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ABSTRACT

Finite Strain Studies of Single Crystal Fe3P Under High Pressures

by

John William Howard

Dr. Lon Spight, Examination Committee Chair
Professor of Physics

University of Nevada, Las Vegas

Fe3P (synthetic schreibersite) is a phosphide occurring in iron alloys. Phosphorous

is often considered an undesired impurity causing brittleness. Conversely, in some

cases the addition of iron phosphides to certain materials is beneficial (e.g.properties

of certain frictional materials are enhanced). In terrestrial rock, we do not find Fe3P ,

although (Fe;Ni)3P (natural schreibersite) is found in nearly all iron-containing

meteorites. In this project, we examine the unit cell parameters of Fe3P as function

of pressure and derive the respective axial and bulk compressibilities. Both Vinet and

Birch-Murnaghan formulations were used to relate pressure and unit cell volume, and

a comparison of each prediction was made. Comparing to independent data collected

up to 62 GPa, no structural phase transitions were observed, and the sample remained

in a strained state after relieving applied pressure.
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CHAPTER 1

INTRODUCTION

In synthetic iron alloys, phosphorous is often considered an undesired impurity

causing brittleness [1]. Conversely, in some cases the addition of iron phosphides

to certain materials is beneficial (e.g. properties of certain frictional materials

are enhanced) [1, 2]. In terrestrial rock, we do not find Fe3P , although natural

schreibersite, (Fe,Ni)3P , is found in nearly all iron-containing meteorites. Meteoritic

(Fe,Ni)3P has an identical crystal structure to that of synthetic Fe3P [3], therefore

we expect many similarities in chemical and physical properties between the two

species.

Under proper high temperature conditions and stoichiometric proportions, syn-

thetic schreibersite (Fe3P ) can be produced using direct capsule synthesis (a catalyst

for solid diffusion) [1]. One can do this by placing correct proportions of iron and

phosphorous powders into a cylindrical compact, subjecting to high temperatures

(∼ 1200K) within a sealed quartz capsule, and annealing for ∼ 30 days. After

the first annealing, one can further homogenize the sample by milling the contents

and performing another annealing process. It has been shown [4] that the room

temperature crystal structure of Fe3P assumes space group I 4̄. Similarly, crystalline

Ni3P assumes the same space group, but with uniformly smaller unit cell parameters

[5].

Equations of state are known to be extremely valuable to scientists in many

different fields, most notably those pertaining to the engineering, chemical and

physical sciences. They give us insight on how systems behave under certain

conditions, or how systems evolve as certain state parameters are varied. A chemist

observing a reaction in laboratory, or a cosmologist developing a theory for inner

star dynamics find great use in applying an equation of state formalism to their

respective studies. In general, an equation of state is a three-parameter functional
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relating thermodynamic state parameters (such as energy, pressure, temperature, and

volume) in a specified environment. There are caloric and volumetric equations of

state, and in this thesis, we are interested in the latter, as the unit cell volume of the

crystal changes with pressure.

In this thesis, the compression behavior of Fe3P , synthetic schreibersite, at room

temperature was examined using x-ray diffraction methods. By analyzing x-ray

diffraction patterns of single crystal Fe3P , one can determine the unit cell parameters;

doing this at various pressures (and given temperature) one can obtain a relation

between the unit cell volume and the pressure, i.e. a pressure versus volume isotherm.

The following will briefly present some background information on Fe3P , and on the

theory of equations of state used in the present study.

Equations, such as the ideal gas law

PV = nRT, (1.1)

and Van der Waals’ equation of state(
P +

a

V 2
m

)
(Vm − b) = RT, (1.2)

are two examples describing how pressure, temperature and volume are related in

particular gaseous (and possibly, some liquid) environments [6]. If a state variable

(P, V, or T in these cases) were to change, one could infer the equilibrium response

of the system by applying such equations of state. It is important to note that

any equation of state may break down within the context of extreme conditions

i.e. extreme pressures, temperatures, magnetic field, etc. It is up to experiment

and theory to ultimately determine the conditions under which the aforementioned

equations are valid.

There also exist many equations of state pertaining to the liquid, solid and plasma

states of matter. Some notable examples are the Peng-Robinson equation for liquids
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(and real gases) [6]

P =
RT

Vm − b
− a(T )

Vm(Vm + b) + b(Vm − b)
, (1.3)

the 3rd order Birch-Murnaghan equation of state [7]

P (V ) =
3K0

2

[(
V0
V

) 7
3

−
(
V0
V

) 5
3

]{
1 +

3

4
(K ′0 − 4)

[(
V0
V

) 2
3

− 1

]}
, (1.4)

and an equation for ideal ion plasmas

Fid =
∑
j

NjkBT [ln(njλ
3
j/gj)− 1], (1.5)

adapted from [8]. In equation 1.5 the Fid term represents the free energy of the

system, which can in turn be used to calculate thermodynamic state variables of

interest , for example

P = −∂F
∂V

. (1.6)

Every equation of state is derived based on some physical assumptions. For the

case of volumetric equations of state of solids, one can use either the infinitesimal

or finite strain theories when discussing the elasticity of the material. Both theories

treat the solid as a continuum, but their difference lies in the treatment of derivatives

and products of derivatives. We define a strain as infinitesimal when the derivatives

of the position vectors relating the initial and strained portions of the volume are

small and their squares and products can be disregarded [9, 10]. Conversely, finite

strain theory deals with relatively large deformations and the squares and products

of the position vector derivatives cannot be neglected.

Based on finite and infinitesimal strain, there are two descriptions used in relating

the strained sample and the unstrained sample: these are known as the Eulerian and

Lagrangian descriptions respectively. The difference between the two descriptions is
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essentially due to the choice of coordinate system to relate the strained and unstrained

states of the sample. The Eulerian approach uses the coordinate system of the strained

sample, and the Lagrangian approach uses the coordinates of the unstrained sample.

In practice, we are usually observing the sample in the strained state, therefore the

Eulerian description more naturally suits the problem [10].

The case we are interested in is for a uniformly applied stress throughout the

volume of the sample. This is known as a hydrostatic pressure environment. Pressure-

volume relations derived using finite strain theory [10, 7] have provided reliable

agreement with experiments under hydrostatic conditions in modest pressure ranges

(on the order of several GPa), and will be discussed shortly.

As a first approximation, one can derive of an isothermal equation of state starting

from a simple definition of the bulk modulus. At constant temperature, we can relate

the bulk modulus to the volume derivative of the pressure, namely

KT = −V
(
∂P

∂V

)
T

. (1.7)

If we assume that KT is constant, we find that the density, ρ = mass
volume

∼ eP will

go to infinity as the pressure P goes to infinity. Quantum mechanics implies that

this result is unphysical for atomic matter, and that K must depend on pressure.

Approximating the bulk modulus K to be linearly dependent on pressure we find:

K (P ) = K0 +K ′0P. (1.8)

Plugging this into equation 1.7 and integrating each side we find that

m

V
= ρ = ρ0

[
1 +

K ′0
K0

P

] 1
K′0

(1.9)

where K0, K
′
0, and ρ0 = m

V0
are assumed to be constant. This equation can also be
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solved for the pressure as a function of volume, namely

P =

(
K0

K ′0

)[(
V0
V

)K′0
− 1

]
. (1.10)

This is known as the Murnaghan isothermal equation of state, named after F. D.

Murnaghan. This equation is not completely accurate, as the pressure dependencies

of K and K ′ predicted by this model (and models that assume linear pressure

dependence on K ′ as well) do not agree with observations [10]. Experiments tell

us that K and K ′ (as well as higher order derivatives) depend on pressure, and more

accurate models are necessary to justify observations [10, 11].

By applying finite strain theory, we can deal with the pressure dependence of K

and K ′ more easily. [10, 7] provides a detailed analysis of finite strain applied to cubic

solids, and the above result is readily obtained with appropriate approximations. In

practice we find much better agreement with experimental data using higher order

corrections. More detailed expressions for the pressure-volume relationship, derived

using finite strain considerations, will be presented below; these expressions were

compared to the experimental data collected for this thesis project.

A famous result derived in [10] is given by

P = a
(
f + 5f 2

)
(1.11)

where a = 3K0, f = 1
2
{
(
V0

V

)2/3 − 1}. The f 2 term is a correction to equation 1.10,

and we recover 1.10 by ignoring this term. Up to modestly high pressures (several

GPa) for various materials, this equation was shown to be fairly reliable. At higher

pressures, data tend to disagree with the predictions of the above equation, and more

sophisticated models [11, 7] give better agreements.

An isotherm derived by [7] (known as a Birch-Murnaghan isotherm) using finite

5



strain theory applied to a solid under hydrostatic stress is given by

P =
1

2

[(
V0
V

)7/3

−
(
V0
V

)5/3
][

C2 +
D3

2
−
(
D3

2

)(
V0
V

)2/3

+ · · ·

]
(1.12)

where C2 and D3 are constants relating to the bulk modulus and its pressure

derivative. This relation agrees well with experiments up to relatively high pressures,

and is more accurate than the expression in equation 1.11

Additionally a universal or Vinet equation of state for solids was proposed by [11]

using energy considerations of inter-atomic separation distances, and (at constant

temperature) is of the form

P (x) = 3K0(1− x)x−2 exp

[
3

2
(K ′0 − 1)(1− x)

]
(1.13)

where x = (V/V0)
1/3. This equation gives the best agreement over a wide array

of materials and up to higher pressures, as this model more accurately represents

the physical world. The exponential dependence in the Vinet equation reflects

characteristic interatomic repulsions, whereas the B-M is based on continuum

mechanics, which is not completely physical for the case of crystals. The B-M equation

is also limited by the fact that it is a truncated Taylor series, thus the predictions

are incomplete. We choose to use a Vinet isotherm for the fitting of data collected in

this experiment and compare with the predictions of the 3rd order Birch-Murnaghan

equation of state given by equation 1.4.

This introduction serves to inform one of equations of state and how scientists may

apply them to various situations. For this case, we want an equation of state evaluated

at room temperature (an isotherm). Using the results derived by [10, 7, 11], we

attempt fit the experimentally obtained compression data of Fe3P . X-ray diffraction

techniques were employed for determining the unit dimensions, therefore the unit cell

volume V , of Fe3P at various pressures. The following chapter will present some

essential theoretical framework regarding crystallography, elastic x-ray scattering and

6



diffraction. The experimental chapter will present and discuss the physical tools

used perform the experiment, and the analysis and results chapter will present the

data with applications of theoretical models developed within the document. The

discussion and conclusions chapter will emphasize the significance of the results found

in this thesis in addition to results found from independent researchers.
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CHAPTER 2

THEORETICAL BACKGROUND

Presented in this chapter are some fundamental theoretical considerations relevant

to crystal structures and x-ray diffraction studies. These include crystal symmetries,

Miller indices, the Bragg and Laue conditions, basics of x-ray scattering theory, among

several other important aspects relevant to the thesis topic.

2.1 Crystals and Symmetry

The study of the atomic/molecular ordering of matter is known as crystallog-

raphy. Modern crystallographic techniques, namely x-ray, neutron, and electron

diffraction, are used mainly for structure determination, electron density distributions,

and atomic positioning. Some common applications include structure determina-

tion/confirmation, inspecting a material for defects, and observing the evolution of

the structure in a changing local environment.

In crystalline materials, constituent atoms are periodically arranged within the

volume i.e. each atom in the crystal is positioned at a fixed distanced relative

to each of its nearest neighbors. In contrast to crystals are amorphous materials

where there is no periodic connection between the constituent atoms/molecules

(e.g. window glass and polystyrene are considered amorphous). In reality there

are two types of crystals: monocrystals (known as single crystals) and polycrystals.

A single crystal is a material whose entire sample volume has a periodic atomic

arrangement, whereas a polycrystal’s volume consists of many juxtaposed single

crystals. In polycrystals, the domains of single crystallinity are called crystallites

and the boundaries between these regions are called grain boundaries. Generally,

real single crystals have defects/irregularities which cause deviations from the strict

definition of a single crystal. In practice, defects can usually be accounted for and in

some cases are desired.
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Real single crystals found in nature can be anywhere from nanometers to meters

in length, although relatively large crystals are quite rare. It is also possible to ”grow”

crystals in the laboratory under sufficiently careful conditions. There are also liquid

crystals (flow like liquid, but molecules are ordered) and are found both in nature

(e.g. various proteins and enzymes) and technology (e.g. modern electronic display

screens). Figure 2.1 depicts a crystallographic reference system for atomic positions

in a crystal.

α
β

γ

b

c

a

FIGURE 2.1: A parallelepiped generated by the vectors a, b, and c. In some cases,
a, b, and c may be orthogonal (α = β = γ = π

2
), but it is not a requirement. The

parallelepiped represents the unit cell of a crystal, each unit cell being a building
block of the crystal lattice; the black circles represent the constituent atoms. The
magnitudes of vectors a, b, and c (a,b, and c) along with the angles α, β, and γ are
known as the unit cell parameters.

The vectors a, b, and c define the unit cell of the system; a linear combination of

the unit cell vectors, namely r = n1a + n2b + n3c where n1, n2, and n3 are integers,

describe a corner position of a unit cell in the crystal. The unit cell parameters (see

figure 2.3) , namely a, b, c, α, β, and γ, define the shape of each unit cell in the given

crystal. The function r described above can be used to generate a lattice spanned by

the unit cell vectors. Figure 2.2 shows a simple lattice consisting of eight unit cells,

with atoms at the corners of each unit cell.

Some lattices contain atoms at fractional multiples of the unit cell distances. For

example, a lattice may contain atoms at r = (m1a
2
, m2b

2
, m3c

2
), where m1,m2 and m3 are

9



a a
b

b

c

c

FIGURE 2.2: Depicted above is a lattice generated from 8 unit cells. Note how
contingent unit cells share atoms: 27 atoms comprising 8 unit cells in this case.

integers, in addition to the atoms at r = (n1a, n2b, n3c). There are other possibilities

as well, a total of 14 possible crystalline lattice types. This was first shown by the

French scientist Auguste Bravais in 1850 [12]; these are known as the Bravais lattices.

Each lattice belongs to one of the 7 crystal systems with a particular lattice centering.

Figure 2.3 shows the 7 crystal systems and 14 Bravais lattices.

The local atomic layout in any single crystal can be characterized by one of

the fourteen Bravais lattices. In addition to Bravais lattices, a crystal’s symmetry

is further characterized by its point group or crystal class. The point group is

a mathematical group of operations (known as symmetry operations) that may be

performed on the lattice that leave it unchanged. There are four types of symmetry

operations that pertain to point groups, namely reflection, inversion, rotation, and

improper rotation (this is a reflection following a rotation). The reflection operation

is performed with respect to a specific plane, and the improper rotation reflection

plane is perpendicular to the rotation axis. The term “point group” is used because

the operations are performed relative to a point (or set of points) in the lattice (e.g.

an inversion about a point, or a rotation axis containing multiple points). There are

a total of 32 point groups in all.

In addition to the 32 point groups, by including the translational symmetry

operation one can derive the 230 space groups. Symmetry operations such as ordinary

10



γ

αβ

a

b

c

Triclinic

a 6= b 6= c, α 6= β 6= γ 6= 90◦, 120◦

P

Monoclinic

a 6= b 6= c, α = γ = 90◦, β 6= 90◦, 120◦

P C

Orthorhombic

a 6= b 6= c, α = β = γ = 90◦

P C I F

Tetragonal

a = b 6= c, α = β = γ = 90◦

P I

Cubic

a = b = c, α = β = γ = 90◦

P I F

Hexagonal

a = b 6= c, α = β = 90◦, γ = 120◦

P

Trigonal

a = b = c, α = β = γ 6= 90◦, < 120◦

P

FIGURE 2.3: The 14 possible Bravais lattices among 7 crystal systems. Lattice
centerings: P-primitive, I-body-centered, F-face-centered, C-base-centered, R-
rhombohedral. Note some unit cells have atoms at fractional unit cell distances
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translations, a translation followed by a rotation (known as a screw axis), and a

translation followed by a reflection (known as a glide plane) are included within a

space group. It is common in the field of crystallography to refer to a material by its

space group as this contains all the necessary information regarding the long range

atomic symmetry in the sample. [12] gives a detailed overview of point groups and

space groups.

As mentioned above, once a space group for a material is established, one can

predict the long range order of the sample. In cases where the crystals are sufficiently

large, one can determine many of the symmetry elements by visual inspection. By

defining a reference system, one can check for various symmetry operations by rotating

the crystal and also by imagining an inversion operation about a point, or a reflection

about a plane. Crystals that are relatively small would need to be analyzed with a

reflection goniometer with an attached monocular, if plausible.

In addition to visual inspection, one can get a much more complete understanding

of a crystalline species using x-ray diffraction methods, as we are probing the sample

at the atomic level. We can observe and record the physical properties of many types

of crystals without extensive knowledge of the atomic makeup of the crystal. X-

ray diffraction allows us to analyze and determine the structure of a sample (atomic

distribution), which allows us to justify and predict observable macroscopic effects.

More on this will be discussed in following sections.

2.2 Reciprocal Lattice and Miller Indices

The reciprocal lattice is a mathematical construct useful in describing atomic or

crystal planes in crystals. Each point in the reciprocal lattice corresponds to a family

of real parallel planes, each equally spaced with respect to neighboring planes. In

practice, a crystal plane represents a two-dimensional net of atoms, all lying in the

same plane. The distance between planes, known as the d-spacing may be found

12



from the definitions of the reciprocal lattice, expressed in terms of the real lattice.

Therefore if we have an accurate representation of the reciprocal lattice we can,

within experimental error margins, determine the real lattice dimensions. The x-

ray diffraction section will discuss some of the practical applications of the reciprocal

lattice.

The spatial periodicity of a lattice can be defined mathematically by the relation

R(x) = R(x + n1a + n2b + n3c) (2.1)

where n1, n2, and n3 are integers and a, b, and c are the unit cell vectors of the

real lattice. By expanding the function R as a Fourier series, we may represent it as

R =
∑
h

Rhe
il·x. (2.2)

The periodicity of the lattice requires that R(x) = R(x + r), where r = n1a +

n2b + n3c. This means that the exponential factors of the function R must remain

the same if x is replaced by x + r, leading to the fact that r · h = m2π. Writing r

explicitly in component form, we find that a · h = 2πh1,b · h = 2πh2, c · h = 2πh3,

where h1, h2 and h3 are positive or negative integers or zero. The solution of these

three equations is

h = h1l1 + h2l2 + h3l3. (2.3)

The li vectors, which are reciprocal unit cell vectors that span the reciprocal space in

question, can be expressed in terms of the unit cell vectors, namely

l1 =
2πb× c

a · b× c
≡ a?, l2 =

2πc× a

a · b× c
≡ b?, l3 =

2πa× b

a · b× c
≡ c?. (2.4)
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As was mentioned in the beginning of the section, each point in the reciprocal lattice

represents a family of planes, each plane being separated by a constant distance. This

can be visualized by the equation

h · r = 2πm = 2π (n1h1 + n2h2 + n3h3) (2.5)

where m is some given constant. As was stated before, the various ni and hi must

be integers, therefore the constant m must also be an integer. 2.5 represents a plane

(known as a crystal plane) containing an infinite number of Bravais lattice points,

and the ni satisfying 2.5 for each given set of hi require that an infinite number of

planes be generated for the various integer values of the constant m. Therefore one

can conclude that for a given set of hi integers one can define an infinity of planes all

parallel and equally spaced apart, assuming an infinite real lattice to begin with.

The integers h1, h2 and h3 are known as the Miller indices and are of great practical

importance in crystallographic studies. In practice it is convenient to impose the

constraint that the Miller indices are mutually prime; this is done so there are not an

infinite number of sets of Miller indices describing the same family of planes. One can

relate the adjacent crystal plane separation, or d-spacing, from the Miller indices and

unit cell parameters [reference]. Each crystal system has a unique equation relating

the d-spacing to the Miller indices and unit cell parameters, cubic being the simplest,

triclinic being the most complex.

To derive the spacings between crystal planes, we first start with the distance

from an origin to a crystal plane, or 2πm
h

, and the adjacent plane 2π(m+1)
h

, and take the

difference, leaving d = 2π
h

[13].h is the vector from the origin to a point in reciprocal

space, labelled h(h1, h2, h3) = h1a
? + h2b

? + h3c
?. Starting with the definition of h

we have

h · h = (h1a
? + h2b

? + h3c
?) · (h1a? + h2b

? + h3c
?) (2.6)
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h2 = h21a
? · a? + h1h2a

? · b? + h1h3a
? · c? (2.7)

+ h2h1b
? · a? + h22b

? · b? + h2h3b
? · c?

+ h3h1c
? · a? + h3h2c

? · b? + h23c
? · c?

h2 = h21a
?2 + h22b

?2 + h23c
?2 + 2h2h3b

?c? cosα? (2.8)

+ 2h3h1c
?a? cos β? + 2h1h2a

?b? cos γ?.

We can put this in terms of real lattice parameters using the transformations given

in equations 2.4 and the figure 2.1. Doing this we find that

a? = 2πbc(sinα)/Vr (2.9)

b? = 2πac(sin β)/Vr

c? = 2πab(sin γ)/Vr

cosα? = (cos β cos γ − cosα) / (sin β sin γ)

cos β? = (cosα cos γ − cos β) / (sinα sin γ)

cos γ? = (cos β cosα− cos γ) / (sin β sinα)

where Vr = a·b×c = abc (1− cos2 α− cos2 β − cos2 γ + 2 cosα cos β cos γ)
1/2

.We can

plug these into h2, then take the square root of h2, and plug this into the equation

d = 2π
h

to find the spacing between parallel crystal planes belonging to the same

family. We label this spacing as d(h1, h2, h3). The most general case is the triclinic

case, where a 6= b 6= c and α 6= β 6= γ, and the expression for d(h1, h2, h3) is

quite complex. For simpler cases where there is greater symmetry, the expression for

d(h1, h2, h3) may be greatly simplified.

For the sample under investigation, the crystal symmetry is tetragonal. This
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means that α = β = γ = 900 and a = b, and we find that

d(h1, h2, h3) =
Vr

(h21a
2c2 + h22a

2c2 + h23a
4)

1/2
=

a2c

(h21a
2c2 + h22a

2c2 + h23a
4)

1/2
(2.10)

rewriting this in a more convenient and traditional form, namely 1/d2, we find

1

d2
=
h21 + h22
a2

+
h23
c2

(2.11)

for a crystal with tetragonal symmetry.

Applications of Miller indices and reciprocal space to the thesis topic will be

elucidated further in several of the following sections and chapters. The experimental

chapter will include how equation 2.11 directly applies to the determination of the

unit cell parameters from the experimental data.

2.3 X-ray Scattering and Diffraction

The phenomena of scattering and diffraction is well founded and may be applied

in any range of the electromagnetic spectrum. For the case of crystals, the scatterers

are electrons bound to atoms fixed in a lattice and periodically spaced throughout the

volume. The periodicity of the atomic layout makes crystal structures ideal diffraction

gratings for electromagnetic radiation in the x-ray region. This section will present an

overview of the x-ray scattering process and discuss how diffraction can yield pertinent

information regarding the state of a crystal.

In classical physics, diffraction refers to the modulation of waves subsequent to in-

teraction with matter. Diffraction occurs for every type of wave, and electromagnetic

radiation may be described in terms of waves. The diffraction features are prominent

when the wavelength of the wave is on the order of diffracting obstacle; effects are

more apparent in a given wavelength range for any given obstacle or set of obstacles.

For optical radiation (400nm . λ . 700nm), diffraction effects may be

pronounced using a diffraction grating where the diffracting objects are on the order
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λ

k

d

FIGURE 2.4: Plane waves incident on a diffraction grating with spacing d. Areas
of overlap of spherical wavelets signify constructive interference, where open areas
signify destructive interference

of micrometers and regularly spaced apart. A diffraction grating may be used to

exploit the superposition of waves to obtain regions of constructive and destructive

interference. Figure ?? depicts the effects of collimated monochromatic plane waves

of wavelength λ impinging on a diffraction grating with some spacing d.

diagram allows one to derive a relationship between d, λ and θ for constructive and

destructive interference. One finds that the light waves will constructively interfere

for

nλ = dsinθ (2.12)

where d sin θ is the optical path length difference between rays from adjacent slits,

and n is an integer. It is also assumed in this case that the incident angle between

the plane waves and grating normal is zero. Therefore if we know any of the two of

d, λ or θ, we can determine the third. In practice this can be verified by placing a

screen or film some distance from the grating and recording the interference pattern.

At photon energies used in this experiment, the dominant interaction between the
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photons and matter (electrons) is Compton scattering [14], where the energy of the

scattered photon is given by

E ′ =
E

1 + (E/mc2)(1− cos θ)
. (2.13)

. For the scatters in a crystal, most electrons are tightly bound to the nucleus, and

the recoiling system is the entire atom. The mass in the above equation will be on

the order of the mass of the atom, yielding and unmeasurable shift in energy between

incident and scattered photons for essentially all measurable angles. Larger shifts in

wavelength could be observed for bonding electrons, as they less constricted by the

nucleus. In high Z solids, almost all electrons are tightly bound and the Compton

shift is unobservable at these energies. The interaction cross section for Compton

scattering dominates in the region where 0.1 . hν
mc2

. 1, and for this experiment we

have hν
mc2
∼ 0.1, for which we have σC ∼ σT , where σT is the Thomson scattering cross-

section. Thomson scattering (or elastic scattering of x-rays) agrees with observations

in this energy regime, and is therefore a reliable model in x-ray diffraction. Treating

the scattering process as elastic is key in developing some useful models in x-ray

diffraction.

In x-ray diffraction, we can take an analogous approach to derive a relationship

between x-ray wavelength and crystal plane spacing. Since the scattering of x-rays will

be elastic in this case, we treat the crystal lattice as a three-dimensional diffraction

grating, where the scatterers are periodically arranged in space. A crystal plane

is an imaginary plane containing regularly spaced atoms; each plane repeats itself

a distance d normal to the face of the plane (the d-spacing). Each atom can be

thought of as a positively charged nucleus surrounded by a negatively charged cloud

of electrons. We assume that electromagnetic waves are incident on the electron

cloud, the electron cloud distorts and the moving electrons causes a re-radiation of

the waves in all directions, assuming unpolarized incident radiation. This is known
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plane waves

re-radiated spherical waves

FIGURE 2.5: Simplistic diagram of plane waves ~E = E0x̂ cosωt incident on an atomic
electron cloud and re-radiated. This process is elastic, meaning the re-radiated waves
are of the same wavelength as the incident radiation.

as Rayleigh or Thomson scattering and is shown schematically in Figure 2.3. This

model works well in practice, but it ignores the true quantum effects governing the

process.

If unpolarized x-radiation is incident upon an array of atoms, we get scattering

from each atom in all directions. Where the waves overlap, we get reinforcement of

the waves; destructive interference occurs in other regions. A ray diagram is a useful

representation of this process (see 2.3). Incident plane waves are represented as rays

perpendicular to the wave fronts, parallel to the propagation direction. Incident rays

interact with the atoms in a crystal plane and ”reflect” in some direction. Assuming

the law of reflection holds, the incident angle is the same as the reflection angle. There

is no relative phase difference between scattered waves of the same crystal plane. The

rays interact with atoms in an adjacent crystal plane a short time later, and therefore

differ in phase by some amount. When the phase difference is some multiple of 2π,

constructive interference occurs. This is equivalent to a ray path difference of nλ,

where n is an integer and λ is the wavelength. Again, by invoking that the path

length difference between rays reflecting from adjacent planes must equal an integer

multiple of wavelengths, we arrive at the result

nλ = 2dsinθ. (2.14)
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monochromatic
plane waves

PLD = d1 + d2 = 2d sin θ = nλ

d1
d2

d

θ θ

FIGURE 2.6: Two dimensional representation of monochromatic plane waves incident
on atoms in a crystal. Black dots represent atoms, dashed lines represent crystal
planes, and d is the spacing between adjacent parallel planes. The difference in ray
paths is known as the path length difference (PLD); constructive interference occurs
for PLD = nλ.

This model is known as Bragg’s law and works very well for various practical

applications in x-ray diffraction. With a monochromatic x-ray source and a given

crystalline sample, we can observe constructive interference at angles where the Bragg

condition is met.

In addition to Bragg’s law is the Laue treatment of x-ray diffraction. In this model

rays are imagined to be scattered, or redirected by the atoms. The scattered rays will

constructively interfere for path length differences of multiples of 2π. This is best

visualized by the one-dimensional sketch shown in figure 2.3. The path difference

AC −BD can be expressed in terms of the angles φ and ψ, namely

AC −BD = a (cosψ − cosφ) . (2.15)

When the path difference equals an integer number of wavelengths, constructive

interference occurs, or

hλ = a (cosψ − cosφ) . (2.16)
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D

A B
x

φ

ψ

FIGURE 2.7: X-rays incident on a one-dimensional row of scatterers (black dots)
separated a distance a . Constructive interference occurs when the ray path difference
AC −BD is an integer multiple of the wavelength λ.

For a given incident angle φ, there can be multiple orders of diffraction, as h and ψ

can change (h is an integer, ψ is continuous) while the interference condition is also

satisfied. Also, equation 2.16 does not require that the x-rays be scattered in the

plane of the incident radiation; the scattering angle ψ is with respect to the coordinate

axis x, and a cone of scattered x-rays can be imagined. We therefore can envision

multiple cones, each with a different angle ψ defining them.

We can generalize this to a net (two-dimensional array ) of scatterers to obtain

two interference condition equations, namely

hλ = a (cosψ1 − cosφ1) (2.17)

kλ = b (cosψ2 − cosφ2) .

When one of the equations is satisfied, we arrive at the results for the one-dimensional

case. When both equations are satisfied, the net is said to scatter in phase and

constructive interference occurs along the lines of intersection of the cones of angles

ψ1 and ψ2. Further generalizing to a three-dimensional array we obtain the Laue
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equations, given by

hλ = a (cosψ1 − cosφ1) (2.18)

kλ = b (cosψ2 − cosφ2)

lλ = c (cosψ3 − cosφ3) .

If any of the above three equations is satisfied, enhancement of the x-rays at the

specified angles can be observed. If all three of the above equations are satisfied, the

entire three-dimensional array scatters in phase (each of the cones described by their

respective angles intersect in a line). The integers h, k, and l are synonymous with the

Miller indices described in section 2.2, and a, b, and c are the unit cell lengths. This

model also works well for x-ray diffraction studies, and can be shown to be equivalent

to the Bragg treatment of x-ray diffraction. Depending on the situation, the use of

one model over the other may be more convenient to apply, and this will be discussed

in the experimental chapter.
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CHAPTER 3

EXPERIMENTAL

The majority of modern high pressure experiments employ the use of diamond

anvil cells, large volume presses, and shock waves to generate high pressures. Probing

the samples under these conditions requires the use of conventional measuring

instruments, such as diffractometers and spectrometers, but modified to accommodate

the obstructing pressure generating apparatuses. This chapter will describe and

present the methods and devices used to perform these experiments in particular.

3.1 Diamond Anvil Cell: Concepts and Components

The diamond anvil cell (DAC) is a primary device used in modern static high

pressure experiments of microscopic samples. With this device, one can generate

pressures on the order of ∼ 3 Mbar [15]. The main components of a traditional

DAC are a metallic cell body, diamonds, diamond backing plates ( or diamond seats),

screws, and washers (see figure 3.1). Depending on the type of DAC, there may be

additional/substitutional components to suit experimental needs, such as lever arms

and pressure driven membranes.

The DAC is based on the concept of opposing rigid anvils drawn closer to squeeze

a small volume. The basic principle of the DAC is to apply a large force to a small area

and thus generate a high pressure. In some cases, it is desired to have non-uniform

stress and strain applied to the sample. In most cases, and in the case of this thesis,

one would like to create an environment where the stress is uniform over the sample

volume (hydrostatic pressure).

To apply a large uniform pressure to a sample, we create a sample chamber by

placing a holed metal gasket between the diamonds. The chamber is the volume

bounded by the gasket and the diamond tips. The sample chamber contains the

sample, a pressure medium, and a pressure marker. The pressure medium, which
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FIGURE 3.1: A picture showing a typical diamond anvil cell. The screws bring the
diamonds closer causing a larger force, therefore pressure, on the sample environment.

is generally a gas or liquid at room temperature, fills the sample chamber. When

pressure is applied, the pressure medium (ideally) uniformly transmits the pressure

throughout the volume of the sample chamber. The pressure marker is something

the scientist uses to indirectly measure the pressure within the chamber. More on

pressure media and markers will be discussed shortly. Figure 3.1 shows a simple

schematic of this concept.

In order to have a successful experiment, the DAC must be properly prepared.

This begins with correctly mounting diamonds on a diamond seat. The hole of the

diamond seat should be centered about the diamond axis. The importance of diamond

centering becomes greater as the desired pressures become greater, although care

should be taken even for relatively low pressure ranges. There are several different

methods for doing this, and for this experiment a jig (see 3.1) and epoxy glue were

used. The jig is a device used for centering the diamonds on the seat while holding

them still. Once the diamonds are secured, one can shift the position of the seats

using the set screws on the outside to center the seat hole about the diamond axis;
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pressure medium sample

pressure marker
gasket

diamonds

FIGURE 3.2: A cross-sectional schematic showing the fundamental concept of the
diamond anvil cell. Two opposing diamonds and a gasket form a sample chamber
containing the pressure medium, pressure marker and sample. As the diamonds are
drawn closer together, the sample chamber is condensed and the pressure inside the
chamber increases. The pressure within the chamber is estimated indirectly with the
aid of the pressure marker.

FIGURE 3.3: A picture of two jigs, one open and one closed. This device presses
the bottom face of the diamond against the diamond seat while allowing the seat to
be translated until the seat axis and diamond axis coincide. The openings on the
perimeter allow one to apply glue where the diamond meets the seat.
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the diamond axis coincides with the line perpendicular to the culet plane and passing

through its center. A microscope is used for this process as the diamond culets are

on the order of hundreds of micrometers in diameter. Once the diamond is correctly

centered and held in place, epoxy glue is applied along boundary of the seat/diamond

interface. To expedite the curing process, the jig can be placed in an oven for some

predetermined time (this depends on temperature and the type of epoxy).

Next, they are placed in the DAC and secured with screws. After locking the

diamond seats in place, one must ensure that the diamond culets are parallel and

aligned. This is also done under the microscope. The DAC is put together and

the diamond culets are then brought very close together (< 1mm). The screws

that hold the seats in place are used to translate the seats such that the opposing

diamonds can aligned along the same axis. Looking down the diamond axis under

the microscope one can adjust the set screws of one seat to bring both diamonds

into alignment. One can observe how parallel they are from a side view under the

microscope. If the diamond cell is built correctly, the diamond culets should be

parallel once the seat screws are tightened (some cells are built with a rotational

stage underneath one of the seats, allowing the diamond’s axis to be translated and

rotated). If the diamonds are not parallel, one should observe white light (from

the microscope) interference fringes when looking through the microscope, focused

on the culet faces. The diamond culets and the air between them form an etalon.

When they are significantly unparallel, the constructive interference condition is

simultaneously satisfied for all wavelengths in the continuous band of optical light

(from the microscope lights) over many orders. The quality of the experiment, for

various reasons, require that the diamonds be sufficiently parallel (zero to a couple

of interference fringes). Unparallel diamonds cause non-uniform gasket thickness,

asymmetric gasket deformation, possible diamond failure, among other undesired

effects.
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Once the diamonds are properly mounted and the seats are positioned correctly,

a gasket must be prepared. The gasket is a small ( mm2), thin ( 200µm) metal disc

or rectangle that is indented, drilled, and placed between the diamonds. Some of the

most common gaskets are made of steel, rhenium, and beryllium.

First a potential gasket is chosen and the initial thickness is measured. Typically

this is around ∼ 200µm. Then, it is centered between the diamonds, with no applied

pressure other than gravity. Next, one can measure the distance between the top and

bottom of the diamond cell (this will act as a reference position to gauge how much

the gasket has been compressed). A particular washer arrangement should also be

chosen prior to indenting. The washers around the diamond cell screws are known as

Belleville washers, and are designed to recoil and store energy as they are compressed.

They are cupped (with some radius) and behave similar to springs when compressed

parallel to the washer axis. The arrangement of washers on an individual screw acts

similar to springs in series, and collectively they act as springs in parallel. The stiffness

of each of the “springs” can be varied by choice of washer and by adjusting the washer

arrangement (see figure 3.4).

Then, one can slowly turn the screws in the DAC and slowly indent the metal

gasket. This will cause the diamonds to press into the metal, decreasing the thickness

of the metal between the diamonds. Measuring the top to bottom DAC distance

after each round of turns (after turning each screw the same amount) can give a

reasonable estimate of how much the gasket has been compressed. By taking the

difference between the initial gasket thickness and the amount of change in top to

bottom DAC distance, we get the approximate thickness of the gasket, which is the

distance between the diamond culets.

The thickness and type of gasket must be considered prior to experiment. The

thickness must be smaller for higher pressure experiments. As the pressure increases,

the walls of the sample chamber will continue to shrink. If the gasket is too thick the
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walls will close in (sample chamber collapse) before the desired pressure is reached.

The type of gasket should also be considered, as some situations are better suited for

specific gaskets. A gasket may be shaped in a disc or rectangle, and is usually made

of some metal or alloy. A soft low Z material such as beryllium is good for low energy

x-ray experiments, as there is very little absorption or scattering from this material.

Also, softer gaskets, such as stainless steel and beryllium, are reliable over modest

high pressure ranges. At higher pressures, a hard material such as rhenium must be

used to avoid collapse of the sample chamber.

Once the desired thickness is reached, one can relieve the stress on the gasket

by slowly unscrewing the screws. This leaves the gasket with diamond impressions

on either side. The perpendicular distance between culet impressions is the gasket

thickness, and can be measured with a micrometer. For harder materials (such as

rhenium), one must indent slightly passed the desired thickness, due to elastic recoil.

Next, a hole in the gasket must be drilled to make a sample chamber (sample

chamber bounded by gasket hole and diamond culets. An electric discharge machine

(see figure 3.1) is a tool that allows for the microscopic drilling of metals. This

machine is designed to apply an electrical discharge between electrodes submerged in

a dielectric liquid. One electrode is the drill bit face (the drill bit is a cylinder on the

order of hundreds of micrometers in diameter) and the other the metal gasket. The

electric discharge slowly erodes a circular portion of the metal gasket in the center of

the indentation. Over time, a hole is “drilled” out cylindrical hole in the gasket. A

voltmeter is used to indicate when this process is complete (a large change in voltage

tells us that a hole has been made).

After the drilling is complete, the diamond culets must be cleaned (residual gasket

metal may interfere with the experiment) and the diamond cell can be loaded. The

drilled gasket placed on one diamond (in the same orientation as in the indentation

process) and fastened using putty or quick dry glue. One may then place the sample
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FIGURE 3.4: A picture showing the electric discharge machine apparatus.

and pressure marker within the hole of the gasket (the sample chamber). A pressure

medium is inserted into the sample chamber, and the chamber is then sealed off by

bringing the opposing diamond into firm contact with the gasket. The pressure inside

the sample chamber will differ based on how tightly the screws are tightened; they

must be tight enough to ensure pressure medium does not leak.

3.2 Pressure Media and Markers

The pressure medium is a substance used to transmit the pressure applied by the

diamonds to the sample chamber (thus the sample). This substance in general is

a liquid or gas at room temperature; once high pressures are reached the medium

freezes, and hydrostaticity is lost. Though these substances will eventually solidify

under pressure, some, such as the inert gases, remain rather soft and conditions are

close to hydrostatic up to high pressures. Some, on the other hand, become very hard

at certain pressures sustaining large pressure gradients within the sample chamber,

and a hydrostatic environment is no longer a valid approximation.

The most reliable (for quasi-hydrostatic conditions) pressure media for high
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pressure research are the inert gases, such as neon, argon, and helium [16]. One key

benefit is that there will be no chemical reaction between sample and medium. Also,

though these substances solidify, they are soft and yield quasi-hydrostatic conditions

up to fairly high pressures, helium being the softest over the largest range.

Cryogenic liquids, such as liquid nitrogen or argon, are also used as they are also

highly non-reactive substances. These materials are also fairly soft up to modest

pressure ranges.

Silicon oil and a 4:1 methanol:ethanol ratio provide quasi-hydrostatic conditions

over smaller pressure ranges (∼ 10GPa), but are much more accessible and easier

to handle and load. The chances of flushing the sample and pressure marker out of

the sample chamber during the loading process are much smaller for these pressure

media, as gas and cryogenic loading pose some formidable challenges. In the case of

methanol/ethanol, it is common practice that one use a 4:1 ratio as this will maintain

the hydrostatic condition in the sample chamber from 7 to 10GPa [17]. One may also

add water to this solution (ratio 16:3:1 methanol:ethanol:water) for hydrostaticity up

to slightly higher pressures (the methanol/ethanol pressure medium is hydrostatic to

roughly 10 GPa [17]).

In addition to pressure media, an adequate pressure marking procedure must be

implemented. Modern diamond anvil cell experiments commonly use the wavelength

shift of the R1 ruby fluorescence line [18], as well as equations of state for well known

materials, such as gold and platinum [19], to indirectly determine pressure. [19]

gives a recent account of the equations of state for six metals (including gold and

platinum), as well as a proposed re-calibration for the ruby scale. The pressure for

data presented in this thesis was estimated using both the ruby fluorescence technique

and the equation of state for gold.
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FIGURE 3.5: A measured ruby fluorescence spectrum of the R1 and R2 lines. For
consistent calculation of the R1 line, one can fit a Voight function V (λ) to the peak,
taking λR1 to be the value where Vmax = V (λR1).

The ruby scale used for this experiment, proposed by [19], is given by

PR =
A

B

[(
λ

λ0

)B
− 1

]
(3.1)

where A = 1904 and B = 9.5. A typical ruby fluorescence spectrum is shown in

figure 3.2. The position (wavelength) of the R1 fluorescence line can be estimated by

fitting a Voigt function (a superposition of Gaussian and Lorentzian profiles) to the

measured fluorescence peak, the R1 position being the wavelength at the maximum

value. This value for R1 may then be plugged into the above equation to calculate

pressure in the sample chamber.

Takemura and Dewaele [20] determined an isothermal equation of state for gold

using a helium pressure medium. As helium is the softest pressure medium over the

largest pressure range, the results of this study are likely the most accurate for the

gold 300K isotherm. A gold powder diffraction pattern may therefore be used to
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calculate the pressure. Figure 4.1 shows a diffraction pattern of the sample Fe3P

with gold powder diffraction rings. The angular positions of the diffraction rings will

change as pressure changes. Using the isothermal equation of state, we can predict

the angular positions of the known reflections as a function of pressure; measuring

the positions of these known reflections allows us to calculate the pressure. More on

this will be discussed in the results and analysis chapter.

FIGURE 3.6: A diffraction pattern containing reflections from single crystal Fe3P
and gold powder. The positions of the gold powder rings will shift as pressure within
the sample chamber changes.
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3.3 High Pressure X-ray Diffraction

The source of x-rays and type of diffraction technique will determine the observed

diffraction pattern. For continuous radiation and an area detector behind the sample

perpendicular to the beam, many Laue equations will simultaneously be satisfied,

resulting in a large number of reflections for an arbitrary orientation. The resulting

pattern is known as a Laue pattern, and is useful for both structural and orientational

determination.

For a monochromatic source, few (if any) reflections will be recorded for a given

orientation. It is necessary to rotate the crystal with respect to the beam in order to

satisfy more Bragg conditions, yielding more reflections (doing this with a continuous

source would smear the reflections). The reflections yield pertinent information

regarding the crystal’s integrity; the more we have, the better our understanding

of the crystal. In the case of this thesis a monochromatic source was used, and the

sample was rotated during exposures.

Conventional x-ray diffraction has the advantage of using the full three-dimensional

rotational freedom of the free crystal in order to record as many reflections as possible,

while also investigating the crystal’s long range uniformity. A diffractometer is an

instrument used to orient the crystal and record its diffraction pattern at various

positions and rotations. The rotating device is known as a goniometer, and the x-ray

detection is an area or CCD detector (an area detector was used in the collection of

data for this thesis).

For crystal samples under high pressure in a diamond anvil cell, we do not have the

ability to position the crystal at an arbitrary angle. The sample is considerably small,

and various components of the DAC obstruct the incident and diffracted beams. Even

for specially designed DACs, the angular freedom one can rotate the sample is quite

limited, thus the number of reflections one can record are limited as well. Figure 3.3

shows schematically a setup for high pressure diffraction experiments.
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x-ray beam

+ω

−ω

detector

0

2ϑ
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χ

detector (frontal view)

FIGURE 3.7: A simple schematic of a high pressure x-ray diffraction experiment.
Incident x-rays bombard the sample within the sample chamber located a distance
D from the area detector. The DAC can be translated and rotated within some
angular range about the ω axis without obstruction by the diamond cell. Rotating
the sample about an axis perpendicular to the beam axis allows for more reflections
to be recorded on the area detector.

Instrumental calibration is necessary for accurate determination of the d-spacings

corresponding to each reflection. This calibration includes the orientation of the

detector with respect to the sample, the distance to the sample, and planar

coordinates of the beam in the laboratory reference system. This calibration allows

one to measure three angles (ω, θ and χ) of a reflection (with some Miller index hkl)

and calculate its d-spacing (d(hkl)) using Bragg’s law. For the calibration we use a

sample with well known reflections and record its diffraction pattern; the wavelength

is known. This allows us to make a correspondence between the pixels of the area

detector and the scattering angle 2ϑ.

3.4 Experimental Specifics

This section will discuss the methods and procedures presented in the previous

section in the context of this experiment. For the diamond cell this includes the

size of the diamond culets, gasket thickness and hole diameter, spring (Belleville)

washer arrangement, diamond seats, sample size, pressure markers and medium. The

use of single crystals and acquisition of single crystal Fe3P will be discussed. The
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diffractometer specifics will be presented as well, including the calibration method.

The samples used were obtained from Alpha Aesar chemical supply company ;

samples of single crystal Fe3P were selected and examined prior to experimental

runs to test for crystal integrity (see chapter 4). As opposed to powder diffraction,

single crystal diffraction patterns reveal the long range nature of the crystal. Stress

and strain, as well as observable phase transitions, are easily detected using single

crystal methods. If large pressure gradients cause some crystallites to transition to

another phase, and some to remain in the same phase, the resulting pattern will be

a convoluted contribution of two species. Each reflection represents the spacing of a

single atomic plane, whereas a powder diffraction ring yields the contributions from a

large number of smaller single crystals, causing peak overlay; peak overlay represents

an average of crystal plane spacing, not allowing for a complete structural analysis.

A symmetric diamond anvil cell [21] similar to that shown in figure 3.1 was used

for this experiment. The diamond culets were 300µm in diameter, and the gasket

thickness was 52µm. The sample size was roughly 30µm in length, measured using

microscope tick marks. The drill bit diameter (thus the gasket hole) was 120µm.

A 4:1 ratio of methanol:ethanol was used as the pressure medium, and gold powder

was used as the pressure marker. Each screw used a Belleville washer arrangement

of 36 washers, alternating directions for every 6 washers (figure 3.4 shows this

schematically).

screw
washers

FIGURE 3.8: A schematic of the washer arrangement used in this experiment.
Assuming a spring constant k for each washer, we have an effective spring of constant
κ = k

1
6
+ 1

6
+ 1

6
+ 1

6
+ 1

6
+ 1

6

= k. By accounting for the contributions from each screw

(essentially springs in parallel, ktotal = k1 + k2 + k3 + k4 = 4k), one can estimate
the force applied to the sample chamber.
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FIGURE 3.9: A picture of the ID-B experimental hutch of the APS at Argonne
National Laboratory. The detector is seen on the left, the sample stage (no cell
mount on stage) in the middle, and the pinhole (beam exit) just above the sample
stage. During experimental runs, the sample stage contains a cell mount to properly
position the loaded DAC. The stage can translate in the x, y and z directions, as well
as rotate about an axis ω perpendicular to the beam axis

High pressure diffraction experiments were performed at sector 16 ID-B (insertion

device) of the Advanced Photon Source at Argonne National Laboratory. Figure 3.4

shows a picture of the experimental hutch. At this station, electrons pass through an

undulator causing high brilliance emission of x-rays and a narrow energy bandwidth of

several harmonics. The x-rays are focused and the incident energy was E = 33.69keV

(resolution ∼ 10−3), corresponding to a wavelength of λ = 0.368(
◦
A). The area

detector used in these experiments was a MAR 3450 image plate. The number 3450

signifies the number of pixels along each of two perpendicular axes (x and y Cartesian

coordinate system); a total of 34502 pixels in all. Each pixel is 100µm in length (in

both x and y). A cerium dioxide powder diffraction pattern was taken, and Fit2D

powder diffraction software [22] was used to calibrate the detector. Figures 3.4 and
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FIGURE 3.10: Fit2D interface at startup. 3450 is entered for the number of arrays
corresponding to the number of pixels in the x and y directions (MAR 3450 image
plate).

3.4 show the Fit2D interface. Figure 3.14 shows the diffraction pattern of CeO2

powder used to calibrate the detector coordinates.

Calibration of the image plate requires one to use a known material and use its

diffraction lines. Figure 3.4 shows the diffraction pattern of CeO2 in the Fit2D

interface. Clicking on the “calibrant” option allows one to enter known values and the

software calculates and refines calibration parameters ([22] contains specific details of

the Fit2D calibration process).

Next the calibration parameters are entered. One must open a file and click on

the “integrate” option. This brings the screen on the left in figure 3.13. Once these

parameters are entered, clicking “OK” will bring up another screen shown on the

right in figure 3.13. These parameters likely do not need to be changed, and clicking

“OK” once more performs the integration in 2ϑ space and makes a plot of intensity
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FIGURE 3.11: Fit2D interface showing the various options. Input allows one to
select a file to open for viewing. Other options include calibration, changing the
color, contrast, brightness, angular integration, etc.
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FIGURE 3.12: Fit2D interface showing the diffraction pattern of the CeO2 calibrant
used in this experiment various options. This file is viewed by clicking the “input”
option and selecting the file from a list.

versus 2ϑ. Clicking the “exchange” option allows one to toggle between the diffraction

pattern and the two-dimensional intensity versus 2ϑ plot. Figure 3.14 shows the

diffraction pattern for CeO2 and its angular integration plot for this experiment.

A good calibration is established by using the “cake” option in Fit2D; the details

of this procedure can be found in [22]. The calculated calibration function should

agree well with each of the known values of the measured CeO2 peaks. If not, the

calibration procedure must be repeated. Data collection and analysis was performed

after adequate detector calibration.
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FIGURE 3.13: Fit2D integration interface. Calibration parameters are entered on
the left. Clicking “OK” brings up the screen on the right, which are settings for the
transform calculation. Clicking “OK” once more performs the calculation and plots
the intensity versus 2ϑ. These are the values used for experimental analysis.
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FIGURE 3.14: The diffraction pattern and angular integration of CeO2 calibrant as
viewed in the Fit2D interface. Positions of known reflections allow us to calibrate the
sample to detector distance, detector orientation, and x− y coordinates of the pixels.
The (x, y) position x-ray beam is designated as the origin.
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CHAPTER 4

RESULTS AND ANALYSIS

This chapter serves to present an analysis of the raw data collected in this

experiment. The raw data are 20 second exposure MAR 3450 image plate files.

Fit2D [22] software was used to analyze and export data to other programs such

as Sigmaplot [23] and X-ray Helper [24] for peak location and pressure calculations.

Sigmaplot and Unit-cell [25] were used for plotting and regression analysis. Error

analysis is discussed at the end of this chapter.

4.1 Sample Identification and Specification

Before loading a sample with pressure medium in the DAC, it is important to

ensure that a good crystal is chosen. We place a tentative sample and pressure

standard in the sample chamber without pressure medium and take a diffraction

pattern. This allows us to identify the sample as Fe3P while also checking that our

pressure standard gives the correct reading at atmospheric pressure. Exposures of two

different crystals at atmospheric pressure and 300K (within the sample chamber) are

shown below in figure 4.2. We can see some regularity of reflections in several regions

in the diffraction pattern, as well as Debye-Scherrer rings from gold pressure standard

and several intense reflections from the diamonds. Figure ?? shows magnified

portions of the image plate to show the spatial periodicity of reflections.

After taking the initial exposure, we wanted to verify that Fe3P is the sample in

the DAC. This was done by calculating the predicted d-spacings based on known unit

cell parameters of Fe3P . Table 4.1 shows the unit cell parameters of Fe3P under

ambient conditions for two independent data sets.

X-ray Helper software designed by [24] allows one to simultaneously open chi

files (ascii format) of measured diffraction data (using a monochromatic source) and

peak position files of known materials. A quick comparison of these two spectra
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FIGURE 4.1: Diffraction patterns of single crystal Fe3P and gold powder at 300K
and atmospheric pressure. The four intense peaks on the right side of each image are
diamond reflections.

FIGURE 4.2: Zoomed in regions of diffraction patterns of single crystal Fe3P and
gold powder at 300K and atmospheric pressure. The different orientations of the
crystals may be seen by the periodicity of reflections.
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FIGURE 4.3: The measured pattern (continuous spectrum) and predicted positions
(discrete spectrum) in 2θ space in X-ray Helper interface (zoomed in for clarity). The

wavelength is set to λ = 0.3680
◦
A and the pressure P = 0.0001GPa. One cannot

fully distinguish contributions of Fe3P from gold and diamond, as this integration is
over the entire detector with no masks. This comparison is not intended for rigorous
analysis, but for quick assurance that Fe3P is indeed present.

allowed us to determine that the pattern belongs to Fe3P . Figure 4.1 shows the

X-ray Helper interface with a portion of the measured and predicted patterns under

ambient conditions.

Figure 4.4 shows a diffraction peak as seen on the image file and its location in

2θ space. Using [23] we fitted a 5-parameter Voigt function

V = y0 + a

(
c

(
1

1 + ((x− x0)/b)2

))
+ (1− c) exp

[
−0.5((x− x0)/b)2

]
(4.1)

(where x = 2θ) to each peak and took the 2θ that gives V (2θ) = Vmax as the angular

position of each reflection. This equation allows us to account for Lorentzian and

Gaussian peak broadening, as well as the background (y0 offset). Using the Bragg
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FIGURE 4.4: A zoomed in picture of a reflection and its integrated spectrum. The
center of the peak is calculated by fitting a 5-parameter Voigt function of the form
given in equation 4.1

equation we calculated d from λ = 2d sin θ. Next, we indexed (assigned a Miller

index, hkl) each reflection belonging to the sample. It is important to note that for a

tetragonal crystal, many reflections will occur at the same scattering angle θ (e.g. 220

and 2̄20), but at different (x, y) coordinates on the detector due to crystal symmetry.

We treated each reflection separately, and compared its d-spacing with some possible

predicted values. Knowing the unit cell parameters and lattice symmetry under

ambient conditions [26], we calculated the expected d-spacings of possible reflections

using 1
d2 = h2+k2

a2 + l2

c2
, allowing the various hkl to range from 0 to ±10. We compared

this list to the measured values of each reflection and looked for possible matches (In

a powder diffraction pattern, individual reflections can not be resolved as the ring

represents the overlap of contributions from all reflections occurring at that angle).

We listed the possibilities for each the Miller indices for neighboring reflections

and deduced an adequate scheme in agreement with data observation. Figure 4.1

shows the diffraction pattern with corresponding Miller indices to the right. The
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FIGURE 4.5: The indexed diffraction pattern of the sample under ambient conditions.
Indices are assigned based on the comparison of possible Miller indices of adjacent
reflections. Using the condition h + k + l = 2n and the fact that d decreases with
increasing θ, a scheme for the pattern is found by trial and error.
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measured values of each reflection were in good agreement with predicted values,

and a least squares refinement of the unit cell parameters gave good agreement with

[27, 26] under ambient conditions; cell parameter determination will be discussed in

detail in section 4.3.
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FIGURE 4.6: A slice of the diffraction pattern is selected and integrated; this is
done using the “mask” option. The masked (red) portion contributes zero to the
angular integration. This allows one to easily analyze the positions of the gold powder
diffraction rings, without contributions from the sample or diamond that lie at the
same angle.

4.2 Pressure Determination

A ruby was used to ensure the sample chamber was under pressure after initial

load, and a gold powder standard was used for the duration of the experiment. Using

characteristic diffraction lines of gold, and the P-V isotherm proposed by [20], the

pressure in the sample chamber was calculated. Figure 4.6 shows the image file with

the user defined masked next to its angular integration pattern. This allows us to

analyze contributions from gold powder alone.

We can export the integrated file as a chi plot which is compatible with other

data analysis software. This allows us to closely examine the angular positions in

2θ space. Figure 4.2 shows the above fit2D integrated pattern in the X-ray Helper

interface. One can upload predicted peak positions files (e.g. JCPDS files) and chi

plots (intensity vs. 2θ histograms) simultaneously for straightforward comparison.

Equations of state may also be programmed so that the predicted peak positions
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FIGURE 4.7: This graph shows the integrated pattern of the masked portion with
known peak positions in the x-ray helper interface. One can implement an isotherm
for a known material to calculate known reflection positions. In this case we use the
isotherm proposed by [20] to calculate the positions of known reflections for a given
pressure.

adjust as the appropriate pressure, temperature, and wavelength are entered.
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Pressure (GPa) Tetragonal Triclinic

a(
◦
A) c(

◦
A) V (

◦
A)3 a(

◦
A) b(

◦
A) c(

◦
A) α (deg) β(deg) γ(deg) V (

◦
A)3

0.0 9.116 4.43 368 9.103 9.102 4.43 90.1 89.60 89.90 367
0.2 9.106 4.41 366 9.095 9.092 4.42 90.2 89.60 89.90 367
1.5 9.081 4.38 361 9.070 9.079 4.40 89.7 89.72 90.07 364
3.2 9.050 4.35 356 9.058 9.055 4.38 89.8 89.79 89.88 367
4.5 9.030 4.33 353 9.034 9.028 4.34 89.8 89.60 89.91 367
6.1 9.011 4.54 369 9.001 9.003 4.51 90.1 89.77 89.90 369
7.8 8.971 4.32 348 8.966 8.958 4.31 90.0 89.75 89.86 349
8.7 8.964 4.30 345 8.955 8.961 4.32 90.1 89.60 89.90 347
10.5 8.93 4.30 343 8.91 8.90 4.33 90.0 89.66 89.87 344
12.5 8.93 4.31 344 8.92 8.90 4.34 90.1 89.59 89.95 345
14.4 8.91 4.29 341 8.88 8.90 4.33 89.6 89.70 89.92 343
16.0 8.90 4.28 339 8.87 8.85 4.30 89.7 89.58 89.90 341
17.6 8.89 4.27 337 8.85 8.83 4.31 90.1 89.60 89.84 339
18.3 8.88 4.26 336 8.84 8.85 4.31 89.3 89.77 89.81 337
19.6 8.87 4.24 334 8.85 8.86 4.28 89.4 89.66 89.89 337

Data Set (ambient conditions) a(
◦
A) c(

◦
A)

[3] 9.107 4.460
[26] 9.1 4.459

TABLE 4.1: A table showing the results from fitting the data to both a tetragonal and
triclinic lattice. Below are the results of unit cell parameters (tetragonal refinement)
determined from independent experiments. Values are reported to the appropriate
number of significant digits.

4.3 Cell Parameter and Compressibility Calculation

By performing a nonlinear least squares fit of 1
d2 versus h2+k2

a2 + l2

c2
, we determined

the unit cell parameters a and c and there respective uncertainties at each pressure

point, assuming the symmetry is tetragonal. If the symmetry remains tetragonal over

a measured pressure range, we expect a P-V relationship of the form given by [11] over

this range. We also relieved symmetry constraints by fitting the data to a triclinic

lattice for comparison.

Table 4.1 lists the various cell parameters for both tetragonal and triclinic

refinements of the experimental data. Disagreement between cell parameters a and c

between fits give a measure of how the sample was strained. Angles α, β and γ should

be 90◦ within uncertainties if sample is truly of tetragonal symmetry.

Above 10 GPa, the methanol/ethanol pressure medium becomes very stiff, and

large pressure gradients within the sample chamber are sustained. Figure 4.19 shows
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Data Set Pressure (GPa) a(
◦
A) c(

◦
A)

Scott et al 0.0000 9.0990 4.4630
0.2 9.098 4.460
0.5 9.092 4.454
0.7 9.094 4.454
1.2 9.080 4.448
2.4 9.063 4.436
2.7 9.056 4.434
3.5 9.037 4.427
3.7 9.032 4.429
4.4 9.023 4.419
5.2 9.013 4.412
5.6 9.004 4.410
6.2 8.994 4.408
6.5 8.986 4.402
6.8 8.988 4.402
7.4 8.976 4.394
9.1 8.959 4.385
9.5 8.943 4.389
9.9 8.937 4.395
10.0 8.952 4.378
11.0 8.943 4.374
12.3 8.92 4.38
12.4 8.914 4.371
12.8 8.91 4.36
13.6 8.89 4.37
14.5 8.92 4.33
15.5 8.87 4.373
16.7 8.84 4.350

Dera and Lavina 19.1 8.8155 4.3132
21.8 8.7711 4.3077
23.0 8.7563 4.3109
27.0 8.7047 4.2832
31.0 8.6534 4.2774
34.1 8.6087 4.2604
37.2 8.5684 4.2378
41.0 8.5423 4.2357
52.2 8.4460 4.1982
62.0 8.3764 4.1652

TABLE 4.2: A table of unit cell parameters a and c reported by independent
experiments. The data collected by Scott et al used a powdered sample, and the
experiment of [28] used single crystals grown from an independent researcher. Values
are reported to the number of significant digits reported from each data set.
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FIGURE 4.8: Peak profiles of the 440 reflection Fe3P at 8.7 GPa (left) and 10.5 GPa
(right). Distortion in diffraction peak due to hardening of methanol ethanol pressure
medium above 10 GPa is apparent in most reflections.

the profile of diffraction peaks below and above this pressure. The conditions are

no longer hydrostatic, as this is evidenced by distortion in peak profile and large

disagreement between d-spacings of like reflections. Increasing pressure beyond this

point further distorts the crystal, the peaks eventually spreading out over 10’s of pixels

in the x and y directions at the highest pressure. Table 4.3 shows the parameters

determined from fitting equations 1.4 and 1.13 to each data set separately. Ideally,

these parameters should agree within experimental uncertainty. Good agreement is

found between fit parameters of the same data set, but there is a large discrepancy

between the results of this study and those of [27] and [28], aside from V0. Aside from

V0, K0 and K ′0 have relatively large uncertainties.

In an attempt to better constrain K0 and K ′0, we used two alternate approaches.

Using the high pressure data collected by [28], and values of the cell parameters a and

c under ambient conditions (from this study and [3]), we fit both 2 and 3 parameter

isotherms using the Vinet and Birch-Murnaghan formulations. Also, we calculated

the axial compressibilities at zero pressure by performing a linear fit to each data set
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FIGURE 4.9: Plot of cell parameter a versus pressure. Inset shows hydrostatic data
from 0 − 10GPa. We observe that a decreases linearly with increasing pressure up
to about 10 GPa, jumps horizontally, then follows a different linear trend up to 20
GPa. This jump is likely due to the hardening of the methanol/ethanol pressure
medium near this pressure [17], which causes large pressure gradients within the
sample chamber. Reflections in the diffraction patterns become broader above this
pressure, thus the uncertainty in a becomes significantly larger.

Data Set Pave(GPa)
∆c
∆P

1
cave

(1/GPa) ∆a
∆P

1
aave

(1/GPa)

Howard
0.10 5.5e-3 0.015
0.85 2.1e-3 5.3e-3
2.35 2.0e-3 4.0e-3
3.85 3.2e-3 6.6e-3
5.30 1.3e-3 -3.0e-4
6.95 2.6e-3 3.2e-4
8.25 8.7e-4 5.2e-3
9.60 2.1e-3 0.0
11.50 0.0 -1.2e-3
13.45 1.1e-3 2.3e-3
15.20 7.5e-4 1.6e-3
16.80 7.0-4 1.5e-3
17.95 1.6e-3 3.3e-3
18.95 8.7e-4 3.6e-3

TABLE 4.3: A table of the compressibilities of a and c calculated from the unit cell
parameters determined from data collected in this study. The ave subscript denotes
the average between two adjacent data points, and ∆ denotes their difference.
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FIGURE 4.10: Plot of cell parameter c versus pressure. We observe that c decreases
linearly with increasing pressure up to about 5 GPa, increases around 6 GPa, then
decreases. The increase of c at 6 GPa is unexpected, and is likely due to an
unacknowledged source of uncertainty. It is not physical for the unit cell parameters
(thus the volume) to increase with increasing pressure. The characteristic stiffening
(of the methanol/ethanol pressure medium) near 10 GPa is expected and observed.

Data Set Pave (GPa) ∆c
∆P

1
cave

(1/GPa) ∆a
∆P

1
aave

(1/GPa)

Dera and Lavina
20.48 1.9e-3 4.8e-4
22.41 1.4e-3 -6.3e-4
25.00 1.5e-3 1.6e-3
29.00 1.5e-3 3.4e-4
32.57 1.7e-3 1.3e-3
35.67 1.5e-3 1.7e-3
39.11 8.0e-4 1.3e-4
46.61 1.0e-3 7.9e-4
57.11 8.5e-4 8.1e-4

TABLE 4.4: A table of the compressibilities of a and c calculated from the unit cell
parameters determined from data collected by [28]. The ave subscript denotes the
average between two adjacent data points, and ∆ denotes their difference.
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FIGURE 4.11: A Plot of the ratio a
c

versus pressure. Near 6 Gpa we observe a sharp
change in this ratio, but this is due to the anomaly in c at this pressure.
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FIGURE 4.12: A Plot of the axial compression of cell parameter a versus average
pressure.
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FIGURE 4.13: A Plot of the axial compression of cell parameter c versus average
pressure.
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FIGURE 4.14: Compression data of Fe3P from 3 independent research projects. The
regressions were performed for data corresponding to hydrostatic conditions.
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FIGURE 4.15: The above plot zoomed in for the hydrostatic pressure range for data
collected in this project. There is good agreement between the fit and measured data.
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Data Set Pave (GPa) ∆c
∆P

1
cave

(1/GPa) ∆a
∆P

1
aave

(1/GPa)

Scott et al
0.10 5.5e-4 3.4e-3
0.35 2.2e-3 4.5e-3
0.60 -1.1e-3 0.0
0.95 3.1e-3 2.7e-3
1.80 1.6e-3 2.3e-3
2.55 2.6e-3 1.5e-3
3.10 2.6e-3 1.9e-3
3.60 2.8e-3 -2.3e-3
4.05 1.4e-3 3.2e-3
4.80 1.4e-3 2.0e-3
5.40 2.5e-3 1.1e-3
5.90 1.8e-3 7.5e-4
6.35 2.9e-3 4.5e-3
6.65 -7.4e-4 0.0
7.10 2.2e-3 3.0e-3
8.25 1.1e-3 1.2e-3
9.30 4.4e-3 -2.3e-3
9.70 1.7e-3 -3.4e-3
9.95 -0.017 0.0388
10.50 1.0e-3 9.1e-4
11.65 2.1e-3 -8.8e-4
12.35 5.6e-3 0.0183
12.60 2.5e-3 4.6e-3
13.20 2.4e-3 -3.1e-3
14.05 -3.9e-3 0.0115
15.00 5.5e-3 -0.0101
16.10 2.9e-3 4.4e-3

TABLE 4.5: A table of the compressibilities of a and c calculated from the unit cell
parameters determined from data collected by [27]. The ave subscript denotes the
average between two adjacent data points, and ∆ denotes their difference.

Fit Parameters Vinet 3rd order B-M

Howard
K0 (GPa) 88± 14 81± 18
K′0 (dimensionless) 18± 4 24± 9

V0(
◦
A)3 366.6± 0.9 366.8± 0.1

Dera and Lavina
K0 (GPa) 74± 36 91± 46
K′0 (dimensionless) 7.8± 1.6 7± 2

V0(
◦
A)3 389± 13 383± 12

Scott et al
K0 (GPa) 155± 7 161± 11
K′0 (dimensionless) 5.3± 2.1 7± 2

V0(
◦
A)3 369.6± 0.2 369.3± 0.4

TABLE 4.6: A table with the various K0, K
′
0 and V0 determined from each fit to

corresponding data sets.

Iron Compound K0 (GPa) K′0 (dimensionless)
FeS2 [29] 155± 20 7.2± 0.1
Fe2P (C22 phase) [30] 174± 7 4
Fe2P (C23 phase) [30] 177± 3 4
Fe3S [31] 170± 8 2.6± 0.5

TABLE 4.7: A table of K0 and K ′0 of similar iron compounds for comparison with
synthetic Fe3P . Fe3S is a high pressure phase of FeS, and is of the same space
group (I 4̄) as Fe3P . Note that the various K ′0s generally agree within experimental
uncertainty.
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Fit Parameters Vinet 2 par. Vinet 3 par. 3rd order B-M 2 par. 3rd order B-M 3 par.
K0 (GPa) 163± 14 155± 14 165± 12 162± 8
K′0 (dimensionless) 4.4± 0.6 4.6± 0.6 4.3± .4 4.3± 0.6

V0(
◦
A)3 368.0 368.0± 1.1 368 368.0± 1.1

TABLE 4.8: A table of results of various Vinet and Birch-Murnaghan fits to the
data of [28] in conjunction with ambient pressure cell parameter data collected in this
study. In the 2 parameter fits, V0 is fixed and has small relative uncertainty compared
to K0 and K ′0. In the 3 parameter fits, V0 is permitted to vary.

separately, as well as combined; we calculated K0 using the equation

K0 =
1

2s11 + s33
(4.2)

where s11 and s33 are the axial compressibilities of a and c at zero pressure.

Using the ambient pressure data for this study and that of [3], table 4.3

summarizes the results of K0 and K ′0 for the 2 and 3 parameter Vinet and Birch-

Murnaghan isotherms.

Performing regressions on the data collected by [28] while constraining V0, we find

good agreement with that of [27] for the parameter K0. Comparing the values of K0

and K ′0 to those of the iron-sulphide and iron-phosphide compounds in table 4.3, we

also find good agreement. Although the values have relatively large error bars, these

values of K0 and K ′0 appear much more realistic, and they agree within uncertainties.

Performing these same regressions using an ambient pressure unit cell volume of

V0 = 369.9(
◦
A)3 [3] yielded very similar results, and agree well within uncertainties.

K0 was also calculated from the axial compressibilities at zero pressure, which were

calculated from fitting linear equations to the axial compressibility data in this study

and that of [28]. By fitting a linear equation to each data set separately, we determined

the s11 and s33 for each data set. Due to the large scatter in axial compressibility

for cell parameter c for the data collected by [28], we could not reasonably constrain

s33. For this study we found that s33 = 0.0032 ± 0.0011. The values for s11 are

0.0022±0.0010 and 0.0024±0.0010 for this study and [28] respectively. From this we

calculate K0 = 104± 31 for this study. This value is much more reasonable than that
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Fit Parameters K0 = 104± 31 B-M K0 = 104± 31 Vinet K0 = 141± 24 B-M K0 = 141± 24
K0 (constr.) 104± 31, 104± 31 141± 24 141± 24
K0 (vary) 164± 13 164± 13 163± 14 163± 14
K′0 (constr.) 9.9± 6.6 9.1± 3.5 5.8± 1.3 5.9± 1.1
K′0 (vary) 4.2± 0.5 4.4± 0.6 4.2± .5 4.4± 0.6

TABLE 4.9: A table of results of various Vinet and Birch-Murnaghan fits to the data
of [28] with K0 implemented from axial compressibilities. In each fit, K0 is both

constrained and allowed to vary, V0 is fixed at 368(
◦
A)3. The ”constr.” and ”vary”

labels denote when K0 was fixed and allowed to vary in the fit. For K ′0, these labels
denote whether K0 was allowed to vary or was fixed.

presented in table 4.3. By combining data sets and performing linear regressions on

the axial compressibilities, we find s11 = 0.0018± 0.0005 and s33 = 0.0035± 0.0008.

This yields K0 = 141 ± 24, a value well in agreement with the determination from

the Vinet and Birch-Murnaghan isotherm regressions when constraining V0. Figures

4.3, 4.3 and 4.3 show the data and linear regression lines. Using the values of K0

determined from the axial compressibility data, we again refine the parameters K0

and K ′0 in the Birch-Murnaghan and Vinet isotherms. Table 4.3 shows these results.

We found that taking the K ′0 values from table 4.3 and refining K0 in the regressions,

the results are self-consistent (K0 values agree with one another within error).
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FIGURE 4.16: Linear fits of the axial compression of cell parameter a versus average
pressure for data collected in this study and that of [28]. The severely outlying point
(Pave = 0.1GPa) is excluded from the fit. The compressibilities at P = 0 (s11) are
determined by the intercepts.
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FIGURE 4.17: Linear fits of the axial compression of cell parameter C versus average
pressure for data collected in this study and that of [28]. Severely outlying points
(Pave = 0.1, 5.3, 6.95) were excluded in the fit. The compressibilities at P = 0 (s33)
are determined by the intercepts.
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FIGURE 4.18: Linear fits to the combination of axial compressibility data collected
in this study and that of [28]. The compressibilities (s11 and s33) are determined by
the intercepts.
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FIGURE 4.19: Diffraction patterns of strained Fe3P at 30 GPa (left) and atmospheric
pressure (right) after decompression. The broadening of the peaks remains after
releasing pressure in the sample chamber.

4.4 Error Analysis

The accuracy to which the wavelength is known is essentially the accuracy to

which the d-spacings can be measured. This corresponds to uncertainties on the

order of ∼ 0.001(
◦
A) in d. Neutron diffraction is sensitive enough to measure nuclear

displacements, which are considerably smaller than d− spacing uncertainty. In x-ray

diffraction experiments, x-rays interact with electrons, which form a cloud making

up the volume of atom. Since the wavelength used is much larger than atomic

displacements, main source of uncertainty is due to the bandwidth in λ and/or the

point spread in the detector.

Uncertainties were estimated using the spread in λ and the error propagation

formula 4.3. Like reflections (reflections with same d-spacing but different (x, y)

coordinates) under hydrostatic conditions differed by no more than 0.001(
◦
A). This

corresponded to an uncertainty of ∆(2ϑ) = 0.08◦ assigned to each reflection. Using

the general propagation of errors formula [32]
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(δf)2 =
∑
i

(
∂f

∂xi

)2

(δxi)
2 (4.3)

we calculated the error on 1
d2 is calculated as

1

d2
=

sin2 θ

λ2
(4.4)

σ2
1
d2

=

(
2 sin θ cos θ

λ2

)2

σ2
θ +

(
2 sin2 θ

λ3

)2

σ2
λ (4.5)

σ 1
d2

=
sin 2θ

λ2

√
σ2
θ +

(σλ
λ

)2
tan2 θ. (4.6)

These were the weights used for the regression of 1
d2 versus h2+k2

a2 + l2

c2
. From the

fit we obtained the cell parameters and there respective uncertainties. The error

propagation formula was used for the error in the unit cell volume V = a2c to obtain

σV =
√

4a2c2σ2
a + a4σ2

c (4.7)

The error propagation formula was applied to each calculated quantity in the analysis.

67



CHAPTER 5

DISCUSSION AND CONCLUSIONS

Based on the x-ray diffraction data obtained at Sector 16-IDB of the Advanced

Photon Source, and that of independent data, we conclude that no apparent phase

transition is observed in single crystal Fe3P at room temperature up to 8.7 GPa.

Analysis of the pressure versus unit cell volume isotherms and axial compressibilities

for data collected under hydrostatic conditions do not indicate that any structural

phase transitions occur in this material up to 62 GPa.

Performing Vinet and Birch-Murnaghan regressions on the data collected by [28],

in conjunction with the ambient pressure data point, we find good agreement betweeen

K0 and K ′0 between each regression. These results also agree well with those of [27],

and the iron compounds presented in table 4.3. It was shown that if we do not

impose the ambient pressure unit cell volume in the refinement of the high pressure

data alone, we obtain unreasonable results for K0, K
′
0 and V0 in the Vinet and B-

M regressions. This is due to extrapolation over a very large range, where the fit

parameters may vary significantly to fit the data, yielding unreliable results.

The values of K0 and K ′0 determined in this analysis suggests that the compression

behavior of Fe3P and Fe3S is determined mainly by the cation. A comparison of K0

and K ′0 for Fe3P and Fe3S yield the same result for K0 (within uncertainty) and a

similar value for K ′0. This suggests that changing the anion has a small effect on the

compression behavior. Unfortunately, no literature on the compression behavior of

Ni3P current exist, thus this comparison could not be made.

The ambient pressure unit cell volumes for Fe3P and Ni3P suggest that the unit

cell volume is also determined mainly by the cation. By replacing Fe with Ni in the

compound, we find marked differences in unit cell parameters, although the ratio a/c

remains the same. This is due to the type of bonding as well as the bonding radii

for these compounds.The metallic radius of nickel (124pm) is smaller than that of
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iron (126pm) [33]. The fact that Ni3P has uniformly smaller unit cell parameters

suggests that the bonding in these compounds is more metallic/covalent and less ionic,

although there may be some ionic contributions.

Performing a triclinic regression on the data gives slight disagreement with what

one would expect for a tetragonal lattice. If the lattice is truly tetragonal, one

should find that the angles α, β and γ are 90◦ within experimental uncertainties,

assuming sufficient statistics in the diffraction patterns. The data also suggest that

any previous strains sustained by the sample can be observed by recording its x-

ray diffraction pattern (assuming the sample is a single crystal). Assuming the

structure of meteoritic schreibersite, (Fe,Ni)3P , behaves similarly to the structurally

equivalent synthetic Fe3P as a function of pressure, a diffraction analysis of the sample

will yield information on the previous stresses sustained.

Clearly, there is a marked difference in the measured values for cell parameter

c in this experiment as compared with that of [27]. We do not observe a large

disagreement (within two standard deviations) between c under ambient conditions

between this study and that of [27, 26], so we do not assume that the crystal was

significantly strained along the c-axis prior to experiment. If the crystal was previously

compressed/strained along the c-axis, it would remain strained, thus decreasing the

value of this parameter, as was shown in this study. One study [3] showed that the

crystal perfection of schreibersite depends on its history, and in general is totally

elastically strained.

The statistics for cell parameter c were relatively poor compared to a. Roughly

half of the reflections in each pattern belong to the hk0 zone, the other half belonging

to the hk1 zone. The cell parameter c was determined with large uncertainty in the

fit 1
d2 = h2+k2

a2 + l2

c2
, as c is arbitrary for hk0 reflections, and the hk1 zone yields

limited information (small sampling of l-direction in reciprocal space). Comparing

to literature values for c (presented in the previous chapter), we find an offset of
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∼ 0.03(
◦
A) below the expected value. For more reliable results, one would like to

sample d-spacings corresponding to many points spread out in reciprocal space, which

would give a better overall representation of the reciprocal lattice. In the case of this

study only the hk0 and hk1 nets were sampled, and c is poorly represented by these

statistics.

The source of the unphysical behavior of cell parameter c at 6 GPa is due

to an unidentified error in the regression. Cell parameter a agrees with that of

[27] and [28] at this pressure, and this anomaly in c is not considered critical

phenomena. Interestingly, d-spacings for all reflections at this pressure are all less

than the d-spacings at lower pressures, and larger for higher pressures. This behavior

is expected, as the d-spacings between atomic planes should decrease as pressure

increases. Contrary to expectation, a regression of 1
d2 = h2+k2

a2 + l2

c2
for this diffraction

pattern yields c = 4.63, a value larger than at atmospheric pressure. The source of

this error was not identified; regression in both sigmaplot and Unit-cell return similar

values (agree within errors) of the cell parameters, including the triclinic regressions

as well. The source of error for this data point could not be accounted for, thus the

information for c at this pressure cannot be included for the analysis of the axial/bulk

properties of the material.

Around 10 GPa, the 4:1 methanol:ethanol pressure medium begins to harden, and

pressures within the sample chamber are no longer hydrostatic. This is observed in

the diffraction patterns above 10 GPa: peaks become distorted and broadened, the

various ±h± k ± l reflection d-spacings for like reflections have larger disagreements

with each other, and the crystal structure may no longer be considered a lattice.

The stiffening of the pressure medium causes an apparent stiffness in the sample,

thus we observe small changes in a and c near this pressure. We notice that the

cell parameters a and c change very little with increasing pressure around 10 GPa,

but above this pressure, cell parameters a and c appear to soften again. In the non-
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hydrostatic regime, a and c appears to be harder compared to hydrostatic data. In

the non-hydrostatic regime, unit cell parameters are no longer reasonably uniform

over the sample, and a P-V isothermal relationship is not a valid description of the

sample behavior.

Besides the data collected by [27], there are no profoundly abrupt changes in the

axial compressibilities, as shown by figures 4.3 and 4.3, outside of uncertainties.

It appears that the compressibilities remain constant up to 62 GPa; in both the

hydrostatic and non-hydrostatic regimes of this experiment, the axial compressibilities

versus average pressure do not significantly deviate from a linear relationship outside

of uncertainties.

As pressure is relieved, we observe, from the diffraction pattern, that the sample

remains in this strained state. There is no evidence of crystal twinning in the

diffraction patterns over the measured pressure range. The peaks remain highly

broadened and d-spacings remain very uncertain after full decompression. From

this we assume that similar deformations present in meteoritic (Fe,Ni)3P yield

evidence of previously sustained deformations due to anisotropic stress/strain caused

by compression and/or extreme temperature environments. Meteorites, from initial

formation to human contact, undergo many extreme processes which can permanently

effect the crystalline structure of constituent elemental compounds. The state of the

crystal also yields information about the environment in which it existed.

Looking at the axial compressibilities as a function of pressure, we found a

reasonable linear agreement for the data collected in this study (aside from one

outlying point) and that of [28]. We do not find linear relationships for the data

collected by [27], but erratic deviation in the axial compressibility. Performing a

linear weighted least squares fit to the data collected in this study and that of [28]

allowed us to determine the axial compressibility of cell parameter a at zero pressure.

Combining the data and performing the linear regression gave us the most accurate
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result for s11.

As for cell parameter c, we observe quite erratic behavior for data collected in

this study and that of [27], in addition to relatively large uncertainties. Fitting a

linear equation to the data collected in this study allowed for a crude estimation of

s3333. We could not reasonably calculate this value for the data collected by [28] as

the extrapolation range was too large considering the spread in axial compressibility

over the measured pressure range. This does not allow us to constrain the axial

compressibility along c at zero pressure, thus we get a large error for this value.

Combining the data collected in this study and that of [28] gave the most accurate

result for s33.

By calculating s11 and s33, we estimated K0, and obtained a more reasonable

result than from the 3 parameter Vinet fit. The uncertainties is the various axial

compressibilities are relatively large, and linear fits to the data are relatively uncertain.

The value of K0 obtained from this analysis should not be considered accurate, but

is mildly approximate. In addition, this value can be implemented into an isotherm

regression as an initial guess for refinement; this will likely yield more reliable results.

In order to obtain more reliable results for the axial compressibilities, one must make

measurements in smaller pressure increments.

It appears that the work of [28] gives the most reliable results. There is no

evidence in the diffraction pattern of significant deviatoric stress up to 62 GPa; this

is the result of using a helium pressure medium. This study and the work of [27] used

a methanol/ethanol pressure medium, thus results above 10 GPa are not reliable.

Also, the compressibility in the cell parameter c calculated in this study (outside of

anomalous region) agrees with that of [28], although uncertainties are very large.

The study performed by [27] used a polycrystalline aggregate (or powder), whereas

the data collected in this study and by [28] used single crystal samples. When milling

single crystals of Fe3P into a fine grained powder, one induces strain in the various
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crystallites, and the powder diffraction rings are highly broadened due to strain.

In addition, a polycrystalline or powdered sample contains many smaller crystals;

when loaded and compressed in a diamond anvil cell, the individual crystals are

pressed against each other, causing anisotropic strain over the sample volume. This

causes asymmetric broadening along the powder diffraction rings, as the crystallites

are randomly oriented and strained. This non-uniformity cannot be resolved using

powder diffraction. The angular integration of these distorted rings gives an overall

average of all contributions. This likely accounts for the deviating nature of the axial

compressibilities as a function of average pressure for this data set.
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