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ABSTRACT 

Numerical and Experimental Investigation of the Stability Region for a Cylindrical Ion Trap 

By  

Bradley S. Clarke 

Dr. Victor Kwong, Examination Committee Chair  

Professor of Physics  

University of Nevada, Las Vegas 

 

The stability diagram provides a useful tool for determining the appropriate AC biased 

potential to confine ions in an ion trap. Since no analytic solution exists for the cylindrical ion 

trap’s (CIT’s) equations of motion, the CIT’s stability region is not well known. The objective of 

this thesis is to determine the stability region for a CIT numerically and experimentally. The 

equations of motion for ions confined in a CIT are derived and found to be similar to the Mathieu 

equation, i.e. the equation that describes ion motion in a hyperbolic ion trap (HIT). Because of the 

similarities in the equations of motion for the two traps, and since the stable region for a HIT is 

well known, the HIT is used as a guide for the determination of the CIT’s stable region. The HIT 

stability region is determined by numerical calculations for comparisons with the analytic HIT 

stable region in order to test the validity of the numerical method. In this investigation, the ion 

kinetic energy is found to influence the shape of the CIT’s stable region. The locations of the 

CIT’s  
 
   and  

 
   stability boundaries, i.e. for unstable trajectories in the axial and radial 

directions respectively, are experimentally determined through measuring the number density of 

N
+
 at multiple locations in the stability diagram. The experimentally determined boundaries for 

 
 
   and  

 
   are found to lie consistently between the 0.01eV and 0.1eV numerically 

calculated energy dependent boundaries for the CIT.  
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CHAPTER 1    

 

INTRODUCTION 

Commonly referred to as the Paul trap due to Wolfgang Paul’s discovery of the two 

dimensional variant of the device in 1953 [1], the RF quadrupole ion trap has revolutionized the 

field of atomic, molecular, and optical physics. With its feasibility first demonstrated in the late 

1950’s by Berkling [2] and Fischer [3], the Paul trap localizes ions in space through the 

application of a biased AC potential to its hyperbolic ring electrode. This ion localization has 

allowed physicists to probe an ion’s various properties, such as the lifetime of an ion’s metastable 

state and charge transfer rates with neutral atoms/molecules to name a few [4].  

One drawback in using a Paul trap in experimental research is its difficulty in 

construction due to the hyperbolic geometry of its electrodes. Another disadvantage of the Paul 

trap, when used in conjunction with a time of flight (TOF) mass spectrometer, is the difficulty 

posed in ejecting ions from the trap for subsequent analysis. Since the complex shape of the Paul 

trap requires its electrodes to be made from solid pieces of metal, ion extraction cannot be 

achieved unless modifications to its geometry are made. To circumvent such issues, alternate 

geometries can be utilized to confine ions for experimentation, notably an ion trap with 

cylindrical geometry.  

    Constructed with a cylindrically shaped ring electrode and two flat endcaps, the 

cylindrical ion trap (CIT) has been shown to approximate the potential surfaces of the Paul trap 

near the trap’s center [5]. Also, the CIT is much easier to fabricate compared to the Paul trap [6]. 

By constructing the electrodes out of wire mesh, ions can be easily extracted from a CIT by the 

application of high voltages to its endcaps. An additional advantage of constructing the trap 

entirely out of wire mesh is that the gas pressure inside the ion trap is the same as the vacuum 

chamber pressure. Thus the gas density inside the ion trap can be monitored by ion gauges 

external to the trap. 
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Although the CIT has many advantages compared to the Paul trap, there is one major 

disadvantage in using a CIT, i.e. its complex mathematical description of the ion trajectories. 

Unlike the CIT, the equations of motion for ions confined by the Paul trap are of the form of the 

2
nd

 order Mathieu differential equation [7]. The solutions to this equation are well known where 

stable ion motion exists for certain values of the Mathieu parameters [7]. The parameters that lead 

to stable ion motion can be represented in a “stability diagram,” where the boundaries between 

stable and unstable regions are well defined. With the Mathieu parameters dependent upon the 

mass-to-charge ratio of an ion, the stability diagram can be exploited in such a way so as to expel 

unwanted ions from the trap while confining other ions of interest. This is a feature of 

considerable importance in mass spectrometry. In order to operate the CIT in a similar manner, its 

stability region must be determined. 

This thesis focuses on the determination of the CIT stable region through numerical 

calculations and experimental measurements where it is organized in the following way. Chapter 

2 includes a theoretical description of the Paul trap and CIT. Chapter 3 describes the method used 

to numerically determine the stable region of a CIT as well as how the ion energy influences the 

shape of the stable region. A numerical calculation of the stable region for a Paul trap is also 

included in this chapter to test the validity of the numerical method. Chapter 4 describes the 

apparatus utilized in the experiment as well as the procedure and methods used to determine the 

experimental boundaries from the measurements. In Chapter 5, the results of the measurements 

are presented where comparisons are made to the numerically determined boundaries of the CIT.  
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CHAPTER 2 

 

THEORETICAL BACKGROUND 

This chapter presents the theoretical framework necessary for describing the trajectories of 

ions confined by a cylindrical ion trap (CIT) and a Paul trap, referred to as the hyperbolic ion trap 

(HIT) throughout this thesis to emphasize the trap’s geometry. The CIT equations of motion are 

derived and it will be shown that they are similar to the HIT equations of motion. Even though 

the current research focuses on the properties of the CIT, the essential features of the HIT are also 

included in the discussion to gain insight into the stability of trapped ions in a CIT.  

Hyperbolic Ion Trap (HIT) 

 A HIT consists of hyperbolic electrodes with a biased AC potential applied to its ring 

electrode. With the application of this potential, charged particles can be localized within the trap 

where their position, momentum, and energy are governed by the generated dynamic electric 

field. A diagram of the HIT is included in Figure 1. 

 

Figure 1: The hyperbolic ion trap (HIT).A time varying potential V(t) is applied to the ring 

electrode where U0 is the DC offset, V0 is the amplitude of the time varying part of the potential 

with angular frequency  . The endcaps are held at ground. 
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Since its invention, numerous investigations on the properties of the HIT have been 

performed. Since an extensive body of work exists for the HIT, notably the work performed by 

Dawson et al. [8-17] and Todd et al. [18-22], only the essential features of the HIT will be 

presented in this thesis. With the geometry and applied potential specified in Figure 1, an ion’s 

equations of motion are of the form of the 2
nd

 order Mathieu differential equation 

                                                   
   

   
 (         (  ))                                                            (   ) 

where   represents the motion in the x, y, or z direction and   
  

 
.  The Mathieu parameters that 

appear in Eq. 2.1,    and   , are dependent upon the geometry of the trap ro and zo, the applied 

potential Vo and Uo, angular frequency Ω, the mass m and charge   of the confined ion as seen in 

the following equations:  

                                                                
 

 

    

(  
     

 )  
                                                       (   ) 

                                                                
 

 

     

(  
     

 )  
                                                    (   ) 

where r represents the motion in either the x or y direction and are identical due to azimuthal 

symmetry [7]. The Mathieu equation is well known and previous work has shown that its 

solutions have the following form 

                                     ( )       ∑   

 

  

             ∑   

 

  

                                            (   ) 

where    and     are dependent upon the ion’s initial position and velocity where the parameters   

and     are dependent only upon the Mathieu parameters [23, 24].  

 There are two types of solutions to the Mathieu equation: stable and unstable, which are 

determined by the value of  . Stable solutions require     
 
, where  

 
 is a real non-integer 

number [23, 24]. Integer values of  
 
, i.e. Mathieu functions of integral order, form a series of 
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solutions that are aperiodic, hence unstable. These functions form the boundary between stable 

and unstable regions in    and    space and are used to generate what is called the “stability 

diagram.” One important property of the HIT is that ion stability is independent of the ion’s initial 

position and velocity. Noting that         and        , the stability diagram in    and    

space for    
   

   is shown in Figure 2. For successful ion confinement to occur, the ion 

must have a stable trajectory in both the axial and radial directions. The Mathieu parameters that 

lead to this type of confinement are indicated in Figure 2 by the overlap of the z-Stable and r-

Stable shaded regions.  In the current investigation, we focus on the    
   

   boundaries. 

Accessing the higher order stable regions is possible but would require values for    that are an 

order of magnitude or larger than that needed for the first stable region.   

 

  

Figure 2: The HIT stability diagram for          . The dark shade represents regions where 

ions have stable axial trajectories where the lighter shade represents the regions where ions have 

stable radial trajectories. The arrow marks the location where the z-stable and r-stable overlap for 

        . 

z-Stable 

r-Stable 
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Figure 3: The HIT stability diagram for     
   

  . The region marked stable indicates the 

possible values for the Mathieu parameters that lead to stable ion trajectories inside a HIT. For 

values that lie outside this region, the ion will not have a stable ion trajectory and thus cannot be 

confined in the trap.  

 

  In Figure 3, the four Mathieu functions of integral order are denoted by the degree of 

freedom in which the ion trajectory is unstable, r or z, as well as the integral order of the function, 

0 or 1. The Mathieu parameters that lie just beyond the  
 
        boundary lead to an aperiodic 

trajectory that is axially unstable. Likewise, parameters that lie just beyond the  
 
 

       boundary are aperiodic and unstable in the radial direction. These unstable trajectories 

arise due to a value for   that is not purely imaginary, leading to non periodic terms in the 

analytic solution to the Mathieu in Eq. 2.4 [24]. For ion trapping to be successful, the ion must 

have a stable trajectory in all degrees of freedom which can be achieved with Mathieu parameters 

located in the region marked stable in Figure 3.  
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Cylindrical Ion Trap (CIT) 

 In order to determine the similarities and differences between confining ions in a HIT and 

a CIT, the time dependent potential surface inside a CIT must be determined. Using the boundary 

conditions specified in Figure 4 and excluding the influence of space charge and collisions, the 

potential can be found by solving Laplace’s equation: 

                                                                  {
   (   )   
 (    )   ( )

 (    )   

                                                                       (   ) 

 

Figure 4: The cylindrical ion trap (CIT). A time varying potential V(t) is applied to the ring 

electrode where U0 is the DC offset, V0 is the amplitude of the time varying part of the potential 

with angular frequency Ω. The endcaps are held at ground. 

 

Noting the symmetry in the azimuthal direction, separation of variables can be used  

                                                                    (   )   (  ) ( )                                                              (   ) 

where   is a constant to be determined. Using the Laplacian in cylindrical coordinates, and after 

some algebra, the equations describing the potential in the two coordinate directions are 
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                                                            { 
               

        
                                                             (   ) 

where the primes represent the total derivative with respect to the independent variables r and z 

for the functions   and   respectively. 

The form of the radial equation is known as the Modified Bessel differential equation of 

order zero which has the following solution 

                                                          (  )      (  )      (  )                                                        (   ) 

The functions    and    represent the zeroth order Modified Bessel functions of the first and 

second kind respectively where   and   are coefficients dependent upon the boundary conditions. 

Note that for the potential to be finite at the origin, the coefficient   must be zero since          

tends to infinity.  

The solution for the potential in the axial direction has the form 

                                                            ( )       (  )       (  )                                                    (   ) 

When using the boundary conditions specified in Eq. 2.5, one may be tempted in setting   to zero 

to find the solution for the potential; however, the sine function is not symmetric about the origin. 

Therefore, by setting   to zero one finds that  

                                                                        
    

  

 

 
                                                                     (    ) 

Using the remaining boundary condition in Eq. 2.5 and summing over all possible solutions, the 

potential inside the CIT is 

                               (     )    ( )∑
   (  )

(    ) 

  (   )

  (    )
 

    (   )                                         (    ) 

 Through using the potential in Eq. 2.11, the equations of motion for ions inside the CIT 

can be derived. Starting with the Lorentz equation, 
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                                                                     ⃑    ⃑⃑      ⃑⃑                                                                  (    ) 

where   represents the charge of the ion. Upon differentiating the potential, the equations of 

motion in the axial and radial directions for an ion of mass m have the following form: 

                                                ̈   
  ( )

  
∑   (  )

  (   )

  (    )
 

    (   )                                    (    ) 

                                              ̈    
  ( )

  
∑   (  )

  (   )

  (    )
 

    (   )                                   (    ) 

where the double dot represents the second total derivative with respect to time.  

Assuming the dimensions of the CIT have the relation      , the following functions 

are used to simplify the equations of motion: 

                                               (   )  
   

  
∑   (  )

  (   )

  (    )
 

    (   )                                      (    ) 

                                              (   )  
   

 
∑   (  )

  (   )

  (    )
 

    (   )                                      (    ) 

It may not seem obvious here, yet Eq. 2.13-14 are similar to the 2
nd

 order Mathieu differential 

equation which describes the trajectories of ions in a HIT. Through using the Mathieu parameters 

defined in Eq. 2.2-3, the equations of motion for ions confined by a CIT have the following 

simplified form 

                                                 
   

   
 (         (  ))   (   )                                                 (    ) 

                                                 
   

   
 (         (  ))   (   )                                                 (    ) 

where   
Ω 

 
.  

Note that Eq. 2.17 and 18 are close to the form of the 2
nd

 order Mathieu differential 
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equation, i.e. Eq. 2.1, where the difference lies with the inclusion of the functions   (   ) 

and  (   ) in the equations. The appearance of these terms couples the motion of the ion due to 

the dependence of both z and r in each function. Because of this, no analytic solution exists for 

Eq. 2.17 and 2.18. Therefore, the stability region for ions confined by a CIT must be determined 

through numerical calculations.  

In the case of small displacements about the trap’s center, the functions   (   ) 

and  (   ) are effectively constant (see Appendix I). In this special case, one can use the 

pseudopotential well model adopted by Knight for the HIT to describe ion motion inside the CIT 

[4]. Nevertheless, this description is limited to the region where         . A detailed 

description of the pseudopotential well model for the CIT is included in Appendix II.    
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CHAPTER 3 

 

NUMERICAL CALCULATION OF THE STABLE REGION 

As discussed in Chapter 2, the stability of ion trajectories confined by a HIT is dependent 

only upon the Mathieu parameters. For a CIT, ion motion is coupled between the axial and radial 

directions due to the appearance of Eq. 2.15 and 2.16 in Eq. 2.17 and 2.18 respectively. As a 

consequence, the stability of an ion’s trajectory in a CIT is dependent upon the Mathieu 

parameters as well as the ion’s initial position and velocity. This chapter discusses how the 

stability boundaries for the HIT and the CIT are numerically determined where the approach is 

similar to the one used by Lee et al. in their calculation of the stable region for a miniaturized CIT 

[25].  

Numerical Calculation of the HIT Stable Region 

Since no analytic solution exists for Eq. 2.17 and Eq. 2.18, the stable region boundaries 

for a CIT must be determined through numerical methods. To test the validity of this approach, 

the stability region for a HIT is also determined numerically and compared to the well established 

HIT stability region. The procedure for numerically determining the HIT boundary consists of the 

following steps: 

1. With m/q=14 amu/e and         , Mathieu parameters are selected. 

2. Initial position of ion set to 1nm displacement from trap’s origin and zero initial 

kinetic energy in each degree of freedom. 

3. Eq. 2.1 is numerically solved in Mathematica using the 4
th
 order Runge Kutta 

method. 

4. If the calculated trajectory is 

a. Periodic (bounded motion): ion is considered stable and steps 1-3 are 

repeated with a different value for   . 
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b. Aperiodic (unbounded motion): ion is considered unstable. 

5. For fixed   , the    value of the boundary point is set as the average between the 

   values that lead to the aperiodic trajectory and the last periodic trajectory. 

For the sake of consistency, the same frequency and mass-to-charge ratio used in the 

boundary mapping experiment, discussed in Chapter 4, are also used in step 1 in the above 

procedure. In step 2, a non-zero displacement from the trap’s origin is used for the ion’s initial 

position. The small displacement is needed due to the symmetry of the trap, where an ion situated 

at the exact center of the trap with no kinetic energy will theoretically remain trapped regardless 

of the values used for the Mathieu parameters.  The 4
th
 order Runge Kutta method approximates 

the analytical solutions to the Mathieu equation to a high degree of accuracy and is used in step 3 

of the above procedure. A variable step size is used in the calculation and never exceeds 167 ns, 

or 1/10 of the period of the selected frequency. This maximum step size ensures that all features 

of the ion trajectory is calculated including the ion’s response to the driving field, i.e. the 

micromotion for small values of     as discussed in Appendix II. To illustrate steps 4 and 5 for 

the  
 
   boundary, example trajectories for           are shown in Figure 5.  

When determining the    value of the boundary point, a step size of -0.0009 for    is 

used. The search starts with    inside the stable region and ends when the ion becomes unstable 

as viewed through a plot of the ion displacement as a function of time. Figure 5 shows the last 

two ion trajectories using this search scheme for          . As seen in Figure 5a, the axial ion 

trajectory is stable for the selected Mathieu parameters due to its periodic ion trajectory. In Figure 

5b, the ion trajectory is unstable due to its aperiodic trajectory and escapes the physical 

boundaries of the ion trap in just under 400 s. The numerically determined    boundary point is 

taken as the average between these two steps, i.e.                    , which is in 

agreement with the theoretical boundary value of -0.1051. This scheme is performed for 72 

different locations in the stability diagram to map the boundary of the stable region.  
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Figure 5: HIT ion trajectories for (a)             (b)           . The dashed lines in (b) 

represent the physical dimensions of the ion trap:             . 

 

 

(a) 

(b) 
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The result of the numerical mapping is shown in Figure 6. All of the    values for the 

numerically determined boundary are within          of the HIT theoretical boundary. One can 

conclude that the stability of ion trajectories in a HIT can be accurately determined through this 

numerical method. 

 

Figure 6: Numerically determined HIT stability region. The points in black show the numerically 

determined boundaries of the stable region. The black curves represent the theoretical stability 

boundaries. 

 

Numerical Calculation of the CIT Stable Region 

With the numerically determined stability diagram for a HIT found to be effectively 

identical to the theoretical stability diagram, and since the equations of motion for ions confined 

by a CIT are very close to the Mathieu equation, the same numerical method will provide the best 

approximation for the CIT ion trajectories. Using the same procedure outlined in the previous 

section, where Eq. 2.17 and 2.18 are used instead of Eq. 2.1 in step 3, example CIT ion 

trajectories are shown in Figure 7 using the same    value as the trajectories in Figure 5.  
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Figure 7: CIT ion trajectories for (a)            (b)           . The dashed lines in the 

two plots show the physical dimensions of the ion trap:             . 

 

 

(a) 

(b) 
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Unlike the trajectory in Figure 5a, the stable ion trajectory in Figure 7a has a greater displacement 

from the origin. This feature is undoubtedly due to the scaling of the Mathieu equation by the 

appearance of Eq. 2.15 and 2.16 in Eq. 2.17 and 2.18 respectively. Figure 7b depicts an unstable 

trajectory with an    value 0.0009 away from that used in Figure 7a and is lost within 100 s. 

Note that the same    value is used in the numerical calculation for the HIT trajectories in Figure 

5. The CIT boundary point is located at                   which is 0.0148    units 

beyond the HIT boundary point for  
 
  . This scheme is performed for 81 different values for 

   to map the boundaries of the stable region for a CIT. The result of this mapping is shown in 

Figure 8.    

 

 

Figure 8: The numerically determined stability region for a CIT is shown by the open circles 

where the dashed line connects these points. The numerically calculated HIT stability region is 

represented by the filled circles. The theoretical HIT stability region is represented by the black 

curves. 
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Influence of Ion Energy on Stability Region 

As mentioned previously, the initial conditions play no role in the stability of an ion when 

confined by a HIT. To illustrate this feature of the Mathieu equation, the same Mathieu 

parameters used for the trajectories depicted in Figure 5 are recalculated with an initial axial 

kinetic energy of 0.1eV and are shown in Figure 9. Even though the ion trajectory exceeds the 

physical dimensions of the trap in Figure 9a, the ion’s trajectory is still stable where the ion 

periodically returns to the center of the trap. The stability of the ion is consistent with the ion 

trajectory for initial ion energy of zero as seen in Figure 5a. Figure 9b shows that the ion has an 

unstable trajectory but is lost much sooner than the ion in Figure 5b due to the difference in initial 

ion energy. It should be noted that the potential surfaces of the HIT in the theoretical treatment 

extend out to infinity and are non-zero while the HIT is completely transparent to the ions. This is 

why ion trajectories are always stable for Mathieu parameters located inside the stable region, 

regardless of the initial ion energy. To illustrate this feature, consider the trajectory in Figure 9c 

where the initial ion energy is set to 100eV.  

The independence of ion energy for the HIT stability region may not apply to the CIT. As 

mentioned previously, the functions  (   ) and  (   ) vary dependent upon the location of the 

ion inside the CIT. To determine if these functions change the shape of the stability boundary 

assuming a non-zero initial kinetic energy, the aforementioned numerical method is used where 

now the initial ion velocity is non-zero.    

To see how a non-zero initial energy may influence the CIT ion trajectories, example 

trajectories with an initial axial kinetic energy of 0.1eV at           are shown in Figure 10. 

In Figure 10b, the ion is seen to have an unstable trajectory when            with this initial 

axial kinetic energy of 0.1eV whereas Figure 7a depicts a stable trajectory for            

when the initial kinetic energy is set to zero. The influence of this non-zero initial energy causes 

the boundary to shift, where for this value of   , the 0.1eV boundary is located  0.0018 in    units 

above the zero energy boundary. By comparing Eq. 2.1 for the HIT and Eq. 2.17-18 for a CIT, the  
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Figure 9: HIT trajectories for KEi= 0.1eV (a)           , (b)           , and (c)    
        with KEi= 100eV. The dashed lines in the plots show the physical dimensions of the ion 

trap:             . 

 

(a) 

(b) 

(c) 
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Figure 10: CIT ion trajectories with KEi=0.1eV (a)            and (b)           . The 

dashed lines in the two plots show the physical dimensions of the ion trap:             . 
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energy dependence of the stability boundary seems to originate from the functions   (   ) and 

 (   ). The consequence of the position dependent functions   (   ) and  (   ) is an energy 

dependent stability region, where Mathieu parameters located beyond the boundary or exceeding 

the energy threshold will result in an unstable trajectory. 

Figure 11 shows the  
 
   and  

 
   energy dependent boundaries for the initial ion 

kinetic energies of 0.01eV and 0.1eV. These boundaries were numerically determined for direct 

comparison with the experimental measurements. The energy dependent boundaries for  
 
   

and  
 
   are not calculated. Since the energy dependence of the stability boundaries can be 

used to estimate the mean energy of the trapped ion in the experiment, a comparison of these 

energy dependent boundaries to the experimentally determined boundaries will be discussed in 

Chapter 5. Along with ion energy, the initial ion position will also influence the stability of the 

ion trajectories. Since an energy range for the confined ions can be estimated for the experiment 

discussed in Chapter 4, the ion’s mean energy can be estimated by matching the experimental 

boundaries with the numerically calculated boundaries. The position dependence of the stability 

boundaries is outside the scope of this investigation and warrants further study.   
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Figure 11: The zero energy CIT stability region is shown in black. The blue and red points 

represent the 0.01eV and 0.1eV energy dependent boundaries respectively. The colored dashed 

lines connect the numerically determined boundary points. The 0.01eV and 0.1eV energy 

dependent boundaries for      are difficult to discern due to the closeness of the boundaries.    
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CHAPTER 4 

 

EXPERIMENTAL APPARATUS, PROCEDURE, AND METHODS 

 This chapter will provide an overview of the apparatus used to experimentally determine 

the boundary of the CIT. This includes discussions on the vacuum system as well as the 

components required for the creation, storage, and detection of ions. This chapter will also 

provide the methods and procedures used for the boundary mapping experiment.     

The Experimental Apparatus 

 The facility used for this experiment is capable of attaining an ultra-high vacuum, where 

a background pressure of 4 x 10
-11 

Torr is achieved through the use of several components. A 

Varian Turbo V-550 turbomolecular pump is connected to a vacuum chamber, which houses the 

electron gun, CIT, time-of-flight (TOF) mass spectrometer, and multichannel (MCP) detector, 

and backed by a dual stage rotary vane pump (Varian SD-450 or Alcatel 2020A). A closed loop 

cooled water supply is connected to the turbomolecular pump to help dissipate the frictional heat 

buildup generated by the bearings. Several safety features are incorporated into the facility to 

ensure vacuum is maintained in the event of component failure. One such safety feature is the 

triggering of a pneumatic valve when the roughing pump foreline pressure exceeds the threshold 

of 100 milliTorr, preventing pump oil and other contaminants from reaching the vacuum 

chamber. Another safety feature is the water temperature and flow monitor. This device monitors 

the status of the closed loop cooled water supply system and will automatically switch to tap 

water if the temperature or pressure of the closed loop system is outside the acceptable range.  

   External to the vacuum chamber are two gas reservoirs, one filled with ultra high purity 

N2 and one filled with He for this experiment. The two reservoirs are connected to a cold trap 

backed by a roughing pump. Prior to performing measurements, each reservoir is filled and 

evacuated several times while connected to the cold trap for the purpose of minimizing the 
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impurities in the reservoirs. Once the reservoirs are filled, the gas is introduced into the vacuum 

chamber through an adjustable leak valve, one for each reservoir. A residual gas analyzer, 

Masstorr DX100, is used to measure the pressure inside the vacuum chamber.  

The main components encased in the vacuum chamber that control the creation, storage, 

ejection, and detection of ions are included in the schematics in Figure 12. A Spectra-Mat BaO 

electron gun is situated next to the CIT and produces ions via electron impact ionization (EII). 

The filament of the electron gun consists of tungsten and barium oxide and was selected due to 

higher emission current densities at lower operating temperatures [26]. The cathode is heated 

through the application of a 5.0 to 5.5V potential difference. A negative bias voltage of 105V is 

applied to the cathode to accelerate electrons into the CIT to generate ions. During ion storage, a 

positive bias voltage of 300V is applied to the cathode to inhibit the creation of additional ions 

during their confinement.     

Ions are stored in a CIT with geometry             . The electrodes of the CIT are 

constructed from 30 gauge 304 stainless steel mesh due to its non magnetic properties. Four 

symmetric 5mm diameter regions of the ring electrode have a smaller mesh density compared to 

other regions of the CIT to allow unobstructed laser light access to the center of the CIT, although 

lasers are not used in this experiment.   

In order to eject the ion cloud from the CIT for subsequent acceleration into the TOF drift 

tube, the ring electrode of the CIT is grounded and high voltages of +226V and -246V are applied 

to the endcaps. A potential of -1400V applied to the TOF drift tube causes the ejected ions to 

separate spatially by their mass-to-charge ratios. A collimating lens, at a potential of -280V, is 

situated near the entrance of the drift tube. Its inclusion in the facility increases the collection 

efficiency of the TOF/detector system.  

 Ion detection is achieved through the use of a pair of high gain Burle 25mm 

microchannel plates (MCPs) in the chevron configuration and are situated at the end of the TOF 

drift tube. A large potential difference of -1800V is applied to the MCP for its linear operation.  
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Figure 12: Schematics of the essential components needed for the creation, storage, ejection, and 

detection of ions. The electron gun cathode is used to generate ions through electron impact 

ionization. After ions are stored in the CIT for a user specified duration, ions are ejected from the 

CIT and are separated by their mass-to-charge ratios in the TOF drift tube. Ions are then detected 

by the MCP detector.  
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 The amplified ion signal is then sent to a Tektronix 680C oscilloscope where the resulting TOF 

spectrum is digitized and saved on a Gateway E-4200 computer.    

Experimental Procedure 

 The procedure used to experimentally determine the stable region of the CIT incorporates 

various aspects of the creation, storage, and detection of ions. With reference to Figure 13, ion 

creation is initiated by the timing control system switching the positive bias on the cathode to 

negative. Electrons then enter the CIT and ionize the confined gas through EII. During this time, 

a biased ac potential used to confine the ion of interest is applied to the ring electrode where the 

endcaps are held at ground. The applied CIT potentials are measured through coupling a 

Tektronix 680B oscilloscope probe to the trap’s electrical feed through from the vacuum 

chamber. The oscilloscope provides an accurate measurement of the applied potential, where the 

amplitude is measured within 2.5% and the DC offset can be measured to within 0.1V.  The 

negative bias on the cathode is applied for 5ms before it is again switched positive to inhibit 

further ion creation. 

The N2 gas introduced into the vacuum chamber provides the source for the ion used in 

this study, N
+
 with mass-to-charge ratio 14 amu/e.  Since the largest contaminant inside the 

vacuum chamber is water, this ion is selected because it does not charge transfer with water. He is 

also introduced into the chamber and is used to collisonally cool the ions. This cooling reduces 

the average kinetic energy of the ions where the size of the ion cloud is estimated to have a radius 

of 1mm. The pressures used in the experiment are    
                   and     

                 where the reported error represents the error in the ion gauge pressure 

calibration. These pressures for N2 and He are selected since experimental measurements have 

shown that the FWHM of the ion signals for N
+
 is constant for storage times greater than 600ms. 

Since the FWHM is related to the average size of the ion cloud before ejection, the constancy of 

the FWHM indicates that the size of the ion cloud is not changing. As a result, the N
+
 ions are in 
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stable equilibrium with the buffer gas and the energy supplied to the ions through RF heating. A 

calculation of the collision period at these pressures, shown in Appendix III, is found to be 27 ms. 

Through using storage times of 690ms and 700ms for the durations of U01 in the experiment, as 

seen in Figure 13, N
+
 undergoes approximately 25 collisions with the He atoms.  

In the experiment, measurements are performed in a manner similar to the procedure used 

to numerically determine the stability regions in Chapter 3. An ion with a mass-to-charge ratio of 

14 amu/e is selected along with a frequency of 600KHz. The boundary is found by scanning the 

value of az for a selected value of qz. One difference between the numerical and experimental 

procedures is the use of two different values for az during ion storage in the experiment as seen in 

Figure 13 for dump 2. The DC offset U01, which is proportional to az, is selected so as to 

maximize the number of ions confined in the trap. An ion intensity mapping of the stability 

region in Appendix IV shows the location of maximized ion number density. The signal intensity 

measurement at dump 1, which has a duration of 690ms, is performed to ensure that the initial ion 

population is nonzero.   

The second dump pulse seen in Figure 13 has a duration of 701.5ms and has two different 

DC offsets applied during ion confinement. As before, U01 is initially applied but now for a 

duration of 700ms. The DC offset is then abruptly switched to U02 and is used to search for the 

boundary of the stability region. Calculations performed on the trajectories of ions confined by a 

CIT have shown that there is no change to the boundary by abruptly changing the DC offset in 

this manner. The calculations have also shown that all unstable ions escape the physical structure 

of the ion trap within 0.5ms. The duration of U02 is set to 1.5ms to ensure all unstable ions are 

expelled from the trap before ion ejection is initiated. This small duration of U02
 
is an order of 

magnitude smaller than the collision period, 27ms with the He buffer gas. 

Once ion ejection is initiated, the RF potential applied to the ring electrode of the CIT is 

terminated on its rising edge as depicted in Figure 13.  Measurements have shown that the ion 

signal resolution is optimized at this termination phase of the RF. This is caused by a “squeezing”  
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Figure 13: Timing diagram for the relevant components used in the experiment. The ion creation 

pulse triggers the positive bias on the cathode while the RF and U0 is applied to the ring electrode 

of the CIT. Dump 1 has a duration of 690ms where the ion ejection pulse triggers the grounding 

of the RF on its rising edge while the endcaps receive high voltages for ion ejection. During dump 

2, U02 is applied at 700ms of the confinement period and lasts for 1.5ms before ion ejection. 
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of the ion cloud in the z direction. This slight reduction of the axial spatial distribution just before 

ion extraction leads to the reduced signal width of the ion in the TOF distribution. Further 

information regarding the RF phase dependence of the ion spatial distribution in an ion trap can 

be found elsewhere [23,27].  

Measurement Methods 

 Using a fixed frequency of 600KHZ, the Mathieu parameters for N
+
 are adjusted by 

varying the amplitude and DC offset of the potential applied to the CIT. Following the timing 

diagram in Figure 13, the N
+
 signal intensity is recorded 100 times for each dump delay to 

produce an averaged TOF distribution. As mentioned previously, U01 is selected so as to 

maximize the ion number density in the trap for the measurements at dump 1 and 2. The TOF 

distribution in Figure 14 is an example of a measurement for N
+
 at dump 1 with Mathieu 

parameters qz=  0.4636 and az= -0.0566. 

In Figure 14, there is a noticeable presence of other ions in the TOF distribution. This is 

due to the background gas in the vacuum chamber and apart from the N
+
 signal, is responsible for 

the presence of C
+
, CH3

+
, O

+
, OH

+
, H2O

+
, and HDO

+
 in the distribution. The Mathieu parameters 

for these ions place them inside the numerically calculated stable region for a CIT as shown in 

Figure 15.  

With this maximized population for a fixed value for qz for N
+
, the az Mathieu parameter 

is changed after 700ms to access a different region of the stability diagram. This is done by 

simply changing the DC offset applied to the ring electrode of the ion trap, i.e. dump 2 in Figure 

13. The experimental boundary is determined from the measurements of the signal intensity for 

N
+
 at these alternate locations in the stability diagram. An example of such a measurement is 

included in Figure 16.   

The TOF distribution in Figure 16 shows no ion signal for ions with mass-to-charge 

ratios above 14 amu/e. This is consistent with the stability diagram in Figure 17 which shows that  
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Figure 14: TOF distribution for N
+
 Mathieu parameters qz= 0.4636 and az= -0.0566. Other ions 

are noticeably present, ranging from m/q= 12 to 19 amu/e. 

 

 

 

Figure 15: CIT stability diagram for N
+
 Mathieu parameters qz=  0.4636 and az= -0.0566. Other 

ions are shown in the diagram for comparison with Figure 14.  
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Figure 16: TOF distribution for N
+
 Mathieu parameters qz=  0.4636 and az= -0.1187. 

 

 

 

Figure 17: CIT stability diagram for N
+
 Mathieu parameters qz=  0.4636 and az= -0.1187. Other 

ions are shown in the diagram for comparison with Figure 16. 
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the Mathieu parameters for these ions place them outside the numerically calculated CIT stability 

region. Also note that the location for C
+
 in the stability diagram suggests that these ions have 

stable trajectories where a signal for m/q=12 amu/e appears in the TOF distribution in Figure 16. 

As mentioned in Chapter 3, the initial energy of an ion can influence the stability/instability of its 

trajectory. This explains the reduction of the signal intensity of N
+
 in Figure 16. As the Mathieu 

parameters for N
+
 approach the boundary of the stable region, ions with kinetic energies above a 

certain threshold will lead to unstable trajectories. Ions with kinetic energies below this threshold 

have stable trajectories and remain trapped. Since Figure 16 indicates that some N
+
 ions still have 

stable trajectories at az= -0.1187, another measurement must be performed in order to determine 

the location of the stability boundary. Through finding the az value that will lead to zero signal 

intensity for N
+
, the experimental boundary is determined to be between the last az value that 

leads to a non-zero signal for N
+
 and the az value that leads to no signal for N

+
. An example of an 

az value leading to no signal for N
+
 is shown in Figure 18.  

 

Figure 18: TOF distribution for N
+
 Mathieu parameters qz=  0.4636 and az= -0.1205. 

 

 As seen in Figure 18, no signal appears for N
+
 in the distribution. This indicates that the 

location of the      boundary at qz=0.4636 lies somewhere between az= -0.1187 and -0.1205. 

C
+ 
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A quantitative analysis of the signal area for N
+
 in the TOF distributions is also used to determine 

the location of the boundary. A background subtracted peak area for the N
+
 signal is calculated 

from each TOF distribution. In addition to this, the noise level is determined by calculating the 

peak area in a region of the TOF distribution where no signal appears. The difference between the 

signal peak area and the area associated to the noise is then computed, i.e.                 . 

When this value is strictly greater than 0, the az value is considered to lie inside the stable region. 

For example, the peak area in Figure 16 is 1.7 x10
-10

 Vs with standard error 3 x 10
-11

 Vs. The 

noise level in Figure 16 is 3 x 10
-11

 Vs and has a standard error of 2 x 10
-11 

Vs  Using these 

values, one finds that difference in areas is 1.4 x 10
-10

 Vs and has an error of 4 x10
-11

 Vs using 

error propagation, indicating that some of the N
+
 ions are still stable at az= -0.1187.  

When the difference between the signal and noise areas is 0 within the error, the signal 

for N
+
 at dump 2 is indistinguishable from the noise and the az value for such a measurement is 

considered to lie outside the stable region. For the az= -0.1205 measurement shown in Figure 18, 

the difference between the signal and noise areas is found to be 3x10
-11

 + 4x10
-11

. Since a value 

less than 0 is within the error for this measurement, and clearly there is no signal for N
+
 as seen in 

Figure 18, this indicates that az= -0.1205 lies beyond the stability boundary.  With this 

information, the az location of the      at qz=0.4636 is set as az= -0.1196 + 0.0009. The 

difference between the peak and noise is calculated for all measurements to determine the 

boundary of the CIT. The result of the boundary mapping experiment as well as comparisons to 

the numerically calculated energy dependent boundaries for the CIT is discussed in Chapter 5. 

            

 

 

 



 

 

33 

 

CHAPTER 5 

 

DISCUSSION OF RESULTS AND CONCLUSIONS 

The experimental boundary of the CIT stability region is determined from 18 different 

locations in the stability diagram, ranging from 0.1854 < qz < 0.7418. The method discussed in 

Chapter 4 is applied to the measurements where the result is shown in Figure 19.   

 

Figure 19: Stability diagram result for the boundary mapping experiment. The points in black 

represent the location of the experimentally determined boundary. The dashed lines again show 

the numerically determined stability region for a CIT assuming zero initial kinetic energy. 

 

As seen in Figure 19, the measured points for the      and      boundaries are close to the 

numerically calculated boundaries. Since the average kinetic energy of N
+
 is undoubtedly non 

zero in the experiment, the measured boundaries are expected to deviate from the zero energy 

CIT boundaries. The deviation of the experimental boundary from the numerically calculated 

energy dependent boundaries can be obtained by plotting the difference between the experimental 

and calculated boundary values for az, i.e. azEXP - azCalc. The error associated to azEXP - azCalc 
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and qz are determined using error propagation (see Appendix V). A plot of azEXP - azCalc vs. qz 

for the      boundary is shown in Figure 20. Note that the points in Figure 20 are in close 

proximity to each other, a consequence of the small change in the az boundary value for non-zero 

initial ion energies as seen in Figure 11. In order to understand this feature of the energy 

dependent boundaries for     , a plot of Eq. 2.15 and 2.16 as a function of z is shown in Figure 

21 where the radial displacement is set to zero.  

As discussed in Chapter 2, the equations of motion for ion trajectories in a CIT have the 

form of the Mathieu equation but are scaled by the functions   and  . Recall that ion stability is 

independent of the ion’s initial kinetic energy for the HIT, yet stability is dependent on ion energy 

for the CIT trajectories. Therefore, the behavior of   influences the location of the energy 

dependent boundaries. Also note that for the      numerical calculations discussed in Chapter 

3, the initial radial velocity is always set to zero and the radial displacement from the trap’s center 

is set to a 1nm. As a consequence, the close proximity of the energy dependent boundaries for 

     may be attributed to the variation of   for        as seen in Figure 21.    

Unlike the      boundary, the difference between the      energy dependent 

boundaries is quite large as seen in Figure 22. A plot of Eq. 2.15 and 2.16 as a function of r is 

shown in Figure 23 where the axial displacement is set to zero. The behavior of   for        

may be responsible for the large variation in the      boundaries. One interesting feature of 

Figure 20 and Figure 22 is that the experimentally determined boundaries are seen to lie between 

the 0.01eV and 0.1eV energy dependent boundaries. This is consistent with the N
+
 ions attaining 

thermal velocities via collisional cooling with the He buffer gas.  
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Figure 20: Plot of azEXP - azCalc vs. qz
 
for the      boundary. The points in blue and red are 

calculated using the 0.01eV and 0.1eV boundaries respectively.  

 

 

 

Figure 21: Plot of  (   ) and  (   ) 
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Figure 22: Plot of azEXP - azCalc vs. qz
 
for the      boundary. The points in blue and red are 

calculated using the 0.01eV and 0.1eV boundaries respectively.  

 

 

 

Figure 23: Plot of  (   ) and  (   ) 
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Unfortunately, the boundaries for      and     , as well as the remaining part of the 

     boundary cannot  be experimentally determined from the measurements. This is due to a 

low signal to noise ratio for large values of qz. The problem regarding low number density can 

potentially be solved for future measurements through using a combination of frequency, 

amplitude, and DC offset shifting during ion the storage phase to initially place the ion at the 

location of maximum ion number density in the stability region. However, such a scheme would 

have to be numerically investigated to determine how it would influence the stable region.           

 In summation, the CIT’s experimentally determined stability boundaries for      and 

     are found to lie in close proximity to the numerically calculated zero energy boundaries. 

Since ion stability is dependent on ion energy for a CIT, discrepancies between two boundaries 

are expected due to the non-zero energy of the ions in the experiment. Energy dependent 

boundaries have also been calculated where all of the experimental boundary points are found to 

lie consistently between the 0.01eV and 0.1eV energy boundaries. This is consistent with the ion 

attaining thermal energies through collisional cooling with the He buffer gas. As a result, the 

numerically calculated      and      boundaries provides an adequate estimate of the shape 

of the stability region for use in selective ion stability. Furthermore, one may use the energy 

dependence of the CIT’s stability region to estimate the mean energy of the trapped ions.        
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APPENDIX I  

 

APPROXIMATING ION TRAJECTORIES FOR A CIT 

 Note that Eq. 2.17 and 18 are close to the form of the 2
nd

 order Mathieu differential 

equation where the difference lies with the inclusion of the functions    and   in the equations. 

The appearance of these terms couples the motion of the ion due to the dependence of both z and 

r in each function. As a consequence of this coupling, no analytic solution to these types of 

equations exists; however, we can make certain approximations regarding an ion’s trajectory 

inside the CIT to simplify the equations. Suppose that an ion is confined in the CIT such that its 

trajectory stays relatively close to the origin. To determine how Eq. 2.17 and 18 behave as a 

result, the functions    and   are shown in Figure 24 assuming the CIT has the geometry    

         . 

As seen in Figure 24, the values of the functions approach the same constant value for 

small displacements from the origin. For higher values of r and z, the functions begin to deviate 

from this value, yet for ion trajectories confined within 3mm from the trap’s center, this value 

changes by no more than 2.8%. Therefore, for small displacements from the origin,  (   )  

 (   )           can be used in Eq. 2.17 and 18 to approximate the ion motion in the following 

way: 

                                                    
   

   
 (           (  ))                                                       (   ) 

The parameter u that appears in Eq. I.1  represents the motion in either the r or z direction. The 

parameter   represents the aforementioned constant and has a value of 2.06514. In a sense, Eq. 

2.17 can be thought of as a scaling of the Mathieu equation by  . Since the Mathieu equation 

describes the motion of ions inside a HIT, we can clearly see that the motion of ions inside a CIT 

behave in a similar manner.  
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Figure 24: 3D plot of   and   as functions of r and z. Since the functions are symmetric about the 

origin, only positive values from 0mm to 3mm for r and z are shown. 
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APPENDIX II 

  

PSEUDOPOTENTIAL WELL APPROXIMATION 

To gain further insight about the motion of the particles inside an ion trap, suppose we 

make some assumptions to simplify Eq. I.1. Let’s suppose that the ion trajectory is composed of 

two parts: a macromotion  ̅ that slowly varies with respect to the applied RF, and a micromotion 

   that responds with the RF. We then have the following: 

                                                 ̅      ̅             
  ̅

  
 

   

  
                                               (    ) 

Using these relations in Eq. I.1, we find that the micromotion of the particle can be determined as 

follows: 

  

  
 

  ̅

  
 

   

  
 

   

  
 

 
    

   
  (           (  )) ( ̅    )                                                                                  

If |  |  |  |, and noting that the ion macromotion is assumed to be much greater than the 

micromotion amplitude, then  

   
    

   
        (  ) ̅ 

Upon integrating this equation twice with respect to  , the equation describing the ion’s 

micromotion is  

                                                               
   

 
   (  ) ̅                                                                 (    ) 

Therefore, we find that the ion’s micromotion is linearly dependent upon the macromotion 

amplitude. Also, the ion micromotion is easily seen to be 180
0
 out of phase with respect to the 
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applied RF.  Using this result, the behavior of the ion macromotion can be determined by 

plugging this result back into Eq. I.1, 

   

   
  (           (  ))( ̅    )                                                                          

 
   

   
  (           (  ))(  

   

 
   (  ))  ̅ 

 
   

   
 [            (  )   

     
 

 
   (  )    

       (  )]  ̅ 

Through integrating this result over one full cycle of the applied RF, the equation describing the 

macromotion of the ion can be found: 

   ̅

   
 〈

   

   
〉  

 

 
∫

   

   

 

 

                                                                                                  

 
   ̅

   
  [    

  
   

 
]  ̅ 

Upon converting this differential equation back into a function of time, we find that 

                                                                            
   ̅

   
    

  ̅                                                                 (    )  

i.e. a simple harmonic oscillator (SHO) with the macromotion frequency 

                                                         
 

 
√    

  
   

 
                                                                    (    ) 

As a result, we see that the average motion of the particle can be treated as a SHO subjected to 

the following pseudopotential 

                                                                ( )  
 

  
   

                                                                   (    ) 
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By equating        (  ) to        (  ), the Mathieu parameters that leads to the same 

pseudopotential well in all three degrees of freedom can be determined (4). This equation is 

called the spherical pseudopotential curve and has the following form : 

                                                        (  )   
  

  

 
(
   

    
 

   
    

 
)                                              (    ) 

This equation will prove to be very helpful in the experiment and is discussed further in Chapter 

4.  

Using Eq. II.1-4, the approximate solution to the ion’s equations of motion is 

                                        ( )  (    (   )      (   )) [  
   

 
   (  )]                             (    ) 

where the coefficients   and   are dependent upon the ion’s initial position and velocity. Note 

that this derivation is only valid for ion motion that slowly varies with respect to the applied RF, 

i.e.     . Therefore, there is an upper bound on the Mathieu parameter:        .    

Previous work done with the Mathieu equation has shown that numerical solutions using 

the 4
th
 order Runge Kutta integration method agrees with the analytic solutions to a high degree 

of accuracy. Since the equations of motion in a CIT are very close to the Mathieu equation, the 

Runge Kutta method can also be used to numerically solve Eq. 2.17 and 18. In order to determine 

how well Eq. II.7 approximates an ion’s trajectory in a CIT, these numerical solutions are 

compared to Eq. II.7 in Figure 25.  
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Figure 25: Numerical and approximate CIT ion trajectories. The values for    and    are 0.255 

and -0.0174 respectively. The ion is assumed to have an initial displacement of 1mm from the 

trap’s center in both the z and r directions with no initial velocity.  

 

 As seen in the above figure, the approximate solution (Eq. II.7) agrees very well with the 

numerical solution of the ion’s trajectory in both the axial and radial directions. In summation, the 

motion of ions confined in a CIT can effectively be treated as a SHO responding to the 

pseudopotential defined in Eq. II.5, along with the superimposed micromotion given by Eq. II.2.  
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APPENDIX III  

 

CALCULATION OF THE COLLISION PERIOD 

In order to allow enough time for N
+
 to cool via these collisions, the collision period 

between the buffer gas and ions must be determined. The collision period can be found through 

the following equation 

                                                                                 
 ̅    

⁄                                                                 (     ) 

where λ is the mean free path and  ̅    is the average speed of the ion (28). The mean free path of 

the buffer gas can be calculated by the following equation 

                                                                           
  

√     
                                                                    (     ) 

where k is Boltzmann’s constant, T is the temperature, d is the collision diameter, and P is the 

pressure of the buffer gas [28]. The buffer gas is in thermal equilibrium with the vacuum chamber 

walls, so T=298K. The diameter of the He and N
+
 collision is taken to be the sum of the Van der 

Waals radii, or 2.9 angstroms. With a He pressure of 2.6 x 10
-6

 Torr, the mean free path is 

approximately 32 m. Assuming the ions have an average kinetic energy of 0.1 eV immediately 

after ion creation, the collision period is approximately 27ms. 
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APPENDIX IV 

 

ION INTENSITY MAP OF THE STABLE REGION 

 

 

Figure 26: Intensity map of the stability diagram. The white points represent the Mathieu 

parameters used to generate the map. The colored regions represent the varying normalized signal 

intensity ranging from highest in red (100) to lowest in violet (0). The contours are determined 

through an interpolation of the intensities at the measurement points.  The inset shows the ion 

intensity for small az and qz. 
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APPENDIX V  

 

ERROR PROPAGATION OF azEXP - azCalc AND qz 

The error associated to azEXP - azCalc and qz are determined by the following equations 

                                                  
 √   

(  )
     

    (  )
    

                                                  (   ) 

                                                
 √   

        
        (  )

   
                                    (   ) 

where terms of the form    denote a partial derivative with respect to x and    represents the 

error of x. The error in the frequency of the applied RF potential,   , is 5KHz for the experiment. 

The error in amplitude,    
, is 2.5% of V0. The errors for    

     and    
    are 0.0005 and 

0.0009 respectively as mentioned in Chapter 3 and Chapter 4.  
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