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ABSTRACT 

SYNTHESIS AND HIGH-PRESSURE STRUCTURAL STUDIES OF  
AUX2 (X = AL, GA, IN) COMPOUNDS 

 

by 

Jason Baker 

Dr. Andrew Cornelius, Defense Committee Chair and  
Dr. Ravhi Kumar, Defense Committee Co-Chair 

University of Nevada, Las Vegas  
 

Three intermetallic compounds, AuX2 (X = Al, Ga, In), were synthesized by arc-melting 

proper stoichiometric ratios of high purity Au, Al, Ga, and In. They were found to be 

single-phase in the CaF2 type Fm3m crystalline structure. Interest in these particular 

intermetallic materials is due to intriguing pressure-induced behavior such as electronic 

topological transitions (ETTs), and structural phase transitions as well as their use in a 

variety of practical applications such as a solar spectral absorber and in electronic 

circuitry. In this study, the high-pressure structure of these materials was studied using 

high resolution synchrotron x-ray diffraction (XRD) at the Advanced Photon Source at 

Argonne National Laboratory. Pressure induced structural transitions were observed 

below 20 GPa in all the samples and the equation of state (EOS) was determined for the 

Fm3m  phase. Our experiments show that compressibility of these compounds vary 

greatly, where AuIn2 is the most compressible and AuAl2 is the least compressible. Effect 

of hydrostaticity on the structural phase transition and the phase transition sequence are 

discussed.  
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Chapter 1: Introduction 

 Intermetallic compounds encompass a vast range of materials with applications 

ranging from brass, an alloy of Cu and Zn, first used in ancient times to fabricate 

weapons and pottery, to superconductors such as Nb3Sn with a critical temperature of 13 

K, to uses in diesel engine turbocharger rotors and hydroturbines with compounds such as 

Ni3Al and NiAl3 [1, 2]. Insight into the basic properties of such materials is important as 

it brings the potential to better understand existing compounds and applications as well as 

find new compounds and applications. One of the most fundamental of these basic 

properties is the crystal structure, or how the atoms are arranged in the smallest repeated 

building block for the material. When these compounds are exposed to extreme 

conditions, such as high pressure, temperature, magnetic field, etc., the crystal structure 

as well as other physical and chemical properties of the material has the potential to 

change. Understanding these changes under extreme conditions is vital to furthering the 

knowledge of materials and applications. 

 In this study, the effects of pressure on the crystal structure of a group of 

intermetallic compounds were examined. The group chosen for this thesis is AuX2 where 

X = Al, Ga, and In. These intermetallics crystallize in the CaF2 structure and have been of 

significant interest due to their properties and applications. AuAl2 has good electrical 

conductivity and as such is used as a spectral selective solar absorber [3]. It is also a type 

- I superconductor, along with AuIn2, with their superconducting transition temperatures 

being 207 and 160 mK, respectively [4]. In addition, nuclear ferromagnetism and 

superconductivity were found to co-exist in AuIn2 [5]. The material AuGa2 has been 

reported to have useful properties in electronic circuitry [6]. Also of importance is that 
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the AuX2 intermetallic alloys undergo electronic topological and structural transitions 

under pressure. [7]  

 Due to the various applications and interesting properties of these materials, the 

crystal structure properties of the AuX2 compounds are important both at room 

temperature and high P-T conditions. In this thesis, the state of the art high resolution 

synchrotron high-pressure x-ray diffraction (HP-XRD) technique has been used to 

determine how the crystal structure of these compounds change with increasing pressure. 

The title compounds were prepared in single phase in our laboratory and were 

characterized. The samples were then subjected to high pressures with Merrill-Bassett 

type diamond-anvil cells (DACs), which allowed pressure of maximally 25 GPa to be 

reached, and for each pressure reached in the DACs, XRD patterns were obtained which 

contain information directly related to the crystal structure of the materials.   
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Chapter 2: Background 

 This section will give an overview of the literature existing on the compounds 

being studied in this thesis. Direct comparison to the data collected in the experiments 

done for this study will be discussed in the Results/Discussion section as well as 

additional details related to the literature experiments and theoretical calculations.  

 

AuAl2 

 In 2005, Garg et al. studied AuAl2 using HP-XRD techniques. The authors found 

that AuAl2 undergoes a phase transition beginning around 13 GPa and fully transforms at 

17 GPa. According to their findings, the sample did not show any signs of structural 

transition until 13 GPa and they were able to obtain an experimental equation of state 

(EOS) up to 17 GPa [8].  

 With regards to the high-pressure phase of AuAl2, the authors were able to index 

the high pressure phase to a general orthorhombic structure, but were unable to fully 

index this phase due to a small number of peaks. They did narrow the possibilities to four 

orthorhombic structures from systematic absences observed. These four possibilities are 

Pnm21(31), Pnmm(59), Pn21(33), and Pnma(62) [8].  

 The high-pressure XRD data for AuAl2 was also examined for evidence of an 

electronic topological transition (ETT). They calculated the universal EOS (UEOS) and 

subsequently determined that AuAl2 did not undergo an ETT [8]. 

 In 2007, Verma et al. determined the high-pressure structural phase of AuAl2 

using first-principle calculations. Their theoretical results predict a structural phase 

transition at 18.7 GPa to a primitive orthorhombic structure (Pnma) [9]. 
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AuGa2 

 Using HP-XRD techniques, AuGa2 was studied, and it was determined that it 

underwent a pressure-induced structural phase transition near 7 GPa by Garg et al. in 

2006. Up to 7 GPa, the structure of AuGa2 was found to have the expected CaF2 structure. 

The high-pressure phase was indexed to a low-symmetry orthorhombic phase closely 

related to the original cubic phase, but this was only in the range 7 – 10 GPa. After 10 

GPa, the diffraction peaks were reported to change intensity continuously making it 

difficult to index the patterns in this region. An experimental EOS was determined up to 

7 GPa [10]. 

 As with AuAl2, this sample was also examined for an ETT by the authors. For 

AuGa2, it was determined from the UEOS that definite evidence for a possible ETT 

existed at 3.2 GPa [10].  

 

AuIn2 

 This sample was examined using high-pressure XRD by Godwal et al. in 1998. 

From this data, the authors reported evidence of a pressure-induced structural transition 

after 8 GPa and this new phase is stable until 15 GPa. It was indexed to a monoclinic cell 

P21/c. In this 1998 study, the UEOS was also calculated and a deviation from linearity 

was reported in the UEOS plot. From this, the authors concluded there was evidence of a 

possible ETT between 2 – 4 GPa [11].  

 In 2002, Godwal et al. reaffirms the presence of a structural phase transition 

beyond 9 GPa in AuIn2. The XRD patterns below 9 GPa were indexed to the ambient 

Fm3m structure and the patterns after 9 GPa were determined to be of a different phase. 
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An UEOS was calculated in the paper and provided more evidence of a possible ETT 

around 3.6 GPa [12].  

 In a 2008 paper, Godwal et al. again performs HP-XRD measurements on AuIn2 

and find no evidence of the previously reported phase transition at 9 GPa. AuIn2 is 

reported to retain the CaF2 structure until 24 GPa, where it then becomes amorphous. In 

the region of 20 – 24 GPa, the sample is suggested to be metastable and that the structural 

transitions in this material may be sensitive to non-hydrostatic conditions present in the 

DAC [13]. 

Density Functional Theory Calculations 

 There have also been studies done using density functional theory (DFT) 

calculations to determine the onset pressure of electronic topological and structural phase 

transitions as well as obtain parameters such as ambient unit cell volume, bulk modulus, 

and the derivative of the bulk modulus for all three samples. Li et al determined that 

electronic topological transitions were present in AuIn2 and AuGa2, but not AuAl2 which 

agrees with the experimental results seen in the literature [7]. Also, several DFT methods 

were utilized which allowed them to calculate and compare the parameters just 

mentioned to those found in the experimental literature [7]. When these parameters are 

compared with the experimental values, some of the DFT methods overestimate the bulk 

modulus and its derivative, but most of the comparisons between theoretical and 

experimental results in the literature tend to agree fairly well.  
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General Theory 

 This section will provide some basic theoretical framework for the experimental 

methods and analysis to be used in the rest of the thesis. Ruby fluorescence, x-ray 

diffraction, and the Birch-Murnaghan equation of state will be discussed.  

 

Ruby Fluorescence 

 Ruby, Al2O3 : Cr3+, is a widely used pressure sensor in DAC experiments. When 

photons are incident on the Al2O3 with Cr3+ doping, the electrons in the ground state of 

Cr3+ are raised to short-lived excited states (E3 and E4 in Fig. 1) and immediately fall to a 

longer lived meta-stable state (E2 in Fig. 1).  The decay from the short-lived energy states 

to the meta-stable long-lived state is a non-radiative transition, which means no photons 

are released due to this transition. E2 is split into two energy levels due to spin splitting 

and both of these levels are long-lived meta-stable states. When the electrons in E3 and E4 

transition into these two lower energy states, they will then eventually fall from the split 

E2 states to the ground state releasing a photon. The photon released due to the higher of 

these two E2 states corresponds to the R1 ruby spectrum line and the lower of the two 

corresponds to the R2 ruby spectrum line. This process is illustrated in Fig. 1.    
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Figure 1. Energy Level Diagram for Fluorescence of Ruby [14] 

 When pressure is applied to the ruby, the energy difference between the two E2 

states and the ground state changes in a well-studied manner. If the ruby is made to 

fluoresce, the wavelength of this light can be measured, and from this, the pressure being 

applied to the ruby can be determined.  A typical ruby fluorescence spectrum is shown in 

Fig. 2, where a spectrum is given for both ambient pressure and 10 GPa. As stated, the 

spectra will shift when pressure is applied to the ruby which is clearly seen by change in 

the wavelength between the two different pressures. The R1-line is at the higher 

wavelength and R2-line at the lower wavelength for both spectra.  

The R1-line is the ruby spectrum line typically used in order to measure the 

pressure. In 1977, Mao, et al. developed an equation to calculate the pressure, P, by 

knowing the shift of the R1-line from its ambient value [16]. This relationship is given:   

  𝑃(GPa)  =  380.8 ��(λ/694.2)�
5 − 1�.               Equation 1 
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Figure 2. Typical Ruby Fluorescence Spectra for Ambient Pressure and 10 GPa [15] 

 In this equation, λ is the peak position of the R1-line from in nanometers. When λ 

is equal to 694.2 nm, it is easily seen from Eq. 1 that the pressure will be zero. In Fig. 2, 

the ruby spectrum corresponding to 10 GPa has its R1-line at approximately 698 nm and 

if this is inserted into Eq. 1 it will give 10.5 GPa. 

 The ruby fluorescence spectrum also gives information about how hydrostatic the 

conditions are in the DAC. Depending on the pressure-transmitting medium used for a 

particular experiment, the peaks in the ruby fluorescence spectrum will broaden at 

different pressures. For pressure-transmitting media such as 4:1 Methanol:Ethanol, this 

broadening of the peaks occurs around 10 GPa. This is important because a quantitative 

measure of the hydrostatic conditions inside the DAC can be obtained through measuring 

the width of the spectrum lines. 

 

 

 

 



9 
 

Crystal Structure 

 The crystal structure of a material can be described mathematically by a lattice, 

which is a repeated set of mathematical points in a particular arrangement. Each of these 

points in the lattice can have a group of atoms attached to it, referred to as a basis. In the 

ideal case, a crystal consists of an infinite repetition of these basis attached to the lattice. 

The lattice is mathematically defined by three translation vectors a1, a2, and a3 in such a 

way that the crystal looks the same when viewed from the point r as when viewed from 

any other point translated by an integral multiple of the translation vectors. Eq. 2 gives 

the mathematical representation of this statement where r' is the point translated to from 

the original point r and u1, u2, and u3 are integers. 

                                 𝒓′ =  𝒓 + 𝑢1𝒂𝟏 + 𝑢2𝒂𝟐 + 𝑢3𝒂𝟑                     Equation 2 

 It is this periodicity of the lattice that gives rise to many physical properties of the 

material and is a significant reason why a fundamental understanding of the crystal 

structure of materials is integral to explaining other physical properties [17].  

 These lattices, forming the building blocks of crystalline solids, can be 

categorized by their symmetries and their arrangement of lattice points. The most general 

lattice is the triclinic lattice where no sides and no angles are equal to each other, thus it 

has the least amount of symmetry out of all the lattices. There are 13 special lattices 

which are grouped into systems according to seven types of cells. The seven systems are 

listed in Table 1 along with the particular number of lattices contained in each system as 

well as the restrictions on the cell axes and angles that define the particular system. An 

example of the different lattices contained in a particular system can be seen with cubic, 
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which has three lattices in its system. These lattices are simple cubic, base-centered 

cubic, and face-centered cubic. 

System Number of Lattices Restrictions on conventional cell axes and angles 

Triclinic 1 a1 ≠ a2 ≠ a3  and  α ≠ β ≠ γ 

Monoclinic 2 a1 ≠ a2 ≠ a3  and  α = γ = 90° ≠ β   

Orthorhombic 4 a1 ≠ a2 ≠ a3  and  α = γ = β = 90°   

Tetragonal 2 a1 = a2 ≠ a3  and  α = γ = β = 90°   

Cubic 3 a1 = a2 = a3  and  α = γ = β = 90°   

Trigonal 1 a1 = a2 = a3  and  α = β = γ < 120° 

Hexagonal 1 a1 = a2 ≠ a3 , α = β = 90° and γ = 120° 

Table 1. All 14 possible lattice types in three dimensions [17]. 

 

X-Ray Diffraction 

 XRD is a technique using the diffraction of x-rays off the lattice planes of 

materials, or more specifically through interaction with the electron distribution around 

the atoms, in order to gather information about the crystal structure. With this technique, 

information about the unit cell comprising a material can be determined, such as the 

lattice parameters (or distance between lattice planes) which can be used to calculate the 

volume of the unit cell. There are two main types of XRD used, those being powder XRD 

and single-crystal XRD. The technique discussed here and used for these experiments is 

powder XRD.  

 An ideal powder sample consists of a very large number of randomly oriented 

single-crystals. If x-ray photons are incident on a crystal, then each of the parallel planes 

of the atoms in the crystal lattice will specularly reflect a small fraction of the radiation. 
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When the reflections constructively interfere, the diffracted beams are strongest. Bragg's 

Law gives the conditions that must be met in order to have this constructive interference 

and thus, diffraction peaks. This equation is given as Eq. 3, and its derivation, however 

simple, is given elsewhere. Also, to aid with the visualization of the geometry of the 

incident x-ray photons and the lattice planes, Fig. 3 shows this geometry in some detail.  

                                                2 𝑑 sin𝜃 = 𝑛 𝜆                                   Equation 3 

In this equation, λ represents the wavelength of the incident x-ray photons, θ represents 

the angle at which the incident photon diffracts off the lattice planes where the distance 

between these lattice planes is given by d in the equation. [17]  

 Using this relationship, both angle-dispersive and energy-dispersive XRD can be 

conducted. Energy-dispersive XRD is not used in this study, but it is when the angle is 

held constant while the wavelength of the incident x-ray photons is scanned. Angle-

dispersive XRD, the method used in this thesis, is when the wavelength of the incident x-

ray photons is left unchanged and instead the angle at which the incident photons strike 

the lattice planes is changed. This can be done by rotating the sample itself, moving the 

detector through a large angle around the sample, or using the premise of powder 

diffraction as stated earlier.  

 Since the wavelength is held constant and θ is variable when using angle-

dispersive XRD, Bragg's Law can be rearranged to obtain 𝐬𝐢𝐧 𝜽 = 𝒏 𝝀
𝟐 𝒅

. This rearranged 

equation reveals that for a particular lattice spacing, there is a particular angle that will 

satisfy this equation. At this angle, the reflections constructively interfere to create a peak 

in the intensity of collected photons when measured as a function of the angle.   
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Equation of State (Birch-Murnaghan) 

 The EOS is a mathematical equation whose variables are state functions such as 

pressure, volume, temperature, or internal energy and describes the state of matter under 

a variety of physical conditions. For gaseous materials, the ideal gas law, van der Waals' 

EOS, and other theoretically and experimentally derived EOS's exist to describe the 

behavior of gaseous molecules in different physical conditions. For solid materials, there 

also exist a variety of EOS's capable of describing the behavior of solid materials for 

various physical environments such as the Birch-Murnaghan, Mie-Gruneisen, Rose-

Vinet, and other EOS's. For this thesis, the Birch-Murnaghan EOS will be used as it is 

used in almost all literature regarding the studying of materials at high pressure. [18] 

 𝑃(𝑉) =  3𝐵0
2
��𝑉0

𝑉
�
7
3 − �𝑉0

𝑉
�
5
3� �1 + 3

4
(B′0 − 4) ��𝑉0

𝑉
�
2
3 − 1��  Equation 4 

Equation 4 gives the Birch-Murnaghan EOS. This equation gives the pressure as a 

function of the unit cell volume at a constant temperature. In this equation, the fit 

parameters are B0 which is the initial bulk modulus, V0 which is the initial unit cell 

volume, and B’0 is the first pressure derivative of the bulk modulus. V is the unit cell 

volume as measured in the experiment being performed and P(V) is the pressure being 

applied to the sample corresponding to the particular V. The bulk modulus is inversely 

proportional to the compressibility and as such, the bulk modulus can be used as a 

measure of the compressibility of materials. 
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Experimental Details 

 This section will discuss sample synthesis, characterization of the samples, details 

of the high-pressure x-ray diffraction techniques employed, and the methods of analysis 

used on the data collected.  

 

Sample Synthesis 

 All three samples were prepared using high purity (99.99%+) Au, Ga, and In 

purchased from Sigma Aldrich. Appropriate stoichiometric ratios of the components for 

each compound were weighed and mixed thoroughly together using a mortar and pestle. 

A pellet of each of the three samples was made using a 7mm pellet dye and a hydraulic 

press to provide pressures of 3000 - 4000 psi. Each of the pellets was then arc-melted in 

an argon atmosphere in the UNLV Physics department's arc-melting furnace, which is 

shown in Fig 3.  

 

Figure 3. Arc-melting furnace and copper hearth. 

 This device consists of a copper hearth where the sample is placed, a tungsten rod 

to apply the current, a rotary-vane vacuum pump, and a tank of high-purity argon gas. 

The hearth is inserted at the bottom of the chamber. With the hearth in place, the chamber 

is repeatedly evacuated to 30mmHg and filled to 15mmHg with argon several times to 
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ensure all contaminants are flushed out of the chamber. After this process, the chamber is 

again evacuated and then filled with argon to 15 mmHg.  

 Tapping the tungsten rod to the side of the copper hearth will create a closed 

circuit between the rod and hearth, thus producing a high-temperature arc from the tip of 

the rod to the copper. This arc is then positioned over the sample and a reaction takes 

place. Since the sample is a pellet having two sides, it must be flipped and reacted in the 

same fashion on the opposite side as well to ensure an evenly reacted ingot. This was 

done for all three samples. 

 After each of the samples was reacted, the ingots resulting from the arc-melting 

were lightly grinded with fine sand-paper to remove any surface contamination. Acetone 

and methanol were used to ensure the surface was clean after grinding it with the sand-

paper. The ingots were then broken into small pieces, which were ground into a fine 

powder using a mortar and pestle. 

 

Sample Characterization 

 After this process, each of the samples were taken to the XRD facilities at UNLV. 

An X-Pert XRD apparatus with a x-ray wavelength of 1.54 Ǻ (Cu Kα) was used. The 

powdered samples were placed on a silicon wafer, which has a minimal background 

contribution, and XRD data was collected over the two-theta range of 5° to 85° for each 

of the samples. In order to compare the XRD patterns collected for the samples in this 

thesis to the samples in literature, reference XRD patterns were calculated using 

PowderCell software by using the cell parameters stated in the literature on each of the 

compounds. The XRD patterns as obtained from the GeoScience’s facility are shown in 
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Fig. 4 as well as the calculated reference patterns. The red XRD pattern in the plots 

correspond to the reference data, and the black XRD pattern in the plots is the data 

collected for this experiment. As evidenced by the graphs, the reference XRD patterns 

and the patterns collected for this experiment agree fairly well for each of the 

compounds.  

 Using Materials Data Incorporated (MDI) Jade 7.1 software [19], the XRD 

patterns from this experiment can be indexed to the CaF2 phase with lattice parameters in 

good agreement with literature values. Only a few very small peaks not corresponding to 

the CaF2 phase show up in the XRD patterns, but due to the fact that they are quite small, 

they are not significant.  
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Fig 4. Calculated and collected XRD patterns for AuAl2, AuIn2, and AuGa2  

 For each of the XRD patterns corresponding to the samples studied in this thesis, 

MDI Jade software was used to obtain the lattice parameter, a.  The values for these 

samples and corresponding literature values can be found in Table 2 for comparison. 
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Literature 

(Å) 

Observed 

(Å) 

AuAl2 6.005  5.993 ± 0.001 

AuIn2 6.517 6.507 ± 0.001 

AuGa2 6.079 6.069 ± 0.002 

Table 2. Lattice parameter comparison between literature and this experiment 

The errors listed for the observed data are obtained from fitting the XRD peaks to the 

CaF2 structure for each of the samples using MDI Jade. These error bars do not take into 

account any instrumental effects or differences occurring due to sample preparation. The 

literature values did not have errors listed. Although the values do not agree within the 

error bars presented, due to fact they are not including anything besides statistical 

fluctuations of the data from the fit, there may be small systematic effects causing the 

difference.  

 

High-Pressure XRD 

 Multiple experimental runs of measurements have been taken on these samples. 

All sets of measurements were taken in a Merrill-Bassett type DAC. A photograph of a 

Merrill-Bassett type DAC is shown in Fig. 5. This DAC consists of two stainless steel 

triangular shaped pieces where one has a beryllium backing plate and one has a tungsten 

carbide backing plate. The diamonds are secured onto these backing plates with a steel 

collar that is screwed into the backing plate. Once the diamonds are secured to the 

backing plates, they must be aligned with respect to each other. Three small set screws 

are used to align the diamonds with each other.  
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Figure 5. Merrill-Bassett type DAC 

For each set of measurements, the diamonds were carefully aligned for each DAC. 

Stainless steel gaskets were used for all the measurements and had an initial thickness of 

250 µm. They were then pre-indented after the diamonds had been aligned.  This pre-

indentation is done by placing the gasket between the diamonds of the DAC, secured by a 

steel gasket holder screwed into the backing plate, and pressurizing until the gasket 

material has formed to the shape of the diamonds and is 50 - 60 µm in thickness at the 

culet face. A hole in the center of each of the gaskets was then drilled, using electric 

discharge machining (EDM). The size of the hole differed depending on the size of the 

diamond culet's diameter. The culet diameter for the different experimental runs was 300 

µm, 400 µm, and 500 µm. The hole drilled in the center of the gaskets was 100, 130, and 

160 µm, respectively for the different culet diameters.  

 With the gaskets pre-indented and holes drilled, the gaskets were again secured 

with the gasket holder on top of each of the diamonds, and the sample and ruby sphere 

were placed into the hole. Then, the pressure-transmitting medium was put in as well. A 

4:1 Methanol:Ethanol mixture was used as the pressure-transmitting medium (PTM) for 

all of the measurements and was inserted by use of a syringe.  The DACs were 
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immediately closed and slight pressure was given by tightening the screws to ensure the 

PTM, sample, and ruby sphere were trapped in the hole (or sample chamber). A 405 nm 

laser is shined into the sample chamber and a spectrometer is used to collect fluorescence 

spectra from the ruby sphere in order to determine the starting pressure. Using the Mao 

ruby scale [15], the pressure was determined to be approximately 1 GPa for each sample.  

 The high-pressure XRD experiments were carried out at Sector 16 at the 

Advanced Photon Source (APS) at Argonne National Laboratory.  All three of the 

samples were run on both the insertion device beam-line (ID-B) and the bending magnet 

beam-line (BM-D). Exposure times on ID-B were between 10 to 30 seconds throughout 

the extent of the experiments, and exposure times on BM-D were between 30 to 60 

seconds.  

 The x-rays are directed into the DAC and diffract due to the sample inside. The 

diffracted photons travel out the conical side of the DAC and are collected on an image 

plate or CCD detector. The beam-line was initially calibrated using CeO2 powder, for 

which the lattice spacing is well known. The wavelengths used throughout all the 

experiments on the samples are given in Table 3.  

 The pressure between each data collection was increased and determined by again 

shining a laser inside the DAC as mentioned previously to fluoresce the ruby sphere 

inside the sample chamber. Again using the Mao ruby scale [15], the pressure of the 

sample can be determined. 
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Experimental Run Wavelength (Ǻ) 

1st 0.375710 

2nd 0.407376 

2nd 0.407351 

2nd 0.407351 

3rd 0.413364 

Table 3. Wavelength values for the various experimental runs conducted 

Analysis 

 The raw data files obtained from the XRD measurements are then read into 

FIT2D [20] along with the calibration values for each data set. An example of the raw 

MAR file before integration is shown in Fig. 6.  

 

Figure 6. Example of raw MAR file before integration. (AuIn2, 2.31 GPa) 

Using these values, FIT2D integrates the raw data files and produces intensity versus 

two-theta plot datasets which can then be analyzed using MDI Jade software. This 

software was used to subtract the background from the data, index the peak positions to a 

library of crystal structures, and calculate and refine peak positions of the XRD patterns 

to a particular crystal structure, thus determining the lattice parameters of the sample. 
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With the crystal structure and lattice parameters known, a volume for the unit cell of the 

material can be calculated. This method of analysis was done for each pressure point, and 

with the unit cell volume at each pressure point known, the parameters in the Birch-

Murnaghan EOS can be calculated. The parameters in the Birch-Murnaghan EOS were 

obtained by inputting the volume and pressure into a DOS run program built to fit this 

type of data to multiple EOS's including the Birch-Murnaghan EOS. With the parameters 

known for the Birch-Murnaghan EOS that fits best to the experimental data, a plot of the 

pressure and volume data with the Birch-Murnaghan EOS graphed as well can be created 

for each sample.  
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Results/Discussion 

 This section will be broken into two main parts. The first will present and discuss 

the results obtained from the XRD experiments performed for the low pressure phase of 

all three materials. The second part will present and discuss the results for the high 

pressure phases of these materials. The results will be compared to the literature and the 

differences and similarities will be illuminated and discussed.  

 

Low Pressure Phase Results: AuAl2 

 The evolution of the x-ray diffractions patterns for AuAl2 is shown for one of the 

experimental runs performed up 26.4 GPa in Fig. 7. From Fig. 7, the similarities between 

the XRD patterns below 11 GPa are clearly observed by noticing the peaks remain 

unchanged except for a movement to higher angle values which corresponds directly with 

a decrease in lattice spacing and thus a decrease in unit cell volume. For the range of 

pressures of 1.68 GPa to 11.0 GPa, these XRD patterns can be indexed to the CaF2 

(Space Group Fm3m) as is observed at ambient pressures. For this discussion of the 

lower pressure phase of AuAl2 the XRD patterns above 11.0 GPa will be ignored and 

discussed in a later section.  

 Using the analysis technique described earlier, the peak positions from these XRD 

patterns will give the lattice parameters and thus the volume of the unit cell for each 

pressure point. Table 4 contains all the pressure and volume data including the volume 

error as determined from the peak position fitting in MDI Jade for AuAl2 for all the 

experimental runs completed. A plot of the volume versus pressure is displayed in  
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Fig. 8. The fit parameters are listed in Table 5 along with the values as found in the 

literature.   

Pressure 
(GPa) 

Volume 
(Å3) 

Error 
(Å3) 

0 215.38 
 0.35 215.14 0.19 

1.31 213.37 0.22 
1.37 214.90 0.31 
1.68 213.01 0.09 
2.73 211.39 0.24 
3.23 210.04 0.14 
3.83 209.44 0.35 
4.93 207.90 0.15 
5.86 207.10 0.16 
6.23 205.95 0.14 
7.41 203.94 0.13 
7.9 204.02 0.12 

8.31 203.90 0.14 
8.45 202.74 0.15 
9.36 201.85 0.17 
10.9 204.01 0.12 

11.34 200.28 0.31 
Table 4. Tabulation of pressure and volume data for AuAl2 for three separate experimental runs 

 

The Birch-Murnaghan EOS fit to the volume and pressure data can be compared 

to the literature by comparing the parameters found in Table 5. From the values in Table 

5, it is evident that the bulk modulus, B0, as determined by this set of experiments is 

slightly higher than the experimental literature value. However, this higher result does 

agree fairly well with LDA experiment as this value is 126 GPa [8] as well as the FP-

LAPW LDA result of 122 GPa [7]. This experiment's initial volume, V0, is slightly lower 

than the experimental literature value as can be seen in the table, but does lie within the 

range of the theoretical results listed in the table. Lastly, the pressure derivative of the 

bulk modulus, B0', was fixed at a value of four for both the experimental literature's and 



24 
 

this experiment's Birch-Murnaghan EOS fitting. The theoretically calculated values for 

B0' are all slightly higher. 

 

  V0 (Å3) B0 

(GPa) B0' 

AuAl2 Experiment 215.7 (1) 122 (2) 4.0 (fixed) 

 

Literature 
(Experimental) 

[8] 
216.5 111 4.0 (fixed) 

 

Literature 
(Theory) 
FP-LAPW 

[7] 

LDA: 
209.6 
GGA:  
217.1 

LDA: 
122 

GGA:  
108 

LDA:  
4.72 
GGA:  
4.81 

 

Literature 
(Theory) 
PP-PW 

[7] 

LDA: 
208.5 
GGA: 
220.3 

LDA:  
120 

GGA:  
103 

LDA:  
4.83 
GGA:  
4.49 

AuIn2 Experiment 275.5 (4) 68 (2) 9.0 (5) 

 

Literature 
(Experimental)  

[13] 
276.8 (1) 62 (1) 9.5 (5) 

 

Literature 
(Theory) 
FP-LAPW 

[7] 

LDA:  
268.3 
GGA:  
295.4 

LDA:  
78 

GGA:  
62 

LDA:  
4.77 
GGA:  
4.11 

 

Literature 
(Theory) 
PP-PW 

[7] 

LDA:  
275.9 
GGA:  
286.2 

LDA:  
75 

GGA:  
58 

LDA:  
6.27 
GGA:  
5.77 

AuGa2 Experiment 224.0 (3) 90 (3) 4.0 (fixed) 

 

Literature 
(Experimental)  

[10] 
224.6 98 4.0 (fixed) 

 

Literature 
(Theory) 
FP-LAPW 

[7] 

LDA:  
216.0 
GGA:  
236.0 

LDA:  
103 

GGA:  
68 

LDA:  
7.08 
GGA:  
6.28 

 

Literature 
(Theory) 
PP-PW 

[7] 

LDA:  
225.9 
GGA:  
233.7 

LDA:  
88 

GGA:  
73 

LDA:  
5.53 
GGA:  
5.09 

Table 5. EOS fit parameters from our experiments and previously reported experimental results and 
theoretical results in the literature for all three samples  
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Figure 7. On the left, the evolution of XRD patterns for AuAl2 up to 26.4 GPa is plotted over the full two-
theta range and on the right, the same XRD patterns are plotted over a smaller range, from 7° to 23°, and 
are scaled to depict the lower intensity peaks more clearly at the higher two-theta angles. The hkl values are 
labeled for the lowest pressure point.  
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 Fig. 9 has an EOS both for the low pressure phase and the high pressure phase as 

determined by Garg et al, the filled points being from the low pressure phase and the 

unfilled from the high pressure phase.   

 

Figure 8. AuAl2 volume and pressure data with Birch-Murnaghan EOS fit 
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Figure 9. Garg et al, AuAl2 volume versus pressure plot with fitted Birch-Murnaghan EOS [8] 

 

Low Pressure Phase Results: AuGa2 

 In Fig. 10, the XRD patterns for each pressure point are plotted for AuGa2 to a 

maximum pressure of 20 GPa. The XRD patterns from 0.45 GPa to 7.89 GPa can be 

indexed to the ambient Fm3m phase. The patterns corresponding to 9.28 GPa and higher 

pressures are not able to be indexed to the same phase and as such, they are not used in 

the volume and pressure data for the Birch-Murnaghan EOS fit and will be discussed in a 

later section. 

  Using the same analysis procedure as was used for AuAl2, the unit cell volume at 

each pressure point can be obtained from the XRD patterns for AuGa2. This data, 

including the errors as calculated from the MDI Jade fitting, is contained in Table 6. 
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Figure 10. The evolution of XRD patterns for AuGa2 up to 20.0 GPa. The hkl values are labeled for the 
lowest pressure point. 
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Pressure 
(GPa) 

Volume 
(Å3) 

Error 
(Å3) 

0 224.76   
0.45 223.42 0.14 
1.19 221.46 0.12 
1.26 221.76 0.31 
2.47 218.14 0.21 
3.15 216.26 0.20 
3.91 215.44 0.16 
4.05 214.57 0.19 
5.44 212.23 0.12 
5.5 212.25 0.59 

6.41 210.99 0.25 
6.72 210.33 1.05 
7.15 209.55 0.18 

Table 6. Pressure and volume data for AuGa2 from two experimental runs 

Fig. 11 has this data plotted along with the Birch-Murnaghan EOS fit to the data. In Fig. 

12, the pressure versus volume data from Garg is plotted for comparison. No EOS is 

shown on the plot, but as seen in Table 5, values for the parameters of an EOS were 

obtained. Table 5 has the parameters of this fit listed as well as the literature values for 

comparison. 

 While the bulk modulus as determined from these experiments lies within the 

range of values as calculated theoretically, it is slightly lower than the bulk modulus 

listed in the literature as found experimentally, unlike the higher value obtained for 

AuAl2. However, considering the error on the value as determined by the fitting routine, 

this value of 90 ± 3 GPa is fairly close to the 98 GPa as found in the literature. The value 

found for the initial unit cell volume in our experiments is slightly lower than found in 

Garg et al [10] as seen in the table, but again, lies within the calculated results as 

determined by Li et al [7]. B0' was fixed at a value of four for our experiments and the 
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experiments done in literature. However, the values from the theoretical calculations are 

much higher than either set of experiments. 

 

Figure 11. AuGa2 volume and pressure data with Birch-Murnaghan EOS fit 

 

Figure 12. AuGa2 volume versus pressure plot from Garg et al. [10] 
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Low Pressure Phase Results: AuIn2 

 In Fig. 13, the XRD pattern for each pressure point is plotted for AuIn2 to a 

maximal 21.3 GPa. As evidenced by the Figure, the XRD patterns are unchanged aside 

from the expected movement to higher two-theta angles until the pattern corresponding to 

12.6 GPa. The XRD patterns up to 12.6 GPa can be indexed to the ambient structure 

CaF2 (Fm3m) just as with AuAl2 and AuGa2. The higher pressure patterns cannot be 

indexed to the CaF2 structure, and instead belong to a different phase. These patterns will 

be discussed in a later section.  

 For the patterns indexed to the CaF2 phase, the same analysis procedure that was 

applied to AuAl2 and AuGa2 can be used. The volume and pressure data from applying 

this procedure is contained in Table 7 along with the error as determined by the MDI 

Jade peak fitting. This data is plotted in Fig. 14 along with the Birch-Murnaghan EOS fit 

to the data. The volume versus pressure plot and EOS fit from Godwal’s work is shown 

in Fig. 15 for comparison. The parameters for the fit are contained in Table 5 as well as 

the literature values so as to compare the parameters.  

The bulk modulus as obtained from this thesis' experiments for AuIn2 agrees 

fairly well with the literature value as found experimentally. It is higher than the literature 

value, as AuAl2's bulk modulus was, but it is closer to the value than AuAl2 had been. 

When compared to the values obtained using DFT calculations, the value lies well within 

the range of values calculated. Again, the initial volume is lower for this set of 

experiments when compared with the literature value in the table, as with all the samples, 

when the value is compared to the theoretically calculated value, it lies within the range 

of values from the different methods. An important difference between AuIn2 and the 
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other samples studied in this thesis is the pressure derivative of the bulk modulus not 

being fixed to a value of four for AuIn2. The curvature of the volume versus pressure data 

is too large for the typical value of four to account for it, and instead this larger B0' is the 

value obtained from the fitting of the data. 

Pressure 
(GPa) 

Volume 
(Å3) 

Error 
(Å3) 

0 276.02 
 0.64 273.46 0.06 

1.33 271.22 0.03 
2.31 267.87 0.20 
2.39 267.55 0.06 
2.93 265.94 0.01 
3.29 264.54 0.06 
3.67 262.85 0.12 
4.82 259.86 0.12 
5.27 259.24 0.05 
5.39 258.92 0.07 
6.19 256.78 0.17 
7.15 255.19 0.07 
7.73 253.91 0.06 
8.02 253.64 0.11 
8.81 252.02 0.07 
9.54 250.54 0.19 
9.56 250.92 0.05 
9.85 250.28 0.10 

11.01 249.73 0.18 
11.04 248.54 1.13 

Table 7. Pressure and volume data for AuIn2 from two experimental runs 
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Figure 13. The evolution of XRD patterns for AuIn2 up to 21.3 GPa. The hkl values are labeled for the 
lowest pressure point. 
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Figure 14. AuIn2 volume and pressure data with Birch-Murnaghan EOS fit 

 

Figure 15. Godwal et al, AuIn2 volume versus pressure plot with fitted Birch-Murnaghan EOS [13] 
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 High Pressure Phase Results: AuAl2 

The Garg et al results discussed earlier are depicted in a plot from their 

publication in Fig. 17. The beginning of the transition, as discussed in their work, is 

indicated by a splitting of the (1,1,1) peak between 12 and 13 GPa. [13] In this work, in 

the 12.7 GPa XRD pattern depicted in Fig. 7, the (1,1,1) peak has a shoulder that was not 

seen in the previous XRD pattern.  However, a splitting in the (2,0,0) peak is seen in the 

same pressure region as Garg et al observed the splitting in the (1,1,1) peak, which still 

indicates the beginning of a pressure-induced phase transition at the same pressure as the 

literature work. The completion of the phase transition as indicated in the plot of Garg's 

in Fig. 17 is 17.0 GPa, but from the data collected in this thesis, it seems this phase does 

not complete until much higher pressures as the XRD patterns continuously change well 

beyond 17 GPa in Fig. 7. Attempts at indexing the high pressure phase of AuAl2 were 

made, but none were successful in identifying the space group to which the orthorhombic 

phase belongs. Garg et al. stated that there were too few peaks available at these higher 

pressures in order to determine the specific space group of this high pressure phase, and 

the same seems to be true with the data collected in the experiments discussed in this 

thesis.  

However, as mentioned previously, theoretical work has been done which 

determined which phase AuAl2 exists in at high-pressure. Using this information, the data 

obtained from this thesis was fit to the Pnma structure. The pressure versus volume plot 

shown in Fig. 16 includes the data from the previous CaF2 phase as well as the Pnma 

high-pressure phase. Because of fluctuations in the data as fitted, an accurate EOS is not 

able to be obtained for the Pnma phase. But, information can still be obtained regarding 
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the phase transition from the pressure versus volume data in Table 8. The volume before 

the transition as found in Table 4 was 200.28 ± 0.31 Å and after the transition at 14.1 

GPa in Table 8 the volume was found to be 190.84 ± 0.89 Å, which gives a percentage 

volume change of 4.7 % which compares reasonably with the 3 – 4 % volume change 

found by Garg et al when fitting it to a general orthorhombic cell. [8]  

 

Pressure 
(GPa) 

Volume 
(Å3) 

Error 
(Å3) 

14.1 190.84 0.89 
15.7 188.71 0.81 
17.9 187.29 1.37 
19.6 186.71 1.06 
21 185.15 1.40 

23.8 182.09 1.19 
26 181.87 1.55 

Table 8. Volume versus pressure data for Pnma phase of AuAl2 

 

Figure 16. Volume versus pressure plot of low-pressure CaF2 phase and high-pressure Pnma 
phase for AuAl2. 
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Figure 17. Evolution of XRD patterns for AuAl2 from Garg et al. In the range of 2.4 GPa 
to 13.3 GPa the structure remains CaF2 but at 13.3 GPa a change in the XRD patterns is seen and is 

indicative of a pressure-induced phase transition which completes at 17.0 GPa 
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High-Pressure Phase Results for AuGa2 

 Looking at the XRD patterns in Fig. 10, the first evidence of a change in the 

patterns is in the 9.28 GPa, which suggests the beginning of a phase transition. Several 

peaks both appear and disappear constantly as the pressure is increased. The (1,1,1) peak 

slowly disappears from the 9.28 GPa pattern to the 14.2 GPa pattern. In this same 

pressure range, the (3,1,1) peak splits and the new peak becomes prominent while the 

original peak vanishes completely at the highest pressures. Another important feature is 

the (2,2,0) peak begins to have a shoulder peak at 10.2 GPa that continues to increase in 

intensity while the original (2,2,0) peak decreases slightly but remains a prominent 

feature throughout the entire pressure range depicted in Fig. 10. Other peaks split as well 

as appear and disappear throughout this pressure range suggesting that AuGa2 does not 

transform directly into a particular phase and instead has a constantly changing mixed 

phase over this pressure range.  

 In Garg et al, as mentioned previously, AuGa2 is reported to undergo a phase 

transition after 7 GPa. [10] This is slightly lower than the onset of a phase transition as 

seen in AuGa2 in this study. In the Garg study, the XRD patterns between 7 GPa and 10 

GPa were able to be fitted to a low symmetry orthorhombic phase, but the patterns at 

pressures higher than 10 GPa were unable to be fit because they continuously changed. 

The continual changing in the XRD patterns was observed in the experimental data for 

AuGa2 from this study, but none of the XRD patterns would fit to any orthorhombic 

phase.  

 

 



39 
 

High-Pressure Phase Results for AuIn2 

 As can be seen in the XRD patterns in Fig. 13, new diffraction peaks begin to 

appear in the pattern corresponding to 12.6 GPa. The first of these new peaks noticed in 

the XRD patterns is a small peak appearing next to the (3,1,1) peak. As the pressure 

increases further, more new peaks begin to emerge, but what is important to note is that 

many of the peaks directly corresponding to the low pressure phase never disappear 

completely suggesting a mixed phase throughout all the XRD patterns up to 21.3 GPa. 

As mentioned previously, Godwal determined that a phase transition occurred in this 

material at 8 to 9 GPa and had completed by 17.4 GPa. [12] A plot of the XRD patterns 

as obtained by Godwal for AuIn2 is shown in Fig. 18.  

In Fig. 18, it is clear that a transition occurs between 9 GPa and 17.4 GPa GPa 

and the onset pressure is stated to be after the 9 GPa XRD pattern shown and completion 

of the phase transition is seen at 17.4 GPa. It was indexed by Godwal to a monoclinic 

phase. [12] In this particular study, the high-pressure phase was unable to be indexed to 

any phase, but there is very strong evidence from the XRD patterns that a phase transition 

is occurring.  

Both the results from the experiments carried out for this thesis, and Godwal’s 

2002 results are in disagreement with a later Godwal publication, which was mentioned 

previously as well, where AuIn2 is found to remain in the CaF2 phase until 24 GPa and 

then at higher pressures, become amorphous. [13] Godwal mentions that non-hydrostatic 

conditions within the sample chamber of the DAC in the previous work may have caused 

a phase transition to occur. The PTM in the earlier study had been ethanol as compared to 

Ar gas in the 2008 study. Since the ethanol PTM used in the earlier Godwal study is 
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similar to the PTM used in our experiments, the appearance of the phase transition in 

both of these experiments may be dependent on the PTM used. Both ethanol and 

methanol:ethanol PTMs have a tendency to become non-hydrostatic at higher pressures 

and as such, non-hydrostatic conditions may play a role in the phase transition seen in 

AuIn2.   

 

Figure 18. Evolution of XRD patterns for AuIn2 as found experimentally by Godwal et al. [12] 
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Conclusions 

 This section will give a brief overview of the results as found in this series of 

experiments as well as potential future experiments and analysis that can be done to 

develop the results on these three compounds further.  

 

AuAl2 

A volume versus pressure plot was obtained for both the lower pressure phase, 

below 13 GPa, and the higher pressure phase, above 13 GPa but a valid EOS was only 

obtained for the lower pressure phase. The lower pressure phase was fit to the phase as 

determined at ambient pressure conditions, which was the CaF2 type Fm3m cubic phase, 

which agrees with the literature. From this EOS, the bulk modulus of AuAl2 is found to 

be the largest, and as such, it is the least compressible of the three intermetallic 

compounds. 

The higher pressure phase was fit to the Pnma orthorhombic phase in agreement 

with the theoretical results as found by Verma et al. The onset and completion of the 

pressure induced structural phase transition for AuAl2 reported in the literature varies 

from our experiment. The onset of the transition in the literature is 13.3 GPa and in our 

experiment it occurs as early as 11 GPa. The completion of the transition as determined 

by Garg et al was approximately 17 GPa, but in this experiment, the phase transition 

seems more sluggish and does not complete throughout the pressure range studied. The 

discrepancies in the onset and completion pressures for the phase transitions is possibly 

caused by differing experimental conditions inside the DACs. The effect of pressure 
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transmitting media and non-hydrostaticity also play an important role in changing the 

onset and completion of the transition, which needs to be studied further. 

  

AuGa2 

 AuGa2 stays in the CaF2 type Fm3m cubic phase from ambient pressure to 9.28 

GPa. At higher pressures, the XRD patterns show additional peaks which continuously 

evolve throughout the entire range of pressures studied in this experiment, which makes 

identification of high pressure phase difficult. Below this pressure, the volume versus 

pressure plot and EOS were obtained for AuGa2. From the value of the bulk modulus as 

obtained from determining the EOS, it is seen that AuGa2 has a value lower than that of 

AuAl2 but larger than AuIn2 making it less compressible than AuIn2, but more 

compressible than AuAl2. 

The new peaks appearing at 9.28 GPa are strong evidence for a structural phase 

transition occurring in this material, but this pressure for the onset of the transition is at a 

higher value than previously reported by Garg et al, where the transition was observed to 

begin at 7 GPa. This difference in the onset pressure of the pressure-induced structural 

phase transition is likely due to differing conditions inside the DAC used in our 

experiments compared to the DAC used in Garg's study. Garg et al was able to fit the 

XRD patterns between 7 and 10 GPa to a low symmetry orthorhombic phase, but even in 

this region, the data from the current experiment could not be fit to any phase and leaves 

room for further investigation. 
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AuIn2 

 Up to 12.6 GPa, AuIn2 remains in the ambient pressure CaF2 type Fm3m phase. 

After this pressure, there is definite evidence of a pressure induced phase transition 

observed due to emergence of new additional peaks, but the XRD patterns were not 

indexed to any particular phase due to sluggish phase change up to the maximum 

pressure achieved in the experiment. An EOS for the low pressure CaF2 phase was 

obtained for AuIn2, but because of the inability to fit the high pressure patterns, there is 

no volume versus pressure plot or EOS for the higher pressure phase. From the 

parameters of this EOS fitted to the experimental data, AuIn2 is determined to be the most 

compressible of the three intermetallic compounds with a bulk modulus of 68 ± 2 GPa as 

compared to AuAl2’s bulk modulus which is 122 ± 2 GPa. 

The onset of this phase transition, 12.6 GPa, is higher than the previously reported 

phase transition for this material by Godwal et al, 9 GPa. In Godwal’s work, the phase 

was indexed as a monoclinic phase which completed its transformation at 17.4 GPa. 

Despite the difference in onset and completion pressure for the phase transition, the 

evidence of a phase transition agrees with Godwal’s work. Both of these works are in 

disagreement with Godwal’s 2008 paper, which reports no evidence of a phase transition 

in AuIn2 all the way to 24 GPa. An explanation given for the difference between the two 

works of Godwal’s is non-hydrostatic conditions inside the sample chamber of the DAC 

as liquid PTM was used as compared to gaseous PTM used in the later work. Since both 

studies with liquid PTM show evidence of a phase transition and these liquid PTMs have 

a tendency to be more non-hydrostatic than gaseous PTMs, it is possible the transition is 
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induced by non-hydrostatic conditions. Extending the pressure range and understanding 

the effect of PMT are under progress. 
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