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ABSTRACT

Numerical Simulations Of Accretion Disks And Extrasolar Planets

by

Stefan Luketic

Daniel Proga, PhD, Examination Committee Chair
Professor of Physics and Astronomy

University of Nevada, Las Vegas

We study mass outflows from astrophysical objects. Using numerical hydrody-

namical simulations, we investigate outflows from accretion disks and exoplanets. In

the first part of this dissertation, we present the results of Zeus 2D hydrodynamical

simulations of the disk photosphere irradiated by strong X–rays that are produced in

the innermost part of the disk of an accreting black hole. As expected, the irradiation

heats the photosphere and drives a thermal wind. To apply our results to the well–

studied X–ray transient source GRO J1655–40, we utilized the observed mass of its

black hole and the observed properties of its X–ray radiation for our simulations. To

compare our results with observations, we also computed transmitted X–ray spectra

based on the wind solution. Our main finding is that the density of the fast–moving

part of the wind is more than one order of magnitude lower than that inferred from

the observations. Consequently, the model fails to predict spectra with line absorp-

tions as strong and as blueshifted as those observed. However, despite the thermal

wind being weak and Compton thin, the ratio between the mass–loss rate and the

mass accretion rate is about seven. This high ratio is insensitive to the accretion

luminosity, in the limit of lower luminosities. Most of the mass is lost from the disk

between 0.07 and 0.2 of the Compton radius. We discovered that beyond this range

the wind solution is self-similar. In particular, soon after it leaves the disk, the wind

flows at a constant angle with respect to the disk. Overall, the thermal winds gen-
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erated in our comprehensive simulations do not match the wind spectra observed in

GRO J1655–40. This supports the conclusion of Miller et al. and Kallman et al.

that the wind in GRO J1655–40, and possibly other X–ray transients, may be driven

by magnetic processes. This in turn implies that the disk wind carries even more

material than our simulations predict, and, as such, has a very significant impact on

the accretion disk structure and dynamics. Motivated by the recent renaissance after

the Kepler mission discoveries of about 500 new extrasolar planets, in the second

part we analyze problems of the extrasolar planet irradiated by a star interacting

with the wind coming from a parent star. This is a full 3D modeling performed using

Athena 3D. We use the general model of a spherical object with a cosine distribution

of temperature on the irradiated side and constant temperature on the opposite side.

The thermal wind arises from the planet and interacts with the wind emanating from

the star. We made some simplifications; the Coriolis force is included. We placed

constraints on the mass loss from the planet, wind velocities, and dependencies on

various parameters, such as: distance from the star, strength of the stars, wind, etc.

We created a general model for studying outflows from diverse group of objects of

various geometries.
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CHAPTER 1

INTRODUCTION

Since the early days of natural sciences and physics itself, there were two distinct

approaches: theoretical and experimental. Of course those two were mutually depen-

dent, but nevertheless differed in their methods and techniques. However, with the

development of technology in modern society, another approach to scientific research

arose: numerical simulation. In the early days, after acquiring a certain amount of

experimental data, theory would try to generalize the results, and, after formulating

a certain paradigm, would then attempt to extrapolate the solution outside of the

margins where measurements were performed in order to provide predictions which

would be later tested. Today, the numerical simulation approach serves as a bridge

connecting the theoretical and experimental approaches. The numerical simulation

approach recognizes theoretical physical laws and uses them to govern the physical

processes in the virtual computer based space in order to provide the prediction.

This approach has been in use since the very beginning of the computer era. In

its beginning days, the main limitation of the numerical simulation approach was the

computational power of the machines. Although simple problems can be simulated

to far better precision than any experiment available, just slightly more complex

problems can often be limited in solution precision by that very same computational

power. The reason for this is the enormous difference between lower and higher

dimensional problems, and also by the amount of different physical laws one needs to

incorporate into the simulation if the problem is not trivial and simple. One would

be able to look at numerical simulation as just another form of theoretical solution,

where instead of analytical solutions, one is numerically obtaining the solution for

those same equations. Of course, there are many approximations, assumptions, and

also ”by hand” involvements in the process itself. Therefore it may, on the other hand,

be called a numerical experiment. In this context, a very simple setup is closer to the
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pure mathematical solving of the equations, while the more complex setup is closer

to the numerical experiment. Thus, when considered as a link between theoretical

and experimental approaches, the numerical simulation is a growing field with a very

bright perspective.

From a physical point of view, the problems that we examine in this work entail the

outflows from astrophysical objects with various geometries that can be explored and

understood only via numerical simulations, or more specifically, numerically solving,

time–dependent differential equations. The attempts to attack similar systems were

numerous in the past. Before the current computational power reached the level for

multidimensional simulations, due to the progress of the technological development,

much research was done on one–dimensional, spherically symmetric systems. Such

numerical experiments could not reveal the secrets of the systems which are inherently

not spherically–symmetric, such as accretion disks. Although there are systems which

have a big enough degree of spherical symmetry, in those rare cases, one–dimensional

simulations can indeed provide some insight into the system. Those, and some other

more–than–one–dimensional systems, did include most of the relevant physics in the

analysis. To analyze accretion disks, one needs at least a two–dimensional simulation,

with the rotation included (sometimes called 2.5 dimensional because of all third

dimension physical quantities that are included but assumed to be perfectly axis

symmetrical).

Historical Background

As both parts of this work are based upon numerical simulations, we start with a

historical overview from the two or higher dimensional simulations performed in the

past. We will discuss only those of relevance for this work. In the case of the accretion

disk simulations (though not the very first, but certainly one of the most significant)

early 2D numerical simulations were performed by Woods et al. (1996). [1] The
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relevance of this work is that it provides, for the first time, the two–dimensional

structure of a thermally driven wind from the accretion disk heated by X–rays from

the central source. The geometrical structure of the wind cannot be explored by one–

dimensional simulations performed earlier. Calculations were time–dependent and

axis–symmetric, hydrodynamic simulations, using local adaptive mesh refinement of

thermally–driven, rotating winds from X-ray irradiated accretion disks. This model

relies on the previous analytic predictions of Begelman et al. (1883) [2] for Compton–

heated winds, including non–Compton processes, such as photoionization heating and

line cooling that are typical of X-ray heated winds. The Woods’ simulation improved

the analytical prediction of Begelman et al. (1883) [2] , provided a new expression

for mass–loss rate, and gave a modified view of the solution topology. Also, for our

research, of importance is Shields’ et al. (1986) [3] work on accretion disk instabilities

and oscillations. More recently, similar numerical simulations of accretion disks were

done by Proga et al. (PK02, PSK00) [4] [5] using the Zeus 2D code developed by

Stone et al. (1992). [6] The Zeus 2D code and the related works of importance for our

research will be described in more detail in subsequent chapters. The same authors

later created another code, the Athena 3D code, which we used to perform the latest

numerical experiments, which will also be described in more detail. The codes are

dealing with magnetohydrodynamical processes, and recently relativistic equations

were incorporated into Athena. The Zeus2D is a 2.5D code, with three different built–

in coordinate systems. The polar axis symmetric system is very suitable for exploring

accretion disk geometries, which together with its ability to have logarithmic radial

and angular resolution is its main advantage over the Athena.

Athena is a 3D code which, being newer, has many advantages over Zeus. Its

main drawbacks may be the Cartesian coordinate system and linear grid scaling.

For the investigation of non–axis symmetric effects on extrasolar planets to make 3D

simulations, it was necessary to use. We had an option to continue with the Zeus code
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in one of its three dimensional versions, such as Zeus 3D or Zeus MP, but, although

they are newer codes developed after Zeus 2D, they still use the same algorithms, and

it seems the development on Zeus is slowly ceasing. In the meantime, the same authors

are focusing on the development of the Athena code, and are constantly adding more

physics and refining the old versions. Also, other than the brighter future that Athena

has, the difference and superiority over the Zeus is another important factor. Athena

has many more superior built–in algorithms for solving physical equations, which is

explained in full detail in the chapter on extrasolar planets. Also, Athena is capable

of dealing with a much larger class of problems, and its structure is more open for

adding extra physics when needed.

Problems Investigated

The first part of our work is focused on the specific system of an X–ray binary

system, specifically GRO J1655–40. This system has an accretion disk and wind

arising from the disk (Miller et al. 2006) [7] . However, details about the mechanism

driving the wind are a subject of a discussion. We provided the numerical results

of the simulation, which clearly discard some of the suggested mechanisms. This

particular discussion was focused on whether wind is driven thermally (Netzer 2006)

[9] or by magnetic fields (Miller et al. 2008) [10] , where all sides were excluding

radiation driving as a possibility because of the specific geometrical distances within

the system. In our simulation, we have shown strong evidence that the thermal

mechanism itself cannot be sufficient to drive the wind of observed strength, leaving

the only possible mechanism for wind generation to be the magnetic field.

The second part of our research investigates the wind arising from the extrasolar

planets. This part of our work does not stress any specific system but is, in this

phase of development, a generalized extrasolar planet system with the wind, in the

dimensionless units. Because of the vast amount of extrasolar planets being discovered
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while this work is in progress, our results will be applicable to many observed cases.

One way of observing exoplanet atmospheres is by taking an image of the exo-

planet. This method is direct imaging of planets, and it is currently limited to big,

bright, young, or massive planets, located far from their stars. Planets like those in

the solar system, and other small exoplanets, are not observable via direct imaging

with current technology.

Astrophysics of extrasolar planets is the field that is going through a revolution.

The recent Kepler mission revealed hundreds of new candidates for extrasolar planets

and increased, until recently, the very small sample of observed extrasolar planets,

by an order of magnitude in the total number of detections (Schneider 2011) [11]

. The majority of the planets are detected by the method of radial velocity, or

astrometry. As a planet orbits a star, the star also moves in its own very small

elliptical orbit around the system’s center of mass. Variations in the star’s radial

velocity can be detected by displacements in the star’s spectral lines, due to the

Doppler effect. About 400 planets have been found using this method. The second

most successful method counts around 100 planets and is the method of transiting

planets. If a planet crosses, or transits, in front of its parent star’s disk, then the

observed brightness of the star drops by a small amount. The amount by which the

brightness of the star dims depends on its size and on the size of the planet in transit,

among other factors. Other methods of detection, all together, count about thirty

detections. In the method of micro lensing, the gravitational field of a star acts like a

lens, magnifying the light of a distant background star. Planets orbiting the lensing

star can cause detectable anomalies in the magnification as it varies over time. The

method of astrometry precisely measures a star’s position in the sky and observes the

changes in that position over time. The motion of a star, due to the gravitational

influence of a planet, may be observable. Extoplanet can also be detected by timing.

If planets orbit the pulsar, they will cause slight anomalies in the timing of its observed
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radio pulses, or if a planet has a large orbit that carries it around both members of an

eclipsing double star system, then the planet can be detected through small variations

in the timing of the stars’ eclipses of each other.

Most extrasolar planet candidates were found using ground–based telescopes.

However, many of the methods described above are more effective with space–based

telescopes that avoid atmospheric haze and turbulence. The future of exoplanetology

is bright, since we already know that at least 30% of sequence stars have one, or

several, super-Earth companions (Mayor 2008) [12] . It is likely that there will be

two generations of space missions for the direct characterization of exoplanets in the

next 15–20 years: a first generation with a 1.5-2m class chronograph, suited for giant

planets and nearby super–Earths (e. g. Schneider et al. 2009) [13] , and a second

generation, consisting of an interferometer (Cockel et al. 2009, Lawson et al. 2009)

[14] [15] , an external occulter (Glassman et al 2009) [16] , a large 8m class corona-

graph (Shaklan and Levine 2008) [17] , a Fresnel Interferometric Imager (Koechlin et

al 2009) [18] or a 20m segmented coronagraph (Lillie et al. 2001) [19] . A coronograph

is a telescopic attachment designed to block out the direct light from a star so that

nearby objects, which otherwise would be hidden in the star’s bright glare, can be

detected.

Hot Jupiters are the type of exoplanet currently easiest to study. Detections

of molecular spectral features, observation of day–night temperature gradients, and

constraints on vertical atmospheric structure are being made. Atmospheres of giant

planets, far from their host stars, are also being observed with direct imaging. The

biggest exoplanet goal is to answer the question of the existence of extraterrestrial

life via detection of atmospheric signatures of primitive forms of life.

The existence and discovery of a large population of planets has enabled observa-

tions of exoplanet atmospheres, using a technique very different from direct imaging.

orbiting very close to their host stars. The hot Jupiters, hot Neptunes, and hot super
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Earths have up to about four–day orbits and semi–major axes less than 0.05 AU.

The hot Jupiters are heated by their parent stars to temperatures of 1000 to 2000 K,

making their IR brightness on the order of 1/1000, with respect to their parent stars.

What also enabled observations of exoplanet atmospheres, is that part of transiting

exoplanets at some point on their orbit align their parent star. The closer the planet is

to the parent star, the higher its probability to transit. The existence of short period

planets enabled the discovery of many transiting exoplanets. It is the special transit

configuration that enables the planet atmosphere to be observed without imaging the

planet (Seager & Deming, 2010) [20] .

In our simulations, we put constraints on physical quantities, such as the total

mass–loss rate of the planet, or velocity of the wind, and we provide some insight into

the geometry of the wind itself. The simulations are done in a dimensionless system,

and, due to the time limitations, did not explore the amount of parameter space we

initially intended. However, they provide interesting insights.

We used the Zeus code for the first part of this research, exploring thermal winds

from the accretion disks, while using the Athena code for the second part, where we

explored thermal winds from the extrasolar planets. Although this research was done

on apparently different systems, the first part on X–ray binaries and the second part

on the planet irradiated by the star, the essence of the processes we explored is the

same. In both cases, there is a surface irradiated by an external object, and although

geometries of those simulations differ, the resulting processes can be regarded as one

process with different boundary conditions, regardless of how different the actual

physical objects seem to be. Therefore, a similar treatment is used to obtain the

answer about the mechanism driving the winds from the accretion disk, and to put

constraints on the mass–loss rate, as in the case of the extrasolar planet winds.

Precise theoretical models of winds from highly irradiated extrasolar planets are

of interest to interpret the observations and to place firmer constraints on the mass–
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loss rates. If these rates are higher than the lower limits on mass losses observed on

some of detected planets, then some of those planets over their lifetimes will lose a

significant enough percentage of their total mass to alter their structure and evolution

(Hubbard et al. 2007; Lecavelier des Etangs 2007) [21] [22] .
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CHAPTER 2

DISK WINDS

Brief Description of the Zeus 2D Code

Zeus 2D (developed by Stone et al. 1992) [6] is a numerical code for the simulation

of fluid dynamical flows in astrophysics, including a self–consistent treatment of the

effects of magnetic field and radiation transfer. The code has algorithms for hydrody-

namics (HD), magnetohydrodynamics (MHD), and radiation hydrodynamics (RHD).

This code uses simple, well–developed Eulerian HD algorithms, based on the method

of finite differences implemented in a covariant formalism. The finite differencing

method is attractive for many reasons: it is robust, easily modified, and extended

with new algorithms. The finite difference equations are written in covariant form on

an arbitrary moving orthogonal grid, which enables the accurate simulation of differ-

ent flow geometries under translations and changes of scale. Time evolution of the

system is governed by the equations conserving macroscopic properties: conservation

of mass, momentum, and energy equation.

Dρ

Dt
+ ρ∇ · v = 0, (2.1)

ρ
Dv

Dt
= −∇P − ρ∇Φ, (2.2)

ρ
D

Dt

(
e

ρ

)
= −p∇ · v. (2.3)

The dependent variables are the mass density ρ, the velocity v and the internal

energy density e. Φ is gravitational potential and D
Dt

is the Lagrangian or comoving

derivative:
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D

Dt
≡ ∂

∂t
+ v · ∇. (2.4)

The fluid equations are closed with an equation of state, which gives the gass

pressure p as a function of the mass and internal energy density (or equivalently

the mass density and temperature), and Poisson equation, which determines the

gravitational potential Φ:

∇2Φ = 4πGρ. (2.5)

The fluid equations are simply statements of macroscopic conservation laws. In

Zeus the equation for internal energy is used, rather than the conservation law, for

the total energy for highly supersonic flows. For the purposes of the Zeus code, it

is sufficient to note that for many astrophysical gas dynamic problems one can show

that inter particle collisions are frequent enough to allow one to use the continuum

(macroscopic) description of the system given by above equations. Still, there are

many microphysical processes that are not considered by the code, like the heat

conduction. The equations of HD are a set of coupled hyperbolic partial differential

equations. Zeus 2D solves the fluid equations using the method of the finite differences

with a time explicit multistep (operator split) solution procedure. An operator split

method breaks the solution of PDEs into parts, with each part representing a single

term in the equations. Each part is evaluated successively, using the results from the

update preceding it.

Explicit multi step schemes are generally more accurate than a single step that

simply extrapolates forward in time on the basis of old data. Examples include the

Lagrange–Remap formalism in the Prediction by Partial Matching algorithm [23],

Flux Corrected Transport [24], Lax–Wendorff [25], and other predictor–corrector al-

gorithms. Zeus solves above fluid equations in two steps, called the source and trans-
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port steps. In the source step it accelerates the fluid velocity due to pressure, gravity

and Lorentz forces, and performs pressure work, on the gas internal energy using

finite–difference approximations. This calculation has the artificial viscous tensor Q

included to treat the shock waves. Zeus implements several choices for Q which have

advantages in different applications. In the transport step, fluid and magnetic flux

are transported through the computational mesh conservatively using finite–difference

approximations.

In the source step, there are three substeps. In the first step, the velocities are

updated due to pressure gradients, gravitational forces, and coordinate curvature

terms. In the second step, the partially updated velocities are used to add the ar-

tificial viscous stresses and dissipation. In the third step, the compressional heating

term is applied to the gas energy. Only a few of the equations will be shown be-

low, and are for the purpose of the illustration only. The first step contains physical

accelerations and curvature terms, subscript n denotes the quantities at the start

of source step, while a, b, and c denote the partially updated quantities from each

of above three substeps (i and j are denoting grid position). Also notation used is:

v1(x1, x2) → v1(x1ai, x2bj) = v1i,j.

(
v1n+a

i,j − v1n
i,j

)
/∆t = − p1n

i,j−p1n
i−1,j

dx1bi(d1n
i,j+d1n

i−1,j)/2
− Φn

i,j−Φn
i−1,j

dx1bi
+

[(v2n
i,j+v2n

i,j+1+v2n
i−1,j+v2n

i−1,j+1)/4]2

g2ai

(
∂g2ai

∂xi

)
+

[(v3n
i,j+v3n

i−1,j)/2]2

g31ai

(
∂g31ai

∂xi

)

The second step deals with the artificial viscous acceleration and implements both

a von Neumann and Ritchmyer–like artificial viscosity and a tensor artificial viscosity

to treat shocks (Neumann & Richtmyer, 1950) [26] . The former is simpler and works
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well in most circumstances. In the third step the source step is completed by adding

the compressional heating term. In case of an ideal gas equation of state, an implicit

update involving the time centered pressure is used to improve energy conservation.

In the transport step, the finite–difference approximations to the integral advec-

tion equations are solved. A finite–difference approximation to these equations, which

is second order–accurate in space and time, is used. The flux in one direction is the

same on the surface entering the cell and leaving the cell. Exact conservation of the

flux variables can be acheived by computing the fluxes for every interface on the grid

at once, and then using the same flux to update adjacent zones. Integrating over the

ehtire computational domain, by summing over all zones, causes the flux to cancel

in pairs, thus, except for the flux across the domain boundaries, the total flux is

conserved.

The control of the time step is determined in a way that it satisfies the Courant–

Friedrich–Lewy stability and accuracy condition:

∆t ≤ min(∆x)/(|u|+ Ca), (2.6)

where u is the local fluid velocity, Cais the local adiabatic speed of sound and the

minimum is taken over all grid zones. The content of this section dealing with the

numerical description of the Zeus code is mainly taken from Norman & Stone, 1992

[27] .

Disk Winds

Our simulations on the accretion disk of J1655–40 do not contain physics of the

general theory of relativity (GTR). The zone where the wind is arising is not affected

by GTR because of its distance from the central massive object which is bending the

space around itself. Accretion is by far the most efficient mechanism for converting
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mass into energy, and the details of that mechanism are not fully understood [28] .

This mechanism is powering the whole system, and has an essential role in the process,

but the radii where it occurs are much smaller than the radii from which the wind is

emerging. In our simulations, we focus only on the region beyond the reach of GTR

processes and on radii much higher than those where most of the energy is released

by the central powering engine. We do not include magnetic processes. Also we do

not deal with any microphysical processes directly, until we obtain the final steady

state of the simulation, and only then the spectral analysis is done. The details of the

geometry of the central heating engine are also simplified, by considering it to be a

central source located a certain height above the disk on the axis. This is physically

approved by associating it with a hot corona. The electric radiation pressure, as well

as line radiation pressure, are neglected. Self–gravity is not included. In terms of

heating, the model is dealing with the compton heating, photoionization, and shocks.

Figure 1 is an artist rendering of an accretion disk.

Prior to proceeding with the work on the wind from the accretion disk, as a part of

training and also for purposes of testing the Zeus code, we reproduced all simulations

from the Font et al. (2004) [29] paper, and re–did most of the graphs in more detail

than in the original paper. Once we acquired the full information on the code, after we

tested it in detail comparing it to theoretical solutions of some simple problems, and

after we obtained insight into the impact of the resolution limitations, we proceeded

with the following research, which is presented in its entirety below [30] :
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Figure 1 Accretion Disk (Artist Rendering), http://chandra.harvard.edu/photo/
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Abstract

We present the results of hydrodynamical simulations of the disk photosphere

irradiated by strong X–rays produced in the innermost part of the disk of an accreting

black hole. As expected, the irradiation heats the photosphere and drives a thermal

wind. To apply our results to the well–studied X–ray transient source GRO J1655–40,

we adopted the observed mass of its black hole, and the observed properties of its

X–ray radiation. To compare the results with the observations, we also computed

transmitted X–ray spectra, based on the wind solution. Our main finding is: the

density of the fast–moving part of the wind is more than one order of magnitude

lower than that inferred from the observations. Consequently, the model fails to

predict spectra with line absorption as strong and as blueshifted as those observed.

However, despite the thermal wind being weak and Compton thin, the ratio between

the mass–loss rate and the mass–accretion rate is about seven. This high ratio is

insensitive to the accretion luminosity, in the limit of lower luminosities. Most of the
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mass is lost from the disk between 0.07 and 0.2 of the Compton radius. We discovered

that beyond this range the wind solution is self–similar. In particular, soon after it

leaves the disk, the wind flows at a constant angle with respect to the disk. Overall,

the thermal winds generated in our comprehensive simulations do not match the wind

spectra observed in GRO J1655–40. This supports the conclusion of Miller et al. and

Kallman et al. that the wind in GRO J1655–40, and possibly other X-ray transients,

may be driven by magnetic processes. This in turn implies that the disk wind carries

even more material than our simulations predicted and, as such, has a very significant

impact on the accretion disk structure and dynamics.

Paper Introduction

Most X–ray sources are powered by disk accretion onto compact objects. There-

fore a main challenge for X–ray astronomy is to understand the mechanisms that

enable this process. High quality and high spectral–resolution observations obtained

with Chandra, XMM-Newton, and Suzaku allow us to study disk accretion and re-

lated outflows better than ever before. These observations are especially revealing if

taken of relatively bright, well studied objects, such as X-ray transient sources, with

GRO J1655–40 being a very fine example.

Many properties of GRO J1655–40 are well constrained. For example, GRO

J1655–40 is a black hole binary at a distance of 3.2 kpc containing a black hole

with a mass of 7.0 M¯ that accretes from an F3 IV–F6 IV star with a mass of 2.3

M¯ in a 2.6-day orbit. The inner disk is viewed at an inclination of 67◦ – 85◦ (nearly

edge-on; Orosz & Bailyn 1997) [32] . When GRO J1655–40 is in an X-ray–bright

phase, it is possible to obtain with Chandra high signal-to-noise spectra as shown by

Miller et al. (2006a; M06 hereafter) [7] . In fact, the quality of the spectra obtained

by M06 [7] is good enough to reveal many absorption lines significant at the 5 σ level

of confidence, or higher. Over 70 of these lines can be identified as resonance lines,
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from over 32 charge states. This is in sharp contrast to high resolution spectra of

other systems (see below) and of GRO J1655–40 in other spectral states, when only

the absorption lines of Fe XXV and XXVI are detected (e.g., Miller et al. 2006b;

Kubota et al. 2007; Miller et al. 2008; Neilsen & Lee 2009) [31] [33] [10] [34] .

It is hoped that such high quality spectroscopy can provide new and surprising re-

sults. Indeed, absorption lines discovered by M06 are blueshifted, and likely produced

in a disk wind, making GRO J1655–40 the best case for an X–ray binary, with an

X–ray absorbing disk wind. But there are also other cases. For example, Chandra and

RTXE spectroscopy of the microquasar H 1743−322 reveals blueshifted absorption

lines that are likely formed in a disk wind (Miller et al. 2006b) [31] . Another example

is the X–ray transient 4U 1630–472. Outburst spectra of this source obtained with

Susaku, show iron absorption lines indicative of a disk wind (Kubota et al. 2007) [33]

. More recently, Neilsen & Lee (2009) [34] found an X–ray absorbing disk wind in the

microquasar GRS 1915+105. In addition, there is an outflowing X–ray absorber in

Circinus X–1, which could either be a disk wind or a wind from a massive companion

star (Schulz & Brandt 2002) [35] .

The disk wind discovered in GRO J1655–40 gives us a good testbed for constrain-

ing wind properties, using X–ray observations. For example, by fitting to observations

1–dimensional (1–D) models, M06 [7] and Miller et al. (2008) [10] put strict limits on

the ionization balance in the wind. This was facilitated by the fact that some of the

detected lines provide a density diagnostic. The main results from the fitting yielded

the following parameters: number density n between 5×1013 cm−3 and 2×1014 cm−3,

column density NH = 7.4× 1021 cm−2, distance from the central object to the point

of emerging of the strong wind 4.8× 108 cm and velocity vr = 500 km s−1. The lines

show blueshifts in the 300–1600 km s−1 range.

Using these wind properties, together with the observed wind speed and the sys-

tem luminosity, M06 [7] concluded that the inferred wind location is well within the
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Compton radius (the radius where the gravitational and thermal pressures are equal),

defined by:

RIC =
GMBHmpµ

kTIC

, (2.7)

where MBH is the mass of the black hole, µ is the mean molecular weight, mp is the

proton mass, and TIC is the Compton temperature (for MBH = 7 M¯, µ = 0.6, and

TIC = 1.4× 107 K, the Compton radius is RIC = 4.8× 1011 cm). This wind location

is then inconsistent with an outflow being driven by thermal expansion, even though

weak flows are possible at ∼ 0.1 of the Compton radius, as found by Woods et al.

(1996; see also Proga & Kallman 2002, hereafter PK02). [1] [4] On the other hand, the

wind cannot be driven by radiation pressure in this system because the luminosity,

L∗, relative to the Eddington limit, L/LEdd = 0.03, is too low (e.g., PK02) [4] .

Therefore, by a process of elimination, M06 [7] concluded that the only plausible

mechanism that could drive the wind is magnetic processes. MO6 [7] also concluded

that disk accretion itself is driven by magnetic fields.

Although magnetic forces can drive a disk wind (e.g., Blandford & Payne 1982)

[36] and magnetic fields are a very important ingredient of accretion disks (Balbus &

Hawley 1998) [37] , M06’s [7] arguments for magnetic driving are indirect (see also

Proga 2006) [38] . Ideally, one should demonstrate that magnetic forces can drive a

disk wind capable of reproducing the observed spectra. However, that is a relatively

challenging task, and instead one could try to verify first whether thermal driving is

indeed unsatisfactory. This is a very relevant question especially in light of the work

done by Netzer (2006; N06 hereafter) [9] , who argued that it is possible to produce

a simple thermally driven wind that is consistent with the observed properties of

GRO J1655–40.

One can argue for or against thermal driving by comparing the escape velocity

and the isothermal sound speed at the Compton temperature (equivalently, one can
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compare the wind launching radius, Rl with, RIC as M06 [7] did). To use this basic

physical argument, one needs to estimate the wind temperature and Rl. The former

can be constrained relatively well for the Compton heated gas, whereas the latter is

much more difficult to constrain. In fact, the controversy about the role of thermal

driving has its origin in two different estimates for Rl: M06 [7] estimated Rl = 5×108

cm, whereas N06 [9] estimated Rl = 5×1010−5×1011 cm. These two estimates differ

by 2–3 orders of magnitude! For the lower estimate, the wind cannot be thermally

driven, whereas for the higher estimate it can. We note that the two groups also

found different values for RIC (i.e., M06’s [7] estimate is 7 × 1012 cm whereas N06’s

[9] estimate is 5 × 1011 cm). Additionally, the two groups disagree about the gross

properties of the thermal wind. In particular, contrary to N06 [9] , M06 [7] claimed

that both theory and simulations (Begelman et al. 1983; Woods et al. 1996) [2] [1]

predict mass-loss rates of thermal winds that are much too low to account for the

observed density and blueshift.

The reason for the above disagreement can be traced down to the differences about

the absorption lines of Fe XXII and Fe XXIII. N06 [9] assumed saturated lines and the

absolute covering factor of the X-ray source to be 0.75, whereas M06 [7] took the lines

to be unsaturated and used a covering factor of 1.

Miller et al. (2008) [10] confirmed their previous results and stated that if NO6’s

claim of the Fe XXII line being saturated were correct then the ratios of some other

lines should be different than what is observed. Miller et al. also re-iterated their

point that that Fe XXII lines are optically thin and that the covering factor along the

line of the sight is near unity. They also stated that N06 [9] used too low a density

(by factor of 5–10) as a consequence of his line saturation assumption.

The conclusion of M06 [7] and Miller et al. (2008) [10] was confirmed by Kallman

et al. (2009) [39] who used spectral fitting to show that the ionization conditions in

a 1-D model are not consistent with the wind being driven by thermal expansion.
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Generally, M06 [7] , N06 [9] , and Kallman et al. (2009) [39] agree that thermal

driving operates in this system but disagree about the properties of the thermal wind.

Overall, it appears that thermal driving is unfavorable. However, this conclusion is

based on simplified 1-D wind models and needs to be confirmed by a detailed physical

model that takes into account the intrinsic multi-dimensional geometry of disk winds.

In this paper, we present 2.5-D axisymmetric, time-dependent hydrodynamical

numerical simulations of thermally driven disk winds. We focus on the results ob-

tained after the simulations reached the steady state and compare the results with

observations. Our simulations do not include any magnetic processes and therefore

do not address the possibility of the wind being magnetically driven, but they instead

focus on the thermal contribution to the wind. The main goal of our simulations

is to assess within the assumptions whether or not the thermally driven wind can

account for the observations. We also consider possible implications of the fact that

the mass-loss rate of the wind is several times higher than the total mass-accretion

rate.

The paper is organized in the following way: Section 2 describes the methods used;

Section 3 lays out the initial conditions of the simulation and discusses the properties

of the fiducial run as well as its differences from other runs; Section 4 compares the

results to the observations; Section 5 summarizes and discusses our results.

Method

Hydrodynamics

To compute the structure and evolution of a disk irradiated by the central source,

we numerically solve the equations of hydrodynamics

Dρ

Dt
+ ρ∇ · v = 0, (2.8)
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ρ
Dv

Dt
= −∇P + ρg (2.9)

ρ
D

Dt

(
e

ρ

)
= −P∇ · v + ρL, (2.10)

where ρ is the mass density, P is the gas pressure, v is the velocity, e is the internal

energy density, L is the net cooling rate, and g is the gravitational acceleration of the

central object. We adopt an adiabatic equation of state, P = (γ−1) e, and consider

models with the adiabatic index, γ = 5/3.

We use the ZEUS-2D code (Stone & Norman 1992) [6] extended by Proga et al.

(2000) [5] to solve eqs. 2–4. We perform our calculations in spherical polar coordinates

(r, θ, φ) assuming axial symmetry about the rotational axis of the accretion disk

(θ = 0o).

Our computational domain is defined to occupy the angular range 0o ≤ θ ≤ 90o

and the radial range ri ≤ r ≤ ro. The numerical resolution consists of 200 cells in

the r direction and 100 cells in the θ direction. In the angular direction, we used the

following ratios: dθk+1/dθk=0.95, 0.97, 0.99, and 1.00 [i.e., the zone spacing increases

towards the pole]. Gridding in this manner ensures good spatial resolution close to

disk. In the r direction, we used drk+1/drk = 1.04, which enables a good resolution

at smaller radii.

We chose the boundary condition at the pole (i.e., θ = 0◦) as an axis-of-symmetry

boundary condition. At the disk (i.e., θ = 90◦), we applied the reflecting boundary

condition. For the inner and outer radial boundaries, we used an outflow boundary

condition (i.e., to extrapolate the flow beyond the boundary, we set values of variables

in the ghost zones equal to the values in the corresponding active zones, see Stone &

Norman 1992 [6] for more details).
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Radiation Field

We deal with the radiation field and radiation heating and cooling in the the same

manner as described by Proga et al. (2002; see also Proga et al. 2000) [4] [5] .

The net cooling rate is a function of the photoionization parameter, which is

defined as:

ξ =
4πFX

n
, (2.11)

where FX is the local X-ray flux, n = ρ/(mpµ) is the number density of the gas. We

consider fully ionized gas with µ = 0.6. The local X-ray flux is corrected for the

optical depth effects:

FX = F∗ exp(−τX), (2.12)

where τX is the X-ray optical depth and F∗ is:

F∗ =
L∗

4πr2
(2.13)

with L∗ being the luminosity of the central source.

We estimate τX between the central source and a point in a flow from

τX =

∫ r

0

κXρ(r, θ) dr, (2.14)

where κX is the absorption coefficient, and r is the distance from the central source.

We assume κX = 0.4 g−1 cm2 which is numerically of value of electron scattering. We

found that in most cases, the wind is optically thin and the wind column density,

NH(θ) =

∫ ro

ri

ρ(r, θ)

µmp

dr (2.15)

is less than 1023 cm−2.
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Results

To complete the specification of the simulations, we need to assign the properties

of the disk atmosphere (the lower boundary condition for the wind solution). For the

density, we use a simple distribution at θ = 90◦ of the form: ρ = ρo(r/rIC)−α, where

α and ρo are constants. We run the model for α = 0, 1, 2, and 3 and for ρo = 10−12,

10−11, and 10−10 g cm−3 (see table 1). The temperature is set to 104 K, while the

radial velocity is set to zero. In addition, we enforce Keplerian rotation at θ = 90◦.

The size of the computational domain is defined in the following way: ri = 0.05 RIC

while ro = 20 RIC. We follow M06 [7] and N06 [9] and adopt the following properties of

the system: the mass of the central black hole MBH = 7 M¯, the luminosity L∗ = 0.03

in units of the Eddington limit, LEdd, and the Compton temperature, TIC = 1.4×107

K. The adopted L∗ corresponds to the mass accretion rate Ṁa = 4.4× 1017 g s−1.

Properties of the Fiducial Run

Our fiducial run (C8) has the following parameters: α=2, ρo = 10−11 g cm−3,

dθk+1/dθk = 0.97, drk+1/drk = 1.04. This run settles to a steady state after about 3

sound-crossing times.

We show the geometry and structure of the fiducial run in figure 2. The top

left panel shows a density distribution with a significant departure from spherical

symmetry.

23



Figure 2 The fiducial run C8. Top left panel: Color density map. Top right panel:
Color temperature map. Bottom left panel: The Mach number M contours (the
poloidal component only). Contours are for M = 1, 2, and 3 (bottom to top). Bot-
tom right panel: The flow streamlines. Note the self-similarity of the streamlines
especially those arising from the outer disk. In all panels the rotation axis of the disk
is along the left-hand vertical frame, while the midplane of the disk is along the lower
horizontal frame. Lengths are expressed in units of the Compton radius, RIC.
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The temperature (top right panel) is close to 0.1 TIC in the outer part of the wind.

In a very narrow region around the rotational axis, the temperature is much less than

TIC at r > 16RIC, whereas at the small radii the temperature is comparable to TIC.

The X-ray irradiated gas accelerates rapidly and becomes supersonic relatively close

to the disk. As shown in the bottom left panel, the contour for the Mach number of

one corresponding to the wind launched at relatively large radii is almost a straight

line making an angle of about 15◦ with the disk midplane. Streamlines (bottom right

panel) show that most of the disk wind follows almost perfect straight lines inclined at

the angle of about 45◦ with respect to the disk midplane. The streamlines are curved

only in zones near the rotational axis and very close to the disk. It appears that the

outer wind is self-similar (we will return to this point at the end of this subsection).

The streamlines also show that the flow expands in the angular direction, reminiscent

of a spherical outflow, only for streamlines originating at r <∼ 3 RIC.

An accretion disk is geometrically extended and as such it intercepts the central

radiation over a large range of radii. However, the thermal expansion drives a sig-

nificant wind only within a relatively narrow radial range. One can show this wind

property by plotting the product of the density and the velocity normal to the disk

as a function of the radius along the disk midplane (see figure 3 ).

Most of the outflow in the fiducial run comes from the narrow ring on the disk in

the zone between 0.07 RIC and 0.2 RIC having its maximum at ∼ 0.1 RIC. For radii

> 0.2 RIC the mass flux density scales like r−q, with q = 1.76.

The wind is launched in a non-spherical way and it remains non-spherical as it

expands. To illustrate this point, figure 4 shows various flow properties at ro as

functions of θ. In particular, the top panel shows the product of density and radial

velocity (solid line) and the accumulated mass-loss rate (dotted line).

We evaluate the accumulative mass-loss rate throughout ro using the following
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Figure 3 The mass flux density, ρvθ, as the function of radius along the disk midplane,
θ = 90◦ for the fiducial run.

formula:

dṁ(θ) = 4πro
2

∫ θ

0◦
ρvr sin θdθ. (2.16)

One finds that most of the mass flows out of the computational domain through the

outer spherical boundary over a broad range of angles between 20◦ and 75◦. The

outflow for large θ contributes insignificantly. The total mass-loss rate for the fiducial

run is Ṁw = dṁ(90◦) = 3.3 × 1018 g s−1. Note that this is larger than the assumed

accretion rate Ṁa by a factor of 7.5. We will return to this point in Section 5.

The middle panel of figure 4 shows that the photoionization parameter (solid

line) decreases with increasing θ, which is another indication that the wind is not

spherically symmetric. In particular, ξ changes from 105 to 103, whereas the column

density (dotted line) increases from below 1021 cm−3 to 1023 cm−3.

The bottom panel of figure 4 presents the radial velocity (solid line) and the

number density (dotted line) vs. θ. It is evident from this panel why the zones close

to the disk and the rotational axis contribute insignificantly to the total mass-loss
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Figure 4 Quantities at the outer boundary, ro of the fiducial model. The ordinate
on the left hand side refers to the solid line, while the ordinate on the right hand
side refers to the dotted line. Top panel: Mass flux density and the accumulative
mass-loss rate. Middle panel: Photoionization parameter and the column density.
Bottom panel: radial velocity and number density.
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rate: the zone near the disk is very dense but also very slow, while the zone near

the axis of rotation has extremely low density, so that the product of the density and

radial velocity is very small.

To specify the departure of the disk wind from a purely radial wind, figure 5 shows

ξ (top panel) and n (bottom panel) as a function of radius for various θ.

Figure 5 The radial profiles of the photoionization parameter (top panel) and the
number density (bottom panel) for seven polar angles along the radius for the fiducial
run. The angles are: θ = 48.3◦ (thick solid), θ = 60.5◦ (dotted), θ = 69.4◦ (dashed),
θ = 76.0◦ (dot-dashed), θ = 80.9◦ (triple dot-dashed), θ = 84.5◦ (long dashed) and
θ = 89.1◦ (thin solid). Note that a simple spherically expanding outflow poorly
approximates the disk wind solution (see the main text for more details).
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In the case of an optically thin radial wind with a constant velocity, ξ is constant

and n ∝ r−2. In our solution, ξ decreases with increasing radius especially for small

and intermediate θ, whereas n decreases slower than r−2 and can even increase with

radius for θ < 62◦.

How does our solution compare to a β-velocity law, in terms of approaching a

constant value at large r? As expected, it is in agreement for large radii. Figure

6 shows an example of the radial velocity as a function of radius for θ = 76o (this

corresponds to the dot-dashed lines in Fig. 4).

Figure 6 Radial velocity as the function of radius at θ = 76◦ for the fiducial run. The
non-monotonic radial profile demonstrates that the disk wind is not radial (see also
Fig. 4).

The radial velocity increases up to the Compton radius and then remains roughly

constant. Also, there is a visible dip at 0.4 RIC, which is a consequence of the radial

line crossing different streamlines. The function has a nearly flat shape for radii larger

than 1.0 RIC.

We conclude that a thermal disk wind can not be approximated by a radial out-

flow. Font et al. (2004) [29] found that a disk wind expands quasi-spherically if a
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relatively steep decline of the mass flux density with radius is assumed (ρvθ ∝ r−q,

with q >∼ 2.5). As we mentioned above, in our self-consistent simulations, q ≈ 1.76

in the self-similar part of the wind. It is unfortunate that the wind expansion is

non-radial because a radial outflow is a very simple case that can be (and has been)

straightforwardly implemented into photoionization/spectra calculations. Is it then

possible to approximate the thermal wind with some other simple model? It is beyond

the scope of this paper to answer this question.

Comparison of the Fiducial Run With Other Runs

To check the robustness of the solution presented above, we explored effects of

the numerical resolution and the density along the lower boundary. We present the

most significant properties of those runs in Table 1 . The columns are organized in

the following way: (1) the name of the run; (2) the α parameter used in the density

profile; (3) ρo, the normalized density at the lower boundary of the computational

domain; (4) dθi+1/dθi, the angular resolution; (5) ρ(rin) the disk density at the inner

radius; (6) Ṁw the total wind mass-loss rate; (7) the maximal angle θmax for which

the integration of the total wind mass-loss is computed [Ṁw = dṁ(θmax)]; (8) the

maximal radial velocity on the outer shell; (9) the total time of the run.

As mentioned in the Section 3, the density along the lower boundary (θ = 90◦), is

specified by two parameters, α and ρo. We have run several models for various α and

ρo to check if our solution depends on the density along the disk. As for radiation

driven disk winds (see e.g., Proga et al. 1998) [40] , we find that as long as the density

along the disk is high enough, the gross properties of the thermal disk wind do not

depend on the assumed disk density.

For a relatively small density along the disk, the X-rays heat the gas to the Comp-

ton temperature even at θ = 90◦. This means that the computational domain does

not capture a cold disk and its part that is in hydrostatic equilibrium. Consequently,
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Table 1 Summary of the disk wind results

No. of run α ρo dθi+1/dθi ρ (rin) Ṁwind θmax vr tf
(g cm−3) (g cm−3) (1018 g s−1) (◦) ( km s−1) (2.2× 105 s ∗)

A 0 10−10 0.97 10−9 0.33 59 587 10

B 1 10−10 0.97 10−9 0.33 67 599 10

C1 2 10−12 1.00 10−10 6.6 90 746 10
C2 2 10−12 0.99 10−10 6.8 90 708 10
C3 2 10−12 0.98 10−10 6.9 90 675 10
C4 2 10−12 0.97 10−10 7.0 90 642 10
C5 2 10−12 0.96 10−10 7.1 90 619 10
C6 2 10−12 0.95 10−10 7.1 90 604 30
C7 2 10−11 0.99 10−9 0.32 90 703 10
C8 2 10−11 0.97 10−9 0.33 90 627 10
C9 2 10−11 0.95 10−9 0.33 90 587 10
C10 2 10−10 0.99 10−8 0.33 63 692 30
C11 2 10−10 0.97 10−8 0.33 62 603 30
C12 2 10−10 0.95 10−8 0.33 63 553 10

D1 3 10−11 0.97 10−8 0.11 90 670 10
D2 3 10−10 0.97 10−7 0.32 90 621 30

* 2.2× 105 s is the sound crossing time = (ro/cs), calculated for T=TIC.

the simulations do not follow the transition between a cold and a hot flow. Therefore,

the mass flux density from the lower boundary is set not by the physics of a cold disk

being heated by X-rays but by a choice of the density. Comparing Ṁw for runs C4,

C8, C11, and D2, we find that the mass-loss rate depends on the density if the den-

sity is too low. Only when the density along the disk is high enough that the central

X-rays do not heat the gas along the lower boundary, the simulations capture the

transition from the cold to hot phase. The mass-loss rate then becomes independent

of a particular choice of the density in the cold part of the disk.

However, we also find that for very high densities along the disk there is a technical

problem with a proper measurement of Ṁw. Our goal is to compute a wind from a

geometrically thin disk. But if we choose too a high density along the lower boundary,

the disk will flare and its thickness at large radii becomes substantial. During the

simulations, the dense disk remains cold and nearly in hydrostatic equilibrium but

it will subsonically fluctuate. Therefore, when computing the wind mass-loss rate,
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one needs to keep in mind these fluctuations of the dense disk and exclude the region

very close to the disk midplane. Otherwise the subsonic oscillations of the very dense

disk material would be counted as the disk outflow and this will yield an erroneous

estimate of the wind mass loss rate. In practice, when calculating the total outflow

rate for some runs, we stop the integration in eq. 10 at θmax < 90o, where the

transition from the wind to the disk occurs. This transition is not difficult to identify

as it occurs where the density sharply increases with θ (see the bottom panel in Fig.

3). The seventh column in Table 1 lists the maximum angles we used.

For the fiducial run as well as some other runs, the region near the disk midplane

does not affect estimations of Ṁw. This is one of the reasons we chose the run C8 with

ρo = 10−11 g cm−3 as the most suitable run in terms of having not too high a density,

as only a small portion of the dense disk will enter the domain. On the other hand,

the density cannot be so small as to make the transition from the disk to the wind

outside the computational domain. All runs with the density comparable to or larger

than that in the fiducial run have a total mass-loss rate of about 3.3 × 1017 g s−1.

Other wind properties are also similar (see Table 1).

As for the resolution study, we find that changes in the dθk+1/dθk factor pro-

duced small differences of the final steady state and such effects just slightly changed

calculated physical quantities and properties of the solution.

Comparison with Observations

We start our comparison with the observations by considering the wind properties

inferred from the observation and then we present an example of the synthetic spec-

trum directly compared with the observed X-ray spectrum. As we described in Sec-

tion 1, the number density of the wind is inferred to be quite high, i.e., 5×1015 cm−3.

Figure 7 shows the scatter plot of the photoionization parameter vs. vr based on

run C8.
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Figure 7 Scatter plot of photoionization parameter vs. vr for the fiducial run. Dots
correspond to n < 1012 cm−3 whereas diamonds correspond n ≥ 1012 cm−3. The
lack of points corresponding to vr > 100 km s−1 means that the thermal wind can
not account for a high density fast outflow as observed in GRO J1655–40 during an
X-ray-bright state.

Dots correspond to n < 1012 cm−3, whereas diamonds correspond n ≥ 1012 cm−3.

Note that there are no diamonds corresponding to vr ≥ 100 km s−1. This means

that our model fails to predict the wind density and velocity as inferred from the

observations. We stress that in the computational domain of our simulation there is

gas with densities as high as n ≈ 5×1015 cm−3, but this high density gas is very slow

(e.g., the bottom panel of Fig. 3). This simple comparison shows that our results

support M06 [7] and Kallman et al.’s (2009) [39] conclusion: a thermal wind can not

account for the X-ray observations.

As another test of our model, we computed synthetic spectra using the photoion-

ization code XSTAR (Kallman & Bautista 2001; Bautista & Kallman 2001). [41] [42]

Our method of making this calculation is very similar to that used and described in

Dorodnitsyn et al. (2008) [43] . We have computed spectra of the fiducial model for

several inclination angles. We have also calculated the emissivity and opacity at each
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point in the hydrodynamic flow at the end of the simulations, and then integrated

the formal solution of the transfer equation along radial rays to get the spectrum.

In doing this we ignore emission. Since emission will tend to fill in absorption lines,

thus reducing their strength, these models represent an overestimate to the amount

of absorption coming from such a flow. For most inclinations, the spectra show no

absorption features or only very weak ones. Figure 8 compares the count spectrum

observed by the HETG during an X-ray bright phase of the GRO J1655–40 2005

outburst (see M06 [7] for more details) with an example of our synthetic spectrum.

For this figure ( 8 ), we have chosen an almost 90◦ inclination because it yields the

best fit to the data and the right ionization for the most lines. Nonetheless, even for

this very high inclination, the range of ionization is too narrow, and the ionization is

probably lower than that observed. It is possible to obtain higher ionization for lower

inclinations, but then the column density is lower, making the fit is even worse. To

see if we can improve the fit for a given density structure, we have to put in the 600

km s−1 blueshift by hand while computing this spectrum (note that our wind model

does not predict such a high velocity of the dense wind at this inclination angle).

However, neither this nor any other simple model fits the Fe Kα line profile showing

the high velocity (∼1600 km s−1) component. We found also that the curve-of-growth

of the lines does not fit: there are no saturated lines in the model. Still, close to half

of the observed lines are predicted in the model, including the Fe XXII lines.

In addition to an inadequate mass loss rate, the model shows a geometric structure

different from that required by spectra of GRO J1655–40. From the lack of emission

lines, M06 [7] and N06 [9] concluded that the global covering factor of the wind is

small, while figure 4 shows that the density is reasonably constant over a broad range

of angles.
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Figure 8 Comparison of the X-ray spectrum of GRO J1655–40 with the model spec-
trum computed based on our thermal disk wind (see Section 4). The points with the
error bars are the data and the model is the red curve. The wavelength in Angstroms.
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Summary and the Discussion

In this paper, we presented axisymmetric, time-dependent hydrodynamical nu-

merical simulations of thermally driven disk winds. To apply our results to GRO

J1655–40, we adopted the observed mass of its black hole, and the properties of its

X-ray radiation. We performed the simulations using the same code and in a similar

fashion to PK02 [4] who computed wind for low-mass X-ray binaries. The main dif-

ference is that we turned off the radiation driving here because as found by PK02 [4]

it is negligible for the stellar black hole accretors. Turning off the radiation driving

makes the simulations run much faster. The main goal of our simulations is to check

whether, in the absence of magnetic fields and within the given simplifications and

assumptions, the thermally driven wind can account for the observation.

To compare the results with the observations, we also computed transmitted X-

ray spectra using the photoionization code XSTAR and our wind solution. Our main

findings are:

1) The density of the fast-moving part of the wind is more than one order of magnitude

lower than that inferred from the observations. Consequently, contrary to the claim

made by N06 [9] , the thermal model fails to predict synthetic spectra with line

absorption as strong and as blueshifted as those observed. Overall our results support

the conclusion reached by Miller et al. (2008) [10] and Kallman et al. (2009) [39]

, that GRO J1655–40, and likely other X-ray transient sources, have thermal winds

insufficient to explain the observed spectra;

2) Despite the thermal wind being weak and Compton thin, the ratio between the

mass-loss rate and the mass accretion rate is about seven;

3) We discovered that the outer wind is self-similar.

One should ask if our simulations are conclusive. Namely, can we rule out thermal

driving as a mechanism responsible for the observed wind even though we did not
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consider some effects such as thermal conduction? Conduction could increase the

degree of disk heating and could in principle increase the gas density above the disk

photosphere. However, it is unclear if this increase would lead to an increase in

the density at the wind base and consequently in an increase of the density of the

fast wind, which is what is needed to account for the observations. The density of

the wind base also could be sensitive to the details of radiative transfer and spatial

resolution. Hydrostatic models of the ionization layer on the surface of the disk by

Jimenez-Garate et al. (2002, 2005) [44] [45] showed that there is much more opacity

than the electron scattering opacity in the very thin layer that produces UV and

most of the X-ray emission on top of the optically thick disk. Therefore, our pure

electron scattering assumption might underestimate the opacity. However, if this

were true then that would mean that thermal driving is even less efficient because the

irradiation would penetrate the disk even less. We expect that the mass loss rate is set

at the sonic point, which would occur in the million Kelvin temperature plateau seen

in the hydrostatic models. In that region, the models indicate that photoabsorption

opacity due to Fe XXV and Fe XXVI is comparable to the electron scattering opacity.

The radiative heating also can be affected by disk flaring or the shape of the disk, in

general. For example, at a given radius a strongly flared disk might intercept more

central radiation than a flat disk. Consequently, a resulting outflow might be more

collimated and denser. We intend to extend our model to explore these effects in near

future. However, before that we plan to check if the inclusion of magnetic driving

will produce a dense fast wind.

It is important to remember that the outburst spectra of GRO J1655–40 and

GRS 1915+05 are exceptional. Spectra of these objects in their low states, as well

as spectra of other black hole binaries, show absorption lines of only Fe XXV and Fe

XXVI. That suggests lower densities and mass loss rates, and it raises the question

of whether thermally driven winds might account for those observations. The micro-
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quasar H1743−322 (Miller et al. 2006) [46] is a good example, with Fe XXV and

Fe XXVI equivalent widths of up to 4.3 mÅ and 6.8 mÅ, respectively. The densities

are below 1013 cm−3 and the ionization parameters are above 105 in 4 separate ob-

servations. We have examined our models at sightlines farther from the disk, where

the velocities match those reported by Miller et al. (2006) [46]. The Fe XXV and Fe

XXVI column densities are too small to account for the observed equivalent widths

by a factor of a few, and we conclude that thermally driven winds cannot account for

the typical low state winds.

In the models presented here, we found that Ṁw/Ṁa ≈ 7. This is a fairly large

ratio, which could mean that the thermally driven wind can significantly change the

mass flow in the disk. Therefore, we decided to check if our result is consistent with

the results of others who modeled thermally driven winds. Of particular interest is

work by Woods et al. (1996) [1] , who studied thermally driven disk winds in great

detail and performed many axisymmetric wind simulations for various luminosities.

They summarized their results in an analytic formula which fitted the mass flux

density distribution obtained from simulations for various L∗ (their eq. 5.2).

To find Ṁw / Ṁa predicted by Woods et al.’s simulations, we integrated their

formula over the disk surface to obtain Ṁwind and then expressed L∗ through the

following equation of the accretion luminosity:

L∗ =
G MBH Ṁa

2 rs

, (2.17)

where rS is the Schwarzschild radius, which yields a relation between Ṁw and Ṁa.

We found that Woods et al. simulations predict Ṁw / Ṁa in a range from 2.0 to

6.0 depending on the luminosity. The L∗ dependence is weak for L∗/LEdd < 0.1.

Thus Ṁw / Ṁa is higher than, but comparable, to Woods et al.’s results for L∗ on

the lower side of their luminosity range. Nevertheless, both set of simulations predict
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Ṁw / Ṁa > 1.

Our conclusion from this analysis is that Ṁw is greater than the rate at which

the central engine is fueled. This in turn can make the disk variable. One could even

expect this relatively strong wind to cause a recurrent disappearance of the inner

disk even if the disk is fed at a constant rate at large radii. Neilsen & Lee (2009)

[34] suggested such a process while interpreting jet/wind/radiation variability in the

microquasar GRS 1915+105. It is beyond the scope of this work to model the effect of

the wind on the disk. However, this problem was studied by Shields et al. (1986) [3]

, who showed that due to viscous processes no oscillations appear for Ṁw / Ṁa < 15!

We conclude that the thermal wind is to weak to cause the oscillation. But the

thermal wind is also too weak to account for the observed wind. Therefore, it is

possible that in GRO J1655–40, and other sources, e.g., GRS 1915+105, the wind

responsible for the observed X absorption will be so strong that Ṁw / Ṁa > 15 and

as such cause disk oscillations and contribute to the observed disk variability.

Follow–up Research on This Paper

We did the follow–up research on the self–similar properties of the streamlines.

However, as we noted earlier, the outer part of the disk wind solution appears to be

self–similar. Our detailed analysis of the geometry of the streamlines confirms their

self–similarity. For example, the left panel of the figure 9 compares the streamlines

from the fiducial run, rescaled and plotted on the scale from 0 – 100 RIC ,with the

streamlines from a rerun of the fiducial run, with ro = 100 instead of 20 RIC. Far

from the inner and outer edge of the solution, the two sets of streamlines are very

similar to each other. Thus, one shape of a streamline can fit various streamlines.

To determine this universal shape of the streamline, the right panel of figure 9

shows the streamlines from the fiducial run (on the 0 - 20 RIC grid), after rescaling

them according to the following formulae: z′i(j) = zi(j)
r1(0)
ri(0)

; r′i(j) = ri(j)
r1(0)
ri(0)

, where
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i is the order number of the streamline and j is the number of the point along a given

streamline.

Figure 9 Self–similarity of the thermal disk wind. Left panel: Comparison between
the streamlines for a rerun of the fiducial run on the grid with the outer radius 100 RIC

instead of 20 RIC (dotted lines) and for the fiducial run (solid lines). The streamlines
of the fiducial run are rescaled by a factor of 5 to fit in the 100 RIC grid. A close
overlap of the lines from the two simulations, that were run on two different scales,
indicates the self–similar nature of the solution. Right panel: The streamlines of the
fiducial run renormalized according to eq. 11. Note that, except for the two lines
arising from the inner disk, all the other lines have very similar shapes and are almost
indistinguishable.

This rescaling again reveals a striking similarity of the streamlines that originate

far from the inner edge of the solution. As Fig. 1 shows, the shape of the streamline

can be approximated as a vertical line near the disk surface that quickly bends out-

wards and becomes a straight line. One can then fit the streamlines into the zone of

the self–similarity with a simple formula. Specifically, the streamline starting at 5.5

Rc can be very well fitted by the following formula:

z(r) = [1− exp(−6.4 r)]× (0.41 + 0.71 r + 0.0089 r2). (2.18)
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Note that the quadratic term is very small, compared to the linear term. The expo-

nential part of the formula is used to capture the vertical part of the streamline, near

the disk and its subsequent turn into a straight line away from the center and the

disk.

This analysis is very encouraging, and we plan to derive the self–similar solution

of the thermal disk wind by solving the hydrodynamical equation analytically, or

semi–analytically. However, one needs to keep in mind that the majority of the

mass–loss does not come from the self–similar region. Therefore, the usefulness of the

self-similar solution might be limited.

We emphasize the significance of this proposed model with an accent on inter-

preting the data. We present the most commonly used models of disk wind geometry

on the figure 10 . Observers interpret their data based on assumptions about the

density distribution and the geometry of the flow. Our model does not predict simple

power law for the density distribution, most commonly used as an assumption by the

observers, which was discussed in detail in this chapter. Regarding the geometry of

the flow, our model does not predict spherically symmetric and diverging cases, which

are often used, and instead suggests a geometry with streamlines being parallel and

at a given angle with respect to the disk as shown on the figure 10 . Hopefully, this

model will be taken into account by observers and the consequences of changing their

assumptions will be quantified and revealed.
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Figure 10 Three different models for disk winds, top panel: spherically simmetric
case, middle panel: diveging case and the CIA case on the bottom panel. (Image by
T. Waters)
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Connection with the Extrasolar Planet Wind Problem

In the next chapter, we present the numerical simulations and the analysis of

the results of the wind arising from the extrasolar planet interacting with the wind

from the parent star. In this chapter, the accretion disk is simplified as a fully axis

symmetric object. The heated surface is a disk. To analyze extrasolar planets, we are

the using same method. However, in this case we are creating a spherically heated

surface, with a defined distribution of temperature. In order to analyze spherical

objects in circular orbit, we will use 3D software to include all nonsymmetric effects.

In essence, this 3D problem is analyzed using this same approach as the previous 2.5D

problem, only using different geometry and boundary conditions, and, of course, with

a different physical background.
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CHAPTER 3

EXTRASOLAR PLANETS WINDS

Brief Introduction to Athena 3D Code

The Athena 3D is the code developed by the same authors as Zeus 2D. It is written

in C while Zeus is written in Fortran. They have many similarities, but Athena has

more advanced numerical solvers incorporated into it, and it is much more suitable

to implementing more physical equations driving the system than those originally

anticipated by the authors. Being more flexible in this manner, it allows the user to

write scripts which can easily be incorporated into the code. We were, on the one

hand, motivated to use Zeus 2D because it is a very well–tested and acknowledged

code, which deals well with accretion disk–type problems and similar geometries. On

the other hand, our research group has plenty of experience with it [5] [4] , and

has been applying it to a wide range of astrophysical problems in the past. When

considering extrasolar planet problems, it would be possible to conclude that they

may be investigated using two dimensional software, but due to the motion of the

planet on the circular orbit, the planets’ system is subject to Coriolis force and moves

through the medium. In order to acquire a deeper grasp of the problem, the necessity

for a three dimensional simulation arose. We, therefore, swithched to Athena 3D.

Athena uses completely different algorithms, mainly focusing on Godunov methods

[47] and and Reimann solvers [48] . The possibility of a logarithmic scaling of the grid

(which gives the user a decent edge by saving on computational time when there are

zones of the computational domain and where a much higher resolution is required

due to the physical setup) is lacking in Athena. This is one of its major drawbacks.

Yet overall Athena seems to be the best possible choice today compared to the other

codes available for the types of problems we are dealing with.

Athena 3D is a numerical code for magnetohydrodynamics. It uses a single step,
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second–order accurate, Godunov scheme for ideal MHD, which is an extension of the

method described in (T.A. Gardiner, J.M. Stone, 2005, 2007) [49] [50] . This algorithm

combines the corner transport upwind method of Colella [51] for multidimensional

integration, and the constrained transport algorithm for preserving the divergence–

free constraint on the magnetic field. It compares two different forms for the corner

transport upwind integration algorithm, which require either 6– or 12–solutions of

the Riemann problem, per cell, per time-step.

Riemann Problem and Riemann Solvers

A Riemann solver is a numerical method used to solve a Riemann problem. It

is used in computational fluid dynamics and computational magnetohydrodynamics.

A Riemann problem, named after Bernhard Riemann, consists of a conservation law

together with piecewise constant data, having a single discontinuity. The Riemann

problem is very useful for the understanding of hyperbolic partial differential equa-

tions, like the Euler equations, because all properties, such as shocks and rarefaction

waves, appear as characteristics in the solution. It also gives an exact solution to some

complex nonlinear equations, such as the Euler equations. In numerical analysis, Rie-

mann problems appear in a natural way in finite volume methods for the solution of

equation of conservation laws, due to the discreteness of the grid. For that reason,

it is widely used in computational fluid dynamics and in MHD simulations. In these

fields, Riemann problems are calculated using Riemann solvers. Riemann solvers [52]

decompose the solution into three domains. The propagation speed is equivalent to

the propagation speed of the sound. The fastest characteristic defines the Courant

Friedrichs Lewy condition, which sets the restriction for the maximum time step in

a computer simulation. Courant Friedrichs Lewy condition is a necessary condition

for convergence while solving certain partial differential equations (usually hyperbolic

PDEs) numerically. It is not in general a sufficient condition. It arises when explicit
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time–marching schemes are used for the numerical solution. The timestep must be

less than a certain time in many explicit time–marching computer simulations, oth-

erwise the simulation will produce wildly incorrect results. For example, if a wave is

crossing a discrete grid, then the timestep must be less than the time for the wave to

travel to adjacent grid points. When the grid point separation is reduced, the upper

limit for the time step also decreases.

The Equations of Ideal Magnetohydrodynamics

The equations of ideal magnetohydrodynamics (MHD) can be written in conser-

vative form as

∂ρ

∂t
+∇· (ρv) = 0 (3.1)

∂ρv

∂t
+∇· (ρvv −BB) +∇P ∗ = 0 (3.2)

∂B

∂t
+∇×(B× v) = 0 (3.3)

∂E

∂t
+∇ · ((E + P ∗)v −B(B · v)) = 0 (3.4)

where ρ is the mass density, ρv the momentum density, B the magnetic field, and E

the total energy density. The total pressure P ∗ ≡ P + (B ·B)/2 where P is the gas

pressure. This system of equations is closed with the addition of an equation of state

which relates the pressure and density to the internal energy, ε ≡ E − ρ(v · v)/2 −
(B ·B)/2 .

For the Athena code, an ideal gas equation of state P = (γ−1)ε is assumed, where

γ is the ratio of specific heats. The system of units is chosen in which the magnetic

permeability µ = 1.

In addition to the evolutionary conservation laws (equations above), the magnetic

field must also obey the divergence free constraint, i.e. ∇ ·B = 0.
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In Athena, a three dimensional, Cartesian grid is assumed. The standard notation

is used where the grid cell (i, j, k) is centered at (xi, yj, zk) and has a size (δx, δy, δz).

Time levels are denoted by a superscript, and interface values are denoted by half

increments to the index, the volume averaged x-component of the magnetic field at

time tn is defined to be Bn
x,i,j,k ≡ 1

2

(
Bn

x,i−1/2,j,k + Bn
x,i+1/2,j,k

)
.

The Interface States

For the calculation of the “interface states” the Piecewise Parabolic Method

(PPM) algorithm is used for ideal MHD in three dimensions. The PPM interface

state algorithm is based upon the idea of dimensional splitting, and, as a result, is a

one–dimensional algorithm, including both spatial reconstruction and a characteristic

evolution of the linearized system in primitive variables. It is necessary to include

multidimensional terms when calculating the interface states. The three dimensional

interface state algorithm is thus a generalization of the two–dimensional algorithm,

which for consistency must reduce to the two- and one–dimensional algorithm in the

appropriate limits. The interface states in the PPM algorithm are typically calcu-

lated by evolving the system of equations in primitive variables. For example, the

induction equation in component form is:

∂Bx

∂t
+

∂

∂y
(vyBx −Byvx) +

∂

∂z
(vzBx −Bzvx) = 0 (3.5)

∂By

∂t
+

∂

∂x
(vxBy −Bxvy) +

∂

∂z
(vzBy −Bzvy) = 0 (3.6)

∂Bz

∂t
+

∂

∂x
(vxBz −Bxvz) +

∂

∂y
(vyBz −Byvz) = 0 . (3.7)

Instead of proceeding to the details of the three–dimensional algorithm, for sim-

plicity of illustration, the two–dimensional case where equations are linearized is pre-

sented. For the two–dimensional (x, y)-case, the induction equation for Bz is sim-
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plified using the ∇ ·B = 0 condition eliminating the MHD source terms from the

evolutionary equation for Bz. The result is the following set of equations for calcu-

lating the x-interface states in 2D

∂Bx

∂t
= 0 (3.8)

∂By

∂t
+

∂

∂x
(vxBy −Bxvy) = 0 (3.9)

∂Bz

∂t
+

∂

∂x
(vxBz)−Bx

∂vz

∂x
= 0 . (3.10)

which can, after detailed mathematical analysis, be simpified to the form:

∂Bx

∂t
= 0 (3.11)

∂By

∂t
+

∂

∂x
(vxBy)−Bx

∂vy

∂x
− vyminmod(

∂Bx

∂x
,−∂By

∂y
) = 0 (3.12)

∂Bz

∂t
+

∂

∂x
(vxBz)−Bx

∂vz

∂x
− vzminmod(

∂Bx

∂x
,−∂Bz

∂z
) = 0 (3.13)

where the minmod function is defined as

minmod (x, y) =





(x) min(|x|, |y|) if xy > 0

0 otherwise.
(3.14)

The content of this and the previous section was mainly taken from [49] .
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Extrasolar Planets Winds

The recent Kepler mission [54] discovered numerous extrasolar planets. Due to

observational issues and methods used, the majority of detected planets are relatively

close to the parent stars. According to the analysis of the first four months of data [55]

,roughly about fifty percent of those detected planets have an orbit with a semi–major

axis less than 0.1 AU. In such circumstances, strong radiation from the star, especially

extreme ultraviolet radiation, can heat up the atmosphere of the planet and possibly

drive a wind (Moutou et al 2002) [56] . On some planets the extended envelope beyond

the Roche lobe of the planet has been directly observed (Vidal–Madjar et al. 2008 ;

Ehrenreich 2008) [57] [58] (based on the stellar Lyα flux absorbed by HD209458b).

The limit on the mass–loss rate, which was previously observationally constrained for

such planets to be larger than 1010 g s−1 , has recently been refined. The findings of

Echenreich & Desert (2011) [59] had put the constraints on the mass–loss rates of all

detected transiting planets to be within 106 to 1013 g s−1.

The first step on the way to reaching the goal of this project was to reproduce

the results of Stone and Proga (2009) [53] , where the extrasolar planet is examined.

The planet is located in the vicinity of the star, so the strong wind from the star

is present, colliding with the planet wind. The paper examines the influence of the

star wind on the total mass–loss rate of the planet. The simulation in their paper is

2.5 dimensional, and therefore cannot include the Coriolis force. In order to secure

accuracy and reliability of the results we were testing, the simulation was tested

extensively at every stage of development. The project was divided into three steps.

The first step created a spherically symmetrical planet, having an interior of constant

density and temperature. Such a planet, due to its constant surface temperature and

density, creates a spherically symmetric wind. This is, in essence, the Parker problem

(Parker, 1965) [61] , which does have an analytical solution. The second step added
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the wind from one side, which was put in by hand as a boundary condition for the

velocity at the one side of the box (computational domain). The final step added

the Coriolis force into the code. This last step was possible due to the fact that the

Athena is an open code, and the authors anticipated the eventual need for adding

extra physics. Therefore, extra forces can be added to the source code. Figure 11 is

an artist rendering of extrasolar planet.

Figure 11 Extrasolar planet (Artist Rendering), http://www.nasa.gov/images

Spherically Symmetric Wind

We performed a nonisothermal simulation, spherically symmetric, with γ = 1.01,

and hydrodynamical escape parameter (HEP) λ, being equal to 5.0. The HEP, is

defined as:
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λ =
GMpµ

RpkT
(3.15)

where Mp and Rp are the mass and radius of the planet, and T and µ are the

temperature and mean mass per particle in the atmosphere. Numerical values of

HEP were previously analyzed by Hunten (1982) [60] , while for λ closer to 10.0, the

stronger thermally driven wind will appear. We were running the code for more than a

few sound crossing times, so it would reach a steady state. Boundary conditions were

set to outflow, and only the central spherical region inside the planet was controlled

during the simulation. The spherical zone of R ≤ 1.0 had a controlled density of

1.0 and the temperature was set to be constant on its surface. In the first step,

we numerically solved the exact equation for Parker wind (Parker, 1965) [61] , but

since the equation is for the isothermal case, there was a slight mismatch when we

compared theoretical results to the results of the simulation. After that, we compared

the general γ analytic solution (Holzer & Axford 1970) [62] , for the nonisothermal

wind (γ = 1.01). The figure 12 shows all three : Parker solution for isothermal

case (γ = 1.00), which slightly differs from Holzers & Axfords nonisothermal solution

(γ = 1.01), as well as the solution from the simulation result. The simulation result

coincides almost perfectly with the theoretical solution, as can be seen on the graph,

figure 12 .

The detailed resolution study was done on the various resolutions: 64, 128, 256

and 512 grid points per dimension. We found that the 2563 case had errors less than

0.2%, and that the 5123 case had errors less than 0.1%, with respect to the theoretical

exact solution of the Parker wind problem. As far as the resolution is concerned, the

experimentalist needs to determine the functional dependence of the resolution vs.

the error (compared to the theoretical solution), both the average error over all grid

points and the biggest error over the grid points. When the increase of the resolution
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Figure 12 Velocity vs. radius. Dotted line: theoretical Parker solution for isothermal
case (γ = 1.); Solid line: theoretical solution for nonisothermal case (γ = 1.01); and
dashed line: simulation result for nonisothermal case (γ = 1.01)

starts to negligibly decrease the error and saturate, or if the error falls below a certain

percentage value, which is set by the physical limitations of the model, the resolution

should not be further increased, since it will only lead to waste of the CPU (and the

real) time and be of no benefit at all. Such an approach is necessary while performing

the numerical experiment, since one has to know the limitations and the precision of

the code which was being used. Of course, the main purpose of numerical experiments

is to research problems that are beyond the analytical horizon. The major issue is

that before leaving very well–tested grounds, all details about behavior of the model

must be taken into account. For that reason, it is a common practice, before attacking
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new complex problems, that the model and the code both be tested on problems with

existing analytical solutions. For that reason, we did extensive testing on spherically

symmetric configurations before making a step toward more realistic non–symmetric

problems of extrasolar planets.

The issue with increasing the accuracy of the model, via increasing the resolution,

is that doubling the resolution results in an increase of the calculation time by more

than a factor of eight. That is due to the fact that the runs are three–dimensional,

and such runs very soon become computationally ”expensive”. The same holds for

doubling the size of the domain. We were using clusters of 64 processors for our

runs. With that computational power, the 5123 was the highest resolution we were

running, due the time limitations imposed. Particularly for runs like this, on a 64

processor cluster, the system reaches the steady state in between 50 and 100 units of

computational time, which corresponds roughly to one week of real time.

Cosine Distribution of Temperature Introduced

The geometry of the system dictates that the temperature of the surface of the

planet is dependent upon the latitude, and therefore the cosine–like distribution of

the temperature on its surface is natural. Because of the minimal energy configu-

ration, most of the close–in EGPs are tidally locked, so the only mechanisms that

can transport heat to the ”night” side are bulk flows in the atmosphere and thermal

conduction. After testing for a spherically symmetric case, we continued simulations:

introducing the cosine temperature distribution, keeping the surface of the planet on

the ”night” side on a very small temperature of (0.01% of the ”day” side maximum),

while controlling the ”day” side temperature as a cosine function of θ angle with the

respect to the star, and the wind from the star, which is not introduced yet at this

stage, figure 3 and figure 14.
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Figure 13 3D cut at y=0 (top panel), and z=0 (bottom panel) for the run with the
cosine heating included
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Figure 14 Plot of density and velocity along radial lines, for the run with cosine
heating included, θ = 0 (solid), θ = π/2 (dashed) and θ = π (dotted)

Introducing the Stellar Wind

By including the stellar wind in the domain at one side of the box, the same side

from which the radiation is hitting the planet, we effectively repeated the work of

Stone and Proga only in 3D [53] , where one can see that the approximation of axial

symmetry they had is more than justified. However, this still does not fully reproduce

the realistic model, since the planet is rotating around the parent star. Because the

star in reality does rotate, the Coriolis force is present, as well as the effects of the

star moving through the medium.

55



Table 2 Summary of the extrasolar planets results

No. of run λ GM Rdomain Ωplanet vstar wind ρstar wind vmax (planet wind) Ṁplanet

W9 5.0 1.0 20.0 0.0 1.0 10−3 2.77 4.75
W13 5.0 1.0 20.0 0.0 4.0 10−3 4.11 3.08
W22 5.0 1.0 20.0 0.0 0.25 10−4 1.63 6.04

C10 5.0 1.0 20.0 5.0 0.25 10−4 1.59 6.04
C15 5.0 1.0 20.0 0.5 0.25 0.5 10−4 2.06 6.18
C19 5.0 1.0 20.0 5.0 0.5 0.5 10−4 4.68 2.31

* All quantities expressed in this table are unitless

In this part of the research, we put an emphasis on the geometry of the wind.

The strength of the wind controls the mass–loss rate, and the mass–loss rate will

obviously control the lifetime of the planet. The high temperatures cause the planet’s

atmosphere to extend outside of the Roche lobe, and, therefore, the estimates on the

lifetime can be calculated, dependent upon the predicted mass–loss rate and the mass

of the planet. Many theoretical mechanisms have been proposed to explain various

physical causes for the evaporation of the planet (Fortney & Nettelmann,2010) [63] ,

but the heating caused by the parent star and the interaction with its wind seem to

be the most relevant ones. Here we present the results of different models with similar

structures and different parameters, and the simulation results for the mass–loss rate

in dimensionless units, as shown in figure 3 and in the table 2 . In the figure, the line

of shock where the star’s wind is colliding with the outflow wind from the planet is

clearly visible on the upper side (in a parabolic shape), while two shocks on the left

and right sides, created by the planet outflow itself, are still present and visible on

the figure 3 . A strong stellar wind confines the planetary wind to a small volume

and enhances the column density close to the planet.
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Figure 15 3D cut at y=0, runs ”W22” (top panel) and ”W13” (bottom panel) with
the star wind included, the two represent relatively weak and very strong wind coming
from the positive z direction, having negative z velocity component
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Introducing Coriolis Force

The Coriolis force is given by the formula:

FC = 2 m Ω× v (3.16)

In the model we are presenting, the wind coming from the star enters the computa-

tional domain from the positive z side, and has negative z velocity. Its velocity and

momentum are controlled by the boundary condition introduced. This geometry has

the star on the z axis of the computational domain, located very high on the positive

z side. Therefore, the choice of the orientation of the vector of the planet’s rotational

velocity is arbitrary within the x–z plane of the computational domain, and we have

chosen the direction y for the Ωplanet. Therefore, the above vector product results in

the following acceleration present within the system:

acoriolis = 2 Ωplanet (x̂vz − ẑvx) (3.17)

We varied the rotational velocity, or the period of the planet orbiting the star, by

adjusting Ωplanet in the part of the code which we have written to include this effect.

The resulting mass loss quantities are listed in the table 2 in a few bottom rows.

Since the hundreds of planets recently discovered by the Kepler mission [55] have

a wide variety of periods, by changing the rotational velocity of the whole domain

around the star, we tested the model for sensitivity on Coriolis effect. Our findings

are that mass–loss rate is almost not at all influenced by Coriolis force in the models

we exploited. However, if the rotation velocity gets very large (period of a planet

gets very small) then the Coriolis force might be larger than a 1% importance. But

such a scenario can also cause some further numerical complications, with respect to

smaller scale shocks occurring throughout the domain.
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On the other hand, the geometry of the flow is heavily influenced by the Coriolis

force, and any symmetry is immediately broken as soon as the Coriolis force kicks into

the system. As can be seen on figure 16 , the geometry is changed due to the combined

influences of the Coriolis force and the strength of the wind around the planet. On

the top panel, the run ”C10” shows small but clearly visible deviations from the

axial symmetry. On the bottom panel, the run ”C19” is shown, and the strength of

the effect is overwhelming and very close to breaking the dynamic equilibrium of the

planet’s wind.

The figure 17 shows plots of density and total velocity for the run ”C19” at the

constant radii: 2.0, 5.0, and 10.0. On this graph, it is visible that a small vorticity

over the whole domain is introduced. At this strength, it is just slightly influencing

the geometry of the wind, leaving the wind at the stable dynamical equilibrium.

On the figure 16 it can be seen that there are two slightly curved shocks present,

extending in positive and negative x direction from the planet. Those two shocks are

visible on the figure too, only in the case without the Coriolis force, the curvature of

the shock line is the consequence of the heating on the ”day” side of the planet. In

this case, the shock is created by the angular motion of the atmosphere caused by

differences in the temperature. Same shock first, when wind from the star is added,

as can be seen on figure gets slightly dislocated in negative z direction for the case of

the weak wind, the shock line gets strongly dislocated in case of the strong wind. In

cases before introduction of the Coriolis force the system is still axially symmetric,

and the introduction of the Coriolis force breaks the symmetry and adds vorticity in

the system, by displacing the shocks in angular direction as shown on the figure 16 .
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Figure 16 3D cut at y=0, runs ”C10” (top panel) and ”C19” (bottom panel) with the
star wind and the Coriolis force included, the two represent a relatively weak, and a
very strong, Coriolis Force influencing the geometry of the flow.
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Figure 17 run: ”C10” Plots of density and total velocity along the equidistant lines
for radiii: 2 (solid), 5 (dotted) and 10 (dashed)

Conclusion

Mass losses in the simulations with the Coriolis force included varied for less than

1% and all mass losses, in all runs, varied within a range of a factor of two. When

such a model is applied to the realistic case, it can give an estimate of the life length

of a planet in a similar environment. To our knowledge, no similar simulations of

extrasolar planets in 3D with Coriolis force included have been done to date. There

have been simulations where the Athena code was used and the Coriolis force was

included (Lemaster et. al, 2007) [64] , but on a different problem. The predictions

provided by this model can in the future easily be used for putting constraints on

61



mass losses of specific extrasolar planets recently discovered by the Kepler mission.

Also, the model can be refined by the simple increase of the resolution and increase

of the size of the computational domain. The problem we were facing was that in

addition to the number of runs with different parameters in the first part (accretion

disk problem) compared to this one, the 3D simulations are extremely time (and

CPU) consuming. We used a cluster of 64 processors and used the parallelized code.

With the size cluster we were using, the average simulation with 2563 grid points took

a couple of days, while the 5123 one took about two weeks.
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CHAPTER 4

CONCLUDING REMARKS

Universal approach to different problems with different geometries

We presented numerical simulations of accretion disks and extrasolar planets,

problems that have different geometries, using different softwares but still methodi-

cally using the common approach to both problems from the physical point of view.

Essentially, our model introduces the surface, in some cases flat, in some cases curved,

with controlled distribution of density and temperature, and other parameters. Such

surface then affects the rest of the computational domain, and without any ”by hand”

interventions in the rest of the domain (except for defining the equation of state) can

reproduce the evolution of physically very distinct astrophysical problems. The re-

sults are showing that this approach may illuminate many aspects of the analyzed

problems, like the geometries of the flows with different parameters, and can certainly

provide numerical constraints on physical quantities, such as mass–loss rate, density,

velocity, and the temperature of the outflows, as well as the detailed geometry of

the outflow and others. In the first part, we clarified the mechanism that drives the

wind in GRO J1655-40, while in the second part we created firm grounds for studying

many newly discovered extrasolar planets and their atmospheres by the recent Kepler

mission.

Our approach to the apparently different problems throws light on the method of

numerical simulation itself. It shows how two problems, which from the experimental

and even theoretical point of view, may have very little in common, may fall into

two separate categories or fields of research, when analyzed via numerical simulation

or a ”numerical experiment”, and may be ”unified” into a single problem or setup.

More precisely, this could be described with the same numerical model, where only

the parameters, geometry, boundary, and initial conditions are changed. This clearly
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illustrates the nature and uniqueness of this numerical approach as being distinct from

experimental and theoretical, though somehow unifying them. It also emphasizes that

this very way of analyzing the problem, in certain circumstances, may be capable

of providing deeper insight into problems which would, without it, be considered

mutually non–related.
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