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ABSTRACT 

Spectroscopic Studies of Melamine at High Pressure 

By 

Martin D. Galley 

Dr. Michael Pravica, Examination Committee Chair 
Professor of Physics 

University of Nevada, Las Vegas 

 We have performed mid- and far- Infra Red (IR) absorption, Raman 

spectroscopy, and angular dispersive x-ray diffraction (XRD) studies on melamine under 

high pressure and room temperature.  We have verified the presence of two prior reported 

phase transitions, the first between 1 - 2 GPa, and the second between 7 - 9 GPa.  We 

have also found evidence of a third unreported phase transition between 14 – 16 GPa, 

during which, there was a sudden disappearance of all low energy peaks (<500 cm-1)  in 

both the Raman and IR spectra.  The far-IR peak movement experiences a discontinuity 

as the rate of peak movement suddenly changes.  The XRD pattern shows a dramatic 

change in crystal structure between 11 and 16 GPa.  We observed softening of the N-H 

symmetric and anti-symmetric vibrations with pressure, suggesting that intermolecular 

hydrogen bonding increases as the intermolecular distance decreases similarly to what 

was observed in TATB [20].  The molecular decompression data from core intra-

molecular peaks of mid IR and Raman show complete reversibility, giving evidence that 

the melamine did not chemically decompose at high pressures.  Melamine merits this 

investigation into its high pressure behavior as it has many similarities with some high 

explosives.  The closest cousin to melamine is the secondary explosive TATB, which is 

in the same symmetry group D3h [16].  Understanding the exact science of explosives is 
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an extremely difficult process, therefore approaching the problem from the examination 

of a similar inert compound may help yield a better understanding of explosives and the 

novel routes to the synthesis of ultra-hard materials such as C3N4 
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CHAPTER 1 

INTRODUCTION 
 

Melamine (������) is an industrially synthesized chemical which is often found 

in household dishware.  When treated with different chemicals such as Formaldehyde, it 

works as an excellent fire retardant [1].  Even without treatment, melamine will not 

combust or even burn very well, yet, it has a very similar structure to a well known 

explosive, TATB, which, like melamine is in the ��� symmetry group.  Such a disparity 

between the two compound’s behavior raises questions as to why one is an explosive 

(TATB) whereas the other is a fire retardant (melamine).  Melamine has an s-triazine ring 

of alternating carbon and nitrogen atoms with three amino branches.  As depicted in 

Figure 1: 

 

 

 

 

 

 

Figure 1: Structural model of melamine (left) [2] and TATB (right) [3] 

 

The amine branche’s high nitrogen content have enabled melamine to be detected as a 

faux protein which, being toxic, resulted in the recent tainted milk epidemic in China 

where melamine was added to infant milk as a cheap protein additive [4].  Melamine may 

under high pressure and temperature, become an ultra hard-carbon nitride ���� with a 
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bulk modulus greater than diamond [5].  With all these questions, understanding the 

behavior of melamine under extreme conditions will be very helpful to the scientific 

community.  To the best of our knowledge, we present in this thesis the first far-IR study 

of melamine at high pressures and the highest pressure IR study of melamine to date. 

CHAPTER 2 

EXPERIMENTAL TECHNIQUES AND COMPUTATIONAL METHODS 

Light Sources: Lasers 

 To perform the Raman spectroscopy experiment, a high intensity monochromatic 

narrow bandwidth light source is required.  An argon ion laser was used because of a 

laser’s spectrally narrow beam profile and high intensity.  The beam profile and 

narrowness is determined by a multitude of factors and equations.  Within the resonating 

chamber (the cavity) of a laser there are a certain number of modes (	) available based on 

[7]:  

∆	 = �2� 
where l is the length of the cavity and c is the speed of light in a vacuum (as an example 

the red peaks in Figure 2 are separated by a distance 
���).  As a rule of thumb, the longer 

the cavity, the fewer the modes, and the greater the separation of the modes.  The mirrors 

on each side of the cavity are not perfectly parallel so there are other modes (or multiple 

wavelengths) that resonate.  This results in several modes that simultaneously resonate 

and a wide range of lasing wavelengths (roughly 70 nm wide), which is not spectrally 

narrow enough to perform Raman spectroscopy.  To narrow the beam profile, a prism is 

placed inside the cavity to disperse all the wavelengths of light that are not wanted and 
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allow only one wavelength to pass straight through the prism and be amplified in the 

cavity [6].   

 There is a delicate balance between the laser intensity and spectral bandwidth.  

The greater the gain, the more modes that fit within the gain bandwidth line which 

implies that there will be a greater range of unwanted emitted wavelengths (the right 

image in Figure 2 can help visualize this).   

 

 

Figure 2: The red lines are the modes present in a cavity, while the yellow line is the line 
function or the gain bandwidth.  When both components of the power equation combine 
they make the red line on the right image.  The mode intensity fits inside the line function 
envelope [31]. 
 

Lowering the gain implies lowering the number of excited atoms in the population 

inversion and decrease the intensity.  The width of the frequency distribution (i.e. the line 

function), is most dependent on the temperature, gain medium, and function of 

population inversion.  These equations and concepts of laser power are a summarization 

of the notes taken in a laser theory course taught by Professor Victor Kwong at UNLV 

and from the book Quantum Electronics by Yariv Amnon.  The right image in Figure 2 is 

the compilation of two equations which are derived from the following equation [7]: 
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���	� = 2�����ℒ�	��1 − ��� � ���  11 + 4��� � �#$%��&	���1 − ��� � ���
' 

�� is the power, � is the cavity length, ��is the transmission through the exiting mirror, 

ℒ�	� is the line function which forms the shape of the gain bandwidth, R is the reflection 

coefficient of the two mirrors, ( � is the gain coefficient, and & is the phase shift length.  

The equation can be broken down into two parts )�	�and ��	�.  )�	� represents the 

frequency mode envelope or gain bandwidth in Figure 2 and is described by the line 

function and reflectivity of the two mirrors as seen in the following equation.  To 

simplify the equation, it is easiest to assume that the active medium has been removed 

(( = 0): 

)�	� = + ℒ�	��1 − ���, 
��	� represents the mode frequency and width, as can be seen in the next equation. 

��	� = 11 + 4��1 − ��� #$%��&�� 

The red lines labeled “cavity modes” on the left image of Figure 2 are ��	�. 

With the gain bandwidth sufficiently narrow, the gain adequately high, and the 

modes separated, an etalon can be placed inside the resonating chamber to further alter 

the effective length of the cavity to fit a single mode.  This will create a narrow Gaussian 

distribution of the beam profile, however, there are edge effects that could result in other 

wavelengths lasing with enough intensity to alter the Raman spectra.  A spatial filter 

placed after the laser is a quick solution to knock out the edge effects not corrected by the 

laser apparatus.  This results in a very smooth and narrow Gaussian distribution of the 
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beam profile, centered around the desired wavelength.  One can now be confident of a 

minimal error in the chosen wavelength, which makes this laser a good choice for 

performing Raman spectroscopy. 

The intensity is also important when detecting Raman shifts, because, out of 

roughly every 106 photons, only one or two will experience an inelastic collision and be 

detected.  This could lead to very long acquisition times for a low intensity laser. 

Light Sources: Synchrotrons 

Synchrotrons proved to be vital in many of these experiments as they can provide 

high photon intensity as well as wide energy ranges.  The High Pressure- Collaborative 

Access Team (HP-CAT) of Sector 16 in Advanced Photon Source (APS) at Argonne 

National Laboratory (ANL) and the U2A infrared beamline in the National Synchrotron 

Light Source (NSLS) at Brookhaven National Laboratory (BNL) were the two 

synchrotron facilities used for the x-ray diffraction (XRD) and infrared (IR) studies 

respectively.  Infrared experiments require a wide range of frequencies to interact with 

the sample in order to determine which energies excite bond vibrations; whereas angular 

dispersive x-ray diffraction experiments requires a highly monochromatic light source.  

NSLS utilizes a bending magnet to create the broad bandwidth of light whereas at APS 

we use an undulator.  Light is created as an electron is accelerated, so bend magnets 

accelerate the particles around a curve to produce light.  The critical wavelength of 

light�-�� created by the bending magnet is determined by the radius (R) of the light curve 

divided by γ (. = /0�1) [8]: 

-� = 43 3�.�  
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The electron energy throughout the storage ring is kept constant.  The curve’s radius was 

designed so that the critical wavelength of the bend magnet produces light in the infrared 

region.   

An undulator (insertion device) works in a similar fashion to bending magnets; 

the critical difference is that instead of a single bend, the electron beam is forced onto an 

undulating path down a straight section.  The electron oscillates quickly enough that its 

wave function overlaps with the photon wave packet emitted in earlier bends causing a 

coherent superposition of emitted radiation.  These create narrow frequency pulses of x-

rays with very high intensities proportional to N2 where N is the number of undulations 

[8].  The photon count per second produced in a bending magnet is roughly 1013 while in 

an undulator, the count is 1015, decreasing experiment times by a factor of 100 [8].  X-ray 

diffraction experiments require monochromatic light but normal optical gratings are not 

applicable to hard x-rays.  To create monochromatic light, a silicon crystal 

monochromator is used.  Hard x-ray beamlines create filtered radiation using two crystals 

via x-ray diffraction, by taking advantage of the Bragg equation to pass only the 

wavelengths desired.  They are known as Kirkpatrick-Baez (KB) mirrors.   

X-ray Diffraction 

 The atoms in a crystal are arranged in one of only seven lattice systems [9].  

These structures are determined by the lengths of three primitive translation vectors a, b, 

and c as well as the angles between them α, β, and γ.  These parameters can be arranged 

to form cubic, trigonal, hexagonal, tetragonal, orthorhombic, monoclinic, and triclinic 

systems [9].  Each of these systems contains lattices which form a unique set of lattice 

planes inside the crystal structure.  An incident photon of light can elastically scatter off 



 

the electron cloud surrounding each atom to constructively

wave, provided the inter

Using Bragg’s equation

one can utilize the angle of the diffracted light along with a constant wavelength 

to determine the inter-

the photon count which implies 

diffraction condition.  Once the peaks are determined to be at c

decipher the crystal structure.  X

bulk of a material where the lattice structure is relatively constant. 

an inter-atomic distance 

of light to be of the same order.

 A double crystal monoch

crystal (θ) to filter a specific wavelength.

wavelength out at an angle

redirects the beam back toward its

 

  

Figure 3: A double crystal monochromato
different angles capture diff
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Path 1 

the electron cloud surrounding each atom to constructively interfere and form a plane 

wave, provided the inter-atomic distance is a multiple of the wavelengt

equation: 

 

one can utilize the angle of the diffracted light along with a constant wavelength 

-atomic distances.  When there is an obvious spike in 

the photon count which implies that a lattice plane is present at that angle

.  Once the peaks are determined to be at c

tal structure.  X-rays are high energy photons that 

where the lattice structure is relatively constant. 

atomic distance on the order of a few angstroms which requires 

the same order. 

crystal monochromator uses this principle by changing the angle of the 

a specific wavelength.  The rotated crystal

wavelength out at an angle of 2θ, whereas the second crystal catches this beam and 

redirects the beam back toward its original incident direction (see Figure 3)

: A double crystal monochromator with two different angles to show how 
different angles capture different wavelengths.  

Path 2 

interfere and form a plane 

atomic distance is a multiple of the wavelength of incident light.  

one can utilize the angle of the diffracted light along with a constant wavelength of light 

there is an obvious spike in 

a lattice plane is present at that angle satisfying the 

.  Once the peaks are determined to be at certain angles, one can 

that can penetrate into the 

where the lattice structure is relatively constant.  Most materials have 

requires the wavelength 

r uses this principle by changing the angle of the 

The rotated crystal diffracts the desired 

the second crystal catches this beam and 

(see Figure 3). 

 

r with two different angles to show how 
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As a structural phase transition is approached via increasing pressure, the crystal 

structure will begin to re-arrange itself to lower its free energy.  This will cause the 

diffraction peaks to simplify if the new phase represents a less complicated lattice system 

with more symmetry (such as an orthorhombic structure transitioning into a cubic).  If the 

lattice converts to a more complicated phase, less symmetric crystal system, the 

diffraction peaks might split and new peaks may appear where there were none 

previously.  This is due to new lattice planes forming due to the more structurally 

complicated lattice.  By observing XRD spectra with pressure, we gather evidence for 

phase transitions. 

Ruby Measurements 

 Ruby has two fluorescence peaks which are well documented and used to 

determine pressure in both hydrostatic and non-hydrostatic conditions.  The R1 line 

generally has a wavelength of 694.25 nm at atmospheric pressure [10].  As pressure is 

increased, there is a decrease in the energy level separation.  This decrease in energy is 

noted as an increasing wavelength that is commonly used for determining the pressure 

inside a diamond anvil cell (among other methods).  Figure 4 shows the electronic 

structure of ruby and illustrates that the electrons jump to the 4T1 and the 4T2 band when 

excited before decaying via vibrational energy to the 2E band, which is metastable [10].  

The electrons further decay to the ground state by emitting a photon which is detected by 

a spectrometer. 
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Figure 4: Ruby Electronic Structure [10] 

 

 
The ruby pressure versus wavelength curve was originally calibrated with pressure using 

the equation of state (EOS) of NaCl [11].  This was experimentally tested up to 20 GPa 

with a high degree of accuracy.  Upon increasing pressures to greater than 20 GPa, the 

accuracy begins to deviate from the linearity of the NaCl EOS [11].  Therefore, the 

fluorescence wavelength has been mapped to follow the following equation P (Mbar) = 

(19.04/5) {[(λ0+∆λ)/λ0]
5−1}, where -� is the atmospheric pressure wavelength of ruby 

[11].  This achieves a high degree of accuracy up to 100 GPa and was calibrated with 

specific volume measurements of four different metals under pressure.  The maximum 

uncertainty at 100 GPa is slightly greater than 1%, while below 20 GPa the percent error 

is around 0.1% [11].  The plots in Figure 5 are two ruby spectra taken during the Raman 
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experiment, which demonstrates the change in the peak position with pressure and 

spectra linewidth broadening.  

 

 

Figure 5: Two ruby spectra taken at different pressures. 

 

Raman Microscope 

 Raman spectroscopy was performed using a Spectra-Physics BeamLok® argon 

ion laser tuned to 514.5 nm as the excitation source.  The laser was set to 35 mW for the 

experiments, to increase the signal to noise ratio, as opposed to the typical power output 

of 5 mW.  Unwanted laser heating was not an issue as melamine does not experience any 

change in its structure up to 600°C and diamonds are excellent conductors of heat [2].  

The laser beam would enter a Nikon MM-40 Measuring Microscope, pass through and 

reflect from a beam splitter and enter a 20x objective onto the sample.   A higher power 

objective was not used due to spatial restrictions associated with the size of the DAC.   

The objective would collect scattered light, pass it back through the beam splitter and out 

the exit port of the microscope and enter to the Horiba Jobin-Yvon Triax 550® 

690 705 
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monochromator.  Before entering the monochromator, the light would pass through a 

double convex lens with a focal length of 45 mm.  The laser beam diameter at the lens is 

2mm which yields an f-number of (f# = 22.5) within the f-number of the monochromater 

(f#=6.4), but at a poor resolution.  The Raman setup is shown in Figure 6. 

 

 

Figure 6: Raman schematic measuring system [13] 

 

The detector we used was a Princeton Instruments liquid nitrogen cooled Spec 10 

CCD® (Charge Coupled Device), which was the photon counter.  The liquid nitrogen 

reservoir maintained the CCD temperature at -120°C for the experiments.  The CCD is 

Microscope 

Laser 

Spectrometer 
Sample 

Beam Splitter 

Spatial filter 

Holographic Notch 
Filter 
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1340 pixels wide and must be manually calibrated for wavelength position using a 

spectral lamp.  The monochromator grating has 1200 lines/mm which yields a range of 

~1200 cm-1.  We used four wavelengths to calibrate our investigated range ( 534 nm, 565 

nm, 615 nm, and 700 nm).  This was accomplished using a UVP neon pen-lamp, which 

has multiple emission lines at each of the chosen spectral ranges.    The emission lines 

used for each range are written in table 1. 

 

Spectrometer Wavelength (nm) 

534nm 565nm 615nm 700nm 

520.39 574.83 607.43 692.95 

533.08 576.44 609.62 702.41 

534.11 580.45 612.85 703.24 

540.06 582.02 614.31 717.39 

Table 1: Spectrometer wavelength and emission lines frequencies used in calibration. 

 

Our calibrations were performed once and checked intermittently to determine the 

reproducibility of the monochromator driver.  The error of reproducibility was within 
���� 

of a wavenumber.  This is within the spectrometer resolution of 1.02 cm-1 per pixel. 

Peak Analysis 

To determine the peak center, the PeakFit® program was used.  The peak type 

chosen was generally a Voigt profile, which is a combination of Gaussian and Lorentzian 

profiles [14].  This hybrid profile is chosen due to two different effects that broaden the 

peak center.  A Gaussian profile is created by the velocity distribution of particles in the 
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sample as well as the active medium within the laser [7].  The Lorentzian profile is 

caused by the Heisenberg uncertainty principle, more specifically the time it takes for 

photon emission [7].  If the time it takes for the excited atom to emit is 4 = ∆5 then the 

uncertainty is ∆6 = ħ7.  The dependence on wavelength with respect to energy is ∆- = ℏ�∆/, 

which is the natural line width as well as the Lorentzian profile [7].  The signal to noise 

ratio for the Raman spectra was high for these data points and were consequently 

smoothed using a Fast Fourier Transform.  This requires the data to be Fourier 

transformed, truncated, and then reverse transformed.  This operates under the idea that 

the spectral noise is of a higher frequency than the spectral bands within the transform 

domain [15].  The truncation removes high frequency data and ultimately lowers the 

signal to noise ratio.  The error in the fitted peak centroid was determined as a standard 

error reported by the PeakFit® software. 

Vibrational Spectroscopy 

Infrared spectroscopy detects the transitions between vibrational and rotational 

modes of molecules [16].  For the experiments on melamine, the rotational modes can be 

mostly ignored because melamine is in solid state at room temperature, thus frustrating 

the translational and rotational movement of the molecules.  Assuming that the vibrations 

are small allows the potential energy of the molecular bonds to be approximated as 

though it is a simple harmonic oscillator.  The frequency is calculated to be a function of 

the force constant (k) and the reduced mass of the atoms (9) [16]: 

	 = 123 :;9 
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(For these experiments the pressure will be increased which will result in a decrease of 

intermolecular distance, causing an increase in the coulombic forces and ultimately the 

force constant, via anharmonic interactions.  Therefore, for our experiment we expect the 

frequency of our vibrations to increase with pressure.)  A quantum harmonic oscillator is 

known to possess a function of the frequency ν and have discrete energies separated by a 

vibrational quantum number v as follows [16]: 

6< = ℎν ?v + 12A 

The only electric dipole allowed transitions between vibrational energies occur when 

∆v = ±1.  The abscissa and ordinate values are generally reported in IR and Raman to be 

the intensity versus the wavenumber.  A wavenumber denoted as 	C, has the units of 
��0, 

and is related to the frequency by  

	C = 	� 

The wavenumber is a relative wavenumber that is chosen with respect to the incident 

laser wavelength: 

	C = 	� − 	D�  

where 	�is the frequency of the incoming laser light and 	D is the frequency of the 

scattered light. 

 Fourier Transformed Infrared (FTIR) Spectroscopy  

To be infrared active (i.e. observed), certain selection rules must be met.  Most 

importantly, the electric dipole moment of the molecule must change when it vibrates 

[17].  The emitted photon is classically thought of as the electromagnetic field interacting 

with the molecules oscillating electric dipole causing it to absorb the incident photon and 
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vibrate.  This only requires the dipole moment to change; there need not be a permanent 

dipole either before or after the transition takes place [17].  More on the selection rules 

will be covered in the group theory section discussed later.   

 Infrared spectroscopy can be performed by studying only a small range of 

energies at a time with a monochromator.  Using a Fourier Transform spectrometer 

enables several frequencies or wavenumbers to be examined simultaneously without a 

loss in data and requires a polychromatic source.  The FTIR method uses an Michelson 

interferometer to produce an interferogram which provides a quick way of analyzing a 

wide range of wavenumbers in what is called the multiplex advantage [18].  The 

interferogram pattern exists in its frequency domain and while in that state, the data 

displays the power density variation as a function of the difference in path-length.  To 

translate from the frequency dimensions to space dimensions a Fourier Transform pair is 

used in [18]: 

E�F� = G H�	C� cos 23	CF L	CM
�  

H�F� = G E�	C� cos 23	CF LFM
�  

The second equation shows a variation of intensity as a function of difference in path 

length [18], this is the form all of the IR data is presented in. 

Raman Spectroscopy 

Raman spectroscopy is a vibrational transition detection method very similar to infrared.  

Both methods work complementary towards one another, due to the differences in which 

they stimulate and detect the vibrational transitions.  In Raman scattering, a photon is 

temporarily absorbed by a molecule which temporarily places it into to a forbidden 
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virtual excited state.  When the molecule returns to its ground state, it must discharge the 

extra energy as a photon again.  The vast majority of the time that photon is emitted with 

the same energy it was absorbed with, via elastic scattering or Rayleigh Scattering.  On a 

rare occasion (about 1 in 106) the photon inelastically scatters, resulting in the molecule 

going to an excited vibrational state obeying the  ∆v = ±1 selection rule, where v is the 

vibrational quantum number [18].  The emitted photon will have more or less energy than 

it arrived with, depending on if the molecule was already in the excited vibrational state 

or in the vibrational ground state respectively.  If the outgoing photon has more energy 

than it arrived with, this is known as Anti-Stokes scattering and if there is less energy 

than initially, it is Stokes scattering [16&17].  The Boltzmann distribution shows that a 

significant majority of molecules will be in the ground vibrational state at ambient 

temperatures, so the number of molecules which would be excited is larger than the 

number of molecules which will be de-excited.  Thus, the Stokes scattering has a stronger 

intensity than Anti-Stokes. 

 A very well detailed description of the theoretical background of Raman 

scattering is given in Introductory Raman Spectroscopy by John Ferraro. In the 

following, the key aspects are summarized, as taken from Ferraro [15].  A Raman active 

mode changes its polarizability as it vibrates whereas an IR active mode changes its 

dipole moment with vibrations.  A well known condition that helps determine if a mode 

is Raman or IR active is the mutual exclusion principle. If a vibration is symmetric with a 

center of symmetry, then the mode is Raman active but not IR active, however; if the 

vibration is antisymmetric with respect to the center of symmetry, the mode is IR active 

but not Raman active. 
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Determining if the polarization changes in a vibrational mode can be determined 

by examining what happens when a laser is directed at a molecule.  The intense incident 

photons from a laser produce a strong electromagnetic field that excites the vibrational 

modes and is given by 

6 = 6� cos 23 	�5 

and produces a dipole moment: 

�NO = (OO ∙ 6NO = (OO6NO� cos 23	�5 

 

Where P and E are vectors in the x, y, and z direction and (OO is the polarizability tensor, 

this can be rewritten as 

Q�R�S�T U = V(RR (RS (RT(SR (SS (ST(TR (TS (TT W Q6R6S6TU 
The polarizability tensor is symmetric because of the assumption that the energy is stored 

as potential energy i.e.; (RS = (SR, (RT = (TR, and (ST = (TS.  When one of the tensor 

values change under the influence of an oscillating electric field, the polarization changes 

as a result and the vibration mode is considered Raman active.  Let us assume that the 

molecule vibrates with frequency 	0, then the nuclear displacement is 

X = X� cos 23	05 

Assume a small amplitude of vibration and thus the polarizability tensor can be linearized 

as a function of q 

( = (� + ?Y(YXA X� + ⋯ 
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In this case (� represents its equilibrium polarizability and [\�\]^ is the rate of change of 

the polarizability.  When the equations are combined, we obtain: 

� = (�6� cos 23 	�5 + 12 �Y(/YX��X�6�`cosa23�	� + 	0�5b + cosa23�	� − 	0�5bc 
Here, the 	� is the elastically scattered light frequency called the Rayleigh scattering 

frequency, and 	0is the inelastically scattered light frequency or the Raman scattering 

frequency.  The terms �	� + 	0� and �	� − 	0� refer to Stokes and Anti-Stokes 

frequencies respectively.   If there is no change in the polarization then [\�\]^ is zero and 

the mode is considered to be Raman inactive.   

Group Theory 

Determining whether a mode will be RF active, IR active, or not active at all is most 

easily determined with group theory.  A mathematical group always contains a well 

defined set of symmetry operations that must satisfy four group axioms; the axioms 

include closure, associativity, an identity, and an inverse [16]. In the group theory for 

molecules, there are five operation/elements used to separate the different molecular 

symmetries into groups.  The identity, rotation, reflection, inversion, and the improper 

rotation will categorize each molecular arrangement into a symmetry group which all 

share certain traits brought about by their symmetry [16].  For example, based solely on 

their symmetry, H2O and SO2 both belong in the C2v symmetry point group and both are 

non-polar and parallel to their principal axis.  Using the point group to determine which 

modes are IR and Raman active requires a character table [16].  A detailed description of 

developing a character table can be found in Physical Chemistry by Peter Atkins and de 

Paula and is summarized in the following paragraph [16]. 
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Developing a character table for a specific group first requires a matrix 

representative of all of the operations that make up that group, e.g. ��de� for a vertical 

plane mirror operation.  Next, a set of matrices which represent all the group operations 

are placed into matrix representation Γ.  A matrix representation should be reduced and 

diagonalized until it cannot be further reduced; that representation is then referred to as 

an irreducible representation.  All of the irreducible representations are placed into a 

character table and the molecular orbitals can be assigned to specific irreducible 

representations (irreducible. rep.).  Each irreducible rep. is a type of possible vibrational 

mode on a molecule.  If that mode is IR active, the orbital must be a linear orbital x, y, 

and z.  A Raman active mode must have quadratic orbitals assigned to the mode such as 

x², y², z², xy, yz …etc.  Melamine is in the D3h point group and possesses the following 

character table [16]: 

Character table for D3h point group 

 E 2C3 3C'2 σh 2S3 3σv 
linear, 

rotations quadratic 

A' 1 1 1 1 1 1 1 
 

x2+y2, z2 

A' 2 1 1 -1 1 1 -1 Rz  
E' 2 -1 0 2 -1 0 (x, y) (x2-y2, xy) 

A'' 1 1 1 1 -1 -1 -1 
  

A'' 2 1 1 -1 -1 -1 1 z 
 

E''  2 -1 0 -2 1 0 (Rx, Ry) (xz, yz) 

 
Table 2: The E' and )�ff irreducible representations have infrared active modes 
while the A'1, E', and E'' have Raman active modes [19]. 
 

Infrared Spectroscopy Experimental Setup 

 Two separate IR experiments were performed on melamine in the far IR and mid-

IR ranges.  Both experiments used the same symmetric-style Diamond Anvil Cell (DAC) 
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with the same type of gasket (stainless steel, grade 304 or 316).  The melamine used was 

of spectroscopic quality (>99.9%) from Alfa Aesar® and was from two different 

“batches” of melamine.  

 For each experiment, the gasket was prepared in the same manner by pre-

indenting a stainless steel gasket (~250 µm thickness) and then drilling a sample chamber 

with an Electric Discharge Machine (EDM).  The diamond culet was roughly 300 µm in 

diameter and the same IR quality, low fluorescence, type II diamonds were used for both 

experiments. For the mid-IR experiment, the gasket was pre-indented to ~50 µm in 

thickness with a sample chamber initial diameter of 120 µm.  For the far-IR experiment, 

the gasket was pre-indented to a thickness of 22 µm and had a sample chamber diameter 

of 150 µm. 

 The sample preparation for each experiment diverges at this point due to the 

differing individual requirements for each experiment.  In the mid-IR experiment, a 

Bruker Hyperion Vertex 80v® microscope was used with a 20x30 µm IR beam size.  

Potassium bromide (KBr) was used as a pressure transmitting medium as it is nearly 

transparent in the infrared spectrum.  KBr powder was placed inside the sample chamber 

and then lightly pressed by the diamonds to ensure that it was tightly packed in the 

gasket.  The gasket was temporarily removed and the diamonds were cleaned to prepare 

them for the sample.  To prevent a near complete absorption of the IR transmission, a 

very thin amount of sample needed to be in the sample chamber.  The sample was placed 

directly on the culet of one diamond and both diamond halves were brought together to 

crush the sample between them to roughly a 5 µm thickness.  Excess sample was then 

cleared from ~ ½ of the diamond face to enable the background acquisitions.  A test 
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acquisition was performed to ensure that there was a sufficient amount of sample to 

collect data with reasonable signal to noise but not too much to block the transmission 

signal.  Once the sample thickness was deemed satisfactory, a thermally-relieved ruby 

sphere was placed inside the sample chamber to determine pressure and the DAC was 

closed and sealed.  After each pressure increase, a new background spectrum was taken 

by manually translating the DAC on the microscope stage so that the acquisition zone 

was solely over the blank ½ of the sample chamber.  This background was then 

automatically subtracted away from the sample pattern. 

 For the far-IR experiment, a larger sample diameter was required (~100 µm), as 

the far IR wavelengths are typically of the same order.  As far-IR is utilized for its ability 

to detect intermolecular interactions, an amorphous substance with little or no far-IR 

signature is needed.  Petroleum jelly was used as the pressure transmitting medium for 

our experiment which is transparent to far-IR wavelengths.  The diamond halves were 

first brought together and touching without the sample and a background spectrum was 

acquired.  This background spectrum was subtracted from all of the collected sample 

spectra.  No further background spectra were taken as changes in background due to the 

increases in pressure or the change in path length produce no noticeable changes to the 

spectra of petroleum jelly.  Then, melamine powder was placed over the entire diamond 

culet to ensure a maximum signal to noise.  Lastly, a thermally relieved ruby sphere was 

placed inside the sample chamber and then the entire assembly was sealed by manually 

translating the diamonds to deform the gasket and sample enclosed.  The far-IR detector 

was a bolometer with a silicon chip cooled with liquid helium.  The DAC was placed in a 
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nitrogen gas purged chamber to remove any residual water vapor.  The chamber was 

aligned with a bolometer and the IR beam, in transmission.    

The experiments were carried out at the National Synchrotron Light Source on the 

campus of Brookhaven National Laboratory.  The U2A beamline on the Vacuum Ultra-

Violet (VUV) ring was used as the IR source.  The Bruker microscope collected data in 

the 550-3500 �gh� range and the bolometer collected spectra within the 100-700 �gh� 

range.  The “white” IR beam passes from the VUV ring into the U2A hutch via a wedged 

diamond window.  The spectrometers had a resolution of 4 �gh�. 

 

Figure 7: Layout of the interferometer used at the U2A beamlines [19] 
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Raman Spectroscopy Experimental Setup 

The Raman experiment we performed using a symmetric-style Diamond Anvil 

Cell (DAC) with two type I low fluorescence diamonds and the culets were roughly 300 

µm in diameter.  The melamine used was of experimental quality (>99.9%) from Alfa 

Aesar®.  Due to gasket imperfections and to early failure the experiment had to be 

repeated and resumed at pressures from the terminal pressure of the first experiment.  The 

same melamine sample from the original source was used and the gaskets were both 

stainless steel.  The data does not show any change from either experiment (as expected) 

so the Raman data is taken from both experiments. 

In the first experiment, the gasket was pre-indented to 50 µm thickness and a 120 

µm in diameter hole was drilled by an Electric Discharge machine (EDM).  Due to the 

thickness of the pre-indented gasket and the large starting diameter, the gasket failed 

above 11GPa.  A second experiment was then conducted, this time the gasket was pre-

indented to 30 µm and the hole was drilled to 90 µm in diameter.  This gasket survived to 

the desired 20GPa pressure.  In both Raman experiments, the melamine was ground in a 

mortar and pestle and packed into the gasket hole with a thermally relieved ruby sphere 

for pressure determination without the use of a pressure transmitting medium.    

There were three acquisitions taken, each was 10 minutes and taken over three 

different spectral regions to capture all of the vibrational modes discovered from the IR 

experiments.  The grating of the spectrometer was set to were 534 nm, 565 nm, and 615 

nm to examine the wavenumbers 83-1365 cm-1, 1173-2291 cm-1, and 2700-3600 cm-1 

respectively. 
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The Raman spectral signal to noise ratio is not as good as it was for the IR data; 

which resulted in several peaks disappearing into the background where the IR data still 

showed existing peaks.  This mostly caused a greater peak uncertainty at higher pressures 

but the main analysis of the data was unaffected.  The plots in Figures 9, 19, and 21 

present Raman spectra stacked in order of increasing pressure and show, among other 

things, the decreasing intensities of the peaks as pressure increases and changes to the 

spectral pattern. 

X-Ray Diffraction Setup 

The X-ray diffraction experiment was performed at HP-CAT in APS on the ID-B 

beamline.  The photons were hard x-rays at 0.408Å and the data was collected on a MAR 

345 image plate.  The symmetric style DAC used for the XRD experiment was the same 

one used for the Raman and infrared experiments.  A stainless steel gasket was pre-

indented to a 50 µm thickness using 300 µm diameter culets.  An EDM was used to drill a 

120 µm diameter hole in the gasket.  To achieve a smaller grain size for a better quality 

powder pattern on the XRD image plate the melamine was ground with a mortar and 

pestle for 10 minutes.  Two ruby spheres were placed on opposite sides of the sample 

chamber to better determine the sample and the melamine was packed into the rest of the 

chamber without a hydrostatic medium.  The DAC was sealed and the XRD experiments 

commenced. 
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CHAPTER 3 

RESULTS AND DISCUSSION 

Low Wavenumber 

Figure 8 displays stacked far-IR spectral plots with pressure and Figure 9 is of the 

stacked spectral plots of low wavenumber Raman.  The figure does not show any obvious 

phase transitions at pressures below 14 GPa.  However; the plots show the disappearance 

of low wavenumber peaks above 14 GPa.  To best observe where the phase transitions 

occur we follow the peak positions and watch for any sudden changes in either location 

or rate of movement. Figures 11 and 12 represent fitted peak positions of far-ir for 

selected vibrations with pressure.  Few peaks in the far-IR region have been identified 

[26 – 27], making it difficult to understand exactly which bonds are being affected, 

however; the peak observed near 160 �gh�appears to correlate with the peak reported by 

He et al. [21] near 3.96 THz (132 �gh�).   
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Figure 8: Stacked plot of the far-IR spectra from 0 to 36 GPa.  Spectra in black were 
taken as the sample was compressed; red spectra were collected during sample 
decompression. A.U. in the y-axis stands for arbitrary units. 
 

 

Figure 9: Low wavenumber Raman spectra 
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A new peak appears at 170 �gh� at 2.12 GPa, which indicates a phase change coinciding 

with an observed crystallographic phase change using XRD, which is explained later.    

Between 2 and 3 GPa, there is a change in the slope of various peak positions as observed 

in Figures 10 & 11.  For the low wavenumber Raman data, there are also several trend 

line discontinuities as well as new peaks that develop between 2 and 3 GPa which gives 

further credence to the phase transition at this pressure region.  The movement of peaks at 

141 and 175 cm-1 exhibit trend line discontinuity behavior and can be viewed in Figure 

12.  The most evident example is the peak at 780 cm-1 as it has a dramatic trend line 

discontinuity as seen in Figure 13.  Along with the change in trendline movement there is 

a new peak developing near 131 cm-1.  Our IR, Raman, and XRD data all show evidence 

of a phase transition between 2 and 3 GPa. 

 

Figure 10: IR peak movement due to increasing pressure in the 100-300 �gh� range. 
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Figure 11: IR peak movement due to increasing pressure in the 380-685 �gh� range. 

 
 
Figure 12: Peak position of low wavenumber Raman spectra 



 

29 
 

 

There is believed to be another phase transition near 8 GPa [22-23].  The far-IR 

data supports this as two new peaks appear near 400 and 425 �gh� between 7 and 9 GPa.  

The suspected phase change at 8 GPa is still very subtle and the only peak which supports 

the idea of a phase transition at 8 GPa is near 987 cm-1 (Figure 13).  The peak 

significantly shifts toward higher energy between 2 and 8 GPa, and then abruptly levels 

off at 9 GPa and higher as shown in Figure 13.   

Figure 13: Raman spectra peak position for C-N bonds 

 

 In Figure 9 as pressure is increased, all peaks gradually broaden, shifting toward 

higher frequencies and diminish in intensity as expected.  These peaks also exhibit an 

increase in background.  The increase in background would normally be attributed to just 
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an increase in pressure, as is often seen in high pressure studies.  In this case, however, 

there is a sudden loss of low energy peaks in both the Raman and far-IR spectra, coupled 

with a dramatic change in the diffraction pattern.  With all three of our experiments 

showing the same effect, we believe this may be an unreported phase transition.  In the 

far-IR data, between 14.9 and 16.4 GPa, five IR peaks disappear between 130 and 320 

�gh� (Figure 10).  Within the remaining far-ir region (400-600 cm-1), all peaks appear to 

experience a slope discontinuity, further supporting evidence of a phase transition.  In the 

Raman data the low wavenumber peaks (<350 cm-1) all vanish above 14 GPa.  The x-ray 

pattern in Figure 26 displays a dramatic change in crystal structure between 11 and 16 

GPa.  There is at least one new peak and the disappearance of several other peaks.  This 

coupled with the IR and Raman data is strong evidence of a phase transition between 11 

and 16 GPa. 

Mid Range Wavenumber 

The mid range modes have been theoretically calculated and can be used to assign which 

vibrations [26].  The symmetry point group table (Table. 2) for the ��� group displays 

the irreducible representations that symmetry affect for IR studies; )�f , 6f, and 6ff. The 

active Raman modes are comprised of A'1, E', and E'' [19].  Melamine has a crystal 

structure possessing eight hydrogen bonding pairs [24].  Although understanding which 

peaks correspond to hydrogen bonds compared to other bonds is not known.  Strong 

inter-molecular interactions make calculating solid state peaks difficult.   This decreases 

the certainty of whether or not a theoretically calculated mode is truly representing the 

observed vibration.  With these issues in mind, I have matched the theoretical and 

experimental peaks for both IR and Raman spectra as best as possible.  There are a few 
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vibrations which should be IR inactive and instead appear in the IR spectra and the same 

issues are seen in the Raman activity.  This is understood to be a result of the hydrogen 

bonding which change the interaction potentials of the system dramatically, ultimately 

altering the vibration activity in the molecule [25]. Based on this knowledge and the work 

from reference [26], the mid-IR peaks of melamine have been determined and are 

presented in Table 3.  The presumed peaks between 1000 and 2000 cm-1 are 

predominantly C-N ring based, and can be more easily visualized in Figures 14, 15, and 

16 [28-29]. 
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Theoretical (cm-1) 
[26] 

Infrared 
Experimental(cm-1) 

Raman 
Experimental (cm-1) Vibration Type 

 3464 3469 3464 NH2 Stretching E’ 

3416 3415 3411 NH2 Stretching E’ 

3320 3333 3325 NH2 Stretching E’ 

3125 [27] 3127 3116 Symmetric NH2   

1660 1663   NH2 Bending E’ 

1643     NH2 Bending E’ 

1626     NH2 Bending E’ 

1565   1567 Ring stretching (C-N) E’ 

1546 1558 1547 Side-chain 
antisymmetric 

1531   1528 Side-chain 
antisymmetric 

E’ 

1469   1453 Side-chain CN 
breathing 

A’ 1  

1434 1432 1434 Ring stretching (C-N) E’ 

1190 1193   NH2 Rocking E’ 

1175     NH2 Rocking E’ 

1022 1031   Ring breathing CN  A’ 1  

813 816   Ring bending CN  E’ 

760     Side-chain out-of-
plane CN bend  

A’’ 2 

730     Ring Bending CN  A’’ 2 

619     NH2 Wagging  A’’ 2  

581 587 584 Ring bending A’ 1  

518     Side-chain in-plane 
CN bending 

E’ 

Table 3: The compilation of theoretical, infrared, and Raman vibration peak 
wavenumbers.  Blank sections are either due to the mode being inactive or the error 
proved too great to include the peak. 
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Figure 14: Eigenvectors of the calculated modes in the range 1450-1500 cm-1.  Starting 
from left to right these vibrations are predicted to be 1485, 1485, and 1461 cm-1 [26] 
 
 

 
Figure 15: Calculated vibrational modes from left to right, 1599, 1592, and 1591 cm-1 

[26] 

 

Figure 16: Eigenvectors of calculated modes between 600-1000 cm-1.  a.) 645 cm-1        
b.) 966 cm-1  c.) 578 cm-1  d.) 674 cm-1  e.) 830 cm-1 [25] 
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Examining the mid-IR stacked plot (Figure 17) gave no obvious signs of any 

phase transitions.  There are no new peaks or otherwise dramatic changes in the spectra 

between 1000 and 2000 cm-1.  The peak positions increase smoothly with pressure 

showing no signs of a phase transition (Figure 18).  At the pressures of the first two phase 

transitions, (2-3 GPa and 8 GPa) the Raman shows little change either visually (Figure 

19) or with peak position (Figure 20).  With both types of vibrational spectroscopy 

passing two previously determined phase transitions without any noticeable change leads 

to a possible conclusion which is complemented by the work of X.R. Liu et al [30].  Their 

results state that the peaks increase in wavenumber monotonically and with no indication 

of a phase transition at either 2 or 8 GPa.  The mid range wavenumber peaks are 

predicted to consist of ring based (C-N) vibrations [26]. Therefore, the consistent 

movement of the peaks implies that the s-triazine ring is most likely unaffected by the 

structural transitions with its unit cell as was also concluded by the work of X.R. Liu[30].   
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Figure 17: Stacked plot of mid-IR spectra.  Black represents increasing pressure, while 
red is decreasing pressure. The wavenumber region between 1800 - 2500 �gh� is heavily 
influenced by diamond absorption and are therefore not used in our data analysis. 
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Figure 18: The IR carbon-nitrogen ring bonds peak position with increasing pressure 

 
Figure 19: Mid Range wavenumber Raman spectra 
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There is a significant trend line change in the 1528 and 1547 cm-1 Raman peaks 

with pressure after 14 GPa, which coincides with the pressure of the unreported phase 

transition (Figure 20).  This is the only evidence of the 14 GPa phase transition when 

observing the mid range IR or Raman. 

 

Figure 20: Raman spectra peak position for ring C-N bonds 

 
High Wavenumber Studies in the 2800-3600 cm-1 Range 

 There are four anomalous peaks which weaken as pressure increases.  These 

peaks are observed in both types of experiments and they behave identically.  Figure 21 

shows a stacked plot of the high wavenumber Raman experiment and the movement of 

the peaks becomes evident.  The two most obvious modes are identifiable to vibrations 

near 3125 and 3333 cm-1 for IR and 3116 and 3325 cm-1 for Raman, (see Figures 22 and 



 

38 
 

23).  Both vibrations decrease in energy dramatically with pressure.  The other two 3000 

cm-1 modes observed in the IR and Raman studies decrease in energy, but only slightly.  

Regardless, all high wavenumber NH2 peaks show a decrease in wavenumber.   

 

 
 
Figure 21: Stacked high wavenumber Raman spectra.  
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Figure 22: IR peak positions of the manifold of NH2 vibrations as pressure is increased. 
 

 

Figure 23: Raman spectra peak position for N-H and hydrogen bonding related modes. 
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This suggests that as the molecules are brought closer, hydrogen bonding increases.  The 

intra-molecular N-H bond may weaken due to electronic delocalization towards 

neighboring molecules, implying a shift in electron density [23,30].  The bonds that 

weaken are the ��� symmetric and antisymmetric stretching bonds, and such behavior 

was also observed in TATB [23].  The decrease in IR wavenumber continues until 15 

GPa, where it remains roughly constant or slightly increases.  This further corroborates 

our far-IR evidence of a possible phase transition at the same pressure.  The peak 

positions of the high frequency mid-IR vibrations associated with the ��� group can be 

observed in Figure 22.  The 3116 and 3325 cm-1 lines followed a similar path except that 

they were lost in the background after 10 GPa.  This would imply that the phase 

transitions are mainly affecting amine branches.  The Raman plot containing the ring 

vibrations shows the same behavior (see Figure 18), thus giving further credence towards 

X.R. Liu’s claim [30]. 

X-Ray Diffraction 

 Upon examining the XRD data, the argument for the phase transitions claimed in 

the IR and Raman gains even more strength.  H.A. Ma et al. [22] as well as M. Pravica et 

al. [23] suspect that there is a phase transition between 1 and 2 GPa.  The XRD pattern in 

Figure 24 contains two new peaks emerging between 2 and 3GPa.  The difference in 

pressure between the work of H.A. Ma et al. and our own may be attributed to an 

uncertainty with pressure since our experiments did not have a hydrostatic medium.   
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Figure 24: X-ray diffraction showing the first phase transition.  The arrows indicate the 
peaks which have a notable change and give evidence of a phase transition. 
 
 
The crystal structure of melamine is reported to change from triclinic to orthorhombic 

between 7 & 9 GPa [22].  At the suspected pressure the pattern simplifies with the 

merging of two peaks and the loss of another (Figure 25).What appears as the 

simplification of the melamine unit cell lattice structure would agree with the conclusion 

that the structure is transitioning to a more ordered formation.  There is no mention of 

this in previously published x-ray studies, whereas the Raman paper by X.R. Liu et. al. 

suggests that the peaks were lost due to high pressure broadening.  The IR and Raman 

data did not show any changes peak movement however, new peaks appeared in both 

spectra between 7 and 8 GPa to further support our claim of a phase transition.  The most 

notable change in the XRD pattern is seen between 11 and 16 GPa.  The dramatic change 
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in the crystal structure is evident as several peaks disappear (Figure 26), coinciding with 

concomitant changes in the IR and Raman data.   The far-IR and low wavenumber 

Raman data show a loss in most peaks at this transition which could imply a loss in the 

intermolecular activity resulting in a change in the unit cell structure of melamine and or 

sample amorphization.   

 

 
Figure 25: XRD of the second phase transition.  The merging peaks and disappearance of 
a peak (both are labeled with arrows) give credence to the phase transition near 8GPa. 
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Figure 26: XRD showing the phase transition around 16 GPa.  There are several changes 
between 11 and 16 GPa, some peaks disappear while at least one peak appears. 
 
 

Decompression 

The IR and Raman decompression spectra were taken immediately after achieving 

the highest pressure of this study (36 GPa).  The decrease and eventual disappearance of 

the low wavenumber peaks may imply that the crystal structure may be permanently 

disordered and/or amorphous.  The IR peaks below 388 �gh� (Figure 8) and the Raman 

peaks below 300 �gh� (Figure 27) did not appear to return even at ambient pressure.  

The few peaks that did return are very broad and have a lowered intensity.    When 

examining the decompressed XRD data (Figure 28) none of the Bragg peaks returned to 

their former 2θ positions.  This gives reliable evidence of melamine’s inability to recover 

long range molecular interactions to below 20 GPa. 
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Figure 27: Raman decompression for low wavenumbers  

 

 
Figure 28: Decompression XRD.  The melamine does not appear to return to its original 
phase upon returning to ambient pressure. 
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Melamine appears to suffer no permanent intra-molecular damage from pressure 

cycling.  The spectral patterns appear fully reversible as the Figures 29 & 30 illustrate.  

All symmetric and antisymmetric vibrations also return to their original wavenumber, the 

black triangle represents the ambient peak position before increasing pressure.  The 

Raman data between 1400-3600 �gh� concurs with similar results of peaks returning to 

their original wavenumbers, suggested in Figures 31 and 32. 

 

 
Figure 29: IR, C-N peak positions as a function of decreasing pressure.  Note that the 
black triangles, which represent peak positions at ambient conditions, are very close to 
the original peak positions. 
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Figure 30: IR peak positions of NH2 with respect to wavenumber as pressure is reduced.  
 

 

Figure 31: Raman decompression for high wavenumbers 
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Figure 32: Raman decompression for mid-range wavenumbers 

 

CHAPTER 4 

CONCLUSION 

 We have reported the first far-IR study of melamine at high pressure (to 

36 GPa) and have expanded the investigated pressure range of this industrially important 

molecule in the mid-IR region by a factor of six (to 26 GPa).  We have provided evidence 

consistent with the occurrence of least two phase transitions near 2 and 8 GPa, 

respectively, which were observed in earlier studies [22-23].  The far-IR and Raman data 

displayed trend line discontinuities between 2 and 3 GPa.  The XRD pattern exhibits new 

peaks splitting from the previous and new peaks entirely.  At 8 GPa, the IR data revealed 

new peaks which split off from earlier ones, and the diffraction pattern simplified as 

peaks merged or vanished.  We have likely observed an unreported phase transition near 

15 GPa for the first time.  The mid-IR and Raman experiment demonstrated near 
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complete reversibility of intra-molecular bonds.  The far-IR and Raman experiments 

suggests irreversible long range interactions with pressure cycling.  The most easily 

detected change for this pressure came from the XRD, showing a dramatic simplification 

of the crystal structure.  This included the loss of several peaks and the addition of a few 

others; the most notable are denoted with arrows in Figure 26.  The symmetric and 

antisymmetric N-H bonds weaken with pressure which was also observed in TATB [23].  

Our studies are useful in that we have examined the behavior of melamine, an industrially 

important material under extreme conditions which will contribute knowledge pertaining 

to chemistry of the molecule at high pressure. 
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APPENDIX 
 
ANL – Argonne National Laboratory 
APS – Advanced Photon Source 
BNL – Brookhaven National Laboratory 
CCD – Charged Couple Device 
DAC – Diamond Anvil Cell 
EOS – Equation of State 
HP-CAT – High Pressure-Collaborative Access Team 
IR – Infra-Red 
FTIR – Fourier Transform Infra-Red 
GPa – Giga-Pascals 
LANL – Los Alamos National Laboratory 
NSLS – National Synchrotron Light Source 
TATB – Triaminotrinitro Benzene 
UNLV – University of Nevada, Las Vegas 
XRD -  X-ray Diffraction 
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