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ABSTRACT 
 

Dispersion of the Second Hyperpolarizability of the  
Carbon Tetrachloride Molecule 

 
by 

 
Scott Wilde 

 
Dr. David Shelton, Examination Committee Chair 

Professor of Physics 
University of Nevada, Las Vegas 

The second hyperpolarizability of a molecule is the microscopic version of the third 

order susceptibility.  Direct measurements of the ratio of the second hyperpolarizability 

of carbon tetrachloride to diatomic nitrogen are made possible through electric field 

induced second harmonic generation.  Whenever the dispersion of the second 

hyperpolarizability is not negligible, there should be deviations from Kleinman 

symmetry.  Previous experimental data for second hyperpolarizability of this molecule 

have only been at two frequencies and theory predicts the zero frequency value.  In order 

to provide for a better extrapolation to zero frequency, additional gas phase 

measurements of this ratio at optical frequencies are presented and discussed. 
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CHAPTER 1 

INTRODUCTION 

A molecule in external fields will respond according to the strength of the applied 

fields.  The subject of linear optics is the case where the material response is 

characterized by a linear coefficient multiplied by the applied field.  For low amplitude 

electric fields the response is an induced electric dipole by the molecule that is linear in 

the field.  The subject of nonlinear optics is concerned with the case of a nonlinear 

response to external fields.  In the dipole approximation, the molecular response to 

external fields is modeled by the induced dipole.  By Taylor expanding the polarization 

equation in powers of the electric field, the calculated response to strong fields will 

become nonlinear in terms of hyperpolarizabilities.  In terms of static fields the dipole per 

molecule can be written as:   

 ... E 
6

  E 
2

E     3
0

2
00

)0( ++++= γβαµµ   (1) 

The terms that vary as the square of the field and the cube of the field are referred to 

as the first and second hyperpolarizabilities respectively.  The first constant term in the 

expansion is referred to as the intrinsic dipole moment and it is nonzero for dipolar 

molecules.  The vector nature of the polarization and the applied field(s) require that the 

polarization, α, be a second rank tensor, β a third rank tensor, γ a fourth rank tensor and 

so on.  The field(s) in equation (1) has been represented as scalar(s) but in general the 

field(s) is vector quantities and can be oscillating with non-zero frequencies.  As in most 

systems, symmetry can reduce the number of independent elements of tensors describing 

physical processes.  Kleinman symmetry is a condition that is always valid at zero 

frequency, but for non-zero, and especially optical frequencies, deviations from 
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Kleinman symmetry become more apparent as frequency increases and approaches the 

threshold for absorption.  In general, Kleinman symmetry is not valid where dispersion of 

the hyperpolarizability is not negligible.  [1]  

Sum frequency generation is the process where two or more photons are converted 

into one photon with a frequency equal to the sum of the frequencies of the incident 

photons.  When the process takes two identical wavelengths and the resulting sum photon 

has half the wavelength it is called second harmonic generation (SHG).  If the process 

occurs along a focused beam of photons, generated photons will begin to be out of phase 

with photons that are generated further along the beam path.  It is possible to “match” the 

phase of generated photons from multiple sites by coherent addition.  Phase matching is 

difficult to achieve in an isotropic medium such as a gas, but it can be done by 

introducing a periodic phase shift in one or more of the applied electric fields.  A static 

and an optical field can be used to induce SHG from the third order response of the 

molecule, hence electric field induced second harmonic generation.  If the direction of the 

static field is reversed periodically, then phase matching of the static field and the second 

harmonic can be found directly by scanning the density and measuring the second 

harmonic signal. 

This work involves the measurement of the nonlinear properties of carbon 

tetrachloride (CCl4) by using the technique of Electric Field Induced Second Harmonic 

Generation (EFISHG) for gas phase molecules.  Resonant absorption is the process that 

makes both the deviations from Kleinman symmetry interesting and also the process that 

makes measurements difficult.   
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An additional complication comes from the CCl4 low vapor pressure, and samples of 

high densities would require heating of the sample.  By taking advantage of the 

experimentally measured hyperpolarizability for diatomic nitrogen (N2) as a ratio to 

helium (He), for which an exact calculation can be done and has been done by Bishop 

and Pipin, the experiment can be done using mixtures as samples. [2, 3]   
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CHAPTER 2 

THEORY 

The following formulations are based on the work by Ward and New and also the 

work of Shelton and Buckingham. [4, 5]  The static electric field in the y direction as a 

function of position along z, the axis of the fundamental beam propagation, can be 

defined as a periodic function. 

 )cos(E  (z)E 0y Kz=  (2) 

where K=2πN/L, where N is the number of periods, or pairs, L is the total length of the 

electrode array, and E0 is the static field amplitude.  The phase mismatch between the 

fundamental, Eω, and the second harmonic, E2ω, is related to the difference of the index 

of refraction. 

 ( ) ( ) ( )2
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The phase is matched when clk /π=∆ , where lc is the coherence length of the gas.  

Therefore if the phase matching condition is satisfied, the second harmonic generated 

between each electrode pair will constructively interfere.  Note that λω is the wavelength 

of the fundamental in vacuum, nω is the index of refraction for frequency ω, and ρ is the 

density of the gas. 

The optical field is defined as a Gaussian beam polarized parallel to the static field 

direction that is focused to a spot size defined by the confocal parameter z0. 

 ωω λπ / 2
00 nRz =  (4) 

 ( ) ( )2
00 /1/ zzRR +=  (5) 
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where R0 is the radius of beam at the beam waist and R is the beam radius at a point z 

away from the beam radius.  The maximum size, or diameter, of the beam that passes 

through the electrodes is therefore limited by diffraction.  Diffraction sets an upper limit 

on how far apart and how many electrode pairs that the fundamental and second 

harmonic beams can pass through unobstructed.  The case of a large number of repeats 

and a short distance between electrodes is preferred, but the optical field must pass 

through from outside the medium.   

If the optical field is focused to the center of the electrode array, then the power 

generated at frequency 2ω can be written in terms of the power P(ω) of the fundamental. 
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where the third order susceptibility, χ(3), is defined in terms of macroscopic second 

hyperpolarizability, Γ.  The macroscopic hyperpolarizability is related to the spatially 

averaged microscopic hyperpolarizability, γ, and, β||, which is the parallel component of β 

to the dipole moment. 
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1)3( =χ (0) 
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(ω) (2ω) Γρ (7) 

 Γ = γ + 
TkB3

||
)0( βµ

 (8) 

where (ω) is the Lorentz local field factor at frequency ω, defined as (ω)  = 

( ) 3/22 +ωn , and ρ is the number density of the gas molecules.  The second term in 

equation (8) is an orientational average, and since the intrinsic dipole moment of CCl4 is 
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zero, Γ = γ  , which simplifies the expression for the third order susceptibility in 

equation (7). 

At phase match, the power of the second harmonic is peaked around | ∆k | = K, and 

the height of the peak is proportional to N2, with a width of 1/N, because of the density 

dependence of χ(3) and ∆k.  The peak power of the second harmonic beam is found by 

evaluating the integral in equation (6), which yields: [5] 
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where )/( 0zLC  is a slowly varying function near unity that depends on the focusing, z0 

and the length, L, of the electrode array.  From here it is plain to see that the ratio of 

hyperpolarizabilities is easier to measure, provided a reference gas is available, instead of 

a direct measurement.  The ratio of the power of the second harmonic for both CCl4 and 

N2, in the low density approximation, as long as all other experimental parameters stay 

the same, is written as: 
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where 
4CClS  is the peak count rate for CCl4.  Since it would be proportional to the power 

by the same factor as the
2NS , it can be shown that the ratio of peak second harmonic 

power for the pure gases is identically equal to the ratio of peak count rates from equation 

(9).  For mixtures of low density, the ratio of phase matched power for a mixture of CCl4 

and N2 can be written as: 
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where 
4CClx  is the molar fraction of the carbon tetrachloride, and 

42 CClN 1 xx −= , so the 

ratio of hyperpolarizabilities can be solved to be: 
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where F is the correction to the signal due to attenuation of the second harmonic by the 

sample, which is the ratio of the unabsorbed signal to the absorbed signal, calculation of 

this factor will be discussed later.  Frequency doubled optical fields will start to approach 

the absorption band of the molecule and a correction must be calculated for the 

attenuation of the second harmonic to get the signal as if attenuation were not present.  

This can be done by calculating the ratio of the square of the amplitudes in the equation 

for the power of the second harmonic with an attenuation factor.  The attenuation of the 

amplitude from one electrode pair, a site of generated second harmonic, is calculated with 

respect to the attenuation through the entire length of the cell.  An attenuation coefficient 

in terms of the density of the gas in the cell can be used as an attenuation coefficient in a 

Beer-Lambert Law calculation for the length of the cell that the light passes through 

before exiting the attenuating medium. 

 
ρα aL eeIIt −− === 2

0
2 /  (13) 

 La 2/ρα =  (14) 

where a is the attenuation in terms of the density of the gas and α is the attenuation 

coefficient that follows the Beer-Lambert law.  The amplitude from one electrode site can 
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be approximated by using equation (6) and the attenuation due to the path through the 

rest of the sample in the cell.  To find the amplitude of the combined second harmonic 

generated at sites along the electrode array one can calculate the sum of the amplitudes 

generated across the electrode array. [7] 
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The x parameters are the normalized parameters of the beam and cell, cx  is the position 

of the center of the array with respect to the output window multiplied by the period of 

the array, so that cc Kzx = , and so on for the other parameters.  The factor by which the 

signal is attenuated is just the square of this amplitude divided by the square of the 

amplitude with no attenuation.  The F factor in equation (12) is the square of the 

amplitude with no attenuation divided by the amplitude with attenuation squared.   
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where ( )peak0, =∆ αkI  is the calculated peak amplitude from equation (15) with α = 0, 

and ( )peak,αkI ∆  is the attenuated signal.  The measured signal, Smix in equations (11) and 

12, of a sample that attenuates the generated signal along the beam path will be 
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attenuated by 1/F and the second harmonic generated signal will be F times the measured 

signal. 

In birefringent crystals, the phase match condition can be met for optical fields by 

changing the orientation of the crystal axes to the optical field.  By using a quartz wave 

plate in the beam to convert the fundamental into double the frequency, one can measure 

the attenuation of the through the length of the cell as a function of density.  Therefore 

the right hand side of equation (13) can be measured by slowly filling the cell with CCl4 

and measuring the attenuation of the signal from the quartz plate as a function of fill 

pressure, which can be converted to a function of the length of the gas cell the second 

harmonic travels through before it exits the cell.  This is used to determine the attenuation 

correction. 

Kleinman symmetry imposes the condition that the susceptibility is invariant under 

permutation of spatial indices, such that if the frequency components were all zero you 

would have perfect permutation symmetry and thus Kleinman symmetry is everywhere 

valid in the zero frequency limit. [3]  In the case for EFISHG, the third order 

susceptibility has four indices, and four frequency arguments, as shown  in the full 

macroscopic polarization, P, in equation (20), excluding lower order terms. 

 )0()E()E(0)E , ,;(-2)2( k2
3

ljijkliP ωωωωωχω =  (20) 

The electric field in the j-th direction that is oscillating with a frequency ω is denoted 

by the Ej(ω), where the polarization in the i-th direction oscillating at a frequency of 2ω 

is Pi(2ω).  For an isotropic gas, the susceptibility tensor should also be isotropic, which 

means that there will be at most two independent elements which can be written as a sum. 

 )0,,;2(2)0,,;2()0,,;2( ωωωχωωωχωωωχ −+−=− zxzxzxxzzzzz  (21) 
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where )0,,;2()0,,;2( ωωωχωωωχ −=− zzxxzxzx  because permuting the indices of the 

optical fields of the same frequency should be indistinguishable.  At zero frequency, if 

the frequency components are interchanged simultaneously with the spatial components 

and the components of the sum are left unchanged then the independent elements must be 

equal, in other words )0,0,0;0(3)0,0,0;0( zxxzzzzz χχ =  , and the ratio of the susceptibilities 

should yield R(ω=0) = 3 as shown in equation (24).  This type of symmetry is referred to 

as intrinsic permutation symmetry. 

 )0,,;2(/)0,,;2( )R( ωωωχωωωχω −−= zxxzzzzz  (22) 

Measurements of this ratio for different frequencies will be in effect measuring 

deviations from Kleinman symmetry.  Using the dipole approximation further, the 

displacement of the electron cloud for the molecule can be modeled as a driven electron 

on a spring oscillator with complex frequency components.  Taking the real part and 

expanding that in terms of frequency will result in an expansion in even powers of 

frequency.  The same can be done for the second hyperpolarizability, 

 ( )...1)0,0,0;0()0,,;2( 4
2

2
1 +++=− ωωγωωωγ aa  (23) 

Several theoretical techniques are used to calculate the zero frequency value, and the 

burden on the experiment is to provide an extrapolation to zero frequency.  As the 

frequency increases to the optical, oscillations will occur so quickly that the nuclei in the 

molecule will be near stationary and the only contribution to the hyperpolarizability will 

be the electronic part.  The EFISHG experiment using vapor phase molecules and optical 

frequencies is essentially probing only the electronic part of the hyperpolarizability.  An 

extrapolation to zero frequency using optical frequencies will then result in a reliable 

estimate for the zero frequency hyperpolarizability. 
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The Kleinman symmetry ratio can also be modeled using a power series expansion in 

even powers of the frequency because of the relationship it has with the 

hyperpolarizability.  

 ( )...13)R( 4
2

2
1 +++= ωωω bb  (24) 

As the strength of the dependence of the hyperpolarizability on frequency becomes 

more apparent, there should also be deviations from Kleinman symmetry.  The measured 

signal from a pure gas in an optical field polarized parallel to the static field would be 

proportional to the square of )0,,;2( ωωωχ −zzzz  , and the measured signal from a pure gas 

in an optical field polarized perpendicular to the static field is proportional to the square 

of )0,,;2( ωωωχ −zxxz , as shown in equation (25). 
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where the brackets around γ indicate an orientation average.  The measured 

hyperpolarizability ratio of CCl4 and N2 from EFISHG will be
24 N ||,CCl ||, / γγ .  For a low 

density mixture of two gases, the expression for the measured ratio can be written as 

equation (26), in terms of the mixture density as, 
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and this equation can be manipulated by using the ratio of hyperpolarizabilities for the 

two gases in the mixture, 
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where 
4CClR is the ratio for pure carbon tetrachloride, 

2NR is the ratio for pure nitrogen, 

and mixR  is the ratio for the mixture.  The molar fraction of nitrogen, 
2Nx ,  can be written 

in terms of the molar fraction of carbon tetrachloride, 
4CClx , which is just =

2Nx  (1-

4CClx ), note that this is true for binary mixtures. 
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CHAPTER 3 

EXPERIMENTAL METHODS 

The optical fields available and used to measure the ratio of hyperpolarizabilities 

were two laser lines from an argon ion laser, λ = 488.0nm and λ  = 514.5nm, which 

produced second harmonic of wavelength 244.0nm and 257.3nm, respectively.  The 

fundamental beam is weakly focused to a confocal length of 48.85cm and 45.92cm 

through the electrode array.  Note this is the confocal parameter for the unfilled gas cell.  

A diagram of the experimental setup is shown in figure 1; a representative line is drawn 

to show the path of the beam through the apparatus.  The beam is weakly focused through 

the cell and the beam profile was measured by using a Thor Labs beam profiler for both 

wavelengths prior to installation of the gas cell.  The diameter of the beam as a function 

of position was fit to a hyperbola to find the position of the beam waist with respect to the 

center of the electrode array.  Periodically throughout the experiment the beam 

divergence was measured downstream from the cell to verify the beam profile had not 

changed. 

The windows of the cell containing the electrodes and the gas were made of fused 

silica to pass the ultraviolet.  Since fused silica is susceptible to stress induced 

birefringence, it was important to minimize translational force gradients in the window.  

The windows were sandwiched between two polytetraflouroethylene (PTFE, Teflon) O-

rings so that the window would seal against the outer O-ring and the inner O-ring served 

as a spring feedback when installing the window in the cell. 
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Figure 1: Diagram of experimental setup. 

 

The gas was introduced to the cell by way of a manifold of shut-off valves and copper 

tubing and the pressures were measured by a MKS Instruments Baratron Transducer, the 

output of which was recorded with an Analog to Digital Converter (ADC) sensitive to 

micro-volt ranges.  The cell is pumped down to a few mTorr through a liquid nitrogen 

cold-trap by a roughing pump.  The cell was filled either with pure N2 or with a mixture.  

Prior to filling, the cell was flushed with N2 at 1 atmosphere and the CCl4 had been put 

through several freeze, pump, and thaw cycles to pump away dissolved atmospheric gas.   

The electrode array used in the experiment had 80 repeats, or 160 total cylindrical 

electrodes.  Spacing between the surfaces of the electrodes was 0.71mm, spacing between 

electrode centers was 1.27mm and the total length of the electrode array was 20.3cm.  

Other electrode arrays with varying spacing had been investigated to see if the signal 

from pure CCl4 was high enough to perform the experiment on a pure gas sample of 

CCl4.  Count rates for the pure gas were low enough to need several hours for one 

measurement.  Since the signal from a mixture using the fine array mentioned previously 

was found to be several orders of magnitude larger than the best that could be found from 

other available electrode arrays and a pure sample of CCl4, the choice was made to use 
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mixtures of N2 and CCl4.  Attached to the electrode array is a plate that makes contact 

with a high voltage power supply through the gas cell wall.  The only available feed 

through ports for the high voltage power supply was on either end of the cell, and the 

electrode array was positioned on the front end of the cell.  This geometry is a result of 

the beam waist position from the lenses and the space needed to introduce the quartz 

plate in front of the cell for both alignment and attenuation measurements.  The preferred 

orientation would have been to focus the fundamental beam even less so that the BK7 

lens could be further away from the cell and the array on the far end of the cell.   This 

would have minimized the attenuation from the gas in the cell because the second 

harmonic would have had to travel less distance through the sample before exiting the 

cell.  The second harmonic travels collinearly with the fundamental beam, and so it is 

separated from the fundamental beam by using a double prism spectrometer.   

A set of mirror mounts were used to mount mirrors in a periscope configuration, the 

first mirror would reflect the beam upwards and the second would reflect back down to 

the horizontal and turn the beam to pass through the cell.  As a consequence of this beam 

steering, the polarization of the beam was also rotated by the reflections to a horizontal 

polarization state before entering the prism polarizer.  By using a crossed polarizer, the 

angle of extinction was measured to be 89.9 ± 0.1 degrees in reference to the horizontal. 

Initially the photomultiplier (PMT) used was a Hamamatsu R1527P, reflection type 

photocathode, but during the experiment it became apparent that a different PMT was 

needed.  A wire mesh obstruction, which is meant to focus the photoelectrons to the first 

dynode, also obstructed the signal beam.  The beam spot size at the window to the 

photodetector was about the size of the wires in the mesh, there was a strong systematic 
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error introduced in the Kleinman symmetry measurements from beam steering from the 

change in the polarization.  The part of the beam would overlap over the wire mesh for 

one polarization and a different overlap would be for another polarization of the 

fundamental.  Since the compensator could be adjusted for up to three wavelengths path 

difference, it would be possible to measure the effect of beam steering and find a 

correction.  An alternative was to use a different PMT, yet all that was available was one 

that had been used in several experiments prior to the first.  The advantage was it was 

without the mesh, because it had a transmission photocathode, but the price was lower 

signal.  Fortunately the signal was high enough that it would take approximately the same 

amount of time to obtain large enough statistics that it would take measure the systematic 

error that the reflection photocathode PMT introduced.  All the measurements for 

Kleinman symmetry deviations required the use of this PMT in order to achieve a 

precision of <0.1% but some of the measurements for the second hyperpolarizability 

were done using the first PMT since the polarization was unchanged during those 

measurements. 

The input polarization state of the optical field is prepared by using a Glan-laser 

prism polarizer in order to have a well defined horizontal polarization.  The polarization 

is then controlled by using a Special Optics Soleil-Babinet compensator.  The different 

polarization settings of the compensator would still steer the beam and even though the 

mesh-less PMT was used, sometimes there would still be a detectable difference from 

one polarization to another.  One method to reduce this effect was to average across a 

vertical polarization state defined by rotating the horizontal through a positive rotation 

and then through a negative rotation in reference to the fundamental beam propagation 
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direction.  The first analysis of a data set was a comparison between the vertical 

polarizations.  If both did not agree within the statistical error then the measurements 

from that data set were abandoned.   

The argon ion laser has an intense plasma glow that overlaps the ultraviolet that is 

detectable even through the spectrometer.  To mitigate this and also to address the second 

harmonic light generated by the polarization control components, the lens just before the 

input window of the gas cell is made out of borosilicate (BK7) glass which strongly 

absorbs in the ultraviolet.  A further measure to prevent coherent interference with second 

harmonic light generated outside the cell is to reverse the direction of the static field and 

take the average of measurements of one direction and the other.  The interference term 

from a 180 degrees phase shift will exactly cancel out in an average.  This is necessary 

because a weak source of second harmonic light generated along the beam path will 

interfere with the light generated inside the cell and will change the measured signal.  

Large effects were seen using the quartz plate in both upstream and downstream, and 

some cases were observed to nearly cancel out a phase matched signal.  For normal 

experimental conditions, the signals from both directions of the static field were in 

agreement. 

To prevent temporal shifts in the apparatus to bias the data, measurements were taken 

in ABA triplets, and the average taken over each triplet.  For the Kleinman symmetry 

measurements, each measured value would be taken with both polarities of the static 

field,  

 ( )( )( )( )( )( )( )( )( )( )...,,,,,,,,,, −↔+↔+↓−↓−↔+↔+↑−↑−↔+↔   (29) 
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where ( )( )−↔+↔ ,,  is an average of the two sequential horizontal measurements,↔  

indicates the polarization is along the horizontal, the + means positive polarity and – 

means negative polarity of the static field. The parentheses represent one separate 

measurement, so the horizontal measurement is a measurement of the positive polarity 

across the electrode array and the negative polarity averaged together.  The polarization 

was rotated in two different directions, and so those measurements are indicated as ↑  for 

a positive rotation and ↓  for negative rotation, and both are vertically polarized. 

For the hyperpolarizability data, the measured values that are extracted are the peak 

density and count rate.  Both are found by filling the cell to well above peak density, then 

slowly leaking the sample gas and measuring pressure, temperature, and count rate as the 

pressure went over the peak to the other side.  Then the peak pressure and count rate can 

be found by fitting a parabola, s = b(x-c)2 + S, where S is the peak signal count rate, s is 

the signal count rate, x is the pressure, and c is the peak pressure.  An example of such a 

measurement is found in figure 2, where the solid line is the weighted parabolic fit.  The 

range of points used in the fit is the top half of the peak.  The signal in figure 2 is from a 

N2 sample. 
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Figure 2:  Example measured signal (open circles) and parabolic fit (solid line) 

 
 
 

The temperature was measured by a type K thermocouple in contact with the gas at 

roughly 295K.  Peak density is determined by using the temperature and the peak 

pressure by application of the virial equation of state.  The gas mixtures were prepared by 

first filling with CCl4 while simultaneously measuring the attenuation as a function of fill 

pressure.  Then the cell was filled with N2 until the pressure of the mixture was just above 

the expected peak pressure and the cell was allowed to come to equilibrium.  Minimal 

fluctuations of the temperature inside the cell after filling were what determined the 

equilibrium condition.  The molar fractions are determined by taking the ratio of the 

densities calculated from the fill pressures: 

 
mix

CCl
CCl

4

4 ρ
ρ=x  (27) 

 
42 CClN 1 xx −=  (28) 
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The virial coefficient for a mixture of N2 and CCl4 is determined by using the virial 

equation of state for a mixture as shown below 

 2
CCl)T(CClCClN)T(mix

2
N)T(N(T) 444222

BB2BB xxxx ++=  (29)  

 ρ = 1 / (RT/P + B(T)) (30) 

where )T(N2
B  is the virial coefficient for pure N2, )T(CCl4

B  is for pure CCl4, Bmix(T) is the 

interaction virial coefficient or cross virial coefficient at temperature T, R is the gas 

constant, and P is the pressure of the gas. [8]   
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CHAPTER 4 

MEASUREMENTS AND RESULTS 

An example of an attenuation measurement is shown in figure 3, the case shown is for 

488.0nm, or 244.0nm. 
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Figure 3:  Attenuation of the frequency doubled 488.0nm signal from SHG in quartz 

 

The solid line is a weighted linear fit to the data, ρa+= 1I/I 0  , where a is the 

attenuation coefficient that depends on density, this value is used to determine the Beer-

Lambert law attenuation coefficient and 0I/I  is the ratio of the signal to the signal with 

CCl4 in the cell.  The length of the gas the beam travels through was measured window to 

window to be 50.43 ± 0.08 cm.  The average attenuation coefficient measured by this 

method for 244nm is a = -0.1082 ± 0.0018 m3/mol, and for 257nm a = -0.01562 ± 

0.00040 m3/mol.  These values were used to calculate F in equation 19, the peak density 

for each mixture was used to calculate α and the signal for each mixture is corrected by 
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this factor in tables 1 and 2.  The average cross section for 244nm is in agreement by a 

factor of two from an extrapolation of measurements in the ultraviolet of the cross section 

for CCl4 from measurements by Carlon, et. al.  Their measurements were from 185.0nm 

to 228.8nm and their measured cross section for 228.8nm is about two decades larger 

than what was measured for 244.0nm in this experiment.  [9] 

 

Table 1:  Hyperpolarizability measurements for 488.0nm  

Sample 
S  

(cps) F  
Smix (cps) 
( )SF ⋅=  

Pressure 
(Torr) 

Temp 
(K) 

Peak Density 
(mol/m3) 

4CClx
 

(%) 
2N4CCl /γγ

 

N2 23148.91   3443.21 295.15 187.23 + 0.14    

CCl4 + N2 24131.39 1.218 ± 0.016 29392.75 2880.86 295.15 156.73 + 0.12 1.750 ± 0.047 20.51 + 0.73 

N2 23389.91   3437.21 295.15 186.91 + 0.14    

CCl4 + N2 24546.71 1.220 ± 0.016 29937.46 2882.60 295.15 156.83 + 0.12 1.761 ± 0.047 20.29 + 0.73 

N2 23931.41   3432.79 295.15 186.67 + 0.14    

CCl4 + N2 24718.31 1.222 ± 0.017 30194.95 2875.91 295.15 156.47 + 0.12 1.780 ± 0.047 20.57 + 0.73 

N2 23350.21     3432.75 295.15 186.66 + 0.14    

N2 2068.57   3431.88 293.95 185.40 ± 0.14    

CCl4 + N2 2098.51 1.230 ± 0.016 2582.124 2900.10 294.00 156.42 ± 0.12 1.734 ± 0.049 19.96 ± 0.74 

N2 2052.62   3442.82 294.05 185.93 ± 0.14    

CCl4 + N2 2093.51 1.222 ± 0.017 2557.690 2914.51 294.35 157.02 ± 0.12 1.775 ± 0.048 19.11 ± 0.71 

N2 2056.23   3447.75 294.35 186.01 ± 0.14    

N2 2058.89   3441.94 294.35 185.69 ± 0.14    

CCl4 + N2 2089.1 1.220 ± 0.016 2548.771 2912.46 294.45 156.85 ± 0.12 1.764 ± 0.048 19.00 ± 0.71 

N2 2058.12     3443.41 294.35 185.77 ± 0.14    

N2 2495.67   3408.12 294.75 185.55 ± 0.14    

CCl4 + N2 2562.32 1.231 ± 0.016 3154.858 2887.50 294.85 157.23 ± 0.12 1.731 ± 0.47 20.20 ± 0.73 

N2 2460.64   3414.85 294.95 185.80 ± 0.14    

N2 2107.77   3424.96 295.65 185.90 ± 0.14    

CCl4 + N2 2179.77 1.225 ± 0.016 2670.717 2894.00 296.05 156.94 ± 0.12 1.689 ± 0.045 21.66 ± 0.76 

N2 2019.95     3436.34 295.95 186.33 ± 0.14     

 

After the peak densities, count rates, and signal attenuation are measured, the ratio of 

the hyperpolarizabilities can be determined by using equation (12) for the mixtures.  The 

errors in peak pressure and peak count rates from the parameters of the parabolic fits such 
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as figure 2 were small, < 0.01%, that they were omitted from the table.  Measurements 

for 488.0nm are found in table 1. 

The following pertains to measurements done after the first measured value of the 

hyperpolarizability ratio for 514.5nm which appears as the first three rows of table 2.  It 

was found that for the measurements of 514.5nm there was contamination of the cell with 

carbon tetrachloride during measurements of the pure nitrogen samples.  Measurements 

that were intended to be for an uncontaminated sample were shifted towards a mixture 

measurement by left over sample between measurements.  Previous work involving the 

same electrode array had measured the peak density as 222 mol/m3 and this work has an 

average of 219 mol/m3 for 514.5nm. [10]  The peak density found by using the parabolic 

fits to the data are reported in table 2, but the peak density used in the hyperpolarizability 

ratio calculation for pure N2 was 222 mol/m3.  
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Table 2: Hyperpolarizability measurements for 514.5nm 

Sample S (cps) F  
Smix  
(cps) 

(=F·S) 

Pressure 
(Torr) 

Temp 
(K) 

Peak Density 
(mol/m3)  

(%) 
2N4CCl /γγ  

N2 2054.48   4128.78 295.15 222.48 ± 0.15    

CCl4 + N2 2335.34 
1.0279 ± 
0.0028 

2400.43 3569.84 295.15 192.20 ± 0.13 
1.469 ± 
0.038 

17.91 ± 0.46 

N2 2078.68     4134.02 295.15 222.77 ± 0.15     

N2 21526.0   4020.96 295.25 218.51 ± 0.15†     

CCl4 + N2 24530.3 
1.0300 ± 
0.0027 

25265.9 3564.19 295.25 191.82 ± 0.13 
1.417 ± 
0.038 

18.93 ± 0.50 

N2 21511.0   4045.10 295.25 217.86 ± 0.15†     

CCl4 + N2 25024.2 
1.0289 ± 
0.0027 

25746.9 3597.22 295.25 191.62 ± 0.13 
1.416 ± 
0.038 

19.72 ± 0.52 

N2 21683.0     4017.12 295.25 216.34 ± 0.15†     

N2 21500.4   4053.54 295.35 218.32 ± 0.15†     

CCl4 + N2 24725.2 
1.0292 ± 
0.0027 

25447.6 3564.61 295.25 191.82 ± 0.13 
1.432 ± 
0.038 

19.12 ± 0.50 

N2 21477.9     4038.54 295.25 217.65 ± 0.15†     

N2 22068.0   4077.83 295.00 220.06 ± 0.15†     

CCl4 + N2 24521.7 
1.0614 ± 
0.0028 

26026.9 3565.39 295.00 192.05 ± 0.13 
1.407 ± 
0.038 

19.06 ± 0.51 

N2 22157.5   4076.85 295.15 219.90 ± 0.15†     

CCl4 + N2 23802.1 
1.0751 ± 
0.0028 

25590.1 3557.87 295.15 191.54 ± 0.13 
1.423 ± 
0.038 

19.16 ± 0.51 

N2 21260.0   4078.60 295.05 219.75 ± 0.15†     

CCl4 + N2 22959.4 
1.0707 ± 
0.0025 

24581.7 3553.92 295.15 191.33 ± 0.13 
1.414 ± 
0.038 

19.80 ± 0.52 

N2 20047.9     4096.39 295.45 220.50 ± 0.15†     
†measured contaminated phase match density for N2 

 

A summary of the measured ratio of hyperpolarizabilities are found in the table 3 and 

plotted versus wavenumber in figure 4.  Solid data points are from previous work, and the 

solid line is a weighed linear fit to the data.  The point at zero frequency is the calculated 

zero frequency value, the size of the point is not intended to indicate error. 

 

 

 

 

 

4 CCl x 
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Table 3: Summary of measured hyperpolarizability ratios 

Wavelength (nm) 
2N4CCl /γγ  

2N4CCl /γγ  

20.51 ± 0.73 

20.29 ± 0.73 

20.57 ± 0.73 

19.96 ± 0.74 

19.11 ± 0.71 

19.00 ± 0.71 

20.20 ± 0.73 

488.0 

21.66 ± 0.76 

20.13 ± 0.26 

17.91 ± 0.46 

18.93 ± 0.49 

19.72 ± 0.52 

19.12 ± 0.50 

19.06 ± 0.51 

19.15 ± 0.51 

514.5 

19.80 ± 0.52 

19.05 ± 0.19 

694.3a  15.59 ± 0.19 

1064b  12.82 ± 0.21 

-  14.41c 
a see reference [13], b see reference [11], c calculated zero frequency value, reference [16] 
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Figure 4:  Measured hyperpolarizability ratios plotted versus wavenumber squared. 
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The value for the zero frequency value of the ratio is 10.99 ± 0.14, and the slope is 

2.158 ± 0.035 cm2 found from the weighted linear fit.  The major contribution to the error 

in the hyperpolarizability ratio is from the molar fraction of the CCl4 in the mixture.  The 

error in the molar fraction for CCl4 was estimated by the estimate of the error in the fill 

pressure and temperature.  The fill pressure for CCl4 for all samples was 52 Torr and the 

error was estimated by using the statistical spread in fill pressures measured at 1 second 

intervals by the ADC manometer combination.  The error contribution from the molar 

fraction was 1-2% to the hyperpolarizability ratio.  Following the molar fraction the next 

major contribution to the error in the hyperpolarizability ratio is from the error in the 

correction term from the attenuation, which was less than 0.3%, it was calculated by 

propagating the errors through the sum in equation (15).  The main contribution to the 

error in the attenuation correction was from the error in the density dependent attenuation 

factor from the weighted linear least squares such as in figure 3. 

As shown in equation (25), the ratio for Kleinman symmetry using mixtures requires 

the measured value of the ratio of hyperpolarizabilities and the ratio, R, for the pure 

nitrogen in order to calculate the R value for carbon tetrachloride.  Measurements were 

made using pure nitrogen and are tabulated in table 4.  The weighted means of the 

measurements are indicated in the second to last column and in the last column are 

measurements made by Mizrahi and Shelton. [12] 
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Table 4:  Kleinman symmetry measurements of N2 

Wavelength (nm) 
2NR  

2NR  Ra 

2.9453 ± 0.0022 
2.9478 ± 0.0026 
2.9475 ± 0.0024 
2.9470 ± 0.0024 
2.9500 ± 0.0026 
2.9505 ± 0.0027 

514.5 

2.9434 ± 0.0030 

2.947 ± 0.001 2.945 ± 0.003 

2.9372 ± 0.0040 
2.9368 ± 0.0025 
2.9385 ± 0.0028 
2.9363 ± 0.0030 
2.9400 ± 0.0027 

488.0 

2.9409 ± 0.0022 

2.939 ± 0.001 

 
 
 

2.942 ± 0.004 

a from reference [12] 

After the mixture is prepared the triplet measurements would run about 10-20 triplets 

per mixture, for between 45-75 seconds for each measurement.  The results from the 

measurements of several mixtures are tabulated in table 5 and each value corresponds to 

one mixture. 

 

Table 5:  Kleinman symmetry measurements for gas mixtures and calculated ratios for pure CCl4 

Wavelength 

(nm) 42 CCl  NR +  
4CClx  

4CClR  
4CClR  

2.9863 ± 0.0017 1.426 ± 0.043 3.137± 0.036 

2.9838 ± 0.0018 1.390 ± 0.042 3.128 ± 0.036 

2.9831 ± 0.0030 1.459 ± 0.044 3.117 ± 0.037 

2.9781 ± 0.0017 1.374 ± 0.038 3.100 ± 0.037 

514.5 

2.9721 ± 0.0021 1.265 ± 0.038 3.078 ± 0.037 

3.113 ± 0.016 

3.0032 ± 0.0056 1.690 ± 0.051 3.206 ± 0.035 

2.9799 ± 0.0045 1.719 ± 0.052 3.103 ± 0.037 

2.9753 ± 0.0061 1.704 ± 0.051 3.084 ± 0.037 

2.9777 ± 0.0048 1.753 ± 0.053 3.091 ± 0.037 

488.0 

2.9799 ± 0.0045 1.756 ± 0.053 3.100 ± 0.037 

3.123 ± 0.018 
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Figure 5:  Deviations from Kleinman symmetry for CCl4. 
 
 
 

Following the same expansion of even powers in frequency and the results from the 

ratio of hyperpolarizabilities, it is expected that the measurements will fall on a straight 

line that intercepts 3 at zero frequency plotted against frequency squared or wavenumber 

squared as shown in figure 5.  The solid point is a previous measurement done by Ward 

and Miller. [13] 

The errors in the Kleinman symmetry ratios were calculated using estimated errors 

for the molar fraction of CCl4, the statistical error in the mixture and pure nitrogen 

measurements, and the calculated error for the mean of the measured hyperpolarizability 

ratio.   

Requirements were imposed on data points taken during Kleinman symmetry 

measurements that resulted in some triplets to not be used in the final result.  If a triplet 

disagreed with the weighted mean by twice the statistical error it was not used in the final 
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result of the mixture.  The number of omitted triplets under this criterion was less than 

one per mixture. 
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CHAPTER 5 

CONCLUSION 

The zero frequency value for 
2N4CCl /γγ  was found to be 11.04 ± 0.14.  The zero 

frequency value is calculated as 14.41 by Ohta, et. al., as indicated by the open point in 

figure 4.  [15, 16]  It appears that a linear relationship between the hyperpolarizability of 

CCl4 and wavenumber squared is adequate to describe the dispersion of the 

hyperpolarizability even in the optical range.  Similarly for the deviations from Kleinman 

symmetry, even though they are large as compared to deviations for other molecules that 

have been measured. [12]   
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