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ABSTRACT

A Physically-based Type II Supernova Feedback Model in SPH Simulations

by

Keita Todoroki

Dr. Kentaro Nagamine, Examination Committee Chair
Professor of Astronomy

University of Nevada, Las Vegas

We implement and test a core-collapse Type II SN feedback that is physically mo-

tivated and produces good agreement with observations in galaxy formation sim-

ulations. The model includes both kinetic and thermal feedback, allowing wind

particles to receive a velocity kick that mimics galactic winds and distributes mass

andmetallicity to the interstellar and intergalactic medium. We also include a phe-

nomenological stellar feedback to study a possible enhancement of the efficiency

of the SN-II feedback by creating lower-density ambient gas medium of the stellar

populations by distribution of thermal energy. Our SN-II model is unique in the

sense that it computes thewind velocity and the lifetime of a supernova remnant by

considering its evolution with the Sedov-Taylor solution rather than taking them as

constant values. We find that by combining SN-II and stellar feedback the model

alleviates overcooling and missing satellites problems. The model also produces

outflows without a need for turning off hydrodynamical interactions, cooling and

star formation by hand. Our preliminary results with cosmological zoom-in simu-

lations imply the newmodel successfully reproduces the stellar-to-halo mass ratio.

We conclude that the Sedov-Taylor solution can be used to reasonably approximate

the physical properties and evolutional time scales of supernova remnants in the

galaxy formation numerical simulations.
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CHAPTER 1

INTRODUCTION

Overview

The complete theoretical understanding of the galaxy formation and evolution

remains a challenge even with the improved numerical techniques, the increased

availability of large computational resources and implications from observational

evidence. The difficulties mainly stem from the fact that we still have observational

constrains and lack of understanding of the detailed physical processes that affect

galaxy formation and evolution in cosmic time scale. Meanwhile, the apparent

success of the ΛCDM model tested on cosmological simulations in reproducing

the dark-matter density and velocity distributions clearly demonstrates the valid-

ity of the cosmological models (e.g. Katz et al., 1996; Weinberg et al., 2002; Springel

et al., 2006). Despite of the success, however, there is still a great deal of uncertain-

ties in the baryonic evolution, and that the detailed numerical implementations of

the physical processes must be examined with caution. In particular, in the past

decades the discrepancies seen in theoretical predictions and observations raised

awareness of accurately integrating small-scaled physical processes. Some of the

important discrepancies seen are (1) the excessive star formation due to overcooling

problem in simulations (White & Frenk, 1991; Balogh et al., 2001; Kereš et al., 2009)

(see the detailed discussion in § 3), (2) overprediction of the low-mass and high-

mass objects in the galaxy luminosity function by simulations (Silk et al., 2013),

and (3) a larger number of small satellite galaxies produced by simulations (miss-

ing satellites problem) (see § 6) (Klypin et al., 1999; Moore et al., 1999).

The discrepancies can be largely attributed to inappropriately overlooked or in-

accurately implemented feedback mechanisms from a variety of origins, such as

supernovae (SNe), photoionization, stellar winds and AGN. Studies show, for ex-
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ample, that SNe and active galactic nuclei (AGN) feedback are energetically impor-

tant in reproducing observed galaxy properties. They are able to resolve the dis-

crepancies in the low-mass and high-mass ends of the galaxy luminosity function,

respectively, by means of suppressing the star formation rate in numerical simula-

tions (see a review paper on galaxy formation by Silk et al. (2013)). Thus proper

treatments of the baryonic physics are required to bridge the gap between theories

and observations.

In galaxy formation hydrodynamical simulations, however, we have resolution

limits that constrain us from how the physics can be implemented. For this rea-

son, previous studies have used phenomenological models and implemented SN

feedback as a sub-grid model to simulate galaxy formation and evolution. In this

work, we are therebymotivated to test a physically-based supernova Type II (SN-II)

feedback as a progressing step toward studying the complete picture of the galaxy

formation and evolution. We study its effect on suppressing the excessive star for-

mation by overcoming the over-cooling problem that is notably seen in numerical

simulations from two perspectives: by means of producing outflows via kinetic

feedback and by heating up the ambient gas via thermal feedback. Our main goal

here is to implement a SN-II feedback that does not depend largely on phenomeno-

logical methods.

Type II Supernova

Evolving stars end their lives in various ways. Each scenario played for a stellar

death is primarily determined by their physical properties, or to be specific, their

initial masses. For instance, stars with masses> 8M� are thought to end their lives

by core-collapsing due to their large masses. The types of the systems, i.e. whether

it is a single/binary system, in which the star resides is also a key determinant of

the outcome of the stellar death (see Chapter 2 for more in depth discussion on

2



the physical processes of the stellar death). Supernovae is a general term used by

astronomers for explosive stellar death events releasing energy up to ∼ 1051 - 1052

erg with luminosities of ∼ 109 - 1010 L�. This large energy budget sets supernovae

apart from less energetic novae, as the name implies. Therefore, the significance of

studying supernovae comes from the possible impact on the galaxy formation and

evolution, which eventually is tied into a much larger scale of structure formation.

Supernovae are generally subdivided into classes based on their emission spec-

tra and light curves. The two largest known classes are Type I and Type II, and that

they are categorized based on the absence/presence of hydrogen line in the spec-

tra, respectively. The spectra used to classify the types of supernovae are typically

observed from the supernova remnant as a result of the interactions between the

supernova ejecta and the ambient gas medium. The conversion of kinetic energy

released by supernova into thermal energy leads to ionization of the surrounding

gas; thus the kinds of spectra seen are a function of temperature. In the meantime,

the chemical composition of the stars at the time of explosion, which is largely de-

termined by their initial masses, is yet another important factor that governs the

types of spectra we can observe. The presence of hydrogen line that character-

izes Type II supernovae is a good indicator of the hydrogen shell that enclosed the

exploding stars. Importantly, the light curve, which tells us the change of the su-

pernova luminosity as a function of time, is also examined to further classify Type

II supernovae. Type II-P and II-L, for example, are known to show a plateau and

monotonically declining light curves, respectively.

Because nothing is wasted in this universe, exploded stars contribute to the uni-

versal baryonic recyclingmechanism by distributing their masses into the interstel-

lar and intergalactic medium (ISM & IGM). It is believed that the observed metal-

licities in the ISM and IGM are partly delivered from supernovae by outflows, and

that thosemetals can be recycled to form other stars. Therefore, in a broad sense su-

3



pernovae self-regulate the star formation. This self-regulating mechanism should

thus be considered as one of the fundamental mechanisms that controls the galaxy

formation and evolution. Accumulating observational evidence shows that super-

nova explosions remain highly influential to the surrounding medium well over

thousands of years as supernova remnants (SNRs).

This accentuates the importance of accurately modeling supernovae and SNRs

when galaxy formation and evolution are studied in numerical simulations. The

detailed theoretical understanding of supernovae is still incomplete, and the com-

plex interplay between the stellar evolutionary processes and the variabilities of the

ambient gas medium has been an impediment to elucidating the complete picture.

Even with a solid theoretical understanding, modeling a supernova mechanism in

galaxy formation simulations to study the large-scale structure evolution over the

cosmic time requires to overcome the computational constrains without compro-

mising toomuch of the theoretical foundations. Previousmodels implemented and

used in a rather phenomenological manner might be useful in studying the larger

scale impact on the galaxy formation and evolution. However, with improved com-

putational resources and numerical techniques, it has become possible to model a

supernova mechanism with a finer physics to mimic some of the key evolutionary

stages of supernovae/SNRs. Consequently, the primary motivation of this work

is rooted strongly in the improvement of the overall physical processes of a super-

nova mechanism in hopes of elevating the predictive power of galaxy formation

numerical simulations.

This work is organized as follows. In Chapter 2, we describe the evolutionary

processes of the SNR, starting from the free-expansion phase, Sedov-Taylor phase,

snowplow phase and fadeaway. We then discuss the numerical methods and im-

plementations in Chapter 3 and 4. Finally, we present our test results with isolated

galaxy and cosmological zoom-in simulations in Chapter 5. We summarize our

4



findings and future work in Chapter 6. At the very end in Chapter 7, we addition-

ally include a brief summary of the results from dark matter only simulations done

as part of a collaboration project AGORA.
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CHAPTER 2

EVOLUTION OF AN SNR

In this section, we review the outline of the evolution of a supernova remnant.

A massive star ends its life as a core-collapse supernova, a violent explosion that

leaves behind a neutron star or a black hole. The explosion subsequently creates

a SNR that evolves into a hot bubble and deposits a large amount of energy into

the ISM as it sweeps up the surrounding materials and expands into the ISM. The

evolution of the SNR can generally be categorized into four phases − the free-

expansion, Sedov-Taylor, snowplow and fadeaway phases (Figure 1).

Explosion & energy transport mechanisms

Once the core of a massive star exhausts the fuel for further nuclear reaction

to counteract with gravity, the star begins to collapse in a dynamical time scale.

During this process the iron core collapses nearly at a quarter of the speed of light

and eventually shrinks down to a 10-km radius neutron star. The entire process

is accompanied with the release of an explosive energy as well as the ejecta from

the evolved star, which subsequently produces an SNR (e.g. see Woosley & Janka,

2005, and references therein).

In general, the conversion of the kinetic energy into heat drives the overall phys-

ical processes in the evolution of SNR. However, a complex interplay between dif-

ferent processes for the energy generation and transport mechanisms remains un-

clear. The favored mechanism suggests that the transport of a large fraction of the

initial SN energy is done by neutrinos. They are produced by a process called elec-

tron capture, which destabilizes the iron core, and neutrinos carry away about 99%

of the total energy released by a core collapse explosion (Haxton, 2000) via

p+ e→ n+ νe. (2.1)

6



In addition, Burrows et al. (2006) describe the essential role played by neutrinos in

the SN explosion mechanism, where they delve into discussing the neutrino scat-

tering and absorption as well.

Other possible explosion and energy transport mechanisms have also been pro-

posed and studied in details. In particular, rapid rotation, magnetic fields and cos-

mic rays are some of the main physical features that characterize and affect the

dynamical evolution of SNe (e.g. Burrows, 2013; Hanasz et al., 2013). The studies

by Hanasz et al. (2013), for example, suggest that only 10% of SN energy as cosmic

rays, neglecting the thermal and kinetic energy input, is capable of driving a large

scale galactic wind in an environment similar to star-forming high-redshift galax-

ies. Their studies imply that these mechanisms are indeed playing key roles in

carrying away the SN energy and could account for some of the observed features

from SNe.

Free expansion phase

Cox (1993) argues that for a typical explosion in a uniform medium, an explo-

sion is immediately followed by free expansion of the ejecta with a velocity much

greater than the sound speed in the ambientmediumdue to the large density gradi-

ent (Figure 1). This results in a shock that is produced by the large release of energy

from the core collapse, which converts the gravitational potential energy into heat

in a free-fall time scale (the free-expansion phase). The shock heats up the interior

and creates a low-density environment within the SNR as it propagates adiabati-

cally with a decreasing velocity due to the deceleration caused by the ambient gas

pressure and density. The adiabatic expansion is due to the initially much shorter

sound-crossing time compared to the radiative cooling time. This free expansion

phase usually lasts for ≤103 years.

The typically assumed value for the energy released by a single core-collapse

7



SN explosion, E0, is 1051 erg, which comes from

E0 =
1

2
Mejv

2
ej (2.2)

with the assumed ejected mass Mej to be ∼ 1 M� (∼ 2 × 1033 g) and the initial

speed of the ejecta vej to be ∼ 104 km s−1. In reality, however, the explosion energy

varies and could be a function of progenitor mass, rotation rate, magnetic fields,

metallicity and possibly other factors might also be involved, such as the properties

of the residual compact object (Burrows, 2013). In fact, Rest et al. (2011) finds that a

highly luminous core-collapse SN 2000ma could have its explosion energy greater

than 1052 erg.

Once the pressure of the shocked circumstellar medium exceeds that of the

thermal pressure of the SNR during the free expansion phase, a reverse shock is

produced. The reverse shock propagates inward and re-heats the SNR, which has

been adiabatically cooled since the explosion, and the outward propagating shock

still continues to expand. The free expansion phase ends when the reverse shock

reaches the center of the explosion. Thus the reheating within the SNR is complete

and it is entirely thermalized. This is also when the expansion rate of SNR starts to

slow down by entering a adiabatic phase called the Sedov-Taylor phase.

Sedov-Taylor phase

By the time the reverse shock reaches the center of the explosion, the evolution

of a SNR can now be approximated by the Sedov-Taylor (ST) solution (e.g. Sedov,

1959; Taylor, 1950; Cox, 1972, 1993, and references therein), which was indepen-

dently discovered by a British scientist Geoffrey Taylor and Leonid Sedov of the

Soviet Union in their studies of the effect of nuclear explosions (Figure 1). It as-

sumes a point explosion with a negligible ejecta mass and the uniform ambient
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gas density. The energy release is also assumed to be done instantaneously. The

radiative cooling during the ST phase is neglected because the cooling rate from

adiabatic expansion is faster than that of from radiation in the hot and low density

SNR. The other neglected factors in this model are the pressure from the ambi-

ent medium and the magnetic field. As the SN blastwave evolves, it can be well

approximated by the ST solution until the temperature of the shock drops to the

point where the radiative cooling becomes important. Note that the approxima-

tion of a point explosion is reasonably well only when the mass that is swept up by

the outward propagating shock wave greatly exceeds the mass of the initial ejecta

(Shu, 1992). The approximation, therefore, becomes better as the swept-up mass

increases in later times of the phase.

It is approximated that this adiabatically expanding phase ends when the shock

propagation is decelerated to the point where the cooling rate by radiation behind

the shock becomes non-negligible compared to that of adiabatic expansion. This

occurs approximately when the fractional energy loss reaches a third of the initial

energy. From this argument Draine (2011) derives the following relationships at

the time of the end of the ST phase:

vs = 188

(
Ek

n2
0

)0.07

[km s−1], (2.3)

Rs = RSNR = 23.7 E0
0.29n−0.42

0 [pc], (2.4)

trad = tEnd of STphase = 49.3× 103 E0.22
0 n−0.55

0 [yr], (2.5)

where Rs is the radius of the SNR, E0 is the total SNe energy in units of 1051 erg

as a widely accepted canonical value, Ek is the kinetic energy from SNe which is

equivalent to 0.283E0 (see § 3), and n0 is the density of the ambient gas in cm−3.
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Snowplow phase & fade away

As the radiative cooling becomes important, the thermal energy of the swept-

up material is rapidly radiated (Figure 1). Concurrently, the thin dense shell at

the edge of the SNR further expands outward by its own momentum and partly

by the remaining thermal pressure. The cooling lowers the pressure behind the

shock, and the shock velocity continues to decrease as the dense expanding shell

gains and carries away more material from the surrounding medium. The SNR

eventually begins to fade away and merges into the ISM as the shock front velocity

is reduced to the effective sound speed of the ambient gas medium. This occurs

roughly when the pressure of the shock front equals that of the ambient medium.

Following Draine (2011), fade away time, tfade, is then approximated to be

tfade ≈ 1.87× 106 E0.32
0 n−0.37

0

( cs
10km s−1

)− 7
5

[years], (2.6)

where cs is the effective sound speed in the ambient gas. This marks the end of a

SNR and it dissipates into the ISM.

10



CHAPTER 3

NUMERICAL METHODS

Motivations

A mounting evidence suggests that the energetic feedback processes such as

SNe and AGN are essential in explaining the galaxy formation and evolution. A

number of different SN feedback models has been proposed and studied in litera-

ture, and the detailed implementations vary from code to code. The main obstacle

in implementing these models is the limit set by the numerical resolution. The

subgrid models have therefore been the mainstream in the past decade and used

to mimic the observational phenomena in order to accommodate the inability of

galaxy-scale hydrodynamic simulations to accurately capture the small-scale dy-

namics.

An important progress has been made to alleviate this resolution problem by

cosmological zoom-in simulations. This ’zoom-in’ technique allows us to study a

particular region of interest in a cosmological scale with a finer resolution. The

advantage is that it is computationally less expensive and a galaxy of interest can

be studied with higher resolution compared to the traditional cosmological simu-

lations. The MUSIC code by Hahn & Abel (2011) can be used to create an IC for

zoom-in simulations in such a way that one can specify the desired resolution and

box size. With zoom-in simulations, we can therefore test our feedback model for

its validity in smaller-scale, namely sub-kpc regime, by resolving finer physics that

is implemented. In particular, the cosmological zoom-in simulation time step can

now be comparable to or less than the life time of a SNR. This in turn allows us to

model and test a SN feedback that tracks the approximated evolutionary phases of

SNR instead of an entirely phenomenological feedback.

In addition to the resolution issue, observations demand those models to suf-
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ficiently regulate the overly produced stellar mass in simulations. The so-called

overcooling problem arises because when the thermal energy from the SN/stellar

feedback is deposited into the high-density star-forming regions, the cooling time

scale becomes short and the deposited thermal energy is quickly radiated away, re-

sulting in an overproduction of stars compared to observational expectations. To

circumvent this problem many works utilize kinetic feedback as a more efficient

method to transfer energy (via momentum injection) without suffering from the

radiative loss seen in a thermal feedback (e.g. Kay et al., 2002; Springel & Hern-

quist, 2003; Oppenheimer & Davé, 2006; Dalla Vecchia & Schaye, 2008; Dubois &

Teyssier, 2008; Choi & Nagamine, 2011; Durier & Dalla Vecchia, 2012; Agertz et al.,

2013; Hopkins et al., 2013). Kinetic feedback generally refers to a mechanism that

gives kinetic energy into the star’s neighboring gas particles as in a form of velocity

kick. A very important consequence of this type of feedback mechanism is that the

energy along with mass and metals can be carried away with galactic outflows and

could account for the gas recycling mechanism in the ISM and IGM.

Our primary goal is to test an SN feedbackmodel that is as physicallymotivated

as possible rather than relying on phenomenological approach that has commonly

been used in the previousworks. Wemodel the feedback based on the evolutionary

process of the SNR and use the ST solution for quantifying the physical properties

of the conglomeration of SNRs in our SPH code. A single SN event and the subse-

quent SNR evolution cannot be resolved in our current simulations. However, the

cumulative effect of SNe can be reasonably modeled and it is capable of reproduc-

ing some of the main features we see in observations. Furthermore, by making the

feedback more physically-based, the number of tunable parameters can be prefer-

ably reduced at the same time. The recent improvements on the numerical tech-

niques, such as the zoom-in simulations mentioned in this section, have made it

possible to achieve our goal of making the feedback mechanisms more physically-
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based by resolving finer scale physics.

SN-II feedback

Energy, mass & metallicity distribution

In our SPH code, a single star particle represents a stellar population. Therefore,

the total energy frommultiple SNe by a single stellar populationmust be calculated

by the initial mass function (IMF). We follow Kim et al. (2014) and use a Chabrier

(2003) IMF to calculate the total energy and number of SNe explosions, assuming

stars with 8 − 40 M� undergo core-collapse SNe (which would include Type II, Ib

and Ic), and use 1051 erg/SN as the fixed value. We also assume that the IMF is

universal and remains unchanged in the cosmic time scale. The total SNe energy

produced by a stellar population is then distributed among the star’s neighboring

gas particles. We adopt Durier & Dalla Vecchia (2012)’s work and use 71.7% as the

thermal and 28.3% as the kinetic energy based on the energy conservation. The

energy deposition is completed in a single time step, which is also applied in Dalla

Vecchia & Schaye (2012).

Additionally, we include the mass return and metal production from the core-

collapse SNe by following the criteria described in the AGORA project (Kim et al.,

2014). The mass return (R) from stars with 8 M� < m < 40 M� leaves behind a

remnant of wm = 1.4 M�, and it follows

R =

∫ 40M�

8M�

(m− wm)φ(m) dm, (3.1)

where φ(m) = dn/dm∝m−2.3 for core-collapse SNe with a Chabrier IMF. For metal

production from core-collapse SNe, we compute the produced metallicity mass in
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terms of Oxygen and Iron as

MZ = 2.09MO + 1.06MFe, (3.2)

with the corresponding fractional masses of the two species to be 0.0133/M� and

0.011/M�, respectively. They are distributed in exactly the samemanner as the SNe

energy.

In the SPH code, the surrounding mass density, ρ, of an SPH particle is com-

puted by the mass-weighted smoothing kernel by

ρi =

Nngb∑
j=1

mjW (|rij,hi|), (3.3)

where rij ≡ ri - rj, Nngb is the number of neighboring gas particles, m is the particle

mass,W is the smoothing kernel function, and h is the particle softening length (see

Springel, 2005). Nngb is specified in the param file, in which our model uses 128 ±

2. We then use RSNR (Equation 2.4) to find the neighboring gas particles that are

influenced by the SNII feedback.

The fraction of kinetic & thermal energy, mass return, andmetals that each Ngb

gas receives is calculated by mass-weighted formula

∆Ai =
miW (|ri − rs|, hs)∑N
j=1mjW (|rj − rs|, hs)

A, (3.4)

where A can be any of those four quantities (Stinson et al., 2006).

Sedov-Taylor solution

It is a common practice in some feedback models of galaxy formation simula-

tions to use a fixed, constant wind velocity that is motivated by observations (e.g.

Springel & Hernquist, 2003). However, the shock front velocity can be calculated
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by the ST solution as seen in Equation (2.3), which depends only on two physical

parameters, the initial SN energy, E0, and the ambient gas density, n0. The depen-

dency of the SNR’s properties on n0 is well-established that the exploding stars’ sur-

rounding environment largely affects the morphology and spectral line emissions

of the SNR (Osterbrock & Ferland, 2006). Although we cannot resolve the detailed

SNR properties in sub-pc scale, the ST solution can mimic the ambient gas density

dependent nature of the SNR. Importantly, Equation (2.3) & Equation (2.4) clearly

shows that the blast wave propagates at a larger velocity and the SNR can expand

to a larger distance in a diffuse environment, whereas in a densemedium the oppo-

site is true. Overall, the application of the ST solution adds more physically-based

features to the SN feedback and reduces the number of free parameters.

We take 28.3% of the total SNe energy (Ek = 0.283E0) as kinetic energy available

for computing the wind velocities by using Equation (2.3). Note however that the

influence of SNII radius (RSNR), the time at which ST phase ends (trad), the fade

away time (tfade) are calculated based on the entire SNe energy (E0) instead of Ek.

In our model, the ST solution (Equations (2.3) & (2.4)) are used to calculate the

approximate SNR properties at the end of the ST phase. Equations (2.5) & (2.6) are

then used to further approximate the times at which the ST phase ends and the

SNR fades away, respectively, based on the current ambient gas density (n0) and

E0.

All the physical quantities of SNR calculated by the ST solution apply only for

the case when the SNR is in the ST phase. Since the simulation time-step can be

larger than the ST phase, it can be entirely skipped depending on the size of the

time-step, which depends on the resolution: the higher the resolution, the smaller

the time-step. It is also possible to express the shock velocity and the radius of the

SNR as a function of time (i.e. the time elapsed since the SNe explosions). However,

this adds a strong dependency on the resolution to the model, for the size of the
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time-step can differ by orders of magnitude. To avoid this, the model approximates

the physical properties of SNR at the end of the ST phase.

Outflows

We allow those kicked gas particles to receive more than one velocity kicks by

other SN explosions. The randomly-oriented directions given to themproduce out-

flows, and some of which form galactic fountains by falling onto the disk after the

kick due to the greater escape velocity of the galaxy.

A potential drawback of this type of feedback is that if the number of the wind

particles is only a few, it results in a less isotropic outflow as Dalla Vecchia & Schaye

(2008) argue. However, owning to the fact that an SNR is not necessarily isotropic

due to the variations in the surrounding gas density as observations from the X-ray

and IR morphology of SNRs show (Lopez et al., 2013), non-isotropic outflows that

might be produced in our model is justifiable.

Eliminating unphysical adjustments

Within a concept of testing a physically-based model, we also eliminate some

artificial adjustments which have been notoriously done in previous works. We

highlight that in this work the hydrodynamical interactions and radiative cooling

are not artificially turned off by hand for a fixed period of time for the sole purpose

of reproducing the desired results.

Turning the hydro interactions off is especially considered unphysical, and for a

physically-basedmodel it defeats thewhole purpose. For example, a constantwind

model employed by Springel &Hernquist (2003) produces bipolar galactic outflows

as star formation takes place and heats the surrounding gas. In their model the

hydro are turned off by hand for a certain period of time when the kicked particles

are labeled as ’winds’. Although turning off the hydro helps to enhance producing
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outflows and regulating star formation rate, it is done so artificially, based on a

rather phenomenological perspective.

Note also that it is computationally less expensive to turn off hydro; for the case

of the constant wind model turning hydro on, there is an 77% increase in CPU time

compared to the case without hydro for the wind particles.

Within the framework of depicting the evolution of an SNR approximated by

the ST solution, the ST phase is an adiabatically expanding phase and considered

the radiative cooling has negligible effect. Hence it is physically reasonable to turn

off radiative cooling for the gas in the ST phase, which typically lasts 0.1Myr before

moving on to the snowplow phase where the radiative cooling should now become

non-negligible. Note that in previous models studied by others (e.g. Stinson et al.,

2006) turn off cooling for a much longer time scale, such as 30 Myr. This time scale

accounts roughly for a fadeaway time for an SNR. We find that the calculated time

for a typical ST phase is in the order of 105 years, and therefore turning off radiative

cooling for ∼ 107 years is an overkill (see Figure 7 and § 5 for detailed discussion).

Stellar feedback

In this work we study how the effectiveness of the SN-II feedback changes with

or without stellar feedback (SFB). In contrast to a physically-based SN-II feedback,

we use a modified version of a phenomenological SFB model from Stinson et al.

(2013). This model utilizes a luminosity-mass relations from binary star systems,

and the converted energy is deposited among the neighbors as in a form of pure

thermal energy. Our SFBmodel, however, does not artificially turn off the radiative

cooling for a certain period of time unlike their model (= 30 Myr) as we criticized.

We test early stellar feedback efficiencies εSFB of 10, 20 and 30% to study the over-

all effect of the additional thermal feedback to the SN-II feedback on the galaxy

properties.

17



In some literature the thermal energy from SFB is distributed gradually in an

exponential decay rate. In this work we simply dump the thermal energy at a con-

stant rate until t≥ texplode = 4 Myr. The fractional thermal energy (∆Eth) from a star

particle for SFB in a single time-step is

∆Eth = εSFB E0
t− tdeposited
texplode

, (3.5)

where t is the current time, tdeposited is the time at which the star deposited a fraction

of the thermal energy in the previous time-step. ∆ Eth is then distributed among

all the neighboring gas particles using Equation (3.4).

Star formation prescription

We use a modified version of SF model originally developed by Springel &

Hernquist (2003) (hereafter SH03SFmodel). SH03SFmodel treats the ISM as a spa-

tially averagedmulti-phasemedium composed of cold and hot clouds, represented

by each SPH particle. Conversion of cold clouds results in star formation, and it is

followed by:

ρ̇? = (1− β)
ρc
t?
, (3.6)

where SFR is described by β, a mass fraction of short-lived massive stars that are

assumed to instantaneously explode as supernovae, ρc the density of cold clouds,

and t? the star formation timescale that is proportional to (ρ/ρth)−1/2 with total gas

density ρ (= ρhot + ρc) and the threshold gas density ρth.

Because the SN-II feedback separately treats SN explosions 4 Myr after the star

formation, wemodify the SH03SFmodel so that there is no dependency on β in the

star formation criteria. Furthermore, the imposition of equation of state for the star

forming gas done by the instantaneously exploding SNe is disabled when SNII or

SFB are used.
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CHAPTER 4

COMPUTATIONAL SETUP

We use a modified version of the smoothed particle hydrodynamics (SPH) code

GADGET-3 (originally described in Springel 2005). Our conventional code includes

radiative cooling by H, He, and metals (Choi & Nagamine, 2009), heating by a uni-

form UV background radiation of a modified Haardt & Madau (1996) spectrum

(Katz et al., 1996), star formation, supernova feedback (previous model), the Multi-

component Variable Velocity (MVV) wind model (Choi & Nagamine, 2011), a sub-

resolution model of multi-phase ISM (Springel & Hernquist, 2003), a density inde-

pendent SPH (DISPH) (Hopkins, 2013; Saitoh & Makino, 2013), a time-step limiter

(Saitoh & Makino, 2009) and a quintic spline kernel (Morris, 1996).

We test our model with an isolated galaxy first to study the sub-kpc scale be-

haviors of the feedback before moving on to testing it with cosmological zoom-in

simulations. We use common initial conditions for an idealized, Milky Way-like

isolated galaxy provided by the project AGORA (Kim et al., 2014) (credits to Oscar

Agertz) for testing ourmodel with isolated galaxy simulations. The disk properties

are summarized in Table 1. With the common initial conditions, our work should

alleviate possible difficulties in comparison among other models with other codes

later on. For the setting used for the preliminary testingwith cosmological zoom-in

simulations, please refer to § 6.
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CHAPTER 5

TEST RESULTS WITH ISOLATED GALAXY SIMULATIONS

Feedback efficiency

Table 2 presents the symbols for various cases tested with isolated galaxy. We

tested cases with a combination of SN-II and stellar feedback (SFB) as well as cases

with only each of the feedback alone to study their relative contributions to the

overall feedback efficiency. We limit our case studies as follows: all the SN-II feed-

back takes the canonical value of 1051 erg per SN event that is distributed among

the neighboring gas; SFB is tested with the stellar feedback efficiency (εSFB) of 0.1

(or 10% efficiency), 0.2 and 0.3.

Star formation history

Regulating star formation rate (SFR) is one of the key aspects ofwhat an effective

feedback is expected to accomplish in galaxy formation simulations. In particular,

so-called over-cooling problem must be overcome in order for the simulations to be

able to produce galaxies with stellar-to-halo mass ratio that is in agreement with

observations. This generally requires suppression of star formation rate in the early

times and subsequently preventing galaxies from accumulating excessive stellar

mass compared to observational expectations.

Figure 3 compares star formation history of the tested cases. As it is clear from

the figure, SNII alone can significantly regulate the SFR, whereas SFB by itself is

less efficient even with the increased efficiencies. This is highlighted by the SFRs

for SNIISFB, SNIISFB2 and SNIISFB3 where the overall SFR is not largely affected

by the inclusion of SFB, except for SNIISFB3 which shows a slightly stronger sup-

pression of SFR.

It is important to note that SFB can also enhance the SFR as seen in the increased
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SFR in the early times. This is likely due to the formation of dense gas regions as a

result of the swept up gas by SFB. Unlike SNII in which the deposition of thermal

energy is done in a single time-step, SFB does it over multiple time-steps if the

simulation time-steps are shorter than 4Myr. This creates low-dense gas regions in

the immediate vicinity of the star, while forming denser regions on the outskirts.

For comparison we included the results from previous models, namely SH03SF

model and a constant wind model (WINDS). The SH03SF model deposits SNe en-

ergy instantaneously immediately after the star formation so that the suppression

of SFR in the earlier time is stronger compared to the SFB. The key improvement of

SNII overWINDS is that the very similar degree of regulation of the SFR is achieved

by SNII without the need of artificially turning off the hydrodynamical interactions

for the wind particles. Furthermore, SNII computes the wind velocity for individ-

ual gas particle by the ST solution that depends on the ambient gas density and

the SN energy rather than assigning a fixed wind velocity that is dependent on free

parameters as in WINDS. SNII, therefore, has an advantage over WINDS by being

more physically-based and regulating the SFR to the same degree at the same time.

Overall, Figure 3 stresses the clear advantage of the kinetic feedback over the

thermal feedback in regulating SFR. The thermal feedback alone has been proven

to be inefficient in previous works in literature, and our results show the general

agreement with this.

Outflow rate & mass loading efficiency

In WINDS and MVV models, the mass loading efficiency (η) is either set to a

constant value or calculated based on the velocity dispersion of the host galaxy,

respectively. SNII, on the other hand, does not use η as a parameter so that it is

directly computed from the outflow rate and SFR. Figure 4 compares the outflow

rate and η for selected cases at t = 1 Gyr.
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By comparing SNII and SNIISFB, there is only a minor difference in both out-

flow rate and η, as expected from their SFRs. The higher outflow rate and η for

SNIISFB3 are also naturally expected because of its lower SFR. The steady decrease

and increase in the outflow rates and η, respectively, of SNII, SNIISFB and SNIISFB3

are well correlated with the equally steady decrease in their SFRs due to the deple-

tion of the gas reservoir. Note that for isolated galaxy simulations we do not have

mergers, and thus the outflows and the conversion of gas into stars keep reducing

the total gas mass available for further star formation on the disk.

The primary reason for the stronger outflow rate and the higher η for theWINDS

model is the artificial turning off of the hydrodynamical interactions for the wind

particles. We find that the strength of the outflow is dramatically reducedwhen the

hydrodynamical interactions are turned on forWINDS. This also helps the outflow

at 5 kpc from the disk plane to remain as strong as that of at 3 kpc for WINDS.

As such, Figure 4 clearly shows the significance of the hydrodynamical interac-

tions, which further emphasizes that artificially turning it off is not only unphysical

but also unreasonable. Although our SNII model has a weaker η, which ranges 2

∼ 3, as opposed to that of WINDS (5 ∼ 6), SNII is capable of regulating the SFR

equally strong as WINDS.

We compute the outflow rate as

Ṁ =
N∑
i=1

(
Mivi
4
3
hi
− Mivi|zplane − zi|2

4
3
h3i

)
, (5.1)

where i denotes the ith gas particle that is touching the z-plane; i.e. if the plane

is within the smoothing length of the gas particle hi and its velocity vector in the

z-direction is > 0, then the particle is considered outflowing. Mi is the mass, vi is

the velocity, and zi is the z-position of the ith gas particle.
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Phase diagram

Figure 6 presents the phase diagram for selected cases. It is instructive to first

compare SNII & SFB. The primary effect of the deposition of thermal energy over

multiple time-steps by SFB (whereas SNII does it in a single time-step) is that the

star’s neighboring gas particles are constantly swept up and form less densely pop-

ulated regions (see also Figure 5). However, the feedback effect from SFB is rela-

tively weak so that the large less dense regions shown by Figure 5 is mostly due

to the intense consumption of gas by excessive star formation. The inefficiency of

SFB is also clearly seen in the larger cold gas mass in the dense gas regions with

log ngas = -2 to 0. This makes the disk largely dominated by cold gas and fails to

capture the multiphase nature of the ISM, which would further make it prone to

excessive star formation.

Comparing SNII and SNIISFB, there is only aminor difference, although slightly

more fractional cold gas is converted to warm gas in SNIISFB due to the additional

thermal feedback by SFB. The extended tail seen in SNII and SNIISFB in the low

density region is caused by the outflows from SNII feedback, which are strong

enough to kick the gas to non-star-forming regions. Because the young starsmainly

form in the disk spirals, the kicked gas become free from SNII and SFB once they

escape the galactic potential well. The direct result is the production of outflows.

These outflows eventually cool down to a lower temperature by adiabatic expan-

sion. Note that since we do not have molecular cooling implemented in the code,

the gas temperature in the disk does not go below 103 K.

Computed variables for the SN-II model

Figure 7 shows the computed tST and tfade for SNII. There is only a negligible

difference in those computed values for SNIISFB (less than 2%). We also note that

these variables are computed at the time of the SN-II feedback, and that they are
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remembered by the kicked gas particle until it experiences the feedback again from

other exploding stars nearby. Note that the gas density is always recalculated re-

gardless of whether the gas is under the influence of the feedback or not.

From the figure we see that tST never exceeds 106 years and the typical duration

of the ST phase is on the order of 104 to 105 years. Since the tST is equivalent to

the time at which the radiative cooling starts to become non-negligible on the outer

SNR shell, we conclude that the typically used value in literature for the artificial

turning off of the cooling for a period of the order of 107 years is considered un-

physical. We also note that our SN-II model is capable of producing outflows with

the wind velocity reaching up to ∼ 200 km s−1.

Resolution dependency

We test themodel’s dependency on the numerical resolutionwith isolated galax-

ies and compare the SF history for selected cases in Figure 8. The gravitational soft-

ening length is reduced from 80 to 30 pc for SNIISFB and to 25 pc for WINDS. The

efficiency of the feedback in suppressing the SFR seems to be slightly compromised

if the resolution is higher for both SNIISFB and WINDS. This is manifested in the

early times, namely at the onset (and before ∼ 250 Myr) with the larger spiky SFR

for SNIISFB due to the formation of dense gas regions where there is little young

stars that can add feedback energy into the ISM. Nonetheless, there is a minor dif-

ference in the overall results, and both cases show a reasonably good convergence.

One of the possible reasons for the inefficient feedback effects seen in the higher

resolution SNIISFB case presumably arises from the way the feedback energy is

calculated. First, in the higher resolution case all the particles, including gas and

stars, have an order of magnitude smaller mass − e.g. M? ∼ 103 M�, compared to

that of the lower resolution case of ∼ 104 M�. As we calculate the available feed-

back energy by the IMF for each stellar population, the smaller mass simply means
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less available feedback energy from a single stellar population for distribution to

the IMS. The strength of the wind velocity and the size of the shock radius (Equa-

tions 2.3 & 2.4) are all dependent on the amount of the feedback energy, so that by

design the effectiveness of the SNII and SFB might be compromised even with the

increased number of particles for the higher resolution case.

For comparison, it is interesting to see that the suppression of the SFRbyWINDmed

becomes weaker at later times as opposed to SNIISFBmed (the suffix ’med’ is for

the higher resolution cases). The primary difference in WINDS and SNIISFB is the

strength of the outflows; WINDS produces stronger outflows as seen in Figure 4.

A plausible scenario as to why this is the case could come from the fact that the

strength of the outflows is controlled by the SFR since they are more tightly cou-

pled in the WINDS model. That is, as the SFR progressively declines due to the

consumption of the gas on the disk, so does the outflow rates, which in turn makes

the suppression of the SFR weaker at later times.

Figure 9 helps us understand better the effectiveness of the feedback by exam-

ining the phase diagram and the fractional gas mass distribution of low and higher

resolutions at t = 0.7 Gyr. The hot gas fraction (T> 105 K) is entirely due to the ther-

mal feedback from both SNII and SFB, and that the higher resolution case shows a

smaller fraction of the hot gas. Meanwhile, the warm (5000 < T < 105 K) and cold

gas (T < 5000 K) show slightly higher fractions in the higher resolution case. Un-

like the hot gas, they are concentrated in the denser regions, having peaks around

log ngas = -1 to 0, which makes those warm gas in the higher resolution case more

susceptible to cooling (i.e. the larger density results in a shorter cooling time). Ad-

ditionally, the left tail of the warm gas in the low resolution case is more extended

to the less dense region, which implies the gas can remain as non-star-forming for

a longer time after receiving the feedback energy, and thus the low resolution case

suppresses the SFR slightly more efficiently.
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CHAPTER 6

PRELIMINARY TEST RESULTS WITH COSMOLOGICAL ZOOM-IN

SIMULATIONS

In this chapter we present preliminary results of our SN-II and SFB feedback

models tested on cosmological zoom-in simulations. We specifically look at the

stellar-to-halo mass ratio and compare with previous models. We acknowledge

that the SPHGalaxy Reduction suite (SPHGR)written by Robert Thompson is used

as an analysis tool to make Figure 11.

Setup

For our preliminary testing on cosmological zoom-in simulations, we use an

IC from the AGORA project with a lower resolution. The IC is generated by the

MUSIC code (Hahn&Abel, 2011) with [`min, `max] = [7,10] in a box length of 60h−1

comoving Mpc. It forms a galactic halo of virial mass Mvir ' 1.7 × 1011 M� at

z = 0 with a quiescent merger history (Kim et al., 2014). We adopt the following

cosmological parameters: Ωm = 0.272, ΩL = 0.728, Ωb = 0.0455, H0 = 70.2, nspec =

0.961 and σ8 = 0.807. The gravitational softening length is set at 586 pc for high

resolution particles (gas, dark matter and stars) and at 1.172 kpc for low resolution

particle (bulge).

Stellar-to-halo mass ratio

Figure 11 shows the stellar-to-halomass ratio for the selected runs. In the figure,

it is shown that SNIISFB successfully reproduces good agreement with the obser-

vational data (Behroozi et al., 2013). SNIISFB not only efficiently regulates the SFR

at the lower-mass end, it also reproduces the observational trends better, while the

other runs plateau by keeping a higher stellarmass ratio at the low-mass end. There

seems to be, however, an inefficiency in suppressing the SFR at the lowest-mass end
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even for SNIISFB.

Comparing SNII and WINDS, both closely follow a similar trend as naively ex-

pected from the fact that their SFRs tested on the isolated galaxy show a minor

difference. The difference we saw in comparing their outflow rates for the isolated

galaxy seems to be not affecting the stellar-to-halo mass ratio − the stronger out-

flows produced by WINDS virtually does not make a significant difference here.

We highlight again that a more physically-based model of SN-II is capable of re-

producing the identical stellar-to-halo mass ratio with WINDS which turns off hy-

drodynamical interactions by hand for the wind particles.

The number of galaxies also is affected by the feedback. The well-known miss-

ing satellites problem in which numerical galaxy formation simulations have been

known to produce too many satellites for a MW-type galaxy compared to observa-

tions (Klypin et al., 1999;Moore et al., 1999). Figure 12 shows the gas density projec-

tion of SH03SF model and SNIISFB compared, and the missing satellites problem

is clearly alleviated by the implementation of SN-II and SFB in combination. The

missing satellites problem is tightly related to the overcooling problem; i.e. the

small satellites are overproduced due to the overcooling problem where the cold

gas is accreted more effectively because of the lack of pressure support from feed-

back such as SNe. Therefore, our SN-II feedback and SFB are effective enough to

resolve the overcooling problem, and as a result it successfully alleviates the miss-

ing satellites problem.
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CHAPTER 7

DISCUSSION & CONCLUSIONS

We have presented an improved version of SN-II model and tested with a phe-

nomenological SFB model for galaxy formation simulations. The new model has

been tested first on isolated galaxies to examine the sub-kpc behavior of the feed-

back effects, and then we have presented a preliminary result on the cosmological

zoom-in simulations. The results appear to be promising on both isolated galax-

ies and cosmological zoom-in simulations as the new model proves to alleviate

some of the well-known problems in galaxy formation simulations, such as over-

cooling problem and missing satellites problem without the need for artificial ad-

justments of turning off hydrodynamical interactions and star formation by hand

for the model to reproduce our expected results. In our model, cooling is only

turned off during the ST phase where the radiative cooling is negligible. We em-

ployed the ST solution to calculate the variables, i.e. the wind velocities, shock ra-

dius and the transition times for the four evolutionary phases of SNR, rather than

using a fixed value that can be a function of some adjustable parameters.

Themost crucial improvement in the newmodel is that it is a physically-motivated

implementation of SN-II feedback. With the ST solution, the physical properties of

SNR are calculated and assigned to the individual SPH particles instead of apply-

ing a constant value for all of them. This eliminates free parameters from themodel,

and thus the results are not purely controllable/adjustable by hand as however we

might desire. The ST solution themselves are approximations; however, they can be

reliably tested and used to modeling an SN-II feedback that captures the essential

features of a part of the evolutionary stages of SNR.

Our key findings are:

• SNII or SFB alone is insufficient in reproducing good agreement with observa-

tions − the stellar-to-halo mass ratio shows our simulation results largely deviate
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from observations unless SNII and SFB are combined. This conclusion is in agree-

ment with the studies by Hopkins et al. (2013). SFB alone in particular shows en-

hanced SFR instead of suppressing it, especially at the earlier time. Its inefficiency

in adding pressure support to the cold gas cloud leads to the formation of ’knots’ of

dense gas as seen in Figure 5 that is also commonly seen in SH03SF. Increasing εSFB

from 10 to 30% helps regulating the SFR more strongly, while failing to resolve the

dramatically increased early SFR (Figure 3). In contrast to SFB, SNII alone proves

to be more effective and robust not only in regulating SFR but also in producing

outflows. Kinetic feedback employed in SNII is clearly showing its advantage over

a pure thermal feedback here. Even though tests on isolated galaxies show there is

only a minor difference in SNII and SNIISFB, the improved robustness of SNIISFB

over SNII is explicitly shown in the stellar-to-halo mass ratio from the cosmological

zoom-in simulations.

•No artificial turning off of hydrodynamical interactions and star formation is nec-

essary for our SNII+SFBmodel to achieve reasonable agreement with observations

(e.g. stellar-to-halo mass ratio). The cooling is turned off only for the ST phase that

is calculated by the ST solution with no free parameter associated with it. In other

words, the application of the ST solution to approximate the physical evolution

of the SNR can eliminate the necessity of the artificial adjustment and reduce the

number of free parameters in order to raise the feedback efficiency if SNII is com-

bined with SFB. The outflow can also be produced with the ST solution, although

not as strong as WINDS. As the stellar-to-halo mass ratio shows, the production of

strong outflows byWINDS is not necessarily the key factor in achieving agreement

with observations. In fact, the addition of SFB to SN-II feedback seems to have a

larger impact on the simulated galaxy properties on the cosmological zoom-in sim-

ulations. The possible reason for this is the larger simulation time-steps due to the

coarse resolution compared to that of isolated galaxy simulations: they fluctuate
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throughout the simulation time, but the difference can be an order of magnitude.

The larger time-steps in cosmological zoom-in simulations deposit the stellar feed-

back energy in a larger fraction in a single time-step, achieving a stronger heating

effect. This in turn implies a possible resolution dependency of SFB which would

require further investigation.

• The ST solution used in the SN-II feedback for computing the variables shown

in Figure 7 provides that the duration of the ST phase on average is ∼ two orders

of magnitude smaller than the duration applied for turning off cooling by hand in

some SNmodels in literature. This is a strong implication that there are somemiss-

ing ingredients in their models to achieve good agreement with observation.

• The preliminary results on the stellar-to-halo mass ratio shows that SNIISFB ef-

fectively reduces the stellar mass at the lower-mass end. The number of satellites

in SNIISFB is also reduced compared to the other cases, providing an effective so-

lution to the missing satellites problem (Figures 11 & 12). It is advisable to show

the stellar mass function that quantifies the number of galaxies as a function of

galaxy stellar mass. However, we would need to move forward and test our model

on larger-scaled cosmological simulations to obtain larger samples to plot a reliable

stellar mass function, which will be included in our future work.

Future work

We have presented yet another model of an SN-II feedback and studied the in-

terplay between SN-II and SFB mainly on the isolated galaxies. Our preliminary

results only give us a glimpse of how the newmodel behaves and affects the results

on a cosmological zoom-in scale with a coarse resolution. The next step therefore

has to be conducting more rigorous and extensive followup studies on cosmolog-

ical scales with higher resolution and larger sampling to clarify the strengths and
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weaknesses of our model.

Not only increasing the resolution and extending the size of the simulations,

we would also need to test the model with a series of ICs that could either pro-

duce larger galaxies with galaxy mass ranges covering up to∼ 1012 - 1013 M� to see

whether or not the stellar-to-halo mass ratio still shows reasonable agreement with

observations. The cosmological zoom-in IC used in this work produces a 1011 M�

galaxy as the largest galaxy with quiescent merger history. Because galaxymergers

affect significantly the galaxy properties and their subsequent evolutions, it would

be valuable to test and study how our newmodel alters the evolutionary processes

on such a system with violent merger history.

Furthermore, it is certainly not adequate to only consider SN-II and SFB: SN-Ia

and AGN should play a critical role in the overall feedback effects. In particular,

AGN feedback has been widely studied in galaxy formation literature (e.g. Choi

et al., 2014, 2013; Newton & Kay, 2013; Wagner et al., 2013) and believed to have en-

ergetically significant impacts on the galaxy properties indicated by observations

(e.g. Schawinski et al., 2007; Zinn et al., 2013). Due to the larger energy budget with

a typical luminosity of 1012 L�, AGN feedback could play a key role in matching

the higher-mass end of the stellar-to-halo mass ratio from observations. Compared

to the luminosity of typical supernovae, an AGN could have ∼ two orders of mag-

nitude larger energy budget: as such, it should never be overlooked. SN-Ia should

certainly be in consideration, for the outcomes are generally not too dissimilar to

that of SN-II, except for the delay time present in SN-Ia.

Aside from adding SN-Ia and AGN feedback, there is also a possibility of im-

provement by modifying the SFB andmaking it momentum-based that is powered

by radiation pressure rather than pure thermal feedback. As we know from the

notorious overcooling problem, thermal feedback is susceptible to cooling espe-

cially in star-forming regions, forcing some models used in literature to turn off

31



cooling by hand. In contrast, a momentum-based feedback preserves energy better

without significantly being affected by cooling. The method has been studied and

tested in literature and the results show its robustness in overall simulated galaxy

properties without relying on artificially turning off cooling (e.g. Agertz et al., 2013;

Aumer et al., 2013; Hopkins et al., 2011).

32



CHAPTER 8

AGORA COMPARISON PROJECT

In this section we summarize the studies on the dark matter-only high resolu-

tion simulations as a collaborating effort for the AGORA project (Kim et al., 2014).

The project aims to scrutinize the discrepancies among a variety of galaxy forma-

tion simulation codes and methods in a systematic way. To facilitate the systematic

analysis by a variety of participant groups, the project employs and implements a

common set of physics and feedback prescriptions and analyzes the results with a

common tool kit, yt (Turk & Smith, 2011). It is an on-going project that we have

participated. (URL: http://www.agorasimulations.org)

The initial studies made by the project involve running a series of dark matter-

only simulationswith the same initial conditions prepared by the project to test any

deviations that can be found among the codes. We as a UNLV group contributed

to this test runs by providing the outputs and analyzed results to the project. We

ran both a low-res and high-res darkmatter-only simulations. Additionally, we also

independently did a comparison study to see how each GADGET parameter affects

the results for the low-res cases.

Simulation setup

Weuse the common initial conditions created byMUSIC to run and compare the

dark matter-only simulations. The parameters used for RUN1 and RUN2 are sum-

marized in Table 3. The mass resolution is 3.38×105 M� for RUN1, which contains

20,971,520 high resolution particles and 5,875,840 low resolution particles, whereas

that of RUN2 is 4.22×104 M�, containing 167,772,160 high and 20,971,520 low reso-

lution particles. In other words, both RUN1 and RUN2 are exactly the same except

that RUN2 has a higher resolution. We used GADGET-3 for these runs.

Table 3 summarizes the tested runs for the AGORA project. For RUN1, we ex-
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amined a series of cases with different options in the Makefile to see how each

option affects the overall results. Moreover, for RUN1-A and RUN2, we set the

softening length for comoving and physical differently in such a way that they are

’switched’ to a finer one at z = 9 (i.e. the factor of 10 difference is from the 1 + z

factor for the comoving frame). The detailed descriptions for the Makefile options

can be found in the GADGET user guide by Volker Springel.

Overall results

The comparison between RUN1 and RUN2 shows a minor difference in the

properties of the target halo. As shown in Table 3, the halo center, Mvir and Rvir all

showa good convergence. The slightly largeMvir for RUN1-D is due to the presence

of a subhalo within the target halo. In the meantime, the Makefile options listed in

Table 3, which are primarily added to the code for improved computational tech-

niques, do make a difference in the total CPU hours. The PMGRID option is clearly

needed for faster computing time by comparing RUN1-A, B, C and RUN1-D. Fur-

thermore, switching the softening length at z = 9 does reduces the computational

expense, while the outcome remains unaffected (comparingRUN1-A andRUN1-B).

Density projection

Figure 13 compares the projected gas density at z = 0 for RUN2 and RUN1-A.

The overall dark matter structure of both RUN1 and RUN2 are in good agreement.

Although it may not obvious from the Figure, the primary difference is that the

overall filamentous structure of RUN2 seems to be more tightly packed (see anima-

tion at: http://www.physics.unlv.edu/∼keitee/AGORA/6Mpch.swf). The possible

reason would be that the increased number of particles for RUN2 creates stronger

gravitational interactions between the particles. This in turn forms more subhalos

for RUN2; for instance, a small subhalo is seen at the two o’clock direction on the
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target halo only in the RUN2 1Mpc/h image.

Density profile

Figure 14 shows radially averaged density profiles of the target halo at z = 0. All

the cases, except for RUN1-D, agree with each other remarkably well. The slight

deviation seen in the case RUN1-D with a higher density at the outer radius is

most likely due to the presence of a subhalo that is unique to RUN1-D. Figure 14

additionally includes the results from another GADGET code and an ENZO code,

which show a general agreement with our code. The detailed results that compare

with all the other participating codes are presented in Kim et al. (2014).

Discussion

In summary, the initial darkmatter-only proof of concept runs showgood agree-

ment among all the codes with minimal resolution dependency. The primary dif-

ference seen among the codes are the locations of subhalos, which could slightly

affect the density profiles. As for the next step, theAGORA project will examine the

numerical convergence among the codeswhen gas is includedwith a common cool-

ing and star formation routines and a set of feedback mechanisms. The strengths

andweaknesses of each code will then be addressed in a systematic manner so that

the forthcoming galaxy formation simulations can move forward to a new genera-

tion with an enhanced predictive power of galaxy formation.
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Param Name Symbol Value
Disk mass Mdisk 4.3 × 1010 M�
Gas mass Mgas 8.6 × 109 M�
R200 mass M200 1.07 × 1012 M�
Total mass Mtot 1.3 × 1012 M�

R200 R200 205 kpc
Scale length rdisk 3.43 kpc
Scale height hdisk 0.343 kpc

Number of gas particle Ngas 1 × 105
Number of dark matter particle NDM 1 × 105

Number of disk particle Ndisk 1 × 105
Number of bulge particle Nbulge 1250

Gas particle mass mgas 8.59 × 104 M�
Dark matter particle mass mDM 1.25 × 107 M�

Disk particle mass mdisk 3.44 × 105 M�
Bulge particle mass mbulge 3.44 × 105 M�

Softening length for all particle types 80 pc

Table 1 Disk parameters of the common IC for the idealized isolated galaxy, used in
the project AGORA (Kim et al., 2014). M is for the galaxy mass whilem is for that
of a single particle. rdisk is the scale length and hdisk is the scale height of the disk.
Increasing the resolution from low to medium or from medium to high reducesm
by a factor of 10, while it increases the total number of each particles by the same
factor.

Label Feedback εSFB

SNII SN-II 0
SNIISFB1 SN-II+SFB 0.1
SNIISFB2 SN-II+SFB 0.2
SNIISFB3 SN-II+SFB 0.3

SFB1 SFB 0.1
SFB2 SFB 0.2
SFB3 SFB 0.3

Table 2 Feedback efficiency parameters for tested cases. Note that the feedback
efficiency only applies to the stellar feedback (SFB), where it ranges from 0.1 to 0.3
(10 to 30%). We use εSFB = 0.1 as the fiducial (Stinson et al., 2013).
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Figure 1 A schematic evolutionary phases of SNR. It starts out with a SN explosion
immediately followed by a free expansion phase (left-most), then proceeds to the
Sedov-Taylor phase with adiabatic expansion. The SNR forms a dense shell dur-
ing the snowplow phase, and radiative cooling sets in before it dissipates into the
surrounding medium.
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Figure 2 A schematic representation of the SN-II feedback model for the SPH code.
Star Formation: An SPH (gas) particle first goes through star formation (SF), follow-
ing amodified version of the SF recipe, originally fromSpringel &Hernquist (2003).
A star particle is allowed to be born from a gas particle at each time-step if the gas
density exceeds the SF threshold density. Stellar feedback: For the next 4 Myr the
newly formed star particle continuously deposits thermal energy into the ambient
gas medium at a constant rate. Free Expansion: The typical free expansion phase
for a single stellar explosion only lasts a hundred to a thousand years. However,
since a star particle in the SPH simulations is treated as a stellar population, the
free expansion phase for a collection of stellar explosions lasts longer than a thou-
sand years due to the accumulation effect. This becomes comparable to a single
time-step that can be achieved by a high-resolution cosmological zoom-in (Hahn
& Abel, 2011) or by an isolated galaxy simulations. Therefore, we treat one single
time-step immediately after the stellar age reaches 4 Myr to be the free expansion
phase in this model. During this phase, the total SNe energy available from a star
particle is calculated by a Chabrier (2003) IMF and it is used to further calculate
the followings: (1) the total kinetic energy (∼ 28%) that is converted to the wind
velocity and given to the neighboring gas particles in a form of velocity kick (2) the
total thermal energy (∼ 72%; Durier & Dalla Vecchia 2012) that is deposited in the
neighboring gas particles (3) the time tST , tSnowplow, and tfade based on the ambient
gas density and the total SN energy (4) the shock radius (Rshock) that is used to find
the number of neighboring gas particles to be influenced by the SN-II feedback (5)
themass loss by the exploding star particle, and themass return to the neighboring
gas (6) metal production (Fe & O) by the exploding star particle and its distribution
among the neighboring gas. Both (5) and (6) are computed based on the criteria
described by Kim et al. (2014). Sedov-Taylor Phase: The wind particle travels by it-
self and produces galactic outflows until t = tSnowplow. Radiative cooling is turned
off during this phase to mimic its adiabatically expanding nature.

39



Figure 3 Star formation history of the tested cases for the isolated galaxy simu-
lations compared. SH03SF is the star formation model described by Springel &
Hernquist (2003) which incorporates the previous phenomenological SN model.
WINDS adds a kinetic feedback to SH03SF so that it produces bipolar outflows of
which the model is also described in Springel & Hernquist (2003). The other labels
are summarized in Table 2.
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Figure 4 Outflow rates (dM/dt) and mass loading efficiency (η) compared. The
compared cases are SN-II only (SNII), both SN-II and stellar feedback (SNIISFB),
WINDS and SNIISFB with the εSFB = 0.3 (SNIISFB3). Left: The outflow rate is
calculated at the z-plane 3 & 5 kpc away from the disk center, showing the total
outflow rate, which is the sum of the outflow rates above and below the disk center.
Right: η̄ is the mean value of η, averaged over the entire runtime (= 1 Gyr).

Figure 5 Projected gas density for the isolated disk galaxy simulations. The snap-
shot is at t= 1Gyr. SFB alone creates large low-density regions in the inner disk due
to the intense consumption of the gas that is converted to stars. A nearly identical
result is also seen for SH03SF alone case (not shown). Meanwhile, SNII prevents
the formation of the knots seen in SFB (or SH03SF) and produces more sturdy and
distinctive spirals.

41



Figure 6 Temperature variations in the gas mass for the isolated galaxy simulations
at t= 1Gyr. The gas particles affected by the feedback increase their internal energy
and rise up in the phase diagram (top panel). Those that escape the galaxy potential
become outflows and cool adiabatically, moving toward bottom-left as seen in the
tail.

Figure 7 Computed variables for SNII feedback. The variables are the time of the
end of the ST phase and fadeaway for each gas particle in the isolated galaxy sim-
ulations. The dashed lines are the typical values with a fixed SN energy available
for the feedback.
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Figure 8 Resolution dependency test: star formation histories. The compared star
formation histories are low and higher resolutionswith the spatial resolutions of 80
and 30 pc, respectively. The legends suffixed with ’med’ are the higher resolution
cases.

Figure 9 Resolution dependency test: phase diagram & fractional gas mass.
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Figure 10 Resolution dependency test: visualization. The gas density projections of
SNIISFB with resolutions of 80 and 30 pc are compared. The finer resolution case
captures the formation of hot low-density ’bubbles’ produced by the SN-II feedback
more explicitly. Note that the finer resolution is accompaniedwith a larger number
of particles in the simulations (see the caption of Table 1).

Figure 11 Stellar-to-halo mass ratio compared for the cosmological zoom-in simu-
lations at z = 0. The labels are assigned for the largest galaxy in each simulation
and the number associated with it is simply the galaxy ID.
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Figure 12 Projected gas density in L =1 Mpc/h for the zoom-in simulations at z =
0. The gas distribution is more diffusive and the number of satellite galaxies is
significantly reduced by the feedback effect for SNIISFB.

Figure 13 Projected dark matter density at z = 0. The presented cases are RUN2
and RUN1-A within a 1, 3 and 6 Mpc h−1 box centered on the target halo.

45



Figure 14 Dark matter density profiles of the target halo at z = 0. For comparison,
the profiles provided by Ji-hoon Kim (ENZO) and Alex Hobbs (GADGET-3 AFS)
are also shown.
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