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ABSTRACT 

X-Ray Diffraction Study of Dysprosium (Dy) 
Single Crystal Samples in a 
Diamond Anvil Cell (DAC) 

 
by 

Ognjen Grubor-Urošević 

Dr. Oliver Tschauner, Examination Committee Co-Chair 
Assistant Research Professor 

Dr. Lon Spight, Examination Committee Co-Chair 
Assistant Professor 

University of Nevada, Las Vegas 
 

X-ray diffraction is the basis of crystallography, the study of the structure of 

crystals.  It uses X-rays of a wavelength on the order of the size of atoms, so it 

can resolve the positions of individual atoms in a crystal.  Illuminating the crystal 

with a well-collimated X-ray beam produces X-rays diffracted in a certain 

direction for a specific crystal orientation.  By analyzing the relative phase of the 

incoming and outgoing scattered X-rays, the unique arrangements of atoms can 

be determined and the structure of the crystal can be solved.   

There is a long standing controversy regarding the crystal structures and 

densities of high pressure (HP) phases of rear-earth metals.  Over the last couple 

of decades the dysprosium (Dy) structure has been obtained by polycrystalline 

diffraction from samples in the DACs (Diamond Anvil Cells).  Due to HP powder 

diffraction issues of deviatoric stress and pressure gradient, the structures found 

are controversial.  These experimental controversies have as a present 

consequence lack of accurate lanthanides phase diagram. 
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In the experimental work conducted for this thesis, dysprosium was studied 

using high pressure single crystal X-ray diffraction method.  Single crystals of Dy 

were flux grown.  The experiment was conducted at Advanced Photon Source 

(APS) synchrotron radiation beam line at Argonne National Lab (ANL).  The 

experimental results reported were for the twinned crystal symmetry indexed in 

0.7-3.8 GPa pressure region. 
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CHAPTER 1 

LANTHANIDES 

Electronic and Crystallographic Structure 

The lanthanides, lanthanum (La) to lutetium (Lu), are members of transition 

group IIIA within the Periodic Table.  The ground-state electronic configurations 

for scandium (Sc) - argon core + 3d14s1, yttrium (Y) - krypton core + 4d15s2, 

lanthanum (La) - xenon core + 5d16s2, and actinium (Ac) - radon core + 6d17s2, 

indicate that the elements usually listed in the IIIA group are the first members of 

the four d-type transition series.  After scandium and yttrium, electrons are 

added, respectively, to the 3d and 4d levels, resulting in the elements of the first 

transition metals series, from scandium to zinc, as well as the second transition 

metals series, from yttrium to cadmium.  However, after lanthanum the energy of 

the 4f level falls below that of the 5d level, and the subsequent electrons are 

added to the inner, shielded 4f orbitals.  There are seven such orbitals, each with 

a capacity of two electrons; a total of fourteen elements of this inner or f-type 

transition series may result before the 5d orbitals can fill again regularly.  

Although it is implied that the 4f orbitals are occupied regularly, observation 

showed that this is not exactly right [1].  Instead, there is a distinct tendency for 

the f orbitals to be occupied in preference of maintaining 4fn5d1 arrangement.  

This tendency is due to increased electronic stability associated with complete 

single, 4f7 or complete double, 4f14 occupancy of any set of orbitals.  Therefore, 

the 4f7 and 4f14 arrangements are achieved per Hund’s rules, in the series with 

europium and ytterbium.  Whether the fundamental configuration is 4fn5d16s2 or
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4fn+16s2 is of no chemical significance, since the energy differences between the 

4f and 5d bands are too small to alter many chemical properties, ranging from 

0.01 eV for lanthanum to 0.32 eV for lutetium [1, 2, 3].   

The size of atoms and ions are determined both by nuclear charge and by the 

number and degree of occupancy of electronic shells.  Ergo, among either the 

metals Sc, Y, and La or the ions Sc3+, Y3+, and La3+ there is a steady increase in 

size along with an increase in atomic number, reflecting the fact that addition of 

electrons to higher and higher energy levels overcomes increasing contractive 

effects that result from the enhanced attraction produced by the larger nuclear 

charge.  But in the series La-Lu, or La3+-Lu3+, a general decrease in size with an 

increase in atomic number results because addition of electrons to the shielded 

4f orbitals cannot compensate for the effect of increased nuclear charge.  A 

similar but more limited trend characterizes the non-trivalent cations, like Sm2+, 

Eu2+, Tm2+, Yb2+, Ce4+, Pr4+, and Tb4+ [4].  These decreases are known as the 

Lanthanide Contraction. 

At room temperature and pressure, elements from gadolinium to lutetium 

(with exception of ytterbium) assume the hexagonal close-packed structure with 

AB, AB, etc. stacking sequence [1].  Lanthanum, praseodymium, neodymium, 

and promethium assume the double hexagonal structure with the stacking 

sequence ABAC, ABAC, etc [1].  Cerium and ytterbium have face-centered cubic 

structure with ABC, ABC, etc. stacking sequence [1].  The structure of samarium 

is rhombohedral with stacking sequence ABABCBCAC, ABABCBCAC, etc [1].  

Europium has the body-centered cubic structure [1].  This structure is more open 
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than the other four close-packed structures mentioned, so the europium structure 

is not related to the other lanthanides close-packed structures. 

Except for cerium, europium, and ytterbium, the regular rare earths 

(lanthanides and yttrium) show a common sequence of structural transitions with 

increasing pressure at room temperature: hexagonal close-packed (hcp) -> Sm-

type -> double-hexagonal close-packed (dhcp) -> face-centered cubic (fcc) -> 

distorted fcc (d-fcc) [4].  The first four phases are all close-packed and represent 

stacking variants of hexagonal layers such as the ABC, ABC, etc. versus AB, AB, 

etc. order in fcc and hcp, respectively.  There has been considerable discussion 

about the last phase [1, 3, 5, 6].  All or the later part of this general phase 

sequence is observed under pressure in each of the regular rare earths.  The 

valence electrons in these metals may be viewed as being compressed either by 

the applied pressure or by reducing the atomic number at fixed pressure.  So, the 

lighter members of the series enter into the generalized sequence at 

successively later points for ambient pressure room temperature phases: hcp 

(gadolinium), Sm-type (samarium), dhcp (promethium, neodymium, 

praseodymium, and cerium).  The close-packed and relatively high symmetry 

structures of the regular rare earth sequence are contrasted to the low symmetry 

and open-packed structures seen at pressures just above the volume-collapse 

transition in praseodymium (orthorhombic alpha-Uranium structure, 9% collapse 

above 20 GPa) and gadolinium (body-centered monoclinic, 11% collapse above 

59 GPa).  Cerium also exhibits isostructural fcc -> fcc (same structure on both 

sides of the phase transition) volume-collapse (15% collapse above 0.9 GPa) [7]. 
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Many of the trivalent rare earth metals undergo a dramatic transformation in 

physical properties under compression, which is generally believed to arise from 

a change in the degree of 4f electron correlation [8].  The f electrons participate 

in the crystal bonding in the compressed, more weakly correlated regime, but not 

at larger volumes where correlation effects are more dominant.  Duthie and 

Pettifor showed that in the regime where correlation effects dominate, lanthanide 

structures are controlled by the electron occupancy of d level [9].  The terms 

itinerant and localized, respectively, are commonly used to describe the differing 

f electron behavior in these two regimes.   

Theoretically, it is hard to correctly predict the actual atomic arrangement a 

specific element adopts once it forms a solid.  To predict this in metals, as well as 

non-metals, the density functional theory (DFT) is used [5].  The problem of 

dealing with a system of N interacting electrons in an external potential V(r) is 

expressed by the 3N-dimensional Schrödinger equation for the wave-function Ψ 

(r1, r2,..., rN).  DFT treats this problem in terms of the electronic density 

distribution, n(r) and a universal functional of the density E [n(r)].  The problem of 

approximately solving the many electron Schrödinger equation is replaced by the 

problem of finding sufficiently accurate approximations to E [n(r)] and then 

solving appropriate single electron equations.  Although the DFT calculations are 

used in investigating the rare earth elements, it remains particularly challenging 

to predict correct structures of rare earths under compression [7].  As mentioned, 

some rare earths under compression undergo a large volume collapse at phase 

transition, when compared to normal crystalline phase transitions in metallic 
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systems.  These changes involve the nature of the f electrons and their 

transformation between localized non-bonding magnetic moments and strong 

metal bonds.  DFT is unable to treat the strong electron correlation that takes 

place during the change in behavior of the f electrons from localized to iterant. 

Almost all lanthanides have been studied for the last twenty years by means 

of high pressure X-ray diffraction [10].  But different experimenters have reported 

sharply different findings on transition pressures and phase identity [4].  This is 

due to the kinetics of the transitions among the various lanthanide phases.  Also, 

powder X-ray diffraction, which is used to identify different crystal structures 

under pressure, has limitations (the limitations of the powder diffractions are 

discussed in CHAPTER 2) that are the cause of substantial disagreement in 

reported transition densities [11].  Hence, presently, an accurate lanthanides 

phase diagram is not formulated. 

 

Equation of State (EOS) 

The thermodynamic state of a system is usually defined by three variables: 

absolute temperature T, pressure p, and specific volume V.  Only two of these 

variables are independent, since there is a functional relationship between T, p, 

and V: the equation of state (EOS).  An equation of state is one of the most 

important characteristics of a material [2].  

EOS data provides a link between macroscopic thermodynamic descriptions 

of the materials and microscopic quantum mechanical models [6].  A system with 

a fixed number of particles N confined to a volume V in thermal equilibrium 
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characterized by the temperature T has all static thermodynamic equilibrium 

properties incorporated in the partition function Z: 

 

( )
( )

( , , )
E n

kT

n

Z V T N e
−

=∑  

 

where E (n) is a particular energy of a corresponding quantum state described 

with set of quantum numbers n.  Once Z (V, T, N) is known, the free energy F (V, 

T, N) of a system can be obtained: 

 

( , , ) ln ( , , )F V T N kT Z V T N= −  

 

Formula (2) allows the possibility of calculating the thermodynamic variables and 

functions for the system where discrete energy levels are known.  For instance: 

 

the entropy: ,( )V N

F
S

T

∂
= −

∂
 

the pressure: ,( )T N

F
p

V

∂
= −

∂
 

the chemical potential: ,( )V T

F

N
µ

∂
=

∂
 

internal energy: E = F + TS  

enthalpy: H = F + TS + pV  

Gibbs energy: G = F + pV  

        

(1) 

(2) 

(3) 
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Since F (V, T, N) with V, T, and N thermodynamic variables offers a complete 

thermodynamic description of the system, it is considered the “thermodynamic 

potential” of the system.  Similarly, with respect to their different thermodynamic 

variables E (V, S, N), H (p, V, N), and G (p, T, N) are thermodynamic potentials, 

that also determine by their partial derivatives all the other thermodynamic 

variables.  Nevertheless, p (V, T, N) alone gives only an incomplete description 

of the system, since partial integration of pdV doesn’t determine the part involved 

in the integration for the entropy, SdT.  Similarly E (V, T, N) provides an 

incomplete characterization of the system, missing the term:
,T N

S

V

∂ 
 ∂ 

.  This term 

could only be determined if: 

 

, ,

( , , )
T N T N

E S
p V T N

V V

∂ ∂   
= − +   ∂ ∂   

 

 

would be known in addition. 

 This incomplete characterization of a thermodynamic system in general is 

considered an “equation of state”.  Historically [12], the distinction was made 

between thermal (TEOS) and caloric (CEOS) equations of state referring to p (V, 

T, N) and E (V, T, N) respectively.  Recently, [13, 14, 15] the term EOS is 

restricted in its meaning to the p-V-T relation.   

(4) 
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CHAPTER 2 

EXPERIMENTAL SET-UP AND PROCEDURES 

X-Ray Diffraction 

The objective of an X-ray diffraction experiment is to determine the structure 

of a material and for a crystalline material this means determining the unit cell 

parameters, the unit cell symmetry, and the precise location of all of the atoms or 

molecules in the unit cell.  In broad terms, the size and symmetry of the unit cell 

are found by determining the position of the Bragg peaks, while the nature of the 

basis and the position of the atoms or molecules within the cell determine the 

Bragg peak intensities.  Depending on the circumstances, the crystalline material 

could either be in the form of a single crystal or a powder.     

Single crystal X-ray diffraction allows solving the structures with more 

confidence than powder X-ray diffraction because single crystal X-ray data 

represent the three-dimensional reciprocal space, as opposed to powder 

diffraction, in which the three-dimensional reciprocal space is mapped in one 

dimension.  Thus, there is a strict overlap of Bragg reflections at the same 2θ 

angle, as well as an effective overlap of reflection separation by a narrow 2θ 

increment, which is experimentally not resolved.  Also, powder diffraction is 

based on a sample that has a fully random distribution of crystallites of equal 

size.  If the poly crystalline aggregate is strained, there is a deviation from 

random distribution (texture), which affects the intensity of Bragg peaks and more 

importantly, the corresponding peak shape; this in turn causes an incorrect 

solution to crystal symmetry and unit cell constants.  The issue of texture 
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occurring in the poly crystalline aggregate is not present in the single crystal 

sample, due to a single specimen used.  Moreover, the powder diffraction 

limitations discussed play a great role in the equation of state (EOS) 

controversies for the Lanthanides, as the calculations of EOS for all of the 

elements of the Lanthanide family is done from volumes (densities) obtained 

from unit cell parameters acquired by powder diffraction [2]. 

 

Experimental Concept 

In this work crystal structure analysis is based on an X-ray diffraction 

experiment.  The single crystal samples were grown either by flux method or by 

laser annealing.  The sample is compressed in a diamond anvil cell (DAC) and 

placed in an X-ray beam to generate a diffraction pattern, which is recorded by 

an area detector.  The steps of single crystal experimental procedure done for 

this thesis are given in the flow diagram in Figure 1, next page.  The details of the 

experimental procedure steps are discussed in the following sections of this 

chapter.  
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No. 

Data analysis (CHAPTER 3). 

No. 

Single crystal X-ray diffraction 
pattern. 

DAC loading. 

Single crystal growth. Sample preparation. 

X-ray source with 
experimental set up. 

Data acquisition 
finalized? 

DAC pressure 
increase. 

Load new 
sample? 

Yes. 

Yes. 

Figure 1.  Flow diagram of the single crystal X-ray diffraction experimental 
procedure implemented in this thesis. 
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Diamond Anvil Cell 

In the thesis work, diamond anvil cells were used to pressurize 

praseodymium (Pr) and dysprosium (Dy) samples.  The idea of high-pressure 

devices used in X-ray crystallography is rather simple and was introduced by 

Jamieson et al. (1959) from the University of Chicago for high-pressure (HP) X-

ray powder diffraction studies, and independently by Weir et al. (1959) at the 

National Bureau of Standards (USA) for infrared absorption measurement.  The 

principle was the compression of a sample between two diamond anvils.  

Pressure is defined as the force applied per given area.  Thus, to increase 

pressure, the force being applied should be increased, or the area on which force 

is applied should be decreased.  Therefore in a DAC, by exerting a large amount 

of force on a small diamond anvil area, the net pressure equivalent the pressures 

at Earth’s center [2], might be obtained.   

Diamond is used in DAC, because it is the hardest material with the highest 

plasticity limit.  Therefore the diamond anvils can sustain extreme pressures of 

up to 350 - 450 GPa [2].  Diamond has the important property of being 

transparent to most of the spectrum of electromagnetic radiation, including γ-ray, 

X-ray, part of ultraviolet (230+ nm), visible, and most of the infrared region.  

Because of diamond transparency, the sample may be examined in situ (inside 

DAC), at elevated pressure using various techniques including optical 

microscopy, Raman, Infrared, Brillouin spectroscopy, and X-ray diffraction.  

There are two types of diamonds used in DACs: type I and II.  In this experiment 

only type I diamonds were used.  Type I diamonds have an inclusion of Nitrogen 
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impurities that are trapped in a crystal during the growth giving these type of 

diamonds an observable yellow hue.  The anvils used in DACs are diamonds of 

different cuts: brilliant, regular, Boehler – Almax, etc., ranging in mass from 0.2 to 

0.5 carats, where 1 carat = 200 milligrams [16].  The anvils tips are removed to 

allow for the culets of certain diameters, usually from 0.1 mm to 1 mm. 

As previously noted, only powder samples were suitable for use in DACs at 

first, because the single crystal samples could be destroyed between diamonds.  

A revolution in high-pressure DAC use happened due to introduction of a metal 

gasket between diamond anvils (Van Valkenburg, 1965).  Some of the suitable 

materials for gaskets are: Inconel X750, tempered stainless steel, Rhenium, etc.  

To prepare the gasket, a metal foil is placed between the flat surfaces of the 

anvils and the opposite anvils are tightened to obtain a footprint of the needed 

thickness on the foil.  A hole, drilled at the center of the indentation made by the 

anvil face, forms a high-pressure chamber for a sample, Figure 2. 

 

           

 

 

 

 

 

  

Diamond 
anvil. 

Medium. 

Single crystal sample. 

Compressed 
gasket. 

Figure 2.  Metal gasket compressed between anvils with a sample 
in the high-pressure chamber. 
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In a DAC, the gasket is set on a flat top (culet) of the lower diamond in the 

same orientation it had when indentation was made.  The hole is filled with a 

hydrostatic medium (methanol-ethanol, neon, etc).  The single crystal is placed 

on the upper anvil.  By placing the upper anvil on the gasket the single crystal is 

placed in a hole and the hole is sealed.  Thus the hole filled with the medium 

forms a small, high-pressure chamber.  The opposing anvils, pushed by a force 

towards each other, deform the gasket, thereby reducing the volume of the hole 

and generating pressure inside the chamber.  The gasket also serves to contain 

the pressure medium and being extruded around the diamonds, acts as a 

supporting ring preventing failure of the anvils, due to concentration of stresses 

at the edges of the anvil culets. 

There are several constructions of the DACs, which differ by mechanisms for 

generating the load.  Regardless of a DAC type, the load must be applied 

gradually and uniformly.  For the proper transfer of the load from anvils to a 

sample, the diamond alignment plays the main role.  The diamond anvils must 

stay coaxial and parallel during loading to avoid either complete destruction of 

the gasket or cracking of the anvils. 

In this study, the so called "Four Pin" DAC was used because it provided an 

optical aperture sufficiently large for single crystal X-ray diffraction experiments.  

In some cases a couple of different cell types were also used: long and short 

piston and Merrill and Bassett [15].  Experiments done with these cells are not a 

part of the thesis.  The Four Pin cell was designed by Prof. Oliver Tschauner and 
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machining of the cell body was done at the UNLV Physics Department machine 

shop. 

The schematic and operating principle of the Four Pin cell is given in Figure 3, 

page 15.  The body is made from Vascomax 300, a tough, precipitation-hardened 

steel.  This cell features a central conical aperture of 70°, which is reduced by the 

aperture of the gasket hole and the thickness of the diamond anvils.  For 

standard design anvils the angular access to the sample is 30° and for Boehler – 

Almax anvils it is 64°.  The cell allows for tilt and translation adjustment of the 

anvils.  Upon loading the two parts, the top and bottom of the cell are guided by 

hard steel posts.  The top and bottom part of the cell contain the backing plates.  

The top plate has tilt adjustment via axial seat holder, while the bottom plate has 

translational adjustment via set screws, used in aligning anvils.  The plates 

bottom opening or optical aperture, provides optical, as well as X-rays access to 

a sample inside the gasket chamber.  The anvils are seated and glued by an 

epoxy resin to the backing plates.  The mechanical load in the cell is generated 

by a set of drive screws, Allen cap type. 
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Figure 3. Top: The “Four Pin” Cell drawing, without the diamond anvils.  
Courtesy of Jim Norton, UNLV physics department machine shop.  Bottom: 
vertical cross-section of the anvils, gasket, and sample chamber in the cell. 
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For the experiments, the Boehler – Almax (B-A) anvils with 300+ µm diameter 

culets and 3 mm diameter of a surfaces parallel to anvils, or tables are used.  

These dimensions correspond to 0.2 carat standard cut of the anvil.  Thus, load 

on the backing plate is multiplied by a factor of ten [16].  The backing plate 

pressures, generated by the mechanical load, ranged up to 2 GPa.  The anvils 

are mounted and inserted in the cone of the seat on the carbide backing plates.  

The schematics of backing plates are shown in Figure 4.   

      

     

 

 

                                 

 
The anvils are adjusted in the seats by a diamond jig, Figure 5.  The jig allows for 

minimizing tilt of B-A anvils mounted on the backing plates.  The adjusted anvils 

are fixed by Stycast 300 epoxy resin to the backing plate.  

                                          

            

 

 

 

 

 

 

                                                                                                              
Figure 4.  Left: bottom backing plate.  Right: top backing plate. Drawings 
courtesy of Jim Norton. 

Figure 5. Disassembled diamond jig. 
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Before the sample is loaded, the Four Pin cell, shown in Figure 6, is aligned.  To 

align the DAC, touching culets should have coaxial and parallel overlap. 

                                                                 

      

 

 

 

 

 

 

 

 

       

 

 

 

 

 

 

 

 

 Figure 6.   Top picture - Front left: Four pin DAC, bottom part with the Re 
gasket covering the bottom culet.  Front right: Four pin DAC, top part with 
top culet.  Rear left and right: Load screws with Belleville washers.  Bottom 
picture – Assembled DAC.                   
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Both culets were cleaned with Kim wipes dipped in ethanol.  The bottom part 

of the cell is placed on a microscope stage with transmitted lighting.  The cell’s 

top part, under the microscope objective, was slid down the guide pins, until the 

culets touched.  One of the culets was covered by a thin film of grease, thus 

protecting the anvils from direct contact prior to alignment.  Once the culets 

approached a point of contact, any signs of misalignment are checked under the 

microscope.  The misalignment could be either lateral (culets not coaxial) 

indicated by asymmetric overlap edge to edge or tilt (culets not parallel) indicated 

by Newtonian fringes in the thin gap between the anvils.  Set screws, which 

move the bottom backing plate, are used to rectify lateral misalignment.  Tilt is 

corrected by four vertical screws, which retain the axial seat holder that houses 

top backing plate.   

 

Gasket Preparation 

 First the gasket, 6 by 6 mm² square and 300 µm in thickness, is cut from the 

sheet of Re.  Re gasket is a material of high enough strength allowing for 

sufficient sample chamber height and exhibiting enough elastic yields under load 

to allow for elastic bending of the anvils.  The gasket is cleaned with ethanol.  It is 

put over the bottom anvil, leveled with and touching the culet.  The gasket is kept 

in place with dental wax.  A small notch in the gasket is aligned with a similar 

mark on the body of the cell bottom.  This is done in order to retain initial position 

of the gasket whenever the gasket is placed on the anvils.  The cell is closed, 

with the culets separated by the gasket.  Upon closing, the load screws with the 
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washers are tightened by hand.  The screws were turned once with hex keys 

about 
1

16
th of a turn.  This applied a pressure of about 

1

5
th of a GPa to a 

gasket1.  Applying this pressure causes a shallow indentation to the gasket.  Next 

the cell is opened and using the tip of a needle, ruby chips are put inside the 

indentation.  The cell was closed again and the screws are again tightened by 

hand.  The screws were turned with hex keys and pressure in the cell is ramped 

up until the pressure reached ~12+ GPa, which translated to the gasket pre-

indent of ~70+ µm.  After every half a turn of the screws, the pressure inside the 

cell was checked by the ruby fluorescence (ruby pressure scale is explained in 

the next section).  Afterward, the gasket was removed from the cell and the 

thickness of the indent was measured with a micrometer.  The set of pictures in 

Figure 7, page 20 shows increasing gasket indentation, as the pressure was 

ramped up in the cell.   

 The gasket was put in an ethanol bath and cleaned ultrasonically for a few 

minutes.  A process of shaping the object using electrical discharges was used to 

drill through the center of the gasket indent to make a pressure (sample) 

chamber.  An electric discharge machine (EDM) from Hylozoic Products was 

used.  Gasket holes of 150 – 170 µm in diameters were drilled. 

 

   

 

 

                                                 
1 The connection of a number of turns to a pressure generated in GPa is found by trial and error. 



 20 
 

   

 

 

 

 

 

 

 

 

                         

 

 

 

 

                         

                                                                         

Ruby Pressure Scale 

The ruby gauge is commonly used for pressure determination.  Barnett et al. 

(1973) and Piermarini et al. (1975) introduced the ruby gauge, which was 

calibrated against the Decker equation of state for NaCl up to 19.5 GPa.  Barnett 

and Piermarini found that the wavelength of the ruby fluorescence shifted linearly 

from the normal atmospheric pressure.  The shift in pressure is almost linear with 

dλ/dP = 0.365(9) nm GPa-1 [17].  In the ruby fluorescence method, pressure is 

Ruby 
chips at 
the 
bottom of 
the 
gasket 
indent. 

Top of the 
gasket 
indent. 

Figure 7.  Images from left to right clockwise: The first image is the gasket 
indentation at ~2+ GPa, the second image is the gasket indentation at ~5+ GPa, 
and the third image is the gasket indentation at ~12+ GPa.  The indentations are 
seen through the top diamond anvil.  
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measured through the wavelength position of a ruby fluorescence emission of R1 

and R2 lines, excited by absorption of laser lines of suitable wavelength.  The R1 

and R2 ruby fluorescence emission lines have respective wavelengths of 694.25 

µm and 692.74 µm at ambient pressure and temperature [3].  These emissions 

are very narrow, with a high fluorescence quantum yield and maintaining these 

characteristics with increasing pressure.  The advantage of using the ruby 

fluorescence technique to determine pressures is that the ruby crystal used for 

these measurements is up to ~20 microns in size and thus occupies a very small 

proportion of the limited pressure chamber volume in a DAC and contributes little 

diffracted intensity.  The set up used to measure pressure in DAC using the ruby 

crystal fluorescence, is shown below in Figure 8, below. 

                   

  

 

 

 

 

 

 

 

 

 

 

Video camera. Translational 
stage. 

Monochromator. 

Laser. 

Figure 8.  Instrumental set up for the measurement of a pressure in DAC by 
ruby fluorescence.  
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The excitation source is a 404 nm diode laser.  Excitation light is brought to the 

sample by a series of optical fibers, beam splitters and mirrors.  The sample in a 

DAC is located with white-light source and a Panasonic video camera display.  

The fine alignment and focusing on the sample is done remotely with x, y, and z 

translational stages.  Ruby emission is collected and filtered using an optical fiber 

connected to a 0.75 m Acton 750i single monochromator with a 1200 lines per 

mm grating.  The emission is recorded by a Princeton Instruments 5 stage 

thermoelectrically cooled CCD camera with 512 x 2048 pixels² resolution.  The 

fluorescence wavelength shift is analyzed by WinSpec software. 

 

Sample Preparation and DAC Loading 

Commercially available Pr and Dy powder samples, 99.9% purity each, from 

Alpha Aesar and Sigma – Aldrich are initially used.  The first step in the sample 

preparation was to try to grow a single crystal(s) sample from the crystalline 

powder, for each element.  The crystal growth for Pr was done in situ, i.e. in the 

DAC, while under high pressure.  The Dy crystal growth is accomplished through 

a flux growth of two solids inside the quartz tube at ambient pressure.  The 

chemical analysis of the powder samples is done with an electron microprobe 

analyzer (EMPA) or electron microprobe (EMP).  An EMPA is an electron micro 

beam instrument used for the non-destructive chemical analysis of solid samples 

down to 1 µm.  It operates under the principle that if a solid material is 

bombarded by an accelerated and focused electron beam, the incident electron 

beam has sufficient energy to cause emission of the X-rays characteristic of the 
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element analyzed.  X-rays generated by electron interactions do not lead to 

volume loss of the sample, so it is possible to re-analyze the same materials 

more than once.  The sample chemical composition is tested using JOEL JXA 

Superprobe 8900 probe at the UNLV Electron Microanalysis and Imaging Lab 

(EMIL) [18].  The powder sample is flattened into a ~30 µm rectangular section.  

The sample is polished to avoid the interference of surface imperfections with 

electron-sample interaction.  To avoid electrical charging of the sample under the 

direct electron beam, the sample is coated with a thin film of carbon.  The 

operating conditions for EMPA were: 20 keV accelerating voltage, a 10 nA beam 

current, and a 5 µm beam.  The sample is probed by a beam and X-rays are 

generated.  A single wavelength X-rays are selected using an analytical crystal 

with specific lattice spacing.  These X-rays are reflected from a crystal into a 

spectrometer where characteristic X-ray peak intensity is counted for 30 

seconds.  This sample characteristic X-ray peak is compared with the standard 

characteristic X-ray peak profiles.  The standards used were synthetic rare earth 

phosphates, like DyPO4, CePO4, PrPO4, etc.  Comparing absorption corrected 

intensity profiles of X-ray peaks of the phosphates and the sample, the atomic 

weight percentage of the standard in the sample can be found. 

 

Pr Crystal Growth 

 Cunningham et al. [19] showed that the pressurized Pr powder sample in 

DAC transforming to alpha-uranium (α-U) phase exhibited multi crystal growth.  

Also, Baer et al. [20] reported a Pr phase diagram that indicated that a 
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polycrystalline sample, after undergoing α-U phase transition at 23 GPa and high 

temperature (above ⅓ of the Pr melting temperature), showed a tendency to 

anneal along several preferred orientations.  Therefore, the Pr crystal growth is 

attempted in situ from the Pr powder sample at the pressure and temperature of 

the α-U phase.  The potassium bromide (KBr) sample of 99.9% purity from Alpha 

Aesar was used as a pressure medium.  A KBr crystal is picked with the needle 

tip and before it is loaded in the pressure chamber, the crystal size is checked 

under the microscope.  If the crystal is slightly longer than the diameter of the 

sample chamber it is put over the sample chamber.  Then, the cell is closed and 

the top anvil plastically deforms and packs the crystal into the sample chamber.  

Afterwards, the cell is opened and the sample chamber is checked under the 

microscope. If the chamber is filled with KBr throughout, a shallow indent with the 

needle tip is bored in KBr filling.  A Pr crystallite, anywhere from 20+ - 50+ µm in 

length is placed in the indent.  An annealed ruby sphere [14] of 10 - 20 µm in 

diameter is placed few microns outside the indent in the KBr filling.  A thin plate 

of KBr of ~15 µm thickness, prepared in a separate DAC, is placed on top of the 

KBr filling.  Upon closing the cell, the KBr is deformed plastically and uniformly 

encapsulates both the Pr sample and the ruby.  The pressure is gradually 

increased and checked with ruby fluorescence.  The sample is pressurized just 

over the reported pressure value for a phase transition.  The cell is checked 

again under the microscope, Figure 9, next page. 
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Next, the wax stabilizing the gasket is removed with the needle and the 

sample is annealed at α-U phase pressure in DAC.  To generate the high 

temperature needed to grow Pr crystals in situ, direct CO2 laser heating is used.  

In order to heat the Pr sample efficiently with a minimal temperature gradient, the 

laser beam is defocused.  The sample, embedded in a non-transmitting heat 

pressure medium allowed for insulation from heat sinks like DAC anvils and 

gasket.  A few different heating temperatures and rates of cooling are tried for 

annealing samples in the DACs.  In one heating experiment the sample was 

heated until it radiated ~2300 K for a couple of minutes, then it was cooled down 

at a rate of ~100 K for 30 seconds until the sample reached a temperature of 

1300 K.  Finally, the laser is gradually turned off and the sample is cooled down 

at the same rate.  In another experiment the sample was heated and kept at 

~600 K for an hour, after which it was cooled down at a rate of ~100 K per 

Figure 9.  Pr sample in KBr medium at 4 GPa.  This is a view under 
microscope through the diamond anvil.  Conical light convergence is due 
to lens effect of culet strain. 

Pr 
sample

Ruby
. 

Medium, 
KBr. 
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minute.  In the final experiment, the sample was heated to ~2500 K for a minute 

and quenched with a rate of cooling of ~100 K per minute.  Once the sample 

annealing is done, integrity of the sample chamber is checked under the 

microscope and the sample pressure is measured.  

                  

Dy Crystal Growth 

When melting solids together, complete mixing of insoluble phases occurs 

and recrystallization takes place in the subsequent cooling of the melt.  

Crystallization of melts is a valuable method for growing single crystals since, in 

the presence of the liquid phase and in the absence of too many crystal nuclei, 

large crystals grow readily.  In order to employ crystallization from melt, 

knowledge of the relevant eutectic phase diagram is necessary, since the phase 

diagram provides a diagrammatic representation of the conditions of temperature 

and composition of crystal growth.  Dy melts at 1412° Celsius [1], but crystals 

can be grown in eutectic systems at much lower temperatures.  The melting point 

of a mixture of two or more solids depends on the relative proportions of its 

phases.  An eutectic is a mixture of two or more immiscible or only partially 

miscible phases at a composition that has the lowest melting point and where the 

phases simultaneously crystallize at this temperature.     

Flux method crystal growth in a simple binary eutectic system A-B is 

consisting of mixing two immiscible solids, heating them up and cooling with the 

idea of growing crystals of solid A in a flux of the solid B.  The effect of adding a 

certain amount of solid B used as a flux is to drastically reduce the melting 
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temperature of solid A and to cause melting to occur over a range of 

temperatures.  The melting of the A-B mixture is going to happen from the 

eutectic temperature and is not complete until a temperature is reached where A-

B mixture is partially melted.  Hence, over the range of these temperatures, the 

partially melted mixture contains crystals of A and a liquid which composition 

changes with temperature.  In order to obtain crystals of A, the mixture may be 

cooled slowly through the temperature range.  While cooling to an ambient 

temperature, the remaining liquid crystallizes to give a fine grained eutectic 

structure containing small crystals of A and B.  Embedded in the eutectic 

structure are the larger crystals of A that grew as the primary phase at high 

temperature.    

The flux growth of Dy crystals is done in potassium chloride (KCl) flux.  The 

770° C melting point of KCl [1] allows for a sufficiently lower eutectic point of the 

binary system, so the Dy crystals flux growth could be done in a commercial 

grade furnace.  KCl powder of 99.9% purity is purchased from Alfa Aesar.  

Because the binary eutectic phase diagram for A-B system, where A = Dy and B 

= neutral salt, could not be found in the literature, the flux growth is done for a 

few different mixes of Dy and KCl.  Dy and KCl were mixed with a pestle and 

mortar.  The total weight of the mix was kept at 100 mg, while varying the 

contribution of Dy by weight in 0.50, 0.33, 0.25, 0.20, and 0.17 parts.  The binary 

mix is placed in the evacuated and argon-filled quartz tubes from Technical 

Glass Co.  The tubes are sealed with a propane/oxygen torch.  One such tube is 

shown in Figure 10, next page. 
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The tubes are heated for 25 hours at 700° C in a commercially available 

muffle furnace.  Figure 11, below, shows the KCl flux grown Dy crystals.  

                                         

                                               

 

 

 

 

 

 

 

                       

Si wool. 

KCl 
crystals. 

Residue of a 
binary mix. 

Dy flux 
growth. 

Figure 10.  Sealed quartz tube after the flux Dy crystals growth.  The short 
piece of silicon wool is put inside the tubes to prevent the binary mix from 
migrating too far along the tube walls. 

Dy crystals. KCl flux. 

Figure 11.  Bottom of a quartz tube with 0.33 and 0.66 mix of Dy and KCl 
by weight, upon the flux growth. 
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Using X-ray diffraction, the quality of the crystals grown from all the different 

batches of the Dy-KCl mix was checked.  The best quality crystals grown, which 

were used in single crystal diffraction experiments, were from the mix where the 

mass ratio of the binary system of Dy and KCl was ~50% KCl and ~50% Dy 

powder by weight. 

Upon the Dy crystal growth, the quartz tubes are opened using a Tungsten-

Carbide scribe.  The KCl flux with Dy crystals is, carefully, scraped with a sharp, 

plastic toothpick off of the quartz tube walls and bottom into a clean, clear, plastic 

container.  Recovered samples are kept on glass slides in a desiccator. Each 

crystal is covered with a droplet of Dow-Corning 200 Silicone fluid, shown in 

Figure 12, below. 

 

          

 

            

 

 

 

 

 

 

 

 

Figure 12.  Dy crystal on a glass slide, enveloped in Dow-Corning 
200 Silicone fluid.  The crystal is ~40 µm long and ~1 µm thick.   
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X-Ray Diffraction Experimental Details 

Limited angular access to the small size sample in DAC yields limited 

structural data obtained by X-ray diffraction.  But in the case of a synchrotron 

beam, high energy and high brilliance allow for the use of X-ray diffraction to 

collect structural data from the samples in DAC.  Therefore, the high pressure X-

ray diffraction measurements for both Dy and Pr samples in a DAC are done at a 

synchrotron radiation source.  In a synchrotron radiation source (storage ring) 

electrons or positrons are injected in a very large evacuated loop and kept 

circulating at relativistic velocities by energy delivered from radio-frequency 

sources.  In the storage ring, synchrotron radiation is produced either in the 

bending magnets needed to keep the electrons in a closed orbit, or in insertion 

devices such as wigglers or undulators placed in the straight sections of the 

storage ring.  In the insertion devices an alternating magnetic field forces the 

electrons to follow oscillating paths.  In a wiggler the amplitude of oscillation is 

large, and the radiations from different wiggles add incoherently.  In an undulator 

the small-amplitude oscillations from the passage of a single electron produce a 

coherent addition of the radiation from each oscillation.  The required wavelength 

of the radiation is usually selected by a crystal monochromator.  The 

monochromatization here is usually the diffraction by a crystallographic plane 

with the highest Bragg reflectivity.  The monochromated beam is focused using 

X-ray mirrors.  The mirror surface is usually coated with a heavy material like 

gold in order to obtain a large electron density.  This produces a large critical 

angle for total reflection, thereby reducing the required length of the mirror.  By 
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curving a mirror, the focusing optical element for the X-rays is provided.  The 

radiation from the ring is delivered into beam line hutches that are tangent to the 

storage ring.  The X-ray diffraction data at the synchrotron source is recorded 

with an area detector.  The types of area detector used in this experiment were a 

charge coupled device (CCD) and an image plate (IP).  A CCD detector, similar 

to those found in video cameras, is activated by the X-rays falling on a thin layer 

of material which then fluoresces in the visible region.  The IP detector surface 

layer is made of X-ray storage phosphor of barium-europium halides.  A 

phosphor is photo-stimulated by X-rays and the photo-electrons form color 

centers where the information relating to the incident X-ray quanta is stored.  

Exposing the plate to a laser beam causes the color centers to reemit in the 

visible region.      

Single crystal diffraction data was collected at the 16-ID-B (insertion device 

beam line) of the High Pressure Collaborative Access team (HP-CAT) at the 

Advanced Photon Source (APS) of Argonne National Laboratory (ANL)2.  This is 

an undulator beam line.  The X-rays are delivered to ID-B hutch from ID-A hutch.   

High heat-load slits, double crystal monochromator (water cooled diamond 111), 

and the branching monochromator (Si 220) from ID-A hutch delivered a 

monochromatic X-ray beam with 30 keV energy into ID-B hutch [21].  The beam 

in the ID-B hutch is focused with K-B mirrors by total reflection in a focal spot, 

few microns in size.  A 30 µm diameter pinhole is used to suppress parasitic 

scattering from the upstream slits.  Diffraction patterns are collected with either 

                                                 
2 An experiment was performed at the Cornell High Energy Synchrotron Source-CHESS.  The 
beam line is a bending magnet one, with an unfocused beam monochromated by a Si 220 crystal. 
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MAR165 (CCD) or MAR345 (IP) area detectors.  The beam line is controlled by a 

distributed control system set of software tools and applications called EPICS.  

Data is acquired on Windows XP and Linux operating systems workstations, 

running display and control software written in Java, IDL, and Motif graphical 

user interface.  16-ID-B hutch is shown in Figure 13, below. 
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Figure 13.  Experimental hutch for 16-ID-B at APS.  Picture courtesy of 
Stanislav Sinogeikin from APS.  The hutch coordinate system is labeled in the 
lower right corner of a figure.  
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The hutch experimental set-up is conceptually based on the principle of four-

circle single-crystal diffractometer geometry.  The diffractometer has three 

computer controlled circles (χ, ω, φ), which rotation axes intersect with one 

another to an accuracy of about 10 µm.  The crystal is centered at this point.  

With the use of micro stepping motors, the crystal is then oriented to the incident 

X-ray beam so that the Bragg condition is met and the reflection occurs in the 

horizontal plane, in which the fourth circle (2θ) brings the counter to the 

appropriate position for measuring the reflection.  In 16-ID-B hutch two 

diffractometer “circles” are available, as virtual angular coordinates: χ and 2θ 

(plane of a detector), while ω (DAC) rotation stage providing third angular 

dimension.  Using a two-dimensional position sensitive device, like an area 

detector, allows for the recording of the diffraction information on an array of 

peak positions simultaneously, instead of just a single point at a time, as with the 

diffractometer.  As in the case of the diffractometer, the sample in DAC is 

centered in the X-ray beam prior to data collection.   

To obtain the diffraction geometry the diffraction pattern of a standard is 

taken.  The standard pattern provides the sample to detector distance, detector 

inclination angle to the beam, and the coordinates of the X-ray beam center.  The 

procedure of obtaining diffraction geometry from a standard pattern is explained 

in CHAPTER 3.  The standard was either Cerium dioxide (CeO2) or Silicon (Si) 

powder.  The standard powder used is one exhibiting homogeneous crystallite 

size and absence of any strains, as per NIST (National Institute of Science and 

Technology, USA) specifications.  The powder is packed in a retainer sample 
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chamber of ~200 µm in diameter provided by the beam line.  The initial set of 

Cartesian coordinates of a standard are needed before the standard is centered 

in a beam.  The hutch axes are defined in an orthogonal lab system, with positive 

x-axis pointing downstream from the beam, positive y-axis at a right angle to x-

axis in horizontal plane, clockwise as viewed from above, and positive z-axis 

upwards.  To obtain an initial set of orthogonal coordinates “off-axes” system is 

used.  The reference position of the beam line and the “off-axes” system are 

identical, as they are set in relation to the same point, namely the center of the 

tungsten wire crosshair.  The “off-axes” system provided an optical centering of a 

standard, using a camera with a monitor display with x, y, and z translational 

stages driven by micro stepper motors.  Upon obtaining the initial coordinates the 

retainer with standard is mounted on the omega stage in the hutch.  The stage 

with a retainer is driven by stepper motors to the initial coordinates, stepper 

motor stage in Figure 13, page 32.  A diode is used as an X-ray counter, by 

recording X-ray transmission through the standard, while the retainer is moved in 

5 - 10 µm steps through the beam along the y-axis, then z-axis.  The coordinates 

in y and z, which corresponded to the maximum values for the transmitted X-ray 

peak counts are recorded.  The stepper motors then move the retainer to the 

recorded y-z coordinates.  Afterwards the retainer is rotated on an omega stage 

at two different angular values.  For each of the omega values (ω > 0° and ω < 

0°) the retainer is moved along the y coordinate.  Each y coordinate value for the 

maximum X-ray peak counts at ±ω is found and in accordance with previously 

obtained maximum y coordinate for ω = 0°, is used to triangulate the retainer x 
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coordinate, so that the standard is focused in the beam.  Once the standard is 

centered in the beam, the counter diode is removed and the powder diffraction 

pattern is recorded by the area detector for a duration of 10-15 seconds. 

After the diffraction pattern of a standard is collected, the DAC with a sample 

at ambient pressure is located and centered in the beam, sample stage in Figure 

13, page 32.  The procedure of centering the DAC in the beam was similar to 

centering the standard, except that due to the high atomic weight of both Pr and 

Dy samples, the centering is based on the X-ray absorption of the sample, rather 

than transmission.              

The diffraction data is collected in two parts.  To record a large fraction of the 

reflections which cross the sphere of reflection, a sweep scan is done.  In this 

scan the cell in a beam is rotated on the omega stage throughout the available 

angle of opening for the X-ray diffraction.  In the case of a Four Pin cell with B-A 

anvils, the backing plate cone of opening was 64°, so the rotation is executed 

from ω = -32° to ω = 32° for 64 seconds.  The sweep scan recording of a 

diffraction pattern contained the χ and 2θ information for each diffracting peak.  

The sweep scan pattern is, also, used to control and screen the quality of a 

crystal by examining the profile of some reflections.  The sweep scan pattern did 

not contain the ω information for the peaks.  Therefore a step scan was needed, 

where the cell is stepped through ∆ω steps, and at each step the cell is oscillated 

for a small, predetermined value in ±ω for tens of seconds.  As the sample 

oscillated about a fixed position in ω step scan, reciprocal-lattice points pass 

back and forth through the sphere of reflection, while their average intensities are 
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recorded in the individual detector frames.  Because of the low angular resolution 

(due to set instrumental individual pixel size) given by area detector geometry for 

a peak size recorded, the diffraction peak profiles are spread over more than one 

pixel causing large uncertainty in the ω information of the peaks recorded.  

Therefore, to average the uncertainty in ω information of the peaks, the small 

angle of oscillation is executed for each step scan.  Also, the longer duration of 

sampling of a fraction of the total available reciprocal volume potentially allows 

for peaks that were weak or non-existent in the sweep scan to be recorded in a 

step scan.  Once the diffraction peaks of the first frame are recorded, the cell is 

driven to the next oscillating point, such that the new oscillating range slightly 

overlaps the previous one.  For the Four Pin cell the oscillating points were 1° 

apart, with an oscillating range of ±0.5°.  The step scan started at ω = -31.5° and 

ended at ω = 31.5° because of the available angular opening of 64°.  The 

duration of each scan was 15 seconds.   

Upon finishing all the scans, the cell is removed from the hutch and the 

pressure is raised in small, ~1 GPa, steps.  After measuring the pressure with 

ruby fluorescence, the cell is placed back in the hutch and centered in the beam.  

Another set of scans is done and the corresponding diffraction patterns are 

recorded.  This experiment is continued until the X-ray diffraction data for all the 

pressure points is recorded in the interval of interest.      
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CHAPTER 3 

THEORY AND DATA ANALYSIS 

Crystal Lattice 

A crystal is a solid object in which a basic pattern of atoms is periodically 

repeated throughout in all three dimensions.  To describe the structure of a 

crystal, it is thus only necessary to know the simplest repeating pattern, as well 

as the lengths and directions of the three vectors.  These vectors together 

describe pattern repetition in space.  Crystal constituent atoms, molecules or ions 

represent building blocks of such a pattern.  Normally, the pattern consists of 

several such blocks, which may be converted into one another by symmetry 

operations.  The three vectors a, b, c describing the translations of the pattern in 

space are called the basis vectors.  By their operation one upon another, a lattice 

is generated.  Any point in such a lattice may be described by a vector r, 

 

1 2 3r n a n b n c= + +
r r r r

 

 

where n1, n2, and n3 are integers.  The concept of the lattice is an abstract 

mathematical one, which allows for its origin to be chosen more or less arbitrarily 

in the crystal. 

 The smallest repeating volume of the lattice is called the unit cell.  It is 

characterized by the lengths of the basis vectors, the three lattice constants a, b, 

c and by the three angles α, β, γ which separate these vectors from one another.  

By definition, α is the angle between the basis vectors b and c, β between a and 

(5) 
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c, and γ between a and b.  The positions of atoms are described in terms of the 

basis vectors axes and are given in terms of x, y, z coordinates with lattice 

constants as units [22]. 

 In addition to the three dimensional periodicity, a further very important 

property of nearly all crystals is their symmetry.  Full consideration of the possible 

symmetries for the lattice gives rise to seven possibilities, the seven crystal 

systems.  They are distinguished from one another by their shape-the geometry 

of the lattice that is required by the underlying symmetry elements.  The table 

describing seven crystal systems is given in Table 1, below. 

 

 
     

 Geometric Requirements in 

Crystal System Cell Edges Cell Angles 

triclinic none none 

monoclinic none α = γ = 90° 

orthorhombic none α = β = γ = 90° 

tetragonal a = b α = β = γ = 90° 

rhombohedral a = b = c α = β = γ ≠ 90° 

trigonal/hexagonal a = b α = β = 90°, γ = 120° 

cubic a = b = c α = β = γ = 90° 

Table 1.  The seven crystal systems and the symmetry requirements for 
each of the corresponding unit cells. 
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In the description of a lattice, the smallest possible basis vectors should be 

chosen for the crystal.  The smallest possible basis vectors represent the 

smallest possible volume unit in the lattice, the unit cell.  This is called a primitive 

cell.  For the primitive cell, there could be few choices available describing a 

single lattice, all with the same volume.  The choice of a single unit cell out of few 

possible for the description of a crystal structure, will be the cell that exhibits the 

highest possible symmetry.  There are also cases in which all variants of a 

primitive unit cell are oblique, but a larger, non-primitive cell, with 2, 3 or 4 times 

the volume may be chosen, which corresponds to a crystal system of higher 

symmetry.  When lattices are described by these larger cells, eight centered 

lattices must be added to the six primitive lattices.  Together these fourteen 

different lattices are known as Bravais lattices, named after Auguste Bravais who 

first listed them in 1850 [22].  The characteristic symmetry elements, like 

rotations, reflections, and inversions, relating the points of an assemblage, within 

a closed set, are known as the crystallographic point group or crystal class.  

There are 32 possible crystal classes.  Each one falls under one of the seven 

crystal systems.  It was shown, in the latter part of the nineteenth century that 

combining the 32 point groups with the 14 Bravais lattices leads to 230 unique 

arrangements of points in space.  These are the 230 space groups that describe 

the only ways in which identical objects can be arranged in an infinite 3D lattice. 
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The Geometry of X-Ray Diffraction 

When radiation with a wavelength of the order of the lattice spacings interacts 

with the crystal, one would expect to observe characteristic interference 

phenomena, since a crystal is a periodic, 3D array, described by its lattice.  In 

1912 [22], Max von Laue showed that crystals are based on a three dimensional 

lattice, by scattering X-rays with a wavelength in the vicinity of interatomic 

distances, λ = 50 – 300 pm (pico meters). 

Every atom in any crystal has the 3D arrangement of the lattice points of the 

crystal.  The actual crystal is built by placing together as many identical lattices 

as there are atoms in the unit cell, all displaced from one another as the 

individual atoms are.  A crystal consisting of a single atom in the unit cell will then 

consist of a lattice with a single scattering center at each lattice point.  A single 

row from such a lattice, pointing along the a-axis is shown in Figure 14. 

 

 

 

 

 

 

 

 

 

 

Figure 14.  Scattering by a row of atoms along the a-axis, µ = X-ray 
angle of incidence ≡ ν = X-ray angle of scattering.  Constructive 
interference occurs in the directions of a Laue cone with a cone angle 
of 2ν and a path difference ∆ = nλ. 

            . µ 

a 

a 

ν 

∆ 
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The path difference, ∆, between waves scattered by two neighboring points will 

be related to the angle of incidence µ and the angle of scattering ν by the 

equation: 

 

( ) ( ) 1cos cosa aa a nµ ν λ+ =  

 

For any given angle of incidence µ and any given order n1, there will be a 

precisely defined scattering angle ν at which a scattered beam can be observed.  

Since waves are scattered in all directions, the locus of these observable waves 

will be a cone about the row of points with a half angle ν.  For each value of n 

there will be one such cone, and this coaxial set is called Laue cones.  If the 

interaction of the same ray with a second row of atoms, not parallel to the first, 

along b-axis is considered, the same reasoning as before will lead to the 

equation: 

 

( ) ( ) 2cos cosb bb b nµ ν λ+ =  

 

This second row of atoms will then give rise to a second set of coaxial cones 

indicating the directions in which observable waves are scattered.  Picking the 

third row of atoms along the c-axis will lead to the equation: 

                    

( ) ( ) 3cos cosc cc c nµ ν λ+ =  

 

(6) 

(7) 

(8) 
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The third row of atoms will in turn give rise to a third set of coaxial cones 

indicating scattering of the observable waves.  Therefore these three equations, 

(6), (7), and (8), so called Laue equations, must be fulfilled at the same time for 

the direction of an incident and diffracted ray.  This condition requires that the 

three Laue cones intersect one another into a line.  Because this condition in the 

experiment is only met when X-rays from a very specific direction fall upon the 

crystal, its probability of occurring is very low.  Therefore the more a crystal is 

displaced in space, while in the X-ray, provides one a better opportunity for 

observing a diffraction pattern. 

 The diffraction in three dimensions could also be described as a reflection by 

a plane defined by three points of the lattice.  If the Laue conditions are met for 

this reflection, a reflection is observable.  The planes that give rise to such 

reflections are called lattice planes.  The orientation of the planes relative to the 

lattice is defined by Miller indices, after William Hallowes Miller, with the values 

hkl.  Every plane passing through points of the lattice is one of group of parallel 

planes, such that every lattice point will be placed in one of the planes from the 

group.  These planes intercept a, b, and c-axes of the unit cell and are defined 

as the reciprocals of the fractional intercepts which the plane makes with the 

crystallographic axes.  These reciprocals, which are integers, are the hkl values. 

 As shown from the Laue equations, for constructive interference a reflection 

condition must be met for a set of lattice planes where the angle of incidence 

must equal the angle of reflection.  This angle must have such a value that the 

conditions of the three Laue equations are met and the entire set of planes in the 
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lattice must be scattering in the phase.  Father and son, W.H. and W.L. Bragg 

showed that the reflection angle could be calculated in terms of the path 

difference between a ray reflected by one plane and that reflected by the next 

plane after it in the lattice, Figure 15. 

 

                      

 

 

 

 

 

 

 

 

   

 

Only those angles θ are allowed where the path difference 2d(sinθ) is an integral 

multiple of the wavelength: 

 

( )2 sin  ( 1, 2,  3,...)hkl hkld n nθ λ= =  

 

where n is the order of diffraction.  

Figure 15.  Derivation of the Bragg equation using path difference between 
rays reflected from a lattice planes.  The lattice spacing is labeled by d.  θ 
is an angle of incidence/reflection of the X-rays off of atoms in the planes.  
Atoms are represented here by black lines.  The reciprocal space vector 
(orange arrow) is shown in reference to a lattice planes in direct space, 
signifying equivalence between Bragg’s Law and Laue condition 
description of X-ray diffraction. 
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The equivalence of Laue’s and Bragg’s formulation of X-ray diffraction follows 

from the relationship between points in scattering space and planes in reflection 

space.  This relationship allows describing each set of lattice planes by a vector, 

r*, which direction is normal to the planes and magnitude being the reciprocal of 

plane spacing.  Then each observed diffraction spot would be located at the end 

point of this vector in the unit cell.  Therefore all of these vectors would terminate 

within the unit cell.  Thus a vector r* could be defined in a coordinate system of 

reciprocal unit vectors: a*, b*, and c*, such as: 

 

* * * *r ha kb lc= + +
r r r r

 

 

Since the indices hkl are all integers, the representation of all lattice planes by 

the ends of the r* vectors gives another true lattice, resulting from 3D repetition 

of the three basis vectors a*, b*, and c*.  The smallest repeating 3D unit may be 

called the reciprocal unit cell, while the lattice the reciprocal lattice.  Similarly, the 

lattice defined by the basis vectors a, b, and c is often called the direct or real 

lattice.  The reciprocal of the reciprocal lattice is the direct lattice. 

 

Calibration 

Before any data was analyzed, the data had to be calibrated.  The calibration 

consisted of fitting powder diffraction pattern from a standard calibrant sample.  

Using a standard calibrant with accurately known d-spacings allowed for refining 

the individual parameters of the diffraction geometry: X-ray beam center, the 

(10) 
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sample to detector distance, and detector tilt.  Here the tilt referred to a possible 

non-orthogonal position of a detector to the beam.  Either cerium dioxide (CeO2) 

or silicon (Si), were used as the calibrants.  These are standard reference 

materials used in quantitative X-ray diffraction analysis and certified by the 

American National Institute of Standard and Technology (NIST).  The lattice 

parameters of the standards are determined to the 7th significant digit.  To fit the 

powder diffraction of a standard and refine the parameters of the diffraction 

geometry, FIT2D, 2-D data analysis software [23] was used.  An example of an 

input image in FIT2D POWDER DIFFRACTION (2-D) interface for the Si powder 

diffraction pattern was given in the Figure 16, below. 

 

       

 

 

 

 

Figure 16.  Diffraction pattern (rings) of the Si powder sample displayed in 
FIT2D.  The white shadow across the image is the beam stop.  The image 
size in pixels is 2048X2048. 
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Once the powder pattern is displayed in FIT2D POWDER DIFFRACTION (2-

D) CALIBRANT interface, the SELECT CALIBRATION SAMPLE choice menu 

would appear, see Figure 17.  To proceed, one would click on a box with a 

standard name that matched calibrant used in this thesis experiment, SILICON.   

 

                                                 

 

 

 

     

      

   

 

After the calibrant was selected the CALIBRANT PATTERN REFINEMENT 

control form appeared, shown in Figure 18, page 47.  The known wavelength of 

the X-ray beam was input in the control form.  The measured, approximate 

sample to detector distance was entered, too.  The refined parameters, in this 

order, were: X-ray beam center, sample to detector distance, and tilt of a 

detector. 

 

 

 

 

Figure 17.  The SELECT CALIBRATION SAMPLE choice menu in FIT2D. 
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Upon loading the data in the control form, determination of an initial X-ray beam 

center position was done.  The determination was done by means of a least 

square fit of a circle to an outer diffraction ring.  An initial beam center fit is shown 

in Figure 19, page 48.   

 

 

Figure 18.  The CALIBRANT PATTERN REFINEMENT control form.  The 
columns on the left-hand side described diffraction geometry parameters.  The 
corresponding values of the parameters were given in the middle column.  The 
buttons for changing the parameters were in the right-hand column.  The 
descriptions of all the parameters are given in the left-hand column.  The 
refinement was done on X-ray beam center, sample to detector distance, and 
tilt. 
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Thereafter, sample to detector distance and tilt are refined.  All three 

parameters would continually be refined independently of each other, until the 

values for each of these parameters converged to respective individual minimum.  

After refinement, the INTEGRATE command in the POWDER DIFFRACTION (2-

D) menu was used, to integrate the 2-D powder diffraction pattern to a 1-D two-

theta scan.  An example of the two-theta scan generated in FIT2D is shown 

below in Figure 20, page 49.   

 

 

Figure 19.  The initial beam center refinement for the Si diffraction 
pattern.  The cross mark in the middle of the image is the center of 
the circle, i.e. initial X-ray beam centre.  The least square fit of the 
circle was done to twelve coordinates, which were defined by 
twelve cross hairs on an outer diffraction ring.     
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After generating the two-theta scan, it is exported to American Standard Code 

Information Interchange (ASCII) file format.  This file is loaded into the Powder 

Cell software [24].  This software is used for the structure model analysis.  It 

provides graphical comparison of two or more integrated standard diffraction 

patterns generated by FIT2D.  The d-spacings and hkl indices for reflections in 

each of the diffraction patterns are also provided.  The two-theta scans from the 

calibrant and NIST standard diffraction patterns are overlaid in Powder Cell in 

order to identify any possible zero-offset in the scans as distortion not corrected 

by FIT2D, as shown in Figure 21, page 50.  

 

 

 

Figure 20.  Integrated diffraction pattern of the calibrant into two-
theta scan.  The integration was done with INTEGRATE command 
of the FIT2D’s POWDER DIFFRACTION (2-D) interface. 
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Once the check on quality of the calibration is done, the software analysis of Pr 

and Dy diffraction data is performed. 

 

Analysis of Pr Data 

The Pr samples of crystals grown were grained aggregates of multi-crystals.  

All attempts of indexing one or several of the multi-crystals failed.  A typical Pr 

sample diffraction pattern on the MAR345 image plate is shown in Figure 22, 

Figure 21.  Powder Cell zoomed in display of the calibrant integrated diffraction 
patterns from NIST and FIT2D.  The relevant two-theta scans with a few hkl 
indices for the peaks and a scans residual are indicated by the arrows.   

NIST Si powder 
diffraction two-theta 
scan. 

FIT2D Si powder 
diffraction two-theta 
scan. 

Peaks’ hkl indices. 

Difference curve of FIT2D 
and NIST integrated powder 
diffractions patterns. 
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below.  Along the diamonds reflections, powder pattern rings with individual 

reflections belonging to several Pr single crystals were present in the diffraction 

image. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Few Pr sample 
single crystal 
diffraction peaks. 

Few Pr sample 
powder diffraction 
rings. 

Diamond diffraction 
peaks. 

Re 
gasket 
powder 
diffracti
on 
rings. 

Figure 22.  MAR3450 image plate frame, 3450X3450 pixels², of the diffraction 
pattern of Pr crystal in the DAC at 4.95GPa displayed in FIT2D.  This image was 
obtained by rotating DAC in the X-ray beam around the ω axis, so this was an 
image of a sweep scan in ω.  The ω range was 14°, from -7° to 7°, relative to 
the DAC backing plate cone of opening.  The relevant diffraction patterns are 
indicated by different sets of orange arrows.  The dark, rectangular image 
across is a shadow from the X-ray beam stop.  Ruby crystal and KBr powder 
diffraction peaks and rings respectively are present, too.   
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Analysis of Dy Data 

The Dy single crystal diffraction patterns collected either with CCD or image 

plate detector were processed in Przemyslaw Dera’s software suites, GSE 

(GeoSoilEnviro)_ADA (GSE in further text) and RSV (Reciprocal Space Viewer).  

The GSE suite manipulated the 2-D images of the single crystal diffraction 

pattern.  It allowed for determining the angular coordinates (2θ, ω, and χ) for 

each diffraction peak and conversion to Cartesian coordinates of laboratory 

coordinate system (CHAPTER 2).  The initial peak identification and fitting is 

done in GSE, too.  The RSV suite accepted as an input GSE Cartesian 

coordinates of the peaks and calculated corresponding d-spacings list and 

displayed and manipulated the undistorted array of diffraction peaks in reciprocal 

space.  The RSV allowed for determining and refining of the orientation matrix.   

Before the diffraction pattern image is uploaded in GSE, the diffraction 

geometry parameters obtained from calibration in FIT2D had to be input and 

saved in GSE file format, shown in Figure 23, below.  

  

          

 

 

 

 

 

 

Figure 23.  Input for calibration file in GSE. 
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After the calibration file was saved in GSE, a Dy diffraction pattern frame image 

was uploaded in the main viewing window of the software suite, Figure 24.  

 

      

 

 

 

 

 

 

 

 

 

 

 

 

 

   

    

To start the analysis in GSE an initial set of diffraction peaks was picked from the 

ω sweep scan image.  The peaks initially chosen were those that could be 

distinguished visually from the background and other, spurious diffraction peaks.  

Figure 24.  CCD image of the diffraction pattern of Dy crystal in the DAC at 
2.74 GPa displayed in GSE.  This image was obtained by rotating DAC in 
the X-ray beam around the omega axis, so this was an image of a sweep 
scan in ω.  The ω range was 64°, from -32° to 32°, relative to the DAC 
backing plate cone of opening.  The peaks that are rounded and saturated 
are the diamond diffraction pattern.  Small peaks are from the ruby 
diffraction pattern.  All the other peaks are the diffraction pattern from Dy.  
The smooth rings are the diffraction pattern from the Re gasket.  The white, 
rectangular image across is a shadow from the X-ray beam stop. 
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Automatic peak fit and centering by GSE was within twenty pixels wide square 

area.  The peak fitted pattern is shown in Figure 25, below. 

 

      

 

 

 

 

 

 

 

 

 

 

 

   

 

 Upon peak selection, the peak list with accompanying two angular coordinates is 

saved in a file.  Then, the ω oscillation diffraction image (step scan), for ω = -

31.5°, is loaded in the GSE viewing window as shown in Figure 26, page 55.  

This is the first angle that allowed for the primary beam to diffract from the 

sample, as discussed in detail in CHAPTER 2.  

 

Figure 25.  Initial choice of the Dy diffraction peaks in GSE.  The 
peaks were chosen with 20 pixels wide squares.  Each square was 
centered on a peak using the Peak fit automated option.  The peaks 
selected were saved in a file.     
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The peaks found from the first step scan that were observed in sweep scan are 

saved, so the ω coordinates of the peaks are recorded.  Also, because the 

sample oscillation allows for unique Bragg’s diffraction conditions to be fulfilled 

peaks not present in the initial peak file are found and saved in a new file.  Next, 

this new file and initial peak choice file are opened and laid over a sweep scan 

from Figure 25, page 54.  This way, if any new peaks were found not included in 

the initial peak choice, the check is performed to see if those peaks belonged to 

the same lattice and if they should be kept.  Also, the more intense peaks (new 

peak maxima) from the new peak file were kept over the same, but weaker peaks 

from the initial peak choice.  Afterwards both the initial peak choice file and the 

Figure 26.  Diffraction pattern of Dy sample in the DAC, with DAC rotated -31.5° 
into the X-ray beam, displayed in GSE.  The DAC was oscillated ±0.5° around 
initial value of ω = -31.5°, for 15 seconds.  Therefore this is the first ω step scan.   
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new file were saved with the corresponding angular coordinates in a single peak 

file.  Then, diffraction patterns for each of the step scans are checked in a 

sequence.  Each time, the peak file was updated with new peaks.  Once all the 

step scans were checked, diffraction peaks that presumably might belong to the 

same lattice are obtained, as shown in Figure 27. 

      

              

 

 

 

 

 

 

 

   

 

      

      

The peak file from GSE was loaded into RSV.  RSV provided a lattice 

representation of the peaks picked, Figure 28, page 57. 

 

 

 

Figure 27.  Final choice of Dy diffraction peaks in GSE.    
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Once the initial peak list was loaded in RSV, one could try fitting the trial cell for 

the diffraction pattern observed.  It is reported [4, 25, 26] that at ambient 

conditions Dy assumes hexagonal symmetry, which is, also apparent from the 

2.74 GPa observed diffraction pattern.  Therefore, the natural choice of a trial 

metric would be hexagonal, too.  To get the trial cell constants, three, non-

coplanar, short, reciprocal space vectors from the crystal lattice in RSV were 

picked.  This should, in principle, allow for the definition of sufficiently small 3D 

rhomb that can be used to recreate the primitive lattice.  Four reflections points in 

RSV are selected, where one point is fixed, while the other three were used to 

define reciprocal space axes.  Once the reciprocal axes were defined, the RSV 

provided UB matrix and initial cell constants.  The UB matrix established 

Figure 28.  RSV lattice representation of CCD recorded 
diffraction peaks.     
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correspondence between coordinates of reciprocal lattice points in orthogonal 

coordinate systems of an X-ray beam and the oblique system of the Dy sample.  

The UB matrix and initial unit cell are then transformed in separate Bruker Co. 

software using the standard hexagonal cell settings: a = b < c, α = β = 90°, and γ 

= 120°.  The transformed matrix is re-loaded in RSV.  The length threshold of 

0.15-0.2 Å for the reciprocal space vectors is defined and a check was made for 

a number of reflections inside the threshold.  Reflection statistics for an initial UB 

matrix and cell constants fit is shown in Figure 29. 

 

      

 

 

 

 

 

 

 

 

 

 

 

 

Lighter 
reflections, 

chosen with the 
initial UB matrix, 

are above the 
threshold. 

Darker reflections, 
chosen with the 
initial UB matrix, 

are inside the 
threshold. 

Columns, left to right: reflections 
inside/outside the threshold (1/0), the total 
number of peaks (0-50), three columns of 
hkl indices, peaks d-spacings in Å, peaks 
x-coordinate, and peaks y-coordinate (cut 
off). 

The UB matrix and the accompanying 
unit cell constants for the initial 
hexagonal cell. 

Figure 29.  Lattice constants and reflections chosen in RSV for the 
initial fit of a hexagonal unit cell.   
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The peak list and corresponding UB matrix with initial cell constants were saved 

in separate files in RSV.  The peak list saved was then laid over the sweep scan 

diffraction image in GSE. 

 With the new peak file loaded in GSE, the initial ω values for each of the 

peaks chosen was displayed.  This meant one could go to an individual frame of 

the respective ω oscillation diffraction pattern (step scan), where peak maxima 

occurred and verify that the maxima really occurred in that frame and not in the 

neighboring frames.  Also, one could check if there were any peaks in the 

respective individual frames that one did not select beforehand that belonged to 

a crystal lattice.  Afterwards refinement of ω on all the peaks chosen is done 

using the GSE ω refinement automatic option.  This refined peak list was saved 

and loaded back into RSV. 

 Once in RSV, the initial choice for the unit cell was refined, using the least 

square fit routines for the peaks Cartesian coordinates.  Because of small 

statistical sample of reflections indexed and large uncertainties in refined unit cell 

constants, for all four pressure points, 0-4 GPa, for this Dy sample, the automatic 

indexing was considered inconclusive.  Therefore, the manual indexing was 

attempted to index diffraction reflections and calculate unit cell constants.  The 

final refinement for the unit cell of a Dy sample at 2.74 GPa is shown in Figure 

30, page 60. 
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Figure 30.  Lattice constants and reflections chosen in RSV for the final fit 
of a hexagonal cell.   The final lattice reflection set with a refinement 
threshold of 0.15 Å is marked by the solid arrow.  The table on the lower 
left hand side is indicated by the dashed arrow and explained in the 
accompanying text box.  The entries on the lower right hand side are the 
final unit cell constants for the Dy diffraction pattern at 2.74 GPa and are 
indicated by the double arrow.      

The reflections set, refined 
with 0.15Å threshold, after 
the final choice of the UB 
matrix and unit cell 
constants. 

Final refinement for the 
hexagonal unit cell constants 
and UB matrix. 

Columns in left to right order: final 
reflections set within the 0.15 Å 
threshold, enumeration of the total 
number of peaks (0-8), three columns 
of hkl indices, peaks d-spacings in Å, 
x-coordinate of the peaks, and y-
coordinate of the peaks (partially 
showing). 
 



 61 
 

Refinement of the unit cell in GSE and RSV was, also, tried for new Dy 

sample, with the diffraction pattern taken in 1 GPa increments, for pressures 

ranging from 0-9 GPa.  For the unit cell constants in the 0-5 GPa range, the 

values obtained for this sample were comparable to values from the previous 

sample for the similar pressure range of 0-4 GPa.  The crystal quality of the new 

sample deteriorated with the pressures above 5 GPa, which was apparent in 

further broadening and splitting of peaks.  This reflection broadening is a result of 

a coarse mosaic structure of the sample.  It is, also a cause of an appearance of 

partial rings in the sample diffraction pattern, characteristic to powder diffraction.  

Also, poor peak shapes due to the crystal mosaicisity reduced the accuracy of 

the cell parameters and of the orientation matrix.  Therefore, using GSE and 

RSV, did not allow for refinement of any unit cell constants for the 6-9 GPa 

pressures.  The manual refinement of the unit cell constants for these pressures 

is also tried, which is reported on later in the text. 

 

Manual Indexing for the Dy Sample from 0 to 4 GPa 

As stated in the previous section, at first, all of the diffraction patterns of this 

sample were analyzed in GSE and RSV software.  This analysis yielded ambient 

pressure Dy unit cell constants indicating double hexagonal close packing 

structure.  These unit cell values were in disagreement with the reported 

hexagonal unit cell values [27].  For this reason, a manual indexing on 0-4 GPa 

Dy data sets was tried to check the ambient unit cell constants obtained from 

refining with RSV software.   
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To manually index this crystal, it was necessary to use GSE and Powder Cell.  

The GSE/RSV software provided d-spacing values for each of the diffraction 

peaks from the CCD image.  The Powder Cell software provided d-spacings and 

the accompanying hkl indices allowing to reconstruct reciprocal space vectors, 

rhkl, for the Dy powder diffraction standard.  Using a quadratic form of the Bragg 

equation for a hexagonal crystal lattice which relates the d-spacing of diffracted 

peaks, the accompanying hkl indices, and the unit cell constants, one could 

calculate the constants using: 

 

( )2 2 2

2 2 2

1 4

3

h k hk l

d a c

 + +  
 = +  
    

 

 

Manual indexing was started by choosing reciprocal space hexagonal 

coordinate axes a and b (a1 and a2 in hexagonal notation), 120° apart, and 

drawing them on the print out of the 2.74GPa Dy crystal diffraction pattern, as 

shown in Figure 31, page 63.  The CCD pattern had enough diffraction 

information to start manual indexing on a, b-axes.  From there on, one could add 

the reciprocal space vectors of the two reflections and follow it to a third one for 

the reflections that had hk.0, h0.0, or 0k.0 indices, full arrows in Figure 31, page 

63.  The information for c-axis, which is perpendicular to the a-b plane, could not 

be readily identified from the diffraction pattern.  Therefore one had to look in 

diffraction pattern for the peaks that were off of the a-b grid.  If one did find a 

diffraction peak that was just off either a or b-axis, like the peaks pointed to by 

  (11) 
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dashed arrows in Figure 31, below, this peak is considered a candidate for the 

reflection with a possible c-axis index.  Because there was limited d-spacing 

information in the a-b plane, c-axis information from the diffraction pattern had to 

be limited, too.  After a few peaks were picked, the observed d-spacings of these 

peaks are compared to the reported peaks d-spacings, from the standard 

pattern, with hkl indices where l is not zero.  If the observed and reported d-

spacings of the peaks matched within the error in broadness of the peaks, which 

was within one in thirty parts, one had an l index for the chosen peaks.  After all 

the available peaks are indexed, the unit cell constants are calculated.  

 

        

 

 

 

 

 

 

 

 

 

 

 

 

10.0 

b* 

a* 

01.0 

10.3 

11.2 

Figure 31.  CCD image of diffraction pattern of Dy crystal in the DAC at 
2.74GPa with a few indexed peaks.  The a*and b*-axes are defined, as 
shown.  The peaks that lie on the axes are pointed to by arrows.  The peaks 
that have c*-axis component are pointed to by the dashed arrows.     
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To calculate a and c values for an ambient phase Dy unit cell the formula (11) 

was used.  The few calculated values for a and c were presented in Table 2.  The 

calculated and least square refined unit cell constants for Dy ambient phase from 

all the manually indexed peaks in 0-4 GPa diffraction patterns are presented in 

CHAPTER 4, Reported Results section. 

    

 

 

hk.l Calculated a (Å) Reported a (Å) Error in a (σ) 

10.0 3.615 3.5903 0.007 

11.0 3.70 3.5903 0.03 

20.0 3.67 3.5903 0.02 

hk.l Calculated c (Å) Reported c (Å) Error in c (σ) 

00.2 5.74 5.6475 0.02 

10.3 5.58 5.6475 0.02 

11.2 5.56 5.6475 0.02 
    

 
Manual Indexing for the Dy Sample from 6 to 9 GPa 

The indexing of the diffraction patterns in this pressure range with GSE and 

RSV software did not produce any reasonable unit cell refinements.  So manual 

indexing was tried for the first reported high pressure phase of Dy, which forms 

between 6-7 GPa [1, 4, 25].  This phase is of the Sm (Samarium)-type, a 

rhombohedral unit cell symmetry.  A 7.8 GPa diffraction pattern was picked for 

Table 2.  Calculated unit cells constants with the accompanying errors from 
few indexed peaks for hexagonal metric of 2.74 GPa diffraction pattern.   
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manual indexing, as, upon visual inspection, exhibited the sharpest peak 

definition, compared to the other three diffraction patterns at 6, 8, and 9 GPa.  

This particular Dy sample was not the same as the one for which manual 

indexing was done for the ambient phase.  This sample was bigger, about 50+ 

microns in length and consisted of at least 5-6 crystals of different orientation.  

The sample had very broad, poorly constrained reciprocal space profiles of 

diffraction peaks, as shown in Figure 32, below.  Due to the broadness of peaks, 

unfavorable sample orientation, and the presence of more than one crystal in the 

sample, one couldn’t readily observe the unit cell of the crystal structure in an 

CCD image.  

              

  

 

 

 

 

 

 

 

 

 

 

 

Figure 32.  CCD image of the diffraction pattern of multi Dy crystal 
sample at 7.8GPa.  Rings of Dy peaks are labeled by arrows.  The 
round, oversaturated dots are the diffraction pattern from the diamonds.  
The small peaks are the diffraction pattern of ruby.  The white, 
rectangular shape across is a shadow of the beam stop. 

Rings of Dy 
peaks. 
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The idea for manual indexing was the same as for the ambient phase: Find 

the a and b-axes and add reciprocal space vectors r*hkl to get as many as 

possible peaks with hk information.  Afterwards, look for peaks that might have a 

c-axis component.  From Shen et al publication [25], corresponding d-spacings 

for the powder diffraction data around 7GPa are obtained.  These d-spacings 

were used to cross check the d-spacings observed from my pattern.  Because 

rhombohedral and hexagonal unit cells define the same three-dimensional 

mathematical lattice, one could choose which set of crystallographic axes to use 

for the indexing.  The hexagonal lattice reciprocal axes convention was chosen.   

Before starting manual indexing, to get preliminary hkl indices accompanying 

the observed peaks d-spacing values, the observed d-spacings were compared 

with the published powder diffraction d-spacings.  Upon comparing, in general, a 

large disagreement with the published d-spacings was noted.  That was 

especially evident for the d-spacings > 2Å, for which there was no agreement 

whatsoever with the published data.   

Because of this disagreement, one did not know what unit cell symmetry 

could be fitted to diffraction pattern, so unit cells for all the seven crystal classes 

possible were considered for a fit.  Triclinic and monoclinic cells were 

immediately eliminated as manual indexing candidates, because due to the low 

symmetry of these lattices many fits for the unit cell constants would be possible 

and therefore unreliable.  The first unit cell for which manual indexing was tried 

was the orthorhombic one.  To fit a unit cell for the orthorhombic lattice, six sets 

of peaks were picked, each set having two peaks of similar d-spacings, for a total 
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of twelve peaks, as shown in Figure 33, below.  Two peaks of similar d-spacings 

were picked for better error statistics.  Next, all of the twelve reciprocal space 

vectors were squared, i.e. reciprocal of d-spacings was squared for the twelve 

reflections picked from Figure 33, below.  Then, any two reciprocal space 

vectors, r*hkl and r*HKL from the set of twelve {r*1,…, r*12}, were picked.  Using 

Pythagorean Theorem, r*hkl and r*HKL were subtracted to see if a result would be 

a third reciprocal space vector that belonged to the set.   

 

        

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 33.  The set of peaks used in the manual indexing of the 7.8GPa 
diffraction pattern.  Each peak has associated r*indicated.  The round peaks are 
diamond diffraction pattern.  The small peaks are ruby diffraction pattern.  The 
rings interspersed with peaks are the diffraction pattern from the Dy sample. 

r6* 

r10* 

r11* 

r4* 

r3* 

r2* 
r1* 

r5* 

r8* 

r7* 

r9* 

r12* 



 68 
 

So one reciprocal space vector, for example r*hkl would be subtracted from the 

other eleven, with each resulting vector from the subtractions checked to see if it 

belonged in the set.  This was repeated for the rest of the vectors in the set, until 

all the possible vector differences were exhausted.  All the vectors’ differences 

were then compared for equality.  If any of these differences were the same, this 

meant that there was a single reciprocal space vector resulting from the 

subtraction of different couples of vectors, for ex. (hkl)1 ≡ (230) - (HKL)2  ≡ (120) = 

h-H, k-K, l-L (110) = (hkl)3 ≡ (310) - (HKL)4 ≡ (200), etc.  Finding such differences 

also could provide hkl indices for the reflections associated with the set of vectors 

{r*1,..., r*12}.  At the end no such identical differences were found from subtraction 

of the vectors belonging to the {r*1,..., r*12} set.  Geometrically, the orthorhombic 

lattice is a base for higher symmetry lattices: tetragonal and cubic.  This meant 

that one could disqualify tetragonal and cubic systems as possible unit cells for 

the single crystals of this sample.  

Next, manual indexing was tried for both hexagonal and rhombohedral unit 

cells.  Having a lot of individually oriented crystals in the sample prevented one 

from finding different hk spots from the a-b plane of a single crystal, when the 

manual indexing for the hexagonal cell was tried.  The rhombohedral unit cell 

defined on hexagonal axes has the reflection constraint, which, in turn could 

make examined diffraction pattern more tractable for manual indexing.  The 

constraint was: (-h + k + l) = 3 * n, where l = 0 and n is an integer.  So for a given 

rhombohedral unit cell on hexagonal axes it was found [28] that only two 

reflections could be observed with 
( )

3

h k
n

− +
= , namely: 11.0 and 30.0.  This 



 69 
 

meant that on the diffraction pattern a majority of the peaks had some type of c- 

axis information in them.  As in the case of the ambient phase, one needed to 

first define the a-b plane before one could try to work on determining the c 

component of the peaks.  So, one of the reciprocal space vectors was picked, for 

ex. r1* and ratios of it with the rest of the eleven vectors were calculated, i.e. r1*/ 

r2*, r1*/ r3*, etc., Table 3. 

                        

     

        
        
     
 

 

 

 

 

 

 

 

 

 

 

       

         

/  (r1*)
2 = (d1)

-2 (Å)-2 

(r1*)
2 1 

(r2*)
2 0.9881 

(r3*)
2 0.5689 

(r4*)
2 0.5940 

(r5*)
2 0.4291 

(r6*)
2 0.4332 

(r7*)
2  0.3037 

(r8*)
2 0.3022 

(r9*)
2 0.2764 

(r10*)
2 0.2568 

(r11*)
2 0.1770 

(r12*)
2 0.1703 

Table 3.  Ratios of | r1*| / |r1*|,…, |r12*| for the twelve peaks 
chosen.  
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The ratios were obtained for each of the twelve r* vectors.  Once all the ratios 

were calculated, all of the ratios were checked if any were integer multiple of 

three.  Because of the constraint mentioned before, any such ratio would point to 

peaks lying in a-b plane with allowed h and k indices satisfying 

2 2

2 2
3

h k hk
n

H K HK

+ +
=

+ +
.  No such a ratio was noted.  This meant that one couldn’t 

proceed any further in manual indexing, as there was not enough a-b interplanar 

angular information to identify peaks of a single crystal out of six or so present in 

my sample.   

 Because manual indexing on the 7.8 GPa diffraction pattern didn’t work, the 

decision was made not to pursue any more manual indexing for 6, 8, and 9 GPa 

diffraction patterns.  Although manual indexing provided no constrain on cell 

parameters for the 7.8 GPa pressure point, from data analysis tried and 

comparison of the diffraction patterns at 6 GPa and 0-5 GPa of the same sample 

it was reasonable to conclude that some type of a phase change was taking 

place after 6 GPa.  But due to substantial disagreements between observed d-

spacings and the published ones, one can’t even speculate on the nature of an 

apparent phase transition which might or might not be Sm-type. 
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CHAPTER 4 

DISCUSSION 

Diffraction Peaks Splitting 

Neither manual nor automatic single crystal data analysis provided indexing 

for a majority of the diffraction peaks because most of the peaks observed for 0-4 

GPa diffraction patterns were split into doublets and triplets, Figure 34, page 72.  

This indicated that the Dy sample used in the diffraction experiment was a 

twinned crystal.  To index the split peaks, the two-theta angular dimension of 

each of the observed peaks is used to obtain two-theta scans.  Two-theta scans 

(described in CHAPTER 3) are two dimensional diffraction images integrated into 

one dimensional peak intensities as a function of diffraction angle.  Indexing of 

the observed peaks was done in Jade, a commercially available indexing and 

unit cell refinement software from Materials Data Inc., customarily used for 

analyzing powder X-ray diffraction patterns.  To index the peaks d-spacing is 

used, obtained from individual peaks two-theta scans.  To index all observed 

peaks and reproduce twinning, a distorted Sm cell was constructed by subgroup 

chains.  The symmetry metric fitting the structural distortion was found to be 

monoclinic.  The monoclinic unit cell constants were derived according to the 1st 

Landau and Liftshiz criterion.  The details of an indexing procedure are given in 

the further text.  

According to the literature [1, 2, 3, 5, 9] the initial structure of the elemental 

Dy at ambient temperature is a regular hexagonal close-packed form where 

atomic positions in hexagonal cell are:  (0.333, 0.666, 0.250) and (0.666, 0.333, 



 72 

0.750) [12].  The Dy structure transforms ~7 GPa [25] into the Sm-type structure.  

Because the indexing with hexagonal metric could not account for all the 

observed peaks, the Sm cell was chosen as an initial cell model for indexing all 

the peaks observed.  To go from the P63/mmc to R-3m cell, the size of the a-axis 

of the hexagonal cell is kept while the c-axis of rhombohedral cell is increased 

four and a half times that of the hexagonal cell, with cell atomic positions at: (0, 0, 

0), (0.222, 0.222, 0.222), and (-0.222, -0.222, -0.222) [10].  The c-axis increase 

in going from hexagonal to rhombohedral unit cell is a result of centering a 

rhombohedral cell at 0.333, 0.666, and 0.666 points in a hexagonal setting. 

To start indexing, the set of doublet and triplet peaks is chosen from a 

diffraction pattern at 2.74 GPa (being a pattern with the most peaks observed), 

shown below. 

 

       

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 
 

Figure 34.  CCD image of a diffraction pattern of Dy crystal in the DAC at 
2.74GPa with a few peak doublets/triplets chosen for indexing in Jade and 
indicated by with the boxes. 
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FIT2D software (described in CHAPTER 3) was used to generate the two-theta 

scans for each of the chosen peak doublets and triplets.  The set of peak 

doublets/triplets is loaded into the FIT2D graphics viewing window.  Then, using 

the ZOOM IN option available in the FIT2D window a smaller graphical display 

region was defined through the peak doublets/triplets.  The zooming in is done to 

assure smooth integrated peak profiles in the two-theta scan.  One such display 

is shown in Figure 35.  

 

    

    

Figure 35.  Small graphical display region in FIT2D of triplet of 
peaks from a diffraction pattern of the Dy crystal in the DAC at 
2.74GPa.  The peaks are labeled by text boxes. 

 

Peak 
profile. 

Peak 
profile. 

Peak 
profile. 
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Next, the diffraction geometry parameters obtained from calibration (described in 

CHAPTER 3) are loaded.  The FIT2D INTEGRATE command is used to 

generate and display a two-theta scan for the peak triplet from Figure 35, page 

73.  The observed d-spacings for the peaks were determined.  The two-theta 

scan is then exported to ASCII file format.  Figure 36 shows the two-theta scan 

for the peaks from Figure 35.   

 

                  

                        

                        

                        

                    

Figure 36.  Two-theta scan in FIT2D of the three peaks from Figure 35.  
The d-spacings for each peak were obtained by positioning the cursor over 
the apex of the peak. 
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Next, a two-theta scan ASCII file is opened in the Jade graphic window, Figure 

37, below. 

 

   

 

 

 

 

 

 

 

 

 

 

               

   

 

The observed d-spacings obtained in FIT2D are then used to pick and label the 

diffraction peaks from Figure 35 in the Jade graphic window.  The rhombohedral 

unit cell constants and angles were entered in the “Cell Refinement” window of 

the Jade graphic window and the initial set of hkl indices accompanying observed 

d-spacings of peaks are generated.  The Jade graphic window, with “Cell 

Refinement” window, for the peak triplet from Figure 35 is shown in Figure 38.  

Figure 37.  2θ scan, background corrected, of the three peaks from 
Figure 35 displayed in the Jade graphic window.   
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Procedure described in p. 72-75 above is then repeated; all the remaining 

chosen peak doublets and triplets from Figure 34, page 72 have the ASCII files 

of their two-theta scans generated, each of the ASCII files is opened in separate 

Jade graphic windows, and the initial set of hkl indices corresponding to 

Figure 38.  The initial indexing in Jade for Sm cell on the three peaks from 
Figure 35.  The d-spacings of the peaks obtained from FIT2D are indicated by 
the orange arrows.  The initial peaks indexing in Jade is labeled by the yellow 
tick marks, indicated by the black arrows.  The peaks hkl indices are stored in 
the “Reflections” tab of the “Cell Refinement” window, labeled with a red border.    

Observed d-
spacings values 
from FIT2D for 
peak triplets. 

Initial choice in Jade 
for indexing the 
triple peaks choice 
from FIT2D.  
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observed d-spacings of peak doublets and triplets are generated using a 

rhombohedral metric.  Then, by adjusting the unit cell constants values in 

individual Jade graphic windows of the chosen set of doublets/triplets, observed 

d-spacings are matched to corresponding predicted hkl indices for Sm-type cell.  

With this approach, rhombohedral unit cell refinement and simultaneous indexing 

of all the picked sets of triplets/doublets from Figure 34, page 72 (12 sets in total) 

is tried.  Since no cell refinement was found that could be used to index all sets 

of triplets/doublets, the rhombohedral metric could not be used to index all the 

observed diffraction peaks.  However, all the predicted Sm cell hkl indices 

differed slightly from observed 2θ values.  This small offset between observed 

and predicted d-spacings indicated that a distorted Sm cell could be used to 

index the observed peaks.  To investigate symmetry metric relating to distorted 

Sm-type structure group-subgroup relationship was used.   

For a particular family of related structures, the space group of highest 

symmetry within the family is identified as the ideal type (aristotype).  By 

removing a specific single symmetry element, from the ideal type as well as 

elements that are present as a combination involving the removed symmetry 

element, the maximal number of possible, if any, subgroups resulting from the 

deconstruction are identified.  Often, the correct space group for a variant 

structure of lower symmetry can be found by examining the choice of subgroups 

given for the ideal type.  Hence, to check for the structural relationship between 

the Sm-type and the lower symmetry cells, the possible subgroups of the Sm-

type space group (space group number 166) are checked.  The group-subgroup 
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theoretical relationship was investigated using the Bilbao Crystallographic Server 

[29] and the existence of only one such a relationship of index 3 (ratio of orders, 

number of symmetry elements, of a group and its subgroup) is found for the 

space groups numbers 166 (space group symbol R-32/m) and 12 (monoclinic 

system, space group symbol C 1 2/m 1).  The group-subgroup relationship is 

shown in Figure 39. 

                        

                        

                        

                        

                        

                        

                        

                      

 

 

    

 

Therefore, the C-centered (a second lattice point is at the center of the face 

defined by the a and b-axes) monoclinic unit cell (the space group number 12, 

space group symbol C 1 2/m 1) was used to index a majority of peaks (all but two 

observed peaks were not indexed).  Afterwards, repeating the procedure 

described above in FIT2D and Jade, the indexing in monoclinic metric was done 

Figure 39.  The group-subgroup relationship for the space groups 166-12.  
The group-subgroup relationship is indicated with an arrow between the two 
circles. 

Space group 
number 166. 

Space group 
number 12. 
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for all the remaining pressure points.  The indexing done in Jade for the peaks 

triplet from Figure 35 using a C-centered monoclinic cell is shown in Figure 40. 

 

      

Monoclinic 
cell used to 
index the 
peaks. 

Indices of the 
peaks (second 
entry from the 
left inside the 
rectangles, in 
parentheses). 

Figure 40.  The final indexing in Jade for the Sm-type unit cell with a monoclinic 
distortion on the three peaks from Figure 35.  The blue arrows indicate indexed 
peaks.  The monoclinic cell constants and angles are indicated by orange arrow.  
Peak indices are indicated by green arrow.    
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Reported Results 

The peak indexing results are organized into two sections: results reported 

from manual indexing on a hexagonal metric done in CHAPTER 3 and results 

reported from the automatic indexing on a monoclinic metric in Jade, as written 

about in Diffraction Peaks Splitting section of this chapter.  No results are 

reported on automatic indexing done with GSE and RSV software due to the 

inconclusiveness of indexing done in RSV software, which is a consequence of 

inability of GSE/RSV to deal with twinned diffraction patterns observed for the 

0.7-3.8 GPa pressure regime. 

 

Results for Manual Indexing 

 The manual indexing was done for a 0.7-3.8 GPa pressure range, as 

described in CHAPTER 3.  Diffraction peaks d-spacings, and indices for each 

pressure point are organized in the tables and together with accompanying 

pseudo-hexagonal unit cell constants, are presented under the separate 

headings.  The reported unit cell constants for Dy ambient phase are: a = 3.5903 

Å and c = 5.6475 Å and reported ambient pressure V = 63.0447 Å³ [27].  Note: 

The ambient pressure diffraction pattern for this particular sample was never 

collected due to a collapse of the gasket chamber upon release of pressure in 

the Four Pin cell.   
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0.7 GPa Diffraction Pattern 

Experimental data shown in Table 4 below:  

 
         
  

         

Pressure = 0.70±0.01 GPa 

hk.l 
Observed d-spacings 

(Å) 
Reported d-spacings 

(Å) 
Error in d-spacings 

(σ)  

100 3.21 3.10929 0.03 

-100 3.18 3.10929 0.02 

103 1.601 1.61035 0.006 

200 1.59 1.55465 0.02 

-200 1.60 1.55465 0.03 

203 1.204 1.19872 0.004 

300 1.07 1.03643 0.03 

-300 1.07 1.03643 0.03 
 

 
The unit cell constants and unit cell volume with corresponding uncertainties are 

refined using UnitCell software [30], which implements the least square 

refinement on d-spacings of indexed diffraction peaks to obtain unit cell 

constants.  The refined pseudo-hexagonal unit cell constants are: a = 3.7±0.1 Å, 

c = 5.58±0.05 Å; with α = β = 90°, and γ = 120±3°.  The refined unit cell volume is 

V = 66±1 Å³. 

 

 

                                                                                                                     
Table 4.  Indexed peaks in 0.7 GPa diffraction pattern with accompanying 
errors in observed and reported d-spacings.                                                            
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1.74 GPa Diffraction Pattern 

Experimental data shown in Table 5 below: 

 

 
 
 

  
 
 
The pseudo-hexagonal unit cell constants, refined using UnitCell software are: a 

= 3.66±0.07 Å, c = 5.60±0.04 Å; with α = β = 90°, and γ = 120±3°.  The refined 

unit cell volume is V = 65±1 Å³. 

 

 

Pressure = 1.74±0.02 GPa 

hk.l 
Observed d-spacings 

(Å) 
Reported d-spacings 

(Å) 
Error in d-spacings 

(σ)  

100 3.14 3.10929 0.01 

-100 3.14 3.10929 0.01 

103 1.600 1.61035 0.006 

110 1.783 1.79515 0.007 

112 1.54 1.51493 0.02 

200 1.59 1.55465 0.02 

-200 1.558 1.55465 0.002 

203 1.200 1.19872 0.001 

300 1.07 1.03643 0.03 

-300 1.07 1.03643 0.03 

                                                                                                                     
Table 5.  Indexed peaks in 1.74 GPa diffraction pattern with accompanying 
errors in observed and reported d-spacings.   
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2.74 GPa Diffraction Pattern 

Experimental data shown in Table 6 below: 

 

       
            

Pressure = 2.74±0.03 GPa 

hk.l 
Observed d-spacings 

(Å) 
Reported d-spacings 

(Å) 
Error in d-spacings 

(σ)  

100 3.131 3.10929 0.007 

-100 3.126 3.10929 0.005 

103 1.600 1.61035 0.006 

110 1.780 1.79515 0.008 

112 1.513 1.51493 0.001 

200 1.59 1.55465 0.02 

-200 1.557 1.55465 0.002 

203 1.194 1.19872 0.001 

210 1.19 1.1752 0.007 

300 1.039 1.03643 0.002 

-300 1.041 1.03643 0.004 
 
 

The hexagonal unit cell constants, refined using UnitCell software are: a = 

3.64±0.03 Å, c = 5.5±0.2 Å; with α = β = 90°, and γ = 120±3°.  The refined unit 

cell volume refined is V = 63±2 Å³. 

 

 

                                                                                                                     
Table 6.  Indexed peaks in 2.74 GPa diffraction pattern with accompanying 
errors in observed and reported d-spacings.   
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3.8 GPa Diffraction Pattern 

Experimental data shown in Table 7 below: 

 
 

                         

Pressure = 3.80±0.08 GPa 

hk.l 
Observed d-spacings 

(Å) 
Reported d-spacings 

(Å) 
Error in d-spacings 

(σ)  

100 3.12 3.10929 0.01 

-100 3.130 3.10929 0.007 

110 1.75 1.79515 0.03 

112 1.46 1.51493 0.03 

200 1.543 1.55465 0.007 

-200 1.550 1.55465 0.003 
 

 
The hexagonal unit cell constants, refined using UnitCell software are: a = 

3.63±0.04 Å, c = 5.3±0.3 Å; with α = β = 90°, and γ = 120±4°.  The refined unit 

cell volume is V = 61±2 Å³. 

 

                                                                                                               
Table 7.  Indexed peaks in 3.8 GPa diffraction pattern with accompanying 
errors in observed and reported d-spacings.           
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Indexed Diffraction Pattern - Hexagonal Cell 

An example for 2.74 GPa pressure point is shown below: 

 

              

                        

                        

                        

                        

                        

                        

                        

                        

                        

                        

                        

                        

                        

                        

                        

Results for Indexing in Jade 

The indexing was done in Jade for a 0.7-3.8 GPa pressure range, as 

described in this chapter.  The monoclinic unit cell constants, diffraction peaks d-

spacings, and indices for each pressure point are presented under separate 

                                                                                                                         
Figure 41.  CCD image of a diffraction pattern of the Dy crystal in the DAC at 
2.74GPa with majority of observed peaks, corresponding to pseudo-hexagonal 
symmetry of a twinned component, indexed manually.  The peak indices are 
indicated by arrows and displayed in text boxes. 
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headings below.  The reported unit cell constants for Dy ambient phase 

(metastable, Sm-type, becoming stable Sm-type at 7.5 GPa) are: a = 3.580 Å 

and c = 25.61 Å and reported ambient pressure V = 284.25 Å³ [31]. 

0.7 GPa Diffraction Pattern 

Experimental data shown in Table 8 below: 

 
 

 

Pressure = 0.70±0.01 GPa 

hkl 
Observed d-spacings 

(Å) 
Reported d-spacings 

(Å) 
Error in d-spacings 

(2σ)     

-401 3.2311 3.23296 0.0006 

200 3.289 3.27846 0.003 

001 2.9462 2.94462 0.0005 

-914 1.887 1.88966 0.001 

-511 1.874 1.87622 0.001 

-11.15 1.609 1.60683 0.001 

-715 1.2199 1.22018 0.0002 

-603 3.231 3.24801 0.005 

-111 2.885 2.90266 0.006 

310 1.881 1.86896 0.007 

-421 1.5744 1.57380 0.0004 
 

 
The monoclinic unit cell constants, refined using UnitCell software are: a = 

20.2±0.6 Å, b = 3.60±0.02 Å, c = 9.05±0.09 Å; with α = γ = 90°, and β = 

161.0±0.3°.  The refined unit cell volume is V = 214±9 Å³. 

                                                                                                                  
Table 8.  Indexed peaks in 0.7 GPa diffraction pattern with accompanying 
errors in observed and reported d-spacings.           
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1.74 GPa Diffraction Pattern 

Experimental data shown in Table 9 below: 

 
 

 

Pressure = 1.74±0.02 GPa 

hkl 
Observed d-spacings 

(Å) 
Reported d-spacings 

(Å) 
Error in d-spacings 

(2σ)  

-401 3.214 3.22053 0.002 

-603 3.042 3.01553 0.009 

-111 2.8778 2.87938 0.0005 

200 3.258 3.26192 0.001 

001 2.9317 2.93049 0.0004 

-914 1.88230 1.88221 0.00005 

-511 1.864 1.86160 0.001 

400 1.603 1.6212 0.009 

310 1.875 1.86675 0.004 

-2-20 1.5564 1.55672 0.0002 
 

 
The monoclinic unit cell constants, refined using UnitCell software are: a = 

20.2±0.6 Å, b = 3.54±0.01 Å, c = 9.0±0.2 Å; with α = γ = 90°, and β = 161.0±0.4°.  

The refined unit cell volume is V = 209±10 Å³. 

 

                                                                                                               
Table 9.  Indexed peaks in 1.74 GPa diffraction pattern with accompanying 
errors in observed and reported d-spacings.           
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2.74 GPa Diffraction Pattern 

Experimental data shown in Table 10 below: 

 
 

 

Pressure = 2.74±0.03 GPa 

hkl 
Observed d-spacings 

(Å) 
Reported d-spacings 

(Å) 
Error in d-spacings 

(2σ)  

-401 3.196 3.20049 0.002 

-603 3.037 2.99295 0.009 

-111 2.8623 2.88993 0.009 

200 3.257 3.25044 0.002 

110 3.0803 3.12021 0.01 

001 2.92200 2.92180 0.00007 

-914 1.8706 1.87005 0.0003 

-511 1.85970 1.85976 0.00003 

-11.15 1.599 1.60480 0.004 

-421 1.565 1.56108 0.002 

310 1.864 1.86682 0.002 

-715 1.2103 1.20982 0.0003 

-912 1.214 1.21851 0.004 

400 1.6046 1.61741 0.008 

220 1.56760 1.56765 0.00003 

-401 3.232 3.21972 0.004 

-311 3.053 3.02396 0.009 

-602 2.893 2.87119 0.008 

420 1.201 1.19958 0.001 
 

 
The monoclinic unit cell constants, refined using UnitCell software are: a = 

20.1±0.8 Å, b = 3.51±0.03 Å, c = 9.0±0.2 Å; with α = γ = 90°, and β = 161.0±0.5°.  

The refined unit cell volume is V = 206±7 Å³. 

                                                                                                                  
Table 10.  Indexed peaks in 2.74 GPa diffraction pattern with accompanying 
errors in observed and reported d-spacings.           
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3.8 GPa Diffraction Pattern 

Experimental data shown in Table 11 below: 

 
 

 

Pressure = 3.80±0.08 GPa 

hkl 
Observed d-spacings 

(Å) 
Reported d-spacings 

(Å) 
Error in d-spacings 

(2σ)  

-401 3.199 3.20364 0.002 

-111 2.851 2.85434 0.001 

-914 1.8513 1.85104 0.0001 

-511 1.8531 1.85177 0.0007 

-11.15 1.583 1.58720 0.003 

4-2-1 1.5404 1.54109 0.0004 

200 3.189 3.20735 0.006 

001 2.867 2.87887 0.004 

400 1.590 1.60367 0.009 

220 1.5468 1.54602 0.0005 
 

 
The monoclinic unit cell constants, refined using UnitCell software are: a = 

19.9±0.06 Å, b = 3.52±0.01 Å, c = 8.9±0.1 Å; with α = γ = 90°, and β = 

160.9±0.7°.  The refined unit cell volume is V = 203±12 Å³. 

 

                                                                                                                     
Table 11.  Indexed peaks in 3.8 GPa diffraction pattern with accompanying 
errors in observed and reported d-spacings.            
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Indexed Diffraction Pattern – Monoclinic Cell 

An example for 2.74 GPa pressure point is shown below: 

                        

                        

                        

                        

                        

                        

                        

                        

                        

                        

                        

                        

                        

                        

                        

                        

                        

                        

                        

                        

    

Figure 42.  CCD image of diffraction pattern of Dy crystal in the DAC at 
2.74GPa with all but two observed peaks (peak before -311 indexed peak 
and peak above image of the beam stop, next to the last diffraction ring 
recorded) indexed in Jade.  The peak indices are indicated by arrows and 
displayed in text boxes.  The centrosymmetric peaks (Fridel’s pairs) are 
assumed to have –h-k-l indices, which are not labeled on the diffraction 
image to allow for visual clarity. 

 

-401 

-603 

220 

-111 

110 001 
200 

-914 

-511 

-11.15 

-421 

310 -715 

-912 

400 

420 

-10.03 -602 

-311 



 91 

Conclusions 

All flux-grown Dy crystals studying in these experiments were twinned 

crystals.  The principal type of all of these twinned crystals is known as 

transformation twins.  Transformation twinning occurs when a preexisting crystal 

undergoes a transformation due to a change in pressure or temperature.  This 

commonly occurs when, for the same crystal, different crystal structures and 

different symmetry exist at different temperatures or pressures, i.e. when the 

crystal is exhibiting polymorphism.  The changes in temperature or pressure at 

which a new crystal structure and symmetry are stable, arrange different parts of 

the crystal in different symmetrical orientations, and thus form an intergrowth of 

one or more crystals.  A crystal that is grown at a high temperature, upon cooling, 

undergoes a change from a higher to a lower symmetry structure.  For example, 

twinning in quartz commonly forms this way during a decrease in temperature 

[15].  In the case of the Dy crystal indexed in this experiment, the polymorphism 

was observed for a change in temperature and pressure.  The crystal twinned 

upon cooling from the flux growth temperature to ambient temperature (hcp 

twinning) and twinned again as the pressure in a DAC was increased (hcp -> 

distorted Sm-type cell, monoclinic distortion).  If a crystal is subjected to different 

pressures and temperatures, the arrangement of atoms depends on the sizes of 

the atoms, and the sizes change with temperature and pressure.  In general, as 

pressure increases, the volume of a crystal will decrease and a point may be 

reached where a more compact crystal structure is more stable. The crystal 

structure will then change to that of the more stable structure.  Similarly, if the 



 92 

temperature is increased, the atoms on the crystal structure will tend to vibrate 

more and increase their effective sizes.  In this case, a point may be reached 

where a less compact crystal structure is more stable.   

From the diffraction patterns collected in these experiments, for example 

Figure 34, page 72, it could be observed that the majority of diffraction spots are 

doublets or triplets, which is result of two or three reciprocal lattices for the twins 

not overlapping, due to different orientations.  Twins with diffraction patterns 

characterized by multiple reflection spots are described as having twin lattice 

quasi-symmetry, TLQS [15].  Using manual indexing, one of the twin components 

was indexed in pseudo-hexagonal metric.  For the twin lattice, which is the lattice 

with the smallest unit cell that is common to all individuals of the twin, semi-

automatic indexing in Jade based on Sm-type unit cell was attempted.  By 

lowering the space group R-3m symmetry, space group number 166, to space 

group C 1 2/m 1 symmetry, space group number 12, the monoclinic, b-axis 

unique, unit cell that allowed for indexing of the twin lattice reflections was found.   

Pseudo – Hexagonal Lattice 

Assuming the atoms to be hard spheres, the axial ratio c/a for a normal 

hexagonal close-packed (hcp) structure should be 1.633.  Reported ambient 

phase unit cell constants of Dy [27], give an axial ratio of 1.573.  From the 

present experimental pseudo-hexagonal ambient phase unit cell constants, an 

axial ratio of 1.54 is calculated.  The hexagonal lattice is referred to as pseudo 

because of observation of monoclinic distortion near ambient pressure diffraction 

data, as discussed in the following section.  The hcp rare earth metals, for 
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example: Sc (c/a = 1.594), Y (c/a = 1.571), Gd (c/a = 1.590), Tb (c/a = 1.581), Ho 

(c/a = 1.570), and Lu (c/a = 1.585) all have axial ratio values below a normal one, 

implying asymmetric unit cell atoms [27].  The lowering of the axial ratio is a 

consequence of the significantly smaller metallic radii of atoms lying along the c-

axis, as opposed to the radii of the atoms lying in the unit cell basal plane [27].  

The deviation of the experimental axial ratio from a normal hcp axial ratio 

indicates that the experimental pseudo-hexagonal lattice is a distorted structure, 

where distortion was due to temperature induced twinning.  The plot of c/a ratio 

vs. pressure (P), given in Figure 43 below, indicates that around 2 GPa pressure 

point the sharp axial ratio decrease occurs to values as low as 1.46, the 

decrease being a result of pressure induced twinning. 

    

 

 

 

 

 

 

 

 

 

 Figure 43.  Plot of c/a vs. P for pseudo-hexagonal unit cell with 
the accompanying errors in c/a and P.  The line through the 
points is drawn as a visual guide. 
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As was noted in CHAPTER 3, examining multi-crystalline diffraction patterns 

for the 6-9 GPa pressure range did not yield a conclusive result in respect to the 

first reported (Sm-type) high pressure phase of Dy [25].  So to investigate for a 

possible existence of a phase transition, the plot of evolution of the a and c-axes 

with pressure for the pseudo-hexagonal cell (given in Figure 44, below) is 

analyzed. 

 

      

 

 

 

 

 

 

 

 

        

                

 

 
Extending both curves from the plot to their intersection gives a possible phase 

transition around 10 GPa, which is larger than the pressure range of about 7 GPa 

reported for the first high-pressure phase transition [25].   

Figure 44.  Plot of a, c-axes vs. P for the pseudo-hexagonal unit cell with 
the accompanying errors in a, c-axes and P.   
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Strain is induced during flux Dy crystal growth, as a crystal passes through 

phase change and twins.  This strain, in turn, could influence the kinetics of the 

phase transitions, causing discrepancies in reported and experimentally 

observed phase transition pressure.  Also, the disagreement observed is not 

unusual because a single crystal sample can act differently from powder 

samples, for example due to a single crystal being disordered.  Thus the phase 

transition reported in powder diffraction data may or may not be observed in a 

single crystal diffraction case for the same sample and same pressure range.  

For example, Monazite [3, 13] in the same pressure range has different phase 

transitions for powder and single crystal X-ray diffraction.   

To obtain bulk modulus, the pressure-volume data for the pseudo-hexagonal 

cell is fitted using the 3rd order Birch-Murnaghan (BM3) [32] and Vinet [33] EOS.  

The BM3 EOS fit to experimental pressure-volume (p-V) data, is presented in 

Figure 45, next page.  Here, only the BM3 EOS fit is displayed, as curves for 

both EOS fits, once overlaid, are visually indistinguishable.  Also, as an inset in 

Figure 45 the experimental p-V BM3 EOS fit in comparison to a few reported fits 

is given. 
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The least squares fit was done in EOS-FIT software [35] and for pseudo-

hexagonal cell the BM3 EOS yielded a bulk modulus value of K = 45±6 GPa and 

a pressure derivative K’ = 3.09±0.05 with ambient pressure volume V = 66±7 Å³.  

The Vinet EOS fit yielded a bulk modulus value of K = 41.5±5 GPa and a 

pressure derivative K’ = 3.15±0.06 with ambient pressure volume V = 66±7 Å³.  

This is in agreement (within a larger experimentally obtained uncertainty in V of 

~10%) with a reported [34] bulk modulus value for Dy of K = 40 GPa with K’ = 2.9 

and reported [27] ambient pressure V = 63.0447 Å³. 

                                                                                                                      
Figure 45.  Pressure-volume data fitted with the BM3 EOS for the pseudo-
hexagonal cell.  The V - axis is normalized with Vambient obtained from EOS fit.  
The right-hand corner inset shows reported BM3 EOS p-V fits up to 6 GPa in 
comparison to the experimental fit indicated by a black curve.  The reported fits 
are: fit from [25] indicated by a red curve, fit from [34] indicated by an olive 
green curve, and fit from [26] indicated by a lavender curve.  
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Monoclinic Lattice 

To investigate possible signs of phase transition in the twinned lattice, the 

evolution of a, b, c-axes with pressure is plotted in Figure 46, below, as well as 

the evolution of β angle with pressure in Figure 47, below Figure 46.  
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Figure 46.  Plot of a, b, c-axes vs. P for monoclinic unit cell with the 
accompanying errors in a, b, c-axes and P.   

 

Figure 47.  Plot of β angle vs. P for monoclinic unit cell with the 
accompanying errors in a, β angle and P.   
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Because of the observed general trend in the plot in Figure 46; almost identical 

slopes due to parallel correlation in a, b, c-axes vs. P curves, the extrapolation 

does not indicate any upcoming symmetry distortion due to a phase change.  

Also, although the cell axes and β angle are evolving under the compression in 

plots from Figure 46 and Figure 47 respectively, their corresponding minimal rate 

of change is indicating static regime of behavior for unit cell volume. 

Manifestation of these experimental trends would imply that either the symmetry 

of the unit cell or the refined unit cell constants are incorrect.  Because the 

continuous phase transition for the R-3m and C 1 2/m 1 space groups, indicated 

by twinning of diffraction patterns reflections, has been verified with established 

group-subgroup relationship, the monoclinic unit cell constants and the β angle 

values are presumed to be not entirely correct.  Most likely, β angle values 

evolving under pressure are underestimated.  This is an artifact of using 

diffraction reflections d-spacings for indexing instead of reciprocal space vectors. 

Therefore, the indexing in GSE and RSV software of a recently collected set of 

Dy single crystal X-ray diffraction data will be attempted in the near future.  

Preliminary indexing done, under Prof. O. Tschauner’s direction, for a couple of 

pressure points indicate greater monoclinic unit cell constants and β angle values 

than the ones found from diffraction peaks indexing done in Jade.   

The bulk modulus of the monoclinic cell is found from fitting the pressure-

volume data to the 3rd order Birch-Murnaghan (BM3) [32] and Vinet [33] EOS.  

The BM3 EOS fit to experimental p-V data, along with the reported BM3 EOS fit 
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[25] are presented in Figure 48, below.  For the same reasons as in the case of 

pseudo-hexagonal cell EOS fit, only the BM3 EOS fit is displayed. 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
For the monoclinic lattice the BM3 EOS least squares fit done in EOS-FIT 

software [35] yielded: K = 74.2±7 GPa, K’ = 6.7±0.3, and ambient pressure V = 

215±21 Å³.  While the Vinet EOS fit gave: K = 77.48±9 GPa, K’ = 7.1±0.7, and 

ambient pressure V = 215±23 Å³.  No comparison to reported data is presented 

due to insufficient p-V points statistics from [31] (only data for two p-V points are 

available: at ambient pressure and 7.5 GPa). 
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Figure 48.  Pressure-volume data fitted with the BM3 EOS for the monoclinic 
cell.  The V - axis is normalized with Vambient obtained from EOS fit.   
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Summary 

The experimental work done in this thesis was subject to a considerable 

amount of uncertainty due to the necessary need to use the twinned or multi-

crystal Dy samples.  Although meticulous care was taken to pick flux grown Dy 

crystals that would be the best to use in a diffraction experiment, no crystal that 

was picked and tested in the X-ray beam had good quality.  It was noted that, in 

general, the crystals grown and tested in the X-ray beam belonged to three main 

groups: twinned, multi-crystals, or crystals with finely granulated texture present 

on the crystal faces.  The twinned and multi-crystals samples always exhibited, 

under visual inspection, uniform luster and well-defined faces.  These crystals 

were, also, of the right size, measuring anywhere from 20 to 50 µm, for use in 

single crystal X-ray diffraction experiments conducted by the author.  The 

crystals with granulated texture were too big to use in the experiments, 

measuring anywhere from 100 to 500 µm in size.  These crystals grew into thin 

platelets and exhibited a powder diffraction pattern.  Therefore, the most 

important direction for undertaking future work, would be to grow better crystals.   

The development of a crystal depends on the relative rates of nucleation and 

growth (for metals usually rapid re-crystallization takes place at temperature 

above ⅔ of melting temperature) [15].  If the rate of nucleation is larger than the 

rate of growth, the result will be agglomerates of small crystallites.  Also, a rate of 

growth that is too rapid may result in the inclusion of many faults in the crystal.  

Avoiding these problems is not straightforward, as once the initial single crystal 

growth is attempted, no prediction in advance could be formulated to describe 
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necessary relative rates of nucleation and growth that would induce good quality 

crystal development.  Growing a single crystal of any element or compound 

requires a method of trial and error, with continuous refinement between 

attempts.  One way of approaching the development of the single crystal growth 

method for Dy crystals in the future, would be to start from the current batch of 

crystals grown and use it as a seed for consequent growth, either with different 

type of fluxes or using another method altogether, like zone melting. 

From everything written so far, one could conclude that growing a good single 

crystal is, in essence, more art than science.  Thus, parallel to attempts in Dy 

single crystal growth another course of action could be explored.  That would be 

to use a four-circle single-crystal diffractometer (the geometry of the 

diffractometer set-up is referred to in CHAPTER 2).  Because the axes of 

rotations of ω, 2θ, φ, and χ diffractometer circles intersect within a sphere of error 

with a radius < 10 µm, a smaller crystal specimen in a DAC can be centered 

accurately in a point focus X-ray beam using computer controlled four-circle 

geometry.  The precise centering and orienting on the diffractometer dictates 

accuracy of both the unit cell constants and the subsequent intensity 

measurement of the diffraction peaks of a crystal.  The intensities of diffraction 

reflections are recorded with a point detector, which could be either a scintillation 

or a proportional counter.  The detector is driven by 2θ circle allowing for 

surveying crystal diffraction reflections in reciprocal space point by point and 

recording of full and accurate individual reflection widths.  Also, it is possible, 

using a diffractometer, to search for the reflections belonging to a single 
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reciprocal lattice and to sort out its corresponding orientation matrix for a single 

crystal of the multi-crystal structure [36].  And even in the case of twinned 

crystals, the diffraction pattern could be collected and resolved using the 

PILATUS detector [37], which is an area detector operating in a single-photon 

counting mode.   

Currently at the UNLV X-ray laboratory there is a four-circle single-crystal 

diffractometer set-up under development.  The author of this thesis is one of the 

members of the group (referred to as “we”) that includes Dr. David Schiferl and 

Prof. Oliver Tschauner that has been working on setting up the diffractometer in 

an operational and user friendly mode.  Up to this point, we have assembled the 

diffractometer, as well as the vacuum system that will be used in oven annealing 

of the samples.  The vacuum system with the oven has been tested and is ready 

to use.  The X-ray source, a fine focus X-ray tube, which has a point focus beam 

with a high brilliance allowing for work with small samples inside the DAC, has 

been ordered from Inel, France.  The author has developed in .NET suite, a 

programming environment that is interfacing and run-implementing crystal 

centering and diffraction peaks search algorithms, which were coded in QBasic 

programming language by Dr. Schiferl.  This .NET environment has been tested 

and ready to interface with the diffractometer.  The author has also provided a 

software control for the Omega temperature controllers, which has been tested 

and is available for implementing in oven annealing.  The next task involves 

interfacing, via graphic user interface, diffractometer hardware, like micro stepper 
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motors, detector and temperature controllers into a PC controlled and robustly 

monitored system.       
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