind defining crystalline features in 

materials. The second section depicts the theory and functions used in general density functional 

theory (DFT) to provide relaxed structure and ground state energy of n-electron systems. The 

third section provides the theory behind transport properties of solid materials. The last section 

gives the general theory behind calculating phonon frequencies through the frozen phonon 

method.  

CRYSTAL STRUCTURE 

It is essential to discuss the theory behind the crystal structure of any solid material especially 

since in this thesis a comparison between two different crystal structures at varying pressures is 

made. A crystal structure, or Bravais lattice, is defined as the spacing and periodic arrangement 

between units. Units can be the atoms, groups, or molecules in a system, but as long as there is a 

periodic array it belongs to a lattice system and can be categorized under a Bravais lattice. For 

solid materials and this study, atoms are the units. A unit cell can then be defined as a structure 

of atoms in which are repeated throughout the solid. A vector that relates all the points in a 

lattice is called the position vector. A general example of the position vector is: 

!
R = n1

!a1 + n2
!a2 + n3

!a3  
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Where ni are integers and a1 are primitive vectors that generate the lattice. It must be noted that 

for any Bravais lattice the primitive vectors are not unique. In fact, there are infinitely many 

nonequivalent choices for the primitive vectors.  

 

Although in ambient conditions semiconductors and metals can be in many different crystal 

structures, in high-pressure they often transition into crystal structures with higher symmetry. [6] 

A well-known and highly symmetric lattice is that of the cubic. The cubic lattice contains three 

Bravais lattices: Simple cubic, body-centered cubic, and face-centered cubic. The simple cubic 

structure can be described by three mutually orthogonal primitive vectors a1, a2, and a3 with 

atoms at each corner of a unit cell. 

 	  

Figure 2.1 The simple (primitive) cubic cell. 

With primitive vectors 

!a1 = ax̂,  
!a2 = aŷ, 	  

!a3 = aẑ.  

The body-centered cubic structure contains an atom in the middle of a cell and atoms at each 

corner of the cell. 

→a3

→a1

→a2
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Figure 2.2 The body-centered cubic cell. 

With primitive vectors 

!a1 = ax̂,  
!a2 = aŷ, 	  

!a3 =
a
2
(x̂ + ŷ+ ẑ).  

 

The face-centered cubic structure contains atoms at the center of each face of the cube as well as 

every corner of the cell.   

	  

Figure 2.3 The face-centered cubic cell. 

With primitive vectors  

→a3

→a1

→a2

→a3

→a1
→a2
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!a1 =
a
2
(ŷ+ ẑ),  

!a2 =
a
2
(ẑ + x̂), 	  

!a3 =
a
2
(x̂ + ŷ).  

There are 7 types of crystal systems and 14 Bravais lattice. Table 1.1 describes systems and their 

associated number of lattice, along with restrictions on the vector length and the angle between 

the primitive vectors. [7]  

System Number of lattice Restrictions 

Triclinic 1 a1≠a2≠a3, α  ≠β ≠γ   

Monoclinic 2 a1≠a2≠a3, α  =γ =90o≠β  

Orthorhombic 4 a1≠a2≠a3, α  =β =γ =90o 

Tetragonal 2 a1=a2≠a3, α  =β =γ =90o 

Cubic 3 a1=a2=a3, α  =β =γ =90o 

Trigonal 1 a1=a2=a3, α  =β =γ < 120o 

Hexagonal 1 a1=a2≠a3, α  =β =90 , γ  = 120o 

Table 1.1 Crystal systems, their number of lattices, and restrictions. [7] 

 

The figures depicted above are for single element materials. Here, binary compounds are 

investigated. With cells containing two ions the Bravais lattice loses a translational symmetry. In 

other words, all points do not look the same; instead there is some kind of interchanging of 

atoms. For example the sodium chloride structure contains equal atoms at every Bravais lattice 

point, but the corners of a cell alternate between sodium and chlorine ions.  This type of structure 

is that of a face-centered cubic Bravais lattice. The sodium chloride structure is also referred to 

as the rock-salt structure.    
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N-BODY SCHRÖDINGER EQUATION 

The many-body Schrödinger equation can used to study solid-state properties. First a 

Hamiltonian that contains the kinetic energy and interactions of all the particles in a solid must 

be defined. Within a solid there are the ions and the electrons, these ions and electrons can 

interact with each other. Furthermore, the electrons can be distinguished between the valence 

electrons and the core electrons. These valence electrons are the main drivers of interactions such 

as chemical bonding. The cores electrons are usually strongly bound with the ions and do not 

significantly contribute to material properties. Therefore the Hamiltonian can be simply 

described as 

H = Hion +Helectron +Hion,electron  

This describes the Hamiltonian of the ions, the valence electrons, and the interaction between 

them. In some cases there may be external fields that can also be considered.  

 

Bearing in mind only the ionic part of the Hamiltonian, there are the kinetic energies of the ions 

and the ion-ion interactions. 

Hion = Kion +V ion,ion  

where  

Kion =
Pi
2

2i
∑  

The kinetic energy term Kion contains the momentum P for all ith ions and 

Vion,ion =
1
2

V (Ri − Ri ' )
i,i ',i≠i '
∑  
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The interaction V is dependent on the position R and distance between ion i and i’, excluding i 

equating to i’. The factor of one half in front of the sum is to compensate for double counting. 

 

Similarly the electron part can be defined as the kinetic energy and the interaction between 

electrons. 

Helectron = Kelectron +Vele,ele  

The kinetic energy term is similar to the ion part with each electron carrying a momentum term 

p, but the interaction is now a coulomb potential. 

V elec,elec =
1
2 j, j ', j≠ j '
∑ 1

| r j − rj ' |
 

The sum runs through all electron index j and j’, excluding when j is equivalent to j’. 

 

Finally, the interaction between the ions and the electrons can be described as 

H ion,electron = Vion,elec (rj − Ri )
j,i
∑  

The interaction depends on the distance between the ith ion and jth electron. 

 

With these equations laid out, a quantum mechanical technique can be used to calculate solid-

state material properties. Using the coordinate representation, the Hamiltonian can be turned 

from a function into its operator with a corresponding wavefunction as a function of the 

coordinates of all the ions and electrons.  

Hψ(x1, x2, x3...) = Eψ(x1, x2, x3...)  

From this it can be seen that as the number of ions and electrons increases this quickly becomes 

an expensive calculation. Since a headstrong ab-initio calculation would require more 
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computational power due to the exponential scaling in the number of electrons, approximations 

can be made to lower the computational time. There are several approximations and methods that 

have been developed to make the computational time more efficient. One such developed 

method is driven by density functional theory.  

 

The first approximation that can be considered to lower the computational cost and tedious 

calculation is by manipulating the Hamiltonian suggested in the previous section. The 

Hamiltonian shows a coupling of the ions and the electrons. The Born-Oppenheimer 

approximation decouples the Hamiltonian by inciting that the ions are much heaver than the 

electrons therefore move slower. [8] As a consequence the kinetic term for the ions is largely 

insignificant and the electrons are moving in a static field. The ion-electron interaction is 

therefore constant in the Hamiltonian. This is also considered as an adiabatic approximation 

because as the electrons move through the lattice, the ions respond very slowly to the electrons 

movement.  

 

If the electronic motion is the only interest then this approximation is acceptable because now 

the Schrödinger equation is now a decoupled adiabatic Schrödinger equation of electrons and 

nuclei 

(H elec +Hion,elec )ψ = Eelecψ  

The ions are fixed and the electronic wave functions are as 

ψ(r 1σ1, r2σ 2...rnσ n;R1...Rn ' )  

Rn’ are parameters and compared to the previous equation the coordinates are now 

xn = rnσ n  
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σn is the spin and rn remains as the position. The wave function is now a function of the all the 

electron’s spins and all their position. 
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DENSITY FUNCTIONAL THEORY 

KOHN-HOHENBERG AND KOHN-SHAM EQUATIONS 

To begin describing density functional theory the Kohn-Hohenberg [9] and Kohn-Sham [10] 

equations must be discussed. First, Hohenberg and Kohn theorized that the ground state energy 

of a many-body system is a unique functional of the electron density. In other words, there is a 

correspondence of the ground state wave function to the electron density. Consequently, once the 

electron density is known it can be used to uniquely determine properties of the ground state. 

Second, Kohn-Hohenberg theory states that the functional has a minimum relative to variations 

of the electron density when compared to the equilibrium density. If different functionals are 

used and only one has this relative minimum, then that functional corresponds to the true 

solutions of Schrödinger equations. This approach is often incorporated by the use of variational 

principle. The theory can now be summarized to state that the energy solved by the Schrödinger 

equation is a sum of terms dependent on the trial density n. 

E(n) = T (n)+Vext (n)+Velec,elec (n)  

 

The Kohn-Sham equations propose a method for finding the electron spin density n(r) and the 

electron ground state energy Eg for a system on N electrons with an external potential v(r). The 

external potential can be caused by the nuclei in the system. The Kohn-sham equations 

−
1
2
∇2 +ϕ(r)+ vXC

σ ([n↑,n↓];r
%

&
'

(

)
*ψασ (r) = εασ (r)  

nσ (r) = Θ(µ −εασ ) |ψασ (r) |
2

α

∑  
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with n(r) = n↑(r)+ n↓(r) . Here, σ is the up and down z-component spin, α is the other electron 

quantum numbers. Θ is a step function to have spin orbitals filled up to µ < ε, otherwise it is 

zero. The chemical potential µ is chosen such that  

n(r)d3r = N∫  

The ϕ term contains the external potential v(r) and also contains the Hartree potential  

ϕ(r) = v(r)+u([n];r)  

u([n];r) = n(r ')
| r − r ' |

d3r '∫  

The last term on the left hand side is the exchange-correlation potential. This potential is 

dependent on spin and a functional of spin density. From this equation it is seen that a necessary 

self-consistent calculation must be made to solve the problem.  

 

The electron energy is the sum of the kinetic energy, the external potential, and a Coulomb 

potential. We can define each term 

E = Ts[n↑,n↓]+ n(r)v(r)+U[n]+EXC[n↑,n↓]d
3r∫  

with 

Ts[n↑,n↓]= Θ(µ −εσα ) ψσα −
1
2
∇2 ψσα

σα

∑  

The inner product can be taken as integration through all space with the wave function and the 

transpose conjugate of the wave function. This kinetic energy is non-interacting electrons. The 

second term is a nuclei-electron interaction. The electron-electron interaction comes from the 

coulomb potential similar to previous section. 
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U[n]= 1
2 ∫

n(r)n(r ')
| r − r ' |

d3rd3r '  

The last term is the exchange-correlation energy. The derivative of the energy gives the 

exchange-correlation potential.  

vXC
σ ([n↑,n↓];r) =

δEXC

δnσ (r)
 

This is the self-consistent equation. A guess is made for the density, placed into the equation and 

the products of which are functional qualities from which a new density can be approximated. 

Iterations can be made until a convergence is made between the old density and the new. An 

exact solution can be calculated if the exchange-correlation energy is known. The problem is to 

have an accurate description of the exchange-correlation energy.  Once again approximations 

must be made to yield close-to-correct exchange-correlation energies. 

 

LOCAL DENSITY APPROXIMATION 

An early approximation for the exchange-correlation energy is the Local Density Approximation 

(LDA). As the name implies the exchange-correlation energy can be approximated by 

considering only the local electronic density. The Fermi and Thomas gas model can be used to 

linearly decompose the exchange-correlation energy such that they are contributions of the 

exchange energy and the correlation energy.  

EXC = EX +EC  

The contributions for the exchange and the correlation can be approximated. [11, 12] For the 

non-interacting homogenous gas model the exchange density is known. The energy can be 

calculated by integrating the density. The energy as a function of density can then be found 

Ex[n(r)]= 0.74 n4/3(r)dr∫  
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The correlation densities are analytically found for the low and high-density limit. To find 

intermediate values Monte Carlo simulations can be used to estimate accurate products, 

alternatively interpolations are used from the results. The local density approximation gives 

reasonable results even after so many approximations have been made. This can be attributed to 

an underestimation and an overestimation to the exchange and correlation energy, respectively 

[13]. Other approximation methods for the exchange-correlation energy have been made that 

also improve computational time.  

 

GENERALIZED GRADIENT APPROXIMATION 

The Generalized Gradient Approximation (GGA) is another approach to approximate the 

exchange-correlation energy. This approximation does not only consider the charge density but 

also the derivative of the density. Thus the local density gradient is used additionally to the local 

density.  

EXC[n(r)]= f (n(r),∇n(r))d3r∫  

Incorporating additional information does not always generate a more accurate result, but 

nevertheless how to incorporate this information comes in the form of many functionals. An 

honorable mention must be made to Perdew-Wang functional (PW91) [14] and the Perdew-

Burke-Ernzerhof functional (PBE) [15]. PBE uses universal constants and is built upon PW91 

making it slightly more desirable. In this thesis both of these functionals have been used for 

simulations. 

 

GGA generally gives better results than LDA when the results are compared to experimental 

work. However, improvements on functionals and the exchange-correlation energy are 
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constantly being refined. Other functionals to mention are the Meta-GGA functionals [16] that 

also considers the second derivative and Hybrid Exchange functionals [17] that mixes different 

functionals. 

HELLMANN-FEYNMAN THEOREM 

This theorem stems from the fact that the Hamiltonian Ĥ  can depend on a parameter λ .	  Often it 

is desired to understand how this parameter affects the energy Eλ .  

If  

Ĥλ ψλ = Eλ ψλ 	  

then the wave function ψλ  can be used to define the energy 

ψλ Ĥλ ψλ = Eλ 	  

If the derivative with respect to the parameter λ 	  is carried across the above, it now becomes	  

dEλ

dλ
= ψλ

∂Ĥλ

∂λ
ψλ 	  

This is the Hellmann-Feynman theorem [18, 19]. This theorem can be used to derive 

intermolecular forces. Here is an example of molecule with N electrons having ri coordinates and 

M nuclei located at a site Rj with nuclear charge Zj. The Hamiltonian for this configuration is 

given by 

Ĥ = −
1
2
∇i
2 +

−Z j

| ri − Rj |
+

i, j
∑

i=1

N

∑ 1
2

1
| ri − ri ' |

+
1
2

Z jZ j '

| Rj − Rj ' |j, j '≠ j
∑

i,i '≠r
∑ 	  

The force is given by the negative derivative of the energy with respect to a coordinate 

FRj = −
∂E
∂Rj

= − ψ
∂Ĥ
∂Rj

ψ 	  
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The only terms that the Hamiltonian contributes are the second and the third terms. If the charge 

density is used instead the summation becomes an integral of the form 

FRj = −Z j n(r)
(r − Rj )
| r − Rj} |

3 d
3r −

Z j '

| Rj − Rj ' |j '≠ j
∑∫

%

&
''

(

)
** 	  

Here is the electrostatic force, similar to that in the classical regime. Equilibrium states can be 

found by displacing R until the energy is minimized. Conversely, this method allows for force 

calculations of molecular dynamics, as will be discussed in later sections.  

PSEUDOPOTENTIAL 

Once an approximation for the exchange-correlation energy is chosen, the next step is to choose 

a wave function that represents each atom. A possible wave function is that of a plane wave. 

Φi (r) = cie
ik⋅r

i
∑  

This is generally a good wave function if it is slowly varying. However, in the core of an atom 

the wave function oscillates rapidly. This requires a large number of plane waves to set a 

converging basis. Here, the fact that the electrons can be distinguished in the two parts is taken 

advantage of. In the inner core of the atom the core electrons are not significantly interacting and 

locked. The outer regions of the atom, the valence electrons, are responsible for chemical 

bonding. Thus the plane wave function can be used to describe the valence electrons while a 

smoother potential, given by the pseudopotential, is used for the inner atom.  The smoother 

potential is to be used as a method to reach quicker convergence. Where to cut off the radius of 

the core and how to chose the pseudopotential depends on the material. This ultimately also 

determines the convergence and accuracy.  

 

PROJECTOR AUGMENTED WAVE 
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A mixed method was introduced to obtain better results. The projector-augmented wave (PAW) 

mixes the pseudopotentials discussed above and an augmented wave.  The inner core is treated as 

atomic orbitals. The true wave functions are projected into auxiliary wave functions with the 

goal to have smooth auxiliary wave functions. The smooth auxiliary wave functions can be 

expanded in plane waves to achieve faster convergence. The operator T facilitates the 

transformation from physical wave functions onto auxiliary wave function.  

Ψn = T !Ψn  

Where Ψn  is the physical wave function and !Ψn  is the smooth auxiliary wave function. The 

operator T can be written as 

T̂ =1+ SR
R
∑  

The sum goes through every atomic site R. SR is then that which differentiates the physical with 

the smooth and is only acting below the cut off radius. Beyond the cut off radius it vanishes and 

the operator is reduced to the identity matrix.  

 

Using the frozen core approximation, the core has auxiliary wave functions that can be expanded 

in terms of auxiliary partial waves !φi , where the index i goes over the site index R.  Just as 

there is a transformation between the wave functions there is also the transformation between the 

partial waves. 

φi = (1+ SR ) !φi  

At a radius larger than the cut off radius SR once again vanishes and the identity matrix is left, 

leaving 
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φi = !φi  

Naturally, the auxiliary partial wave and the physical partial wave must match beyond the cut off 

radius. Auxiliary projector functions !pj can be used to expand the wave functions in terms of 

the partial waves for inside the cut off radius.  

!Ψ = !φi !pi !Ψ
i
∑  

From this it can be noted that inside the cut off radius 

!φi !pi
i
∑ =1  

and 

!pi !φ j = δij  

Bearing these in mind and applying SR altogether  

SR !Ψ = SR !φi !pi !Ψ
i
∑ = ( φi − !φi ) !pi !Ψ

i
∑ 	  

This leads to another definition of the T operator 

T̂ =1+ ( φi
i
∑ − !φi ) !p  

Finally, the real wave function and the auxiliary wave functions are related by 

Ψ i = !Ψ i + ( φi
j
∑ − !φi !pi !Ψ i  

 

VIENNA AB-INITIO SIMULATION PACKAGE  

The Vienna Ab-initio Simulation Package (VASP) [20] uses density functional theory for ab-

initio 0 Kelvin quantum-mechanical molecular dynamics. In this thesis, VASP is the main 

program used for such simulations. The LDA and GGA-PBE pseudopotentials are used along 
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with the projector augmented wave. [21] VASP can be used to calculate forces and the stress 

tensor. In turn these can be used to relax the atoms to their respected ground state. 

 

The actual simulation and relaxation can be thought of as two loops. An outer loop, optimizing 

the charge density, and an inner loop that optimize the wave functions. Within VASP the user 

has a selection of options to use different algorithms, which use some form of a matrix-

diagonalization process and iterations. In this thesis, the residual minimization-direct inversion in 

iterative space RMM-DIIS (tag IBRION =1) [22] algorithm is chosen for close to the local 

minimum and a conjugated gradient algorithm (tag IBRION = 2) [23] is used for difficult 

relaxations. Since the optimization runs on a loop, a criteria must be set to stop and exit the loop. 

For much of the work here this criterion is when the difference in energy between two iterations 

reaches 10-6 eV. A convergence test is then made to make sure no change larger than 0.5 meV 

per atom occurs. The convergence test depends on an Energy cut off of the plane wave (tag 

ENCUT), related to the cut off radius described in the previous section, and the k-points used.  

 

The k points are important in DFT calculations because integrals of the charge density of state 

within the Fermi surface must be chosen.  

n = Vcell
(2π )3

g(k)dk
BZ
∫  

VASP implements a k-grid generating scheme developed by Monkhorst and Pack [24]. Using 

this method the user inputs directions for the reciprocal lattice in the form of i× j × k . A 

convergence test with the k-points will allow the user to know how many k-points are sufficient 

for well-converged results. 
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The plane wave cut off energy is another parameter in a convergence test. From Bloch’s theorem 

a solution to the Schrödinger equation is of the form 

φk (r) = e
ik⋅ruk (r)  

where  

uk (r) = cGe
iG⋅r

G
∑  

is a periodic function that contains a summation of all the reciprocal lattice vectors G. 

The plane wave would then produce an energy solution of the form 

E = !
2

2m
| k +G |2  

Here a cut off energy must be found so that the reciprocal lattice vectors are also cut off. This 

means the sum is now only the summation up to the cut off energy. 

Ecut =
!2

2m
Gcut
2  

Choosing a sufficient k-mesh and plane wave cut off energy, the calculation can reach 

convergence quicker with minimum loss in accuracy. For most calculations in this thesis that 

deal with semiconductors a k-grid of or around 12x12x12 is generally used.  

 

WIEN2K 

WIEN2k uses the augmented plane wave plus local orbitals to calculate crystal properties. [25] 

WIEN2k also utilizes DFT and is used in this thesis to reach an energy converge faster with 

higher k-meshes than VASP. WIEN2k uses the linearized augmented plane wave (LAPW) with 

GGA to solve the Kohn-Sham equations. The solutions of the Kohn-Sham equations are 

expanded to in terms of a basis of LAPW according to the linearized variational method. 
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ψk = cnφkn
n
∑  

where the coefficients cn are determined by Rayleigh-Ritz variational principle. Additional 

functionals are added to improve the linearization and treatment of the core and valence states. 

These are called local orbitals LO [26, 27]. In general the LAPW or APW+LO method expands 

the potential similar in fashion to what is done within VASP. In this thesis a k-grid used with 

WIEN2k is 48x48x48. The equivalent to the energy cut off seen in VASP is the atomic sphere 

radius in the unit cell. The pseudopotential used in WIEN2k is GGA-PW91.  
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ELECTRON TRANSPORT THEORY 

DRUDE MODEL 

To begin discussion of theory of electronic transport the Drude model must be mentioned. Three 

years after the discovery of the electron by Thomson, Drude developed a method to describe the 

electrical and thermal conduction by applying what he had learned from his theory of gases to 

metal [6]. The model assumes that electrons are seen as free particles in a box. They undergo 

collisions and the time taken up by a single collisions are negligible while no other forces are 

assumed to act between the particles. In the case of the electron in a metal that is not true. The 

collisions are now also between the electrons and the ions and they are instantaneous events that 

abruptly alter the velocity of the electron. In the Drude model it can be assumed that in a metal 

the ions are static while the electrons are free to move. It is also approximated that one collision 

of the electron brings it to thermal equilibrium with the surroundings. The average time between 

collisions, τ, is called the relaxation time or mean free time. With the probability of the electron 

undergoing a collision in a time dt is equal to dt/τ.  

 

This model is rather outdated due to the many assumptions that are made. The model can still be 

used in some limits. The Drude model works well enough for some metals and noble metals.  

The model can also be used to understand the basics of electronic and thermal conductivity. 

Boltzmann Transport theory similarly makes some of these assumptions while the idea of 

electrons bouncing completely off of the ions has changed and developed. By the Drude model, 

there is a relation between the current density j and the electric field E. The proportionality 

between the two is the conductivity σ . 
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j =σE  

The conductivity can also be written as the inverse of the resistivity.  

ρ =
1
σ

, E = ρ j  

The current density is a vector that is parallel to the flow of charges. In other words, if n 

electrons per unit volume move with some velocity v, then the current density is parallel to that 

velocity. Since electrons carry a charge e, a charge crossing an area A in a time dt will be –nevA 

dt. Therefore the current density is now 
!
j = −ne!v  

 If an electron undergoes a collision in the absence of an electric field then the velocity after the 

collision v0  is in a random direction. This means if an average is taken then that average comes 

out to be 0. If the electric field is present, the velocity after a collision at time t will be 

!v0 − e
!
Et /m . The average of the velocity, with average time τ , is 

!vavg = −
e
!
Eτ
m

 

Inputting this into the current density 

!
j = ne2τ

m
!

"
#

$

%
&
!
E  

Finally, the above can be used to equate the conductivity as a function of classical quantities 

σ =
ne2τ
m

 

Assuming the conductivity, or resistivity, is known through experiments the relaxation time can 

be extracted.  
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τ =
m

ρne2
 

Typically the resistivity is in the order of microhm centimeters in room temperature [28], thus 

the relaxation times are in the order between 10-14 and 10-15 seconds. Through the Drude model it 

is found that the average velocity is an order of magnitude too small and the relaxation time is an 

order too large. This gives strong evidence that electrons do not simply bounce of the ions as this 

model suggests.  

 

BOLTZMANN TRANSPORT THEORY 

In a semi-classical theory, the conduction cannot be explicitly described through a non-

equilibrium distribution function gn (r,k, t) . This distribution holds the number of electrons in the 

nth band at some time t when integrated in the d3rdk volume and phase space. Since this 

distribution is in a non-equilibrium state, it is perturbed by a combination of the electric field, 

magnetic field, or a thermal gradient. In the semi-classical theory, those perturbations affect and 

advance the position, wave vector, and the band index. The semi-classical motions of the 

electron can be used to give some approximation to construct g at a time t from its initial 

infinitesimal time dt. If there are no collisions, the electron is subject to a force 

F = −e E(r, t)+ 1
c
vn (k)×H (r, t)

#

$%
&

'(
	  

with  

vn (k) =
1
!
∂εn (k)
∂k

	  

as the velocity depending on the wave vector k. εn (k)  is the energy for a band with index n. H is 

the magnetic field.  
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The explicit solution to these equations to a linear order in dt can be found since dt is 

infinitesimal. In other words, if the electron is at r and k at a time t then the electron must be at r-

v(k)dt, and k-F dt/! 	  at a time t – dt. From this, collisions are introduced and corrected for to 

produce 

gn (r,k, t) = g(r − v(k)dt,k −Fdt / !, t − dt)+
∂gn (r,k, t)

∂t
#

$
%

&

'
(
out

dt + ∂gn (r,k, t)
∂t

#

$
%

&

'
(
in

dt 	  

The second term with subscript out on the right hand side is a correction related to electrons 

failing to arrive at r,k at time t due to collisions. The third term with subscript in on the right 

hand side is a correction related to electrons that do reach r,k at time t because of collisions. The 

last two terms are due to the effects of collisions while the first is a collisionless evolution. The 

left hand side of the above equation can be expanded to linear order in dt and in the limit as dt 

approaches 0 the equation reduces to  

∂g
∂t
+ v ⋅ ∂

∂r
g+F ⋅ 1

!
∂
∂k
g = ∂g

∂t
#

$
%

&

'
(
coll

 

The dependencies in g are omitted for simplicity. The above is the Boltzmann equation. On the 

left hand side, those terms are referred to as the drift terms and they deal with the evolution of 

electrons without collisions. The right hand side deals with collision. With this equation 

ingenious methods are used to produce transport properties of materials. If the relaxation time 

approximation is used the collision term on the right side simplifies to 

∂g k( )
∂t

=
g0 k( )− g k( )

τ k
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τ k is an averaged relaxation time between two collisions. Although there are methods to better 

define the nature of the collision this is the approximation used for this thesis and the program 

used.  

 

Boltzmann transport theory can be used to gain insight in the transport properties of materials. A 

material in the presence of an electric field, magnetic field, and a thermal gradient, the current 

density can be as the sum of conductivity tensors. 

ji =σ ijE j +σ ijkE jBk + vij∇ jT +...  

The conductivity tensors can be written in terms of the group velocity  

vα (i,k) =
1
!
∂εi,k
∂kα

 

and the mass inverse tensor 

M −1
βu(i,k) =

1
!2

∂2εi,k
∂kβ∂ku

 

where εi,k is the band energies and wave vector k. The conductivity tensor is then 

σαβ (i,k) = e
2τ i,kvα (i,k)vβ (i,k)  

and  

σαβγ (i,k) = e
2τ 2

i,kεγuvvα (i,k)vβ (i,k)Mβu
−1  

using the Levi-Cevita symbol εijk . The relaxation time τ  is in principle dependent on the band 

index and the k vector direction. However, several studies show that τ  is actually direction 

independent [28]. In this assumption, τ  can be taken as constant. A conductivity distribution can 

be made using energy projected conductivity tensors 
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σαβ (ε) =
1
N

σαβ (i,k)
δ(ε −εi,k )

dεi,k
∑  

where N is the number of k-points. In a similar fashion σαβγ 	  can also be defined. Using the 

conductivity distributions the transport tensors in the current density equation can be calculated.  

 

BOLTZTRAP 

BoltzTraP [29] utilizes outputs, the energy bands, given by DFT programs such as VASP and 

WIEN2k. The outputs of WIEN2k are readily available to use with BoltzTraP. If VASP is to be 

used a VASP-to-BoltzTraP script is necessary to prepare the energy band outputs as input to 

BoltzTraP.  BoltzTraP performs data analysis and transformations on the energy eigenvalues to 

extrapolate material transport properties. Such properties are the conductivity over relaxation 

time σ / τ , Seebeck coefficients S, and the electron contribution to the thermal conductivity as 

functions of carrier concentration and temperature. As mentioned in the previous section 

Boltzmann Transport theory does not readily solve the relaxation time. Instead experiment work 

can be used to extrapolate resistivity and generate a relaxation time. Using the experimental 

work for relaxation time extrapolation requires data of the temperature range and carrier 

concentration. Ong and Singh [30] provide an example of this procedure. 

 

The code relies on Fourier expansions of band energies. The space group symmetry is 

maintained by using star functions. A result of this is to choose a large number of k-points for 

accuracy, the advantage is that only the band energies are required and there is no need to store 

large numbers of wave functions. For the reason of using a large k-grid, WIEN2k is used due to 

its faster convergence time for larger k-points. In this thesis, using WIEN2k as input for 
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BoltzTraP with a k-grid of 48x48x48. For further implementation of BoltzTraP a user guide is 

available with specification on the algorithms used [29].  
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LATTICE DYNAMICS 

HARMONIC APPROXIMATION 

Recall that in the Born-Oppenheimer approximation the ions remain fixed and do not move from 

a site R. For lattice dynamics and purpose of analysis, two assumptions are added. The mean 

equilibrium position of each ion is a Bravais lattice site. Such Bravais lattice sites can be 

associated with a particular ion, but now that site R is just a mean position of the ion about which 

the ion oscillates. The sites R are mean positions so that the structure still exists at an average 

ionic configuration rather than the instantaneous one. A second assumption is that the 

displacement of each ion from the equilibrium position is small compared to the spacing from 

ion to ion. These assumptions are made to consider the crystalline structure, but still allow 

grounds of analytical necessity. The second assumption leads to the harmonic approximation. 

The results from the harmonic approximation are often in agreement with observed solid 

properties [6]. Other materials require an anharmonic approach to correctly describe their 

properties. For this thesis and the program used here, the harmonic approximation is generally 

considered. 

 

Consider a pair of atoms separated by r with the separation contributing to a Lennard-Jones 

potential φ(r) . If a static lattice was taken as correct with every atom fixed at sites R, then the 

total potential energy in that crystal is the sum of the pairs.  

U =
1
2

φ(R− R ') = N
2

φ(R)
R≠0
∑

R,R '
∑ 	  

Now consider the ion which site is R is now located at a position r(R), and are not at R. An 

additional variable must be added to the potential 
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U =
1
2

φ(r R( )− r R '( )) =
R,R '
∑ 1

2
φ(R− R '+u(R)−u(R '))

R,R '
∑ 	  

The dynamical variable u(R) 	  appears. This dynamic variable must be accounted for within the 

Hamiltonian, which can be given as 

H =
P(R)2

2M
+U

R
∑ 	  

where P(R) is the momentum which governs the motion of ion. If u(R) is small the potential 

energy U can be expanded about the equilibrium using a Taylor’s series. Applying the Taylor’s 

series on the potential 

U =
N
2

φ R( )+ 1
2∑ (u R( )−u R '( ))
R,R '
∑ ⋅∇φ(R− R ')+ 1

4
[(u R( )−u R '( )) ⋅∇]2φ R− R '( )+O u3( )

R,R '
∑  

The second term that involves the gradient of a Lennard-Jones potential is just force exerted on 

the atom R by all the other atoms. Consequently, the sum of the forces on this atom will add up 

to 0 and the linear term vanishes. The next higher order term is a quadratic and in the harmonic 

approximation this is the last term retained. Therefore the potential can be written as 

U =Ueq +Uharm  

where Ueq is the equilibrium potential energy and is taken as a constant since it is independent of 

u and P. The harmonic potential is then 

Uharm =
1
4

[uµ R( )−uµ R '( )]φµν (R− R ')[
RR '
µ,ν=x,y,z

∑ uν R( )−uν R '( )] ,	  

φµν r( ) = ∂
2φ(r)
∂rµ∂rν

	  

This is the harmonic approximation and is the starting point to many lattice dynamic 

applications. Further corrections to this approximation deal with looking at third and fourth order 
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terms of the dynamic variable u. Those higher orders are often distinguished as anharmonic 

terms and are useful for finding many physical occurrences of thermal transport. A more general 

form that the harmonic potential takes is  

Uharm =
1
2

uµ R( )Dµν (R− R ')uν (R ')
RR '
µ,ν

∑ 	  

Dµν (R− R ') 	  is known as the dynamical matrix.	  

	  

There are N equations of motions for each of the three components of displacements of N ions, 

for a total of 3N. 

M!!uµ (R) = −
∂Uharm

∂uµ (R)
= − Dµν (R− R ')uν (R ')

R ',ν
∑ 	  

Solutions to the equation of motion are of the form of simple plane wave 

u(R, t) = εei(k⋅R−ωt ) 	  

where ε  is a polarizing vector that is to be determined, k are wave vectors, and ω 	  is the angular 

frequency. Using the periodic boundary condition, a solution of the equation of motion must 

satisfy the condition that the displacements of an atom in a unit cell must be only a phase factor 

off of another unit cell. Inserting the plane wave into the equation of motion, there will be a 

solution when ε is	  an	  eigenvector.	  

Mω 2ε = D(k)ε 	  

D(k) is known as the dynamical matrix and given by 

D(k) = D(R)e−ik⋅R
R
∑ 	  
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These three solutions to the three-dimensional eigenvalue problem give rise to 3N normal modes. 

They will have polarization vectors εs (k)  and frequencies ωs (k)with s = 1, 2, 3. In other words, 

diagonalizing the dynamical matrix gives rise to the frequencies of the normal modes and their 

eigenvectors.  

 

When considering a three-dimensional lattice with a basis, for every value of k there will be 3p 

normal modes, where p is the number of ions in a basis. The frequencies ωs (k) 	  are functions of 

k. 3 of the 3p branches are called acoustic while 3(p-1) branches are called optical. The naming 

is due to the behavior of the frequencies at a long-wavelength limit. Acoustic branches are 

defined by the frequencies of vibrations vanishing for k at a long-wavelength limit. Optical 

branches contain vibrations whose frequencies do not vanish in the long-wavelength limit.  

 

PHONONS 

In the previous section normal modes were used to describe the vibrations in a lattice. The 

energy of an N-ion harmonic crystal depends on the frequencies of the 3N classical normal 

modes. Since these are considered as 3N independent oscillators the energies add up discretely. 

Therefore the energy contribution of a particular mode is (nks +
1
2
)!ωs (k) ; nks 	  is	   the	  excitation	  

number	  of	  the	  mode.	  Each	  of	  the	  3N	  normal	  modes	  is	  given	  an	  excitation	  number.	  The	  sum	  

of	  the	  individual	  normal	  mode	  energies	  is	  then	  

E = (nks +
1
2
)!ωs (k)

ks
∑ 	  

Discussing the above in terms of excitation numbers of the normal modes can become clumsy 

because this type of exchange in energy is not unique. Other system such as electrons, incident 



	   33 

neutrons, or incident X-rays also contain normal modes. Therefore the term phonon has been 

coined to talk about the normal modes in a crystal. Instead of normal modes it is now possible to 

discuss nks phonons	  of	  type	  s with a wave vector k. An analogy to the term phonon is the term 

photons. Photons are quanta of radiation field that describes classical light. Phonons are quanta 

of the ionic that displacement field describe classical sound [6]. 

 

In order to understand the behavior of solids it is important to understand the crystal structure 

along with the lattice dynamics. From dynamical studies, insight into physical properties like 

thermal expansion, specific heat, and thermal conductivity can be achieved. The dynamics of the 

lattice depends on the lattice vibration and are what creates traveling waves in the solid. There 

are theoretical limits where different approximations can be considered. For instance above the 

Debye temperature the solid vibrations are no longer considered only harmonic. Anharmonicity 

begins to take affect and higher order terms must be taken into account. However, with a 

dynamical matrix, techniques can be applied to diagonalize the matrix and study thermodynamic 

properties.  

 

Phonons are not limited to theoretical calculations; there are experimental techniques to measure 

the lattice vibration. Raman spectroscopy and inelastic x-ray scattering are two examples. 

Experimental techniques have physical limitations, either at high pressure or high temperature. 

Models and simulations can be used to investigate thermodynamic properties above those 

limitations.  
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FROPHO 

Fropho [31], for frozen phonons, uses a modified finite-displacement method enhanced by 

Parlinski, Li, and Kawazoe [32] to analyze phonon system in a solid. Fropho is used with first-

principles calculations with periodic boundary condition. The theory is based on the harmonic 

approximation and is simplified in two steps. First, supercells that are prepared by first-principle 

calculations are used. Those supercells must be atomically displaced. First-principles programs 

that output forces based on Hellman-Feynman theorem can be used to generate forces. Second, 

the calculated forces are gathered and dynamical matrices are generated at each point in 

reciprocal space. The program solves the dynamical matrix and finds the eigenvalues and 

eigenvectors of each matrix. These eigenvalues and eigenvectors correspond to the phonon 

frequencies and the phonon vibration modes. Identifying phonon frequencies on successive 

points in reciprocal space can generate a phonon band structure.    
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CHAPTER 3 

THERMOELECTRIC PROPERTIES OF ROCKSALT ZnO 

I. INTRODUCTION 

Zinc oxide (ZnO) is an important semiconducting material that finds wide-ranging applications. 

[33] It crystallizes in wurtzite (WZ) structure at ambient pressure, but transforms to rocksalt (RS) 

structure at high pressure. It has been shown that the high-pressure RS ZnO phase can be 

stabilized at ambient pressure. [2, 3, 34] This finding introduces an additional structural phase of 

ZnO accessible at ambient conditions, which offers exciting opportunities for expanding 

fundamental understanding and the range and variety of its potential applications. To 

characterize the RS ZnO phase, it is essential to establish its electronic, phonon, thermodynamic, 

and transport properties. In this work, we report first-principles calculations that provide results 

on such fundamental properties. Based on these results, we further explore thermoelectric (TE) 

properties of RS ZnO, which is characterized by a dimensionless figure of merit ZT =σS2T /κ , 

where σ  is electrical conductivity, S is Seebeck coefficient, also known as thermopower, T is 

the absolute temperature, and κ  is thermal conductivity, which comprises electric and lattice 

contributions so that κ =κe +κ l . Since electrical and thermal conduction are usually positively 

correlated, it is a formidable challenge in TE research to find materials that have high electrical 

but low thermal conduction, thus optimizing the ZT value. 

 

There has been considerable interest in ZnO as a low-cost, non-toxic, and highly stable 

thermoelectric [35-48] and for many other applications. [49-56] However, past studies have 

almost exclusively focused on the wurtzite phase of ZnO, which is its normal structural form that 
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exists at ambient conditions. There has been little literature discussing the essential physical 

properties of the RS ZnO phase, either in its high-pressure form or the recovered form at ambient 

pressure. Here, we attempt to establish an understanding of the fundamental properties of RS 

ZnO and, subsequently, explore its thermoelectric performance. 

 

II. METHODS OF CALCULATION 

We have performed first-principles calculations based on the density functional theory (DFT) 

within the generalized gradient approximations (GGA-PBE) [15] as implemented in the VASP 

package [20]. The projector augmented-wave (PAW) [21] pseudopotential method is used with a 

cut off energy of 500 eV. The structure was relaxed using a k-mesh of 12x12x12 with an energy 

convergence of less than 0.5 meV per atom. We also performed harmonic lattice dynamics 

calculations using the Fropho package [31] and self-developed codes to obtain the mode and 

total heat capacity and Grüneisen parameter at various temperatures. [57] These calculations 

were carried out using the phonon frequencies where ωi (q,V ) is the frequency for the ith mode 

and wave vector q for a volume V. The linear thermal expansion coefficient α(T )  is obtained 

from 

α(T ) = 1
3B

γ i (q)cvi (q, t)
q,i
∑ ,  

where B is the bulk modulus, and γ i (q)  is the ith mode Grüneisen parameter given by 

γ i (q) = −
d[lnωi (q,V )]
d[lnV ]

 

and	   cvi (q,T ) , which is the mode contribution to specific heat, is calculated by 
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(q,T ) = !ωi (q,V )
V

d
dT

exp !ωi (q,V )
k bT

!

"
#

$
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. 	  

Summing the mode contributions across all the Brillouin zone with 

Cv (T ) = cvi (q,T )
q,i
∑ 	  

the overall weighted and averaged Grüneisen parameter is obtained as 

γ (T ) = 1
Cv (T )

γ i q( )cvi q,T( ) = 3B T( ) α(T )
Cv (T )q,i

∑ . 	  

 

The temperature and doping-level dependent Seebeck coefficient S(T,n) and electrical 

conductivity σ  are calculated using the Boltzmann transport theory [58] as implemented in the 

BoltzTraP package. [29] The electronic structure input for BoltzTraP is obtained using WIEN2k 

with the implementation of the linearized augmented plane wave (LAPW) method. [25] A more 

accurate determination of the band gap was obtained using the hybrid functional HSE06 in 

VASP. A crucial parameter needed to determine electrical conductivity is the electronic 

scattering rate, τ −1 . We adopt a constant scattering time approximation for the conductivity 

calculations, which can be completed based on the calculated electronic structure with no 

adjustable parameters, and a comparison with experimental resistivity data allows the extraction 

of s at a given doping level. [30] 

 

Lattice thermal conductivity is given by κ l =
1
3

Cqsv
2
qsτ qs

qs
∑ , where Cqs , vqs , and τ qs  are specific 

heat, group velocity, and lifetime of phonon mode with momentum q and polarization index i, 

respectively. [59] We have performed first-principles anharmonic lattice dynamics calculations 
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based on the Boltzmann transport theory with the phonon relaxation time obtained from the 

three-phonon scattering process. [60] We used the Fropho package and self-implemented codes 

to compute specific heat and group velocity, and the phonon lifetime τ  is obtained as the inverse 

of the phonon scattering rate 

Γqs =
!π
16

| Ass 's ''
qq 'q '' |2 Δqq 'q ''BZ∫

s 's ''
∑ × nq 's ' + nq ''s '' +1( )δ(wqs −wq 's ' −wq ''s '' )

+ 2(nq 's ' − nq ''s '' )δ(wqs −wq 's ' +wq ''s '' )dqdq ''
 

where nqs is the phonon occupation number, Δqq 'q ''  ensures momentum conservation, and the 

delta functions ensure energy conservation. The three-phonon matrix elements are given by 

Ass 's ''
qq 'q '' =

ijk
∑

εαi
qsεβ j

q 's 'εγk
q ''s ''

mimjmk wqswq 's 'wq ''s ''

×Ψ ijk
αβγei(q⋅r1+q '⋅r2+q ''⋅r3 ),

αβγ

∑ 	  

where mi is the atomic mass and ε qs is the phonon polarization vector. The third order 

interatomic force constants (IFCs) Ψ  are calculated by taking the derivative of the second-order 

IFCs using the finite difference method; because all the major third- order IFCs are between the 

first- and second-nearest-neighbors, pair interactions beyond the second-nearest neighbors are set 

to zero. This procedure treats the lattice anharmonicity, allowing its incorporation into the 

computational codes. [59–61] The electronic contribution to thermal conductivity is obtained 

using the Wiedemann-Franz relation κe = LσT , where L = 2.45×10−8 is the standard value. [30] 

 

In the present work, we study the temperature and doping dependence of ZT of RS ZnO and 

explore the optimal parameter range for its peak performance. Below, we first report on 

calculated phonon dispersion results, which are used to obtain several key thermodynamic 

properties, and the thermal conductivity of RS ZnO. We then examine the electronic band 
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structures, electrical conductivity σ , and Seebeck coefficient S(T, n). Finally, we combine these 

results to determine ZT. 

 

III. RESULTS AND DISCUSSION 

Figure 3.1 shows the enthalpy versus pressure for the rocksalt and wurtzite ZnO phases. The 

calculated critical pressure for the wurtzite-to-rocksalt phase transition is 11.2 GPa, which is in 

good agreement with the experimental results showing that the transition starts around 9 to 10 

GPa. [62–64] The calculated lattice parameter of the RS ZnO structure at the experimental 

transition pressure of 8.7 GPa is 4.270 Å, which is in excellent agreement with the measured 

value [62] of 4.271 Å. Below, we examine the RS ZnO phase at two representative pressure 

points, one at 20 GPa where the high-pressure RS ZnO phase is well established and the other at 

0 GPa where the RS ZnO phase is recovered and stabilized by quenching the sample to the 

ambient conditions. [3]  

	  

Figure 3.1 Enthalpy versus pressure for rocksalt (solid line) and wurtzite (dashed line, set to zero) ZnO. 
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In Fig. 3.2, we present the phonon dispersion curves for RS ZnO at 0 and 20 GPa together with 

the corresponding phonon density of states. There is a noticeable pressure induced frequency up-

shift from 0 to 20 GPa. It is also noted that there is a large broad peak in the phonon density of 

states around 5 THz, which is contributed by a high number of acoustic phonon modes in this 

frequency range. It has been shown that WZ ZnO exhibits an appreciable LO-TO splitting 

around the Γ  point. [65] Our calculations reveal a similar LO-TO splitting in RS ZnO, which is 

obtained using the Born effective charge and dielectric constants calculated from the VASP code 

and then used as input to the phonon calculations. The calculated dielectric constant for RS ZnO 

is 5.492 and the Born effective charges are 2.4092e and -2.4115e for Zn and O, respectively, at 0 

GPa; these values are insensitive to pressure change, and at 20 GPa the dielectric constant 

becomes 5.491 and Born effective changes turn into 2.4093e and -2.4115e for Zn and O, 

respectively.  
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Figure 3.2 Calculated phonon dispersion curves of RS ZnO at 0 and 20 GPa and the corresponding phonon density of 
states. 
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Grüneisen parameter and linear thermal expansion coefficient of the RS ZnO phase at both 0 

GPa and 20 GPa are significantly higher than those for the ambient-pressure WZ ZnO. These 

results indicate a much more sensitive dependence of the phonon frequency on the volume 
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structure. It is interesting to note that the RS ZnO phase at 0 GPa exhibits especially strong 

anharmonic effects as measured by these parameters. Such highly anharmonic lattice dynamics 
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low thermal conductivity, which is favorable for achieving high-efficiency thermoelectric 

performance.  
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Figure 3.3 Calculated heat capacity (top panel), total Grüneisen parameter (middle panel), and linear thermal expansion 
coefficient (bottom panel) for RS ZnO at 0 and 20 GPa and for WZ ZnO at 0 GPa. 
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We have calculated the thermal conductivity by summing over the mode specific heat, phonon 

group velocity, and life-time following the procedure described in Section II, and we show in 

Fig. 3.4 the obtained thermal conductivity results of RS ZnO at 0 and 20 GPa compared against 

experimental values of WZ ZnO at 0 GPa. [66] It is seen that the thermal conductivity of RS 

ZnO is much lower than that of WZ ZnO, and this is especially true for RS ZnO at 0 GPa, where 

the results are lower by more than a factor of two compared to those of WZ ZnO in the 

temperature range studied here. This result is attributed to the much larger lattice anharmonicity 

as indicated by the much larger values of Grüneisen parameter for the RS ZnO phase shown 

above. The thermal conductivity of RS ZnO at 20 GPa is higher than that at 0 GPa, and this is 

also consistent with the relatively smaller Grüneisen parameter of the high-pressure phase. Since 

the figure of merit ZT is inversely proportional to thermal conductivity, the low thermal 

conductivity of RS ZnO is expected to generate higher ZT values.  
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Figure 3.4 Calculated thermal conductivity of RS ZnO at 0 GPa, 20 GPa, compared to experimental data for WZ ZnO at 
0 GPa. [66] 
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pressure range of 4.7 GPa to 19.9 GPa with an average of 2.45 ± 0.15 eV. [65] The electronic 

band structures with the corrected band gap are shown in Fig. 3.5. It is noted that ZnO switches 

from a direct band-gap semiconductor in its wurtzite phase to an indirect band-gap 

semiconductor in its rocksalt phase. While the bottom of the conduction band remains at the Γ  

point, the top of the valence band is at the L point in RS ZnO. We then introduced the same band 

gap correction to the electronic band structure produced by the WIEN2k code and used the 

results as input for the transport calculations presented below.  

 

	  

Figure 3.5 Electronic band structure of RS ZnO at 0 and 20 GPa calculated using the hybrid functional HSE06. 
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there is a drop in magnitude and a shift toward higher carrier concentration for the peak Seebeck 

coefficient. This trend is similar to the results for WZ ZnO. [45] The electrical conductivity 

keeps increasing and does not peak in this carrier concentration range; however, the peak values 

for the power factor fall into this range since its behavior is largely dominated by the square of 

the Seebeck coefficient. This sensitive dependence on the Seebeck coefficient also explains the 

quick drop of the power factor with rising temperature, which reduces the Seebeck coefficient.  
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Figure 3.6 The Seebeck coefficient, electrical conductivity divided by τ , and power factor of n-type RS ZnO at 0 and 20 
GPa at selected temperatures from 300 K to 800 K in the carrier concentration range of to 1× 1020 cm-3 to 1× 1021 cm-3. 
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Figure 3. 7	  The Seebeck coefficient, electrical conductivity divided by τ , and power factor of p-type RS ZnO at 0 and 20 
GPa at selected temperatures from 300 K to 800 K in the carrier concentration range of to 1× 1020 cm-3 to 1× 1021 cm-3. 
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1020 cm-3 to 1021 cm-3; meanwhile, the ZT values for the high-pressure RS ZnO are slightly lower 

due to its higher lattice thermal conductivity. In contrast, the ZT for WZ ZnO in the same 

temperature range (not shown here) is an order of magnitude smaller, which is caused by its 

higher lattice thermal conductivity and lower power factor at these relatively low temperatures. 

However, WZ ZnO has been shown to be a good high-temperature thermoelectric material, 

reaching similarly high ZT values in the much higher temperature range of 1400 K to 1600K. 

[30] These results show that the RS phase complements the wurtzite phase by expanding 

considerably the operating range of ZnO as a good thermoelectric material. In particular, the 

lower temperature range for optimal thermoelectric performance of RS ZnO may open new 

opportunities for its applications moderately above the ambient temperature where safe, cheap, 

and efficient TE materials are highly desirable. It should be noted, however, that RS ZnO has a 

tendency to revert back to the WZ phase under moderate temperatures. [3] This material stability 

issue is crucial to potential applications of RS ZnO, and it may be addressed by epitaxial 

stabilization or low-level alloying techniques in thin-film and nanophase ZnO structures as 

demonstrated in some recent work. [67–69] 
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Figure 3.8 The figure of merit ZT of RS ZnO with n-type and p-type carrier at 0 GPa and 20 GPa at selected 
temperatures form 300 K to 800 K in the carrier concentration range of  1× 1020 cm-3 to 1× 1021 cm-3. 
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the operating range of ZnO as a good thermoelectric material, which has been previously 

proposed to possess similar ZT values well above 1000 K. These results suggest that RS ZnO can 

operate in a very desirable temperature range moderately above the ambient temperature where 

device designs may be implemented for heat recovery applications involving relatively low-

temperature heat sources. The low lattice thermal conductivity of RS ZnO plays a key role in its 

good thermoelectric performance; it stems from its large lattice anharmonicity associated with 

the intrinsic structural near-instability of the rocksalt lattice. This points to the possibility of 

identifying more materials in the rocksalt structure that may exhibit good thermoelectric 

properties. Work along this line is currently in progress.  
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CHAPTER 4 

HIGH-PRESSURE PROPERTIES OF ROCKSALT InN 

I. INTRODUCTION 

III-V semiconductor materials have a strong foothold in electrical devices in commercial 

technologies. These materials are used in a variety of electrical and optical devices such as in 

diode lasers, photodetectors, and in light-emitting diodes. [70] The ambient pressure phases of 

these materials usually reside in a zinc blende or wurtzite structure. Such is true for InN. Since 

wurtzite and zinc blende are the ambient condition structures of the materials, vast research has 

been done for those phases. However, there is a lack of understanding of the high-pressure 

rocksalt structure. The lack of understanding in information regarding the thermodynamic and 

transport properties of rocksalt InN, hinders potential applications of this material. 

Understanding the high-pressure phase’s electronic and heat transport properties at higher 

pressures may reveal the operation temperature range of an optimized yield, which can fulfill the 

needs and demands for new applications. Advancement in understanding the potential of these 

materials continues. For example, previous assumptions made for InN are that it was a wide-

band gap material. However, research led to a discovery that its band gap is smaller than 1 eV 

[71−75] as opposed to the previously achieved 1.89 eV [76] from past experimental results. 

Understanding the thermoelectric properties of InN high-pressure phase may prove to contain 

valuable results as a semiconductor and as an application as a thermoelectric material.  

II. Method of Calculations 

We have performed first-principles calculations based on Density Functional Theory (DFT) with 

Generalized Gradient Approximations Perdew-Burke-Ernzerhof (GGA-PBE) [15] as 
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implemented in the VASP package. [20] The Projector Augmented Wave (PAW) [21] 

pseudopotential method is used with a cut off energy of 500 eV. The structure for InN was 

relaxed in a k-grid generated by the Monkhorst−Pack algorithm [24] of 16 × 16 × 16 and an 

energy convergence of less than 0.5 meV per atom. We obtained the optimized cell of the 

wurtzite and rocksalt structures. We found the pressure at which InN transitions by using DFT 

implemented in VASP and using energy-pressure relation. Using another feature of the VASP 

package, we can also calculate the electronic band structure. After finding the optimized and 

relaxed primitive cell, we used HSE06 functional implemented by VASP to determine the band-

gap. As a third tool for determining the band-gap we also utilize the GW method. 

 

We also perform harmonic lattice dynamics calculations using the Fropho [31] package and self-

developed codes to obtain the mode and total heat capacity and the Grüneisen parameter at 

various temperatures. These calculations require a supercell of 128 atoms. The equations used to 

calculate the thermodynamic properties are given in chapter 3, Section II.  

 

The temperature and doping-level dependent Seebeck coefficient S(T, n) and electrical 

conductivity σ are calculated using the Boltzmann transport theory as implemented in the 

BoltzTraP package. [29] The electronic structure input for BoltzTraP is obtained using WIEN2k 

with the implementation of the linearized augmented plane wave (LAPW) method. [25] A more 

accurate determination of the band gap was obtained using the hybrid functional HSE06 in 

VASP.  
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An energy path minimization calculation was done through the use of nudge elastic band method 

(NEB) as implemented in VASP. Two end points, a reactant and a product, are used to generate 

the path of least energy and determine a kinetic barrier. We use a unit cell of 4 atoms for both the 

wurtzite and rocksalt phase. The two unit cells are relaxed and energy converged with varying 

pressures. Then, structure images are generated between the reactant and the product and relaxed 

through the NEB method as implemented in VASP. 

 

III. RESULTS AND DISCUSSION 

Using the initial inputs discussed above, calculations have been made to find the relaxed 

structures and the pressure of transition. Figure 4.1 shows the enthalpy change in pressure for 

InN using d-electrons. The transition pressure from wurtzite structure to rocksalt structure occurs 

at 7.1 GPa (not plotted here) without the information regarding d-electrons included within the 

psuedopotential. This does not fare well compared to experimental results; from experiment [77] 

InN transitions from wurtzite to the rocksalt structure at about 14 GPa. This number is far from 

the calculated transition pressure. Next, we included the d-electron pseudopotential generated by 

VASP. We again ran an energy convergence and relaxation calculation for the different 

structures at varying pressures and measured the enthalpy change. From figure 4.1, we find a 

transition pressure from wurtzite to rocksalt at 12.9 GPa. This result is much closer to 

experimental results. [77] We may also notice that the zinc blende structure runs closely with the 

wurtzite structure and for many III-V materials this remains generally true.  The zinc blende 

phase is metastable while the wurtzite phase is the structure found in ambient conditions.  
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Figure 4.1 Enthalpy-pressure curve for InN with d-electron included in the pseudopotential. The black dotted line 
represents wurtzite structure. The black solid line is rocksalt structure with respect to the wurtzite structure and the red 

solid line is zinc blende structure with respect to the wurtzite structure. 
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Figure 4.2 Electronic band structure of rocksalt InN at 0 (black solid line) and 13 GPa (red dashed line) calculated using 
the hybrid function HSE06. 
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find the band gap to be 0.6887 eV for GGA and 2.047 eV for LDA at 0 GPa. Although the range 

between GGA and LDA is large these values are more common for semiconductors. These 

results are obtained without the use of the d-electron pseudopotentials. We now calculate the 

band gap for rocksalt InN using a GGA pseudopotential that contains the d-electrons. We then 

employ three methods. The regular implementation from VASP, the HSE06 algorithm, and GW 

method are used to calculate the band-gap. Using the regular implementation from VASP, we 

find the band-gap to be 0.0573 eV at 0 GPa. From HSE06, the band gap is 0.7438 eV at 0 GPa. 

Finally, to close the investigation we use the GW method and find the band-gap value to be 

0.6153 eV. The second and third methods have band gaps that are reasonably close to each other 

and are also comparable to the wurtzite structure, which has a band gap from between 0.7-0.85 

eV (see below). [74] As no experimental results, to our knowledge, have been conducted using 

rocksalt InN at 0 GPa this limits the validation of the calculation. However, experiments at the 

pressure transitions have been conducted and the electronic band structures have been studied.  

 

Figure 4.2 also shows the electronic band structure InN about its transition pressure of 13 GPa. 

Experiments at the transition pressure of InN have been conducted [79]. They find a band-gap 

value for rocksalt InN at 15.3 GPa with an indirect band-gap value of 1.0 ± 0.5 eV. From our 

study we find the transition pressure at about 13 GPa. Our band gap calculation for rocksalt InN 

at 13 GPa from regular implementation of VASP is 0.1803 eV. From HSE06, the band-gap is 

1.3249 eV. From our third method, GW, the band-gap is 1.4571 eV. The last two values fall 

within the range of those found in the experiment. 
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Figure 4.3 The electronic band structure for ambient wurtzite InN using the HSE06 algorithm. 

	  
Figure 4.3 shows the band structure for wurtzite InN. From the regular VASP implementation 

using GGA psuedopotential the band gap is 0.0127 eV. Upon using HSE06 the band gap is 
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Figure 4.3 shows the band gap corrected to match that of using HSE06 calculation. It is 

noteworthy to mention that InN switches from a direct band gap semiconductor in its wurtzite 

phase to an indirect band-gap semiconductor in its rocksalt phase. While the bottom of the 

conduction band remains at the Γ point, the top of the valence band is at the L point in rocksalt 

InN. 
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Figure 4.4 Calculated phonon dispersion curves of rocksalt InN calculated at 0 (black solid line) and 13 GPa (red dashed 
line) and the corresponding density of states. 

The phonon dispersion curves for rocksalt InN at a pressure of 0 GPa and 13 GPa are shown in 

figure 4.4. These curves were achieved by calculating phonon frequencies from the force 

constants as calculated by the software package Fropho. Figure 4.4 shows the dispersion for InN 

with a LO-TO splitting generated using born effective charge and dielectric constant calculated 

by VASP. For rocksalt InN at 0 GPa, the calculated dielectric constant is 10.632 and the Born 

effective charge are 3.65600e and -3.65138e for the In and N, respectively. At 13 GPa, the 

dielectric constant is 8.798 and the Born effective charge are 3.570e and -3.565e for In and N, 

respectively. This phonon dispersion is similar to that of the rocksalt structure of ZnO. As shown 

later in figure 4.6, many thermodynamic properties attained from the phonon frequencies show 

similarities to those of ZnO discussed in chapter 3 of this thesis. Figure 4.4 also contains a 
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density of states plot. The DOS is generated with a full k-mesh as opposed to the lines of 

symmetry in the phonon dispersion curve. From the DOS, we may note that a large number of 

states lie in the acoustic phonon branches. 

	  

Figure 4.5 Calculated phonon dispersion curves of wurtzite InN calculated at 0 GPa. 

	  
Figure 4.5 presents a phonon dispersion curve of wurtzite InN at 0 GPa. Dielectric constant and 

Born effective charge calculations were performed for wurtzite InN at 0 GPa to apply a LO-TO 

splitting around Γ. As seen in experimental phonon dispersion by Davydeov et al. [79] an 

appreciable LO-TO split on the Γ is observed. The dielectric constant for wurtzite InN is 9.699 

for the a and b-axis and 10.496 for the c-axis. The Born effective charge along the a and b-axis 

are 2.95196e for In and - 2.93900e for N. Along the c-axis the Born effective charge is 3.13048e 
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for In and -3.12504e for N. From this phonon dispersion curve and the phonon frequencies, we 

calculate thermodynamic properties at varying temperatures. 

 

The thermodynamic properties of rocksalt InN are calculated using the methods discussed above. 

Using software package Fropho, we generate phonon frequencies that are used to calculate the 

Grüneisen parameter, heat capacity, and linear thermal expansion coefficient for rocksalt InN. 

The structures used for finding the phonon frequencies are from a GGA pseudopotential 

containing the d-electron information. 
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Figure 4.6 Thermodynamic properties of rocksalt InN. Top: Grüneisen parameter, Middle: Heat Capacity, and Bottom: 
Linear thermal expansion coefficient for rocksalt InN at 0 GPa and 13 GPa and wurtzite  InN at 0 GPa. The temperature 

ranges from 50 K to 700 K. 
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Figure 4.6 shows the heat capacity, Grüneisen parameter, and linear thermal expansion 

coefficient for both wurtzite and rocksalt InN at 0 GPa. Since the phonon dispersion curve for 

rocksalt InN is similar to rocksalt ZnO, we have compared the two. The Grüneisen parameter 

difference between InN and ZnO is about 0.8. The heat capacity difference between InN and 

ZnO is 0.076 Cal/Mol at 500 K. The linear thermal expansion coefficient is about 0.9 (105) 

Cal/GPa m3/K. Indeed these two materials at rocksalt phase are very similar. ZnO showed a 

smaller thermal conductivity than its ambient wurtzite phase when quenched to 0 GPa. Similar to 

ZnO, the results shown in figure 4.6 also suggest a small thermal conductivity, due to 

anharmonic effects impeding heat transport.  

 

We may also compare wurtzite heat capacity to measurements obtained in experiments. An 

experiment by Leitner et al [80] on wurtzite InN uses Calvet calorimetry and drop calorimetry at 

temperatures ranging from 300 K to 700 K. They obtained a fit of the heat capacity as a function 

of temperature. From their fitting formula, at 300 K the heat capacity is 9.335 Cal per mol. This 

result is similar to our calculation of 9.487 Cal per mol for wurtzite at 0 GPa at 300 K. 



	   65 

	  

Figure 4.7 Electronic transport properties of rocksalt InN at 0 GPa. The Seebeck coefficient, electrical conductivity 
divided by τ , and power factor of n-type and p-type RS InN at selected temperatures from 300 K to 800 K in the carrier 

concentration range of to 1× 1020 cm-3 to 1× 1022 cm-3. 

1e+20 1e+21 1e+22

Hole Concentration (cm
-3

)

10

100

1000

S
 (

µ
V

/K
)

300 K
400 K
500 K
600 K
700 K
800 K

1e+20 1e+21 1e+22

Hole Concentration (cm
-3

)

1e+18

1e+19

1e+20

1e+21

σ
/τ

 (
Ω

 m
 s

)-1

300 K
400 K 
500 K
600 K
700 K
800 K

1e+20 1e+21 1e+22

Electron Concentration (cm
-3

)

1e+18

1e+19

1e+20

1e+21

σ
/τ

 (
Ω

 m
 s

)-1

300 K
400 K 
500 K
600 K
700 K
800 K

1e+20 1e+21 1e+22

Electron Concentration (cm
-3

)

10

100

1000
-S

 (
µ

V
/K

)

300 K
400 K
500 K
600 K
700 K
800 K

1e+20 1e+21 1e+22

Electron Concentration (cm
-3

)

0

0.01

0.02

0.03

0.04

0.05

σ
 S

2
 (

W
/m

 K
2
)

300 K
400 K
500 K
600 K
700 K
800 K

1e+20 1e+21 1e+22

Hole Concentration (cm
-3

)

0

0.1

0.2

0.3

0.4

σ
 S

2
 (

W
/m

 K
2
)

300 K
400 K
500 K
600 K
700 K
800 K



	   66 

	  
Figure 4.8	  Electronic transport properties of rocksalt InN at 13 GPa. The Seebeck coefficient, electrical conductivity 

divided by τ , and power factor of n-type and p-type RS InN at selected temperatures from 300 K to 800 K in the carrier 
concentration range of to 1× 1020 cm-3 to 1× 1022 cm-3. 

 

	  
The electronic transport of InN has been investigated using software WIEN2k, BoltzTraP, and 
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are made using the energy eigenvalues generated by WIEN2k with a dense k-mesh of 48×48×48. 

In addition, the WIEN2k outputs are compatible for input into BoltzTraP. Before using the 

energy bands produced by WIEN2k, they are analyzed for band gap values. Using self-

implemented codes the band gap is shifted and corrected to the values found by HSE06 as 

implemented by VASP. Using the shifted energy eigenvalues in the format of WIEN2k as input 

for BoltzTraP various electronic transport properties may be found using the Boltzmann 

transport theory.  

 

The hole and electron concentration for both the Seebeck coefficient and electronic conductivity 

divided by the relaxation time are rather similar in curvature to that from the work of Khuong P. 

Ong, David J. Singh, and Ping Wu. [30] In both figure 4.7 and 4.8, which corresponds to 0 and 

13 GPa rocksalt InN, respectively, the electron concentration has a lower Seebeck coefficient 

than its hole concentration. This leads to the power factor, σS2, being much lower for the hole 

concentration than the electron concentration. 

 

To calculate the power factor, the relaxation time calculated with the electron conductivity must 

be canceled. To do this would require an experimental data to fit the theoretical electronic 

conductivity against the experimental and estimate the relaxation time from there. To our 

knowledge there is yet to be experimental data on the electronic conductivity of rocksalt InN at 0 

GPa. Instead an estimation of the relaxation time is made here. The relaxation time used is in the 

order of 10−13 s. This value is a flat constant, however it is known that the relaxation time varies 

with carrier concentration and temperature. A further investigation and improvement on these 
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electronic transport properties can made if the relaxation time and how it varies with temperature 

and concentration is known. 

 

The nudged elastic band method, NEB, is implemented in software VASP. This method is used 

for finding the minimum path energy of transition states. It may also be used for diffusion of 

adatom, but in this case it is used in a solid phase to solid phase transition in a material to find 

the minimum energy path and the kinetic barrier associated with the path. The kinetic barrier is 

determined from the saddle point. Images of the in-between stages of the transition are generated 

using scripts. The atom positions of the cell are adjusted to form a linear interpolation of two 

fixed end points, as for example wurtzite to rocksalt structure transition. These images are then 

relaxed in all remaining degrees of freedom constrained by the interpolation. VASP calculates 

the energy and the gradient of each structure with a spring between each image. A notable 

difference between the nudged elastic band method and plain elastic band method is that the 

force in the tangential direction of the interpolation, that is the spring force, is broken down to its 

parallel and perpendicular components so that the perpendicular is projected out. This is the 

“nudging” that is produced in order to achieve a correct minimum energy path. 
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Figure 4.9 Nudged elastic band calculation of WZ InN to RS InN at various pressures with 12 images, the first and last 
points are fixed and are the relaxed structures of wurtzite and rocksalt, respectively. 

	  
A NEB calculation was made for InN from 0 GPa up to 15 GPa for a phase transition from 

wurtzite to rocksalt. This transition is hexagonal to cubic meaning the treatment of the atom 

positions need to be a 1 to 1 correlation. Since the images produced are a linear interpolation, 

rotations and other effects are not taken into consideration. This means for a cell of 4 atoms with 

2 different atoms. There are 4 possible configurations. From the 4 configurations one must 

determine which holds the lowest energy for the minimum energy path, as that path will be more 

favorable in nature. Shown in figure 4.9, is the lowest energy for the minimum energy path from 

those 4 configurations. Figure 4.9 gives the NEB for wurtzite to rocksalt InN at pressures up to 

15 GPa. It is known that solid-to-solid phase transition nudged elastic band calculation can be 
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difficult if the end points do not have the same symmetry. [81] In this case the transition occurs 

from a hexagonal to a cubic structure. The result in figure 4.9 is created from InN GGA 

psuedopotential with a k-mesh of 5×5×5.  

 

From figure 4.9, it is seen that the rocksalt phase becomes energetically more stable above a 

thermal equilibrium pressure of 12 GPa, which agrees well with previous experimental results. 

[77] It is also shown that the wurzite to rocksalt transition has a kinetic barrier decreasing 

significantly as pressure is increased. From 0.28/atom eV at 0 GPa reduced to 0.15 eV/atom at 

12 GPa. This allows for kinetic phase fluctuations and for the atoms in a wurtzite structure to 

move about and find a more energetically favorable rocksalt structure at higher pressures. 

  

IV. CONCLUSIONS 

We are still unaware if these materials can be quenched and remain stable under ambient 

conditions. There are some experimental studied that have found rocksalt InN to be quenchable 

to around 3 GPa [18]. With improving techniques in epitaxial growth, this material’s high-

pressure phase may very well be produced at ambient conditions. However, here we show good 

results from this research and possible applications as a semiconducting material. We can 

satisfactorily conclude that the results are within range of experimental and other theoretical 

results. Our transition pressure, figure 4.1 and 4.9, and band gap, figure 4.2, are near to 

experimental results. We show transport properties, Seebeck coefficient and conductivity, of the 

high-pressure phase at 0 and 13 GPa.  The thermodynamic properties of InN are also shown and 

calculated from the phonon frequencies. The results of which suggest a low thermal conductivity 

and a promising thermoelectric material.  Continuing work is being made to gather a satisfactory 
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thermal conductivity and more accurate relaxation time for applications as a thermoelectric 

material and develop a figure of merit ZT.  
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Chapter 5 

PHASE-TRANSITION INDUCED GAP TRANSITION 

IN PbS 

I. INTRODUCTION  

Lead chalcogenides (PbX, X= S, Se, Te) are a class of narrow band gap semiconductors that are 

widely used for infrared detectors, diodes, thermoelectric devices and thermophotovoltaic 

converters. [82-84] Anomalous ferroelectric fluctuations [85, 86] and large anharmonic phonon 

scattering [87,88] in PbX have recently been discovered and are theoretically attributed to 

competitive bonding between ionicity and covalency. [89] In ambient conditions, these materials 

crystallize in the rocksalt (RS) structure. They transition to an orthorhombic structure at around 

2-6 GPa and further transition into a Caesium Chloride (CsCl) structure from 13-20 GPa [90-97]. 

The transition from RS to orthorhombic to CsCl structures is attributed to an electronic 

transformation from semiconductor to semiconductor to metal. [84,98] However, it is 

experimentally challenging to accurately determine electronic properties of the orthorhombic and 

CsCl phases at high pressures; as a result, they have been the subject of debate and controversy. 

[84, 95, 97−99] In fact, pressure-induced phase transition between RS and CsCl structures has 

also been observed in binary pnictides (e.g., CeP and CeAs), [100, 101] halides (e.g., NaCl and 

KCl), [102] and hydrides (e.g., NaH and KH). [103,104] A thorough overview of the RS to CsCl 

transition can be found in [105]. Thus, the study of the structural transition between RS and CsCl 

is of a fundamental and technological importance. 
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The structure of intermediate phase is a key to understanding the pressure-induced RS to CsCl 

transitions. In most material systems the RS-CsCl transition proceeds without involvement of 

any intermediate phase. [105] As exceptions, only a few materials have an intermediate phase. 

For the case of AgF and NpAs, hexagonal structures are the intermediate phase between the RS 

to CsCl transitions in. [106, 107] An isostructural transition is observed for SmTe and EuO 

before transforming to a CsCl type structure at higher pressures. [108] For the cases of lead 

chalcogenides, the GeS-type Pnma [84, 92] and InI-type Cmcm [89, 93] structures have both 

been reported as intermediate phases on the basis of high-pressure synchrotron X-ray diffraction. 

To complicate the matter further, a new orthorhombic phase, neither of GeS- and InI-type 

structures, has been reported as an intermediate phase in PbTe at 6 GPa. [90] However many 

reports have been made to suggest two possible orthorhombic phases are of GeS-type and InI-

type. [109-111] Previous first-principles calculations on the structures of the orthorhombic phase 

have also been performed, but the results are as conflicting as the experimental reports. [98, 99, 

112, 113] In addition, there are significant discrepancies in the elastic bulk modulus (B0) 

determined for orthorhombic PbS. The B0 value measured by Grzechnik et al., for example, is 

134(2) GPa, [94] which is more than 300% larger than that reported by Knorr et al., which is 

30.9(4) GPa. [93] A similar discrepancy can also be found in ab-initio simulations. [93, 112] 

 

In this chapter, first-principles calculations are made to study crystal structures, phase stability, 

elastic and electronic properties of PbS. This study is also in corroboration with an experimental 

study and is used for theoretical support in the form of ab-intio simulations [5]. Shown below are 

only those first-principles calculations made by the author of this thesis.  
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II. METHOD OF CALCULATIONS 

First-principles calculations were performed for PbS using the generalized gradient 

approximation (GGA-PBE) [15] implemented in the VASP package. [20] The projector 

augmented-wave (PAW) [21] and pseudopotential methods were employed with a plane-wave 

basis set, which was truncated at the cutoff energy of 400 eV to obtain a 0.2 meV convergence in 

the total energy per atom.  The Brillouin zone integration was carried out with a 16 × 16 × 16 k-

point grid generated by the Monkhorst−Pack algorithm. [24] The final energy convergence for 

electronic steps is in the magnitude of 1 µeV. The force convergence of ionic steps was set to be 

10 µeV/Å. The spin-orbital interaction was involved for band structure calculations. 

 

III. RESULTS AND DISCUSSION 

Using the inputs discussed above, a relaxed structure is generated for three structures, the cubic 

RS structure and the two possible orthorhombic phases Pmna (B16) and Cmcm (B33). Their 

transition pressures are found and shown by the enthalpy versus pressure plot in figure 5.1. The 

transition pressures for cubic to the orthorhombic structures are 8.5 GPa for Cmcm and 9.8 GPa 

for Pmna. These results are higher than the experimental measurements, which find a transition 

at about 2.1 GPa [5]. As seen in figure 5.1, Cmcm is energetically more favorable than Pmna, 

and it can be said that PbS is isotypic with indium iodide InI and adopts its structure Cmcm.   
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Figure 5.1 Calculated pressure dependence of the enthalpy difference between both orthorhombic phases and the cubic 
phase. 

 
A pressure versus volume plot is also generated and shown in figure 5.2. The third-order 

Birch−Murnaghan equation of state [113] was fitted to derive the bulk modulus B0. The bulk 

modulus from the calculation is 55 GPa and 24 GPa for cubic and orthorhombic Cmcm phase, 

respectively, which agrees well with previously reported values. [5, 93, 98] This result finds that 

the orthorhombic phase is about 50% more compressible than the low-pressure cubic phase. This 

goes against common intuition that a material under pressure will become less and less 

compressible. It is shown that after the phase transition, this is not true for PbS. The result is 
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quite anomalous, yet consistent with the experimental data provided for PbS that there is a phase 

transition induced elastic softening.   

	  
Figure 5.2 Pressure versus volume curve with calculated bulk modulus of cubic and two orthorhombic phases of PbS. 

 
Lastly, the electronic structure of the cubic and the InI-type Cmcm orthorhombic phases were 

calculated. Figure 5.3 shows the electronic band structure along with the DOS for both 

structures. As shown in Figure 5.3, the two phases show remarkable differences in their band 

structures and total density of states (DOS) at the Fermi energy level. It can be seen that he cubic 

phase is a direct band gap semiconductor. That is that the top of the valence band and bottom of 

the conduction band occur at the same L symmetry point (see Figure 5.3 a). The obtained band 

gap, Eg, is 0.47 eV, which is close to the experimental value of 0.42 eV at 300 K [114, 57] and a 

reported theoretical result [98]. The orthorhombic phase has an indirect band gap of Eg = 1.04 eV 
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(see figure 5.3 b) and is similar to that of the silicon semiconductor with a band gap of Eg = 1.11 

eV at 300 K. [115] The simulations show there is a direct-to-indirect band gap transition induced 

by a phase transition in semiconducting PbS. An observation made by [5] also sees an abrupt 

increase in electrical resistivity measurements during transition, which supports band gap 

transition.  

 

	  
Figure 5.3 Electronic band structure of cubic (a) and orthorhombic Cmcm (b) PbS (upper panel) and the total density of 

state DOS (lower panel). The cyan dashed line represents the Fermi energy E = 0 eV. 

 

 IV. CONCLUSION  

In summary, the pressure-induced phase transition in PbS was studied by first-principles 

calculations. Two possible orthorhombic configurations are considered. Of the two, Cmcm is 
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energetically more favorable. Both cubic and orthorhombic phases are semiconductors, but they 

exhibit features of direct and indirect band gaps, respectively, with Eg = 0.47 and 1.04 eV. Phase 

transition induced elastic softening is shown using calculated Birch−Murnaghan equation of state 

that the orthorhombic phase is more compressible than the cubic phase. Phase transition also 

leads to an anomalous drop in electrical conductivity in orthorhombic PbS, which is mainly 

attributed to the enlarged and indirect band gap in the Cmcm phase as well as the lower crystal 

symmetry when compared to cubic.  
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Professional Experience 

Graduate Research 2014 - 2016 
I work in a highly distributed Linux based environment and develop programs using C++, 
Fortran, and shell script. I created several C++ programs that do data analysis using parallel 
computations, and have developed programs for visualization of the data. One of my 
finished projects involves high-pressure thermoelectric properties of ZnO. The project 
involved planning the research, effective use of computation expenses, writing several C++ 
programs for data analysis, using several software packages, and reading scientific 
literature.  

As a graduate researcher, I teach introductory physics labs and teach new members of the 
research group fundamentals of computational analysis. 

Undergraduate Research 2011 - 2014 
Co-authored in a paper that studies high-pressure properties of PbS [S. Wang et al., 
Inorganic Chemistry 52, 8638 (2013)]. This project involved using VASP and self-
developed codes to calculate structural properties of PbS. I calculated phase transitions, 
band-gaps, bulk modulus, and visualized the band structure and phonon dispersion curve 
for PbS. 

Lab Instructor 2014 – 2016 
I have taught several introductory lab courses. I am responsible for teaching the students 
how to safely use lab equipment and how to conduct a scientific experiment.  

 
Other Experiences 

Volunteer Safety Nights 2006 – 2010 
I volunteered for safety nights where young children can socially interact in a safe 
environment. I monitored the room and cleaned up.  

Volunteer Middle School Science Bowl 2015 
I volunteered for a middle school science bowl, young and brilliant students compete with 
each other for a chance to move on to the national science bowl. I monitored the room and 
made sure important packages were received to a head administrator.   

Volunteer Skybot Challenge 2015 
I volunteered for the first ever Skybot challenge where young aspiring scientists can 
compete with their own drones in rigorous obstacle courses. I was a referee and 
scorekeeper for the competitions.  
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Professional Associations 

Member of HiPSEC. 

Member of UNLV’s Society of Physics Students. 

Student member of the American Physics Society (APS).  

Advanced Photon Source user at Argonne National Lab. 

Publications 

Shanmin Wang, Jianzhong Zhang, Yi Zhang, Andrew Alvarado, Jeevake Attapattu, 
Duanwei He, Liping Wang, Changfeng Chen, and Yusheng Zhao, Inorg. Chem. 52, 8638 
(2013). 
 
Andrew Alvarado, Jeevake Attapattu, Yi Zhang, and Changfeng Chen, J. Appl. Phys. 118, 
165101 (2015). 

Presentations 

NNSA SSAP Symposium Bethesda, Maryland 2016 
High-pressure properties of rocksalt InN from first-principles calculation 
Graduate Poster presentation for those affiliated with NNSA. 

HiPSEC annual review Las Vegas, Nevada 2015 
Thermoelectric properties of rocksalt ZnO from first-principles calculation 
Graduate poster presentation for those involved in HiPSEC for annual review. 

NNSA SSAP Symposium Santa Fe, New Mexico 2015 
Thermoelectric properties of rocksalt ZnO from first-principles calculation 
Graduate poster presentation for those affiliated with NNSA.  

NSTec/UNLV Symposium Las Vegas, Nevada 2014 
Thermoelectric properties of rocksalt ZnO from first-principles calculation 
Undergraduate poster presentation for those affiliated with NSTec and UNLV. 

APS March Meeting Denver, Colorado 2014 
Thermoelectric properties of rocksalt ZnO from first-principles calculation 
Undergraduate poster presentation for the American Physical Society on my work on ZnO 

Recent/Current Research 

Electronic Structure calculations of PbS from first-principles  2013 
Using VASP I conducted calculations and simulations on the lattice structure and the 
electronic structure of PbS to find parameters such as lattice parameter, Band-gap, Density 
of States, and the transition pressure. 
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Thermoelectric properties of rocksalt ZnO from first-principles  2014-2015 
I used first-principles methods to calculate phonon transport, from which I obtained heat 
capacity, Grüneisen parameter, group, velocity and phonon relaxation time. These results 
allowed determination of thermal conductivity at varying temperatures. I also calculated the 
electronic band structure of RS-ZnO and determined Seebeck coefficient and electric 
conductivity as a function of temperature and carrier concentration. From the transportation 
properties I calculated the figure of merit ZT.  

High Pressure properties of novel materials from first-principles  2014-2016 
Using software package VASP, WIEN2k, BoltzTraP, Fropho, and self implemented codes I 
study the electronic and heat transport properties of compounds: InN, InAs, and InP. 
Thermodynamic properties are calculated through phonon frequencies from Boltzmann 
transport theory as implemented by Fropho and self developed codes. Electronic transport 
properties, band-gaps, Seebeck coefficient, and electronic conductivity, are calculated 
through electronic energy eigenvalues as implemented by VASP, WIEN2k, BoltzTraP, and 
self developed codes. Phase transitions and minimization of energy paths are analyzed 
through the use of nudged elastic band method.  

Skills 

• Thorough understanding in use of scientific software VASP (structure relaxation, elastic 
properties, electronic band structure, phase transitions), BoltzTrap (Electronic transport: 
Seebeck coefficient, electrical conductivity), Fropho (phonon transport, dispersions and 
density of states), and WIEN2K (electronic transport, energy bands, and structure 
relaxation). 

• Savvy in computer languages C++, Fortran, Java, HTML. Created several programs to 
calculate physical properties including a calculation of thermodynamic lattice properties 
from phonons.  

• Skilled in Microsoft Word, Excel, PowerPoint, Latex, Xmgrace, and other similar software. 
• Fluent in Spanish. 

 
  

 

 


