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ABSTRACT

Velocity Distribution of Dark Matter Halos: a Critical Test for the Λ

Cold Dark Matter Model

by

Robert Jo Thompson

Dr. Kentaro Nagamine, Examination Committee Chair
Professor of Astronomy

University of Nevada, Las Vegas

The existence of a bullet cluster (such as 1E0657-56) poses a challenge to the con-

cordance Λ cold dark matter model. Here we investigate the velocity distribution

of dark matter halo pairs in large N -body simulations with differing box sizes and

resolutions. We examine various basic statistics such as halo masses, relative halo

velocities, collisional angles, and separation distances in our simulations. We then

compare the results to the observational properties of 1E0657-56. Our results suggest

that it is very difficult to produce such a halo pair with such a high relative velocity

at a redshift of z=0. The relative velocities increase at higher redshift, and we find

several candidate pairs in a volume of (2 h−1Gpc)3 at the same redshift as 1E0657-

56, z=0.296. However, most of these candidate pairs are separated by too large of a

distance.
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CHAPTER 1

INTRODUCTION

Dark Matter

A Swiss astronomer by the name of Fritz Zwicky was the first to infer the existence

of dark matter (DM) in 1933. He was using the virial theorem to calculate the total

mass of the Coma cluster, and found that it was ≃166 times more massive than one

would expect from luminosity measurements (Zwicky, 1937). Unfortunately his ideas

were not immediately embraced.

Theorists also found themselves with a need for this missing matter. Ostriker

& Peebles (1973) studied the stability of flattened galaxies in numerical simulations

and found that galaxies with an added spherical (halo) component were more stable.

Galaxies without the halo experienced a violent instability that could not be related

to any peculiarities of the model. It was their conclusion that the halo masses exterior

to the observed disks may be extremely large.

Up until this point in history there was little conclusive findings that an unseen

matter existed. The first clear observational evidence for dark matter came from

Rubin et al. (1980) detailing the group’s work on galaxy rotation curves. Rotation

curves measure the rotational velocity of gas and stars as a function of their distance

from the center of the galaxy. It is expected from Newton’s laws of gravity that the

farther from the center a star is, the slower its rotational velocity. Rubin and her

collaborators observed that the velocities were actually slowly rising in most galaxies

even out to the farthest measured point. These observations led Rubin and her team

to the conclusion that the 21 spiral galaxies they studied all must have a significant

mass located beyond the optical image.

Many dark matter theories came about in the early 1980s. The three most promi-

nent ones that employed non-baryonic matter are called ‘hot’, ‘warm’, or ‘cold’ dark
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matter, and they interact only through gravity, not through the electromagnetic force.

The hot dark matter theory describes particles traveling at ultra-relativistic veloci-

ties, and predicts that the structure forms through fragmentation. This is known as

the ‘top-down’ scenario wherein large superclusters form early on and fragment into

smaller pieces such as the Milky Way. The cold dark matter (CDM) model suggests

that the particles move with slower velocities, and that the structure forms hierarchi-

cally. This scenario is known as ‘bottom-up’, where smaller structures form first and

then merge to create larger structures (Blumenthal et al., 1984). Then there is warm

dark matter, which is a mixture of both hot and cold dark matter. The cold dark

matter theory quickly became the leading candidate due to it’s ability to reproduce

large scale structures resembling observations through the use of simulations (Davis

et al., 1985).

ΛCDM Model

Currently the most widely accepted model for the history of our universe is referred

to as the ΛCDM model. It is based on the cosmological principle which states that the

universe is spatially homogenous and isotropic, which is empirically justified on scales

larger than ∼100 Mpc. A solution to the Einstein field equations of General Relativity

describing such a universe was found by Friedmann (1922, 1924), and independently

by Lemâıtre (1927). Later through the work of Howard P. Robertson and Arthur

G. Walker, these solutions were proved to be the only solutions to describe a space-

time that was spatially homogenous and isotropic (Robertson, 1935, 1936a,b; Walker,

1937). This solution came to be known as the Friedmann-Lemâıtre-Robertson-Walker

(FLRW) metric.

By writing the Einstein field equations for the FLRW metric, Friedmann derived

his first equation:

H2 =
(

ȧ

a

)2

=
8πG

3
ρ − kc2

a2
+

Λc2

3
, (1.1)
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which is just a simple reduced form of the Einstein equation. Here H is the Hubble

constant; a is the scale factor of the universe, which is related to the cosmological

redshift by

1

a
≡ 1 + z; (1.2)

G represents Newton’s gravitational constant (G=6.67×10−8 cm3g−1s−2); ρ is the mass

density of the universe composed of both baryonic and non-baryonic dark matter; k is

the spatial curvature which takes the form of three solutions (k=0 for a flat universe,

k=-1 for a negatively curved or closed universe, and k=+1 for a positively curved

or open universe); and Λ is the cosmological constant that represents the vacuum

energy. This parameter allows for the current accelerating expansion of the universe

and can also be represented as the fractional energy attributed to the vacuum energy

ΩΛ.

If we assume the cosmological constant Λ & the spatial curvature k are equal to

zero, we can solve Equation (1.1) for a critical density in which the universe remains

flat:

ρc,0 =
3H2

0

8πG
= 2.77 × 1011 h2M⊙Mpc−3. (1.3)

Due to constant improvements in technology, and hence measurements of H0, we leave

these equations in terms of the Hubble constant where h ≡ H0/100 km s−1 Mpc−1. We

then define the ratio of current matter density to the critical matter density as

Ωm ≡ ρm

ρc
. (1.4)

The values of ΩΛ, Ωm, & H0 are well constrained by supernova type Ia data

(Kowalski et al., 2008) and measurements of the anisotropies in the cosmic microwave

background (CMB; Komatsu et al., 2009, 2010).
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Motivation for Current Work

The observations of the massive cluster of galaxies 1E0657-56 suggest a much

higher relative dark matter halo velocity than one would expect by the ΛCDM model.

This system includes a massive sub-cluster (the bullet) with Mbullet≃1.5 ×1014M⊙

that has fallen through the parent cluster of Mparent≃1.5 ×1015M⊙ roughly 150 million

years ago and is observed to be separated by an approximate distance of ≃ 0.72Mpc

(Clowe et al., 2004, 2006; Bradac̆ et al., 2006). The above masses were determined

by weak and strong gravitational lensing studies. The uniqueness of this system

comes from the collision trajectory being almost perpendicular to our line of sight.

This provides an opportunity to better study the dynamics of large cluster collisions.

The Chandra observations revealed that the primary baryonic component had been

stripped away in the collision and resided between the two clusters in the form of

hot X-ray emitting gas. This provides strong evidence for the existence of dark

matter for the following reasons. As the two clusters passed through each other, the

baryonic components of these two clusters interacted and slowed down due to ram

pressure. However the dark matter component was allowed to move ahead of the gas,

because it only interacts through gravity. One can infer the velocity of the bow shock

preceding the ‘bullet’ through the shock Mach number and a measurement of the

pre-shock temperature. The inferred shock velocity is found to be vshock=4740+710
−550

km s−1(Markevitch, 2006; Springel & Farrar, 2007).

It is often assumed that the inferred shock velocity is equal to the velocity of the

dark matter ‘bullet’ itself. This high speed provides a challenge to the ΛCDM model

since it does not predict such high relative velocities. Several groups have shown,

however, that this is not necessarily the case through the use of non-cosmological

hydrodynamic simulations. Milosavljević et al. (2007) used two dimensional simula-

tions to find that the subcluster’s velocity differed from the shock velocity by about

16%, bringing the relative velocity down to ∼3980 km s−1. They assumed a zero
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relative velocity at a separation distance of 4.6 Mpc for their initial conditions. They

also emphasized that their conclusion is sensitive to the initial mass and gas density

profile of the two clusters. Later Springel & Farrar (2007) showed through the use

of three dimensional hydrodynamic toy models that the subcluster’s relative velocity

could be as low as ∼2700 km s−1. Their initial conditions assumed a relative velocity

of 2057 km s−1 at a separation distance of 3.37 Mpc. Mastropietro & Burkert (2008)

explored a larger range of initial relative velocities at initial separation distances of

3.37 Mpc and 5Mpc through the use of three dimensional hydrodynamic simulations.

They found that in order to accurately reproduce the observational data of 1E0657-

56, a relative halo infall velocity of ∼3100 km s−1 at an initial distance of 5 Mpc was

required.

Lee & Komatsu (2010) quantified the likelihood of finding bullet-like systems in the

large cosmological simulation MICE (Crocce et al., 2010). They examined DM halos

at redshifts of z=0.5 & z=0, concluding that the ΛCDM model is incompatible with

observations of 1E0657-56 at a 99.95% confidence level for z=0. At z=0.5 however,

their results were not fully conclusive due to limited statistics. They estimated the

probability of finding such a system at z=0.5 to be 3.6×10−9 if the distribution is

indeed Gaussian, but warn that these estimates may be inaccurate because they are

probing the tail of the distribution.

We examine ΛCDM N -body simulations to see how common these high relative

velocities are among massive DM halos. This paper is organized as follows. Section

2 discusses simulation parameters and how the overall resolution is calculated and

adjusted. Section 3 dives into the simulation results and addresses specific parameters

relevant to this study. Subsection 3 examines the importance of simulation results

at z=0.296 and how they relate to the bullet system. Finally Section 4 contains my

concluding remarks and discussion of future prospects.
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CHAPTER 2

SIMULATIONS

For our simulations we use the GADGET-3 code (as originally described in Springel,

2005) which simulates large N -body problems by means of calculating gravitational

interactions with a hierarchical multipole expansion, and gas dynamics (if present) are

followed with smoothed particle hydrodynamics (SPH). The gravity is solved in two

parts: the short-range forces are calculated by a tree technique, and the long-range

forces are computed with a FFT-based particle mesh scheme.

Cosmological parameters consistent with the cosmological constraints from the

Wilkinson Microwave Anisotropy Probe (WMAP) data were employed when creating

the initial conditions for each simulation: (Ωm, ΩΛ, H0, σ8, ns)≈(0.26, 0.74, 72, 0.8,

1.0) (Komatsu et al., 2009, 2010). Here σ8 measures the amplitude of the power

spectrum; and ns is the primordial power spectrum of mass density fluctuations. The

value of ns governs how the primordial matter density field fluctuates on small scales,

and it dictates the amount of small scale structures. We note that we used a value

of ns=1.0 although the best-fit value from the WMAP data is ns=0.96. Since we are

mainly interested in high mass halo pairs, a slight change in ns would have a minimal

impact on the results of this study. We will check this by running a few simulations

with ns=0.96 at a later time.

Our initial conditions all employ a different number of particles (N) whose initial

positions were set so that the initial density field fluctuation has a random Gaussian

phase. Each simulation contains only collisionless dark matter particles that interact

solely through gravity. It is useful to calculate the mass of each dark matter particle

(Mdm), which defines the mass resolution of each simulation. To do this, we first

use Equation (1.4), Equation (1.3), and Ωm=0.26 to solve for the current matter

density in terms of solar masses per unit volume, arriving at a value of ρm=7.21 ×

1010 h2M⊙Mpc−3. To find the mass of each dark matter particle, we multiply ρm by
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the volume of our simulation box (V ), then divide the resulting value by the total

number of particles:

Mdm [h−1M⊙] =
ρm V

N
. (2.1)

Lastly we define the gravitational softening length. As particles in our simulation

approach one another, the force between them calculated by Newton’s universal law

of gravity (F=GMmr−2) goes to infinity. This will produce unrealistic accelerations

within the simulation. In order to avoid these unwanted accelerations we replace r−2

with (r + ǫ)−2, where ǫ is a small number called the gravitational softening length.

This added value essentially ‘softens’ the gravity at small separations, and smooths

out the small scale structures in our simulations. It is and is typically calculated

using the following empirical rule of thumb:

ǫ [h−1kpc] =
(

V

N

)1/3

× 1

25
, (2.2)

where 1/25 is a fraction of the mean inter-particle separation. The value of ǫ represents

the spatial resolution of a given simulation.

Several simulations with varying particle counts and box sizes were ran from the

early universe (z=100) to the present time (z=0) where z is the cosmological redshift

defined by Equation (1.2). The list of simulations along with their box sizes, total

particle counts, gravitational softening lengths, friends-of-friends linking lengths, and

mass resolutions can be found in Table 1. We started with the L250N125 simulation,

and increased the box size and particle count in order to maintain the same mass

resolution and gravitational softening length up to the L2000N1000 simulation. The

second set of simulations were ran to examine the resolution effect. We started with

the same L250N125 simulation and increased the particle count and decreased the

gravitational softening length while keeping the box size the same, up to the L250N500

simulation. After the initial data analysis was complete the L2000N1000 simulation

7



was ran once again, this time dumping an output file at z=0.296 to see how going

back in time would affect the results, which will be discussed in section 3.
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CHAPTER 3

DATA ANALYSIS & RESULTS

Halo Mass Function

The simulation output files only contain particle locations and velocities. In order

to properly interpret this data the particles need to be grouped into halos. This is done

using the parallel friends-of-friends group finder SUBFIND (Springel et al., 2001). The

code first separates the particles into groups if they lie within a specified linking length

(FoF LL). This linking length is a fraction of the mean initial inter-particle separation

in which we will consider a region to be over-dense. The standard linking length of

0.2 is employed in our studies. In order to be considered a halo it must also contain at

least 32 particles. The code then analyzes each group for gravitationally self-bound

substructures and separates them from what is then considered the background group.

For each gravitationally self-bound group a center-of-mass position and the number

of particles contained within the group is returned. Now that the number of particles

in each group is known we can simply multiply that number by Mdm (DM particle

mass listed in Table 1) to arrive at the total mass of each halo (Mhalo).

Figures 1 and 2 show DM halo mass functions, which presents the number density

of halos occupying each mass bin. The mass of the smallest halo we expect to find

in each simulation is 32×Mdm. Figure 1 shows that by increasing the box size from

250 h−1Mpc to 2000 h−1Mpc while maintaining the same resolution, the number of

high mass halos increase. The mass of the smallest halo in all simulations shown in

Figure 1 is Mhalomin=1.84×1013M⊙. The run with the largest box size (L2000) shows

a slight shortage in the number of low mass halos around Mhalo≃ 1013.24−14.20M⊙ when

compared to the other three runs with smaller box sizes. The most likely explanation

for this shortage is that the lower mass halos were absorbed into higher mass halos.

Figure 2 shows how increasing the resolution of the simulation while keeping the

9



box size constant increases the number of lower mass halos. Increasing the particle

number decreases the gravitational softening length and increases the mass resolution

at the same time, hence improving our overall resolution. Higher resolution runs can

resolve smaller halos as seen in Figure 2. The smallest halo for the highest resolution

simulation (L250N500) has a mass of Mhalomin=2.87 × 1011M⊙, which is roughly two

orders of magnitude lower than the lowest mass halos found in Figure 1.

Searching for a bullet cluster-like pair of halos with masses on the order of Mbullet

& Mparent, Figures 1 & 2 indicate that it is possible to form such massive halos in box

sizes as small as 250 h−1Mpc. Simply producing high mass halo pairs is not enough

to reproduce the bullet cluster as we will see through later analysis of halo distance

& pairwise velocities.

Pairwise Distance

Before examining the pairwise velocity of halos in large simulations, it is important

to take the distance between them into consideration. The larger the distance between

two halos, it is less likely that they are an actual pair. To see how large the halos in

our simulations are, we determine the maximum radius of each halo from the center-

of-mass. Many large halos were found to have radii up to 10 h−1Mpc as seen in Figure

3, which shows the maximum halo radius as a function of its mass contained within

our largest run at z=0. The red dashed line represents the virial radius of a DM

halo with a given mass, at which the mean enclosed density is 200 times the critical

density (Mo & White, 2002):

rvirial =

[

GM

100 Ωm(z) H2(z)

]1/3

. (3.1)
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Here H(z) is the Hubble parameter, and Ωm(z) is the density parameter at redshift

z. These values are related to their present-day values (subscript 0) by:

H(z) = H0E(z) and Ωm(z) =
Ωm,0(1 + z)3

E2(z)
, (3.2)

where

E(z) =
[

ΩΛ,0 + Ωm,0(1 + z)3
]1/2

. (3.3)

It is clear that the maximum radius increases with increasing virial radius. The

approximate virial radii of 1E0657-56 at z=0.296 is rvirial≃2.80 Mpc for the parent,

and rvirial≃1.30 Mpc for the bullet. To be conservative all pairs with a distance

between their centers of mass smaller than 10 h−1Mpc were considered.

Care must be taken as to not double count the number of pairs. Two identical

lists of halos denoted i and j were created to allow for easy comparison. We first

define the distance between the center-of-mass of each respective halo pair by:

d =
√

dX2
ctr + dY 2

ctr + dZ2
ctr, (3.4)

where dXctr=(xctri−xctrj), dYctr=(yctri−yctrj), and dZctr=(zctri−zctrj). We then

compare haloi=1 to haloj=i+1 through haloj=i+(n−1), where n represents the total

number of halos. We repeat this calculation until evaluating the comparison for

haloi=n−1. This process allows us to get a single value for the distance between each

halo pair within the limiting distance without double counting.

Pairwise Velocity Distribution Function

Knowing each group’s absolute velocity components with respect to the simulation

box makes it rather simple to calculate their pairwise velocities (v12). By defining

dvx=(vxi−vxj), dvy=(vyi−vyj), and dvz=(vzi−vzj), we calculate each group’s pairwise
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velocity:

v12 =
√

dv2
x + dv2

y + dv2
z , (3.5)

using the same comparison methodology described in the previous section to avoid

double counting.

Figures 4 & 5 show the number of halo pairs within a velocity bin per unit volume.

Both Figures are separated into four panels, each showing the results from the simula-

tion name printed in the top right corner. Each panel is then broken down into three

lines showing halo pairs with a separation distance of less than 2, 5, & 10 h−1Mpc.

Figure 4 displays how increasing the box size while maintaining resolution allows

for more high velocity halo pairs. The majority of the higher velocity pairs have a

separation distance of 5−10 h−1Mpc, which makes it difficult to tell if they are actual

pairs or not. It appears to be a trend that the closer the halo pair is, the lower its

pairwise velocity. The high pairwise velocity for largely separated pairs is probably

due to the large-scale bulk motion of physically separated structures.

Figure 5 shows the resolution effect on the velocity distribution function while

keeping the box size the same. We find that as we increase the resolution, we see

more high velocity pairs. Unlike the previous case, as we increase the resolution the

higher velocity halo pairs seem to stick closer together. This may very well be due to

the limited box size, but further investigation would be needed in order to draw this

conclusion.

Given the bullet cluster’s separation distance of d ≃ 0.72 Mpc, it is already appar-

ent that in order to produce such a close and high pairwise velocity pair one would

need a large box size with a higher resolution.

Relative Halo Velocity & Halo Mass

We compare the masses of our high velocity halo pairs to the observed masses of

the bullet cluster and its parent. For this it is useful to plot the average mass of a
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halo pair vs. their pairwise relative velocity as shown in Figures 6 & 7. For reference

the average mass of the bullet cluster and its parent cluster is log 〈M〉 ≃ 14.92 M⊙,

illustrated in the figures by the dashed gray line.

Figure 6 shows how increasing the box size with a constant resolution not only

increases the number of low-mass, high velocity halo pairs, but it also increases the

number of high mass high velocity pairs. Even with the largest box size simulation

(L2000) the pairs of interest only reach relative speeds upwards of v12≃2000 km s−1,

with maximum pairwise velocities reaching v12≃3000 km s−1 for low-mass pairs. This

difference of roughly 1000 km s−1 present between the higher velocity low mass pairs

and higher velocity high mass pairs also seems to be a trend in each of the smaller

box simulations.

Figure 7 shows the resolution effects. A higher resolution results in more low mass

high velocity pairs and fewer high mass high velocity pairs. It is also clear from the

bottom panel of this Figure that we have hit our high mass limit of approximately

1015M⊙ in agreement with Figure 2. This means that, if we want to probe higher mass

halos while improving the resolution, we must also increase the box size. Even our

highest resolution simulation with average halo masses approaching that of the bullet

system are still only found to have relative velocities on the order of v12≃1800 km s−1.

It can also be seen from this figure that as we increase our resolution, we are probing

the pairwise velocities of lower mass halos. In the top panel (L250N125) of Figure 7

the lowest value is 〈M〉 ≃ 1013.30M⊙, where as in the bottom panel (L250N500) the

lowest value is 〈M〉 ≃ 1011.40M⊙. It would seem as though arbitrarily increasing the

resolution may be a waste of computational resources as the number of high mass high

velocity halo pairs found through increasing resolution is quite low when compared

to increasing the box size.

13



Cumulative Halo Velocities

To examine how the box size and resolution affects the number of high velocity

halo pairs, we simply count the cumulative number of pairs above a certain velocity

as shown in Figures 8 & 9. Figure 8 shows how increasing the overall resolution of

simulation affects the slope of this cumulative distribution. More high velocity halo

pairs are produced as we increase the resolution as seen in Figure 5, but we know that

these high velocity pairs are relatively low mass and not the pairs we are searching

for from Figure 7. Figure 9 shows that as we increase the box size, we extend the

curve to larger pairwise halo velocities. Assuming that this trend will continue, we fit

a quadratic to the curve of our largest simulation (L2000N1000) of the form f=y0 +

ax+ bx2 (where x=v12 & y=log dN(> v12)/dV ). This allows us to estimate what box

size simulation at this redshift (z=0) and resolution would be needed to produce a

single pair of halos with a relative velocity of 4740 km s−1(Markevitch, 2006), 3980 km

s−1(Milosavljević et al., 2007), 3100 km s−1(Mastropietro & Burkert, 2008), and 2700

km s−1(Springel & Farrar, 2007). The curve was fitted between the velocities 1000

and 2500 as indicated by the black dashed lines in Figure 10 with resulting values of

y0=−3.1386, a=−2.3359 × 10−3, b=1.1278× 10−7. Using the fitted function, we find

the points marked by ‘+’ on Figure 10 at (x, y)=(4740,-11.68),(3980,-10.65),(3100,-

9.30), and (2700,-8.62) translating to box sizes of Lbox∼3612, 2657, 1689, & 1315

h−1Mpc respectively. In order to maintain the same resolution, simulations with

these box sizes would require N≃18063, 13293, 8453, & 6583 particles. Given these

results, our largest simulation should contain candidate bullet-like pairs consistent

with the requirements of Mastropietro & Burkert (2008); Springel & Farrar (2007).

But as before, their masses are too low to be consistent with 1E0657-56 observations.
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Halo Pair Velocity Angles

Given the large separation distance between many of the high velocity halo pairs

it is difficult to tell if they are actual pairs. Another parameter that gives us a better

idea of their orientations is the angle between their velocity vectors. Knowing this

angle can assist us in determining if high velocity pairs have velocity vectors directed

towards each other or not. We calculate the angle between a pair by taking the dot

product of the pair’s velocity vectors and solving for the angle as

θ = cos−1 ~vi · ~vj

|vi||vj|
. (3.6)

Unfortunately the angle itself does not tell us if the two halos are heading towards

or away from one another. Further investigation into the pair’s position and velocity

vectors would need to be performed to determine this for the close pair candidates.

Results at Redshift z=0.296

To be fully consistent with 1E0657-56, comparing simulation data from the same

time period would be ideal. Up until this point all of the simulation data has been

from the era of z=0, yet the bullet system is observed at a redshift of z=0.296.

This difference in time of ∼3.32 billion years (Wright, 2006) can have a considerable

impact on the velocities, sizes, and separation distances of the halos contained within

the simulation.

The largest simulation (L2000N1000) was re-ran up until a redshift of z=0.296

where an output file was then dumped. The halos were then grouped, then their radii

and distances were calculated as described by previous sections. The same limiting

distance of 10 h−1Mpc was chosen. Finally pairwise velocities were calculated, then

multiplied by
√

a to correct for the redshift effect. The top panel of Figure 11 shows

the same velocity function from the bottom panel of Figure 4 at z=0 compared to
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the velocity function of the same simulation at z=0.296. We see here that as we go

back to earlier redshifts pairwise velocities greatly increase. Pairs within separation

distances of 2 h−1Mpc now have maximum pairwise velocities on the order of ≃3000

km s−1, and as their separation distances increase we reach pairwise velocities as high

as ≃7500 km s−1. Figure 12 compares the same velocity vs. average halo mass plot

from the bottom panel of Figure 6 at z=0 to the results from the same simulation

at z=0.296 in the bottom panel. The number density of halo pairs in the area of

interest has greatly increased. Unfortunately further investigation reveals that their

mass ratios are not in agreement with the observational properties of 1E0657-56.
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CHAPTER 4

DISCUSSION & CONCLUSIONS

Many N -Body simulations with varying box sizes and resolutions were run in

order to examine how changing these parameters affect the search for high velocity

halo pairs comparable to the ‘bullet’ in the 1E0657-56 system. Properties of halos

from the L2000N1000 simulation were chosen because of its large box size and mod-

erate resolution. Much of the data presented in this work is from simulations ran up

until present day (z=0), but the largest simulation was re-run until z=0.296. The

important properties reviewed were pairwise velocities, halo masses, and halo sepa-

ration distance. Halo distances, and radii for the z=0.296 data were all corrected for

the redshift effect by dividing their co-moving values returned by the simulation by

(1 + z).

Table 2 lists the ten largest averaged halo mass pairs for the z=0 and z=0.296

case. A simulation of this size only creates a few halo pairs massive enough to match

1E0657-56 observations at z=0 and z=0.296. In the z=0 case the pairwise velocities

are too low to match up to the required 3100 km s−1 (Mastropietro & Burkert, 2008),

but at z=0.296 we see that their pairwise velocities have greatly increased with seven

pairs easily reaching and even exceeding 3100 km s−1. Unfortunately the separation

distances of all halo pairs in this table are much larger than the observed separation

distance of d≃0.72 Mpc for the bullet system. Pair 20 is a close match to the initial

condition requirements of Mastropietro & Burkert (2008) with a pairwise velocity of

≃3135 km s−1, but with an average mass of ≃1015.61M⊙ the halos are too large.

Table 3 lists the ten closest halo pairs for the z=0 and z=0.296 case. All of

these pairs are quite close in agreement with the observations of 1E0657-56, but their

masses and relative halo velocities fall severely short of the halos we are searching for.

Table 4 lists the ten highest pairwise velocity halos for z=0 and z=0.296. Here

we see that all of the halos listed have relatively large separation distances and low
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masses when compared to Mbullet & Mparent. As we saw in Figure 1 we would need to

greatly increase the box size to allow for higher mass halos, but at the same time we

would have to greatly increase the resolution to lower the separation distance as seen

in Figure 5 for the z=0 case. For the z=0.296 case we see that the 10 highest pairwise

velocity halos greatly exceed the required velocity of 3100 km s−1. Here their masses

are too small to match observations, and their separation distances are once again

too large.

The list of halos in the L2000N1000 z=0.296 simulation was mined looking for

bullet-like pairs only considering their masses, mass ratios, pairwise velocities, and

separation distances. A table of the top five pairs that most closely resembled the

observational properties of 1E0657-56 including the v12 requirement of 3100 km s−1

(Mastropietro & Burkert, 2008) is found in Table 5. After calculating the angle be-

tween their velocity vectors it is clear that pair 61 is not on a near head-on trajectory,

while pairs 62, 63, 64, and 65 all have trajectory angles approximately ∼60◦ off from

being head on. The masses of pairs 61-65 are all about a factor of ten too small, and

have relatively large separation distances when compared to observations. Future

plans include increasing the simulation box size to allow for better high mass halo

statistics.

It is quite a challenge to reproduce the observational properties of 1E0657-56 in

N -body simulations. One has to produce halos pairs of the appropriate masses and

mass ratios, relatively high pairwise velocities with near head on collision angles, and

the appropriate separation distance between the halo pairs. In my studies I found

it very unlikely that one could produce such a halo pair at z=0, but at z=0.296 the

situation became less unlikely due to the dramatic increase in pairwise velocities.

Unfortunately the masses and separation distances of the pairs still proved to be

incompatible with the observational properties of 1E0657-56. It does seem possible

however, that one can produce the initial conditions required by Mastropietro &
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Burkert (2008) to create such a ‘bullet’. Pair 65 in Table 5 is a prime example of such

a pair; with a relative velocity of ∼3100 km s−1 and a separation distance of ∼4.6

h−1 Mpc it only differs from the initial conditions of Mastropietro & Burkert (2008)

by the pair’s mass being a factor of ∼10 too low, and that the collision angle is ∼60◦

from being head on.

It is also entirely possible that a bullet-like cluster is nested within one of our

large halos but were were unable to locate it due to the specified linking lengths for

the friends-of-friends grouping algorithm used throughout this study. In the future

we plan on decreasing the linking length in hopes of finding such a nested cluster.

We also plan to re-run each simulation to z=0.296 to see if the trends present at z=0

are also present at higher redshifts. It may also be useful to examine simulations at

a redshift earlier than z=0.296 to see if the ΛCDM model can reproduce halo pairs

with conditions similar to the initial conditions of Mastropietro & Burkert (2008)

that reproduced the observational properties of 1E0657-56. In the future we plan on

statistically quantifying the likelihood of finding such a halo pair at various redshifts.

If we find the ΛCDM model to be consistent with observations, it is clear from this

study alone that events such as 1E0657-56 are quite rare.
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Table 1. Summary of Simulations

Run Name Box Size Particle Count Mdm ǫ FoF LL

[h−1 Mpc] [N]
1

3 [h−1 M⊙] [h−1 kpc] [h−1 kpc]

Box Size Effects

L250 N125 250 125 5.74 × 1011 80 400
L500 N250 500 250 5.74 × 1011 80 400
L1000 N500 1000 500 5.74 × 1011 80 400
L2000 N1000 2000 1000 5.74 × 1011 80 400

Resolution Effects

L250 N125 250 125 5.74 × 1011 80 400
L250 N165 250 165 2.50 × 1011 60.6 303
L250 N250 250 250 7.18 × 1010 40 200
L250 N500 250 500 8.97 × 109 20 100

Note. — A summary of simulations employed in this paper. ǫ is the gravitational
softening length calculated using Equation (2.2), Mdm is the mass of each DM particle
calculated using Equation (2.1), and FoF LL is the friends-of-friends linking length.
The top four simulations explore the effects of increasing the box size while maintain-
ing the same resolution, while the bottom four explore the effects of increasing the
mass and spatial resolution.
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Table 2. Highest Mass Pairs

Pair v12 θ M1 M2 Ratio d r1virial r1max r2virial r2max

z=0

1 1669.65 165 5.71E+15 4.99E+14 0.087 8.70 5.67 5.84 2.52 3.40
2 1792.24 46 5.71E+15 1.99E+14 0.035 7.84 5.67 5.84 1.85 2.71
3 1766.49 75 5.71E+15 1.01E+14 0.018 7.63 5.67 5.84 1.48 2.14
4 1625.45 80 5.71E+15 7.27E+13 0.013 7.13 5.67 5.84 1.32 1.53
5 2316.36 72 5.71E+15 7.10E+13 0.012 6.21 5.67 5.84 1.31 1.52
6 1645.19 51 5.71E+15 3.87E+13 0.007 8.74 5.67 5.84 1.07 1.45
7 2062.06 95 5.71E+15 3.23E+13 0.006 8.58 5.67 5.84 1.01 0.95
8 2035.07 77 5.71E+15 2.25E+13 0.004 9.27 5.67 5.84 0.90 1.11
9 1662.06 116 4.79E+15 1.91E+13 0.004 8.19 5.35 7.33 0.85 1.50
10 1304.08 84 4.79E+15 1.91E+13 0.004 9.29 5.35 7.33 0.85 1.23

z=0.296

11 3136.52 104 1.07E+16 3.44E+14 0.032 7.31 5.39 6.09 1.71 1.96
12 2398.52 111 1.07E+16 7.56E+13 0.007 6.90 5.39 6.09 1.03 1.61
13 3954.07 75 1.07E+16 4.56E+13 0.004 5.61 5.39 6.09 0.87 0.76
14 4109.03 44 1.07E+16 3.23E+13 0.003 5.08 5.39 6.09 0.78 0.55
15 2079.49 106 1.07E+16 2.54E+13 0.002 5.41 5.39 6.09 0.72 1.05
16 4463.41 106 1.07E+16 2.02E+13 0.002 3.05 5.39 6.09 0.67 0.75
17 3857.40 32 8.15E+15 8.43E+13 0.010 4.74 4.92 6.04 1.07 0.98
18 3629.31 91 8.15E+15 7.04E+13 0.009 4.84 4.92 6.04 1.01 0.96
19 2687.07 128 8.15E+15 6.87E+13 0.008 6.42 4.92 6.04 1.00 1.05
20 3135.90 141 7.53E+15 6.99E+14 0.093 6.73 4.80 10.86 2.17 3.04

Note. — The ten largest average halo mass pairs from the L2000N1000 simulation at z=0 and
z=0.296. While a simulation of this box size can produce pairs matching observations of 1E0657-56
it is important to note their low relative velocities for the z=0 case, and large separation distances
for both cases. v12 is given in km s−1, masses are given in M⊙, distances (d) and radii given in
h−1Mpc.
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Table 3. Closest Pairs

Pair v12 θ M1 M2 Ratio d r1virial r1max r2virial r2max

z=0

21 320.99 60 2.08E+13 1.96E+13 0.944 0.70 0.87 1.05 0.86 1.04
22 526.04 84 2.25E+13 1.96E+13 0.872 0.82 0.90 0.74 0.86 0.65
23 309.09 84 5.14E+13 1.96E+13 0.382 0.87 1.18 1.48 0.86 1.38
24 422.42 40 2.25E+13 2.08E+13 0.923 0.92 0.90 0.78 0.87 0.88
25 94.89 10 5.72E+13 2.89E+13 0.505 0.92 1.22 2.21 0.97 0.89
26 330.83 60 3.06E+13 2.54E+13 0.830 0.92 0.99 1.15 0.93 0.84
27 211.55 29 7.33E+13 2.14E+13 0.291 0.95 1.33 1.82 0.88 1.44
28 342.82 45 2.08E+13 1.91E+13 0.917 0.96 0.87 1.33 0.85 0.95
29 127.37 6 2.66E+13 1.91E+13 0.717 0.97 0.95 0.70 0.85 1.27
30 252.72 19 1.91E+13 1.91E+13 1.000 0.98 0.85 0.81 0.85 0.74

z=0.296

31 411.14 12 2.25E+13 1.91E+13 0.849 0.57 0.69 0.36 0.65 0.94
32 232.86 11 4.04E+13 2.14E+13 0.530 0.58 0.84 0.60 0.68 0.95
33 334.68 25 2.37E+13 2.08E+13 0.878 0.61 0.70 0.72 0.67 0.59
34 671.93 47 2.02E+13 1.91E+13 0.946 0.61 0.67 0.48 0.65 0.46
35 678.21 12 2.66E+13 2.25E+13 0.846 0.61 0.73 1.03 0.69 0.63
36 614.99 47 3.46E+13 2.42E+13 0.699 0.62 0.80 0.38 0.71 0.79
37 336.38 24 2.89E+13 2.02E+13 0.699 0.64 0.75 0.89 0.67 0.48
38 581.28 73 2.25E+13 1.91E+13 0.849 0.65 0.69 0.57 0.65 0.70
39 724.55 50 2.08E+13 2.02E+13 0.971 0.66 0.67 0.65 0.67 0.64
40 835.49 31 2.37E+13 1.91E+13 0.806 0.66 0.70 0.61 0.65 0.47

Note. — The ten closest halo pairs in the L2000N1000 simulation for z=0 and z=0.296. All
of these pairs are close to the observed separation distance of 1E0657-56 but all have very low
relative velocities and masses. v12 is given in km s−1, masses are given in M⊙, distances (d)
and radii given in h−1Mpc.
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Table 4. Highest Velocity Pairs

Pair v12 θ M1 M2 Ratio d r1virial r1max r2virial r2max

z=0

41 3673.46 103 3.64E+13 2.71E+13 0.746 8.83 1.05 1.06 0.95 1.28
42 3199.25 151 2.14E+13 2.02E+13 0.946 8.20 0.88 0.80 0.86 0.86
43 3132.84 134 5.83E+13 2.60E+13 0.446 9.09 1.23 1.36 0.94 1.17
44 3094.64 114 8.20E+13 4.56E+13 0.556 9.21 1.38 1.72 1.13 1.35
45 3053.49 108 8.20E+13 2.14E+13 0.261 9.11 1.38 1.72 0.88 1.36
46 2943.54 148 5.43E+13 2.54E+13 0.468 8.38 1.20 1.47 0.93 1.00
47 2921.13 158 1.67E+14 2.14E+13 0.128 7.83 1.75 2.10 0.88 0.97
48 2919.17 126 3.93E+13 3.93E+13 1.000 9.43 1.08 0.88 1.08 1.15
49 2916.59 135 3.81E+13 2.94E+13 0.773 9.27 1.07 0.99 0.98 1.05
50 2888.64 173 2.83E+13 2.71E+13 0.959 6.92 0.97 1.04 0.95 1.36

z=0.296

51 7447.37 127 4.56E+13 2.02E+13 0.443 6.73 0.87 0.76 0.67 0.75
52 7385.98 139 7.04E+13 4.33E+13 0.615 7.35 1.01 0.96 0.86 0.93
53 6769.60 109 4.33E+13 4.16E+13 0.961 7.34 0.86 0.93 0.85 0.75
54 6480.53 123 4.33E+13 1.96E+13 0.453 7.34 0.86 0.93 0.66 0.87
55 6159.14 118 7.04E+13 3.00E+13 0.426 6.60 1.01 0.96 0.76 0.58
56 6052.69 141 3.23E+13 2.54E+13 0.786 2.74 0.78 0.55 0.72 1.05
57 6007.81 134 4.27E+13 1.85E+13 0.433 6.03 0.86 1.06 0.65 0.60
58 5922.04 102 8.43E+13 2.25E+13 0.267 5.02 1.07 1.27 0.69 0.79
59 5883.44 87 4.56E+13 3.23E+13 0.708 5.64 0.87 0.76 0.78 0.55
60 5780.16 135 7.91E+13 4.16E+13 0.526 6.38 1.05 0.88 0.85 0.76

Note. — The ten highest pairwise velocity halos found in the L2000N1000 simulation at z=0 and
z=0.296. None of these high velocity halo pairs are massive enough to match the observations of
1E0657-56, and they all have relatively large separation distances with small radii arguing against
many of these being actual pairs. v12 is given in km s−1, masses are given in M⊙, distances (d) and
radii given in h

−1Mpc.
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Table 5. Bullet-like Pairs at z=0.296

Pair v12 θ M1 M2 Ratio d r1virial r1max r2virial r2max

61 3198.35 70 2.67E+14 2.08E+13 0.078 3.65 1.58 1.81 0.67 0.61
62 3142.82 115 2.31E+14 2.37E+13 0.103 3.03 1.50 1.45 0.70 0.60
63 3142.82 115 2.31E+14 2.37E+13 0.103 3.03 1.50 1.45 0.70 0.60
64 3140.99 127 1.12E+14 2.19E+13 0.196 3.79 1.18 1.25 0.68 0.60
65 3100.35 122 2.68E+14 3.06E+13 0.114 4.59 1.58 1.53 0.77 1.20

Note. — Bullet-like pairs at z=0.296 selected based on their pairwise velocities, masses, mass
ratios, and separation distances. Pair 61 has a trajectory angle inconsistent with observations.
Pair 64’s mass ratio is too high compared to the observed mass ratio of ∼0.1. Pair 65 is the most
likely contender although the masses of this pair are a factor of ten too low, and their separation
distance is too far. v12 is given in km s−1, masses are given in M⊙, distances (d) and radii given
in h−1Mpc.
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Figure 1 DM halo mass function, box size effect. This shows how increasing the box
size of a simulation allows for a larger number of high mass halos. Bin size of 0.29

25



Figure 2 DM halo mass function, resolution effect. This shows how increasing the
resolution of a simulation allows for a greater number of small mass halos. Bin size
of 0.29
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Figure 3 Maximum DM halo radius vs. DM halo mass for the L2000N1000 simu-
lation at z=0. The red dashed line represents the virial radius calculated by Equa-
tion (3.1). We see here that as we examine higher mass halos their average radius
steadily becomes larger than their virial radius. The vertical dashed lines represent
rvirial,bullet≃1.69, & rvirial,parent≃3.63 at z=0. Halos with a radius of up to 10 h−1Mpc
were considered for this study.
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Figure 4 Velocity function, box size effect. Increasing the box size allows for higher
pairwise velocities, but their separation distances increase as well.
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Figure 5 Velocity function, resolution effect. Increasing the resolution of the simula-
tion allows for higher pairwise velocities, and seems to keep their separation distances
close together. Although it is possible that this is due to the limited box size.
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Figure 6 Velocity vs. average DM halo mass, box size effect. Increasing the simulation
box size shows us that the number of low mass high velocity pairs increases more than
the high mass high velocity pairs do. The horizontal dashed line represents the average
mass of 1E0657-56.
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Figure 7 Velocity vs. average DM halo mass, resolution effect. Increasing the resolu-
tion probes lower mass halo pairs. There is a slight increase in high mass high velocity
pairs but the majority of the increase is in the low mass regime. The horizontal dashed
line represents the average mass of 1E0657-56.
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Figure 8 DM halo cumulative velocity function, resolution effect. Here we see that
increasing the resolution of the simulation changes the slope of the cumulative curve.
From Figure 7 we know that this increase in high velocity pairs is due to low mass
pairs.
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Figure 9 DM halo cumulative velocity function, box size effect. Increasing the box
size increases the number of high velocity pairs we find. The trend seems to be present
throughout all simulations presented in this figure.
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Figure 10 Quadratic fit between the velocities of 1000 and 2500 applied to the
L2000N1000 z=0 cumulative velocity curve. If the trend continues as we enlarge
the simulation box, we expect to find one halo pair with pairwise velocities of 4740,
3980, 3100, & 2700 km s−1 within a box size of ≃ 3612, 2657, 1689, 1315 h−1 Mpc
respectively.
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Figure 11 Top Panel: Reproduction of the bottom panel of Figure 4. Bottom Panel:
L2000N1000 velocity function at a redshift of z=0.296 showing that as we go to larger
redshifts the pairwise velocities of all halos increase.
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Figure 12 Top Panel: Reproduction of the bottom panel in Figure 6. Bottom Panel:
L2000N1000 velocity vs. mass plot at a redshift of z=0.296 showing that as we go
to larger redshifts the pairwise velocities of larger mass halos increase. The vertical
dashed line represents v12=3100 km s−1, and the horizontal dashed line represents
the average mass of 1E0657-56.
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