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Abstract

The first sections of this thesis explore a construction of electromagnetic fields first proposed

by Bateman [2] and recently rediscovered [8] and expanded upon. With this powerful and

elegant tool, I show that it is possible to construct families of EM fields that have a common

topological structure that is preserved throughout time. This topological structure, known

as the Hopf fibration, has been found to manifest itself in many areas of physics. Due to

its utility, I have made a detailed study of it. The final section of this thesis develops an

algorithm to parameterize a closed, bounded, and oriented surface that has as its boundary

a torus knot. These types of surfaces, known as Seifert surfaces [17], contain information

about the energy structure of the EM fields developed in the earlier sections of this thesis

and may also lead to detection protocols for such fields. Because these surfaces are closed,

bounded and oriented then Stokes’ theorem should be valid. A verification of this proposition

is included.
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1 Introduction

The study of knots has a rich history, dating back to the 1860’s when Lord Kelvin proposed

his vortex atom hypothesis [18]. Although this hypothesis was eventually abandoned with

the discovery of the atom about a decade later, the rigorous study of knots in a mathematical

framework was well underway. Until recently, the study of knots was confined almost exclu-

sively to the realm of pure mathematics. Knots, and their intrinsic topological properties,

have again entered the domain of mainstream theoretical physics.

The remarkable aspect of the solutions of Maxwell’s equations we will investigate are

their stablity in time, and that they possess a topological invariant, in that the electric

and magnetic field lines are linked for all time, and the Poynting field line structure is

unchanged in time. This topological structure could be exploited in many applications.

The study of topological invariants has recently gained ground in many branches of physics

research. Notably, the advances made in the field of quantum computation and information

have yielded promising results that utilize the topological nature of light and matter [4,10].

While much of this research is still confined to the realm of theoretical physics, it will not

be long before these phenomenon may be realized in the laboratory. This recent activity has

resulted in a large increase in the funding available for continued research and development.

The solutions studied in this paper are confined to the realm of electromagnetic radiation,

but it would not be prudent to limit the study of such solutions to light. There is no reason

to assume that these types of solutions could not be applied to matter as well. The reason

that such topological invariants are important to such branches of study such as quantum

information lies in the stability and robustness of that topology. These types of invariants

are nearly immune to noise and perturbations, making them ideal candidates for information

storage and use as qubits, as they are essentially deaf to sources of decoherence.

In Chapter 2, I will present the construction proposed by Bateman [2]. Chapter 3 will

verify the validity of this construction on a familiar solution to Maxwell’s equations in free

space. Chapters 4 and 5 provide some background on tori and a presentation of the structure

1



referred to as the Hopf fibration. Chapter 6 will examine the solutions proposed by Kedia

et al. [8]. Finally, Chapter 7 will present an algorithm to parameterize Seifert surfaces and

verify Stokes’ theorem on one such surface.
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2 Bateman’s Construction

2.1 Motivation

The usual solutions to Maxwell’s equations we encounter are plane waves. These solutions,

while important and useful, are only a small subset of the total solutions that are allowed.

Finding and developing solutions to the wave equation has been a part of physics education

and continuing research for the past 150 years. The reason for this restricted subset of solu-

tions arises from the methods used to solve the resulting wave equation. It is typical to use

the method of separation of variables to find solutions. However, there is no fundamental

reason for all solutions to be separable. With the advances made in technology, specifically

in computation, we have been able to shed light on and further our understanding of these

non-separable solutions. One of the basic principles that makes this field a nearly inex-

haustible one is the fact that the superposition of solutions is also a solution. This principle

of superposition, and accounting for various boundary conditions, is vital when we attempt

to create new solutions from old ones.

The following derivation explores another method to solving the wave equation.

2.2 Derivation

The method outlined in the thesis uses the construction of an electromagnetic field proposed

by Bateman [2] as early as 1915. This construction goes as follows. We begin with Maxwell’s

equations in free space. These equations are familiar

r⇥B =
@E

@t

= @

t

E and r⇥ E = �@B

@t

= �@

t

B (1)

along with the sourceless conditions

r ·B = 0 and r · E = 0 (2)

3



Here, we have adopted units such that c = 1. At this point, we construct a new field

represented by F and defined as

F ⌘ E+ ıB (3)

where ı =
p
�1 is the usual complex number, and the fields represented by E and B

are, themselves, solutions to Maxwell’s equations. This vector is the Riemann-Silberstein

vector [8] and is also referred to as the electromagnetic field, and Maxwell’s equations can

be written as

r⇥ F = r⇥ E+ ı (r⇥B) = � @

t

B+ ı @

t

E = ı @

t

(E+ ıB) = ı @

t

F

and

r · F = r · E+ ı(r ·B) = 0 + ı · 0 = 0

So, now we have that Maxwell’s equations can be written in terms of this new vector F

as follows

r⇥ F = ı @

t

F and r · F = 0 (4)

The next step in the construction is to find two complex scalar functions ↵(x, y, z, t) and

�(x, y, z, t) such that

r↵⇥r� = ı (@
t

↵r� � @

t

�r↵) (5)

This condition is equivalent to the following conditions

(@
x

↵)2 + (@
y

↵)2 + (@
z

↵)2 � (@
t

↵)2 = (r↵)2 � (@
t

↵)2 = 0

(@
x

�)2 + (@
y

�)2 + (@
z

�)2 � (@
t

�)2 = (r�)2 � (@
t

�)2 = 0 (6)

@

x

↵@

x

� + @

y

↵@

y

� + @

z

↵@

z

� � @

t

↵@

t

� = r↵ ·r� � @

t

↵ @

t

� = 0

To see how these conditions are equivalent, we consider the x-component of r↵⇥r� as

4



follows

(r↵⇥r�)
x

= @

y

↵ @

z

� � @

y

� @

z

↵ =
@(↵, �)

@(y, z)

Now, if we square this term we get that

(@
y

↵ @

z

� � @

y

� @

z

↵)2 = @

y

↵

2

@

z

�

2 + @

y

�

2

@

z

↵

2 � 2@
y

↵@

y

�@

z

↵@

z

�

=
�
@

y

↵

2 + @

z

↵

2

� �
@

y

�

2 + @

z

�

2

�

� @

y

↵

2

@

y

�

2 � @

y

�

2

@

z

↵

2 � 2@
y

↵@

z

↵@

y

�@

z

�

=
�
@

y

↵

2 + @

z

↵

2

� �
@

y

�

2 + @

z

�

2

�
� (@

y

↵@

y

� + @

z

↵@

z

�)2

and using (6) we get that

=
�
@

t

↵

2 � @

x

↵

2

� �
@

t

�

2 � @

x

�

2

�
� (@

t

↵@

t

� � @

x

↵@

x

�)2

expanding these expressions we get

=⇠⇠⇠⇠⇠
@

t

↵

2

@

t

�

2 � @

t

↵

2

@

x

�

2 � @

t

�

2

@

x

↵

2 +⇠⇠⇠⇠⇠
@

x

↵

2

@

x

�

2

�⇠⇠⇠⇠⇠
@

t

↵

2

@

t

�

2 �⇠⇠⇠⇠⇠
@

x

↵

2

@

x

�

2 + 2@
t

↵@

t

�@

x

↵@

x

�

= �
�
@

t

↵

2

@

x

�

2 + @

t

�

2

@

x

↵

2 � 2@
t

↵@

t

�@

x

↵@

x

�

�

= � (@
t

↵@

x

� � @

t

�@

x

↵)2

and when we take the square root we get

(r↵⇥r�)
x

= ı (@
t

↵@

x

� � @

t

�@

x

↵)
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Similar arguments give us the y- and z-components of r↵⇥r� as

(r↵⇥r�)
y

= ı (@
t

↵@

y

� � @

t

�@

y

↵)

(r↵⇥r�)
z

= ı (@
t

↵@

z

� � @

t

�@

z

↵)

and we have established (5). We now consider the following operations on r↵⇥r�

r⇥ (r↵⇥r�) and r · (r↵⇥r�) (7)

We will first consider

r⇥ (r↵⇥r�) = r⇥ (ı (@
t

↵r� � @

t

�r↵)) = ı [r⇥ (@
t

↵r�)�r⇥ (@
t

�r↵)]

= ı [r@

t

↵⇥r� + @

t

↵⇠⇠⇠⇠⇠r⇥r� � (r@

t

� ⇥r↵ + @

t

�⇠⇠⇠⇠⇠r⇥r↵)]

= ı [r@

t

↵⇥r� �r@

t

� ⇥r↵] = ı [r@

t

↵⇥r� +r↵⇥r@

t

�]

= ı @

t

[r↵⇥r�]

and we also find that

r · (r↵⇥r�) = r� · (⇠⇠⇠⇠⇠r⇥r↵)�r↵ · (⇠⇠⇠⇠⇠r⇥r�) = 0

From this we see that r↵ ⇥ r� and the electromagnetic field, F, possess the same

properties (4) and we define

F = r↵⇥r� (8)

It should be noted that for all ↵, � satisfying the above properties, we can obtain a field

F, but the converse may not be true; namely that for a given F, it may not be possible to

determine functions ↵, � satisfying the same properties. As we will be working the problem

from one direction (i.e. choosing suitable ↵ and �), we will leave that question open. Using

6



this definition, we can ascertain another property of F. Computing F ·F we determine that

F · F = (r↵⇥r�) · [ı (@
t

↵r� � @

t

�r↵)]

= ı [(r↵⇥r�) · @
t

↵r� � (r↵⇥r�) · @
t

�r↵]

= ı [@
t

↵ (⇠⇠⇠⇠⇠⇠r� ⇥r�) ·r↵� @

t

� (((((((r↵⇥r↵) ·r�] = 0

From the previous definition of F, in (3), we have that

F · F = (E+ ıB) · (E+ ıB) = E · E�B ·B+ 2 ı (E ·B)

and from above, we know that this term must be 0 in both its real and imaginary parts.

We conclude that

E · E�B ·B = 0 ) E · E = B ·B and E ·B = 0 (9)

A field with these properties is referred to as a null field. A null field is a field in which

the electric and magnetic fields are mutually orthogonal and have the same magnitude (in

geometrized units) in all reference frames. For a field that is not a null field, a reference frame

can be found in which either the electric or magnetic field vanishes [11]. This construction

guarantees that the field is null for all time. When a pair of functions (↵, �) has been found

to satisfy these conditions, we can construct an entire family of null fields. The individual

members of this family di↵er in their electric and magnetic components, but their Poynting

fields are all the same. To see this, we let

f(↵, �) and g(↵, �)

7



be two arbitrary holomorphic (or analytic) complex scalar functions of ↵ and �. We define

h(↵, �) = @

↵

f@

�

g � @

�

f@

↵

g =
@(f, g)

@(↵, �)
(10)

Now we consider

rf(↵, �)⇥rg(↵, �) =

����������

î ĵ k̂

@

↵

f@

x

↵ + @

�

f@

x

� @

↵

f@

y

↵ + @

�

f@

y

� @

↵

f@

z

↵ + @

�

f@

z

�

@

↵

g@

x

↵ + @

�

g@

x

� @

↵

g@

y

↵ + @

�

g@

y

� @

↵

g@

z

↵ + @

�

g@

z

�

����������

=
@(f, g)

@(↵, �)


@(↵, �)

@(y, z)
î� @(↵, �)

@(x, z)
ĵ+

@(↵, �)

@(x, y)
k̂

�

= h(↵, �) (r↵⇥r�)

Thus we have generated an infinite family of null fields, determined by ↵ and �, that

satisfy Maxwell’s equations in free space. For fixed ↵ and �, di↵erent choices of f and g give

di↵erent members of the family, but ↵ and � determine this family.

rf(↵, �)⇥rg(↵, �) = h(↵, �) (r↵⇥r�) (11)

In calculating the normalized Poynting field, we find that

E⇥B = (F� ıB)⇥B = F⇥B� ı⇠⇠⇠⇠B⇥B = F⇥B

and

E⇥B = E⇥
✓
1

ı

(F� E)

◆
= �ı (E⇥ F�⇠⇠⇠⇠E⇥ E) = ı(F⇥ E)

) E⇥B =
1

2
(F⇥B+ ıF⇥ E) =

ı

2
(F⇥ (�ıB+ E))

=
ı

2
(F⇥ F⇤)

8



where the ⇤ superscript denotes complex conjugation. Furthermore, we also have that

|E⇥B| =
p

(E⇥B) · (E⇥B) =
p

(E · E)(B ·B)�⇠⇠⇠⇠⇠(E ·B)2 = E · E = B ·B

where we have used (9). Now consider

F · F⇤ = (E+ ıB) · (E� ıB)

= E · E+B ·B+ ıE ·B� ıE ·B

= E · E+B ·B = 2E · E = 2B ·B

= 2|E⇥B|

So, now we have that the normalized Poynting field can be expressed as

E⇥B

|E⇥B| = ı

✓
F⇥ F⇤

F · F⇤

◆
= ı

|h(↵, �)|2

|h(↵, �)|2

✓
(r↵⇥r�)⇥ (r↵

⇤ ⇥r�

⇤)

(r↵⇥r�) · (r↵

⇤ ⇥r�

⇤)

◆

= ı

(r↵⇥r�)⇥ (r↵

⇤ ⇥r�

⇤)

(r↵⇥r�) · (r↵

⇤ ⇥r�

⇤)

(12)

and we readily see that the normalized Poynting field for all members of the family depend

only on ↵ and �.

2.3 Remarks

From this we see that for each pair, (↵(x, y, z, t), �(x, y, z, t)), of appropriately chosen func-

tions, the normalized Poynting field is the same for all fields within the family, regardless of

the arbitrary functions f(↵, �) and g(↵, �).

The following section will illustrate a specific example.

9



3 Elliptically Polarized Plane Wave

3.1 Parameters

With the appropriate choice of ↵, �, f and g, we are able to construct the readily recognizable

elliptically polarized plane wave. Let

↵(x, y, z, t) = z � t �(x, y, z, t) = x+ ıy f(↵, �) = e

ı↵

g(↵, �) = �

and we see that

(r↵)2 = 12 = 1

✓
@↵

@t

◆
2

= (�1)2 = 1

(r�)2 = 12 + ı

2 = 0

✓
@�

@t

◆
2

= 0

r↵ ·r� = (0, 0, 1) · (1, ı, 0) = 0 @

t

↵ @

t

� = 1 · 0 = 0

so ↵ and � satisfy (6). Using the construction of the previous section, we see that

F = rf(↵, �)⇥rg(↵, �) = r
�
e

ı(z�t)

�
⇥r (x+ ıy)

=

����������

î ĵ k̂

0 0 ıe

ı(z�t)

1 ı 0

����������

= î
�
0 + e

ı(z�t)

�
� ĵ

�
0� ıe

ı(z�t)

�
+ k̂ (0� 0)

= e

ı(z�t)

⇣
î+ ı̂j

⌘
= E+ ıB

so we obtain:

E = cos(z � t)̂i� sin(z � t)̂j and B = sin(z � t)̂i+ cos(z � t)̂j (13)

Furthermore, we are able to calculate the normalized Poynting field as well, using (12),

10



we get that

F⇥ F⇤ =

����������

î ĵ k̂

e

ı(z�t)

ıe

ı(z�t) 0

e

�ı(z�t) �ıe

�ı(z�t) 0

����������

= k̂ (�ı� ı) = �2ık̂

and

F · F⇤ = e

(z�t)(ı�ı) + ı(�ı)e(z�t)(ı�ı) = 2

and we get that

ı

✓
F⇥ F⇤

F · F⇤

◆
= ı

 
�2ık̂

2

!
= k̂

which is what we would expect.

3.2 Verifications

With this simple example, we will verify (11). To determine the function h defined by f and

g we obtain:

h(↵, �) =
@(f, g)

@(↵, �)
= ıe

ı↵

and

r↵⇥r� =

����������

î ĵ k̂

0 0 1

1 ı 0

����������

= �ı̂i+ ĵ

so

h(↵, �) (r↵⇥r�) = ıe

ı(z�t)

⇣
ı̂i+ ĵ

⌘
= e

ı(z�t)

⇣
î+ ı̂j

⌘
= F

and the construction is verified.
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3.3 Remarks

We have constructed a family of solutions where all members of this family have the same

underlying structure attached to their Poynting fields. In the literature this tie that all

members of the family share is called a congruence, for the case of the Hopfion solution, this

is referred to as the Robinson congruence [16].

The following section provides some background on the torus as this structure will be

prevalent in subsequent discussions.
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4 The Torus

This section will give some background information about tori. The surface of a torus is

important in that it is one of the simplest non-trivial surfaces in the study of topology. The

formal, topological definition of a torus is the product of circles.

T

n = S

1 ⇥ S

1 ⇥ · · ·⇥ S

1

| {z }
n copies

where S

1 is the unit circle. We will confine our observations to the 2-torus, T 2 = S

1 ⇥ S

1.

The surface of the torus can be mapped continuously to a finite plane with the sides identified

as in Figure 1

Figure 1: The 2-torus and the plane are topologically equivalent. The mapping f takes the
torus to the plane, and f

�1 takes the plane to the torus

It is easy enough to understand and observe that such a continuous mapping is possible.

Obtaining an explicit form for f is not entirely obvious. We will only concern ourselves with

the reverse map f

�1. We define the axes of the finite plane to be the variables (✓,�), we see

that

f

�1 : {0, 2⇡}⇥ {0, 2⇡} ! T

2 ⇢ R3

and explicitly

f

�1(✓,�) =
�
(r + (1� r) cos ✓) cos�, (r + (1� r) cos ✓) sin�, (1� r) sin ✓

�

maps to the torus with r as the radius from the center of the torus to the center of the tube

13



and 1� r as the radius of the tube. Of course, there are an infinite number of tori that can

be generated in this way. This parameterization will be useful when we discuss the Hopf

fibration in the following sections. As r ranges from 1 ! 1 we obtain a series of nested tori

as in Figure 2

Figure 2: Nested
tori. As r in-
creases from
1 ! 1, the
center of the
tube extends out
to infinity and
the hole shrinks

It should be noted that with this parameterization, we need to identify two degenerate

‘tori’. They occur when r = 1 and r = 1. The first is simply the unit circle lying in the

xy-plane (an infinitely thin torus). The second is the z-axis (torus of infinite radius), this

‘torus’ must be identified to include the limit point at infinity.

The map f from the torus to the plane is substantially trickier, due to the fact that the

edges are identified. This requires that the forward map be defined in a piecewise manner.
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5 The Hopfion Solution

5.1 Introduction

There is an interesting structure, first discovered and studied by Heinz Hopf [5] in 1931,

that has been recently rediscovered and found to have applications in various fields. This

structure helps to illustrate some of the properties of the 3-sphere, S3, that would otherwise

be unknown. A fibration is a continuous map ⇡ : X ! Y between topological spaces that

preserve homotopies. This means that a homotopy from X to Y is still a homotopy under the

map ⇡. These types of maps are important because they reveal characteristics of unknown

or unfamiliar spaces.

As this is a physics thesis and some the objects and concepts may be unfamiliar, I will

provide some definitions [9]. A topological space is a set of points together with a definition

of open subsets. This definition provides a notion of which points in the set are ‘close’ to

each other. We used quotes around close because this is di↵erent from a metric space in that

we cannot assign an explicit number to the distance between points. We are only able to

say that two points are either in the same neighborhood or they are not. A homotopy is a

continous collection of continous functions F (x, t) : X ⇥ I ! Y , where I is the unit interval

[0, 1], such that F (x, 0) = f

1

(x) and F (x, 1) = f

2

(x) and F (x, t) is continuous in both x

and t. Fundamentally this says that f
1

(x) can be continously deformed into f

2

(x) in both

topological spaces X and Y , where f

1

and f

2

are themselves continuous in X and they are

said to be homotopic. A familiar example of a homotopy is the aging process. An infant,

f

1

, and an elderly person, f
2

, are equivalent topologically (barring any sort of surgery such

as an apendectomy) and the homotopy is the path F (x, t) the body takes as time goes by.

This process is continuous and the topological shapes are equivalent at each point in time.

So a fibration is a map that preserve the homotopic relationship between f

1

and f

2

.
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5.2 The Hopf Fibration

The Hopf fibration is a mapping h : S3 ! S

2 defined by the relations [12]

h(a, b, c, d) =
�
a

2 + b

2 � c

2 � d

2

, 2(ad+ bc), 2(bd� ac)
�

(14)

where a

2 + b

2 + c

2 + d

2 = 1, since the domain is the 3-sphere. It should be noted that the

range of this map is the 2-sphere. To show this, we find the magnitude of the points in the

range by computing

p
h · h =

h�
a

2 + b

2 � c

2 � d

2

�
2

+ 4 (ad+ bc)2 + 4 (bd� ac)2
i
1/2

=
⇥
a

4 + b

2 + c

2 + d

2 + 2a2b2 � 2a2c2 � 2a2d2 � 2b2c2 � 2b2d2 + 2c2d2

+4a2d2 + 4b2c2 + 8abcd+ 4b2d2 + 4a2c2 � 8abcd
⇤
1/2

=
h�
a

2 + b

2 + c

2 + d

2

�
2

i
1/2

= a

2 + b

2 + c

2 + d

2 = 1

Thus, the range is indeed the 2-sphere. We can alternatively define this map using complex

numbers. We first identify the 3-sphere with C2 = C⇥ C and the 2-sphere with C⇥ R

S

3 =
�
(z

0

, z

1

) 2 C⇥ C
�� |z

0

|2 + |z
1

|2 = 1
 

and

S

2 =
�
(z, x) 2 C⇥ R

�� |z|2 + x

2 = 1
 

We can then define the Hopf map using this notation

hC(z0, z1) =
�
2z

0

z̄

1

, |z
0

|2 � |z
1

|2
�

(15)
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and we note that the first term is complex (in general) and the second term is real. We can

double check that this mapping lies on the 2-sphere.

|hC(z0, z1)| = 4z
0

z̄

1

z̄

0

z

1

+ |z
0

|4 � 2|z
0

|2|z
1

|2 + |z
1

|4

= |z
0

|4 + 2|z
0

|2|z
1

|2 + |z
1

|4 =
�
|z

0

|2 + |z
1

|2
�
2

= 1,

and indeed it does. This formulation coincides with the previous one when we let z
0

= a+ ıb

and z

1

= c+ ıd.

As the space S3 is ‘bigger’ than the space S2, it seems obvious that this map is surjective

(i.e. multiple points in the domain may map to the same point in the range). Consider a

point in S

3 such that (w
0

, w

1

) = (�z
0

,�z

1

). In this instance, we have that

hC(w0

, w

1

) =
�
2�z

0

�̄z̄

1

, |�|2
�
|z

0

|2 + |z
1

|2
��

= |�|2hC(z0, z1)

and the two points in S

3 map to the same point in S

2, as long as |�|2 = 1. Then we can say

that � = e

ı⇠, where ⇠ ranges from 0 to 2⇡. This allows us to observe that the preimage of a

point on S

2 is a great circle on S

3, passing through the point (z
0

, z

1

). These circles are the

fibers (the set of points that map to the same point) that make up the fibration and they

can be parameterized explicitly as follows:

z

0

= e

ı(⇠+

�
2 ) sin

✓
✓

2

◆

z

1

= e

ı(⇠��
2 ) cos

✓
✓

2

◆ (16)

To see this, we let z
0

= r

0

e

⇠0 and z

1

= r

1

e

⇠1 . Then we have that

hC(z0, z1) =
�
2z

0

z̄

1

, |z
0

|2 � |z
1

|2
�
=
�
2r

0

r

1

e

ı(⇠0�⇠1)
, r

2

0

� r

2

1

�
,
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and this must map to a point on S

2 so we have the relations

x = sin ✓ cos� = Re
⇥
2r

0

r

1

e

ı(⇠0�⇠1)
⇤
= 2r

0

r

1

cos(⇠
0

� ⇠

1

)

y = sin ✓ sin� = Im
⇥
2r

0

r

1

e

ı(⇠0�⇠1)
⇤
= 2r

0

r

1

sin(⇠
0

� ⇠

1

)

z = cos ✓ = r

2

0

� r

2

1

and we see immediately that � = ⇠

0

� ⇠

1

, and, after a little algebra we find that:

�
r

2

0

� r

2

1

�
+
�
r

2

0

+ r

2

1

�
= 1 + cos ✓

r

2

0

=
1 + cos ✓

2
= cos2

✓
✓

2

◆

) r

0

= cos

✓
✓

2

◆

Similarly we obtain that r
1

= sin (✓/2) so now we have:

z

0

= cos

✓
✓

2

◆
e

ı⇠0 and z

1

= sin

✓
✓

2

◆
e

ı(⇠0��) (17)

Now we define � = e

ı(⇠�⇠0+
�
2 ), where ⇠ ranges from 0 to 2⇡, and we obtain:

w

0

= �z

0

= cos

✓
✓

2

◆
e

ı(⇠+�
2 ) and w

1

= �z

1

= sin

✓
✓

2

◆
e

ı(⇠��
2 ) (18)

which is what we were trying to demonstrate. This is, in essence, the reverse map h

�1

C (w, x),

since we took a point on S

2 and found its preimage on S

3. Now we need to figure out how

to ‘see’ what’s going on.

Stereographic Projection

The 3-sphere, S3, is an entirely abstract entity. It is a surface embedded in R4, which is an

unimaginable space. To understand its relation to R3, we utilized the notion of stereographic

projection. We first use this process for S2 and then we make the generalization to higher

18



dimensions.

We embed S

2 in R3 and consider lines drawn from the top of the sphere (0, 0, 1) to any

other point on the sphere and see where that line intersects the xy-plane, as in Figure 3.

This is often referred to as the Riemann sphere.

Figure 3: The Riemann Sphere. Stereographic projection of the point p in S

2 to the point
p

0 on the xy-plane

This map (we’ll call it s
2

), takes a point on S

2 and maps it to a point in R2 and it has

the explicit form:

s

2

(x, y, z) =

✓
x

1� z

,

y

1� z

◆
(19)

where, of course, we require that x

2 + y

2 + z

2 = 1. We see here that the surface of the

2-sphere is a ‘curved’ version of R2. We can generalize this to higher dimensions and we will

find that the 3-sphere is in fact a ‘curved’ version of R3. We are only interested in the map

s

3

: S3 ! R3 and it is given by

s

3

(x, y, z, w) =

✓
x

1� w

,

y

1� w

,

z

1� w

◆
(20)

It should be noted that the point that we project from is not well defined by these relations.
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This can be rectified by eliminating that point from the domain spaces and we state:

s

2

: S2 \ {0, 0, 1} ! R2 and s

3

: S3 \ {0, 0, 0, 1} ! R3

this map is, in fact, conformal, in that it preserves angles and shapes. This property applies

to circles as well. Therefore, circles in S

3 (preimages of the Hopf map) map to circles in R3

via stereographic projection. The remarkable property of the Hopf Fibration can now be

determined. When we take the stereographic projection of the preimage of the Hopf map

from (18), we find that

s

3

(w
0

, w

1

) =
1

1� sin
�
✓

2

�
sin

�
⇠ � �

2

�
✓
cos

✓
✓

2

◆
cos

✓
⇠ +

�

2

◆
, cos

✓
✓

2

◆
sin

✓
⇠ +

�

2

◆
, sin

✓
✓

2

◆
cos

✓
⇠ � �

2

◆◆ (21)

For any two points on S

2, the corresponding circles they map to in R3 will always be

linked together, as in Figure 4. Another interesting property occurs when considering the

image of a specific latitude of the 2-sphere. These points evidently map to a torus in R3, as

in Figure 5, the structure of the Hopf fibration is apparent in Figure 6.

Furthermore, it is quite simple to deterimine the inverse of stereographic projection. This

map takes a point in R3 and gives the preimage on S

3 of that point. It is given by

s

�1

3

(x, y, z) =
1

x

2 + y

2 + z

2 + 1

�
2x, 2y, 2z, x2 + y

2 + z

2 � 1
�

= (a, b, c, d) 2 S

3

(22)

5.3 Parameters

It turns out that a solution to Maxwell’s equations can be constructed such that the electric,

magnetic, and Poynting fields each, independently, have the structure of the Hopf Fibration.

The individual field lines of each of these fields are closed loops, and any two of these loops

20



Figure 4: The fibers of the Hopf map are linked circles. The mapping s�h�1 takes the points
on the 2-sphere and maps them to circles in R3. Any distinct points map to circles that are
linked exactly once.

Figure 5: Latitudes produce tori. The Hopf map takes the points on a specific latitude to a
torus, T 2, in R3

are linked exactly once. Returning to Bateman’s construction we define the parameters for

such a solution. They turn out to be [3, 8]

↵ = �d

b

� = � ıa

2b
f =

1

↵

2

g = � (23)
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Figure 6: The Hopf fibration. Every point on the 2-sphere produces a fiber that is a circle,
any two of which are linked. Points that share a latitude produce a torus and the tori
produced at each latitude are nested inside one another.
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where

a = x� ıy b = t� ı� z d = r

2 � (t� ı)2, (24)

and now we determine

r↵ = (@
x

↵, @

y

↵, @

z

↵) and r� = (@
x

�, @

y

�, @

z

�)

with

@

x

↵ = �b @

x

d� d @

x

b

b

2

= �2bx

b

2

= �2x

b

similarly

@

y

↵ = �b @

y

d� d @

y

b

b

2

= �2by

b

2

= �2y

b

and

@

z

↵ = �b @

z

d� d @

z

b

b

2

= �2bz + d

b

2

so, we have that

r↵ = � 1

b

2

(2bx, 2by, 2bz + d) (25)

and

@

x

� = � ı

2

b @

x

a� a @

x

b

b

2

= � ı

2

b

b

2

= � ı

2b

@

y

� = � ı

2

b @

y

a� a @

y

b

b

2

= � ı

2

�ıb

b

2

= � 1

2b

@

z

� = � ı

2

b @

z

a� a @

z

b

b

2

= � ı

2

a

b

2

= � ıa

2b2

so

r� = � 1

2b2
(ıb, b, ıa) (26)
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now we are able to determine

r↵⇥r� =

����������

î ĵ k̂

@

x

↵ @

y

↵ @

z

↵

@

x

� @

y

� @

z

�

����������

=
1

2b4

����������

î ĵ k̂

2bx 2by 2bz + d

ıb b ıa

����������

=
1

2b4

h
î
�
2ıaby � 2b2z � bd

�
� ĵ

�
2ıabx� 2ıb2z � ıbd

�
+ k̂

�
2b2x� 2ıb2y

�i

=
1

2b3

h
î (2ıay � 2bz � d)� ĵ (2ıax� 2ıbz � ıd) + k̂ (2bx� 2ıby)

i

=
1

2b3

h�
b

2 � a

2

�
î+ ı

�
a

2 + b

2

�
ĵ+ 2ab k̂

i

and we also have from (10) that

h(↵, �) = @

↵

f@

�

g � @

�

f@

↵

g = � 2

↵

3

=
2b3

d

3

and we determine that

F = h(↵, �) (r↵⇥r�) =
1

d

3

�
b

2 � a

2

, ı

�
a

2 + b

2

�
, 2ab

�

Decomposing this expression into its real and imaginary components to determine the

electric and magnetic fields, we find that at time t = 0

E =
1

(1 + x

2 + y

2 + z

2)3
�
�1� x

2 + y

2 + z

2

,�2(xy � z),�2(y + xz)
�

(27)

and

B =
1

(1 + x

2 + y

2 + z

2)3
�
2(xy + z), 1� x

2 + y

2 � z

2

,�2(x� yz)
�

(28)

The normalized Poynting field is determined using (12)
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E⇥B

|E⇥B
= ı

✓
F⇥ F⇤

F · F⇤

◆
,

and we find that

F · F⇤ =
1

|d|6
⇥�
b

2 � a

2

� �
b̄

2 � ā

2

�
+
�
a

2 + b

2

� �
ā

2 + b̄

2

�
+ 4|a|2|b|2

⇤

=
1

|d|6
�
|b|4 + |a|4 � a

2

b̄

2 � ā

2

b

2 + |a|4 + |b|4 + a

2

b̄

2 + ā

2

b

2 + 4|a|2|b|2
�

=
2

|d|6
�
|a|4 + 2|a|2|b|2 + |b|2

�
=

2

|d|6
�
|a|2 + |b|2

�
2

and

F⇥ F⇤ =
1

|d|6

����������

î ĵ k̂

b

2 � a

2

ı (a2 + b

2) 2ab

b̄

2 � ā

2 �ı

�
ā

2 + b̄

2

�
2āb̄

����������

Determining the components we obtain:

(F⇥ F⇤)̂i =
⇥
2ıāb̄

�
a

2 + b

2

�
+ 2ıab

�
ā

2 + b̄

2

�⇤

= 2ı
⇥
b̄a|a|2 + āb|b|2 + bā|a|2 + ab̄|b|2

⇤

= 2ı
⇥
ab̄

�
|a|2 + |b|2

�
+ āb

�
|a|2 + |b|2

�⇤

= 2ı
�
ab̄+ āb

� �
|a|2 + |b|2

�

and

(F⇥ F⇤)
ˆj = 2ab

�
b̄

2 � ā

2

�
� 2āb̄

�
b

2 � a

2

�

= 2
⇥
ab̄|b|2 � āb|a|2 � āb|b|2 + ab̄|a|2

⇤

= 2
⇥
ab̄

�
|a|2 + |b|2

�
� āb

�
|a|2 + |b|2

�⇤

= 2
�
ab̄� āb

� �
|a|2 + |b|2

�

25



and

(F⇥ F⇤)
ˆk = �ı

⇥�
b

2 � a

2

� �
ā

2 + b̄

2

�
+
�
b̄

2 � ā

2

� �
a

2 + b

2

�⇤

= �ı

⇥
ā

2

b

2 � a

2

b̄

2 � |a|4 + |b|4 + a

2

b̄

2 � ā

2

b

2 � |a|4 + |b|4
⇤

= 2ı
⇥
|a|4 � |b|4

⇤
= 2ı

�
|a|2 + |b|2

� �
|a|2 � |b|2

�

and we find

✓
F⇥ F⇤

F · F⇤

◆
=

2 (|a|2 + |b|2)
|d|6

|d|6

2 (|a|2 + |b|2)2
�
ı(ab̄+ āb), ab̄� āb, ı

�
|a|2 � |b|2

��

=
1

|a|2 + |b|2
�
ı(ab̄+ āb), ab̄� āb, ı

�
|a|2 � |b|2

��

So, the normalized Poynting field for the Hopfion solution is

Ŝ =
E⇥B

|E⇥B| = � 1

|a|2 + |b|2
�
ab̄+ āb, ı(ab̄� āb), |a|2 � |b|2

�
(29)

Substituting the values of a and b, obtained from (24), we find that

Ŝ =
1

1 + x

2 + y

2 + (z � t)2

�
2(x(z � t)� y), 2(x+ y(z � t)), 1 + (z � t)� y

2 � x

2

� (30)

An alternative derivation, due to Rañada [14,15], yields the following expressions for these

fields, the advantage of doing this lies in the fact that they include the time dependence.

E =
1

8ı

r⇣ ⇥r⇣̄

�
1 + ⇣̄⇣

�
2

B =
1

8ı

r⌘ ⇥r⌘̄

(1 + ⌘̄⌘)2
(31)
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⇣(x, y, z, t) =
(Ax+ ty) + ı(Az + t(A� 1))

(tx� Ay) + ı(A(A� 1)� tz)

⌘(x, y, z, t) =
(Az + t(A� 1)) + ı(tx� Ay)

(Ax+ ty) + ı(A(A� 1)� tz)

with

A(x, y, z, t) =
1

2

�
x

2 + y

2 + z

2 � t

2 + 1
�

This derivation utilizes the elegance of di↵erential geometry and the tensor formalism of the

electromagnetic field.

5.4 Verifications

To verify that this solution is indeed related to the Hopf map, we notice that if we normalize

the electric and magnetic field expressions, then these vectors will all lie on the 2-sphere.

After normalization we have that

E

|E| = Ê =
1

1 + x

2 + y

2 + z

2

�
�1� x

2 + y

2 + z

2

,�2(xy � z),�2(y + xz)
�

and
B

|B| = B̂ =
1

1 + x

2 + y

2 + z

2

�
2(xy + z), 1� x

2 + y

2 � z

2

,�2(x� yz)
�

and we see that indeed Ê and B̂ are results of a Hopf map. The explicit parameters of this

map are

Ê = h

✓
z

↵

,

�y

↵

,

x

↵

,

1

↵

◆
(32)

(33)

B̂ = h

0
✓
1

↵

,

y

↵

,

x

↵

,

z

↵

◆
(34)

where h

0(a, b, c, d) = (2(ad+ bc), a2 + b

2 � c

2 � d

2

, 2(bd� ac)) is a rotation through 90 de-
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grees along an axis of the original Hopf map we defined above, and ↵

2 = 1 + x

2 + y

2 + z

2.

Similarly, for the Poynting field, we find that

Ŝ = h

00
✓
1

�

,

z � t

�

,

y

�

,

x

�

◆

where �2 = 1+ x

2 + y

2 + (z� t)2 and h

00 is, again, a rotation of the original Hopf map. This

verifies that the solution is indeed a Hopfion solution.

5.5 Remarks

As the Poynting field, in this form (30), is valid for all time t, we see that the Hopf structure

is preserved for the energy density that this beam of light carries. It should be noted that

the electric and magnetic fields are dynamic. As time progresses, we find that the tori that

the field lines define deform. This can be seen using the results from Rañada (31), with the

actual time evolution shown in [6–8]. The Poynting field is the most interesting feature of

this construction because this is the property that all solutions in the family share. This

property for the family is referred to in the literature as the Robinson congruence [16], as

mentioned earlier.
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6 Generalized Solutions on Torus Knots

The Bateman method for generating solutions to Maxell’s equations in vacuum, as we have

seen, is extremely powerful and provides a nearly endless supply of interesting and compelling

solutions. Using techniques from complex analysis and building upon the Hopfion solution

described above, we can generate an entire family of solutions with the desirable property of

topological invariance. In the Hopfion solution, all of the electric and magnetic field lines are

linked circles, and they persist in that configuration for all time. However, this construction

does not limit us to just consider linked circles. We are able to generate solutions that consist

of linked torus knots.

6.1 Parameters

To generate these solutions we first recall a theorem from complex analysis [13]. For two

complex numbers u and v such that |u|2 + |v|2 = 1 then u

p ± v

q = 0 is the equation of a

(p, q) torus knot, for p and q coprime integers. This is useful to us because we know that

S

3 =

⇢
(u, v) 2 C2

����|u|
2 + |v|2 = 1

�

With this theorem and the following choices for ↵ and � for use in Bateman’s construction

↵(x, y, z, t) =
r

2 � t

2 � 1 + 2ız

r

2 � (t� ı)2
, �(x, y, z, t) =

2(x� ıy)

r

2 � (t� ı)2
(35)

we can generate solutions with field lines that are (p, q) linked torus knots. Since we see that

|↵|2 + |�|2 = 1 for all time t.

|↵|2 = (r2 � t

2 � 1)2 + 4z2

(r2 � t

2 + 1)2 + 4t2
and |�|2 = 4x2 + 4y2

(r2 � t

2 + 1)2 + 4t2
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and we get

|↵|2 + |�|2 = 4r2 + (r2 � t

2 � 1)2

4t2 + (r2 � t

2 + 1)2
= 1

Thus, this choice of ↵ and � will indeed yield the desired torus knots. Furthermore, we have

that

r↵ ·r↵�
✓
@↵

@t

◆
2

= 0

r� ·r� �
✓
@�

@t

◆
2

= 0

r↵ ·r� � @↵

@t

@�

@t

= 0

(36)

and these expressions satisfy the requirements (6) to be valid functions for Bateman’s con-

struction. Making the obvious choice of f(↵, �) = ↵

p and g(↵, �) = �

q we obtain:

F = rf(↵, �)⇥rg(↵, �) = r↵

p ⇥r�

q

= pq↵

p�1

�

q�1 (r↵⇥r�)
(37)

where we now have that the Poynting field is given by this new r↵ ⇥ r� term.With this

formulation we find:

r↵⇥r� =
16

d

3

�
b

2 � a

2

,�ı

�
a

2 + b

2

�
, 2ab

�

where the definitions of a, b, and d are the same as for the Hopfion solution (24). Evidently,

this is the exact expression that we had determined for the Poynting field in the Hopfion

solution, up to a scaling factor. Therefore, we see that the Hopfion solution is really a specific

case of this more generalized formulation with p = q = 1. Furthermore, the core electric and

magnetic field lines now form linked torus knots, not simply circles, that fiber S3. And these

fibers form nested torus knots that fill all R3.
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6.2 Remarks

We have determined that with this choice of ↵ and �, we were able to construct a family of

solutions that are related to the Hopfion solution. They all share the same Poynting field,

but the structures of the corresponding electric and magnetic fields are much more complex.

The topological structure of these fields is again preserved in time. The choice of f = ↵

p

and g = �

q allows us to obtain electric and magnetic field lines that form linked p, q torus

knots that fill all space. This hearkens back to the Hopf fibration in that these field lines are

again linked but now, instead of the fibers consisting of circles, they are instead torus knots.

The following section presents an algorithm to parameterize a Seifert surface for arbitrary

torus knots.
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7 Seifert Surfaces

The surface of the torus embedded in R3 is an important surface in the theory of knots. The

study of knots is an ever-expanding field in pure mathematics and there are many seemingly

simple questions that have gone unanswered. This section will discuss an interesting theorem,

first proven in 1935, about knots as surface boundaries. It turns out that every knot can be

the boundary of a closed and bounded orientable surface.

In 1934 the German mathematician Herbert Seifert developed a very clever algorithm [17]

that produces a connected, compact and orientable surface such that the boundary of the

surface is a given knot in Euclidean 3-space. The algorithm begins with an oriented knot (I

will be using the trefoil knot as an example, but the algorithm works with any knot or link)

projected onto any plane in 3-space. For simplicity I will use the xy-plane. The simplest

parametrization of the trefoil knot is given by the equations:

x(t) = r(t) cos(pt)

y(t) = r(t) sin(pt) (38)

z(t) = sin(qt)

where r(t) = cos(qt) + 2. p and q are integers related to the topology of the knot. This

parametrization places the trefoil knot on the surface of a torus embedded in 3-space. The

torus can be thought of as two circles, one centered at the origin and the other tangent to

the first circle oriented perpendicularly. This is represented by T

2 = S

1 ⇥ S

1. So q is the

number of times the knot circumnavigates the torus in the poloidal direction and p is the

number of times the knot goes around in the toroidal direction. Using this parametrization,

one can create any knot lying on the surface of the torus so long as p and q are coprime

integers. For the trefoil knot p = 2 and q = 3.

The projection of the knot onto the xy-plane is easily done, simply let z(t) = 0. Using

this projection, our knot will be an oriented curve in the plane with three crossings (see
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Figure 7: The torus T

2 with compo-
nent circles shown. p is the number of
times the knot goes around the blue
circle. q is the number of times the
knot goes around the red circle

(a)
(b)

(c)

Figure 8: Deleting crossings. (a) Oriented trefoil knot projected onto xy-plane. (b) Close-up
of one of the crossings. (c) After deleting the crossing.

Figure 8a). At each of these crossings there are two arrows coming in and two arrows going

out. In Figure 8b it can be seen that 1 ! 2 and 3 ! 4. By reassigning these such that

1 ! 4 and 3 ! 2 we can delete the crossing as in Figure 8c.

7.1 ‘Top’ and ‘Bottom’ Surfaces

Once the crossings have been deleted, we are left with two disconnected circles. Now we

can move these circles so that they are in parallel planes and we can fill them in so that

they are now discs (see Figure 9). This is easy enough to do theoretically, but in practice

with an actual parametrized curve it is a bit more complicated. The crossing cannot in

actuality be deleted, to do so would change the boundary of the surface being generated.
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When parametrizing these ‘top’ and ‘bottom’ surfaces we must take care to associate their

boundaries with the knot.

Figure 9: Two discs in parallel planes

To e↵ectively delete the crossing, it is necessary to identify a point on the curve before

and after the crossing. As each crossing is represented by two values of the parameter t this

means that there will be four points identified at each crossing (see Figure 8c). Let C be the

set of all times t that a crossing occurs. So

C = {t
1

, t

2

, ..., t

n

} where
n

2
is the number of crossings

For the trefoil knot, t
1

and t

4

are one crossing, t
2

and t

5

are the next and t

3

and t

6

are the

last one. To ‘delete’ the crossing it is necessary to choose a point just before and just after

the t

i

that the crossing occurs. So the various intervals of the parameter t that will be used

for the ‘top’ surface boundary that lie on the knot are

(t
1

� 1

q

, t

1

+
1

pq

), (t
3

� 1

q

, t

3

+
1

pq

), and (t
5

� 1

q

, t

5

+
1

pq

)
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Using intervals that depend on the values of p and q allows this process to be used for other

knots, thus making this method not specific for the trefoil knot. The other three portions

of the boundary for this surface will be straight lines connecting the ends of the portions of

the boundary of the surface that lie on the knot (see Figure 10a). The parametrization for

the first of these lines is given by:

X(T ) = x(t
1

� 1

q

) ⇤ (1� T ) + x(t
3

+
1

pq

) ⇤ T

Y (T ) = y(t
1

� 1

q

) ⇤ (1� T ) + y(t
3

+
1

pq

) ⇤ T (39)

Z(T ) = z(t
1

� 1

q

) ⇤ (1� T ) + z(t
3

+
1

pq

) ⇤ T

where T is the parametrizing variable and the functions x(t), y(t), and z(t) are the parametriza-

tion functions for the knot as in (38). Notice that

X(0) = x(t
1

� 1

q

) and X(1) = x(t
3

+
1

pq

)

which are the endpoints of the sections of the boundary that lie on the knot. The other

(a) (b)

Figure 10: Generalization of the top and bottom surfaces. (a) The green curve is the
boundary of our top surface; (b) The top surface with boundary
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parametrizations are similar to this one, just change the endpoints. So, now that the bound-

aries are defined for these surfaces they can be parametrized.

To parametrize a disc in 3-space it is easiest to use polar coordinates. The equations are

simply

X(r,�) = r cos�

Y (r,�) = r sin�

Z(r,�) = a

where r varies from 0 to the boundary of the disc, � varies from 0 to 2⇡, and a is a

Figure 11: Parameterizing a
disc. As r varies from 0 to the
boundary and � varies from
0 to 2⇡ the circle is filled and
becomes a disc

constant. Thus, any pair (r,�) uniquely determines a point on the disc. Notice that the

parametrization of the knot is a function of one variable, t, but the parametrization of a

surface is a function of two variables, in this case r and �. More commonly the variables u

and v are used to parametrize a surface.

The ‘top’ and ‘bottom’ surfaces for our purposes will not be circular discs but they will

be parametrized in an analogous way. In other words, they will be topologically equivalent to

a circular disc. Since the boundaries of the surfaces being constructed are defined piecewise,

it is necessary to define the surfaces piecewise. There will be six separate pieces for the

trefoil knot. Alternating pieces will have their boundary on the knot and the other pieces

will have their boundary be a straight line connecting the sections lying on the knot. Thus
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the boundary of the ‘top’ and ‘bottom’ surfaces will be a closed curve (see Figure 10a).

Figure 12: Actual top and bottom sur-
faces. The top surface is blue and the
bottom surface is red

To parametrize a surface with this boundary, it is a simple matter of varying r from 0 to

the boundary and varying � from 0 to 2⇡. Since these surfaces must be at di↵erent ‘heights’

for the algorithm to work, choosing the center of the ‘top’ surface to be (0, 0, a) and the

center for the ‘bottom’ surface to be (0, 0,�a) this condition is met (see Figure 12).

7.2 Twisted Bands

The final step in Seifert’s algorithm is to reconnect the disjoint surfaces. To do this requires

taking a band or strip, giving it a half twist, and identifying the ends of the band with

the boundaries of the top and bottom surface. Giving the band a twist allows the surface

to remain orientable while at the same time keeping the boundary of the surface on the

knot. The reason this guarantees orientability is that both the top and bottom surfaces are

oriented, they both have two distinct sides. The band that we are using also has two distinct

sides and by giving the band a half twist and identifying boundaries, the top and bottom

surfaces become connected and oriented with respect to each other. This is the crux of the

algorithm and also the end of the algorithm. The surface we have constructed is closed,

bounded, connected and oriented. Theoretically this is a fairly simple construction, but in

working with a parameterized curve the di�culty is substantial.
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Figure 13: The boundary of the band. The
green curves are part of the boundaries
of the top and bottom surfaces. The red
curves are sections of the trefoil knot.

The region that we are parametrizing is bounded by four curves. Two of these curves are

sections of the trefoil knot, while the other two are straight lines given by the parametrization

in (39). Recall that the straight lines are part of the boundaries of the top and bottom sur-

faces constructed in the previous section. Using u and v as the parameters for these surfaces

and letting both parameters vary from 0 to 1, we arrive at the following parametrization:

X(u, v) = x(t
1

� 1

q

� ⇡ � 2

q

v) ⇤ u+ x(t
3

+
1

pq

+
p⇡ � 2

pq

v) ⇤ (1� u)

Y (u, v) = y(t
1

� 1

q

� ⇡ � 2

q

v) ⇤ u+ y(t
3

+
1

pq

+
p⇡ � 2

pq

v) ⇤ (1� u) (40)

Z(u, v) = z(t
1

� 1

q

� ⇡ � 2

q

v) ⇤ u+ z(t
3

+
1

pq

+
p⇡ � 2

pq

v) ⇤ (1� u)

This looks complicated at first glance, but upon closer inspection, the details become clear.

When u = 0 or 1 and v is allowed to vary, this reduces to the parametrization of a section

of the knot (i.e. the boundary of the band). When v = 0 or 1 and u is allowed to vary, the

parametrization yields the boundaries shared by the top and bottom surfaces. Thus each

pair (u, v) uniquely determines a point on the band.

The other bands have similar parametrizations, simply replacing t

1

with t

2

and t

3

with

t

4

, etc. Again, defining the intervals in terms of p and q make it possible to generalize this

method for other knots. Since the boundary of the band coincides with the boundaries of
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(a)

(b)

Figure 14: Twisted bands. (a) The band with its boundary; (b) A view of the band suggesting
its twist.

the top and bottom surfaces, when the bands and surfaces are joined these are no longer

boundaries but become a part of the resulting surface. The only boundary left to this surface

is the knot itself and our surface is closed, bounded, connected and oriented thus completing

the algorithm. It should be noted that this method of parametrizing a Seifert surface only

works for p = 2 and q odd.

Figure 15: The finished Seifert surface for the trefoil knot
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7.3 Verification of Stokes’ Theorem

Theory

Stokes’ Theorem states that the surface integral of the curl of a vector potential over a

connected, compact, and orientable surface is equal to the line integral of the vector potential

over the boundary of the surface. In 3-space this is represented symbolically by the equation

ZZ

⌃

(r⇥A) · d⌃ =

I

@⌃

A · ds (41)

where A is the vector potential, ⌃ is the surface, and @⌃ is the boundary of ⌃ (in this

case the trefoil knot). The terms, ds and d⌃, are the oriented line element of the boundary

and the normal oriented surface element of the surface, respectively. The relationship of the

vector potential A to the vector field B is given by

B = r⇥A (42)

To define a vector field in Euclidean 3-space is a fairly straightforward process. Every

point in space needs to have a vector assigned to it, relative to a fixed origin. The simplest

vector field is the constant vector field in which every point in space will have the same

vector assigned to it. In Cartesian coordinates,

B = (0, 0, c)

where c is some constant. The vector potential that gives rise to this field is given by (again

in Cartesian coordinates)

A = (� c

2
y,

c

2
x, 0) (43)
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Recall that the ‘del’ operator, r, is defined as

r =

✓
@

@x

,

@

@y

,

@

@z

◆

It is a simple calculation to verify (42) given this A and B.

The Right-Hand Side

Calculating ds for the trefoil knot is fairly simple and the evaluation of the RHS of Stokes’

Theorem (41) can be performed analytically. As s(t) is the parametrization of the trefoil

knot given by (38) the calculation of ds is carried out as follows:

s(t) = (x(t), y(t), z(t))

ds

dt
=

✓
dx

dt
,

dy

dt
,

dz

dt

◆

ds =

✓
dx

dt
,

dy

dt
,

dz

dt

◆
dt (44)

From this calculation it is possible to evaluate the RHS of Stokes’ Theorem. By substituting

Figure 16: Line elements for the con-
tour integral. The line element ds is
the change in s that results from a
small change in the parameter t

(43) and (44) into the RHS of (41) and evaluating

I

@⌃

A · ds =
Z

2⇡

0


� c

2

dx

dt
y(t) +

c

2

dy

dt
x(t)

�
dt = 9c⇡
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The Left-Hand Side

As mentioned before, the RHS is the easy part of verifying Stokes’ Theorem. The real

di�culty arises in the calculation of the surface area elements. For a surface to be orientable

it must have a ‘direction’ assigned to it. This direction is best thought of as a unit ‘normal’

vector (a vector that is directed perpendicular to the surface). Every point (u, v) of the

surface has a normal vector, n̂, associated with it and by definition kn̂k = 1.

(a) (b)

Figure 17: Vectors normal to a surface. (a) The normal vector n̂ is perpendicular to the
surface; (b) The oriented surface area element d⌃ has the direction of n̂ and its magnitude
is given by the area of the surface element dudv

The surface area element is calculated by taking the cross product of the line elements

du and dv. These are defined in an analogous way as ds was defined in (44). The only

di↵erence is that du and dv are functions of u and v. Using a parametrization of the surface

like that given in Section 7.2

du =

✓
@X

@u

,

@Y

@u

,

@Z

@u

◆
du and dv =

✓
@X

@v

,

@Y

@v

,

@Z

@v

◆
dv (45)
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From these definitions, it is clear that

n̂ =
du⇥ dv

kdu⇥ dvk

and since du ? dv then kdu⇥ dvk = dudv and d⌃ = n̂ dudv. This result becomes

d⌃ = n̂ dudv =
du⇥ dv

kdu⇥ dvk kdu⇥ dvk = du⇥ dv (46)

This form of d⌃ will be useful in the calculations needed to evaluate the LHS of (41). Since

the Seifert surface is defined in multiple sections (there are 15 separate sections for the trefoil

knot surface), it is necessary to evaluate the surface area elements, d⌃, for each of these

sections separately. However, the method used is the same for each section. Substituting

(42) and (46) into (41) yields

ZZ

⌃

(r⇥A) · d⌃ =

ZZ

⌃

B · (du⇥ dv) (47)

Evaluating du ⇥ dv using (44) and switching to the more compact notation @X/@u = X

u

,

and so on.

du⇥ dv = (Y
u

Z

v

� Y

v

Z

u

, X

v

Z

u

�X

u

Z

v

, X

u

Y

v

�X

v

Y

u

) dudv

and since B = (0, 0, c) this complicated term simplifies to

ZZ

⌃

B · (du⇥ dv) =

Z
1

0

Z
1

0

c (X
u

Y

v

�X

v

Y

u

) dudv

Due to the complicated nature of the parametrizations involved, this integral cannot be

solved analytically for every section of the Seifert surface. Using the NIntegrate function

in Mathematica with c = 1 with a working precision of 20 digits yields

ZZ

⌃

(r⇥A) · d⌃ = 28.274333882308108973
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Comparing this value with the value obtained for the RHS of 9⇡ shows that the error between

the two methods is on the order of 10�14. The two sides of Stokes’ Theorem are in excellent

agreement for this Seifert surface.

Figure 18: Full surface with field. The
Seifert surface embedded within the con-
stant vector field B = (0, 0, c).
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8 Conclusions

As we have observed, the Hopfion solution is a fairly peculiar phenomenon, to say nothing

of the generalized solutions on more complicated torus knot structures. These light fields

are indeed allowed by Maxwell’s theory, as they are solutions to the relevant equations. The

Poynting fields of both the Hopfion solution and the generalised torus knot solutions possess

a common structure that is preserved in time, allowing for the encoding of information in

the energy flow of these beams of light. When these beams are able to be produced in a

laboratory they may yield answers to the problems of decoherence that have hindered the

development of an adequate quantum computer to date. The construction of a topological

quantum computer would rely heavily on such phenomena, in light and matter both. The

applications of these types of light fields, once produced, will be far reaching. The reason for

this is the ability to encode information in light, not only through frequency and amplitude

modulation, but also in this energy modulation. This encoding, being of a topological nature,

is very robust.

Other areas where knots and topology have received recent attention are quantum field

theory [19], statistical mechanics, biology [1] (in the areas of protein folding and the structure

of DNA), and fluid dynamics, to name but a few. This relatively new area of study is ripe

with new solutions to interesting and challenging questions.

An additional area of interest and further research would lie on the experimental side.

Creating these types of beams of light in the laboratory would be the logical next step in

furthering their study. When the Hopfion solution is expanded as a linear combination of

vector spherical harmonics it is found that they it possesses a surprisingly simple expansion,

consisting of only two terms; a single transverse electric term and a single transverse magnetic

term. This suggests the use of tightly focused Laguerre-Gaussian beams in the production

of such light in the laboratory [7].
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Appendix A Parameterizing a Seifert Surface of the

Trefoil Knot

I have here included the Mathematica notebook I wrote to parameterize the Seifert Surface

outlined in this paper.

p = 2; q = 3; a = 1;p = 2; q = 3; a = 1;
p = 2; q = 3; a = 1;

r1[t ] = Cos[q ⇤ t] + 2;r1[t ] = Cos[q ⇤ t] + 2;r1[t ] = Cos[q ⇤ t] + 2;

x1[t ] = r1[t] ⇤ Cos[p ⇤ t];x1[t ] = r1[t] ⇤ Cos[p ⇤ t];x1[t ] = r1[t] ⇤ Cos[p ⇤ t];

y1[t ] = r1[t] ⇤ Sin[p ⇤ t];y1[t ] = r1[t] ⇤ Sin[p ⇤ t];y1[t ] = r1[t] ⇤ Sin[p ⇤ t];

z1[t ] = a ⇤ Sin[q ⇤ t];z1[t ] = a ⇤ Sin[q ⇤ t];z1[t ] = a ⇤ Sin[q ⇤ t];

These are the times at which the knot crosses itself when viewed from above (i.e. z = 0),

for p and q coprime

time1 = Range[Pi/(p ⇤ q),Pi, p ⇤ Pi/(p ⇤ q)];time1 = Range[Pi/(p ⇤ q),Pi, p ⇤ Pi/(p ⇤ q)];time1 = Range[Pi/(p ⇤ q),Pi, p ⇤ Pi/(p ⇤ q)];

time2 = time1 + Pi;time2 = time1 + Pi;time2 = time1 + Pi;

time3 = time2 + Pi;time3 = time2 + Pi;time3 = time2 + Pi;

x1[time1] == x1[time2]x1[time1] == x1[time2]x1[time1] == x1[time2]

y1[time1] == y1[time2]y1[time1] == y1[time2]y1[time1] == y1[time2]

True

True

time = Flatten[{{time1}, {time2}, {time3}}]time = Flatten[{{time1}, {time2}, {time3}}]time = Flatten[{{time1}, {time2}, {time3}}]
�

⇡

6

,

⇡

2

,

5⇡

6

,

7⇡

6

,

3⇡

2

,

11⇡

6

,

13⇡

6

,

5⇡

2

,

17⇡

6

 

Table[{x1[t, �], y1[t, �], z1[t, �]}, {�, 0, 2⇡, ⇡/4}];Table[{x1[t, �], y1[t, �], z1[t, �]}, {�, 0, 2⇡, ⇡/4}];Table[{x1[t, �], y1[t, �], z1[t, �]}, {�, 0, 2⇡, ⇡/4}];

c = ParametricPlot3D[{x1[t], y1[t], z1[t]}, {t, 0, 2 ⇤ Pi},PlotStyle ! {Red},c = ParametricPlot3D[{x1[t], y1[t], z1[t]}, {t, 0, 2 ⇤ Pi},PlotStyle ! {Red},
c = ParametricPlot3D[{x1[t], y1[t], z1[t]}, {t, 0, 2 ⇤ Pi},PlotStyle ! {Red},

Axes ! False,Boxed ! False]Axes ! False,Boxed ! False]Axes ! False,Boxed ! False]

Clear[f, g, h];Clear[f, g, h];Clear[f, g, h];

f = Range[Length[time1]];f = Range[Length[time1]];
f = Range[Length[time1]];

46



g = Range[Length[time1]];g = Range[Length[time1]];
g = Range[Length[time1]];

h = Range[Length[time1]];h = Range[Length[time1]];
h = Range[Length[time1]];

(*getting the di↵erent boundaries for the siefert algorithm*)(*getting the di↵erent boundaries for the siefert algorithm*)(*getting the di↵erent boundaries for the siefert algorithm*)

Do[f [[i]] = ParametricPlot3D[{x1[t], y1[t], z1[t]},Do[f [[i]] = ParametricPlot3D[{x1[t], y1[t], z1[t]},Do[f [[i]] = ParametricPlot3D[{x1[t], y1[t], z1[t]},

{t, time[[2i� 1]]� 1/q, time[[2i� 1]] + 1/(p ⇤ q)},{t, time[[2i� 1]]� 1/q, time[[2i� 1]] + 1/(p ⇤ q)},{t, time[[2i� 1]]� 1/q, time[[2i� 1]] + 1/(p ⇤ q)},

PlotStyle ! {Green,Thick}], {i, 1,Length[time1]}];PlotStyle ! {Green,Thick}], {i, 1,Length[time1]}];PlotStyle ! {Green,Thick}], {i, 1,Length[time1]}];

Do[Do[Do[

h[[i]] = ParametricPlot3D[h[[i]] = ParametricPlot3D[
h[[i]] = ParametricPlot3D[

{x1[time[[2i� 1]]� 1/q] ⇤ (1� t) + x1[time[[2i+ (q � p)]] + 1/(p ⇤ q)] ⇤ t,{x1[time[[2i� 1]]� 1/q] ⇤ (1� t) + x1[time[[2i+ (q � p)]] + 1/(p ⇤ q)] ⇤ t,{x1[time[[2i� 1]]� 1/q] ⇤ (1� t) + x1[time[[2i+ (q � p)]] + 1/(p ⇤ q)] ⇤ t,

y1[time[[2i� 1]]� 1/q] ⇤ (1� t) + y1[time[[2i+ (q � p)]] + 1/(p ⇤ q)] ⇤ t,y1[time[[2i� 1]]� 1/q] ⇤ (1� t) + y1[time[[2i+ (q � p)]] + 1/(p ⇤ q)] ⇤ t,y1[time[[2i� 1]]� 1/q] ⇤ (1� t) + y1[time[[2i+ (q � p)]] + 1/(p ⇤ q)] ⇤ t,

z1[time[[2i� 1]]� 1/q] ⇤ (1� t) + z1[time[[2i+ (q � p)]] + 1/(p ⇤ q)] ⇤ t},z1[time[[2i� 1]]� 1/q] ⇤ (1� t) + z1[time[[2i+ (q � p)]] + 1/(p ⇤ q)] ⇤ t},z1[time[[2i� 1]]� 1/q] ⇤ (1� t) + z1[time[[2i+ (q � p)]] + 1/(p ⇤ q)] ⇤ t},

{t, 0, 1},PlotStyle ! {Green,Thick}], {i, 1,Length[time1]}];{t, 0, 1},PlotStyle ! {Green,Thick}], {i, 1,Length[time1]}];{t, 0, 1},PlotStyle ! {Green,Thick}], {i, 1,Length[time1]}];

Do[Do[Do[

g[[i]] = ParametricPlot3D[g[[i]] = ParametricPlot3D[
g[[i]] = ParametricPlot3D[

{x1[time[[2i]] + 1/q] ⇤ (1� t) + x1[time[[2i� (q � p)]] ⇤ 1/(p ⇤ q)] ⇤ t,{x1[time[[2i]] + 1/q] ⇤ (1� t) + x1[time[[2i� (q � p)]] ⇤ 1/(p ⇤ q)] ⇤ t,{x1[time[[2i]] + 1/q] ⇤ (1� t) + x1[time[[2i� (q � p)]] ⇤ 1/(p ⇤ q)] ⇤ t,

y1[time[[2i]] + 1/q] ⇤ (1� t) + y1[time[[2i� (q � p)]] + 1/(p ⇤ q)] ⇤ t,y1[time[[2i]] + 1/q] ⇤ (1� t) + y1[time[[2i� (q � p)]] + 1/(p ⇤ q)] ⇤ t,y1[time[[2i]] + 1/q] ⇤ (1� t) + y1[time[[2i� (q � p)]] + 1/(p ⇤ q)] ⇤ t,

z1[time[[2i]] + 1/q] ⇤ (1� t) + z1[time[[2i� (q � p)]] + 1/(p ⇤ q)] ⇤ t},z1[time[[2i]] + 1/q] ⇤ (1� t) + z1[time[[2i� (q � p)]] + 1/(p ⇤ q)] ⇤ t},z1[time[[2i]] + 1/q] ⇤ (1� t) + z1[time[[2i� (q � p)]] + 1/(p ⇤ q)] ⇤ t},

{t, 0, 1},PlotStyle ! {Blue,Thick}], {i, 1,Length[time1]}];{t, 0, 1},PlotStyle ! {Blue,Thick}], {i, 1,Length[time1]}];{t, 0, 1},PlotStyle ! {Blue,Thick}], {i, 1,Length[time1]}];

Show[{c, f, h},PlotRange ! All,Axes ! False,Boxed ! False,Show[{c, f, h},PlotRange ! All,Axes ! False,Boxed ! False,Show[{c, f, h},PlotRange ! All,Axes ! False,Boxed ! False,

ViewVector ! {{0, 0, 10}, {0, 0, 0}}]ViewVector ! {{0, 0, 10}, {0, 0, 0}}]ViewVector ! {{0, 0, 10}, {0, 0, 0}}]

Parameterizing the top and bottom surface

topx[u , v ] = x1[u] ⇤ v;topx[u , v ] = x1[u] ⇤ v;topx[u , v ] = x1[u] ⇤ v;

topy[u , v ] = y1[u] ⇤ v;topy[u , v ] = y1[u] ⇤ v;topy[u , v ] = y1[u] ⇤ v;

topz[u , v ] = a ⇤ (1� v) + z1[u] ⇤ v;topz[u , v ] = a ⇤ (1� v) + z1[u] ⇤ v;topz[u , v ] = a ⇤ (1� v) + z1[u] ⇤ v;

bottomx[u , v ] = x1[u] ⇤ v;bottomx[u , v ] = x1[u] ⇤ v;bottomx[u , v ] = x1[u] ⇤ v;

bottomy[u , v ] = y1[u] ⇤ v;bottomy[u , v ] = y1[u] ⇤ v;bottomy[u , v ] = y1[u] ⇤ v;

bottomz[u , v ] = �a ⇤ (1� v) + z1[u] ⇤ v;bottomz[u , v ] = �a ⇤ (1� v) + z1[u] ⇤ v;bottomz[u , v ] = �a ⇤ (1� v) + z1[u] ⇤ v;
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top = Range[time1];top = Range[time1];top = Range[time1];

topa = Range[time1];topa = Range[time1];topa = Range[time1];

bottom = Range[time1];bottom = Range[time1];bottom = Range[time1];

bottoma = Range[time1];bottoma = Range[time1];bottoma = Range[time1];

Do[top[[i]] = ParametricPlot3D[{topx[u, v], topy[u, v], topz[u, v]},Do[top[[i]] = ParametricPlot3D[{topx[u, v], topy[u, v], topz[u, v]},Do[top[[i]] = ParametricPlot3D[{topx[u, v], topy[u, v], topz[u, v]},

{u, time[[2i� 1]]� 1/q, time[[2i� 1]] + 1/(p ⇤ q)}, {v, 0, 1},{u, time[[2i� 1]]� 1/q, time[[2i� 1]] + 1/(p ⇤ q)}, {v, 0, 1},{u, time[[2i� 1]]� 1/q, time[[2i� 1]] + 1/(p ⇤ q)}, {v, 0, 1},

PlotStyle ! {Opacity[.75],FaceForm[Yellow,Blue]},Mesh ! None],PlotStyle ! {Opacity[.75],FaceForm[Yellow,Blue]},Mesh ! None],PlotStyle ! {Opacity[.75],FaceForm[Yellow,Blue]},Mesh ! None],

{i, 1,Length[time1]}];{i, 1,Length[time1]}];{i, 1,Length[time1]}];

Do[Do[Do[

topa[[i]] =topa[[i]] =topa[[i]] =

ParametricPlot3D[ParametricPlot3D[ParametricPlot3D[

{(x1[time[[2i� 1]]� 1/q] ⇤ u+ x1[time[[2i+ (q � p)]] + 1/(p ⇤ q)] ⇤ (1� u)) ⇤ v,{(x1[time[[2i� 1]]� 1/q] ⇤ u+ x1[time[[2i+ (q � p)]] + 1/(p ⇤ q)] ⇤ (1� u)) ⇤ v,{(x1[time[[2i� 1]]� 1/q] ⇤ u+ x1[time[[2i+ (q � p)]] + 1/(p ⇤ q)] ⇤ (1� u)) ⇤ v,

(y1[time[[2i� 1]]� 1/q] ⇤ u+ y1[time[[2i+ (q � p)]] + 1/(p ⇤ q)] ⇤ (1� u)) ⇤ v,(y1[time[[2i� 1]]� 1/q] ⇤ u+ y1[time[[2i+ (q � p)]] + 1/(p ⇤ q)] ⇤ (1� u)) ⇤ v,(y1[time[[2i� 1]]� 1/q] ⇤ u+ y1[time[[2i+ (q � p)]] + 1/(p ⇤ q)] ⇤ (1� u)) ⇤ v,

(z1[time[[2i� 1]]� 1/q] ⇤ u+ z1[time[[2i+ (q � p)]] + 1/(p ⇤ q)] ⇤ (1� u)) ⇤ v+(z1[time[[2i� 1]]� 1/q] ⇤ u+ z1[time[[2i+ (q � p)]] + 1/(p ⇤ q)] ⇤ (1� u)) ⇤ v+(z1[time[[2i� 1]]� 1/q] ⇤ u+ z1[time[[2i+ (q � p)]] + 1/(p ⇤ q)] ⇤ (1� u)) ⇤ v+

a ⇤ (1� v)}, {u, 0, 1}, {v, 0, 1},a ⇤ (1� v)}, {u, 0, 1}, {v, 0, 1},
a ⇤ (1� v)}, {u, 0, 1}, {v, 0, 1},

PlotStyle ! {Opacity[.75],FaceForm[Yellow,Blue]},Mesh ! None],PlotStyle ! {Opacity[.75],FaceForm[Yellow,Blue]},Mesh ! None],PlotStyle ! {Opacity[.75],FaceForm[Yellow,Blue]},Mesh ! None],

{i, 1,Length[time1]}]{i, 1,Length[time1]}]{i, 1,Length[time1]}]

Do[Do[Do[

bottom[[i]] = ParametricPlot3D[{bottomx[u, v], bottomy[u, v], bottomz[u, v]},bottom[[i]] = ParametricPlot3D[{bottomx[u, v], bottomy[u, v], bottomz[u, v]},bottom[[i]] = ParametricPlot3D[{bottomx[u, v], bottomy[u, v], bottomz[u, v]},

{u, time[[2i]] + 1/q, time[[2i]]� 1/(p ⇤ q)}, {v, 0, 1},{u, time[[2i]] + 1/q, time[[2i]]� 1/(p ⇤ q)}, {v, 0, 1},{u, time[[2i]] + 1/q, time[[2i]]� 1/(p ⇤ q)}, {v, 0, 1},

PlotStyle ! {Opacity[.75],FaceForm[Yellow,Blue]},Mesh ! None],PlotStyle ! {Opacity[.75],FaceForm[Yellow,Blue]},Mesh ! None],PlotStyle ! {Opacity[.75],FaceForm[Yellow,Blue]},Mesh ! None],

{i, 1,Length[time1]}];{i, 1,Length[time1]}];{i, 1,Length[time1]}];

Do[Do[Do[

bottoma[[i]] =bottoma[[i]] =bottoma[[i]] =

ParametricPlot3D[ParametricPlot3D[ParametricPlot3D[

{(x1[time[[2i+ q � 1]] + 1/q] ⇤ (1� u) + x1[time[[2i]]� 1/(p ⇤ q)] ⇤ u) ⇤ v,{(x1[time[[2i+ q � 1]] + 1/q] ⇤ (1� u) + x1[time[[2i]]� 1/(p ⇤ q)] ⇤ u) ⇤ v,{(x1[time[[2i+ q � 1]] + 1/q] ⇤ (1� u) + x1[time[[2i]]� 1/(p ⇤ q)] ⇤ u) ⇤ v,

(y1[time[[2i+ q � 1]] + 1/q] ⇤ (1� u) + y1[time[[2i]]� 1/(p ⇤ q)] ⇤ u) ⇤ v,(y1[time[[2i+ q � 1]] + 1/q] ⇤ (1� u) + y1[time[[2i]]� 1/(p ⇤ q)] ⇤ u) ⇤ v,(y1[time[[2i+ q � 1]] + 1/q] ⇤ (1� u) + y1[time[[2i]]� 1/(p ⇤ q)] ⇤ u) ⇤ v,
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(z1[time[[2i+ q � 1]] + 1/q] ⇤ (1� u) + z1[time[[2i]]� 1/(p ⇤ q)] ⇤ u) ⇤ v�(z1[time[[2i+ q � 1]] + 1/q] ⇤ (1� u) + z1[time[[2i]]� 1/(p ⇤ q)] ⇤ u) ⇤ v�(z1[time[[2i+ q � 1]] + 1/q] ⇤ (1� u) + z1[time[[2i]]� 1/(p ⇤ q)] ⇤ u) ⇤ v�

a ⇤ (1� v)}, {u, 0, 1}, {v, 0, 1},a ⇤ (1� v)}, {u, 0, 1}, {v, 0, 1},
a ⇤ (1� v)}, {u, 0, 1}, {v, 0, 1},

PlotStyle ! {Opacity[.75],FaceForm[Yellow,Blue]},Mesh ! None],PlotStyle ! {Opacity[.75],FaceForm[Yellow,Blue]},Mesh ! None],PlotStyle ! {Opacity[.75],FaceForm[Yellow,Blue]},Mesh ! None],

{i, 1,Length[time1]}]{i, 1,Length[time1]}]{i, 1,Length[time1]}]

Show[{c, f, h, top, topa},PlotRange ! All,ViewVector ! {{0, 0, 10}, {0, 0, 0}},Show[{c, f, h, top, topa},PlotRange ! All,ViewVector ! {{0, 0, 10}, {0, 0, 0}},Show[{c, f, h, top, topa},PlotRange ! All,ViewVector ! {{0, 0, 10}, {0, 0, 0}},

Axes ! False,Boxed ! False]Axes ! False,Boxed ! False]Axes ! False,Boxed ! False]

band = Range[Length[time1]];band = Range[Length[time1]];band = Range[Length[time1]];

Do[Do[Do[

band[[i]] = ParametricPlot3D[band[[i]] = ParametricPlot3D[band[[i]] = ParametricPlot3D[

{x1[time[[2i� 1]]� 1/q � v ⇤ (p ⇤ Pi� 2p)/(p ⇤ q)] ⇤ u+{x1[time[[2i� 1]]� 1/q � v ⇤ (p ⇤ Pi� 2p)/(p ⇤ q)] ⇤ u+{x1[time[[2i� 1]]� 1/q � v ⇤ (p ⇤ Pi� 2p)/(p ⇤ q)] ⇤ u+

x1[time[[2i+ (q � p)]] + 1/(p ⇤ q) + v ⇤ (p ⇤ Pi� 2)/(p ⇤ q)] ⇤ (1� u),x1[time[[2i+ (q � p)]] + 1/(p ⇤ q) + v ⇤ (p ⇤ Pi� 2)/(p ⇤ q)] ⇤ (1� u),x1[time[[2i+ (q � p)]] + 1/(p ⇤ q) + v ⇤ (p ⇤ Pi� 2)/(p ⇤ q)] ⇤ (1� u),

y1[time[[2i� 1]]� 1/q � v ⇤ (p ⇤ Pi� 2p)/(q ⇤ p)] ⇤ u+y1[time[[2i� 1]]� 1/q � v ⇤ (p ⇤ Pi� 2p)/(q ⇤ p)] ⇤ u+y1[time[[2i� 1]]� 1/q � v ⇤ (p ⇤ Pi� 2p)/(q ⇤ p)] ⇤ u+

y1[time[[2i+ (q � p)]] + 1/(p ⇤ q) + v ⇤ (p ⇤ Pi� 2)/(p ⇤ q)] ⇤ (1� u),y1[time[[2i+ (q � p)]] + 1/(p ⇤ q) + v ⇤ (p ⇤ Pi� 2)/(p ⇤ q)] ⇤ (1� u),y1[time[[2i+ (q � p)]] + 1/(p ⇤ q) + v ⇤ (p ⇤ Pi� 2)/(p ⇤ q)] ⇤ (1� u),

z1[time[[2i� 1]]� 1/q � v ⇤ (p ⇤ Pi� 2p)/(q ⇤ p)] ⇤ u+z1[time[[2i� 1]]� 1/q � v ⇤ (p ⇤ Pi� 2p)/(q ⇤ p)] ⇤ u+z1[time[[2i� 1]]� 1/q � v ⇤ (p ⇤ Pi� 2p)/(q ⇤ p)] ⇤ u+

z1[time[[2i+ (q � p)]] + 1/(p ⇤ q) + v ⇤ (p ⇤ Pi� 2)/(p ⇤ q)] ⇤ (1� u)},z1[time[[2i+ (q � p)]] + 1/(p ⇤ q) + v ⇤ (p ⇤ Pi� 2)/(p ⇤ q)] ⇤ (1� u)},z1[time[[2i+ (q � p)]] + 1/(p ⇤ q) + v ⇤ (p ⇤ Pi� 2)/(p ⇤ q)] ⇤ (1� u)},

{u, 0, 1}, {v, 0, 1},PlotStyle ! {Opacity[.75],FaceForm[Yellow,Blue]},{u, 0, 1}, {v, 0, 1},PlotStyle ! {Opacity[.75],FaceForm[Yellow,Blue]},{u, 0, 1}, {v, 0, 1},PlotStyle ! {Opacity[.75],FaceForm[Yellow,Blue]},

Mesh ! None], {i, 1,Length[time1]}];Mesh ! None], {i, 1,Length[time1]}];Mesh ! None], {i, 1,Length[time1]}];

surface = {top, bottom, topa, bottoma, band};surface = {top, bottom, topa, bottoma, band};surface = {top, bottom, topa, bottoma, band};

Show[{c, surface},PlotRange ! All,ViewVector ! {{0, 0, 10}, {0, 0, 0}},Show[{c, surface},PlotRange ! All,ViewVector ! {{0, 0, 10}, {0, 0, 0}},Show[{c, surface},PlotRange ! All,ViewVector ! {{0, 0, 10}, {0, 0, 0}},

Boxed ! False,Axes ! False]Boxed ! False,Axes ! False]Boxed ! False,Axes ! False]
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Appendix B Verification of Stokes’ Theorem

This section contains the notebook I created to verify Stokes’ theorem for the Seifert surface

generated in the previous appendix.

Verification of Stokes’ Theorem requires a vector field. We’ll start with the simplest case,

a constant field

Clear[x, y, z, r,↵]Clear[x, y, z, r,↵]Clear[x, y, z, r,↵]

subs = {r ! Sqrt[x^2 + y

^2 + z

^2],↵ ! Sqrt[x^2 + y

^2]};subs = {r ! Sqrt[x^2 + y

^2 + z

^2],↵ ! Sqrt[x^2 + y

^2]};subs = {r ! Sqrt[x^2 + y

^2 + z

^2],↵ ! Sqrt[x^2 + y

^2]};

vectpotential[x , y , z ] = FullSimplify[{�y, x, 0}/.subs];vectpotential[x , y , z ] = FullSimplify[{�y, x, 0}/.subs];vectpotential[x , y , z ] = FullSimplify[{�y, x, 0}/.subs];

bfield[x , y , z ] = FullSimplify[Curl[vectpotential[x, y, z], {x, y, z}]];bfield[x , y , z ] = FullSimplify[Curl[vectpotential[x, y, z], {x, y, z}]];bfield[x , y , z ] = FullSimplify[Curl[vectpotential[x, y, z], {x, y, z}]];

vf = VectorPlot3D[bfield[x, y, z], {x,�3, 3}, {y,�3, 3}, {z,�1.5, 1.5},VectorPoints ! {3, 3, 2},vf = VectorPlot3D[bfield[x, y, z], {x,�3, 3}, {y,�3, 3}, {z,�1.5, 1.5},VectorPoints ! {3, 3, 2},vf = VectorPlot3D[bfield[x, y, z], {x,�3, 3}, {y,�3, 3}, {z,�1.5, 1.5},VectorPoints ! {3, 3, 2},

VectorStyle ! Blue,VectorScale ! .3];VectorStyle ! Blue,VectorScale ! .3];VectorStyle ! Blue,VectorScale ! .3];

Show[{surface, vf},PlotRange ! All,Boxed ! False,Axes ! False]Show[{surface, vf},PlotRange ! All,Boxed ! False,Axes ! False]Show[{surface, vf},PlotRange ! All,Boxed ! False,Axes ! False]

I will proceed to verify Stokes’ Theorem, which states that the flux of the curl of the

vector field through the surface is equal to the line integral over the boundary.

LHS=
R ✓*

rrr⇥
*

X

X

X

◆
· *nnn d⌦

RHS=
R *

X

X

X·d*

s

s

s

The curl of the vector potential is our B field. The flux of the curl of the vector potential

is simply the flux of our B field through the surface.

Since the surface is defined in pieces, we must integrate it in pieces, this will be a lengthy

process. We’ll do the line integral first, it’s much simpler and it will verify our result.

ds = {D[x1[t], t], D[y1[t], t], D[z1[t], t]}ds = {D[x1[t], t], D[y1[t], t], D[z1[t], t]}ds = {D[x1[t], t], D[y1[t], t], D[z1[t], t]}

{�2(2 + Cos[3t])Sin[2t]� 3Cos[2t]Sin[3t], 2Cos[2t](2 + Cos[3t])� 3Sin[2t]Sin[3t], 3Cos[3t]}

vectpotential[x1[t], y1[t], z1[t]].ds;vectpotential[x1[t], y1[t], z1[t]].ds;vectpotential[x1[t], y1[t], z1[t]].ds;

rhs = Integrate[vectpotential[x1[t], y1[t], z1[t]].ds, {t, 0, 2Pi}]rhs = Integrate[vectpotential[x1[t], y1[t], z1[t]].ds, {t, 0, 2Pi}]rhs = Integrate[vectpotential[x1[t], y1[t], z1[t]].ds, {t, 0, 2Pi}]

18⇡

rhs = NIntegrate[vectpotential[x1[t], y1[t], z1[t]].ds, {t, 0, 2⇡},WorkingPrecision ! 20]rhs = NIntegrate[vectpotential[x1[t], y1[t], z1[t]].ds, {t, 0, 2⇡},WorkingPrecision ! 20]rhs = NIntegrate[vectpotential[x1[t], y1[t], z1[t]].ds, {t, 0, 2⇡},WorkingPrecision ! 20]
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56.548667764616278293

N [18⇡, 20]N [18⇡, 20]
N [18⇡, 20]

56.548667764616278292

Now look at getting the normal vectors for the surface...

center = {0, 0, 0};center = {0, 0, 0};center = {0, 0, 0};

fluxtop = Range[time1];fluxtop = Range[time1];fluxtop = Range[time1];

fluxbottom = Range[time1];fluxbottom = Range[time1];fluxbottom = Range[time1];

fluxtopa = Range[time1];fluxtopa = Range[time1];fluxtopa = Range[time1];

fluxbottoma = Range[time1];fluxbottoma = Range[time1];fluxbottoma = Range[time1];

fluxband = Range[time1];fluxband = Range[time1];fluxband = Range[time1];

normtopa = Range[time1];normtopa = Range[time1];normtopa = Range[time1];

normbottoma = Range[time1];normbottoma = Range[time1];normbottoma = Range[time1];

normband = Range[time1];normband = Range[time1];normband = Range[time1];

normtop = Cross[{D[topx[u, v], u], D[topy[u, v], u], D[topz[u, v], u]},normtop = Cross[{D[topx[u, v], u], D[topy[u, v], u], D[topz[u, v], u]},normtop = Cross[{D[topx[u, v], u], D[topy[u, v], u], D[topz[u, v], u]},

{D[topx[u, v], v], D[topy[u, v], v], D[topz[u, v], v]}];{D[topx[u, v], v], D[topy[u, v], v], D[topz[u, v], v]}];{D[topx[u, v], v], D[topy[u, v], v], D[topz[u, v], v]}];

normbottom = Cross[{D[bottomx[u, v], u], D[bottomy[u, v], u], D[bottomz[u, v], u]},normbottom = Cross[{D[bottomx[u, v], u], D[bottomy[u, v], u], D[bottomz[u, v], u]},normbottom = Cross[{D[bottomx[u, v], u], D[bottomy[u, v], u], D[bottomz[u, v], u]},

{D[bottomx[u, v], v], D[bottomy[u, v], v], D[bottomz[u, v], v]}];{D[bottomx[u, v], v], D[bottomy[u, v], v], D[bottomz[u, v], v]}];{D[bottomx[u, v], v], D[bottomy[u, v], v], D[bottomz[u, v], v]}];

Do[Do[Do[

normtopa[[i]] =normtopa[[i]] =normtopa[[i]] =

Cross[{D[center[[1]] ⇤ (1� v) + (x1[time[[2i� 1]]� 1/q] ⇤ u+ x1[time[[2i+ (q � p)]]Cross[{D[center[[1]] ⇤ (1� v) + (x1[time[[2i� 1]]� 1/q] ⇤ u+ x1[time[[2i+ (q � p)]]Cross[{D[center[[1]] ⇤ (1� v) + (x1[time[[2i� 1]]� 1/q] ⇤ u+ x1[time[[2i+ (q � p)]]

+1/(p ⇤ q)] ⇤ (1� u)) ⇤ v, u],+1/(p ⇤ q)] ⇤ (1� u)) ⇤ v, u],+1/(p ⇤ q)] ⇤ (1� u)) ⇤ v, u],

D[center[[2]] ⇤ (1� v) + (y1[time[[2i� 1]]� 1/q] ⇤ u+ y1[time[[2i+ (q � p)]]D[center[[2]] ⇤ (1� v) + (y1[time[[2i� 1]]� 1/q] ⇤ u+ y1[time[[2i+ (q � p)]]
D[center[[2]] ⇤ (1� v) + (y1[time[[2i� 1]]� 1/q] ⇤ u+ y1[time[[2i+ (q � p)]]

+1/(p ⇤ q)] ⇤ (1� u)) ⇤ v, u],+1/(p ⇤ q)] ⇤ (1� u)) ⇤ v, u],+1/(p ⇤ q)] ⇤ (1� u)) ⇤ v, u],

D[(z1[time[[2i� 1]]� 1/q] ⇤ u+ z1[time[[2i+ (q � p)]] + 1/(p ⇤ q)] ⇤ (1� u)) ⇤ vD[(z1[time[[2i� 1]]� 1/q] ⇤ u+ z1[time[[2i+ (q � p)]] + 1/(p ⇤ q)] ⇤ (1� u)) ⇤ v
D[(z1[time[[2i� 1]]� 1/q] ⇤ u+ z1[time[[2i+ (q � p)]] + 1/(p ⇤ q)] ⇤ (1� u)) ⇤ v

+(center[[3]] + a) ⇤ (1� v), u]},+(center[[3]] + a) ⇤ (1� v), u]},+(center[[3]] + a) ⇤ (1� v), u]},

{D[center[[1]] + (1� v) + (x1[time[[2i� 1]]� 1/q] ⇤ u+ x1[time[[2i+ (q � p)]]{D[center[[1]] + (1� v) + (x1[time[[2i� 1]]� 1/q] ⇤ u+ x1[time[[2i+ (q � p)]]{D[center[[1]] + (1� v) + (x1[time[[2i� 1]]� 1/q] ⇤ u+ x1[time[[2i+ (q � p)]]

+1/(p ⇤ q)] ⇤ (1� u)) ⇤ v, v],+1/(p ⇤ q)] ⇤ (1� u)) ⇤ v, v],+1/(p ⇤ q)] ⇤ (1� u)) ⇤ v, v],
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D[center[[2]] + (1� v) + (y1[time[[2i� 1]]� 1/q] ⇤ u+ y1[time[[2i+ (q � p)]]D[center[[2]] + (1� v) + (y1[time[[2i� 1]]� 1/q] ⇤ u+ y1[time[[2i+ (q � p)]]
D[center[[2]] + (1� v) + (y1[time[[2i� 1]]� 1/q] ⇤ u+ y1[time[[2i+ (q � p)]]

+1/(p ⇤ q)] ⇤ (1� u)) ⇤ v, v],+1/(p ⇤ q)] ⇤ (1� u)) ⇤ v, v],+1/(p ⇤ q)] ⇤ (1� u)) ⇤ v, v],

D[(z1[time[[2i� 1]]� 1/q] ⇤ u+ z1[time[[2i+ (q � p)]] + 1/(p ⇤ q)] ⇤ (1� u)) ⇤ vD[(z1[time[[2i� 1]]� 1/q] ⇤ u+ z1[time[[2i+ (q � p)]] + 1/(p ⇤ q)] ⇤ (1� u)) ⇤ v
D[(z1[time[[2i� 1]]� 1/q] ⇤ u+ z1[time[[2i+ (q � p)]] + 1/(p ⇤ q)] ⇤ (1� u)) ⇤ v

+(center[[3]] + a) ⇤ (1� v), v]}],+(center[[3]] + a) ⇤ (1� v), v]}],+(center[[3]] + a) ⇤ (1� v), v]}],

{i, 1,Length[time1]}]{i, 1,Length[time1]}]{i, 1,Length[time1]}]

Do[Do[Do[

normbottoma[[i]] =normbottoma[[i]] =normbottoma[[i]] =

Cross[{D[center[[1]] ⇤ (1� v) + (x1[time[[2i+ q � 1]] + 1/q] ⇤ (1� u)Cross[{D[center[[1]] ⇤ (1� v) + (x1[time[[2i+ q � 1]] + 1/q] ⇤ (1� u)Cross[{D[center[[1]] ⇤ (1� v) + (x1[time[[2i+ q � 1]] + 1/q] ⇤ (1� u)

+x1[time[[2i]]� 1/(p ⇤ q)] ⇤ u) ⇤ v, u],+x1[time[[2i]]� 1/(p ⇤ q)] ⇤ u) ⇤ v, u],+x1[time[[2i]]� 1/(p ⇤ q)] ⇤ u) ⇤ v, u],

D[center[[2]] ⇤ (1� v) + (y1[time[[2i+ q � 1]] + 1/q] ⇤ (1� u)D[center[[2]] ⇤ (1� v) + (y1[time[[2i+ q � 1]] + 1/q] ⇤ (1� u)
D[center[[2]] ⇤ (1� v) + (y1[time[[2i+ q � 1]] + 1/q] ⇤ (1� u)

+y1[time[[2i]]� 1/(p ⇤ q)] ⇤ u) ⇤ v, u],+y1[time[[2i]]� 1/(p ⇤ q)] ⇤ u) ⇤ v, u],+y1[time[[2i]]� 1/(p ⇤ q)] ⇤ u) ⇤ v, u],

D[(z1[time[[2i+ q � 1]] + 1/q] ⇤ (1� u) + z1[time[[2i]]� 1/(p ⇤ q)] ⇤ u) ⇤ vD[(z1[time[[2i+ q � 1]] + 1/q] ⇤ (1� u) + z1[time[[2i]]� 1/(p ⇤ q)] ⇤ u) ⇤ v
D[(z1[time[[2i+ q � 1]] + 1/q] ⇤ (1� u) + z1[time[[2i]]� 1/(p ⇤ q)] ⇤ u) ⇤ v

+(center[[3]] +�a) ⇤ (1� v), u]},+(center[[3]] +�a) ⇤ (1� v), u]},+(center[[3]] +�a) ⇤ (1� v), u]},

{D[center[[1]] ⇤ (1� v) + (x1[time[[2i+ q � 1]] + 1/q] ⇤ (1� u){D[center[[1]] ⇤ (1� v) + (x1[time[[2i+ q � 1]] + 1/q] ⇤ (1� u){D[center[[1]] ⇤ (1� v) + (x1[time[[2i+ q � 1]] + 1/q] ⇤ (1� u)

+x1[time[[2i]]� 1/(p ⇤ q)] ⇤ u) ⇤ v, v],+x1[time[[2i]]� 1/(p ⇤ q)] ⇤ u) ⇤ v, v],+x1[time[[2i]]� 1/(p ⇤ q)] ⇤ u) ⇤ v, v],

D[center[[2]] ⇤ (1� v) + (y1[time[[2i+ q � 1]] + 1/q] ⇤ (1� u)D[center[[2]] ⇤ (1� v) + (y1[time[[2i+ q � 1]] + 1/q] ⇤ (1� u)
D[center[[2]] ⇤ (1� v) + (y1[time[[2i+ q � 1]] + 1/q] ⇤ (1� u)

+y1[time[[2i]]� 1/(p ⇤ q)] ⇤ u) ⇤ v, v],+y1[time[[2i]]� 1/(p ⇤ q)] ⇤ u) ⇤ v, v],+y1[time[[2i]]� 1/(p ⇤ q)] ⇤ u) ⇤ v, v],

D[(z1[time[[2i+ q � 1]] + 1/q] ⇤ (1� u) + z1[time[[2i]]� 1/(p ⇤ q)] ⇤ u) ⇤ vD[(z1[time[[2i+ q � 1]] + 1/q] ⇤ (1� u) + z1[time[[2i]]� 1/(p ⇤ q)] ⇤ u) ⇤ v
D[(z1[time[[2i+ q � 1]] + 1/q] ⇤ (1� u) + z1[time[[2i]]� 1/(p ⇤ q)] ⇤ u) ⇤ v

+(center[[3]] +�a) ⇤ (1� v), v]}],+(center[[3]] +�a) ⇤ (1� v), v]}],+(center[[3]] +�a) ⇤ (1� v), v]}],

{i, 1,Length[time1]}]{i, 1,Length[time1]}]{i, 1,Length[time1]}]

Do[Do[Do[

normband[[i]] =normband[[i]] =normband[[i]] =

Cross[Cross[Cross[

{D[x1[time[[2i� 1]]� 1/q � v ⇤ (p ⇤ Pi� 2p)/(p ⇤ q)] ⇤ u+{D[x1[time[[2i� 1]]� 1/q � v ⇤ (p ⇤ Pi� 2p)/(p ⇤ q)] ⇤ u+{D[x1[time[[2i� 1]]� 1/q � v ⇤ (p ⇤ Pi� 2p)/(p ⇤ q)] ⇤ u+

x1[time[[2i+ (q � p)]] + 1/(p ⇤ q) + v ⇤ (p ⇤ Pi� 2)/(p ⇤ q)] ⇤ (1� u), u],x1[time[[2i+ (q � p)]] + 1/(p ⇤ q) + v ⇤ (p ⇤ Pi� 2)/(p ⇤ q)] ⇤ (1� u), u],x1[time[[2i+ (q � p)]] + 1/(p ⇤ q) + v ⇤ (p ⇤ Pi� 2)/(p ⇤ q)] ⇤ (1� u), u],

D[y1[time[[2i� 1]]� 1/q � v ⇤ (p ⇤ Pi� 2p)/(q ⇤ p)] ⇤ u+D[y1[time[[2i� 1]]� 1/q � v ⇤ (p ⇤ Pi� 2p)/(q ⇤ p)] ⇤ u+
D[y1[time[[2i� 1]]� 1/q � v ⇤ (p ⇤ Pi� 2p)/(q ⇤ p)] ⇤ u+

y1[time[[2i+ (q � p)]] + 1/(p ⇤ q) + v ⇤ (p ⇤ Pi� 2)/(p ⇤ q)] ⇤ (1� u), u],y1[time[[2i+ (q � p)]] + 1/(p ⇤ q) + v ⇤ (p ⇤ Pi� 2)/(p ⇤ q)] ⇤ (1� u), u],y1[time[[2i+ (q � p)]] + 1/(p ⇤ q) + v ⇤ (p ⇤ Pi� 2)/(p ⇤ q)] ⇤ (1� u), u],
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D[z1[time[[2i� 1]]� 1/q � v ⇤ (p ⇤ Pi� 2p)/(q ⇤ p)] ⇤ u+D[z1[time[[2i� 1]]� 1/q � v ⇤ (p ⇤ Pi� 2p)/(q ⇤ p)] ⇤ u+
D[z1[time[[2i� 1]]� 1/q � v ⇤ (p ⇤ Pi� 2p)/(q ⇤ p)] ⇤ u+

z1[time[[2i+ (q � p)]] + 1/(p ⇤ q) + v ⇤ (p ⇤ Pi� 2)/(p ⇤ q)] ⇤ (1� u), u]},z1[time[[2i+ (q � p)]] + 1/(p ⇤ q) + v ⇤ (p ⇤ Pi� 2)/(p ⇤ q)] ⇤ (1� u), u]},z1[time[[2i+ (q � p)]] + 1/(p ⇤ q) + v ⇤ (p ⇤ Pi� 2)/(p ⇤ q)] ⇤ (1� u), u]},

{D[x1[time[[2i� 1]]� 1/q � v ⇤ (p ⇤ Pi� 2p)/(p ⇤ q)] ⇤ u+{D[x1[time[[2i� 1]]� 1/q � v ⇤ (p ⇤ Pi� 2p)/(p ⇤ q)] ⇤ u+{D[x1[time[[2i� 1]]� 1/q � v ⇤ (p ⇤ Pi� 2p)/(p ⇤ q)] ⇤ u+

x1[time[[2i+ (q � p)]] + 1/(p ⇤ q) + v ⇤ (p ⇤ Pi� 2)/(p ⇤ q)] ⇤ (1� u), v],x1[time[[2i+ (q � p)]] + 1/(p ⇤ q) + v ⇤ (p ⇤ Pi� 2)/(p ⇤ q)] ⇤ (1� u), v],x1[time[[2i+ (q � p)]] + 1/(p ⇤ q) + v ⇤ (p ⇤ Pi� 2)/(p ⇤ q)] ⇤ (1� u), v],

D[y1[time[[2i� 1]]� 1/q � v ⇤ (p ⇤ Pi� 2p)/(q ⇤ p)] ⇤ u+D[y1[time[[2i� 1]]� 1/q � v ⇤ (p ⇤ Pi� 2p)/(q ⇤ p)] ⇤ u+
D[y1[time[[2i� 1]]� 1/q � v ⇤ (p ⇤ Pi� 2p)/(q ⇤ p)] ⇤ u+

y1[time[[2i+ (q � p)]] + 1/(p ⇤ q) + v ⇤ (p ⇤ Pi� 2)/(p ⇤ q)] ⇤ (1� u), v],y1[time[[2i+ (q � p)]] + 1/(p ⇤ q) + v ⇤ (p ⇤ Pi� 2)/(p ⇤ q)] ⇤ (1� u), v],y1[time[[2i+ (q � p)]] + 1/(p ⇤ q) + v ⇤ (p ⇤ Pi� 2)/(p ⇤ q)] ⇤ (1� u), v],

D[z1[time[[2i� 1]]� 1/q � v ⇤ (p ⇤ Pi� 2p)/(q ⇤ p)] ⇤ u+D[z1[time[[2i� 1]]� 1/q � v ⇤ (p ⇤ Pi� 2p)/(q ⇤ p)] ⇤ u+
D[z1[time[[2i� 1]]� 1/q � v ⇤ (p ⇤ Pi� 2p)/(q ⇤ p)] ⇤ u+

z1[time[[2i+ (q � p)]] + 1/(p ⇤ q) + v ⇤ (p ⇤ Pi� 2)/(p ⇤ q)] ⇤ (1� u), v]}], {i, 1,Length[time1]}]z1[time[[2i+ (q � p)]] + 1/(p ⇤ q) + v ⇤ (p ⇤ Pi� 2)/(p ⇤ q)] ⇤ (1� u), v]}], {i, 1,Length[time1]}]z1[time[[2i+ (q � p)]] + 1/(p ⇤ q) + v ⇤ (p ⇤ Pi� 2)/(p ⇤ q)] ⇤ (1� u), v]}], {i, 1,Length[time1]}]

Now that we have the normal vectors to the surface we can calculate the flux of the curl

throught the surface.

Do[fluxtop[[i]] = NIntegrate[bfield[topx[u, v], topy[u, v], topz[u, v]].normtop,Do[fluxtop[[i]] = NIntegrate[bfield[topx[u, v], topy[u, v], topz[u, v]].normtop,Do[fluxtop[[i]] = NIntegrate[bfield[topx[u, v], topy[u, v], topz[u, v]].normtop,

{u, time[[2i� 1]]� 1/q, time[[2i� 1]] + 1/(p ⇤ q)}, {v, 1, 0},WorkingPrecision ! 10],{u, time[[2i� 1]]� 1/q, time[[2i� 1]] + 1/(p ⇤ q)}, {v, 1, 0},WorkingPrecision ! 10],{u, time[[2i� 1]]� 1/q, time[[2i� 1]] + 1/(p ⇤ q)}, {v, 1, 0},WorkingPrecision ! 10],

{i, 1,Length[time1]}]{i, 1,Length[time1]}]{i, 1,Length[time1]}]

fluxtopfluxtopfluxtop

{5.107618972, 5.107618972, 5.107618972}

Do[fluxbottom[[i]] = NIntegrate[bfield[bottomx[u, v], bottomy[u, v], bottomz[u, v]].normbottom,

Do[fluxbottom[[i]] = NIntegrate[bfield[bottomx[u, v], bottomy[u, v], bottomz[u, v]].normbottom,Do[fluxbottom[[i]] = NIntegrate[bfield[bottomx[u, v], bottomy[u, v], bottomz[u, v]].normbottom,

{u, time[[2i]] + 1/q, time[[2i]]� 1/(p ⇤ q)}, {v, 0, 1},WorkingPrecision ! 20], {i, 1,Length[time1]}]{u, time[[2i]] + 1/q, time[[2i]]� 1/(p ⇤ q)}, {v, 0, 1},WorkingPrecision ! 20], {i, 1,Length[time1]}]{u, time[[2i]] + 1/q, time[[2i]]� 1/(p ⇤ q)}, {v, 0, 1},WorkingPrecision ! 20], {i, 1,Length[time1]}]

fluxbottomfluxbottomfluxbottom

{5.1076192807870119981, 5.1076192807870119981, 5.1076192807870119981}

Do[Do[Do[

fluxtopa[[i]] =fluxtopa[[i]] =fluxtopa[[i]] =

NIntegrate[NIntegrate[NIntegrate[

bfield[center[[1]] ⇤ (1� v) + (x1[time[[2i� 1]]� 1/q] ⇤ u+ x1[time[[2i+ (q � p)]]bfield[center[[1]] ⇤ (1� v) + (x1[time[[2i� 1]]� 1/q] ⇤ u+ x1[time[[2i+ (q � p)]]bfield[center[[1]] ⇤ (1� v) + (x1[time[[2i� 1]]� 1/q] ⇤ u+ x1[time[[2i+ (q � p)]]

+1/(p ⇤ q)] ⇤ (1� u)) ⇤ v,+1/(p ⇤ q)] ⇤ (1� u)) ⇤ v,+1/(p ⇤ q)] ⇤ (1� u)) ⇤ v,

center[[2]] ⇤ (1� v) + (y1[time[[2i� 1]]� 1/q] ⇤ ucenter[[2]] ⇤ (1� v) + (y1[time[[2i� 1]]� 1/q] ⇤ ucenter[[2]] ⇤ (1� v) + (y1[time[[2i� 1]]� 1/q] ⇤ u

+y1[time[[2i+ (q � p)]] + 1/(p ⇤ q)] ⇤ (1� u)) ⇤ v,+y1[time[[2i+ (q � p)]] + 1/(p ⇤ q)] ⇤ (1� u)) ⇤ v,+y1[time[[2i+ (q � p)]] + 1/(p ⇤ q)] ⇤ (1� u)) ⇤ v,

(z1[time[[2i� 1]]� 1/q] ⇤ u+(z1[time[[2i� 1]]� 1/q] ⇤ u+(z1[time[[2i� 1]]� 1/q] ⇤ u+
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z1[time[[2i+ (q � p)]] + 1/(p ⇤ q)] ⇤ (1� u)) ⇤ v + (center[[3]] + a) ⇤ (1� v)].z1[time[[2i+ (q � p)]] + 1/(p ⇤ q)] ⇤ (1� u)) ⇤ v + (center[[3]] + a) ⇤ (1� v)].z1[time[[2i+ (q � p)]] + 1/(p ⇤ q)] ⇤ (1� u)) ⇤ v + (center[[3]] + a) ⇤ (1� v)].

normtopa[[i]], {u, 0, 1}, {v, 1, 0},WorkingPrecision ! 20], {i, 1,Length[time1]}]normtopa[[i]], {u, 0, 1}, {v, 1, 0},WorkingPrecision ! 20], {i, 1,Length[time1]}]normtopa[[i]], {u, 0, 1}, {v, 1, 0},WorkingPrecision ! 20], {i, 1,Length[time1]}]

fluxtopafluxtopafluxtopa

{3.2775020027879794514, 7.1862221674959157785, 1.0549744068390007669}

Do[Do[Do[

fluxbottoma[[i]] =fluxbottoma[[i]] =fluxbottoma[[i]] =

NIntegrate[bfield[center[[1]] ⇤ (1� v) + (x1[time[[2i+ q � 1]] + 1/q] ⇤ (1� u)NIntegrate[bfield[center[[1]] ⇤ (1� v) + (x1[time[[2i+ q � 1]] + 1/q] ⇤ (1� u)NIntegrate[bfield[center[[1]] ⇤ (1� v) + (x1[time[[2i+ q � 1]] + 1/q] ⇤ (1� u)

+x1[time[[2i]]� 1/(p ⇤ q)] ⇤ u) ⇤ v,+x1[time[[2i]]� 1/(p ⇤ q)] ⇤ u) ⇤ v,+x1[time[[2i]]� 1/(p ⇤ q)] ⇤ u) ⇤ v,

center[[2]] ⇤ (1� v) + (y1[time[[2i+ q � 1]] + 1/q] ⇤ (1� u) + y1[time[[2i]]� 1/(p ⇤ q)] ⇤ u) ⇤ v,center[[2]] ⇤ (1� v) + (y1[time[[2i+ q � 1]] + 1/q] ⇤ (1� u) + y1[time[[2i]]� 1/(p ⇤ q)] ⇤ u) ⇤ v,center[[2]] ⇤ (1� v) + (y1[time[[2i+ q � 1]] + 1/q] ⇤ (1� u) + y1[time[[2i]]� 1/(p ⇤ q)] ⇤ u) ⇤ v,

(z1[time[[2i+ q � 1]] + 1/q] ⇤ (1� u)(z1[time[[2i+ q � 1]] + 1/q] ⇤ (1� u)(z1[time[[2i+ q � 1]] + 1/q] ⇤ (1� u)

+z1[time[[2i]]� 1/(p ⇤ q)] ⇤ u) ⇤ v + (center[[3]] +�a) ⇤ (1� v)].+z1[time[[2i]]� 1/(p ⇤ q)] ⇤ u) ⇤ v + (center[[3]] +�a) ⇤ (1� v)].+z1[time[[2i]]� 1/(p ⇤ q)] ⇤ u) ⇤ v + (center[[3]] +�a) ⇤ (1� v)].

normbottoma[[i]], {u, 1, 0}, {v, 0, 1},WorkingPrecision ! 20], {i, 1,Length[time1]}]normbottoma[[i]], {u, 1, 0}, {v, 0, 1},WorkingPrecision ! 20], {i, 1,Length[time1]}]normbottoma[[i]], {u, 1, 0}, {v, 0, 1},WorkingPrecision ! 20], {i, 1,Length[time1]}]

fluxbottomafluxbottomafluxbottoma

{3.8395661923742986656, 3.8395661923742986656, 3.8395661923742986656}

Do[Do[Do[

fluxband[[i]] =fluxband[[i]] =fluxband[[i]] =

NIntegrate[NIntegrate[NIntegrate[

bfield[x1[time[[2i� 1]]� 1/q � v ⇤ (p ⇤ Pi� 2p)/(p ⇤ q)] ⇤ u+bfield[x1[time[[2i� 1]]� 1/q � v ⇤ (p ⇤ Pi� 2p)/(p ⇤ q)] ⇤ u+bfield[x1[time[[2i� 1]]� 1/q � v ⇤ (p ⇤ Pi� 2p)/(p ⇤ q)] ⇤ u+

x1[time[[2i+ (q � p)]] + 1/(p ⇤ q) + v ⇤ (p ⇤ Pi� 2)/(p ⇤ q)] ⇤ (1� u),x1[time[[2i+ (q � p)]] + 1/(p ⇤ q) + v ⇤ (p ⇤ Pi� 2)/(p ⇤ q)] ⇤ (1� u),x1[time[[2i+ (q � p)]] + 1/(p ⇤ q) + v ⇤ (p ⇤ Pi� 2)/(p ⇤ q)] ⇤ (1� u),

y1[time[[2i� 1]]� 1/q � v ⇤ (p ⇤ Pi� 2p)/(q ⇤ p)] ⇤ u+y1[time[[2i� 1]]� 1/q � v ⇤ (p ⇤ Pi� 2p)/(q ⇤ p)] ⇤ u+y1[time[[2i� 1]]� 1/q � v ⇤ (p ⇤ Pi� 2p)/(q ⇤ p)] ⇤ u+

y1[time[[2i+ (q � p)]] + 1/(p ⇤ q) + v ⇤ (p ⇤ Pi� 2)/(p ⇤ q)] ⇤ (1� u),y1[time[[2i+ (q � p)]] + 1/(p ⇤ q) + v ⇤ (p ⇤ Pi� 2)/(p ⇤ q)] ⇤ (1� u),y1[time[[2i+ (q � p)]] + 1/(p ⇤ q) + v ⇤ (p ⇤ Pi� 2)/(p ⇤ q)] ⇤ (1� u),

z1[time[[2i� 1]]� 1/q � v ⇤ (p ⇤ Pi� 2p)/(q ⇤ p)] ⇤ u+z1[time[[2i� 1]]� 1/q � v ⇤ (p ⇤ Pi� 2p)/(q ⇤ p)] ⇤ u+z1[time[[2i� 1]]� 1/q � v ⇤ (p ⇤ Pi� 2p)/(q ⇤ p)] ⇤ u+

z1[time[[2i+ (q � p)]] + 1/(p ⇤ q) + v ⇤ (p ⇤ Pi� 2)/(p ⇤ q)] ⇤ (1� u)].normband[[i]], {u, 0, 1},z1[time[[2i+ (q � p)]] + 1/(p ⇤ q) + v ⇤ (p ⇤ Pi� 2)/(p ⇤ q)] ⇤ (1� u)].normband[[i]], {u, 0, 1},z1[time[[2i+ (q � p)]] + 1/(p ⇤ q) + v ⇤ (p ⇤ Pi� 2)/(p ⇤ q)] ⇤ (1� u)].normband[[i]], {u, 0, 1},

{v, 1, 0},WorkingPrecision ! 20], {i, 1,Length[time1]}]{v, 1, 0},WorkingPrecision ! 20], {i, 1,Length[time1]}]{v, 1, 0},WorkingPrecision ! 20], {i, 1,Length[time1]}]

fluxbandfluxbandfluxband

{0.95518497521611798771, 0.95518497521611798771, 0.95518497521611798771}

unit = ConstantArray[1,Length[time1]]unit = ConstantArray[1,Length[time1]]unit = ConstantArray[1,Length[time1]]
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{1, 1, 1}

lhs = N [fluxtop.unit + fluxbottom.unit + fluxtopa.unit + fluxbottoma.unit + fluxband.unit, 20]lhs = N [fluxtop.unit + fluxbottom.unit + fluxtopa.unit + fluxbottoma.unit + fluxband.unit, 20]lhs = N [fluxtop.unit + fluxbottom.unit + fluxtopa.unit + fluxbottoma.unit + fluxband.unit, 20]

56.54866684

N [Abs[lhs� rhs], 16]N [Abs[lhs� rhs], 16]
N [Abs[lhs� rhs], 16]

9.2630687223230727034484771683026̀2.781415139614438*^-7
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Appendix C Visualizations of the Hopf Fibration

These are the routines I wrote to generate the figures in the body of my thesis.

(*Clearing variables*)(*Clearing variables*)(*Clearing variables*)

Clear[a, b, c, d]Clear[a, b, c, d]Clear[a, b, c, d]

(*StereographicProjectionS3 ! R

3*)(*StereographicProjectionS3 ! R

3*)(*StereographicProjectionS3 ! R

3*)

s[a , b , c , d ] = {a/(1� d), b/(1� d), c/(1� d)};s[a , b , c , d ] = {a/(1� d), b/(1� d), c/(1� d)};
s[a , b , c , d ] = {a/(1� d), b/(1� d), c/(1� d)};

(*LinkednatureoffibersfortworandomlygeneratedpointsonS2*)(*LinkednatureoffibersfortworandomlygeneratedpointsonS2*)(*LinkednatureoffibersfortworandomlygeneratedpointsonS2*)

subs1 = {�->RandomReal[{0, 2⇡}], ✓ ! RandomReal[{0, ⇡}]};subs1 = {�->RandomReal[{0, 2⇡}], ✓ ! RandomReal[{0, ⇡}]};subs1 = {�->RandomReal[{0, 2⇡}], ✓ ! RandomReal[{0, ⇡}]};

subs2 = {�->RandomReal[{0, 2⇡}], ✓ ! RandomReal[{0, ⇡}]};subs2 = {�->RandomReal[{0, 2⇡}], ✓ ! RandomReal[{0, ⇡}]};subs2 = {�->RandomReal[{0, 2⇡}], ✓ ! RandomReal[{0, ⇡}]};

points = Graphics3D[{Opacity[.3],Yellow, Sphere[{0, 0, 0}],PointSize[Large],points = Graphics3D[{Opacity[.3],Yellow, Sphere[{0, 0, 0}],PointSize[Large],points = Graphics3D[{Opacity[.3],Yellow, Sphere[{0, 0, 0}],PointSize[Large],

Opacity[1],Red,Point[{Sin[✓]Cos[�], Sin[✓]Sin[�],Cos[✓]}/.subs1],Blue,Opacity[1],Red,Point[{Sin[✓]Cos[�], Sin[✓]Sin[�],Cos[✓]}/.subs1],Blue,Opacity[1],Red,Point[{Sin[✓]Cos[�], Sin[✓]Sin[�],Cos[✓]}/.subs1],Blue,

Point[{Sin[✓]Cos[�], Sin[✓]Sin[�],Cos[✓]}/.subs2]},Axes ! False,Point[{Sin[✓]Cos[�], Sin[✓]Sin[�],Cos[✓]}/.subs2]},Axes ! False,Point[{Sin[✓]Cos[�], Sin[✓]Sin[�],Cos[✓]}/.subs2]},Axes ! False,

Boxed ! False,AxesOrigin ! {0, 0, 0},Ticks ! None];Boxed ! False,AxesOrigin ! {0, 0, 0},Ticks ! None];Boxed ! False,AxesOrigin ! {0, 0, 0},Ticks ! None];

circles =circles =circles =

ParametricPlot3D[ParametricPlot3D[ParametricPlot3D[

{s[Cos[�/2 + ⇠]Cos[✓/2], Sin[�/2 + ⇠]Cos[✓/2],Cos[⇠ � �/2]Sin[✓/2],{s[Cos[�/2 + ⇠]Cos[✓/2], Sin[�/2 + ⇠]Cos[✓/2],Cos[⇠ � �/2]Sin[✓/2],{s[Cos[�/2 + ⇠]Cos[✓/2], Sin[�/2 + ⇠]Cos[✓/2],Cos[⇠ � �/2]Sin[✓/2],

Sin[⇠ � �/2]Sin[✓/2]]/.subs1,Sin[⇠ � �/2]Sin[✓/2]]/.subs1,Sin[⇠ � �/2]Sin[✓/2]]/.subs1,

s[Cos[�/2 + ⇠]Cos[✓/2], Sin[�/2 + ⇠]Cos[✓/2],Cos[⇠ � �/2]Sin[✓/2],s[Cos[�/2 + ⇠]Cos[✓/2], Sin[�/2 + ⇠]Cos[✓/2],Cos[⇠ � �/2]Sin[✓/2],
s[Cos[�/2 + ⇠]Cos[✓/2], Sin[�/2 + ⇠]Cos[✓/2],Cos[⇠ � �/2]Sin[✓/2],

Sin[⇠ � �/2]Sin[✓/2]]/.subs2}, {⇠, 0, 2⇡},PlotStyle ! {Red,Blue},Sin[⇠ � �/2]Sin[✓/2]]/.subs2}, {⇠, 0, 2⇡},PlotStyle ! {Red,Blue},Sin[⇠ � �/2]Sin[✓/2]]/.subs2}, {⇠, 0, 2⇡},PlotStyle ! {Red,Blue},

PlotRange ! All,Axes ! False,Boxed ! False];PlotRange ! All,Axes ! False,Boxed ! False];PlotRange ! All,Axes ! False,Boxed ! False];

{points, circles}{points, circles}{points, circles}

(*LatitudeofS2generatesatorusinR3*)(*LatitudeofS2generatesatorusinR3*)(*LatitudeofS2generatesatorusinR3*)

sub = {✓ ! ⇡/3};sub = {✓ ! ⇡/3};sub = {✓ ! ⇡/3};

latitude = ParametricPlot3D[{Sin[✓]Cos[�], Sin[✓]Sin[�],Cos[✓]}/.sub,latitude = ParametricPlot3D[{Sin[✓]Cos[�], Sin[✓]Sin[�],Cos[✓]}/.sub,latitude = ParametricPlot3D[{Sin[✓]Cos[�], Sin[✓]Sin[�],Cos[✓]}/.sub,

{�, 0, 2⇡},PlotStyle ! {Thick,Blue}];{�, 0, 2⇡},PlotStyle ! {Thick,Blue}];{�, 0, 2⇡},PlotStyle ! {Thick,Blue}];

torus =torus =torus =
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ParametricPlot3D[ParametricPlot3D[ParametricPlot3D[

s[Cos[�/2 + ⇠]Cos[✓/2], Sin[�/2 + ⇠]Cos[✓/2],Cos[⇠ � �/2]Sin[✓/2],s[Cos[�/2 + ⇠]Cos[✓/2], Sin[�/2 + ⇠]Cos[✓/2],Cos[⇠ � �/2]Sin[✓/2],
s[Cos[�/2 + ⇠]Cos[✓/2], Sin[�/2 + ⇠]Cos[✓/2],Cos[⇠ � �/2]Sin[✓/2],

Sin[⇠ � �/2]Sin[✓/2]]/.sub, {�, 0, 2⇡}, {⇠, 0, 2⇡},PlotStyle ! {Opacity[.5],Blue},Sin[⇠ � �/2]Sin[✓/2]]/.sub, {�, 0, 2⇡}, {⇠, 0, 2⇡},PlotStyle ! {Opacity[.5],Blue},Sin[⇠ � �/2]Sin[✓/2]]/.sub, {�, 0, 2⇡}, {⇠, 0, 2⇡},PlotStyle ! {Opacity[.5],Blue},

Mesh ! None];Mesh ! None];Mesh ! None];

circle = Graphics3D[{Yellow,Opacity[.5], Sphere[{0, 0, 0}]}];circle = Graphics3D[{Yellow,Opacity[.5], Sphere[{0, 0, 0}]}];circle = Graphics3D[{Yellow,Opacity[.5], Sphere[{0, 0, 0}]}];

{Show[{circle, latitude},PlotRange ! All,Boxed ! False,Axes ! False],{Show[{circle, latitude},PlotRange ! All,Boxed ! False,Axes ! False],{Show[{circle, latitude},PlotRange ! All,Boxed ! False,Axes ! False],

Show[torus,PlotRange ! All,Boxed ! False,Axes ! False]}Show[torus,PlotRange ! All,Boxed ! False,Axes ! False]}Show[torus,PlotRange ! All,Boxed ! False,Axes ! False]}

(*The Hopf Fibration*)(*The Hopf Fibration*)(*The Hopf Fibration*)

number = 20;number = 20;number = 20;

subs = {⌘1 ! ⇡/4, ⌘2 ! ⇡/2, ⌘3 ! 3⇡/4};subs = {⌘1 ! ⇡/4, ⌘2 ! ⇡/2, ⌘3 ! 3⇡/4};subs = {⌘1 ! ⇡/4, ⌘2 ! ⇡/2, ⌘3 ! 3⇡/4};

points = Graphics3D[{Opacity[.2], Sphere[{0, 0, 0}],PointSize[Medium],points = Graphics3D[{Opacity[.2], Sphere[{0, 0, 0}],PointSize[Medium],points = Graphics3D[{Opacity[.2], Sphere[{0, 0, 0}],PointSize[Medium],

Opacity[1],Red,Opacity[1],Red,Opacity[1],Red,

Point[Table[{Sin[⌘1]Cos[⇠1], Sin[⌘1]Sin[⇠1],Cos[⌘1]}/.subs,Point[Table[{Sin[⌘1]Cos[⇠1], Sin[⌘1]Sin[⇠1],Cos[⌘1]}/.subs,Point[Table[{Sin[⌘1]Cos[⇠1], Sin[⌘1]Sin[⇠1],Cos[⌘1]}/.subs,

{⇠1, 0, 3⇡/2, ⇡/(number)}]],Green,{⇠1, 0, 3⇡/2, ⇡/(number)}]],Green,{⇠1, 0, 3⇡/2, ⇡/(number)}]],Green,

Point[Table[{Sin[⌘2]Cos[⇠1], Sin[⌘2]Sin[⇠1],Cos[⌘2]}/.subs,Point[Table[{Sin[⌘2]Cos[⇠1], Sin[⌘2]Sin[⇠1],Cos[⌘2]}/.subs,Point[Table[{Sin[⌘2]Cos[⇠1], Sin[⌘2]Sin[⇠1],Cos[⌘2]}/.subs,

{⇠1, 0, 3⇡/2, ⇡/(number)}]],Blue,{⇠1, 0, 3⇡/2, ⇡/(number)}]],Blue,{⇠1, 0, 3⇡/2, ⇡/(number)}]],Blue,

Point[Table[{Sin[⌘3]Cos[⇠1], Sin[⌘3]Sin[⇠1],Cos[⌘3]}/.subs,Point[Table[{Sin[⌘3]Cos[⇠1], Sin[⌘3]Sin[⇠1],Cos[⌘3]}/.subs,Point[Table[{Sin[⌘3]Cos[⇠1], Sin[⌘3]Sin[⇠1],Cos[⌘3]}/.subs,

{⇠1, 0, 3⇡/2, ⇡/number}]]}];{⇠1, 0, 3⇡/2, ⇡/number}]]}];{⇠1, 0, 3⇡/2, ⇡/number}]]}];

red = ParametricPlot3D[red = ParametricPlot3D[red = ParametricPlot3D[

Table[s[Cos[⇠1/2 + ⇠2]Cos[⌘1/2], Sin[⇠1/2 + ⇠2]Cos[⌘1/2],Cos[⇠2� ⇠1/2]Sin[⌘1/2],Table[s[Cos[⇠1/2 + ⇠2]Cos[⌘1/2], Sin[⇠1/2 + ⇠2]Cos[⌘1/2],Cos[⇠2� ⇠1/2]Sin[⌘1/2],Table[s[Cos[⇠1/2 + ⇠2]Cos[⌘1/2], Sin[⇠1/2 + ⇠2]Cos[⌘1/2],Cos[⇠2� ⇠1/2]Sin[⌘1/2],

Sin[⇠2� ⇠1/2]Sin[⌘1/2]]/.subs, {⇠1, 0, 3⇡/2, ⇡/(number)}], {⇠2, 0, 2⇡},Sin[⇠2� ⇠1/2]Sin[⌘1/2]]/.subs, {⇠1, 0, 3⇡/2, ⇡/(number)}], {⇠2, 0, 2⇡},Sin[⇠2� ⇠1/2]Sin[⌘1/2]]/.subs, {⇠1, 0, 3⇡/2, ⇡/(number)}], {⇠2, 0, 2⇡},

PlotRange ! All,PlotStyle ! Red];PlotRange ! All,PlotStyle ! Red];PlotRange ! All,PlotStyle ! Red];

green =green =green =

ParametricPlot3D[ParametricPlot3D[ParametricPlot3D[

Table[s[Cos[⇠1/2 + ⇠2]Cos[⌘2/2], Sin[⇠1/2 + ⇠2]Cos[⌘2/2],Cos[⇠2� ⇠1/2]Sin[⌘2/2],Table[s[Cos[⇠1/2 + ⇠2]Cos[⌘2/2], Sin[⇠1/2 + ⇠2]Cos[⌘2/2],Cos[⇠2� ⇠1/2]Sin[⌘2/2],Table[s[Cos[⇠1/2 + ⇠2]Cos[⌘2/2], Sin[⇠1/2 + ⇠2]Cos[⌘2/2],Cos[⇠2� ⇠1/2]Sin[⌘2/2],

Sin[⇠2� ⇠1/2]Sin[⌘2/2]]/.subs, {⇠1, 0, 3⇡/2, ⇡/(number)}], {⇠2, 0, 2⇡},Sin[⇠2� ⇠1/2]Sin[⌘2/2]]/.subs, {⇠1, 0, 3⇡/2, ⇡/(number)}], {⇠2, 0, 2⇡},Sin[⇠2� ⇠1/2]Sin[⌘2/2]]/.subs, {⇠1, 0, 3⇡/2, ⇡/(number)}], {⇠2, 0, 2⇡},
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PlotRange ! All,PlotStyle ! Green];PlotRange ! All,PlotStyle ! Green];PlotRange ! All,PlotStyle ! Green];

blue =blue =blue =

ParametricPlot3D[ParametricPlot3D[ParametricPlot3D[

Table[s[Cos[⇠1/2 + ⇠2]Cos[⌘3/2], Sin[⇠1/2 + ⇠2]Cos[⌘3/2],Cos[⇠2� ⇠1/2]Sin[⌘3/2],Table[s[Cos[⇠1/2 + ⇠2]Cos[⌘3/2], Sin[⇠1/2 + ⇠2]Cos[⌘3/2],Cos[⇠2� ⇠1/2]Sin[⌘3/2],Table[s[Cos[⇠1/2 + ⇠2]Cos[⌘3/2], Sin[⇠1/2 + ⇠2]Cos[⌘3/2],Cos[⇠2� ⇠1/2]Sin[⌘3/2],

Sin[⇠2� ⇠1/2]Sin[⌘3/2]]/.subs, {⇠1, 0, 3⇡/2, ⇡/number}], {⇠2, 0, 2⇡},Sin[⇠2� ⇠1/2]Sin[⌘3/2]]/.subs, {⇠1, 0, 3⇡/2, ⇡/number}], {⇠2, 0, 2⇡},Sin[⇠2� ⇠1/2]Sin[⌘3/2]]/.subs, {⇠1, 0, 3⇡/2, ⇡/number}], {⇠2, 0, 2⇡},

PlotRange ! All,PlotStyle ! Blue];PlotRange ! All,PlotStyle ! Blue];PlotRange ! All,PlotStyle ! Blue];

{Show[points,PlotRange ! All,Boxed ! False,Axes ! False],{Show[points,PlotRange ! All,Boxed ! False,Axes ! False],{Show[points,PlotRange ! All,Boxed ! False,Axes ! False],

Show[{red, green, blue},PlotRange ! All,Axes ! False,Boxed ! False]}Show[{red, green, blue},PlotRange ! All,Axes ! False,Boxed ! False]}Show[{red, green, blue},PlotRange ! All,Axes ! False,Boxed ! False]}
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