
UNLV Theses, Dissertations, Professional Papers, and Capstones 

8-1-2016 

Forcing Cesium into Higher Oxidation States via Useful Hard X-ray Forcing Cesium into Higher Oxidation States via Useful Hard X-ray 

Induced Chemistry at Extreme Conditions Induced Chemistry at Extreme Conditions 

Daniel Thomas Sneed 
University of Nevada, Las Vegas, sneedd3@unlv.nevada.edu 

Follow this and additional works at: https://digitalscholarship.unlv.edu/thesesdissertations 

 Part of the Chemistry Commons, Engineering Science and Materials Commons, Materials Science and 

Engineering Commons, and the Physics Commons 

Repository Citation Repository Citation 
Sneed, Daniel Thomas, "Forcing Cesium into Higher Oxidation States via Useful Hard X-ray Induced 
Chemistry at Extreme Conditions" (2016). UNLV Theses, Dissertations, Professional Papers, and 
Capstones. 2807. 
https://digitalscholarship.unlv.edu/thesesdissertations/2807 

This Thesis is protected by copyright and/or related rights. It has been brought to you by Digital Scholarship@UNLV 
with permission from the rights-holder(s). You are free to use this Thesis in any way that is permitted by the 
copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from 
the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/
or on the work itself. 
 
This Thesis has been accepted for inclusion in UNLV Theses, Dissertations, Professional Papers, and Capstones by 
an authorized administrator of Digital Scholarship@UNLV. For more information, please contact 
digitalscholarship@unlv.edu. 

http://library.unlv.edu/
http://library.unlv.edu/
https://digitalscholarship.unlv.edu/thesesdissertations
https://digitalscholarship.unlv.edu/thesesdissertations?utm_source=digitalscholarship.unlv.edu%2Fthesesdissertations%2F2807&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/131?utm_source=digitalscholarship.unlv.edu%2Fthesesdissertations%2F2807&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/279?utm_source=digitalscholarship.unlv.edu%2Fthesesdissertations%2F2807&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/285?utm_source=digitalscholarship.unlv.edu%2Fthesesdissertations%2F2807&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/285?utm_source=digitalscholarship.unlv.edu%2Fthesesdissertations%2F2807&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/193?utm_source=digitalscholarship.unlv.edu%2Fthesesdissertations%2F2807&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalscholarship.unlv.edu/thesesdissertations/2807?utm_source=digitalscholarship.unlv.edu%2Fthesesdissertations%2F2807&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalscholarship@unlv.edu


 
 

FORCING CESIUM INTO HIGHER OXIDATION STATES VIA USEFUL HARD X-

RAY INDUCED CHEMISTRY AT EXTREME CONDITIONS 

By  

 

Daniel Sneed 

 

Bachelor of Science – Physics 

University of Nevada, Las Vegas 

August 2014 

 

 

 

A thesis submitted in partial fulfillment  

of the requirements for the 

 

 

 

Master of Science – Physics 

 

 

Department of Physics and Astronomy 

College of Sciences 

The Graduate College 

 

 

 

 

 

University of Nevada, Las Vegas 

August 2016 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Copyright 2016 by Daniel Sneed 

All Rights Reserved 

 

 

 

 

 

 

 

 

 

 



ii 
 

  

  

 

Thesis Approval 

The Graduate College 

The University of Nevada, Las Vegas 

        

July 8, 2016 

This thesis prepared by  

Daniel Sneed 

entitled  

Forcing Cesium into Higher Oxidation States Via Useful Hard X-Ray Induced Chemistry 

at Extreme Conditions 

is approved in partial fulfillment of the requirements for the degree of 

Master of Science – Physics 

Department of Physics and Astronomy 

 
                
Michael Pravica, Ph.D.    Kathryn Hausbeck Korgan, Ph.D. 
Examination Committee Chair     Graduate College Interim Dean 

 

John Farley, Ph.D. 
Examination Committee Member 

        

Andrew Cornelius, Ph.D. 
Examination Committee Member 

 

David W. Hatchett, Ph.D. 
Graduate College Faculty Representative 

 



iii 
 

Abstract 

FORCING CESIUM INTO HIGHER OXIDATION STATES VIA 

USEFUL HARD X-RAY INDUCED CHEMISTRY UNDER HIGH 

PRESSURE 

By  

Daniel Sneed 

Dr. Michael Pravica, Thesis Defense Committee Chair 

University of Nevada, Las Vegas 

 

Recent theoretical work published in Nature Chemistry postulates the existence of cesium 

in high oxidation states when bonding with fluorine.  It is thus predicted to behave as a p-block 

element (such as xenon) at pressures above 5 GPa. At these pressures, fluorine atoms may bond 

with the inner p-shell electrons forming CsFn, where n may vary from 2 up to 6; thus the 

oxidation state of Cs may change up to 6+.  My research focused on physically synthesizing 

these compounds and to verify that, given the right conditions, bonding doesn't only occur with 

valence electrons, but with the inner p-shell electrons as well, much like what occurs in xenon 

chemistry. The difficulty of proving this experimentally is that working with fluorine is 

extremely difficult and dangerous, and has only been studied at high pressure in one earlier 

study. For the past two years our group has been working on developing a new field of science 

we call: Useful Hard X-ray Photochemistry. By utilizing the highly penetrating, highly focused, 

and highly ionizing characteristics of hard x-rays, we can decompose relatively safe and inert 

solid and liquid samples into simple molecules. We have successfully used our technique to 
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produce O2, H2, N2, Cl2, and most recently F2 in situ within a diamond anvil cell. We have also 

successfully and safely combusted O2 and H2 into water by creating a segregated mixture of 

potassium perchlorate and ammonia borate within a diamond anvil cell.  

We have developed a new method to produce molecular fluorine in situ, giving us a safe 

mechanism to supply excess fluorine that is available to react with cesium in order to 

experimentally verify the theoretical prediction of the unexpected stoichiometries of cesium 

compounds. By using techniques such as x-ray absorption fine structure spectroscopy, x-ray 

diffraction, and Raman spectroscopy, coupled with our new techniques of in situ hard x-ray 

photochemistry, we sought to experimentally demonstrate this theoretical behavior of inner shell 

bonding and open the door to a better understanding of chemical bonding under extreme 

conditions. This thesis discusses the results of our attempt to synthesize these novel CsFn (n>1) 

compounds.  
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Chapter 1 

Introduction 

Recent theoretical work predicted that cesium may undergo inner-shell bonding with 

fluorine under high pressure, forming higher oxidation species CsFn (n >1) [1]. Though inner 

shell electrons are usually inaccessible for bonding under ambient conditions, pressure can 

broaden and increase the energy of the 5p shell of cesium, allowing the electrons to react with a 

highly electronegative atom such as fluorine. Thus cesium, which has an electron configuration 

of Xe[6s
1
], possesses only one valence electron in the 6s shell to contribute to bonding (giving it 

a potential oxidation state of 1+). Under pressures greater than 5 GPa, it is predicted that the 

highly electronegative fluorine will begin to pull electrons out of the 5p shell causing the cesium 

and fluorine to undergo xenon like bonding [1].  

The primary difficulty in synthesizing new stoichiometries of CsFn is the challenge in 

working with fluorine due to its extremely reactive nature caused by its high electronegativity 

(4.0). Recent developments in Useful Hard X-ray Induced Chemistry offer a method to produce 

simple molecules for reaction in situ within a diamond anvil cell by decomposing relatively safe, 

inert, easy to work with solid crystalline powders by harnessing the highly ionizing and highly 

penetrating characteristics of hard x-rays. Using this technique, multiple species of simple 

molecules have been formed without catalysts, including H2, N2, O2, Cl2, and recently F2, all in 

situ within a diamond anvil cell [10-14]. We have also shown recently that polymeric CO and 

CO2 can be formed when strontium oxalate is decomposed under pressure [16].  It has also been 

shown that controlled chemistry can be achieved at extreme pressures via the reaction of 

hydrogen, formed by the x-ray induced decomposition of ammonia borane, and oxygen formed 
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by the x-ray induced decomposition of potassium perchlorate, into water; all in situ within a 

diamond anvil cell at high pressure.  OF2 has also been formed by similar methods [14]. This 

experiment, combined with the successful formation of molecular fluorine via Useful Hard X-ray 

Induced Chemistry has given us a novel means to release F2 and potentially perform fluorine 

chemistry under extreme conditions all in situ. The primary goal here is to produce a mixture of 

CsF and F2 at high pressure, in order to potentially observe the formation of novel CsFn 

compounds at pressures greater than 5 GPa. 
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Chapter 2 

Background 

2.1: Prediction of CsFn (n>1) compounds 

It has been shown that the electronic structure of cesium undergoes some very unique 

behavior under high pressure. Pure cesium metal undergoes a body centered cubic (b.c.c.) to face 

centered cubic (f.c.c.) structural transition above 2.5 GPa. After this phase transition, the 

unoccupied 5d level begins to become occupied with pressure by the elevation of the 6s and 5p 

electrons, allowing for the potential for higher oxidation states of the metal [18]. This effects is 

what lead to theoretical work by Miao showing that, under the presence of a highly 

electronegative ion, such as fluorine, the promoted 5p electrons in cesium can be utilized for 

bonding, forming CsFn; thus, effectively increasing the formal oxidation state of cesium from +1 

to +n (n = integer > 1)  [1].  

In Miao’s work, Density Functional Theory (DFT) calculations using VASP (Vienna ab 

initio Simulation Package) were done in order to find the most energetically favorable structures 

of CsFn compounds at different pressures. It was found that CsF could be reacted with F2 in order 

to form higher stoichiometries of CsFn via the following reaction [1]: 

     Equation 1.1 

Miao’s work theoretically predicted the existence of CsFn in stoichiometric ratios as high 

as 1:6 at pressures up to 200 GPa. Using this work as a guide, and the newly developed tool of 
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useful hard x-ray induced chemistry, this thesis discusses our attempt at synthesizing these novel 

CsFn compounds. 

2.2: Useful hard X-ray induced chemistry 

It is well known that when high energy X-rays are incident on a molecular system, x-ray 

induced decomposition can occur, especially in a covalently bonded system. It was a goal of our 

group to utilize this phenomenon in order to perform controlled chemistry in situ in a diamond 

anvil cell at extreme conditions. We believe the process involved in driving x-ray induced 

chemistry is based on inner shell absorption of the high energy x-rays. When an inner shell 

electron either gets ejected as a photoelectron or gets excited into a higher vacant shell; in either 

occurrence, a “hole” is formed where the exited electron was. The inner shell “wants” to be 

filled, so a higher shell electron will fall into that hole, this electron typically comes from the 

outer unfilled shell, which is the electron used for bonding. When this electron is being shared in 

a bond, it will get stolen away from this bond, effectively destabilizing the bond. This 

destabilization leads to the bond breaking and the atoms being ejected as highly exited radicals. 

These radicals exist for a short period of time until they relax and bond with a nearest neighbor, 

preventing healing of the original molecule, and forming completely new molecular species. 

 In the instance of the following reaction: 

    2KClO3 + hν → 2KCl + 3O2   Equation 2.1 

The Cl-O bonds in the ClO3
-
 anion are broken via the process discussed above; the oxygen 

radicals are formed in a highly energized state, preventing them from re-bonding with the Cl 

atom right away. This allows a highly stable ionic salt, KCl, to form, and creates the environment 

for the O2 molecules to form. It should also be noted that when these molecules form, they 
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eventually do so in the ordered solid crystalline structure that is most energetically favorable at 

the pressures the molecules are formed. 

There are some decomposition reactions that are not yet fully understood. The 

decomposition of potassium tetraborofluorate (KBF4) is one such reaction. We know that F2 is 

formed via the decomposition of KBF4 via Raman spectroscopy [15] 

 
Figure 2.1: Raman spectrum of decomposed KBF4 showing evidence of molecular fluorine via 

the F2 vibron, located at ~917 cm-1 [15]. 

 

But the stoichiometry is not well understood. There are many different polymers of BF that may 

possibly form, such as BF3, B2F4, or B10F14 , but these compounds will not allow for the 

formation F2 stoichiometrically. Because of this, the most likely reaction is: 

KBF4 + h  BF + KF + F2    Equation 2.2 

F2 vibron at ~917 cm
-1
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Fluoroborylene (BF) is an unstable gas that can be synthesized by reacting BF3 with a 

boron rod at 2000 ºC, it can be condensed into a liquid at 77 K [20]. Though it is unstable at 

ambient pressures, it has never been studied with pressure, so its quasistable existence under the 

high pressure conditions in conjunction with Useful Hard X-ray Induced Chemistry, may be 

possible.  

During our studies of the O2 formation via the x-ray decomposition of KClO3 and KClO4, 

we discovered that oxygen was highly mobile, and though formed as a solid crystal shown via x-

ray diffraction, we also found evidence of the diffusion of molecular oxygen [10, 21]. 

 

Figure 2.2: X-ray diffraction of decomposed KClO4 showing the formation of both KCl and 

solid O2 [21]. 
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Figure 2.3: Decomposed KClO4 showing solid oxygen diffused throughout the sample chamber 

[10]. 

 

Though the irradiated KClO4 eventually formed into the solid phase of oxygen, it exists 

in some excited stated long enough to diffuse throughout the sample chamber, even under 

pressures as high as 9 GPa. After making this discovery, we sought to determine if this behavior 

could be utilized in order to perform novel chemistry at high pressures. We knew  H2 could be 

formed via the x-ray decomposition of ammonia borane (NH3BH3), a special “keyhole” gasket 

was prepared in which we laser drilled a stainless steel gasket indented with 300 micron 

diamonds with two overlapping holes. In one hole we loaded NH3BH3, and in the other hole 

KClO4 was loaded. We pressurized the cell to 5 GPa and proceeded to irradiate the KClO4, 

verifying the formation of O2 throughout the cell via Raman spectroscopy. Next we irradiated the 

NH3BH3 and verified the presence of H2 via Raman Spectroscopy, an interesting thing to note is 

that, though the oxygen diffused throughout the sample chamber, the hydrogen remained 

localized to the irradiation area (see figure below). We then verified the presence of the O-H 

stretch at approximately 3100 cm
-1

 and 3500 cm
-1

 via Raman spectroscopy, this reaction only 

occurred in the regions of irradiated NH3BH3 [12]. 
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Figure 2.4: Raman spectra of decomposed segregated mixture of KClO4 and NH3BH3 showing 

formation of H2 (top) and H2O (bottom) [12]. 

 

This was the first demonstration of novel chemistry, driven purely by x-ray decomposition under 

high pressures, that we know of [12]. 

Once we had successfully demonstrated that we could produce fluorine via hard x-ray 

induced chemistry, along with successfully synthesizing water useful hard x-ray induced 

chemistry at high pressures, we felt it prudent to attempt new novel synthetic routes of 

chemistry. It was at this point that recent theoretical work was brought to our attention discussing 

the potential formation of higher stoichiometries of CsF via the reaction of cesium and fluorine 

under pressures greater than 5 GPa. We felt that we could use our technique of useful hard x-ray 

induced chemistry in order to attempt to synthesize these novel cesium fluoride compounds. 
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Chapter 3 

General Theory 

3.1: Cesium Fluoride 

Cesium fluoride (CsF) is a highly ionic salt that has many uses in organic chemistry, 

spectroscopy, and nuclear medicine. In organic chemistry it is used as a source of fluorine ions 

for the removal of silicon groups due to the strong Si-F bond [22]. In nuclear medicine it is used 

as a scintillator in positron emission tomography due to its fast response time, allowing better 

resolution in time of flight measurements [23].  As it is very hygroscopic, it must be handled 

under an inert dry atmosphere, and it is extremely toxic due to formation of hydrofluoric acid 

when reacting with water. CsF has a well studied phase transition, going from the B1 phase, 

which is an fm3m NaCl structure, to the B2 phase, which is a pm-3m CsCl structure, at 

approximately 4.8 GPa [38].  

 

Figure 3.1: Visual representations of the B1 phase (left) and B2 phase (right) of cesium 

fluoride created in Powdercell®. 
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3.2: Potassium tetrafluoroborate 

 

Figure 3.2: Visual representation of potassium tetrafluoroborate (KBF4) created in Powdercell®. 

 

3.3: Diamond Anvil Cells 

As pressure is force applied per unit area (N/m
2
), there are only two ways to apply a large 

amount of pressure on a system: apply a large amount of force across a surface, or apply a 

relatively small amount of force across an extremely small area.  As applying a large amount of 

force requires a lot of work, it is much easier to apply a relatively small amount of force across a 

microscopic area; this is exactly how a Diamond Anvil Cell (DAC) works. There are many 

different types of DAC’s, but they all follow the same principle. Two diamonds are mounted on 

seats with a small hole drilled through the center. These seats are set in a large vessel that works 

like a piston in a cylinder which allows application of pressure perpendicularly to the diamond 

face. 
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Figure 3.3: Images of panoramic- (top left), Mao-Bell- (top right), and symmetric-style 

(bottom) diamond anvil cells. 

 

The tips of the diamonds are cut down and polished flat so that a small culet is created. 

This culet size ranges from as small as 20 µm to as large as 1 mm in diameter, all depending on 

the desired terminal pressure. A series of screws are aligned to apply force symmetrically as the 

diamonds are brought together; spring washers are used to ensure that the pressure is applied 

evenly.  
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Figure 3.4: Schematic of a typical diamond anvil cell [24]. 

 

Though diamonds can undergo extremely high levels of compressive stress, they are very 

weak to any type of shear strain. They are also very likely to damage each other if they come into 

direct contact, so for these reasons, a soft metal gasket is placed in between the diamonds to 

prevent the diamonds from touching, as well as to confine and pressurize the sample.  This 

gasket is pre-indented to a width of typically 10 - 50 µm, and a hole no greater than one half of 

the diameter of the diamond culet is drilled into the center of the indentation. The initial starting 

thickness and hole size are dependent upon the maximum pressure desired. For higher pressures, 

the gasket starting thickness should be thinner, and the hole diameter should be closer to one 

third of the culet size. The sample is placed in this hole, along with a small ruby or other pressure 

calibrant. If pressures greater than 50 GPa are desired, and x-rays are going to be used for an 

experiment, a metal such as gold or tungsten can be used as a pressure calibrant by measuring the 

cell volume via x-ray diffraction, and fitting this volume to a known equation of state of that 

particular metal. 
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3.4: Ruby Fluorescence 

The R1 fluorescence peak is used to gauge how much pressure is applied to the sample 

due to a systematic shift to the R1 fluorescence peak that has been measured and calibrated.  This 

calculation has been well explored and verified, and shown to have the following relationship 

[8]: 

             Equation 3.1 

Where Δλ is the measured wavelength, λ0 is the ruby wavelength at ambient conditions, and P is 

the hydrostatic pressure applied at the ruby. 

 

Figure 3.5: Example of ruby fluorescence spectrum [7]. 

 

The ruby fluorescence spectrum is a result of Cr3
+
 doping of an Al2O3 crystal. The 3d 

electrons in the Cr3
+
 ions are excited from their ground state into an excited electronic state. The 

electrons then de-excite vibrationally into a lower energy metastable state. The electrons then de-
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excite further back to their ground state emitting a photon of a wavelength equal to the energy 

difference.  

 

Figure 3.6: Schematic representation of ruby fluorescence spectrum [25]. 

 

There is a splitting of the fluorescence lines due to interactions of the Cr3
+
 ion with the 

Al2O3 crystal lattice via the electrostatic crystalline field. The lower energy fluorescence peak is 

called the R1 fluorescence peak, and has a typical starting wavelength of 694.22 nm, though 

there are differences between rubies based on the starting Cr3
+
 concentration [26]. It is the R1 

fluorescence line that has been well studied and calibrated, though the R2 line follows the same 

behavior as the R1 line. The shift of the ruby peak is a direct result of the decreasing interatomic 

distances within the Al2O3 lattice. As the interatomic distances reduce with pressure, the bonds 

stiffen, requiring more energy to be taken from the excited electrons during relaxation to the 

metastable state. 
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3.5: Raman 

Raman spectroscopy is a very powerful spectroscopic technique used to observe 

vibrational, rotational, and phonon, or intra-molecular, modes in a molecular system [2]. It relies 

on inelastic scattering of photons from a monochromatic light source, usually from a laser in the 

visible, near infrared, or near ultraviolet range. A photon couples with the electrons in a bond 

causing different intra- and inter-molecular vibrations, and the shift in energy gives information 

about the bonds, electronic environment, and atomic species that a specific molecular system 

has. The energy of the photon can be scattered elastically, in which the energy of the photon does 

not change during the scattering process, or inelastically. When the photon is scattered 

inelastically, its energy can be changed via two different processes; it can either be stokes 

shifted, in which energy is taken from the photon during the scattering process, or anti-stokes 

shifted, in which energy is actually given to the scattered photon.  

The majority of the photons emitted by the sample are elastically scattered, so they have a 

wavelength close to that of the excitation source, this is called elastic Rayleigh scattering.  

Raman scattering is typically very weak, especially relative to the elastically scattered Rayleigh 

light, and as a result the primary difficulty of Raman spectroscopy is separating the weak 

inelastically scattered light from the intense Rayleigh scattered laser light [2]. 

The Raman effect occurs when light interacts with the electron clouds associated with 

molecular bonds. An incident photon has an electric field that can couple with the charge 

distribution of a molecular bond. The electric field of the photon causes a deformation of the 

electron cloud distribution, via the polarization tensor; the magnitude of this deformation is 

proportional to the field strength of the photon.  The proportionality constant α, known as the 
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polarizability constant, determines exactly how much the bond will be deformed. Thus, the 

dipole moment of the bond changes in response to coupling with the photon, creating a new 

induced dipole moment. This new dipole moment can be described by the equation: 

                                                                              Equation 3.2 

This induced dipole moment will have a torque applied to it, causing the bonds to tend to 

orient with the polarization of the inbound photons polarization axis.  

 

Figure 3.7: Image showing how an electron cloud can be distorted by an external electric field 

[2]. 

 

During this distortion, electrons are excited into a virtual state; when the bond relaxes, the 

electrons return to either their ground state configuration (Rayleigh scattering), or an excited 

ground state (Stokes shifting).  This transition is governed by the selection rules of the bond, 

shown by the following function: 

                             Equation 3.3 
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where  is the polarization tensor, and is a tensor of rank 2,  is the electric field vector, ψi is the 

wave function of the bond in its initial state, and ψf is the wave function of the bond in its final 

state . In matrix form, Equation 1 can be represented by: 

                                               Equation 3.4 

In normal Raman scattering, the polarization tensor is symmetric, so 

 Because of the symmetry of Equation 3.4, transitions are 

forbidden if it is equal to zero. In other words, a transition is only Raman active if Equation 3.4 is 

even. 

As stated earlier, when a photon couples with a molecular bond, the electrons in the bond 

are excited from its initial state to a virtual state, then relax to an excited ground state, which is 

called Stokes shifting.  It is also possible for the electrons in the bond to have started in the 

excited ground state, and then relax back to the ground state, this is called anti-Stokes shifting. 

Figure 3.8 is a graphical representation of Rayleigh scattering, Stokes shifting, and anti-Stokes 

shifting. 
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Figure 3.8: Diagram of electron transitions that occur when a bond couples with a photon [3]. 

It should be noted that these virtual states are lower energy than electronic transitions, 

which are the basis of fluorescence. Because the ability to perturb the local electron cloud of a 

molecule depends on the relative location of the individual atoms, it can be seen in Equation 3.4 

that the polarizability is dependent on the instantaneous position of the atoms [4]. For any 

molecular bond, the individual atoms are confined to specific degrees of freedom, in which the 

vibrational energy levels are quantized in a manner similar to that of electronic transitions. These 

quantized energy levels are given by the following expression [3]: 

                                    Equation 3.5 

 Where j is the vibrational quantum number (j = 0, 1, 2, 3, ...), and  is the frequency of the 

vibrational mode. The physical displacement, dX, of the atoms about their equilibrium positions 

during a particular vibrational mode can be expressed as [4]: 

                                                                                                      Equation 3.6                    

Where X0 is the maximum displacement about the equilibrium position. For a typical molecule, 

the maximum displacement is relatively very small compared to the bond length. Since dX is 

small relative to the bond lengths, α can be expanded as a Taylor series, giving [3]: 

                                                                                              Equation 3.7 

Where α0 is the polarizability of the molecular bond in its equilibrium state. Combining Equation 

3.6 and Equation 3.7 gives: 
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                                 Equation 3.8 

 Combining Equation 3.8 with Equation 3.2 gives: 

                              Equation 3.9 

 This simplifies into [4]: 

   Equation 3.10 

Equation 3.10 gives the classical relationship between the induced dipole moment, the 

polarization tensor and the vibrational modes of the molecule. It can also be seen from Equation 

3.10 that the polarization tensor must change in order for there to be any form of inelastic 

scattering. The first term is for Rayleigh scattered photons, the second term is for Stokes shifted 

photons, and the final term is for anti-Stokes shifted photons.  Equation 3.10 can also be 

expanded higher to describe higher order Raman scattering, but these events are typically very 

weak and can usually be ignored. 

The Raman scattering intensity is dependent upon the amount that the polarization of a 

bond and the spectral modes are determined by the rotational and vibrational states of the 

sample. This dependence on the polarization differs from Infrared spectroscopy where the 

interaction between the molecule and light is determined by the dipole moment. IR spectroscopy 

has the advantage over Raman that it is not plagued by sample fluorescence due to the photon 

energy not being high enough to excite electronic transitions. Thus, combining IR and Raman 

spectroscopy can yield a more complete picture of the molecule being studied. 
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Raman shifts are typically in expressed wavenumbers, which represents the number of 

waves that exist within 1 cm, and have units of inverse length. In order to convert between 

wavelength and wavenumbers of the Raman spectrum, the following formula can be used: 

                                                                                                              Equation 3.11                                 

Where Δν is the Raman shift expressed in wavenumbers, λ0 is the excitation wavelength, and λ1 

is the either the Stokes or anti-Stokes shifted photon wavelength. Most commonly, the units 

chosen for expressing wavenumber in Raman spectra is inverse centimeters (cm
−1

). Since 

wavelength is often expressed in units of nanometers (nm), Equation 10 can scale for this unit 

conversion, giving: 

                                                                         Equation 3.12                     

Raman spectroscopy is a commonly used technique in chemical analysis since vibrational 

information is specific to the chemical bonds and the symmetry of molecules. Because of this, it 

provides a fingerprint by which a molecule can be identified. One example of this would be the 

vibrational frequencies of SiO, Si2O2, and Si3O3. These different frequencies were identified and 

assigned based on normal coordinate analyses using infrared and Raman spectra [4]. Raman 

spectroscopy can also be used to characterize materials, measure temperature, and find the 

preferred orientation of a sample. As with single molecules, a given solid material has 

characteristic phonon modes that can help to identify it.  Raman is also used to identify changes 

to crystal lattices under high pressures and temperatures, and can also be used to observe phase 

transitions in materials. 

 

http://en.wikipedia.org/wiki/Chemical_bond
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3.6: Crystal Structure of material 

 In nature, most solids adopt a crystalline structure when in equilibrium which can be 

described by something called a Bravais lattice. A Bravais lattice is an array of discrete points 

that extends out infinitely in three dimensional space. These points can be defined by a set of 

translation operations determined by the vector [27]: 

              Equation 3.13 

Where n is any integer value and ‘a’ is a set of primitive basis vectors of the lattice, the 

combination of which can describe the unique position of any point within the lattice. The 

infinite nature of the Bravais lattice means that for any choice of the vector R the lattice appears 

exactly the same when viewed from any different point within the array, separated by the 

translation of one unit cell.  

 The Bravais lattice can be categorized into 7 different crystal systems based on point 

group symmetry, or symmetry that leaves a particular point fixed (non-translational) in a unit 

cell. Each crystal symmetry can be described by the three vectors: a, b, and c, which are the 

relative lengths of the edges in each direction of a unit cell and the angles in between them: α, β, 

and γ. Those seven crystal systems can be broken down into 14 crystal systems based on how the 

lattice is centered on the unit cell.  Those 14 crystal systems are as follows: 
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Table 3.1: Table of 14 Bravais Lattices [28]. 

 

When the rotational, translational, inversion, and reflection symmetry operations are 

included, the 14 crystal systems can be broken down even further into 230 unique space groups. 
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Each space group can be described by the unique symmetry operations that can describe a given 

structure, and each space group can describe the unique positions of the atoms within a unit cell.  

3.7: X-ray Diffraction 

Based on the properties of the Bravais lattice, atoms will align themselves in infinite 

arrays determined by the atomic species and bond lengths. There are different planes that can be 

formed by these arrays of atoms, which are called Miller indices and are denoted by the n1, n2, 

and n3 in Equation 16. They are better known as the indices h, k, and l, and they represent the 

vectors of each direction of the crystal. The different Miller indices can take many forms, the 

following diagram showing a few examples: 

 

Figure 3.9: Two dimensional representation of Miller indices [32]. 

 

Where a and b are the unit cell parameters, and d is the distance in between atomic plains, the 

length of which is on the order of an angstrom (Å).  

X-rays are ideal for probing the inter-atomic spacings (d spacing) in a crystal lattice due 

to the fact that their wavelength is on order of the distance between atoms in a bond.  When X-
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rays are incident upon a specific plain, they have a probability of being reflected off of that 

plane. When X-rays are reflected off of given planes in a crystal lattice, they can either interfere 

with each other constructively, or destructively. This behavior is the basis behind x-ray 

diffraction and can be described by Bragg’s law: 

 

Figure 3.10: Visual representation of Bragg’s Law [32]. 

 

Where θ is the angle of incidence and reflection and d is the distance in between reflection 

planes. Whether or not the reflected x-rays will interfere constructively is determined by the 

following relationship: 

                                                                                   Equation 3.14 

The probability that an x-ray will be reflected off of a given plane is determined by 

something called the structure factor, Fhkl [32]: 

                         Equation 3.15 
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Here, fn is known as the atomic form factor and describes how a single atom will scatter a given 

x-ray photon, x, y, and z describe the atomic positions, and h, k, and l describe which reflection 

plane will be expected. The intensity of the reflected x-rays are proportional to the square of the 

magnitude of the structure factor, or: 

                                           Equation 3.16 

The relationship between the d spacing and the unit cell parameters is as follows: 

                          Equation 3.17 

 In a synchrotron x-ray diffraction experiment, a broad spectrum of x-rays (2-100 KeV) is 

generated by electrons that have been accelerated to near the speed of light. There is a primary 

storage ring that is composed of straight sections and curved sections, along the curved section 

bending magnets steer the electrons to the next straight section, creating x-rays via 

Bremsstrahlung (breaking) radiation. There are also magnetic “wigglers” installed in the straight 

sections that generate x-rays via Bremsstrahlung radiation. These x-rays are directed into a 

beamline via special mirrors, and specially designed crystal monochromators are used to select 

out specific wavelengths via Equation 17 [33]. These x-rays are then focused onto a sample and 

the diffracted x-rays are collected by a specialized detector. This generates a 2-dimensional 

pattern that must then be integrated into a 1-dimensional diffraction pattern via specialized 

software such as Fit2d® or Dioptas®. 
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Figure 3.11: Two dimensional diffraction pattern of CsF (left) and an integrated one 

dimensional diffraction pattern of CsF (right) integrated via Fit2d®. 

 

 By fitting the peaks in the one dimensional diffraction pattern with a pseudo-Voigt 

function, and comparing those peaks to known structural data, the unit cell parameters a, b, and c 

can be determined. From these unit cell parameters, and information about the crystal system, the 

unit cell volume can be calculated. Unique atomic positions and percent composition can also be 

extrapolated through this type of refinement.  

3.8: Equation of State 

The isothermal equation of state (EoS) of a system is a description of how the volume of 

a solid material changes with an applied pressure at a constant temperature. How the volume of a 

solid changes with pressure can be described by the bulk modulus of that material, which is 

defined as: 

                                     Equation 3.18 

Here, K0 and V0 are the bulk modulus and volume at ambient pressure respectively. There are 

multiple equation of states that are used, which depend on the system being studied. For the 
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purpose of this thesis, I will only focus on the Murnaghan and the Birch-Murnaghan equations of 

state. 

The first isothermal equation of state that is widely used is known as the Murnaghan EoS. 

This equation of state is based off of the assumption that the bulk modulus of a material varies 

linearly with pressure, giving a P-V relationship of: 

                  Equation 3.19 

The Murnaghan equation of state has been shown to accurately represent experimental data, and 

give correct values for ambient pressure bulk modulus for compressions of up to 10%, or V/V0 

of 0.9 [29]. 

 For compressions that are greater than 10%, a more sophisticated relationship must be 

made. The Birch-Murnaghan equation of state is one such relationship which utilizes a 

combination of a Taylor series expansion of finite strain, fE: 

                                                                      Equation 3.20 

and the Murgaghan EoS [28]. This expansion taken to the fourth order yields the following 

equation of state: 

               Equation 3.21 

This equation can be expressed as a function of normalized pressure, F, which is defined as: 

                                                             Equation 3.22 
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Combining Equations 3.21 and 3.22 yeilds: 

                                        Equation 3.23 

In order to determine which order of the Birch-Murnaghan EoS to use, data must be 

plotted in the form of normalized pressure, F, as a function of natural strain fE. If data takes the 

form of a horizontal line, then a 2
nd

 order Birch-Murnaghan must be used, implying that K’ is set 

to 4, and K’’ is set to -0.1886. Doing so sets the coefficients of fE and fE
2
 to zero, and the 

equation of state only depends on P, K0, V, and V0. If the F versus f plot takes a linear slope, then 

a third order Birch-Murnaghan must be used, meaning that K’’ is set to -0.1886 and the EoS 

depends on P, K0, V, V0, and K’. If the F versus f plot takes a parabolic form, then the full 4
th

 

order Birch-Murnaghan must be used [29].  

3.9: X-ray Absorption Spectroscopy 

X-ray Absorption Spectroscopy (XAS) is a spectroscopic technique used to probe the 

electronic environment as well as the local structure around a select atom. Electrons are bound to 

the nucleus of an element in very specific energy states, otherwise known as orbitals. The atomic 

number (Z) determines the number of electrons that can be bound to a specific neutral atom. In 

the case of cesium with a Z of 55, there are 55 electrons that exist in specific orbitals or shells 

that are designated by its principle quantum numbers n = 1, 2, 3, 4, and subshells designated by 

its azimuthal quantum number l = 0, 1, 2, 3, 4. The principle quantum numbers can also 

designated by characteristic x-rays, K, L, M, and N. This is the notation that will be utilized for 

the rest of this thesis. The azimuthal quantum numbers break down the electron subshell 

configuration into the more commonly known s,p,d,and f subshells. 
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XAS is a phenomenon based around Beer’s law of absorption: 

                    Equation 3.24 

Here, I0 is the x-ray flux before passing through the sample, I is the x-ray flux after passing 

through the sample, μ is known as the mass absorption coefficient, and t is the thickness of the 

sample. The variable μ is explained by the following expression [30]: 

                                                       Equation 3.25 

Where ρ is the density of the element, Z is the atomic number, A is the atomic mass, and E is the 

exciting photon energy. Thus, as is evident from the previous expression, the absorption 

coefficient is a function of only energy for a given element [31].  The absorption coefficient is a 

continuous function of energy except for discontinuities at specific resonance points at which the 

energy of the excitation photon is equal to that of the binding energy of that shell. This can be 

seen in the following diagram of the absorption coefficient as a function of energy for cesium. 

 
Figure 3.12: Mass/density coefficient as a function of photon energy for different elements [35]. 
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This discontinuity is the result of a core electron absorbing energy that is equal to or greater than 

its binding energy, exciting it up to a vacant shell and leaving behind a core hole.  

 

Figure 3.13: Diagram depicting x-ray absorption by a core electron [30]. 

 

When x-ray energies are scanned across one of these discontinuities, and plotted  as a 

function of x-ray energy (i.e. –ln(I/I0 vs E), a sharp rise, or edge, will be observed at the binding 

energy of that shell, known as the “white line”. This edge jump is named by the principle 

quantum number of the specific core electron being excited [30]: 

Table 3.2: X-ray absorption edge and its corresponding electron orbital. 

K-edge 1s    

L-edge 2s 2p   

M-edge 3s 3p 3d  

N-edge 3s 3p 3d 3f 
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XAS can be broken down into two different regions, X-ray Absorption Near Edge 

Spectroscopy (XANES), which is the part of the spectrum that ranges from about 50 eV below 

the edge to about 50 eV above the edge; and Extended X-ray Absortion Fine Structure (EXAFS), 

which is the region of the spectrum that ranges from 50 eV above the edge up to about 1000 eV 

above the edge as shown in the following figure: 

 

Figure 3.14: Typical XAFS spectrum broken down into its different regions [31]. 

 

XANES probes the unoccupied subshells of an atom based on exciting core electrons, 

typically the K or L electrons, into an unoccupied shell of higher energy based on allowed dipole 

transitions, or ∆l = ±1, ∆j = ±1, and ∆s =0, where l is azimuthal quantum number, and j is the 
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total angular momentum quantum number. As the spin does not change, the electron must be 

excited into a shell with a different azimuthal quantum number. These selection rules are shown 

in the following table [30]: 

Table 3.3: Selection rules for core electron transitions. 

Initial State Final State 

S p 

P s, d 

D p, f 

F d, g 

 

The following figure shows the energy of the different x-ray absorption edges as a function of 

absorption intensities, which can also be considered as transition probabilities.   
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Figure 3.15: Visual representation of table 2, along with transition probabilities [34]. 

 

It should be stated that the absorption effect requires that the core electron be excited into 

an unoccupied state. So the 1s electrons must be excited into the lowest unoccupied p shell [30]. 

The experiments of this thesis are based around the 1s transition, or K-edge XAS.  



34 

 

XANES can yield large amounts of information pertaining to the oxidation state of 

valence electrons, as well as vacant shell and electron densities. The edge will shift upward in 

energy with higher oxidation states due to the fact that as more valence electrons contribute to 

bonding, their shielding effect on the nucleus becomes less pronounced, causing the bond length 

to decrease. The energy required to excite core electrons into the continuum will increase as 

1/R
2
, causing the edge energy to increase. The intensity of specific XANES features can also 

yield information about the electron densities of given orbital. 

 Whereas XANES is sensitive to the electronic environment of the absorbing atom, such 

as oxidation state and electron densities, EXAFS is sensitive to local structure and molecular 

coordination. XANES is a phenomenon based on multi-pathway scattering of the excited core 

photoelectron wave off of its nearest neighbors, since the photoelectron wavelength is greater 

than the distances of the nearest neighbors. This allows for multiple scattering events before 

returning to the absorbing atom. Because of this, though structural information is present in the 

spectrum, it is very difficult to properly model. EXAFS on the other hand, is based off of single 

path scattering off of the nearest neighbors of the absorbing atom, since the wavelength 

approaches and becomes greater than that of the nearest neighbors [35]. This is demonstrated in 

the following figure. 
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Figure 3.16: Diagram depicting the difference between the scattering that leads to the different 

types of the XAFS spectrum [35]. 

 

 The EXAFS spectrum is the result of a core electron being excited into a vacant shell, 

causing it to be emitted as a photoelectron with energy of 

                        Equation 3.26 

 Where E is the energy of the exciting x-ray, E0 is the binding energy of the core electron, pe is 

the momentum of the electron, and me is the electron rest mass. Due to the wave nature of the 

photoelectron, its wavelength can be expressed by the following: 

           Equation 3.27 

This photoelectron back scatters off of a neighboring atom, and is reabsorbed by the absorbing 

atom. When this occurs, it perturbs the valence electrons, slightly changing the absorption 

coefficient. This slight perturbation changes the energy of the next photoelectron emitted. Due to 

the wave nature of the photoelectrons, the emitted photoelectrons will interfere with the scattered 
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photoelectrons; constructively if the waves are in phase, and destructively if they are out of 

phase, as illustrated in the following figure: 

 

Figure 3.17: Diagram visualizing the phenomenon that leads to the EXAFS effect [35]. 

 

 Due to the wave nature of the photoelectron, it is more useful to convert the energy spectrum 

into k space, where k has the units of 
-1

, and can be expressed by the following: 

                  Equation 3.28 

The photoelectron wave must travel a distance of 2Ras, or 2Ras/λe wavelengths, corresponding to 

a phase shift of: 
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                        Equation 3.29 

Here, Ras is the distance between the absorbing atom and the scattering atom. This is the phase 

difference between the absorbing and scattering atoms, but the scatter event also creates a phase 

shift in the photoelectron wave that must be accounted for. This phase shift, δ(k), is based off of 

the structure factor of the atom. Correcting for this gives a total phase shift of the photoelectron 

wave as: 

       Equation 3.30 

 The analysis of XANES is mostly qualitative in nature, though electron density of states 

can be calculated, whereas EXAFS can be physically modeled. The EXAFS region can be 

represented by the following function: 

                         Equation 3.31 

Here,  is the interference modified absorption coefficient at a specific energy,  is the 

background absorption coefficient of just the lone absorbing element, and  is the change in 

absorption across the edge and is used for normalization.  

To derive , Fermi’s golden rule must be used [30], but for the purpose of this thesis, 

I will skip the derivation. After applying the golden rule, and correcting for inelastic scattering, 

the EXAFS equation becomes: 

                    Equation 3.32 
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Where j is represents the individual coordination shell of identical atoms at approximately the 

same distance from the absorbing atom, N is the coordination number, or the number of nearest 

neighbors, σ
2
 is the mean-square displacement in the bond distance R. δ(k) has been explained 

earlier in this thesis, and f(k) is the structure factor that determines the intensity of a scattered 

photoelectron wave and is based on atomic arrangements and electron densities of the 

neighboring atoms. A correction needs to be added in order to account for inelastic scattering off 

of the neighboring atoms.  

As this is a summation over the different distances for each coordination shell, a Fourier 

transform must be performed in order to extract information about the distances to each of the 

nearest neighbors. There is no direct way to fit the data to known databases as in x-ray 

diffraction data, thus, in order to extract information about your system, different models must be 

created and compared to experimental data in order to extract information from the EXAFS 

equation. The structure factor f(k) and phase shift factor δ(k) can be determined from x-ray 

crystallographic data, the coordination number N can also be extracted from crystallographic 

data, and the values R and σ can be determined by systematically generating different models 

using different values and comparing the results to experimental data.  

Because of its ability to extract information about both oxidation and electron densities, 

as well as the ability to extract local structure information, XAS is a very powerful tool that can 

be used to extract extremely useful information in systems that are difficult to probe with other 

techniques.  
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Chapter 4 

Experimental Section 

4.1 High Pressure X-ray Absorption Spectroscopy Experiment  

The first stage of my studies consisted of conducting a high pressure X-ray Absorption 

Spectroscopy (XAS) experiment. A panoramic-style diamond anvil cell with a beryllium gasket 

pre-indented to 50 , and laser drilled with a 120  hole. This hole was then loaded with a 

1:1 ratio (by mass) mixture of potassium tetrafluoroborate (Sigma-Aldrich >99%) and cesium 

fluoride (Sigma-Aldrich 99%) under an argon atmosphere. It should be noted that cesium has an 

absorption length of 192 microns at its K-edge of 35985 eV. It was decided that ensuring a small 

enough hole size to allow for higher pressure to be achieved was crucial, and that a hole diameter 

of 120 μm would still allow for about 50% absorption across the K-edge, yielding a high enough 

signal to noise for analysis. Adding in KBF4 decreased the effected cesium containing sample 

length, but initial testing still showed a 50% absorption across the edge. A small 20 , 

thermally relieved ruby sphere was placed in with the sample for pressure measurments. The cell 

was sealed and pressurized to 3 GPa in order to seal the mixture for irradiation, and allow for the 

formation of F2. The mixture was then irradiated at the 16 BM-B beamline at the Advanced 

Photon Source of Argonne National laboratory. “White” x-ray radiation in the 10 – 70 keV 

energy range was used to decompose the KBF4 to produce molecular fluorine [15] to be used for 

reaction with the CsF to synthesize the novel CsFn stoichiometric species. The sample was 

placed into the path of an unfocused 80 by 80  x-ray beam for approximately 8 hours.  
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The cell was then pressurized to 16 GPa and placed in the sector 16 BM-D beamline at 

the Advanced Photon Source of Argonne National Laboratory for x-ray absorption studies. The 

cell was placed perpendicularly to the beam path so absorption measurements could be made 

through the gasket along the length of the sample. A focused 8 μm by 8 μm monochromatic x-

ray beam centered at the 35.985 KeV Cs k edge was used to probe the sample. The 

monochromator was scanned from 400 eV below the edge to 800 eV above the edge. The 

monochromator energy resolution was set to 4 eV up to 20 ev below the line, 1 eV from 20 eV 

below to 50 eV above the edge, 2 eV from 50 eV to 200 eV above the edge, and then 8 eV from 

200 eV to 800 eV above the edge. Photon counting was done pre and post sample using ion 

chambers filled with a mixture of argon and xenon gas for initial and final x-ray intensity 

measurements. Measurements were made at 16, 53, and 69 GPa. Seven scans were performed at 

the three different pressures for signal averaging purposes. 

The second study consisted of a high pressure XAS experiment of CsF (Sigma-Aldrich 

99%)  in order to have a comparison with the x-ray photochemistry experiment. A panoramic-

style diamond anvil cell with a beryllium gasket pre-indented to 50  and laser drilled with a 

120  hole was used. The hole was then loaded with cesium fluoride (Sigma-Aldrich 99%) 

under an argon atmosphere.  A small 20 , thermally relieved ruby sphere was placed in with 

the sample for pressure measurements. The cell was pressurized to 2.7 GPa in order to ensure the 

sample was in its low pressure f.c.c. NaCl phase. The cell was placed perpendicularly to the 

beam path so absorption measurements through the gasket along the length of the sample could 

be made. A focused 8 μm by 8 μm monochromatic x-ray beam centered at the 35.985 keV Cs k 

edge was used to probe the sample. The monochromator was scanned from 400 eV below the 

edge to 800 eV above the edge. The monochromator energy resolution was set to 4 eV up to 20 
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eV below the edge, 1 eV from 20 eV below to 50 eV above the edge, 2 eV from 50 eV to 200 eV 

above the edge, and then 4 eV from 200 eV to 800 eV above the edge. Photon counting was 

performed pre- and post= sample using ion chambers filled with a mixture of argon and xenon 

gas for initial and final x-ray intensity measurements. Measurements were made at 2.7, 12.6, 25, 

43, 55, and 68 GPa. Three scans were performed at the different pressures for signal averaging 

purposes. 

The third absorption experiment consisted of a high pressure XAS experiment in order to 

repeat the first experiment, and attempt to obtain better data for fitting and modeling purposes. A 

Mao-Bell style diamond anvil cell with a beryllium gasket pre-indented to 50  laser drilled 

with a 120  hole was loaded with a 1:1 ratio by mass mixture of potassium tetrafluoroborate 

(Sigma-Aldrich >99%) and cesium fluoride (Sigma-Aldrich 99%) under an argon atmosphere.  A 

small amount of gold powder (Sigma-Aldrich 99.999%) was placed with the sample for pressure 

measurments. The cell was sealed and pressurized to 3 GPa in order to seal the mixture for 

irradiation, but still keep the CsF in its B1 phase. A standard was also prepared at the same time. 

CsF was pulverized using a mortar and pestle into a fine powder and placed in Kapton® tape to 

protect it from contact with the atmosphere. The mixture was then irradiated at the sector 16 ID-

B beamline at the Advanced Photon Source of Argonne National laboratory. Monochromatic x-

ray radiation of wavelength 0.406626 A (30.491 keV) was used to decompose the KBF4 to 

produce molecular fluorine which was then used for reaction with the CsF to synthesize the 

novel CsFn compounds. The sample was placed into the path of a focused 8 by 12  x-ray 

beam for approximately 12 hours.  
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The cell was then placed in the 16 BM-D beamline at the Advanced Photon Source of 

Argonne National Laboratory. The cell was placed perpendicularly to the beam path so 

absorption measurements through the gasket along the length of the sample could be made. A 

focused 6 μm by 10 μm monochromatic x-ray beam centered at the 35.985 keV Cs K-edge was 

used to probe the sample. The monochromator was scanned from 400 eV below the edge to 800 

eV above the edge. The monochromator energy resolution was set to 4 eV from 400 eV to 20 eV 

below the edge, 1 eV from 20 eV below to 50 eV above the edge, 2 eV from 50 eV to 200 eV 

above the edge, and then 4 eV from 200 eV to 800 eV above the edge. Photon counting was 

accomplished pre- and post-sample using a mixture of argon and xenon gas filled ion chambers 

for initial and final x-ray intensity measurements. Measurements were made at 3, 16, 36, 46, 58, 

64, 70 GPa, and then at 2.5 GPa post decompression from 70 GPa. Seven scans were performed 

at each of the different pressures for signal averaging purposes. Scans were also recorded of the 

standard pre- and post- experiment in order to test energy reproducibility of the monochromator, 

and to verify any shift in the spectrum edge.  

4.2: Raman Spectroscopy Experiment 

For the first Raman experiment, the cell from the third XANES experiment was used.  

Raman spectra were acquired using a Coherent® diode-pumped laser operating at 532 nm with a 

Triax 550® series spectrometer coupled to a Princeton Instruments® Peltier cooled charge 

coupled device (CCD) detector in the Raman facility at HP-CAT. The Raman spectrometer 

instrumental resolution was approximately 1 cm
−1

. A 55:45 Transmission : Reflectance pellicle 

beam splitter was used to reflect the excitation source down along the collection axis. The light 

was focused down to an ~5 µm spot on the sample confined within the DAC containing ultra low 

fluorescence diamonds using a Mitutoyo 20x microscope objective with a working distance of 
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approximately 3 cm. Scattered light was then collected and collimated by the objective and sent 

back down the axis of excitation. A 92:8 pellicle beam splitter was used to reflect a small amount 

of light to a lens that focused the visible light onto a CCD camera based viewing system. The 

remaining scattered light was allowed to transmit through the two pellicles and was collected by 

a lens, which focused the scattered light onto a 150 µm vertical slit. The scattered light was then 

diffracted from an 1800 mm
-1

 diffraction grating blazed for optimum transmission in the visible 

range. The light was then collected by a focusing mirror, which focused the dispersed light onto 

a Peltier cooled CCD for imaging. The Raman spectrometer instrumental resolution was ~1 cm
-1

.  

The first Raman spectra was taken after the cell had been pressurized to 70 GPa and 

decompressed back down to 2.5 GPa. The sample was extremely fluorescent due to both x-ray 

irradiation damage, and strain to the molecular structure due to high pressure, causing 

delocalization of the electron structures within the bond. A single spectrum was acquired that 

was of acceptable quality, though spectra were acquired from multiple locations.  

A second Raman experiment was performed at the Pravica group Raman facility at 

UNLV.   The laser power source consisted of a Spectra Physics® Ar ion laser tuned to 514.5 nm 

laser line set at 100 mW (20 mW at the sample).  A Jobin Yvon U1000® spectrometer utilizing 

the Czerny-Turner diffraction configuration, dispersed the scattered light which was then stored 

via an ISA Instruments Spectrum One® detector. The excitation configuration was a 180⁰ 

backscattering configuration. 

The collection configuration consisted of a laser bandpass filtration cube tuned to 514.5 

nm that is used to filter out plasma lines emitted from the laser that are close to the laser line. A 

55:45 Transmission:Reflectance pellicle beam splitter was used to reflect the excitation source 

further down the collection axis. The light was focused down to a ~2 µm spot on the sample 
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confined within the DAC containing ultra low fluorescence diamonds using a Mitutoyo 10x 

microscope objective with a working distance of approximately 3.5 cm. Scattered light was then 

collected and collimated by this objective and reflected down the axis of excitation. A 92:8 

pellicle beam splitter was used to reflect a small amount of light to a lens that focused the visible 

light onto a CCD camera based viewing system. The rest of the scatterered light was allowed to 

transmit through the two pellicles and was collected by a lens, which focused the scattered light 

onto a 150 µm vertical slit. The scattered light was then diffracted from a 1800 mm
-1

 diffraction 

grating blazed for optimum transmission in the visible range. The diffracted light was then 

collected by a collimating mirror and reflected onto a second grating of the exact same 

configuration. This doubly diffracted light was then collected by a focusing mirror, which 

focused the dispersed light onto a liquid nitrogen cooled CCD for imaging. The Raman 

spectrometer instrumental resolution was ~1 cm
-1

.    The Rayleigh scattered light was filtered 

using a Kaiser optics® 514.5 nm holographic notch filter with a bandwidth of ~300 cm
-1

.  

Acquisitions typically required 60 sec to complete. A Mao-Bell style diamond anvil cell was 

used along with a 300 μm thick stainless steel gasket was used to pressurize and confine the 

sample.  The diamonds used each had a culet diameter of ~300 μm and were ultra low 

fluorescence type Ia quality. The sample-confining gasket was preindented to ~50 μm thickness 

and a sample hole of diameter 100 μm was drilled via electric discharge machining. CsF (Sigma-

Aldrich 99%) and a 10 μm ruby sphere used for pressure calibration were loaded into the sample 

chamber under an argon atmosphere and pressurized to 2.5 GPa in order to match the 

experimental parameters in the previous experiment. Raman spectra were then taken in order to 

get a reference of CsF. Once spectra were acquired, the cell was disassembled, cleaned, and then 

reloaded with KBF4 in order to obtain similar reference spectra.  
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4.3: High Pressure X-ray Diffraction Experiment 

A high pressure x-ray diffraction experiment was performed on CsF (Sigma-Aldrich 

99%) in order to ascertain its high pressure behavior at the pressures that we were attempting in 

the chemistry experiment. A Mao-Bell style diamond anvil cell mounted with double beveled 

diamonds each with 150 μm culets was used. A rhenium gasket pre-indented to 15  was laser 

drilled with a 70  hole was loaded with cesium fluoride (Sigma-Aldrich 99%) under an argon 

atmosphere.  A small amount of gold powder (Sigma-Aldrich 99.999%) was placed in with the 

sample for pressure measurements. No pressure transmitting medium was used in order to 

attempt to best match the non-hydrostatic conditions in the chemistry experiment. The cell was 

pressurized to 1.9 GPa in order to ensure that the sample was in its low pressure f.c.c. NaCl 

phase. Diffraction patterns were acquired at the advanced photon source sector 16 ID-B beamline 

using a high speed Pilatus® silicon semi-conductor based detector. Monochromatic x-rays of 

wavelength 0.406626 Å were used, and diffraction patterns were acquired for 60 seconds at each 

pressure. Multiple pressure points were taken up to the maximum pressure of 120 GPa. A pattern 

of the ambient standard was also taken in order to determine an accurate 0 GPa volume.  

X-ray diffraction was also conducted alongside the XAS measurements at the Advanced 

Photon Source sector 16 BM-D beam line. After each absorption measurement, the diamond 

anvil cell was rotated by 90º and the argon/xenon ion chambers were removed in order to allow 

the x-rays to transmit through the diamonds along the axis of least strain in the sample. The 

monochromator was then tuned to a wavelength of 0.4264 Å, and diffraction patterns were taken 
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using a Mar345® image plate. The Mar345® image plate functions via a photo-sensitive 

phosphor that is capable of storing x-rays by its ability to have electrons pumped from the 

valence band into the conduction band where they can remain for hours to days. Red laser light 

stimulates the electrons back from into the valence band causing a blue photon to be emitted. 

This blue photon is read by a photomultiplier, giving a count proportional to the number of x-

rays absorbed [36]. Each pattern was recorded for 120 seconds, after which the experimental 

configuration was reset for the next XAS measurement.  
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Chapter 5 

Results and Discussion 

5.1 Initial High Pressure X-ray Absorption Spectroscopy Experiment on Irradiated 

Mixture of Cesium Fluoride and Potassium Tetrafluoroborate 

 Once we successfully released molecular fluorine via the x-ray decomposition of KBF4 

(as shown in Figure 2.1), we utilized this technique to provide excess fluorine to react with CsF 

in order to potentially form novel CsFn (n>1) compounds at high pressure. My first attempt to 

synthesize a novel CsFn compound showed promising results.   

 

Figure 5.1: XANES spectra of mixture of CsF and KBF4 from first experiment showing clear 

changes to the XANES spectrum at 70 GPa.  
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A systematic increase in the absorption coefficient from 16 to 53 GPa demonstrates a 

progressive increase in vacancies within the 5p orbital. This has been shown to occur in pure 

cesium under pressures above 3 GPa [19] and was discussed earlier in this thesis.  At 70 GPa, 

which was post reaction, it can be seen that the white edge intensity drops quite dramatically, and 

the XANES feature shifts upward by approximately 20 eV. This observation, coupled with the 

drop in the first two low k EXAFS features of about 15 eV, showed strong evidence of novel 

chemistry occurring. This dramatic change can also be observed in Figure 5.2.  In the 

transformation into k space, there is a shift up in wavenumbers between 16 and 53 GPa, which 

correlates to a shift down in the R space of the coordination shells; following a dramatic shift 

downward in wavenumbers at 70 GPa, attributing to a shift upward in R space of the 

coordination shells. 
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Figure 5.2: k-space transformation of low k EXAFS of data in figure 23 weighted by k
2
 (top) 

and the magnitude of its Fourier transform into radial space (bottom). 

 

Evidence of this possible chemical reaction can also be observed visually in Figure 5.3. 

Visible changes also occurred within the sample chamber of the x-ray photochemistry 

experiment that occurred after pressurizing to 70 GPa. The sample went from being a white 

semi-translucent color, to dark brown, providing further evidence for a chemical change in the 

sample 
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Figure 5.3: Image of irradiated mixture of CsF and KBF4 pressurized to 70 GPa. 

 

 5.2: High Pressure X-ray Absorption Experiment of Pure Cesium Fluoride 

 In order to verify that the changes observed in the XAS spectrum of the irradiated 

mixture of CsF and KBF4 were unique to the mixture and not a result of the CsF by itself, a 

baseline high pressure XAS experiment of pure CsF was performed up to 68 GPa. A systematic 

increase in both the absorption edge intensity that was seen in section 5.1, as well as a systematic 

increase in the low k EXAFS features, attributed to a systematic decrease in the intermolecular 

distances can be seen in figure 5.3. Though subtle, the phase transition from the B1 NaCl phase 

of CsF to the B2 CsCl phase occurs between 2.7 and 12.6 GPa.  



51 

 

 

Figure 5.4: Low k XAS spectrum of pure CsF up to 68 GPa. 

 

 Modeling was performed courtesy of Dr. Ning Chen from the Canadian Light Source on 

the XANES data and low k EXAFS data in order to extract interatomic distances and unit cell 

parameters. Crystallographic data was used from the Inorganic Crystal Structure Database 

(ICSD) to extract structure factor information for modelling purposes. Figure 5.5 shows the best 

fit models to experimental data. Ab initio based calculations using the FDMNES® calculation 

package was used for modelling the XANES data. Figure 5.6 shows the best fit models to the 

low k EXAFS experimental data modeled using the FEFF® calculation package. 



52 

 

 

Figure 5.5: DFT based FDMNES® models that best fit to experimental XANES data courtesy 

of Dr. Ning Chen from the Canadian Light Source. 
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Figure 5.6: DFT based FEFF® models that best fit to experimental low k EXAFS data courtesy 

of Dr. Ning Chen from the Canadian Light Source. 

 

From the best fit models, the EXAFS equation could be solved, extrapolating out the unit 

cell parameter ‘a’ for the B2 CsCl phase of CsF, as well as the interatomic distances for the first 

and second coordination shells around the absorbing cesium atoms. This information is displayed 

in Figure 5.7 and tabulated against the values given in the ICSD in Table 5.1.  
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Figure 5.7: Calculated interatomic distances between the absorbing cesium atom and its nearest 

neigbor, and its nearest nearest neighbor (top) and the calculated unit cell parameter ‘a’ (bottom) 

for the CsF B2 phase as determined from the models in Figure 27. 
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Table 5.1: Summary the XANES modeling result for low and high pressure CsF phases. 

 Space 

group Pressure (GPa)   a Cs-F Cs-Cs Cs-Cs Cs-F Cs-Cs 

fm-3m 

44288-ICSD  6.12 3.06 4.32 n/a 5.30 6.12 

2.7GPa 5.66 2.83 4.00 n/a 4.90 5.66 

pm-3m 

61563-ICSD  3.39 2.94 3.39 4.79 5.62 5.87 

12.6GPa 3.28 2.84 3.28 4.64 5.44 5.68 

25.0GPa 3.18 2.75 3.18 4.50 5.27 5.51 

43.0GPa 3.02 2.62 3.02 4.27 5.01 5.23 

55.0GPa 2.99 2.59 2.99 4.23 4.96 5.18 

68.0GPa 2.97 2.57 2.97 4.20 4.93 5.14 

 

 In Figure 5.7 and Table 5.1, it is evident that pure CsF does not undergo any type of 

phase transition, electronic or structural, beyond its initial transition from B1 to B2 at 4.7 GPa, 

lending further evidence to the possibility of novel chemistry in the experiment discussed in 

section 5.1.  
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5.3 Second High Pressure X-ray Absorption Experiment on Irradiated Mixture of Cesium 

Flouride and Potassium Tetrafluoroborate 

 A second attempt to synthesize novel CsFn compounds was performed to both verify that 

the chemical reaction occurred in the same pressure range as the first experiment, as well to as 

attain more pressure points for a better understanding of the reaction.  

Figure 5.8 shows the dramatic change in the XAS profile between 58 and 64 GPa. When 

comparing the XAS spectrum of the B1 fm3m phase of pure CsF and the XAS spectrum of the 

sample post reaction which suggests that the sample underwent a coordination change into a 

structure similar to that of the B1 phase of CsF. The primary differences observed are a slight 

downshift in energy of the features labeled B and C in Figure 5.8, as well as a slight difference in 

the XANES feature labeled A.  

 

Figure 5.8: Low k XAS spectrum of a mixture of CsF and KBF4 irradiated at 3 GPa, pressurized 

to 64 GPa and decompressed to 2.5 GPa. 



57 

 

 The similarities between the data of the low pressure phase of CsF and the data above 58 

GPa can be seen more vividly in the k space and R space transformations in Figure 5.9. The 

similarities between the standing wave behavior in the 3 GPa data of the pure CsF pre-reaction 

and the 64 GPa post reaction suggests that the compound formed at 64 GPa has a similar local 

coordination to that of the B1 phase of pure CsF with slightly larger distances between nearest 

neighbors, seen by the downshift in wavenumbers of the standing waves (5.9 top) and the slight 

increase in radial distances of the coordination shells (5.9 bottom). In order to verify the validity 

of the transformation from k space into R space, a reverse Fourier transform was performed on 

the radial data and plotted against the k space data. Figure 5.10 shows that each data point back 

transforms accurately, demonstrating the validity of the data in figure 5.9. It also appears that this 

reaction is irreversible based on the nearly identical spectra taken at 64 GPa and 2.5 GPa (post 

decompression).  
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Figure 5.9: k-space conversion of data in figure 5.8 weighted by k
2
 (top) and the magnitude of 

its Fourier transform into radial space (bottom). 
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Figure 5.10: Reverse Fourier transforms of the R-space data shown in Figure 5.9 (bottom) 

plotted against the k-space transforms in Figure 5.9 (top). 
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  As briefly discussed in section 5.1, pure cesium metal exhibits systematic spd 

hybridization under pressure via broadening of the 5p and 6s orbitals. This broadening leads to 

an overlapping of the 5p and 6s orbitals wavefunctions and a promotion of electron densities into 

the vacant 5d orbital. This hybridization effectively allows the 5p electrons to be utilized in 

bonding, leading to the formation of the CsFn compounds. Figure 5.11 displays the systematic 

increase of vacancies in the 5p orbital of cesium, as well as a systematic broadening of the 

energy of the 5p orbital. There is an abrupt drop in the XANES edge intensity across the reaction 

at 64 GPa which suggest a sudden rise in electron density within the p orbital. This phenomenon 

can possibly be explained by the filling of the shell via the bonding with additional fluorine.  

  

Figure 5.11: XANES spectrum of each pressure point in the second mixture experiment showing 

continuous increase in the XANES and low k EXAFS profile up until the onset of the reaction at 

64 GPa.  
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 In order to give further credence to novel chemistry occurring above 58 GPa, a model 

was created using crystallographic data obtained via x-ray diffraction of CsF to show that the 

XAS data in the mixture was still that of pure CsF at 58 GPa; this is shown in Figure 5.12. A 

model was also created of pure CsF at 67 GPa and compared to the experimental data of the 

mixture at 64 GPa, showing that our sample was no longer pure CsF; this is shown in Figure 

5.13. 

 

Figure 5.12: XAS experimental data of mixture plotted against the modeled XAS data using 

structural values determined in x-ray diffraction experiment showing that, at 58 GPa, the 

absorbing was still CsF and not a new compound. 
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Figure 5.13: XAS (top) and low k EXAFS (bottom) Experimental data of the mixture of CsF 

and KBF4 at 64 GPa plotted against a model of pure CsF based on diffraction data at 64 GPa. 

 

 Based on the similarities between the XAS spectra at 3 GPa and 64 GPa, we 

hypothesized that CsF2 may have been synthesized in a CaF2 structure. CaF2 is an fm3m 

structure [37], similar to that of the B1 phase of CsF, this similarity is presented in Figure 5.15. 
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Figure 5.14 shows models of CsF2 created based off of the CaF2 unit cell. Though the XAS data 

fits nicely to the experimental data at 64 GPa, models show that the best fit is with a unit cell 

parameter ‘a’ of approximately 7 Å, which is approximately 40 % larger than the 5.4 Å that was 

predicted by DFT calculations. This discrepancy can be explained by the fact that the reaction 

was incomplete, as shown via x-ray diffraction data in section 5.4. It is possible that, though the 

local coordination formed in the CaF2 structure, the lattice was highly strained due to the 

conditions it was synthesized. Despite this discrepancy, the similarities in k and R space 

transforms of the experimental data still suggest a highly cubic structure. This along with the 

XANES behavior across the reaction gives good evidence for the formation of CsF2.  

 

Figure 5.14: Experimental XAFS data of the mixture of CsF and KBF4 modeled against the 

theoretical CsF2 compound in the CaF2 structure, showing the best fit data to be of a unit cell 

parameter ‘a’ of approximately 7 Å. 
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Figure 5.15: Graphical representations of the CsF2 unit cell (left) and the B1 phase of the CsF 

unit cell, created by VESTA. 

 

5.4: X-ray Diffraction study of Mixture of Cesium Fluoride and Potassium 

Tetrafluoroborate at 64 GPa 

 As evident in Figures 5.15 and 5.16, the diffraction patterns of the mixture, post reaction, 

are extremely convoluted and difficult to interpret. The peaks can be explained somewhat by 

mixing the theoretical diffraction patterns for CsF2, CsF, KBF4, and gold. However, there are 

some areas, primarily in the low and high 2θ that do not match up very well. This may be due to 

the extremely non hydrostatic conditions the cell was under, along with the incomplete nature of 

the reaction leading to the formation of CsF2. It should be noted that, though gold can react with 

fluorine to form gold pentafluoride (AuF5), this reaction only occurs under high temperature 

conditions, and the diffraction pattern shows that this reaction did not occur via the pristine gold 

diffraction peaks. 



65 

 

 

Figure 5.16: X-ray diffraction pattern of mixture of CsF and KBF4 at 16.5 GPa showing 

presence of pure CsF in B2 CsCl phase. 

 

Figure 5.17: X-ray diffraction pattern taken of the mixture of CsF and KBF4 at 64 GPa along 

with patterns of potential compounds modeled via Powdercell®  
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Figure 5.18: X-ray diffraction pattern taken of the mixture of CsF and KBF4 at 64 GPa along 

with patterns of potential compounds modeled via Powdercell® without the KBF4 pattern. 

 

 Though CsF2 in the CaF2 structure fits to specific peaks with a unit cell parameter ‘a’ of 

6.075 Å, the diffraction data can not conclusively prove that this compound was formed due to 

the convoluted multiproduct nature of the chemistry experiment.  
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5.5: Raman study of Potential Novel CsFn Compound 

Raman spectra were recorded of the mixture of CsF and KBF4 post-decompression from 

70 GPa. All modes from the KBF4 disappeared, and a new mode appears at 125 cm
-1

, along with 

a shoulder at 164 cm
-1

. Comparison spectra were taken of a fresh mixture of CsF and KBF4 

compressed to 3.1 GPa and of pure KBF4 compressed to 2.3 GPa. An ambient spectrum of pure 

CsF was also taken as a reference, and all spectra are shown in Figure 5.17. It should be stated 

that due to the symmetry of the NaCl and CsCl phases, there is no change in polarizability in 

CsF, therefore it has no active standard Raman modes to the first order. This can also be 

observed in Figure 5.17. 

 

Figure 5.19: Raman spectra of the mixture of KBF4 and CsF at 2.5 GPa decompressed from 70 

GPa showing new modes as compared to control spectra. 
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 Figure 5.18 depicts the potential infrared vibrational modes of the different CsFn 

compounds determined via DFT calculations. The active vibrational mode for CsF2 lies at 

approximately 185 cm
-1

, which is slightly higher than the modes shown in Figure 5.17. I believe 

that this is due to the fact that the DFT calculations were based off of the theoretical prediction 

that CsF2 would form as a molecular solid similar to XeF2. Despite the theoretical predictions, I 

believe that the system formed a compound similar to that of CaF2, which was discussed further 

in sections 5.3 and 5.4. 

CaF2 has one primary phonon at approximately 300 cm
-1

. as cesium is approximately 3 

times more massive than calcium, a simple argument can be made that its primary phonon would 

be on the order of  times lower in energy; this would place it at approximately 165 cm
-1

, 

which is near where the shoulder appears in the spectrum in Figure 5.17. It can also be noted that 

this compound was synthesized at pressures above 65 GPa in conditions that were far from 

hydrostatic, which can also lead to strain to the lattice and the bonds affecting the phonon energy 

as well. In CaF2, impurities can create other phonon modes as well, which can give an 

explanation for the mode at 125 cm
-1

. 
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Figure 5.20: The active infrared vibrational modes of the different species of CsFn compounds 

determined via DFT calculations. 
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5.6: Equation of State Measurements of Cesium Fluoride 

 X-ray diffraction studies of pure cesium fluoride were performed in order to verify the 

structural stability under high pressures, as well as to determine a non hydrostatic equation of 

state of its high pressure B2 phase. Figure 5.19 shows pure CsF being pressurized to 18.5 GPa, 

verifying its phase transition above 5 GPa. The phase transition appears to be sluggish to the 

mixed phases in the 5.11 GPa pattern. The sample was then decompressed to 3.91 GPa, showing 

that it did begin to return to its original phase with some hysteresis. The sample pressure was not 

lowered further for fear of exposing it to air and destroying the sample.  

 

Figure 5.21: X-ray diffraction patterns of pure CsF displaying the phase transition from B1 to 

B2 above 4 GPa, then decompress back to 3.91 GPa, showing hysteresis.  
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 A new sample of pure CsF was loaded along with a small amount of gold for more 

accurate pressure measurements and then pressurized to 115 GPa. Figures 5.20 and 5.21 show 

that, beyond its initial phase transition above 5 GPa, CsF remains in its B2 form up to at least 

115 GPa, though it is theoretically stable up to at least 2 Mbar [1]. 

 

Figure 5.22: X-ray diffraction patterns of pure CsF up to 115 GPa, showing that CsF remains in 

the B2 phase up to at least 115 GPa. 
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Figure 5.23: Same x-ray diffraction data from figure 5.20 focused around 64 GPa for 

comparison to XAS experiment. 
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Table 5.2: Tabulated cell refinement data used for equation of state calculations. 

 

 From Table 5.2 and Figure 5.21 it is apparent that, once corrected for atoms per unit cell, 

there is less than a 5% volume collapse across the phase transition from the B1 NaCl fm3m 

structure to the B2 CsCl pm-3m structure. The B1 phase has 8 atoms per unit cell, whereas the 

B2 phase has 2 atoms per unit cell. This small volume collapse across the phase transition can 

also be seen in the XAS data presented in Table 5.1. Though there is a sharp decrease of the unit 

cell parameter ‘a’ of approximately 50%, the interatomic distances show a smooth systematic 

decrease of across the phase transition. 

 

Pressure Volume Volume sigma V/V0 Phase corrected V/V0 sigma Phase corrected V/V0 

CsF B1 NaCl 
phase 

     0 219.46 0.0034 1 
 

0.000266147 

1.9 203.35 0.0198 0.926592545 
 

0.000262202 

CsF B2 CsCl 
phase 

     V0 (4.7 GPa) 47.91 0.186 0.21831 0.87323 
 9.8 39.43 0.0089 0.179668277 0.718673107 6.26375E-05 

16.2 36.17 0.0054 0.164813633 0.659254534 5.02298E-05 

26.4 33.65 0.0504 0.153330903 0.613323613 0.00023324 

36.7 31.47 0.0327 0.14339743 0.57358972 0.000153796 

50 29.65 0.0167 0.135104347 0.540417388 8.41377E-05 

57.4 28.81 0.0481 0.13127677 0.525107081 0.000221932 

67.1 27.61 0.0409 0.125808803 0.503235214 0.000189341 

75.1 27.08 0.049 0.123393785 0.493575139 0.00022567 

84.4 26.3 0.0391 0.119839606 0.479358425 0.000180987 

86.8 26.22 0.0258 0.119475075 0.477900301 0.000121772 

90.5 26.09 0.0439 0.118882712 0.475530848 0.000202515 

97.9 25.47 0.0368 0.116057596 0.464230384 0.000170496 

101.6 25.22 0.0412 0.114918436 0.459673745 0.0001902 

108.7 24.69 0.0523 0.112503417 0.45001367 0.00024018 

115.5 24.67 0.0422 0.112412285 0.449649139 0.000194596 

119.8 24.5 0.0464 0.111637656 0.446550624 0.000213499 
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Figure 5.24: Normalized volume as a function of pressure showing slight volume collapse across 

the B1 to B2 phase transition.  
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Figure 5.25: Normalized pressure (F) as a function of natural strain (fE), showing a linear 

dependence and therefore requiring a 3
rd

 order Birch-Murnaghan equation of state. 

 

 As described in section 3.7, in order to determine the order of Birch-Murnaghan equation 

of state to use to accurately represent your data, the normalized pressure as a function of natural 

strain, fE, must be plotted. Using the program EoSfit®, the normalized pressure and natural strain 

were calculated using the equations discussed in section 3.7 and plotted against eachother. Figure 

5.22 demonstrates that that this data has a linear relationship between the normalized pressure 

and the natural strain, suggesting that a 3
rd

 order Birch-Munaghan equation of state must be used 

to determine the ambient pressure bulk modulus. Figure 5.23 displays the experimental unit cell 

volume as a function of pressure, along with DFT calculated unit cell volumes and unit cell 

volumes determined from XAS experiments. DFT calculations give a bulk modulus of 31.84 
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GPa which agrees extremely well with the experimentally determined value of 29.75 ± 1.28 GPa. 

It can also be seen from Figure 5.23 that the values determined from the XAS experiments fall 

within 10% of the values determined from x-ray diffraction, showing a fairly good agreement 

between experiments. 

 

Figure 5.26: Experimental equation of state data compared to both DFT calculated data and 

volumes determined from XAFS data. 
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Chapter 6 

Conclusions 

 X-ray absorption spectroscopy was performed on an irradiated mixture of CsF and KBF4 

at pressures up to 70 GPa in an attempt to verify the synthesis of novel CsFn compounds. Readily 

evident changes to both the XANES and EXAFS spectra indicate that a possible new compound 

was synthesized at pressures above 60 GPa. Similarities in the XAS spectra of the new 

compound to the low pressure B1 phase spectra of pure CsF suggest that this new compound was 

formed in a cubic type structure, the most likely candidate is CsF2 in the CaF2 structure. DFT 

based modeling was performed on the XAS data in order to attempt to verify and learn about this 

potential new compound. It did appear to fit as CsF2 in the CaF2 structure, though the unit cell 

parameter ‘a’ was found to be 7 Å, approximately 40% bigger than the theoretical unit cell 

parameter of 5.4 Å. Despite this discrepancy, the similarities in the k and R space transforms of 

the XAS data suggest very similar local coordination’s between the new compound and the B1 

phase of pure CsF. Another possible compound synthesized in these experiments is KCsF2, 

based on the presence of the salt KF via the decomposition of KBF4. Adding in the cubic KF to 

the cubic unit cell of CsF via pressure could form a new cubic structure similar to that of KF and 

CsF, but with a potentially larger unit cell due to the presence of both K and Cs. Though this is 

one possible compound, further investigation and modeling is needed to verify either way.  

Though the XANES data did not clearly show a change in oxidation state, it did show that there 

is a definitive change to the electronic environment, as well as the coordination environment of 

the cesium atoms. Raman spectra were also taken of the sample showing new modes at 125 and 
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165 cm
-1

 in the mixture post decompression from 70 GPa, giving further evidence of novel 

chemistry. 

  X-ray diffraction of the mixture was recorded, but was extremely convoluted due to the 

remnants of multiple phases in the sample chamber post reaction. Though CsF2 could be fit to 

peaks in the patterns, there still remains too much uncertainty in the patterns to be able to 

definitively identify all of the potential species in the sample.  

 XAS was also performed on pure CsF up to 70 GPa to be used as a reference, and a 

verification that CsF does not undergo any such abrupt changes to its XANES or EXAFS 

spectra. It was shown that there is a systematic change to the interatomic distances in CsF across 

its phase transition from its B1 NaCl to B2 CsCl phase, and the change to the unit cell parameter 

‘a’ fits well with data obtained via x-ray diffraction. 

 X-ray diffraction was performed on pure CsF up to 115 GPa in an attempt to verify the 

stability of CsF at the pressures reached in the chemistry experiments, as well as to determine a 

non hydrostatic equation of state of the B2 phase of CsF. A 3
rd

 order Birch-Murnaghan equation 

of state was used to determine the bulk modulus of the B2 phase of CsF. A K0 of 29.75 ± 1.28 

GPa was calculated, which agrees very well with the theoretical prediction of 31.84 GPa.  
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