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ABSTRACT

THEORETICAL AND COMPUTATIONAL STUDY OF TIME
DEPENDENT SCATTERING ON A 2D SURFACE

by

Michael Sohn

Dr. Bernard Zygelman, Examination Committee Chair
Professor of Physics

University of Nevada, Las Vegas

The quantum mechanical treatment of the elastic scattring of atoms from a crys-

tal surface provides valuable information, such as surface properties and gas-surface

interaction potentials. However, since it is based on the stationary state solution,

it does not provide the details of the scattering process in the neighborhood of the

surface, especially when atoms are physically adsorbed.

In this thesis, the time evolution of the scattering process is treated in 2D with

a model potential, V (x, z) = −|g|δ(z) + λδ(z) cos(2πx/a), using the Gaussian wave

packet approach. The focus is on the case where the Gaussian wave packet makes

a transition into a selective adsorption state because it can provide information on

the probability density of selectively adsorbed particles as well as the details of the

scattering process in the neighborhood of the surface. The obtained Gaussian wave

packet solution shows a transition into a selective adsorption state. However, the

probability density of selectively adsorbed particles cannot be accurately determined

because the Gaussian wave packet constructed from the Born approximate time-

independent wave function does not conserve the total probability density.
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CHAPTER 1

INTRODUCTION AND OUTLINE

Hydrogen has significant potential as a future energy carrier for mobile applications

because of its sustainability and cleanness, but its use as an energy carrier is limited

by hydrogen storage problems [1–3]. The current established storage systems for

hydrogen, liquefaction and gas compression, are too bulky, economically inefficient

and unsafe [4]. One of the more promising proposed solutions to these problems is

the storage of molecular hydrogen on a surface of carbonaceous materials, either by

chemisorption or physisorption.

Chemisorption is adsorption that results from a strong interaction, such as ionic

bond or covalent bond, between an adsorbed particle and the surface of a solid. It

occurs at certain adsorption sites on the surface so it takes place only in a monolayer.

In chemisorption, the electronic structure of adsorbed particles is altered so the orig-

inal adsorbed particles can only be recovered at high temperature on desorption. For

instance, chemically bonded hydrogen to single-walled carbon nanotubes requires a

temperature greater than 600 K to desorb [3].

Another method, physisorption, results from the weak intermolecular interaction

between an adsorbed particle and the surface of a solid, and can take place in multilay-

ers under appropriate conditions. The weak intermolecular interaction barely alters

the electronic structure of physically adsorbed particles so the original adsorbed par-

ticles can be easily recovered on desorption. Because of this reversibility, for the

application of mobile hydrogen storage systems, physisorption would be preferable

to chemisorption because absorbed hydrogen must be easily accessible for delivery.

There have been numerous studies on hydrogen physisorption on various carbonaceous

materials, and high hydrogen storage capacities of those materials at room temper-

ature and atmospheric pressure have been reported in the literature [5–8]. However,

their values could not be confirmed by other researchers experimentally [9–11] nor
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computationally [12–15], leaving room for further research on this topic.

In the development of a new storage device, information on the surface properties

of the material and the gas-surface interaction potential is essential, and such infor-

mation is obtained from gas-surface scattering studies [16, 17]. Therefore, an intimate

knowledge of gas-solid scattering theories is critical, and should be based on quantum

mechanics for the hydrogen storage because the de Broglie wave length of the hydro-

gen molecule, particularly at low temperature, is on the order of the intermolecular

force as well as the crystal lattice parameters [18], where classical scattering theory

fails.

The early work of Lennard-Jones and Devonshire [19–21] developed a quantum

mechanical elastic scattering theory to explain the so-called “selective adsorption”

state, in which the particle is bound to the surface in the perpendicular direction while

it is free to translate in the direction parallel to the surface [17]. Particles in this bound

state cause minima in the specular intensity of the incident beam of particles. The

measurements of these minima can be used to determine the laterally averaged gas-

surface potential, and those for many different gas-solid systems have been successfully

obtained [22–29]. For gas-surface diffraction, various quantum mechanical approaches

have been proposed: the close coupling formulation by Tsuchida [18] and Wolken

[30], the Cabrera-Celli-Goodman-Manson (CCGM) theory by Cabrera et al. [31], the

Born series approach by Armand et al. [32] and the hard corrugated surface model

approach by Garibaldi et al. [33]. These approaches have been applied to many gas-

solid systems [34], especially the He-LiF system [35–37], and qualitative agreement

with experimental results [34, 38–42] has been made.

The solutions obtained by those approaches are time-independent wave functions.

These stationary wave functions can provide general properties of the gas-surface

system, such as the diffraction intensity and the gas-surface potential. However, they

cannot describe the scattering process as it actually occurs because both the incident
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and scattered waves appear and both waves are spread out over the entire surface.

In this thesis, we attempt to provide a time-dependent solution of the gas-surface

scattering in 2D, and graphically describe the time evolution of the scattering process,

especially when the incident particle makes a transition into a selective adsorption

state. Because the particle at very far away from the surface behaves just like a

free particle and in reality incident particles possess a distribution of momenta due

to the experimental limit in obtaining monoenergetic particles, the time-dependent

Gaussian wave packet approach is employed with a model potential given by

V (x, z) = −|g|δ(z) + λδ(z) cos(2πx/a), (1.1.1)

where g and λ are constants, and a is the distance between the interaction sites.

This simplified version of the general form of periodic potentials is chosen because it

possesses properties of the realistic gas-surface potential necessary for the study of the

scattering process, and allows us to obtain an analytic expression for the kinematic

condition of selective adsorption. Also, it can reproduce any bound state of realistic

potentials by adjusting the value of |g| because the delta function potential has one

and only one bound state.

In chapter 2 the fundamental mathematical tools for quantum mechanical scat-

tering theory are covered. The Lippmann-Schwinger Equation is reviewed in section

2.1, and Green’s function for the Helmholtz equation in section 2.2. The rationale

for using the Gaussian wave packet in the development of the time-dependent wave

function is given in section 2.3.

In chapter 3 the quantum theory and its application to the elastic scattering in

the gas-surface system is reviewed. In section 3.1 the general form of the periodic

potential for the gas-surface interaction is considered. In section 3.2 coupled differ-

ential equations, which result from periodicity of the wave function, are reviewed to

describe the diffraction intensity. In section 3.3 selective adsorption is described and
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the kinematic condition for selective adsorption is reviewed. How selective adsorption

measurements are used to obtain bound state energy levels is also covered. In section

3.4 the method used in determining the laterally averaged interaction potential for

H2 on the (0001) graphite surface published by Mattera et al. [27] is reviewed. Then,

with the determined potential, energy levels for 1H2 and 2H2 are calculated using the

self-consistent field (SCF) method to describe how to determine the laterally averaged

potential with the measurements of selective adsorption.

In chapter 4 the classical scattering in 2D is treated to gain some insight into

the scattering process. In section 4.1, the scattering of an incident particle on single

scattering center is treated, especially in the quasi-bound state. In section 4.2, an

incident particle on a one-dimensional lattice of scattering centers is considered in

order to graphically describe the classical analogue of “selective adsorption”. In the

calculation, H2 is the incident particle, C refers to scattering centers and a Lennard-

Jones potential for the interaction potential between them is used.

In chapter 5 the quantum scattering in 1D is treated because the two-dimensional

Schrödinger equation can be separated into two one-dimensional Schrödinger equa-

tions if the potential depends only on one variable. In section 5.1 the time-independent

wave function for the laterally averaged potential, w0 = −|g|δ(z), is obtained by solv-

ing the Lippmann-Schwinger equation, and the transmission and the reflection am-

plitudes are obtained. Energy eigenvalues for the laterally averaged potential are also

obtained in order to determine the kinematic condition for selective adsorption in the

two-dimensional system treated in chapter 6. In section 5.2 the Gaussian wave packet

solution of the Schrödinger equation with the laterally averaged potential is obtained

in a closed-form expression. In section 5.3 the dispersion rate for the Gaussian wave

packet is calculated to obtain the optimum initial width, and the wave packets with

different values of parameters are plotted to visualize the scattering process in the

neighborhood of the interaction site. The validity of the graphical description is also

4



verified.

In chapter 6 the two-dimensional elastic scattering of a particle in the periodic

potential is treated. In section 6.1 the time-independent wave function is first obtained

using the Born approximation because the exact wave function cannot be obtained due

to the periodic term in the model potential Eq. (1.1.1). Then, the kinematic condition

for selective adsorption is deduced from this wave function. It is also shown that the

wave function in a bound state satisfies the diffraction condition. In section 6.2

the Gaussian wave packet is constructed with the obtained Born approximate time-

independent wave function. In section 6.3 the Gaussian wave packets with different

incident angles are plotted to visually describe selective adsorption. In section 6.4

conclusions are presented.
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CHAPTER 2

THEORETICAL BACKGROUNDS

2.1 Lippmann-Schwinger Equation

For the Hamiltonian

Ĥ = Ĥ0 + V̂ , (2.1.1)

where Ĥ0 is the free-particle Hamiltonian, the solution to the Schrödinger equation

can be given by [43]

|ψ(+)〉 = |φ〉+ 1

E − Ĥ0 + iε
V |ψ(+)〉, (2.1.2)

where ε is a positive infinitesimal, |φ〉 is an incident wave and |ψ(+)〉 is an outgoing

scattered wave. This is the Lippmann-Schwinger equation and is independent of par-

ticular representations. The coordinate representation can be obtained by multiplying

by a coordinate eigenbra 〈r|. That is,

〈r|ψ(+)〉 = 〈r|φ〉+ 2m

!2

∫
dnr′G(r, r′)〈r′|V |ψ(+)〉, (2.1.3)

where m is the particle mass, n is dimension of r and G(r, r′) is a Green’s function

defined by

G(r, r′) =
!2

2m

〈
r

∣∣∣∣
1

E − Ĥ0 + iε

∣∣∣∣ r′
〉

, (2.1.4)

which satisfies

(∇2 + k2) G(r, r′) = δn(r − r′), (2.1.5)

where k =
√

2mE/!. For a local potential that depends only on the position, we can

write that

〈r′|V |ψ+〉 = V (r′)〈r′|ψ+〉. (2.1.6)

Thus, for a local potential Eq. (2.1.3) can be given by

6



〈r|ψ(+)〉 = 〈r|φ〉+ 2m

!2

∫
dnr′G(r, r′)V (r′)〈r′|ψ+〉. (2.1.7)

This integral equation has advantage over the differential form of the Schrödinger

equation in studying scattering problems since it incorporates the boundary condi-

tions explicitly.

2.2 Green’s Function

The free-particle Hamiltonian Ĥ0 is given by

Ĥ0 =
p̂2

2m
. (2.2.1)

Thus, the Green’s function for the Helmholtz equation Eq. (2.1.4) becomes

G(r, r′) =
!2

2m

〈
r

∣∣∣∣
1

E − p̂2/2m + iε

∣∣∣∣ r′
〉

. (2.2.2)

By inserting closure after 〈r| and before |r′〉 Eq. (2.2.2) becomes

G(r, r′) =
!2

2m

∫
dnp

∫
dnp′〈r|p〉

〈
p

∣∣∣∣
1

E − p̂2/2m + iε

∣∣∣∣ p′
〉
〈p′|r′〉, (2.2.3)

where n is dimension of p. The first term of the integrand 〈r|p〉 and the third term

〈p′|r′〉 are given by [43]

〈r|p〉 =
eip·r/!

(2π!)n/2
, (2.2.4)

and

〈p′|r′〉 =
e−ip′ ·r′/!

(2π!)n/2
. (2.2.5)

With these equations Eq. (2.2.3) after applying p̂2 on 〈p| becomes

G(r, r′) =
!2

2m(2π!)n

∫
dnp

eip·(r−r′)/!

(E − p2/2m + iε)
. (2.2.6)

It is common to use the wave vector k rather than the momentum vector p. Thus,
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with the relation p = !k, the Green’s function Eq. (2.2.6) can be given by

G(r, r′) =
!2

2m(2π)n

∫
dnk

eik(r−r′)

E − (!k)2/2m + iε
. (2.2.7)

2.3 Gaussian Wave Packet

By attaching the standard time dependence, eiEt/!, to the time-independent wave

function for a free particle, the time-dependent wave function for a free particle can

be given by

ψ(r, t) = Aei(k·r−ωt), (2.3.1)

where ω = E/!. The physical interpretation of the wave function is that |ψ(r, t)|2 is

the probability density for finding the particle at position r, at time t. However, the

modulus squared of Eq. (2.3.1) is |A|2, which doesn’t depend on r nor t. In other

words, a particle is equally probable to be found anywhere at all times, and the wave

function Eq. (2.3.1) cannot represent physically realizable state. We therefore con-

struct a wave packet by taking a linear combination of such states with a distribution

of momenta that localize the particle in space:

Ψ(r, t) =

∫ ∞

−∞
dnk Φ(k − k0)e

i(k·r−ωt), (2.3.2)

where k0 is the initial wave vector. This wave packet can be normalized for appro-

priate Φ(k−k0), and the Gaussian distribution is used in this thesis because it gives

the minimum-uncertainty. The Gaussian wave packet for free particles is given by

Ψ(r, t) = N

∫ ∞

−∞
dnk exp

[
−(k − k0)2

2σ2
k

]
exp [ik · r] exp

[
−i

!k2t

2m

]
, (2.3.3)

where N is a normalization factor, and σk is the width of the wave packet in k space.

Far from the surface the incident and scattered particles behave like free particles,

and in reality incident particles possess a distribution of momenta due to the exper-

imental limit in obtaining monoenergetic particles so the incident particles should
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be represented by wave packets of finite uncertainty in momentum. Thus, the wave

packet solution should be used for the time-dependent solution of the gas-surface

scattering. The wave packet for scattering with the same Gaussian weight used for

the free particle is given by

Ψ(r, t) = N

∫ ∞

−∞
dnk exp

[
−(k − k0)2

2σ2
k

]
ψs(r) exp

[
−i

!k2t

2m

]
, (2.3.4)

where ψs(r) is the time-independent wave function for scattering.
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CHAPTER 3

PARTICLE-SURFACE ELASTIC SCATTERING

3.1 Particle-Surface Interaction Potential

Solids are composed of a periodic array of atoms. Thus, when a particle approaches

the surface of a solid it experiences a periodic potential caused by an atom or a group

of atoms attached to every repeating point, lattice point. Here we review the potential

appropriate for particle-surface interactions due to this periodicity.

If we define a two-dimensional lattice vector L parallel to the surface such that

L = l1a1 + l2a2, (3.1.1)

where l1 and l2 are integers, and a1 and a2 are translation vectors so defined that the

atomic arrangement at one position is identical to that at another position translated

by L. Then, for an infinite planar surface,

V (r) = V (r + L). (3.1.2)

This periodicity allows us to express V (r) as a Fourier series [44]:

V (z, R) =
∑

G

wG(z)eiG·R, (3.1.3)

where R is a two-dimensional position vector parallel to the surface, and G is a

two-dimensional vector defined by

G = g1b1 + g2b2, (3.1.4)

where g1 and g2 are integers, and b1 and b2 are reciprocal vectors defined by

ai · bj = 2πδij, (3.1.5)

where δij = 1 if i = j, and δij = 0 if i '= j. By placing the origin of R at the center of

inversion symmetry so that wG(z) = w−G(z) [44], the general form of the potential

for the particle-surface interaction V (r) can be given by
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V (z,R) = w0(z) + 2
∑

G>0

wG(z)cos(G · R). (3.1.6)

3.2 Diffraction Intensities

As a result of periodicity of the solid surface, the wave function Ψ(r) can be expanded

by Bloch’s theorem into the form

Ψ(r) =
∑

G

ψG(z)ei(K+G)·R, (3.2.1)

where K is a two dimensional vector consisting of the x and y components of an

incident wave vector k. Then, after differentiation the Schrödinger equation for a

particle of mass m and wave incident vector k in the periodic potential V (r) can be

given by

[
d2

dz2
+ k2 − (K + G)2 − 2m

!2

∑

G′

wG′(z)eiG′ ·R

]
∑

G

ψG(z)ei(K+G)·R = 0. (3.2.2)

If both sides of Eq. (3.2.2) are multiplied by e−i(K+G′′)·R and integrated over the two

dimensional unit cell, it becomes

(
d2

dz2
+ k2

Gz

)
ψG(z) =

2m

!2

∑

G′

wG−G′ψG′(z), (3.2.3)

where

k2
Gz = k2 − (K + G)2. (3.2.4)

This infinite set of coupled differential equations has two different types of solution:

“open channel” solution and “closed channel” solution. An open channel representing

a diffracted partial wave that can be observed at large z occurs when k2
Gz > 0 and

a closed channel corresponding to a surface partial wave that decays exponentially

normal to the surface occurs when k2
Gz < 0. In general, this infinite set of coupled

differential equations is approximated by a finite number of channels, and the solution
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for each channel is computed by imposing appropriate boundary conditions:

ψG(z)
z→∞−−−→ 0 (3.2.5)

for closed channels, and

ψG(z)
z→∞−−−→ N

[
δG,0 e−ikzz + SG eikGzz

]
, (3.2.6)

for open channels, where N is a normalization factor, δG,0 is the Kronecker delta

function and SG is a constant. This constant SG is related to the diffraction intensity

IG, which is defined as the outgoing flux relative to the incident flux, such that [44]

IG =

(
kGz

kz

)
|SG|2 . (3.2.7)

In elastic scattering, the sum of intensities over all allowed diffracted particles should

be unity:

∑

G

IG = 1. (3.2.8)

3.3 Selective Adsorption

When a particle interacts with the potential at the surface, it may make an elastic

transition into the so-called “selective adsorption” state in which the particle is bound

to the surface in the perpendicular direction while it is free to translate in the di-

rection parallel to the surface [17]. This transition occurs when the particle’s energy

associated with its motion in the direction perpendicular to the surface is equal to

one of bound state energies of the potential ω0(z) in Eq. (3.1.6) [45].

According to Bloch’s theorem, the wave function in a periodic potential can be

given by

Ψ(r) =
∑

G

ψG(z)ei(Ki+G)·R, (3.3.1)

where z is taken as the outward normal direction to the surface plane. Far from the
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surface the diffracted particle behaves like a free particle so it can be expressed by

lim
z→∞

Ψr(r) = AG eikrzzeiKr·R, (3.3.2)

where AG is a constant. From Equations (3.3.1) and (3.3.2) the values of Kr is

restricted such that

Kr = Ki + G. (3.3.3)

In elastic scattering the total energy should be conserved. Thus,

k2
rz + k2

rx + k2
ry = k2

iz + k2
ix + k2

iy. (3.3.4)

These two conditions, the conservation of momentum parallel to the surface and

conservation of total energy, provide the kinematic conditions for selective adsorption.

In the zeroth-order approximation, the selectively adsorbed particle may be treated

as a free-particle in its translation parallel to the surface, or the Fourier expansion of

the particle-surface interaction potential Eq. (3.1.6) can be reduced to

V (r) ≈ w0(z). (3.3.5)

Then, the diffracted particle energy associated with the motion parallel to the surface

can be given by

EKr =
!2

2m
K2

r. (3.3.6)

Thus, from the conservation of momentum parallel to the surface and conservation of

total energy, Eq. (3.3.3) and (3.3.4), the kinematic condition for selective adsorption

can be obtained such that

!2

2m
(k2

iz + K2
i ) = En +

!2

2m
(Ki + G)2. (3.3.7)

This condition indicates that the changes in the kinetic energy associated with motion

parallel to the surface is (Ki + G)2 − K2
i . For the case of positive G or “forward
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scattering” [44], the kinetic energy associated with motion parallel to the surface

increases after the particle’s interaction with the surface so the energy associated

with motion perpendicular to the surface should decrease. In particular, when (Ki +

G)2 − K2
i > !2k2

iz/2m, En must be negative. In other words, the particle is in a

bound state in the direction perpendicular to the surface, or selectively adsorbed.

For an instance, in the case of a simple square lattice with lattice spacing a, such

as LiF, the reciprocal vector G is given by

G =
2g1π

a
x̂ +

2g2π

a
ŷ. (3.3.8)

Therefore, from Equations (3.3.3) and (3.3.4), the components of the diffracted wave

vector are given by

krx = kix +
2g1π

a
, (3.3.9)

kry = kiy +
2g2π

a
, (3.3.10)

k2
rz = k2

iz −
4π

a
(g1kix + g2kiy)−

4π2

a2
(g2

1 + g2
2). (3.3.11)

It is clear that the value of k2
rz given by Eq. (3.3.11) becomes negative when g1 and

g2 become large positive numbers. It is also possible to arrange the experiment to

obtain the negative value of k2
rz [44]. The negative value of k2

rz implies that krz is

imaginary so it can be expressed as

krz = iκrz, (3.3.12)

where κrz is real and its magnitude is equal to that of krz. Thus, the diffracted wave

function far from the surface can be given by

lim
z→∞

Ψr(r) = SG e−κrzzeiKr·R. (3.3.13)

This wave function approaches zero as z increases. That is, the incident particle is
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bound in the z-direction while translating parallel to the surface.

In the experiment, the orientation of the beam of incident particles is generally

given in terms of polar and azimuthal angles denoted by θi and φi, respectively [44]

so that the components of the incident wave vector are given by

kiz = −ki cos θi, (3.3.14)

kix = ki sin θi cos φi, (3.3.15)

kiy = ki sin θi sin φi, (3.3.16)

where ki is the magnitude of ki and 0 ◦ ≤ θi ≤ 90 ◦. Thus, in the case of a simple

square lattice with lattice spacing a, the kinematic condition for selective adsorption,

Eq. (3.3.7) becomes

(
sin θi cos φi +

2g1π

aki

)2

+

(
sin θi sin φi +

2g2π

aki

)2

= 1 +
2m

!2k2
i

|En|, (3.3.17)

indicating that if the positions of all measured minima in the specular intensity are

plotted in the plane (sin θi cos φi, sin θi sin φi), the minima relative to En are on a

circle centered at (−2g1π/aki, −2g2π/aki) and with radius [1 + (2m/!2k2
i )|En|]1/2.

3.4 Empirical Potential for H2-Graphite Surface

From measurements of minima in the specular intensity associated with selective

adsorption, eigenvalues of the z-dependent part of separated Schrödinger equation

can be determined as described in the previous section. Using these eigenvalues, the

laterally averaged potential w0(z) can be obtained, and those for many different gas-

solid systems have been obtained [22–29]. Here the work of Mattera et al. [27] is

reviewed to study a method of obtaining the laterally averaged potential from the

measurements of selective adsorption.

The proposed laterally averaged potential for H2 on the (0001) graphite surface

by Mattera et al. [27] is given by
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w0(z) = D

[(
1 +

λz

p

)−2p

− 2

(
1 +

λz

p

)−p
]

, (3.4.1)

where D is the well depth, λ a range parameter and −1 ≤ 1/p ≤ 1. These three

parameters are determined by minimizing the chi square test:

χ2 =
∑

n

[
E∗

n − En(D, λ, p)

∆n

]2

, (3.4.2)

where E∗
n is the experimental value for the nth energy level obtained from the mea-

surements of selective adsorption, ∆n is its standard deviation and En(D, λ, p) is the

nth eigenvalue of the Schrödinger equation for the proposed potential w0(z).

The Schrödinger equation for a particle with mass m in the proposed potential

w0(z) is given by

− !2

2m

d2

dz2
ψ(z) + w0(z)ψ(z) = Enψ(z). (3.4.3)

If we define ξ ≡ λz and rearrange Eq. (3.4.3), the Schrödinger equation becomes

d2

dξ2
ψ(ξ)− 2mD

!2λ2

{
εn +

[(
1 +

ξ

p

)−2p

− 2

(
1 +

ξ

p

)−p
]}

ψ(ξ) = 0, (3.4.4)

where εn = −En/D. This equation cannot be solved for εn analytically except p =

±1 and p = ∞. However, in the well-bottom region of the potential approximate

equations for εn can be obtained by expanding w0(z)/D in powers of ξ and using the

Dunham equations, which is given by [46]

εn = 1− δ

A2
−

(
1− δ

A2

S − 1

S

) (
n + 1/2

A

)
+

S − 1

2S

(
1− δ

A2

S − 1

S

) (
n + 1/2

A

)2

− (S − 1)(S − 2)

6S2
(1−B)

(
n + 1/2

A

)3

+ · · · , (3.4.5)

where
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δ =
1 + 1/p

32p
,

1

S
=

1

2
− 1

4p

(
3 +

1

p

)
, A =

(2mD)1/2

2!λ
, (3.4.6)

and

B =
1

12

1− 1/p

1 + 1/3p

[
1 +

5

4

(
3

2A
− 1− 1/p

n + 1/2

)
(1 + 1/2p)−1

n + 1/2

]
. (3.4.7)

This equation, in case δ/A2 , 1, concurs up to the quadratic term with the binomial

expansion of [46]

εb
n =

[(
1 +

δ

A2

)−1/S

− n + 1/2

AS

]S

. (3.4.8)

The terms after the quadratic term of Eq. (3.4.8) are different from those of Eq.

(3.4.5). However, the eigenvalues obtained from Eq. (3.4.8) is more accurate than

from Eq. (3.4.5) over a wide energy range [46].

Repacing En(D, λ, p) in Eq. (3.4.2) with Dεb
n, the three parameters D, λ and

p can be determined by minimizing χ2. The obtained values are D = 51.7 meV,

λ = 1.45 Å−1 and p = 3.9 with χ2 = 1.7, and these values are identical to those

obtained by Mattera et al. (However, their value for χ2 is 5.5.) With these values

the Schrödinger equation Eq. (3.4.4) can be given by

d2

dξ2
ψ(ξ)− 4A2

{
εn +

[(
1 +

ξ

3.9

)−7.8

− 2

(
1 +

ξ

3.9

)−3.9
]}

ψ(ξ) = 0, (3.4.9)

where A is a unitless quantity defined in Eq. (3.4.6). This equation is solved numeri-

cally for the eigenvalues εn by the self-consistent field (SCF) method. The calculated

energy levels for 1H2 and 2H2 are reported in Table 1, along with the measured energy

levels, their standard deviation and the calculated energy levels reported by Mattera

et al. [27].
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Table 1

Energy eigenvalues for H2/(0001) graphite.

Isotope n E∗n (meV) [27] ∆n (meV) [27] En (meV)

(exptl.) (std. dev.) (theo.)

1H2 0 -41.6 0.25 -41.75 (-41.75)

1H2 1 -26.4 0.25 -26.17 (-26.18)

1H2 2 -15.3 0.25 -15.29 (-15.30)

1H2 3 -7.9 0.25 -8.14 ( -8.15)

1H2 4 -3.6 0.25 -3.82 ( -3.82)

1H2 5 -1.4 0.25 -1.49 ( -1.49)

2H2 0 — — —

2H2 1 — — —

2H2 2 -23.1 0.25 -22.87 (-22.88)

2H2 3 -15.4 0.25 -15.54 (-15.55)

2H2 4 -10.0 0.25 -10.08 (-10.09)

2H2 5 -6.3 0.25 -6.19 ( -6.19)

2H2 6 -3.7 0.25 -3.53 ( -3.54)

2H2 7 -1.9 0.25 -1.83 ( -1.84)

The measured energy levels E∗n, their standard deviation ∆n, and the calculated energy
levels En in the parenthesis are the values reported by Mattera et al.
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CHAPTER 4

CLASSICAL SCATTERING THEORY

For light molecules, such as hydrogen molecules, the gas-surface scattering should

be quantum mechanically treated, particularly when the temperature of molecules is

low, because the de Broglie wave length of a gas molecule is on the order of the in-

termolecular forces and crystal lattice parameters [18]. However, classical scattering

theory is relatively easy, and in many cases it provides a good approximation to the

quantum dynamics. Moreover, even though selective adsorption is defined the quan-

tum mechanical scattering, it has been conjectured that it is associated with classical

trapping of the incident particle by the attractive well in the neighborhood of the

surface [47]. Thus, we begin with classical scattering theory to gain some insight into

the scattering process, especially when the incoming particle is physically adsorbed.

We first treat classical scattering of two particles because trapping phenomena also

occurs in the scattering of two particles so it can provide physical insight into trapping

phenomena in the gas-surface system.

4.1 One Scatterer

When a particle approaches a scattering center, its initial direction is altered by the

interaction between them. For the case in which an incident particle and a scattering

center are neutral atoms or molecules, the particle at certain incident conditions can

orbit around the scattering center. This trapping phenomenon is known as “orbiting”

[48], and can be predicted from the interaction potential between them.

The Lennard-Jones potential is a simple mathematical model for a part of this

interaction, which is of the form:

V (r) = 4ε

[(σ

r

)12

−
(σ

r

)6
]

, (4.1.1)

where r is the distance between particles. The constants ε and σ are the depth of the

19



potential well and the distance at which the inter-particle potential is zero, respec-

tively. The other part is the centrifugal potential associated with the angular motion

of the incident particle around the scattering center. Thus, the effective potential de-

scribing the interaction between them, a pair of neutral atoms or molecules, is given

by

Veff (r) = V (r) +
l2

2µr2
, (4.1.2)

where l is the angular momentum, and µ is the reduced mass for the incident particle

and the scattering center. Because the Lennard-Jones potential depends only on the

distance between particles and not on the orientation, the angular momentum of this

system is conserved. Thus, the effective potential Eq. (4.1.2) can be given by

Veff (r) = V (r) + T0

(
b

r

)2

, (4.1.3)

where T0 is the energy of the incident particle, and b is the impact parameter - the

perpendicular distance from the scattering center to the initial straight line of motion

of the incident particle. This effective potential for various impact parameters with

a given value of T0 is plotted in Figure 4.1 to graphically describe the effect of the

centrifugal term.

The effective potential A is the Lennard-Jones potential with no centrifugal term,

and allows bound states only if the energy is negative. For the effective potential B

bound states can be formed not only when the energy is negative but also when the

energy is zero or positive. For the effective potential C the centrifugal term dominates,

and no bound state can exist. Thus, the bound states for the incident particle can be

formed only for the effective potential B because the energy of the incident particle

is positive.

If we assume that the change in the energy of the incident particle T0 would not

alter the shape of the effective potential. (This can be achieved by adjusting the
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V!r"

Fig 4.1. The effective potential for the interaction between a pair of neutral particles
for various impact parameter values as a function of distance between the
neutral particles. For the curve A bound states exist only if the energy is
negative. For the curve B bound states exist even if the energy is positive.
for the curve C no bound state exists.

V
2

V
1

V
3

r
1

r
2

r

V!r"

Fig 4.2. The effective potential B with various energies of the incident particle. If
T0 = V1 or T0 = V3, the incident particle cannot be bound. If T0 = V2, the
particle can be bound in the region r1 ≤ r ≤ r2.

impact parameter value b as T0 changes.) Then, we can plot various energies of the

incident particle T0 on the effective potential B as shown in Figure 4.2. If the energy
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of the incident particle T0 is greater or less than energy V2, such as V1 and V3 in

Figure 4.2, then the particle cannot be bound: when the incident particle reaches the

potential barrier, it is reflected back toward infinitely large r. However, if T0 = V2,

then the incident particle passing through the point r2 can be bound in the region

r1 ≤ r ≤ r2. This condition for orbiting occurs with only one impact parameter value

for a given energy of the incident particle.

We now consider scattering of 1H2 from a carbon atom fixed at the origin to graph-

ically describe orbiting. Because the effective potential, Eq. (4.1.3) is azimuthally

symmetrical, the trajectory remains in one plane so it can be described in 2D. The

Lennard-Jones potential parameters for the unlike particle interactions are usually

estimated by the combining rules [49]:

ε12 =
√

ε11 ε22, (4.1.4)

and

σ12 =
1

2
(σ11 + σ22) , (4.1.5)

where ε11 and σ11 (ε22 and σ22) are the Lennard-Jones parameters for the like particle

interactions. For the carbon - carbon interactions the parameters εCC and σCC are

2.41 meV and 3.40 Å [27], and for the hydrogen - hydrogen interactions εHH and

σHH are 2.93 meV and 3.075 Å [50]. Therefore, using Eq. (4.1.4) and Eq. (4.1.5) the

estimated Lennard-Jones potential parameters εCH and σCH for the carbon - hydrogen

interactions are 2.66 meV and 3.24 Å, respectively. Note that with these values

the condition for orbiting is satisfied with only low energies of incident hydrogen

molecules: If T0 > 2.10 meV, which corresponds to the energy of an ideal monoatomic

gas at about 16 ◦K, no orbiting can occur.

The trajectory of the incident particle under the influence of the potential V (x, z)

can be obtained by solving the second order differential equations:

µẍ = − ∂

∂x
V (x, z) (4.1.6)
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and

µz̈ = − ∂

∂z
V (x, z), (4.1.7)

where µ is the reduced mass for H2 and C, and

V (x, z) = 4εCH

[
σ12

CH

(x2 + z2)6
− σ6

CH

(x2 + z2)3

]
. (4.1.8)

The initial velocity of the incident hydrogen molecule far away from the scattering

center is taken to be in the x-direction only. The computed trajectories of the hy-

drogen molecule at different impact parameters with T0 = 1.29 meV are plotted in

Figure 4.3. As shown, the incident hydrogen molecule with the impact parameter

b = 6.25 Å is orbiting around the scattering center.

!10 !5 5 10
x !Å"

!10

!5

5

10

z !Å"

Fig 4.3. The trajectories of the incident hydrogen molecule at different impact pa-
rameters with T0 = 1.29 meV.
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4.2 Periodic Scatterers

The interaction between an incident particle and periodic scatterers are sum of the

interaction between an incident particle and each scatterer such that

VM = 4ε
N∑

i=0

[(
σ

r − ri

)12

−
(

σ

r − ri

)6
]

, (4.2.1)

where N is the number of scatterers and ri is the location of each scatterer. Replacing

the potentials in Eq. (4.1.6) and Eq. (4.1.7) with this potential, the trajectory of an

incident particle involving multiple scatterers can be obtained.

We again use 1H2 for an incident particle and carbon atoms for scattering centers

Fig 4.4. The trajectories of the incident hydrogen molecule in the one-dimensional lattice
of carbon atoms at different impact parameters with T0 = 1.29 meV.
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to graphically describe the trajectory of the incident particle. The distance between

each carbon atom is arbitrarily chosen to be 6.00 Å, and the initial velocity of the

incident hydrogen molecule far away from the scattering centers is in the x-direction

only with T0 = 1.29 meV. The trajectories with different impact parameters are shown

in Figure 4.4.

For a special case as shown in Figure 4.4, when the incident hydrogen molecule

comes close to the one-dimensional lattice of carbon atoms lying on the z-direction, a

sufficient amount of its energy is transferred from the energy associated with motion

in the x-direction to that in the z-direction during the initial collision, confining

the incident hydrogen molecule near the one-dimensional lattice. This quasi-trapped

case has been conjectured to be related to resonance scattering [47, 51], which is

well understood in the quantum scattering theory. However, it cannot be classically

treated with certainty because the trajectory is extremely sensitive to the initial

conditions and even to round-off error in the computation.
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CHAPTER 5

QUANTUM SCATTERING IN 1D

kx

kz

kx
'

kz
'

x

z

Fig 5.1. The two-dimensional system used in this thesis. kx and kz are the x and
z components of the incident wave vector, and k

′
z and k

′
z are the x and z

components of the diffracted wave vector.

For the two-dimensional system depicted in Figure 5.1 a bound state resonance can

occur when the particle’s energy associated with k
′
z is equal to one of bound state

energies of a laterally averaged potential w0(z), where k
′
z is the z component of the

diffracted wave vector. Thus, in order to obtain the condition for selective adsorption

we need to acquire the expression for the bound state energy of the laterally averaged

potential.

Because the laterally averaged potential depends only on z, the two-dimensional

wave function can be expressed such that

ψ(x, z) = φ(x)φ(z). (5.1)

Thus, we can study this system by a one-dimensional system first to obtain the

properties of this one-dimensional system, such as bound state energies, transmission
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and reflection amplitudes.

In section 3.4 the laterally averaged potential w0(z) for the H2-graphite system was

described. However, with that potential only a numerical solution for the Schrödinger

equation can be obtained. Therefore, in this thesis we use a delta function potential as

a laterally averaged potential because it allows us calculations and possesses properties

of the realistic potential necessary for the study of the scattering process:

w0(z) = −|g|δ(z), (5.2)

where g is a constant, which can be adjusted so that a bound state energy of this

potential can be equal to one of bound state energies of the realistic potential. For

an instance, with |g| = 13.11 meV·Å the delta function potential Eq. (5.2) can

produce the ground state of the laterally averaged potential for the 1H2-graphite

system described in section 3.4.

5.1 Time Independent Wave Function

From Eq. (2.1.7) the one-dimensional Lippmann-Schwinger equation is given by

ψ(z) = ψ0(z) +
2m

!2

∫
dz′G(z, z′)V (z′)ψ(z′). (5.1.1)

The plus sign (+) is omitted for brevity. With the delta function potential Eq. (5.2)

it is given by

ψ(z) = ψ0(z) +
|g|
2π

∫
dz′

∫
dk′

eik′(z−z′)

(!k′)2/2m− E − iε
δ(z′)ψ(z′). (5.1.2)

The integration over z results

ψ(z) = ψ0(z) +
|g|
2π

∫
dk′

eik′z

(!k′)2/2m− E − iε
ψ(0). (5.1.3)

The unknown ψ(0) can be removed from the integral sign since ψ(0) is independent

of the integration variable k′. Thus, by setting z = 0, we obtain the self-consistency

condition:
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[
1− m|g|

π!2

∫
dk′

1

k′2 − k2 − iε′

]
ψ(0) = ψ0(0), (5.1.4)

where k =
√

2mE/!, and ε′ = 2mε/!2. The dk′ integral in Eq. (5.1.4) is given by

(Appendix B)
∫

dk′
1

k′2 − k2 − iε′
= i

π

k
. (5.1.5)

With this result Eq. (5.1.4) becomes

[
1− i

m|g|
!2k

]
ψ(0) = ψ0(0). (5.1.6)

The expressions in the square bracket cannot be zero so ψ(0) can be given by

ψ(0) =
!2k

!2k − im|g|ψ0(0). (5.1.7)

Replacing ψ(0) in Eq. (5.1.3) with this result and using the free-particle Schrödinger

equation approaching from +∞ for ψ0(z), the wave function ψ(z) becomes

ψ(z) = e−ikz +
m|g|k

π(!2k − im|g|)

∫
dk′

eik′z

k′2 − k2 − iε′
. (5.1.8)

The denominator in the integrand in Eq. (5.1.8) is identical to that in Eq. (5.1.5),

so the poles occur at the same points. However, it requires a great caution to choose

either the upper or lower half-plane because of the exponential eik′z in the numerator.

For the case z > 0, the exponential increases without limit in the lower half-plane.

Thus, the upper half-plane must be used to close the contour. The contour integral

over dk′ closed at infinity with a semicircle in the upper half-plane is given by

∫
dk′

eik′z

k′2 − k2 − iε′
= πi

eikz

k
. (5.1.9)

For z < 0, the lower half-plane must be used to close the contour. The contour

integral over dk′ closed at infinity with a semicircle in the lower half-plane is given by
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∫
dk′

eik′z

k′2 − k2 − iε′
= πi

e−ikz

k
. (5.1.10)

Combining Eq. (5.1.9) and Eq. (5.1.10), the integral over dk′ is given by

∫
dk′

eik′z

k′2 − k2 − iε′
= πi

eik|z|

k
. (5.1.11)

Thus, the wave function ψ(z) is given by

ψ(z) = e−ikz +
im|g|

!2k − im|g|e
ik|z|. (5.1.12)

From this wave function the transmission and reflection amplitudes, T (k) and

R(k) can be easily obtained: For z > 0 the wave function is the combination of an

incident wave and a reflected wave, and for z < 0 it is just a transmitted wave. Thus,

the expressions for T (k) and R(k) extracted from the wave function are

T (k) =
!2k

!2k − im|g| , (5.1.13)

and

R(k) =
im|g|

!2k − im|g| . (5.1.14)

So far, we implicitly assume E > 0 because if E < 0, ψ0(z) in Eq. (5.1.1) grow

exponentially without limit as z approaches either +∞ or −∞, depending on the

initial direction the particle travels. Thus, if E < 0, ψ0(z) in Eq. (5.1.1) is not

allowable. That is, the wave function is given by

ψ(z) =
2m

!2

∫
dz′G(z, z′)V (z′)ψ(z′). (5.1.15)

If we define k ≡ iκ, where κ is a real number, the negative energy can be expressed

as

E = −!2κ2

2m
. (5.1.16)
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Then, the wave function for the delta function potential Eq. (5.2) after integrating

over z′ can be given by

ψ(z) =
m|g|
π!2

∫
dk′

eik′z

k′2 + κ2 − iε
ψ(0). (5.1.17)

The integration over dk′ is obtained by the same procedure as followed to obtain Eq.

(5.1.11), and the result is given by

∫
dk′

eik′z

k′2 + κ2 − iε
= π

e−κ|z|

κ
. (5.1.18)

Thus, the wave function, when E < 0, is given by

ψ(z) =
m|g|
!2κ

e−κ|z| ψ(0). (5.1.19)

This wave function approaches zero as |z| increases, which is a main property of

bound-state wave functions. If we set z = 0, then from the self-consistancy condition

we obtain a possible value for κ:

κ =
m|g|
!2

. (5.1.20)

Thus, the bound state energy is given by

Ebound = −mg2

2!2
. (5.1.21)

Note that the delta function potential Eq. (5.2) has one and only one bound state

with any given value of g.

The normalized bound-state wave function can be obtained by solving the differ-

ential form of the Schrödinger equation, which is given by (Appendix C)

ψ(z) = ±
√

m|g|
! e−m|g||z|/!2

. (5.1.22)
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5.2 Time Dependent Wave Function

In section 2.3 we showed that a particle with a definite momentum is un-physical, and

the wave packet, a spread of momenta, should be used for the time-dependent solution.

Here we construct a one-dimensional Gaussian wave packet with the obtained time-

independent wave function Eq. (5.1.12) such that

Ψ(z, t) =

∫ ∞

−∞
dk e−(k−k0)2/2σ2

k

[
e−ikz +

im|g|
!2k − im|g|e

ik|z|
]

e−i!k2t/2m. (5.2.1)

We first treat the integral with the first term in the square bracket Ψ0(z, t), which

is merely the wave packet for free particles. If we define ρ ≡ (k − k0) /
√

2σk, then it

can be given by

Ψ0(z, t) =

∫ ∞

−∞

√
2σkdρ e−ρ2

e−i(
√

2σkρ+k0)ze−i!(
√

2σkρ+k0)2t/2m. (5.2.2)

Rearranging the exponents in terms of ρ and defining ξ ≡ ρ
√

1 + iσ2
k!t/m, Eq. (5.2.2)

can be given by

Ψ0(z, t) =
√

2σk exp

[
−i(k0z +

!k2
0

2m
t)

]
1√

1 + iσ2
k!t/m

×
∫ ∞

−∞
dξ exp

[
−ξ2 − i

√
2σk(z + !k0t/m)√

1 + iσ2
k!t/m

ξ

]
. (5.2.3)

If we define the coefficient of ξ in the exponent as α and complete the square, then

Eq. (5.2.3) can be given by

Ψ0(z, t) =

√
2σk exp [−i(k0z + !k2

0t/2m)] exp [α2/4]√
1 + iσ2

k!t/m

∫ ∞

−∞
dη e−η2

, (5.2.4)

where η ≡ ξ + α/2. The definite integral in this equation is the well-known Gaussian

integral and has the value of
√

π. Thus, the wave packet for free particles is given by

Ψ0(z, t) =

√
2πσk√

1 + iσ2
k!t/m

exp [−i(k0z + ω0t)] exp

[
− σ2

k(z + v0t)2

2(1 + iσ2
k!t/m)

]
, (5.2.5)
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where ω0 = !k2
0/2m and v0 = !k0/m.

The obtained wave function is in the coordinate space so it would be better to

use the width of the wave packet in the coordinate space σz instead of that in the k

space σk. According to the uncertainty principle, the relationship between σz and σk

is given by

σz =
1

σk
. (5.2.6)

With this relation, the wave packet for free particles is given by

Ψ0(z, t) =

√
2π

σz

√
1 + it/τ

exp [−i(k0z + ω0t)] exp

[
− (z + v0t)2

2σ2
z(1 + it/τ)

]
, (5.2.7)

where τ = mσ2
z/!.

The procedures for the integral with the second term in the square bracket Ψs is

identical to the first one. After following the same procedures, the scattered part of

the Gaussian wave packet is given by

Ψs(z, t) = A

∫ ∞

−∞
dη

e−η2

η + γ(z, t)
, (5.2.8)

where

A =
im|g|

!2
exp [i(k0|z| − ω0t)] exp

[
− (|z| − v0t)2

2σ2
z(1 + it/τ)

]
, (5.2.9)

γ(z, t) =
1√
2

[
i(|z| − v0t)

σz

√
1 + it/τ

+

(
k0 −

im|g|
!2

)
σz

√
1 + it/τ

]
. (5.2.10)

The integral in Eq. (5.2.8), if Im[γ(α′, β)] '= 0, is given by [52]

∫ ∞

−∞
dη

e−η2

η + γ
= γ

√
− 1

γ2
e−γ2

π

[
−2 + erfc

(
γ2

√
− 1

γ2

)]
, (5.2.11)

where erfc(z) is the complementary error function. This form of the solution is not

32



stable when the modulus of γ is large because the exponent becomes very large while

the complementary error function becomes very small. Thus, we rewrite the terms in

the bracket to resolve this problem using the properties of the error function:

erfc(z) = 1− erf(z), (5.2.12)

erf(−z) = −erf(z). (5.2.13)

The result is given by

∫ ∞

−∞
dη

e−η2

η + γ
= −γ

√
− 1

γ2
e−γ2

π erfc

(
−γ2

√
− 1

γ2

)
. (5.2.14)

This form of the solution does not have the problem when the modulus of γ is large

because the solution of this integral becomes

∫ ∞

−∞
dη

e−η2

η + γ
≈
√

π

γ

[
1 +

∞∑

n=1

(−1)n 1 · 3 . . . (2n− 1)

(−2γ2)n

]
(5.2.15)

with the asymptotic expansion of erfc(z), which is given by

erfc(z) ≈ e−z2

z
√

π

[
1 +

∞∑

n=1

(−1)n 1 · 3 . . . (2n− 1)

(2z2)n

]
. (5.2.16)

The scattered part of the Gaussian wave packet is thus given by

Ψs(z, t) = −im|g|
!2

exp [i(k0|z| − ω0t)] exp

[
− (|z| − v0t)2

2σ2
z(1 + it/τ)

]

× γ(z, t)

√

− 1

γ(z, t)2
e−γ(z,t)2π erfc

[
−γ(z, t)2

√

− 1

γ(z, t)2

]
. (5.2.17)

Finally, the Gaussian wave packet for the obtained time-independent wave function

is given by
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Ψ(z, t) = Ψ0(z, t) + Ψs(z, t)

=

√
2π

σz

√
1 + it/τ

exp [−i(k0z + ω0t)] exp

[
− (z + v0t)2

2σ2
z(1 + it/τ)

]

− im|g|
!2

π exp [i(k0|z| − ω0t)] exp

[
− (|z| − v0t)2

2σ2
z(1 + it/τ)

]

× γ(z, t)

√

− 1

γ(z, t)2
e−γ(z,t)2 erfc

[
−γ(z, t)2

√

− 1

γ(z, t)2

]
. (5.2.18)

The total probability density for finding the wave packet at time t is unity. In

other words, the integral of |Ψ|2 must be unity if Ψ is normalized:

∫ ∞

−∞
|Ψ(z, t)|2dz = 1. (5.2.19)

Thus, the square modulus integral of Eq. (5.2.18) with the proper normalization

factor should yield unity. However, we cannot obtain its solution in an analytic form.

Instead, if considering a wave packet very far from the scattering center, we can

safely drop the second term Ψs in Eq. (5.2.18), and obtain the proper normalization

factor N just from the square modulus integral of the first term Ψ0 because of the

conservation of the total probability density. That is,

N2 2π

σ2
z

√
1 + t2/τ 2

∫ ∞

−∞
dz exp

[
− (z + v0t)2

σ2
z(1 + t2/τ 2)

]
= 1. (5.2.20)

Thus, the normalization factor N is given by

N =

√
σz

2π

(
1

π

)1/4

. (5.2.21)

Attaching this normalization factor to Eq. (5.2.18), we finally obtain the normalized

Gaussian wave packet for the delta function potential Eq. (5.2):
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Ψ(z, t) =

√
σz

2

(
1

π

)1/4
{ √

2

σz

√
1 + it/τ

exp [−i(k0z + ω0t)] exp

[
− (z + v0t)2

2σ2
z(1 + it/τ)

]

− i
m|g|
!2

√
π exp [i(k0|z| − ω0t)] exp

[
− (|z| − v0t)2

2σ2
z(1 + it/τ)

]

× γ(z, t)

√

− 1

γ(z, t)2
e−γ(z,t)2 erfc

[
−γ(z, t)2

√

− 1

γ(z, t)2

]}
. (5.2.22)

5.3 Graphical Description of Wave Packet

The Gaussian wave packet spreads out as it propagates. This dispersion should be

minimized to obtain better graphical description of the interaction. In order to learn

how fast the wave packet disperses the square modulus of the wave packet for a free

particle is calculated such that

|Ψ0(z, t)|2 =

(
1

π

)1/2 1

σz

√
1 + t2/τ 2

exp

[
− (z + v0t)2

σ2
z (1 + t2/τ 2)

]
. (5.3.1)

From Equation (5.3.1), the time dependence of the width of the wave packet can be

easily obtained, which is given by

σz(t) = σz(0)

√
1 +

t2

τ 2
, (5.3.2)

where σz(0) is the initial width of the wave packet at t = 0. Note that as the wave

packet’s width disperses, its amplitude decreases, making the probability density of

the wave packet intact.

For 1H2 at the temperature of 10 ◦K, it takes about 24 ps to travel 200 Å. In

order to find the optimum initial width σz(0) for this distance, which minimizes the

dispersion and also has the relatively small initial width of the wave packet, Eq.

(5.3.2) with different σz(0) is plotted in Figure 5.2. As shown, σz(t) changes very

slightly when the initial width is in the range between 20 Å and 25 Å so any value
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in this range can be used. However, 20 Å is the smallest initial width in this range.

Thus, this value will be used in graphical description of the Gaussian wave packet

throughout this thesis.

4.84 9.68 14.51 19.35 24.19
t !ps"

10

20

30

40

Σz !!"

Fig 5.2. The time dependence of the width of the Gaussian wave packet.

With the initial width of 20 Å, the Gaussian wave packets of 1H2 at the tempera-

ture of 10 ◦K with different values of |g| are plotted to graphically describe the time

evolution of the scattering process. In Figure 5.3 the Gaussian wave packets with

|g| = 0.144 meV·Å are plotted at different times. As shown, the wave packet ap-

proaches the origin from the right and is distorted a little bit at the origin where the

delta potential is located. Then, it proceeds to the left. In Figure 5.4 the Gaussian

wave packets with |g| = 1.440 meV·Å are shown. As it approaches to the origin, it is

distorted and splits at the origin: about 70 % of the wave packet transmits and the

rest reflects. In Figure 5.5 the Gaussian wave packets with |g| = 14.40 meV·Å are

plotted. The wave packet approaches to the origin and is severely distorted. Then, it

turns back to the right. Note that for the last two cases the Gaussian wave packets

reflect from the well, which cannot happen in classical theory.
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Fig 5.3. The Gaussian wave packet for 1H2 at the temperature of 10 ◦K with |g| =
0.144 meV·Å at different times.
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Fig 5.4. The Gaussian wave packet for 1H2 at the temperature of 10 ◦K with |g| =
1.440 meV·Å at different times.
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Fig 5.5. The Gaussian wave packet for 1H2 at the temperature of 10 ◦K with |g| =
14.40 meV·Å at different times.
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In order to verify the results of graphical description, we numerically integrate

the square modulus of the wave packet from −∞ to 0 to obtain the transmitted

flux |T (k)|2 and from 0 to +∞ to obtain the reflected flux |R(k)|2 at t = 25 ps,

and compare to those computed by the square modulus of Eq. (5.1.13) and (5.1.14).

The obtain values are reported in Table 2. As shown, their values are in excellent

agreement, confirming the validity of graphical description.

Table 2

The transmitted and reflected fluxes |T (k)|2 and |R(k)|2 for 1H2 at 10 ◦K with different |g|.

|g| (meV·Å) |T (k)|2 |R(k)|2

0.144 0.996 (0.996) 0.004 (0.004)

1.440 0.723 (0.724) 0.277 (0.276)

14.40 0.026 (0.026) 0.974 (0.974)

The transmitted and reflected fluxes are obtained first by integrating the square modulus of
Eq. (5.2.22) from −∞ to 0 and from 0 to +∞ at t = 25 ps, repectively, and then computed
by the square modulus of Eq. (5.1.13) and (5.1.14). The values in the parenthesis are
obtained by the latter.
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CHAPTER 6

QUANTUM SCATTERING IN 2D

The two-dimensional version of the general periodic potential Eq. (3.1.6) for the

system shown in Figure 5.1 is given by

V (x, z) = w0(z) + 2
∑

G>0

wG(z)cos(Gx). (6.1)

This potential can be further simplified by truncating higher terms because the value

of wG(z) for actual crystal potentials decrease rapidly as G increases [53]:

V (x, z) = w0(z) + 2w1(z)cos

(
2πx

a

)
, (6.2)

where a is the distance between the interaction sites. From this simplified form we

construct a model potential with the laterally averaged potential Eq. (5.2) used in

the previous chapter such that

V (x, z) = −|g|δ(z) + λδ(z)cos

(
2πx

a

)
, (6.3)

where λ is a constant.

6.1 Time Independent Wave Function

The two-dimensional Lippmann-Schwinger equation with the model potential Eq.

(6.3) is given by

ψ(x, z) = ψ0(x, z)− |g|
4π2

∫
dx′

∫
dz′

∫
dk1

∫
dk2

eik1(x−x′)eik2(z−z′) δ(z′) ψ(x′, z′)

E − !2(k2
1 + k2

2)/2m + iε

+
λ

4π2

∫
dx′

∫
dz′

∫
dk1

∫
dk2

eik1(x−x′)eik2(z−z′) δ(z′) cos (2πx′/a) ψ(x′, z′)

E − !2(k2
1 + k2

2)/2m + iε
. (6.1.1)

Before proceeding with this equation, we first consider a limiting case λ = 0.

41



6.1.1 Non-periodic Potential

In this case we already know the solution from the fact that the solution of the

two dimensional wave function if the potential depends only on one variable is the

product of the one-dimensional wave functions of each variable. That is, with the

time-independent wave function ψ(z) obtained in chapter 5, the solution for this non-

periodic potential if the incident particle approaches from −∞ in the x-direction is

given by

ψ(x, z) = eikxxe−ikzz +
im|g|

!2kz − im|g|e
ikxxeikz |z|. (6.1.2)

However, it should be instructive to solve the same problem using another method,

Fourier transform, that is not confined to single variable potentials. The equation that

we need to solve is given by

ψ(x, z) = ψ0(x, z) +
|g|
4π2

∫
dx′

∫
dk1

∫
dk2

∫
dz′

eik1(x−x′)eik2(z−z′) δ(z′) ψ(x′, z′)

!2(k2
1 + k2

2)/2m− E − iε
.

(6.1.3)

Integrating over z′ results that

ψ(x, z) = ψ0(x, z) +
|g|
4π2

∫
dx′

∫
dk1

∫
dk2

eik1(x−x′)eik2zψ(x′, 0)

!2(k2
1 + k2

2)/2m− E − iε
. (6.1.4)

The equality of this equation should be satisfied with any value of z, so we can assign

zero to z to make it independent of z. If we define f(x) ≡ ψ(x, 0), then it can be

given by

f(x) = f0(x) +
|g|
4π2

∫
dx′

∫
dk1

∫
dk2

eik1(x−x′) f(x′)

!2(k2
1 + k2

2)/2m− E − iε
. (6.1.5)

In the Fourier Transform, a function of a real variable f(x) can be related to

another function of another real variable F (k) such that

f(x) =

∫
dk eikxF (k) ⇐⇒ F (k) =

1

2π

∫
dx e−ikxf(x), (6.1.6)
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where F (k) is the Fourier transform of f(x) and f(x) is the inverse Fourier transform

of F (k). Fourier transforming Eq. (6.1.5), and integrating over x′ and then over k1,

it becomes

∫
dκeiκxF (κ) = f0(x) +

|g|
2π

∫
dk2

∫
dκ

eiκx

!2(κ2 + k2
2)/2m− E − iε

F (κ). (6.1.7)

Multiplying both sides by e−ikx and integrating over x and then integrating over κ,

Eq. (6.1.7) becomes

F (k) = δ(k − kx) +
|g|
2π

∫
dk2

F (k)

!2(k2 + k2
2)/2m− E − iε

. (6.1.8)

As before, if we use the free-particle approaching from −∞ for f0(x) and combine

F (k) terms together, Eq. (6.1.8) becomes

[
1− |g|

2π

∫
dk2

1

!2(k2 + k2
2)/2m− E − iε

]
F (k) = δ(k − kx). (6.1.9)

If k '= kx, then the left hand side of the equation should be zero for any k. Thus, F (k)

must be zero. This is a trivial solution and doesn’t give us any useful information.

Therefore, we only consider the case k = kx here. In this case, using the energy of

the two dimensional free particle,

E =
!2(k2

x + k2
z)

2m
, (6.1.10)

Eq. (6.1.9) can be given by

[
1− m|g|

π!2

∫
dk2

1

k2
2 − k2

z − iε′

]
F (k) = δ(k − kx). (6.1.11)

where ε′ = 2mε/!2. The integral over dk2 in this equation is obtained previously in

chapter 5. With that result Eq. (6.1.11) is given by

43



[
1− im|g|

!2kz

]
F (k) = δ(k − kx). (6.1.12)

Since the coefficient of F (k) cannot be zero, F (k) is given by

F (k) =
δ(k − kx)

1− im|g|/!2kz
. (6.1.13)

Transforming this F (k) back into f(x) using Eq. (6.1.6), we obtain

f(x) =
eikxx

1− im|g|/!2kz
. (6.1.14)

Replacing ψ(x′, 0) with this result, Eq. (6.1.4) is given by

ψ(x, z) = ψ0(x, z) +
|g|
4π2

∫
dx′

∫
dk1

×
∫

dk2
eik1(x−x′)eik2z

!2(k2
1 + k2

2)/2m− E − iε

(
eikxx′

1− im|g|/!2kz

)
. (6.1.15)

Integrating over x′ followed by integrating over k1, Eq. (6.1.15) becomes

ψ(x, z) = ψ0(x, z) +
m|g|
π

kz

!2kz − im|g|e
ikxx

∫
dk2

eik2z

k2
2 − k2

z − iε′
, (6.1.16)

where ε′ = 2mε/!2. The integral in Eq. (6.1.16) is identical to Eq. (5.1.11) with k

replaced by kz. With that result, we finally obtain the non-trivial solution for the

two dimensional wave function:

ψ(x, z) = eikxxe−ikzz +
im|g|

!2kz − im|g|e
ikxxeikz |z|, (6.1.17)

where ψ0(x, z) is replaced by the two-dimensional free particle Schrödinger equation

which approaching from −∞ in the x-direction and from +∞ in the z-direction. As

expected, this is identical to Eq. (6.1.2).
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6.1.2 Periodic Potential

In the case λ '= 0 the potential depends on both variables x and z. Therefore, the

method of separation of variables cannot be used. Here we use the method of Fourier

transform used in the previous section to solve Eq. (6.1.1). As before, integrating

over z′, assigning zero to z and defining f(x) ≡ ψ(x, 0), Eq. (6.1.1) is given by

f(x) = f0(x) +
|g|
4π2

∫
dx′

∫
dk1

∫
dk2

eik1(x−x′)

!2(k2
1 + k2

2)/2m− E − iε
f(x′)

− λ

4π2

∫
dx′

∫
dk1

∫
dk2

eik1(x−x′)

!2(k2
1 + k2

2)/2m− E − iε
cos

(
2πx′

a

)
f(x′). (6.1.18)

Fourier transforming this equation, multiplying both sides by e−ikx and integrating

over x and then over k1, it becomes

F (k) = δ(k − kx) +
|g|
4π2

∫
dx′

∫
dk2

∫
dκ

ei(κ−k)x′

!2(k2 + k2
2)/2m− E − iε

F (κ)

− λ

4π2

∫
dx′

∫
dk2

∫
dκ

ei(κ−k)x′

!2(k2 + k2
2)/2m− E − iε

cos

(
2πx′

a

)
F (κ). (6.1.19)

Replacing the cosine term using Euler’s formula and integrating over x′ and then over

κ, Eq. (6.1.19) is given by

F (k) = δ(k − kx) +
|g|
2π

∫
dk2

1

!2(k2 + k2
2)/2m− E − iε

F (k)

− λ

4π

∫
dk2

F (k − 2π/a) + F (k + 2π/a)

!2(k2 + k2
2)/2m− E − iε

. (6.1.20)

Replacing E in terms of kx and kz and combining F (k) terms together, Eq. (6.1.20)

becomes
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(
1− m|g|

π!2

∫
dk2

1

k2
2 −K − iε′

)
F (k) = δ(k − kx)

− mλ

2π!2

∫
dk2

1

k2
2 −K − iε′

[F (k − 2π/a) + F (k + 2π/a)] , (6.1.21)

where K = k2
x+k2

z−k2. The integrals over dk2 in this equation are obtained previously

in chapter 5. With that result, Eq. (6.1.21) can be given by

(
1− im|g|

!2
√

k2
x + k2

z − k2

)
F (k) = δ(k − kx)

− imλ

2!2
√

k2
x + k2

z − k2

[
F (k − 2π

a
) + F (k +

2π

a
)

]
. (6.1.22)

Previously when λ = 0, we didn’t worry about the coefficient of F (k) being zero: it

cannot be zero when k = kx and F (k) should be zero when k '= kx. However, F (k)

in this equation is not necessarily zero when k '= kx. Thus, we should consider each

case: the coefficient of F (k) is zero and not zero.

For the case in which the coefficient of F (k) is zero, k = ±
√

k2
x + k2

z + (m|g|)2/!4.

Thus, Eq. (6.1.22) is given by

F

(
±

√
k2

x + k2
z +

(m|g|)2

!4
− 2π

a

)
= −F

(
±

√
k2

x + k2
z +

(m|g|)2

!4
+

2π

a

)
. (6.1.23)

This relation does not give us any useful information about F (k). For the case that

the coefficient of F (k) is not zero, F (k) can be given by

F (k) =
!2kz

!2kz − im|g|δ(k − kx)

− imλ

2(!2
√

k2
x + k2

z − k2 − im|g|)

[
F (k − 2π

a
) + F (k +

2π

a
)

]
. (6.1.24)

We cannot proceed any further with this equation because of the functions F (k−2π/a)
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and F (k + 2π/a) on the right hand side of this equation. However, if we assume that

λ is very small so that F (k) is not substantially altered by this λ term, we can well

approximate F (k) using the Born approximation:

FB(k) =
!2kz

!2kz − im|g|δ(k − kx)−
imλ

2(!2
√

k2
x + k2

z − k2 − im|g|)

×
[

!2kz

!2kz − im|g|δ(k −
2π

a
− kx) +

!2kz

!2kz − im|g|δ(k +
2π

a
− kx)

]
. (6.1.25)

Transforming FB(k) back into fB(x), Eq. (6.1.25) is given by

fB(x) =
!2kz

!2kz − im|g|




eikxx − imλ

2



 ei(kx+2π/a)x

!2
√

k2
z − 4π

a (kx + π
a )− im|g|

+
ei(kx−2π/a)x

!2
√

k2
z + 4π

a (kx − π
a )− im|g|








 . (6.1.26)

Replacing ψ(x′, 0) with fB(x) after integrating over z′, Eq. (6.1.1) is given by

ψ(x, z) = ψ0(x, z) +
|g|
4π2

∫
dx′

∫
dk1

∫
dk2

eik1(x−x′)eik2z

!2(k2
1 + k2

2)/2m− E − iε

!2kz

!2kz − im|g|

×




eikxx′ − imλ

2



 ei(kx+2π/a)x′

!2
√

k2
z − 4π

a (kx + π
a )− im|g|

+
ei(kx−2π/a)x′

!2
√

k2
z + 4π

a (kx − π
a )− im|g|










− λ

4π2

∫
dx′

∫
dk1

∫
dk2

eik1(x−x′)eik2z

!2(k2
1 + k2

2)/2m− E − iε

ei2πx′/a + e−i2πx′/a

2

!2kz

!2kz − im|g|

×




eikxx′ − imλ

2



 ei(kx+2π/a)x′

!2
√

k2
z − 4π

a (kx + π
a )− im|g|

+
ei(kx−2π/a)x′

!2
√

k2
z + 4π

a (kx − π
a )− im|g|








 .

(6.1.27)
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All integrals in this equation have the similar form and can be evaluated by the same

procedure as before: First, integrate over x′, which yields a delta function and then

integrate over k1. Finally, integrate over kz. The obtained wave function is given by

ψ(x, z) = eikxxe−ikzz +
im|g|

!2kz − im|g|e
ikxxeikz |z| − imλ!2kz

2(!2kz − im|g|)

×



 ei(kx+ 2π
a )xei

√
k2

z− 4π
a (kx+π

a )|z|

!2
√

k2
z − 4π

a (kx + π
a )− im|g|

+
ei(kx− 2π

a )xei
√

k2
z+ 4π

a (kx−π
a )|z|

!2
√

k2
z + 4π

a (kx − π
a )− im|g|





− λ2

4





m2!2

!2kz − im|g|



 1

!2
√

k2
z − 4π

a (kx + π
a )− im|g|

+
1

!2
√

k2
z + 4π

a (kx − π
a )− im|g|





× eikxxeikz |z| +
m2!2kz

!2kz − im|g|



 1

!2
√

k2
z − 8π

a (kx + 2π
a )

ei(kx+ 4π
a )xei

√
k2

z− 8π
a (kx+ 2π

a )|z|

!2
√

k2
z − 4π

a (kx + π
a )− im|g|

+
1

!2
√

k2
z + 8π

a (kx − 2π
a )

ei(kx− 4π
a )xei

√
k2

z+ 8π
a (kx− 2π

a )|z|

!2
√

k2
z + 4π

a (kx − π
a )− im|g|








 . (6.1.28)

In order to use the Born approximation we assumed that λ is very small, which allows

us safely drop λ2 terms. Thus, the two-dimensional wave function can be given by

ψ(x, z) ≈ eikxx
(
e−ikzz + S0e

ikz |z| + S−1e
ik−1,z |z| + S+1e

ik+1,z |z|
)
, (6.1.29)

where

S0 =
im|g|

!2kz − im|g| , (6.1.30)

S−1 = −imλ

2

!2kz

(!2kz − im|g|)
ei2πx/a

(!2k−1,z − im|g|) , (6.1.31)
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S+1 = −imλ

2

!2kz

(!2kz − im|g|)
e−i2πx/a

(!2k+1,z − im|g|) , (6.1.32)

and

k−1,z =

√
k2

z −
4π

a
(kx +

π

a
), (6.1.33)

k+1,z =

√
k2

z +
4π

a
(kx −

π

a
). (6.1.34)

As mentioned in chapter 5 selective adsorption for this system occurs when the parti-

cle’s energy associated with the motion in the z-direction is equal to the bound state

energy for w0(z) = −|g|δ(z). That is, the particle can be selectively adsorbed when

k±1,z = i
m|g|
!2

. (6.1.35)

Note these are poles of the wave function, which is a general property of scattering

amplitudes: the appearance of a pole at a negative energy.

The kinematic condition of selective adsorption Eq. (6.1.35) in terms of the inci-

dent wave numbers can be given by

k2
z = −(m|g|)2

!4
± 4π

a

(
kx ± nπ

a

)
. (6.1.36)

If we add k2
x to both sides and multiply both sides by !2/2m, this condition can be

given by

Ei = E
′

z +
!2(kx + G±1)2

2m
, (6.1.37)

where Ei is the initial energy of the incident particle, E
′
z is the bound state energy

and G±1 is the reciprocal lattice vector in the x-direction. This expression indicates

that motion of the selectively adsorbed particle parallel to the periodic potential site

is restricted by the relation

k
′

x = kx + G±1, (6.1.38)
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where k
′
is the wave number of the selectively adsorbed particle in the x-direction.

This is the well-known Laue condition. In other words, selective adsorption satisfies

the diffraction condition.

6.2 Time Dependent Wave Function

As before we construct the Gaussian wave packet with the time-independent wave

function obtained in the previous section such that

Ψ(x, z, t) =

∫ ∞

−∞
dkx e(kx−kx0)2/2σ2

kx

∫ ∞

−∞
dkz e(kz−kz0)2/2σ2

kz

{
eikxxe−ikzz

+
im|g|

!2kz − im|g|e
ikxxeikz |z| − imλ

2

!2kz

!2kz − im|g|

[
ei(kx+ 2π

a )xei
√

k2
z− 4π

a (kx+π
a )|z|

!2
√

k2
z − 4π

a (kx + π
a )− im|g|

+
ei(kx− 2π

a )xei
√

k2
z+ 4π

a (kx−π
a )|z|

!2
√

k2
z + 4π

a (kx − π
a )− im|g|

]}
e−i!k2

xt/2me−i!k2
zt/2m. (6.2.1)

The first and the second integrals are separable into kx and kz terms. The integrals

with respect to kz are treated and their analytic solutions are obtained in chapter 5,

and the integral with respect to kx is just a Gaussian wave packet for free particles

approaching from −∞. Thus, Eq. (6.2.1) can be given by

Ψ(x, z, t) = N
[
Ψ0

x(x, t)Ψ0
z(z, t) + Ψ0

x(x, t)Ψs(z, t) + Ψλ(x, z, t)
]
, (6.2.2)

where

Ψ0
x(x, t) =

√
2π

σx

√
1 + it/τx

exp [i(kx0x− ωx0t)] exp

[
− (x− vx0t)2

2σ2
x(1 + it/τx)

]
, (6.2.3)

Ψ0
z(z, t) =

√
2π

σz

√
1 + it/τz

exp [−i(kz0z + ωz0t)] exp

[
− (z + vz0t)2

2σ2
z(1 + it/τz)

]
, (6.2.4)
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Ψs(z, t) = −im|g|
!2

π exp [i(kz0|z| − ωz0t)] exp

[
− (|z| − vz0t)2

2σ2
z(1 + it/τz)

]

× γ(z, t)

√

− 1

γ(z, t)2
e−γ(z,t)2 erfc

[
−γ(z, t)2

√

− 1

γ(z, t)2

]
, (6.2.5)

Ψλ(x, z, t) = −imλ

2

∫ ∞

−∞
dkx

∫ ∞

−∞
dkze

(kx−kx0)2/2σ2
kxe(kz−kz0)2/2σ2

kze−i!k2
xt/2me−i!k2

zt/2m

× !2kz

!2kz − im|g|



 ei(kx+ 2π
a )xei

√
k2

z− 4π
a (kx+π

a )|z|

!2
√

k2
z − 4π

a (kx + π
a )− im|g|

+
ei(kx− 2π

a )xei
√

k2
z+ 4π

a (kx−π
a )|z|

!2
√

k2
z + 4π

a (kx − π
a )− im|g|



 ,

(6.2.6)

and N is a normalization factor.

As before, we consider the square modulus integral of the wave packet very far

from the periodic interaction site to obtain the normalization factor. That is,

N2

∫ ∞

−∞
dx

∫ ∞

−∞
dzΨ0

x(x, t)Ψ0
z(z, t) = 1. (6.2.7)

The obtained normalization factor is given by

N =

√
σxσz

2π3/2
. (6.2.8)

Thus, the two-dimensional normalized Gaussian wave packet can be given by

Ψ(x, z, t) =

√
σxσz

2π3/2

[
Ψ0

x(x, t)Ψ0
z(z, t) + Ψ0

x(x, t)Ψs(z, t) + Ψλ(x, z, t)
]
. (6.2.9)

The last term in the square bracket Ψλ(x, z, t) is in an integral form and can only

be treated numerically. In general, for this type of integral whose integrand has

highly oscillatory behavior, the accuracy of the result is limited even with special

methods for this type of integrals, such as Levin method [54] and contour integration

method. However, for the parameters used in this thesis, the result of this integral is
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so small (|Ψλ(x, z, t)|2 < 10−10) that it does not affect the probability density of the

wave function, except when the integrand does not oscillate rapidly, where we can

obtain a reliable result even with standard numerical methods, such as Simpson’s rule.

This integral also has another issue: two singular points in the integrand. However,

the difference between the values calculated with and without consideration of those

singularities is less than 1 % when the integrand does not oscillate rapidly. Therefore,

in numerical calculation of the term Ψλ(x, z, t) Simpson’s rule is used to minimize the

computation time.

6.3 Graphical Description

The two-dimensional Gaussian wave packet solutions Eq. (6.2.9) are plotted with dif-

ferent incident parameters to graphically describe the time evolution of the scattering

process, especially in the condition of selective adsorption. As shown in chapter 5,

selective adsorption for the system used in this thesis occurs when

Eb = −mg2

2!2
, (6.3.1)

where Eb is the bound state energy of the laterally averaged potential w(z) = −|g|δ(z).

Thus, the two-dimensional kinematic condition for selective adsorption in terms of

the incident angle θi and the magnitude of the incident wave vector ki is given by

(
sin θi +

2π

aki

)2

= 1 +
m2g2

!4k2
i

. (6.3.2)

If one of the energy levels of 1H2 - graphite system given in chapter 3 is used for

Eb, the value of |g| corresponding to that energy level can be obtained. Then, θi

that satisfies the kinematic condition for selective adsorption can be obtained for a

given value of ki. Here the fourth energy level is used for the value of |g| because

for the values of |g| corresponding lower energy levels the kinematic condition for

selective adsorption is satisfied only with large incident angles (θi > 45◦) for any
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values of ki: the wave packet is considered with its initial width of 20 Å in the

range −150 Å ≤ x ≤ 150 Å and −150 Å ≤ z ≤ 150 Å so for large incident angles

it starts too close from the interaction site. The value of |g| corresponding to the

fourth energy level is 3.96 meV·Å. Thus, for ki = 1.12 Å−1 corresponding particles at

the temperature of 10 ◦K the kinematic condition of selective adsorption is satisfied

when θi = 12.94◦. The diagram for the Gaussian wave packet at this incident angle

is shown in Figure 6.1.

Θi

ki

x

z

Fig 6.1. The diagram for computer simulation setup. ki = 1.12 Å−1 and θi = 12.94◦.

With the given values of |g| and ki, the time evolution of the Gaussian wave packet

at different incident angles are plotted: θi = 12.94◦, which satisfies the kinematic

condition of selective adsorption, in Figure 6.2, and those at other incident angles,

which don’t satisfy the kinematic condition of selective adsorption in Figure 6.3 and

6.4. In Figure 6.2 a faint line appears at z = 0 where the periodic interaction site

lies with the reflected and transmitted parts of the Gaussian wave packet after the

interaction. However, the faint line doesn’t appear in Figure 6.3 and 6.4, indicating

this line is attributed to selective adsorption.
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t = 0 t = 4.84 ps t = 9.68 ps

t = 14.51 ps t = 19.35 ps t = 24.19 ps

t = 29.03 ps t = 33.87 ps

Fig 6.2. The density plots of the two-dimensional Gaussian wave packets at different
times for 1H2 with |g| = 3.96 meV·Å, ki = 1.12 Å−1 and θi = 12.94◦. With
these values the kinematic condition of selective adsorption is satisfied. The
periodic potential site lies on z = 0, but is not shown.
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t = 0 t = 4.84 ps t = 9.68 ps

t = 14.51 ps t = 19.35 ps t = 24.19 ps

t = 29.03 ps t = 33.87 ps

Fig 6.3. The density plots of the 2D Gaussian wave packets at different times for
1H2 with |g| = 3.96 meV·Å, ki = 1.12 Å−1 and θi = 38.82◦. This incident
angle does not satisfy the kinematic condition of selective adsorption with
the given values of |g| and ki. The periodic potential site lies on z = 0, but
is not shown.
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t = 0 t = 4.84 ps t = 9.68 ps

t = 14.51 ps t = 19.35 ps t = 24.19 ps

t = 29.03 ps t = 33.87 ps

Fig 6.4. The density plots of the 2D Gaussian wave packets at different times for
1H2 with |g| = 3.96 meV·Å, ki = 1.12 Å−1 and θi = 64.70◦. This incident
angle does not satisfy the kinematic condition of selective adsorption with
the given values of |g| and ki. The periodic potential site lies on z = 0, but
is not shown.
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6.4 Conclusions

We have treated the two-dimensional scattering of the gas-surface system with a model

potential using a Gaussian wave packet approach to describe the time evolution of the

scattering process, especially when the kinematic condition of selective adsorption is

satisfied. Even with the simple model potential used in this thesis we have not been

able to obtain an exact solution of a two-dimensional wave function from which a

Gaussian wave packet can be constructed. Thus, we have constructed a Gaussian

wave packet from a Born approximate wave function.

With this obtained Gaussian wave packet solution we have been able to depict the

selective adsorption phenomenon, but unable to accurately determine the probability

density of selectively adsorbed particles because the Gaussian wave packet constructed

from the Born approximate wave function does not conserve the total probability

density. In order to resolve this problem of non-conservation of the total probability

density, we might attempt with the Born series as a future work.
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APPENDIX A

CALCULUS OF RESIDUES

The residue theorem states that

∮

C

f(z)dz = 2πi
∑

enclosed residues, (A.1)

where the residue of f(z) with a ploe of order m at z = z0 is given by [55]

a−1 =
1

(m− 1)!

dm−1

dzm−1
[(z − z0)

m f(z)]z=z0
. (A.2)

The residue theorem is very useful in evaluating definite integrals, as employed in

the following integral

∫ ∞

−∞
dk′

1

k′2 − k2 − iε
, (A.3)

where k is a real number, and ε is a positive real infinitesimal that will be set to zero.

The integrand has two poles at k′ = ±
√

k2 + iε as shown in Figure A. Since k2 0 ε,

!k!Ε'

k#Ε'

x

y

Fig A. Half circle contours.
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Taylor’s expansion of
√

k2 + iε can be used. Thus, the residue in the upper half-plane

is given by

a−1 = [k′ − (k + iε′)]
1

[k′ + (k + iε′)][k′ − (k + iε′)]

∣∣∣∣
k′=k+iε′

ε′→0
=

1

2k
, (A.4)

where ε′ = k + i
ε

2k
. Thus, the contour integral over dk′ closed at infinity with a

semicircle in the upper half-plane is given by

∫
dk′

1

k′2 − k2 − iε
= 2πi a−1 = i

π

k
. (A.5)

It is also possible to use the lower half-plane, and this choice will lead to the same

result.
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APPENDIX B

BOUND-STATE WAVE FUNCTION FOR δ POTENTIAL

The Schrödinger equation for the delta function potential w0(z) = −|g|δ(z) is given

by

− !2

2m

d2ψ(z)

dz2
− |g|δ(z)ψ(z) = Eψ(z), (B.1)

where m and E are mass and the total energy of a particle, respectively. In the region

z < 0 the Schrödinger equation Eq. (B.1) is given by

d2ψ(z)

dz2
= k2ψ(z), (B.2)

where

k =

√
−2mE

! . (B.3)

The general solution to Eq. (B.2) is given by

ψ(z) = Aekz + Be−kz. (B.4)

For bound states (E < 0) the second term grows exponentially without limit as

z → −∞, so we should set B = 0. Thus,

ψ(z) = Aekz, (z < 0). (B.5)

In the region z > 0, Eq. (B.1) becomes Eq. (B.2) again, and the general solution is

given by

ψ(z) = Cekz + De−kz. (B.6)

This time the first term grows exponentially without limit as z → ∞, so we should

set C = 0. Thus, we have

ψ(z) = De−kz, (z > 0). (B.7)

In order to obtain the coefficients A and D, the appropriate boundary conditions at

z = 0 need to be imposed. The first boundary condition is that the wave function is
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continuous at z = 0 so from Eq. (B.5) and Eq. (B.7) we have

A = D. (B.8)

The second boundary condition is the behavior of the derivative of the wave function

at z = 0, which is obtained by integrating Eq. (B.1) over an interval [−ε, +ε] and

then take the limit as ε→ 0:

− !2

2m

∫ +ε

−ε

d2ψ(z)

dz2
dz − |g|

∫ +ε

−ε

δ(z)ψ(z)dz = E

∫ +ε

−ε

ψ(z)dz. (B.9)

The right-hand side of Eq. (B.9) vanishes in the limit ε → 0. Thus, Eq. (B.9)

becomes

lim
ε→0

[
dψ(z)

dz

∣∣∣∣
+ε

− dψ(z)

dz

∣∣∣∣
−ε

]
= −2m|g|

!2
ψ(0). (B.10)

Thus, using the result obtained from the first boundary condition Eq. (B.8) and the

derivatives of the wave functions, Eq. (B.5) and Eq. (B.7), we obtain

k =
m|g|
!2

. (B.11)

The wave function is thus given by

ψ(z) = Ae−m|g||z|/!2
. (B.12)

The term A is obtained by normalizing the wave function such that

∫ +∞

−∞
|ψ(z)|2 dz = |A|2

∫ 0

−∞
e2kzdz + |A|2

∫ +∞

0

e−2kzdz =
|A|2

k
= 1

⇒ A = ±
√

k = ±
√

m|g|
! . (B.13)

Therefore, the bound state wave function for the delta function potential is given by

ψ(z) = ±
√

m|g|
! e−m|g||z|/!2

. (B.14)
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APPENDIX C

SOURCE CODE FOR NUMERICAL CALCULATION

The code is written in Fortran for parallel computing using Open MPI. The data types

defined in Numerical Recipes [56] are adopted, and one of its functions factrl, which

returns the result of the factorial operation, is used. The algorithm for Simpson’s

Rule is obtained from Dr. Pang [57].

This program returns the probability densities of the two-dimensional Gaussian

wave packet obtained in chapter 6 with a modification of the initial position of the

wave packet denoted by xi and zi in the code: in chapter 6 they are set to zero, and

in the code they are adjusted with respect to the incident angle of the wave packet

so that they are 120 Å away from the origin. It can run on multiple processors (even

number): each processor computes and returns the probability densities of the wave

packet at different points at a given time, and then the primary processor collects

those probability densities and writes on a file called “density.dat”.

File Name: gconst.f90
————————————————————————————————————————————
MODULE gconst

USE nrtype
REAL(DP), PARAMETER :: MU = 3701.38 dp, G = 0.000275 dp, &

LMDA = 0.0000275 dp, HBAR = 1.0 dp
REAL(DP), PARAMETER :: sigma kx = 0.05 dp, sigma x = 20.0 dp, &

sigma kz = 0.05 dp, sigma z = 20.0 dp, &
xi = -26.8718 dp, zi = 116.953 dp, site dist = 6.0 dp

COMPLEX(DPC), PARAMETER :: i = (0.0 dp, 1.0 dp)
END MODULE gconst
————————————————————————————————————————————

File Name: mpiwp.f90
————————————————————————————————————————————
PROGRAM mpiwp

USE nrtype
USE gconst
IMPLICIT NONE
INCLUDE ”mpif.h”
INTEGER(I4B), PARAMETER :: NSTEP = 513, XMAX = 150, ZMAX = 150, TMAX = 7
REAL(DP), PARAMETER :: ki = 0.6 dp, theta = 12.9401 dp
INTEGER(I4B) :: j
REAL(DP) :: lower kx limit, upper kx limit, lower kz limit, upper kz limit, del kx, del kz, &

kx, x, z, t, kxi, kzi, vxi, vzi, wxi, wzi, tau x, tau z, angle, coeff1
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COMPLEX(DPC) :: coeff2, sumf, psix0, psiz0, psiz1, psixz
COMPLEX(DPC), DIMENSION(NSTEP) :: fkz of kx
INTEGER(I4B) :: my rank, num proc, src, dest, tag, ierr
INTEGER(I4B) :: status(3)
INTEGER(I4B) :: ti, local ti, local tf, local tmax, arraysize, aerr, tm, xm, zm
REAL(DP), DIMENSION(:, :, :), ALLOCATABLE :: prob, tempa
INTERFACE

FUNCTION func kx(NSTEP, lower kx limit, del kx, fkz of kx, kxi, x, t)
USE nrtype
USE gconst
IMPLICIT NONE
INTEGER(I4B), INTENT(IN) :: NSTEP
REAL(DP), INTENT(IN) :: lower kx limit, del kx, kxi, x, t
INTEGER(I4B) :: j
COMPLEX(DPC), INTENT(IN), DIMENSION(NSTEP) :: fkz of kx
REAL(DP) :: kx, angle
COMPLEX(DPC), DIMENSION(NSTEP) :: func kx

END FUNCTION func kx
FUNCTION func kz(NSTEP, lower kz limit, del kz, kzi, kx, x, z, t)

USE nrtype
USE gconst
IMPLICIT NONE
INTEGER(I4B), INTENT(IN) :: NSTEP
REAL(DP), INTENT(IN) :: lower kz limit, del kz, kzi, kx, x, z, t
INTEGER(I4B) :: j
REAL(DP) :: kz, sqrterm, angle
COMPLEX(DPC), DIMENSION(NSTEP) :: func kz
COMPLEX(DPC) :: wc

END FUNCTION func kz
FUNCTION intg term(gmm)

USE nrtype
IMPLICIT NONE
COMPLEX(DPC), INTENT(IN) :: gmm
INTEGER(I4B) :: j, jj, prod
COMPLEX(DPC) :: sumc, intg term

END FUNCTION intg term
FUNCTION gamma(kzi, z, t)

USE nrtype
USE gconst
IMPLICIT NONE
REAL(DP), INTENT(IN) :: kzi, z, t
COMPLEX(DPC) :: gamma

END FUNCTION gamma
END INTERFACE

dest = 0
tag = 1
CALL MPI INIT(ierr)
CALL MPI COMM RANK(MPI COMM WORLD, my rank, ierr)
CALL MPI COMM SIZE(MPI COMM WORLD, num proc, ierr)

ti = 0
local tmax = (TMAX+1) / num proc
local ti = ti + my rank * local tmax
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local tf = local ti + local tmax - 1

ALLOCATE(prob(0:TMAX, -XMAX:XMAX, -ZMAX:ZMAX), STAT = aerr)
IF (aerr /= 0) THEN

PRINT *, ”multiarray : allocation failed”
STOP

END IF

angle = theta * PI D / 180.0 dp
kxi = ki * sin(angle)
kzi = ki * cos(angle)
vxi = HBAR * kxi / MU
vzi = HBAR * kzi / MU
wxi = HBAR * kxi * kxi / (2 * MU)
wzi = HBAR * kzi * kzi / (2 * MU)
tau x = MU * sigma x * sigma x / HBAR
tau z = MU * sigma z * sigma z / HBAR
lower kx limit = -3.0 dp
upper kx limit = 3.0 dp
lower kz limit = -3.0 dp
upper kz limit = 3.0 dp
del kx = (upper kx limit - lower kx limit) / (NSTEP - 1)
del kz = (upper kz limit - lower kz limit) / (NSTEP - 1)
coeff1 = sqrt(sigma x * sigma z) / (2 * PI D)
coeff2 = -i * MU * LMDA / (4 * PI D * sqrt(sigma kx * sigma kz * PI D))

DO tm = local ti, local tf
t = tm * 200000.0 dp
DO xm = -XMAX, XMAX

x = xm * 1.0 dp
psix0 = sqrt(2*PI D)/(sigma x*sqrt(1 + i*t/tau x))*exp(i*(kxi*x - kxi*xi - wxi*t)) &

*exp(-(x - xi - vxi*t)**2/(2*sigma x*sigma x*(1 + i*t/tau x)))
DO zm = -ZMAX, ZMAX

z = zm * 1.0 dp
psiz0 = sqrt(2*PI D)/(sigma z*sqrt(1 + i*t/tau z))*exp(-i*(kzi*z - kzi*zi + wzi*t)) &

*exp(-(z - zi + vzi*t)**2/(2*sigma z*sigma z*(1 + i*t/tau z)))
psiz1 = i*MU*abs(G)/(HBAR*HBAR)*exp(i*(kzi*abs(z) + kzi*zi - wzi*t)) &

*exp(-(abs(z) + zi - vzi*t)**2/(2*sigma z*sigma z*(1 + i*t/tau x))) &
*intg term(gamma(kzi, z, t))

DO j = 1, NSTEP
kx = lower kx limit + del kx * (j-1)
sumf = simpson(NSTEP, del kz, func kz(NSTEP, lower kz limit, del kz, kzi, kx, &

x, z, t))
fkz of kx(j) = sumf

END DO
sumf = simpson(NSTEP, del kx, func kx(NSTEP, lower kx limit, del kx, fkz of kx, &

kxi, x, t))
psixz = coeff1*(psix0*psiz0 + psix0*psiz1) + coeff2*sumf
prob(tm, xm, zm) = abs(psixz)**2

END DO
END DO

END DO

arraysize = num proc*(local tmax)*(2*XMAX + 1)*(2*ZMAX + 1)
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IF(my rank == 0) THEN
ALLOCATE(tempa(0:TMAX, -XMAX:XMAX, -ZMAX:ZMAX), STAT = aerr)
IF (aerr /= 0) THEN

PRINT *, ”tempa : allocation failed.”
STOP

END IF
tempa = prob
DO src = 1, num proc - 1

CALL MPI RECV(prob, arraysize, MPI DOUBLE PRECISION, src, tag, &
MPI COMM WORLD, status, ierr)

tempa = tempa + prob
END DO
prob = tempa
DEALLOCATE(tempa)

ELSE
CALL MPI SEND(prob, arraysize, MPI DOUBLE PRECISION, dest, tag, &

MPI COMM WORLD, ierr)
END IF

IF(my rank == 0) THEN
OPEN(UNIT = 2, FILE = ”density.dat”)
DO tm = 0, TMAX

DO xm = -XMAX, XMAX
DO zm = -ZMAX, ZMAX

WRITE(2, ”(3I8, F24.16)”) tm, xm, zm, prob(tm, xm, zm)
END DO

END DO
END DO
CLOSE(2)

END IF
DEALLOCATE(prob)
CALL MPI FINALIZE(ierr)

END PROGRAM mpiwp
FUNCTION func kx(NSTEP, lower kx limit, del kx, fkz of kx, kxi, x, t)

USE nrtype
USE gconst
IMPLICIT NONE
INTEGER(I4B), INTENT(IN) :: NSTEP
REAL(DP), INTENT(IN) :: lower kx limit, del kx, kxi, x, t
INTEGER(I4B) :: j
COMPLEX(DPC), INTENT(IN), DIMENSION(NSTEP) :: fkz of kx
REAL(DP) :: kx
COMPLEX(DPC), DIMENSION(NSTEP) :: func kx

DO j = 1, NSTEP
kx = lower kx limit + del kx*(j-1)
func kx(j) = exp(-(kx-kxi)**2/(2*sigma kx*sigma kx))*exp(-i*HBAR*kx*kx*t/(2*MU)) &

*exp(i*kx*(x - xi))*fkz of kx(j)
END DO

END FUNCTION func kx

FUNCTION func kz(NSTEP, lower kz limit, del kz, kzi, kx, x, z, t)
USE nrtype
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USE gconst
IMPLICIT NONE
INTEGER(I4B), INTENT(IN) :: NSTEP
REAL(DP), INTENT(IN) :: lower kz limit, del kz, kzi, kx, x, z, t
INTEGER(I4B) :: j
REAL(DP) :: kz, sqrterm p, sqrterm m
COMPLEX(DPC), DIMENSION(NSTEP) :: func kz
COMPLEX(DPC) :: wc p, wc m, fkz1, fkz2, fkz3

DO j = 1, NSTEP
kz = lower kz limit + del kz*(j-1)
sqrterm m = (kz*kz) - (4*PI D/site dist)*(kx + PI D/site dist)
sqrterm p = (kz*kz) + (4*PI D/site dist)*(kx - PI D/site dist)
IF( sqrterm m < 0.0 dp ) THEN

sqrterm m = -1.0 dp * sqrterm m
wc m = cmplx(0.0 dp, sqrt(sqrterm m))

ELSE
wc m = cmplx(sqrt(sqrterm m), 0.0 dp)

END IF
IF( sqrterm p < 0.0 dp ) THEN

sqrterm p = -1.0 dp * sqrterm p
wc p = cmplx(0.0 dp, sqrt(sqrterm p))

ELSE
wc p = cmplx(sqrt(sqrterm p), 0.0 dp)

END IF
fkz1 = HBAR*HBAR*kz/(HBAR*HBAR*kz - i*MU*abs(G)) &

*exp(-(kz - kzi)**2/(2*sigma kz*sigma kz))*exp(-i*HBAR*kz*kz*t/(2*MU))
fkz2 = exp(i*2*PI D*x/site dist)*exp(i*wc m*abs(z))/(HBAR*HBAR*wc m - i*MU*abs(G))
fkz3 = exp(-i*2*PI D*x/site dist)*exp(i*wc p*abs(z))/(HBAR*HBAR*wc p - i*MU*abs(G))
func kz(j) = fkz1 * (fkz2 + fkz3)

END DO
END FUNCTION func kz

FUNCTION simpson(NSTEP, del, fi)
USE nrtype
IMPLICIT NONE
INTEGER(I4B) :: j
INTEGER(I4B), INTENT(IN) :: NSTEP
REAL(DP), INTENT(IN) :: del
COMPLEX(DPC) :: f0, f1, f2, simp, simpson
COMPLEX(DPC), INTENT(IN), DIMENSION (NSTEP) :: fi

simp = (0.0 dp, 0.0 dp)
f0 = (0.0 dp, 0.0 dp)
f1 = (0.0 dp, 0.0 dp)
f2 = (0.0 dp, 0.0 dp)
DO j = 2, NSTEP - 1, 2

f0 = f0 + fi(j)
f1 = f1 + fi(j - 1)
f2 = f2 + fi(j + 1)

END DO
simp = del * (f1 + 4.0 dp * f0 + f2) / 3.0 dp
IF (MOD(NSTEP, 2) = 0) THEN

simp = simp + del*(5.0 dp*fi( NSTEP) + 8.0 dp*fi(NSTEP - 1) - fi(NSTEP - 2))/12.0 dp
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END IF
simpson = simp

END FUNCTION simpson

FUNCTION cerfc(cz)
USE nrtype
USE nr, ONLY : factrl
IMPLICIT NONE
COMPLEX(DPC), INTENT(IN) :: cz
COMPLEX(DPC) :: zz, sumc, cerfc
INTEGER(I4B) :: j
REAL(DP) :: real cz, abs cz

zz = cz
real cz = real(cz)
abs cz = abs(cz)
sumc = (0.0 dp, 0.0 dp)
IF (real cz < 0) THEN

zz = - cz
END IF
IF (abs cz < 4.5 dp) THEN

DO j = 0, 100
sumc = sumc + (-1)**j * zz**(2 * j + 1) / (factrl s(j) * (2 * j + 1))

END DO
IF (real cz < 0) THEN

cerfc = (1.0 dp, 0.0 dp) + 2 / sqrt(PI D) * sumc
ELSE

cerfc = (1.0 dp, 0.0 dp) - 2 / sqrt(PI D) * sumc
END IF

ELSE
DO j = 0, 10

sumc = sumc + (-1)**j * factrl s(2 * j) / (factrl s(j) * (2 * zz)**(2 * j))
END DO
IF (real cz < 0) THEN

cerfc = (2.0 dp, 0.0 dp) - exp(-zz * zz) / (zz * sqrt(PI D)) *sumc
ELSE

cerfc = exp(-zz * zz) / (zz * sqrt(PI D)) * sumc
END IF

END IF
END FUNCTION cerfc

FUNCTION intg term(gmm)
USE nrtype
IMPLICIT NONE
COMPLEX(DPC), INTENT(IN) :: gmm
INTEGER(I4B) :: j, jj, prod
COMPLEX(DPC) :: sumc, intg term
INTERFACE

FUNCTION cerfc(cz)
USE nrtype
IMPLICIT NONE
COMPLEX(DPC), INTENT(IN) :: cz
COMPLEX(DPC) :: zz, sumc, cerfc
INTEGER(I4B) :: j
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REAL(DP) :: real cz, abs cz
END FUNCTION cerfc

END INTERFACE

sumc = (0.0 dp, 0.0 dp)
IF(abs(gmm) > 5.0 dp) THEN

DO j = 1, 10
prod = 1
DO jj = 1, j

prod = prod * (2 * jj - 1)
END DO
sumc = sumc + (-1)**j * prod / (-2 * gmm * gmm)**j

END DO
intg term = sqrt(PI D) / gmm * (1 + sumc)

ELSE
intg term = -gmm * sqrt(-1 / (gmm * gmm)) * exp(-gmm * gmm) * PI D &

* cerfc(-gmm * gmm * sqrt(-1 / (gmm * gmm)))
END IF

END FUNCTION intg term

FUNCTION gamma(kzi, z, t)
USE nrtype
USE gconst
IMPLICIT NONE
REAL(DP), INTENT(IN) :: kzi, z, t
COMPLEX(DPC) :: gamma

gamma = 1 / sqrt(2.0 dp) * ( i * (abs(z) + zi - HBAR * kzi * t / MU) &
/ (sigma z * sqrt(1 + i * HBAR * t / (MU * sigma z * sigma z))) &
+ (kzi - i * MU * abs(G) / (HBAR * HBAR)) * sigma z &
* sqrt(1 + i * HBAR * t / (MU * sigma z * sigma z)))

END FUNCTION gamma
————————————————————————————————————————————
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