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ABSTRACT

MOLECULAR PROCESSES IN ASTROPHYSICS: CALCULATIONS OF

H + H2 EXCITATION, DE-EXCITATION, AND COOLING

by

Matthew Thomas Kelley

Dr. Stephen Lepp, Examination Committee Chair
Professor of Physics

University of Nevada, Las Vegas

The implications of H+H2 cooling in astrophysics is important to several applica-

tions. One of the most significant and pure applications is its role in cooling in the

early universe. Other applications would include molecular dynamics in nebulae

and their collapse into stars and astrophysical shocks. Shortly after the big bang,

the universe was a hot primordial gas of photons, electrons, and nuclei among

other ingredients. By far the most dominant nuclei in the early universe was hy-

drogen. In fact, in the early universe the matter density was 90 percent hydrogen

and only 10 percent helium with small amounts of lithium and deuterium. In or-

der for structure to form in the universe, this primordial gas must form atoms and

cool. One of the significant cooling mechanisms is the collision of neutral atomic

hydrogen with a neutral diatomic hydrogen molecule. This work performs cal-

culations to determine collisional cooling rates of hydrogen using two potential

surfaces.
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CHAPTER 1

THE ENVIRONMENT OF THE EARLY UNIVERSE

The formation of nuclei occured approximately 3 minutes after the big bang in

a process known as nucleosynthesis. At this time, a very limited variety of nu-

clei were actually able to form. These nuclei were hydrogen, helium, deuterium

(which, for the purposes of this discussion, will be assigned the atomic symbol D),

and lithium; also present were photons, free electrons, and neutrinos. It’s impor-

tant to note that because of the high photon energy density at this epoch, all these

nuclei were ionized. there were enough energetic photons to cause any atoms

formed to be immediately reionized. The electron scattering cross section is large

enough the universe was optically thick to photons.

Hubble (1929) showed that the universe is expanding. Because of the expan-

sion in the early universe, both the matter temperature and photon energy density

decreased. The ionisation fraction is defined by equation 1.1 where n is the number

density of electrons, e, protons, p, and hydrogen, H.

x =
ne

np + nH

(1.1)

The gas is overall neutral therefore ne = np. Neutral hydrogen atoms begin

to form when the photons in the universe no longer have enough energy keep

the H+ (protons) ionized. One would assume that this would occur when the

temperature is less than the temperature of the binding energy, TH = 1.6 × 105K,

but this would be incorrect because the number of photons greatly outnumbers the

number of baryons allowing the tail of the distribution of photon energies to ionize

a non trivial amount of hydrogen at the ionization energy of 13.6 eV. Hydrogen

recombination may be approximated by the saha equation, equation 1.2 where kB
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is the Boltzmann constant, me is the mass of an electron, and T is temperature.

x2

1− x
=

1

np + nH

(
mekBT

2π~2
)
3
2 e

− BH
kBT (1.2)

In this work , recombination will be defined as when the ionization fraction

is less than 0.5. This is when most of the hydrogen in the universe was neutral.

In this equation time is defined by temperature. Temperature is written in terms

of redshift z and the z = 0 cosmic microwave background (CMB) temperature

T0r = 2.73K (equation 1.3). The CMB will be discussed later in this chapter.

T = T0r(1 + z) (1.3)

Due to the expasion of the universe, objects in the universe are moving away

from each other. This causes the wavelength of the light emitted by distant objects

to get longer (become more red). This relationship was first observed by Hubble

(1929). He proposed equation 1.4 where v is velocity of recession, H0 ∼ 70 km

s−1 Mpc−1) is Hubble’s constant (Hubble actually measured it to be approximately

200 km s−1 Mpc−1), and D is the distance to the object. H0 has been measured

using surveys of atomic spectra from galaxies of known distance though some

uncertainty still exists.

v = H0D (1.4)

Cosmic time can then be calculated from equation 1.5 where Ω0 is the density

ratio. For the purposes of this discussion the value of Ω0 is insignificant.

2



t(z) =
2

3H0Ω
1/2
0 (1 + z)3/2

(1.5)

Using these equations, the fractional ionization drops below .5 when T ∼ 3200−

3800K depending on the choice of value of the density ratio and Hubble’s constant.

This corresponds to a t(z) of about 300, 000 → 400, 000 years after the big bang. At

this point, the universe is now optically thin because photons are not being ab-

sorbed and scattered with as much frequency. This is known as the last scattering

surface. These photons escaped the primordial gas and are observed today in the

form of the CMB first detected in 1964 by Penzias & Wilson (1965) and Wilson &

Penzias (1965). Missions such as WMAP have been specifically designed to map

the CMB which provides insight into the big bang, dark matter, and the early uni-

verse.

The composition of the early universe is a problem currently under considera-

tion (eg. Gay et al. 2011). Most studies agree that the only atoms that existed in the

early universe were hydrogen, helium, deuterium, and lithium (Lepp et al. 1998),

however there have been some studies that make a case for heavier elements cre-

ated during the big bang in trace quantities (eg. Puy et al. 2007). There is general

agreement that the matter density was 90 percent hydrogen, 10 percent helium,

and trace amounts of deuterium and Lithium. Smith (1993) reports a mass abun-

dance of MHe/MH = 0.21− 0.24, MD/MH = 1.8× 10−5, and MLi/MH = 1.1× 10−10.

Either way one calculates abundances, hydrogen is the most abundant so it is rea-

sonable to persume that it will have a significant impact on cooling.

A logical question to ask at this point is ”why does cooling matter?” The matter

in the universe at the time of recombination was an atomic gas with small abun-

dances of molecules. In order for structure to form, this gas must collapse in an

3



expanding universe. This collapse is generally believed to have occurred due to

the gravity of dark matter. However, thermodynamics states that under an adia-

batic collapse, as volume decreases, pressure increases where temperature remains

constant. This very quickly halts collapse preventing the formation of galaxies

and stars. In order for a full collapse to occur, the collapse must be non-adiabatic;

energy must leave the gas. This occurs via collisional cooling, a very significant

amount of which is atomic hydrogen colliding with diatomic hydrogen molecules.

The formation of H2 in the early universe is an area of interest particularly

since in the local ISM, molecular hydrogen is believed to predominantly form on

the surface of grains. This is due to the fact that in the ISM, direct formation of

H2 in open space from ordinary chemical processes is too inefficient to explain the

abundances observed. Cazaux et al. (2005) provides a very good overview of these

processes. However, dust in the early universe was non existent due to the absense

of heavy nuclei needed for its formation. Also, since dust is generally formed by

mechanisms such as supernova explosions, it was not present until after the first

star formation. As a result, H2 was formed directly in the primordial gas. Some

of these reactions are described by Galli & Palla (1998), referred to as GP98, and

are presented in table 1. Also presented in the table are a list of reactions involv-

ing heavier elements that may have occured in the early universe, assuming of

course heavy nuclei were present, from Vonlanthen et al. (2009), refered to as V09

in the table. The reactions in V09 are most likely insignificant contributors to the

H2 abundance due to the extremely low predicted abunances of heavy elements in

the early universe but may be of interest in environments such as supernovae.

The main collision partners with H2 in the early universe are H, D, electrons,

HD, and other H2 molecules. There is some evidence that LiH cooling may be

significant in terms of structure formation. For a discussion of LiH in the early

4



Table 1 H2 formation reactions without grains

reaction reference
H− + H → H2 + e− GP98
H+

2 + H → H2 + H+ GP98
H+

3 + H → H+
2 + H2 GP98

H+
3 + e− → H2 + H GP98

HD + H → H2 + D GP98
HD + H+ → H2 + D+ GP98

HD + H+
3 → H2 + H2D+ GP98

H2D+ + e− → H2 + D GP98
LiH + H → Li + H2 GP98

LiH + H+ → Li+ + H2 GP98
LiH+ + H → Li+ + H2 GP98

H+
2 + CH+ → CH+ + H2 V09
CH+ + H → C+ + H2 V09

H + CH+
2 → CH+ + H2 V09

He+ + CH2 → C+ + He + H2 V09
H+

2 + CH2 → CH+
2 + H2 V09

CH+
2 + e− → C + H2 V09

H + CH → C + H2 V09
H+

3 + C → CH+ + H2 V09
H + CH2 → CH + H2 V09

H+ + CH2 → CH+ + H2 V09
H+

3 + CH → CH+
2 + H2 V09

H+
2 + OH → OH+ + H2 V09

H + H2O → OH + H2 V09
OH+ + H → O+ + H2 V09

H+
2 + H2O → H2O+ + H2 V09

H + OH → O + H2 V09
H+

3 + O → OH+ + H2 V09
H2O+ + e− → O + H2 V09

H+
3 + OH → H2O+ + H2 V09
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universe, refer to Bougleux & Galli (1997). The reactions listed in table 1 are only

reactions that create H2, not listed are the dozens of reactions that consume H2

while creating other molecules. While studying the cooling of H2 can be both in-

teresting and advantageous, it by no means sums up the imortance of molecular

hydrogen in the early universe.

The calculation conducted here is an idealized calculation designed to deter-

mine density and temperature dependent cooling rates for diatomic molecular hy-

drogen in an atomic hydrogen bath. This calculation includes two potential sur-

faces assuming steady state. The steady state approximation is common in these

types of calculations.
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CHAPTER 2

BKMP2 AND MIELKE POTENTIAL SURFACES

In literature, the H + H2 potential surface is generally referred to as the H3 sur-

face. The history of reseach developing the H3 surface is quite extensive and can

be traced back to at least the 1930’s (eg. Eyring & Polanyi 1931). This reaction has

been heavily studied for several reasons. First, because it is the simplest atomic-

molecular reaction that only requires understanding of 1 atomic surface. Next, it

was used to develop theories of tunneling (Marshall et al. 1969). Also it has been

used as a probe into the effects of isotopes because each atom can be substituted by

either dueterium or tritium (Truhlar et al. 1976). It has also been used as a means of

studying various approximations such as the adiabatic approximation, the Born-

Oppenheimer approximation, and a wide range of semi-classical approximations

(Liu 1973). More recently it has been studied for its applications in astrophysics.

Modern potential surfaces really began with the LSTH potential surface (Liu

1973, Sieghbahn & Liu 1978, and Truhlar & Horowitz 1978). This potential sur-

face was considered to be the most accurate semi-classical attempt to model the

potential surface to date. It was also used as a test of the configuration interaction

method that would be used for more complicated systems. Since then, several sur-

faces have been presented that were at least partially based on the LSTH surface.

These include the double many-body expansion (DMBE) (Varandas et al. 1987),

BKMP (Boothroyd et al. 1991), BKMP2 (Boothroyd et al. 1996), and Mielke (Mielke

et al. 2002) potentials. The calculation presented here involved only the BKMP2

and Mielke potentials.
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Figure 1 The geometry parameters of the BKMP H3 potential surface (Boothroyd
et al. 1996)

H3 GEOMETRY AND HAMILTONIANS

The H3 potential can be modeled geometrically as a molecule of 3 hydrogen

atoms with dynamic relative coordinates. Figure 1 is a visual representation of

the H3 system for three hydrogen atoms labeled A, B, and C. In this diagram ri

is the distance between the molecules, θi are the interior angles opposite ri, θ1,2 is

the angle between C and −∞ on the horizontal axis in a right handed coordinate

system with B at the vertex, RH−H2 is the distance from C to a point positioned at

1
2

AB, and χ is the angle between C and B with the vertex at 1
2
AB. Atoms A and B

represent the H2 molecule.
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Figure 2 The Jacobi representation of the geometry of H3

The polar coordinate system depicted in figure 1 is useful due to its simplicity.

However, another common coordinate system used are Jacobi coordinates. These

are often used when calculating the Hamiltonian of the system because the Hamil-

tonian of the nuclei can be expressed in terms of the hyperradius, ρ (equation 2.2)

and the coefficient µ (equation 2.1) with units of mass. This is a center of mass

reference frame. Figure 2 shows the Jacobi coordinate system of H3 based off the

system used by Tolstikhin & Nakamura (1998). In this coordinate system, θi is the

angle between ri and the opposite atom as shown in the figure. Equations 2.1 and

2.2 show that ρ is related to the moment of inertia perpendicular to the plane of the

triangle through the center of the triangle I⊥ = µρ2.

µ = (
mAmBmC

mA +mB +mC

)
1
2 (2.1)

ρ = (
mAr

2
2 +mBr

2
3 +mCr

2
1

µ
)1/2 (2.2)
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The general form of the time independent Schrödinger equation is written as

equation 2.3. In this equation T is the kinetic energy, V is the potential energy, E is

the total energy and Ψ is the wave function.

(T + V )Ψ = EΨ (2.3)

The kinetic energy of a system of particles is presented in equation 2.4.

T = − ~2

2
∑C

i=Ami

▽2 (2.4)

In polar coordinates the Schrödinger equation then becomes equation 2.5.

EΨ = (− ~2∑C
i=A 2mP,i

+ V (Rα, ωα))Ψ (2.5)

In terms of the center of mass system from Tolstikhin (1998) gives equation 2.6.

Λ is the Smith’s grand angular momentum operator (Smith 1960) and Hsurface is the

surface Hamiltonian where V(Rα, ωα) is the surface potential.

EΨ = (− ~2

2µ

1

ρ5
∂

∂ρ
ρ5
∂

∂ρ
+

Λ2

2µρ2
+ V (Rα, ωα))Ψ (2.6)

GENERAL POTENTIAL SURFACE FORM

The BKMP2 potential has the general form of equation 2.7 and the Mielke po-

tential has the form of equation 2.8 and 2.9. In equation 2.7, dropping the (r1, r2, r3),

VLondon is the London potential (equations 2.10, 2.11, and 2.12)(London 1929), Vasym

is the asymetric geometry term (non-zero for all asymetric geometries), Vbend is the

bent geometry term (non-zero for all bent geometries), and the C’s are the compact

10



geometry terms (non-zero for their respective compact geometries) where Call is

non-zero for all compact geometries. In equations 2.8 and 2.9, VA are the single

atom energies, VAB are the two-body energies which are calculated for both long

and short range interactions, and VABC are the three body energies; each with a

functional form of equation 2.9. V3C is the three-center correction term designed

to account for the center of mass coordinate system. Both equations maintain the

notation from their respective papers.

Vtotal(r1, r2, r3) = VLondon(r1, r2, r3) + Vasym(r1, r2, r3) + Vbend(r1, r2, r3)

+Call(r1, r2, r3) + Casym(r1, r2, r3) + Cbend(r1, r2, r3)
(2.7)

VABC =
∑

V
(1)
A +

∑
V

(2)
AB +

∑
V

(3)
ABC (2.8)

V = VLondon + V3C (2.9)

VLondon(r1, r2, r3) =
3∑

i=1

Q(Ri)± (ϵ2 +
1

2

∑
i>j

[J(Ri)− J(Rj)]
2)1/2 (2.10)

Q(Ri) =
1

2
[Vsing(Ri) + Vtrip(Ri)] (2.11)

J(Ri) =
1

2
[Vsing(Ri)− Vtrip(Ri)] (2.12)

The London potential was the first significant attempt to model collisions be-

tween atoms and molecules. Though quite inaccurate, it has been used as a starting

point for more modern techniques. In equations 2.11 and 2.12, Vsing and Vtrip are

the H2 singlet and triplet diatomic potentials. The ± indicate electronic gound state

(-) and excited states (+). Since only the Mielke potential considers excited states

it uses the ± where the BKMP2 potential uses only the -. Each of these individual

correction terms are expressed as formidable system of parameters causing both

of these potentials to have a significant number of fit parameters. For example, the
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BKMP2 has a total 129 parameters that the system is fit to for various molecular

configurations. As a result it is not prudent to go into anymore detail on the func-

tions themselves. However, it is informative to take note of the two techniques

used to derive these potentials.

CONFIGURATION INTERACTION METHOD

Consider the H3 molecule with 3 electrons, one centered on each hydrogen nu-

clei. The Born-Oppenheimer approximation allows us to consider the electrons

independently of the kinetic energy of the nuclei to calculate the wavefunction.

This is made possible by the following assumptions. (1) There is little momentum

transfer between the electrons and nuclei. (2) Since the forces between them is

similar due to having the same but opposite charges, their momentums must be

similar. (3) Since the electrons are much smaller and have the same momentum as

the nuclei, they have much greater velocites. (4) The electrons are able to relax to

the ground state around relatively stationary nuclei. Therefore, the wavefunction

of the H3 molecule can be considered as a function of its equlibrium electronic and

nuclear wavefunctions in terms of the nucleus positions. This principle is applied

to an H3 system using the configuration interaction method. This method was

used for the BKMP2 potential, the Mielke potential used the very similar multi

reference configuration interaction method which allowed the consideration of ex-

cited states.

Each of the electrons can be expressed in terms of a spin orbital χi(ri) for i =

1, 2, 3 where ri are the positions of each of the electrons with respect to their nu-

cleus. The number of spin orbitals considered varies depending on the author’s

desired accuracy. Liu (1973) used Slater-type orbitals (equation 2.13) normalized

and fit for N and ζ . n is the principle quantum number. In order to satisfy the
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requirement that the wavefunction needs to be anti-symmetric, the particles must

also be indistinguishable. Each electron should be interchangeable with any other

electron. The anti-symmetric wavefunctions can be expressed as a linear combi-

nation of all possible Slater determinants (equation 2.14) which satisfies the Pauli

exclusion principle (equation 2.15). ki are calculated using the Clebsch Gordan

coefficients.

χ(ri) = Nrn−1e−ζri (2.13)

ϕ(r1, r2, r3) =
1√
3!

∣∣∣∣∣∣
χ1(r1) χ2(r1) χ3(r1)
χ1(r2) χ2(r2) χ3(r2)
χ1(r3) χ2(r3) χ3(r3)

∣∣∣∣∣∣ (2.14)

ψj =
∑

kiϕi (2.15)

Next by solving equation 2.16, the eigenstates of the sytem can be calculated

where H is the Hamiltonian matrix (equation 2.17). The first term is usually the

result of the Hartree-Fock method. This gives the eigenvectors of the system. These

can be defined as equation 2.18 where i, j = 1 → k, x is the number of electrons and

k is the total number of basis functions. The elements of Hij can be calculated using

Slater’s rules written in terms of their appropriate integrals.

H|Ψ >= E|Ψ > (2.16)

Hij =< ψi|H|ψj > (2.17)

|Ψj > =
∑k

i=1 cij|ψi >

k = l!
x!(l−x)!

(2.18)

The eigenvectors of H can now be written as a sum of all the one, two, and
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three electron orbitals to get the wave function (equation 2.19). There are several

algorithms available that use the configuration interaction method to fit the wave-

functions and hamiltonians through iterative techniques that produce a solution

that converge to a calcualted ab initio energy for a given geometry.

|Ψ >=
I∑

i=1

ci|Ψi > (2.19)

CLASSICAL SCATTERING THEORY

Consider again the H3 system with three atoms A,B,C. Also consider a coor-

dinate system to describe the configuration of the system consisting of three di-

mensions,
∑3

i=1

∑C
k=A xi,k. The Hamiltonian of such a system can be written as

equation 2.20 where V(xi) is the potential.

H =
C∑

k=A

1

2mk

3∑
i=1

xi + V(xi) (2.20)

One can then write Hamilton’s equations as equation 2.21 where p is the parti-

cle momentum.
− ∂H

∂xi,k
=

dpi,k
dt

∂H
∂pi,k

= dxi,k
dt

(2.21)

More specifically, the velocity between the particles, which macroscopically

corresponds to temperature, can be obtained using equation 2.22.

dp = − ∂v
∂xi

dt (2.22)

14



Now, assuming atom A to be the collider, the molecule consisting of atoms

B and C can be placed on the plane x,y. This molecule will be in an initial ro-

vibrational state Eviji . Using conservation of momentum, one can determine the

energy transferred between the molecule and collider given the coordinates of the

collider relative to the molecule. If this energy is above the energy of a molecular

energy level, the molecule will then transfer to that energy level. The reaction

probability can thus be written as a function of the velocity VA→BC ji,vi, and b. By

considering this initial set of conditions and evaluating the results from a range

of configurations (Monte Carlo calculation), the number of trajectories that yield

a reaction can be determined. This allows one to calculate the probability of a

transition, equation 2.23. Chapter 4 discusses how these trajectories are used to

calculate the collision rate coefficients.

Pi(VA→BC, ji,vi) =
Nvifjf

Nviji

(2.23)
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CHAPTER 3

COOLING

COLLISIONAL COOLING: A SAMPLE CASE

Diatomic molecules store energy in the form of rotation and vibration. Clearly

in order for cooling to occur, a transition from an excited energy level to a lower

energy level must occur and a photon must be released. The energy of a harmonic

oscillator and rigid rotator is expressed as equation 3.1. Keep in mind that this is

only a sample case, in reality the H2 molecule loses its harmonic oscillator proper-

ties after the first couple dozen energy levels. This property will be discussed in

more detail later. In equation 3.1, Eν,J is the energy, ω is the vibrational frequency

(1.32× 1014 Hz for H2), B is the characteristic rotational energy (7.56× 10−3 eV for

H2), J is the rotational quantum number, and v is the vibrational quantum number.

Eν,J = ω(ν +
1

2
) +BJ(J + 1) (3.1)

A molecule can transition to a higher energy state through two mechanisms,

absorption of a photon or collisions with another molecule/atom. It can transition

to a lower energy state via stimulated emission from a photon, de-excitation from

collisions with another molecule/atom, and sponatneous emission. This calcula-

tion makes the assumption that stimulated emission and absoption are negligible.

Also not considered is dissociative tunneling which does not result in a state tran-

sition but rather destruction of the molecule all together. Consider a steady state

gas composed of an imaginary H2 molecule with 3 energy levels and a gas temper-

ature of T = 5000 K (figure 3).
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Figure 3 Energy level diagram of an imaginary, 3 level molecule

The imaginary gas consists of molecules in one of these three energy levels

in a bath of hydrogen with density nH. The population density (molecules per

cm−3) of each energy level, Ni, is constant if the gas is in steady state. In order to

calculate the cooling of this gas, the steady state densities need to be calculated.

Consider the definitions in equation 3.2. These definitions allow the final cooling

to be expressed independent of the gas density.

NH2 =
∑3

i=1Ni

ni = Ni

NH2

(3.2)

As stated before, molecules can transition from one energy level to another

through collisions and spontaneous emission. γi→f is the collisional rate coefficient

and Ai→f is the Einstein coefficient for spontaneneous emission. Note that Ai→f is

only relavant for i > f. From figure 3 equations 3.3 through 3.5 can be written.
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dn1

dt
= n2(γ2→1nH + A2→1) + n3(γ3→1nH + A3→1)− nHn1(γ1→2 + γ1→3) (3.3)

dn2

dt
= γ1→2n1nH + n3(γ3→2nH + A3→2)− n2[(γ2→1nH + γ2→3) + A2→1] (3.4)

dn3

dt
= nH(γ1→3n1 + γ2→3n2)− n3[nH(γ3→1 + γ3→2) + A3→1 + A3→2] (3.5)

These equations can be written in matrix form (equation 3.6).


dn1

dt

dn2

dt

dn3

dt

 =


−(γ1→2 + γ1→3)nH γ2→1nH +A2→1 γ3→1nH +A3→1

γ1→2nH −nH(γ2→1 − γ2→3) +A2→1 γ3→2nH +A3→2

γ1→3nH γ2→3nH −nH(γ3→1 + γ3→2)−A3→1 −A3→2




n1

n2

n3


(3.6)

Equation 3.6 can be re-written in the form of equation 3.7.

dn
dt

= M · n (3.7)

The steady state solution is the solution of n when dn
dt = 0. Now the cooling,

Λ, of this three state system can be calculated via equation 3.8. Note that only the

spontaneous emission produces radiation. Again, it is assumed that all photons

18



escape the gas. The energy of the escaping photons is the cooling.

Λ

nH2

=
3∑

i=1

i−1∑
f=0:Ef<Ei

(Ei − Ef)Ai→fni (3.8)

This section is a simplified example of the calculation conducted in this work.

The calculation of the cooling of H2 from collisions with atomic hydrogen involve

301 energy levels (31 rotational levels and 15 vibrational levels). The proceeding

sections describe in detail the calculation of H+H2 cooling performed in this work.

ENERGY LEVEL DENSITY

As demonstrated in the previous section, the first thing that needed to be done

was to calculate the populations of the energy levels. The 301 bound energy levels

calculated were numbered from lowest energy to highest energy 1 to 301. Figure

4 shows the 301 energy levels from lowest to highest energy level numbered 1

to 301 for both the idealized harmonic oscillator and the actual levels of H2. The

numerical values of the H2 levels are presented in table 12. Notice the divergence at

higher index number between the harmonic oscillator energy levels and the actual

H2 levels.

Following figure 3, the 301 energy levels were expressed as a series of equations

describing the population-depopulation rates as the derivative of the level popu-

lation density with time consisting of both excitation and de-excitation collision

coefficients (chapter 4) as well as the Einstein coefficients (chapter 5) divided by

the total molecular hydrogen density. These equations are expressed as a 301×301

matrix, M, of coefficients similar to equation 3.6. The unknown level populations

are expressed as a 301 term vector as are the population-depopulation rates. Again
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Aij are the Einstein coefficients for spontaneous emission . The steady state solu-

tion for the energy level populations can then be solved for by solving for n in

equation 3.9. In reality the quantities solved for were Ni/NH2 but here the term

energy level populations will be used to imply this.

0 = M · n (3.9)

This equation has two solutions, the first is the trivial solution that would result

in a vector n of all zeros. In order to remedy this, the condition in equation 3.10 is

applied.

301∑
i=1

ni = 1 (3.10)

There are two techniques that were found useful to solve this problem; back-

ward differentiation (BDF) and singular value decomposition (SVD). Press et al.

(2007) provides C++ and Fortran versions of an SVD subroutine as part of the soft-

ware that accompanies their publication. It is very user friendly and can be simply

copied directly into a larger program. This was very effective in most instances;

however, from time to time, particularly in densely populated matrices it would

struggle to converge. But it did prove useful as a check with the BDF solution. An

alternative to the Press et al. (2007) subroutine is the Octave SVD subroutine. It is

utilized in a subroutine in the final version available in the appendix CD. Octave

(Eaton 2009) is an open source command line mathematical software package very

similar to Matlab. As an alternative to the SVD solution, it was used to conduct a

21



Figure 5 Level Densities T = 1000K,nH = 1cm−3
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backward differentiation to get the values of the energy level populations.

The levels populations are plotted for T = 1000 and 10000K in figures 5 through

8. Notice that both increased temperature, and increased hydrogen density causes

the higher energy levels (Appendix C) to become more densely populated. As

these two quantities are increased, considerations such as dissociation, unbound

levels should be included.
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Figure 6 Level Densities T = 1000K,nH = 1E4cm−3
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Figure 7 Level Densities T = 10000K,nH = 1cm−3
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Figure 8 Level Densities T = 10000K,nH = 1E4cm−3
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COOLING

Using the energy level densities, the cooling rates can now be calculated. Note,

only radiative transitions result in cooling. This is a result of the selection rules for

H2. Selection rules are calculated via equation 3.11. µz,i→f is the dipole moment,

Ψ are the state wave functions, µ̂ is the transition moment operator, and τ is the

coordinates. The wave function for the electronic ground states were calculated

by James & Coolidge (1993). If this integral is not zero then the transition is an

allowed transition (the transition moment function is symmetric). As is customary

in these kinds of calculations I did not consider forbbiden transitions. The results

of this integral show that only transitions for △ J = 0,±2. There is no limitation on

vibrational transitions.

µz,i→f =

∫ ∞

−∞
Ψ∗

i µ̂Ψfdτ (3.11)

Referring back to equation 3.8, the cooling rate can now be calculated for the

301 energy levels using the calculated level populations and the Einstein coeffi-

cients. These rates are presented in tables 2 through 5. Notice that the rates con-

verge as temperature and density increase. Temperatures less than ∼ 1000K should

be done using a quantum calculation.

Finally the shape of the emission spectrum can be calculated. Appendix A de-

tails how to do this using the program written for this study. This is done by nor-

malizing the monochromatic flux, Fνi→f
, for each radiative transition as in equation

3.12 for some constant C. Each transition is characterized by an emitted photon of

energy Ephoton. Figures 9 through 12 show the predicted spectrum of the BKMP2
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Table 2 Calculated cooling rates in erg cm−3 s−1 for nH = 1cm−3

Temperature (K) Mielke BKMP2
1000 2.490E − 25 2.976E − 25
1500 1.664E − 24 1.777E − 24
2000 5.090E − 24 5.126E − 24
3000 1.968E − 23 1.897E − 23
4000 4.602E − 23 4.389E − 23
5000 8.601E − 23 8.117E − 23
6000 1.440E − 22 1.330E − 22
8000 3.403E − 22 2.963E − 22
10000 6.713E − 22 5.625E − 22

Table 3 Calculated cooling rates in erg cm−3 s−1 for nH = 100cm−3

Temperature (K) Mielke BKMP2
1000 2.967E − 23 3.324E − 23
1500 1.819E − 22 1.806E − 22
2000 5.009E − 22 4.862E − 22
3000 1.812E − 21 1.750E − 21
4000 4.194E − 21 4.061E − 21
5000 7.706E − 21 7.483E − 21
6000 1.231E − 20 1.199E − 20
8000 2.445E − 20 2.391E − 20
10000 3.973E − 20 3.902E − 20
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Table 4 Calculated cooling rates in erg cm−3 s−1 for nH = 1E4cm−3

Temperature (K) Mielke BKMP2
1000 1.844E − 21 1.869E − 21
1500 8.960E − 21 8.848E − 21
2000 2.229E − 20 2.175E − 20
3000 6.678E − 20 6.506E − 20
4000 1.365E − 19 1.338E − 19
5000 2.344E − 19 2.310E − 19
6000 3.599E − 19 3.569E − 19
8000 6.692E − 19 6.684E − 19
10000 9.967E − 19 9.984E − 19

Table 5 Calculated cooling rates in erg cm−3 s−1 for nH = 1E8cm−3

Temperature (K) Mielke BKMP2
1000 2.745E − 21 2.745E − 21
1500 1.732E − 20 1.732E − 20
2000 4.809E − 20 4.809E − 20
3000 1.524E − 19 1.524E − 19
4000 3.045E − 19 3.045E − 19
5000 4.971E − 19 4.971E − 19
6000 7.189E − 19 7.189E − 19
8000 1.183E − 18 1.183E − 18
10000 1.589E − 18 1.589E − 18
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Figure 9 BKMP2 predicted spectrum T = 1000K nH = 1cm−3
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potential using this calculation.

Fνi→f
(Ephoton) = CAi→fni

Ephoton = Ei − Ef

(3.12)

The general shape of this figure can be checked by comparing it to a similar

calculation performed by Shaw et al. (2005) (Shaw05). Their calculation was con-

cerning the photo dissociation region (PDF) around a star. Figure 13 shows their

results. The similarity between the calculations performed in this study compared

to Shaw05 are particularly apparent when considering the 10000K spectra. In fig-
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Figure 10 BKMP2 predicted spectrum T = 1000K nH = 1E4cm−3
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Figure 11 BKMP2 predicted spectrum T = 10000K nH = 1E4cm−3
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Figure 12 Mielke predicted spectrum T = 10000K nH = 1E4cm−3
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Figure 13 PDR of a Star Using CLOUDY (Shaw et al. 2005) for an ionization fraction
of .5

ure 13, molecular hydrogen is represented in the region of ∼ .3 to ∼ 10µm. One

will also notice that the Shaw05 figure appears to have a less detailed spectrum.

This is because they considered only ∼ 4 percent of the ∼ 12000 transitions of

molecular hydrogen. They describe theirs as being a ”very approximate” calcula-

tion. Finally, they used a quantum mechanical treatment performed by LeBourlot

et al. (1999) and extrapolated to higher temperatures based on low temperature

calculations. However, the shapes of the two calculations are similar enough to

provide some confidence of this calculation as well as some perspective of how

the calculation performed here can be used.
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CHAPTER 4

COLLISION RATE COEFFICIENTS

The collision rate coefficients are important in calculations of gas cooling be-

cause they have a significant impact on energy level populations. Mandy & Mar-

tin (1991), Mandy & Martin (1992), Mandy & Martin (1993), and Martin & Mandy

(1995) are a series of papers that lay out how to do this calculation step by step

for H + H2. The calculation presented in this chapter were performed following

theirs. Interactions for H + H2 were calculated using the quasiclassical trajectory

method (QCT) (Blais & Truhlar 1976). Given a set of 31 rotational energy levels

and 15 vibrational levels, this method predicts the outcome of a collision for a va-

riety of geometries and counts the number of times a particular transition occurs.

The work presented here used BKMP2 trajectories calculated by Archer (2006) and

Mielke trajectories courtesy of Stephen Lepp. Using these trajectories, a series of

FORTRAN programs were written to calculate the cooling rates for a variety of

hydrogen densities and temperatures.

COLLISION CROSS SECTIONS

Each collision has two trajectories associated with it. The first are non-reactive

collisions in which the atomic hydrogen interacts with the molecular hydrogen

but no atomic exchange occurs. These trajectories are denoted Ni→f,N. The i and

f represent the initial and final energy states. Next there are collisions with an

exchange reaction in which the incoming hydrogen atom changes place with one

of the atoms in the molecule. These trajectories are denoted Ni→f,E. In an exchange

reaction, 3/4 of each reactive transition goes to a ortho state (odd J) and 1/4 goes to

a para state (even J) as a result of nuclear spin selection rules (Oka 2004). There are
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also trajectories that lead to dissociation though they are ignored when calculating

level populations. The QCT code (courtesy of Stephen Lepp) will automatically

assume this selection rule. Each exchange reaction then needs to be divided by 4

in order to prevent the total number of trajectories from exceeding the sample size.

Equation 4.1 calculates the cross section, σi→f(T’) of a collision. S is the sample

size and bmax is the maximum impact parameter. In this case bmax is 5a.u. for the

BKMP2 potential and varied for the Mielke potential (See appendix C).

σi→f (T
′) =

Ni→f,N +
Ni→f

4

S
πb2max (4.1)

S =
301∑
i=1

301∑
f=1

(Ni→f,N +
Ni→f

4
+Ni→dissociation) (4.2)

Only the de-excitation coefficients were calculated from trajectories. The exci-

tation coefficients were calculated via detailed balance. Also, bearing in mind that

the QCT uses a Monte Carlo method, the law of large numbers shows that the so-

lution has a S− 1
2 convergence. It stands to reason that with an increased sample

size, the uncertainty should decrease.

Figures 14 through 19 are a sampling of plotted cross sections. They include, vi-

brational, ro0tational, and ro-vibrational transitions for both ortho and para states.

As shown in the plots, both potentials show very similar behavior for each transi-

tion. Cross sections were calculated for temperatures of 500, 1000, 2000, 5000, 7000,

10000, 20000, 30000K. σi→f(0K) is assumed to be zero and σi→f(∞) is assumed to be

equal to the cross section at 30000K.

The cross sections were fit to a cubic spline to make them easier to work with

mathematically. This was done via the form of equation 4.3. Maxima (Vodopivec

& Lenarcic 2010) was used to solve for a general cubic spline for the temperature
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Figure 14 An example of a vibrational transition to a para state
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intervals used as the collision temperatures identified earlier.

σi→f,k→k+1 = ak→k+1(T
′ − T ′

k→k+1)
3 + bk→k+1(T

′ − T ′
k→k+1)

2

+ck→k+1(T
′ + T ′

k→k+1) + dk→k+1

k = 1,9

Tk = 0, 500, 1000, 2000, 5000, 7000, 10000, 20000, 30000 K

(4.3)
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Figure 15 An example of a vibrational transition to a ortho state
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Figure 16 An example of a rotational transition to a ortho state
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Figure 17 An example of a rotational transition to a para state
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Figure 18 An example of a ro-vibrational transition to a para state
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Figure 19 An example of a ro-vibrational transition to a ortho state
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THE MAXWELL-BOLTZMANN VELOCITY DISTRIBUTION

The Boltzmann distribution, equation 4.4, gives the kinetic energy distribution

of molecules in thermal equilibrium. T is the gas temperature, k is the Boltzmann

factor, 8.617× 10−5eV/K, A is a normalization constant, and E is the kinetic energy.

The Boltzmann distribution is a classical approximation of the Fermi-Dirac distri-

bution used for spin 1/2 particles (Fermions) and the Bose-Einstein distribution

used for spin 1 particles (Bosons).

f(E) = Ae−
E
kT (4.4)

The Boltzmann distribution can be used to describe the number of particles

within a system with a particular energy. This is given by equation 4.5. Equation

4.5 will become significant later in this section.

n(E) = g(E)f(E) (4.5)

Equation 4.4 can be rewritten in terms of velocity by substituting the kinetic

energy E = 1
2
mv2. This gives equation 4.6.

f(v) = Ae−
mv2

2kT (4.6)

Next, the Boltzmann distribution can be normalized and solved for A as seen

in equations 4.7 and 4.8 respectively.∫ ∞

−∞
f(v)dv = 1 (4.7)

A = (
m

2πkT
)
1
2 (4.8)
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In three dimensions this becomes equation 4.9.

f(v) = f(vx, vy, vz) = f(vx)f(vy)f(vz)F (v)dv =

∫
f(−→v )d3(−→v ) (4.9)

Since the velocity vectors are on average the same length in each direction

throughout the gas, the volume of the spherical shell represented by this integeral

can be written as equation 4.10. This equation represents the Maxwell velocity

distribution.
F(v)dv = 4 πf(v)v2dv

= 4 π( m
2πkT

)
3
2v2e−

mv2

2kT dv
(4.10)

COLLISION RATE COEFFICIENTS

The mean velocity can now be described using the mean value theorem for

integrals, equation 4.11.

< v >=

∫ ∞

0

F (v)vdv (4.11)

Finally, the collision rate coefficient between two moving particles can be de-

scribed based on classical mechanics as the velocity×collision cross section as in

equation 4.12.

γi→f = < σi→fv >

=
∫∞
0
F (v)vσi→f (v)dv

= 4 π( µ
2πkT

)
3
2

∫∞
−∞ σi→f (v)v

3e
µv2

2kT dv

(4.12)

Note that instead of mass, reduced mass is used to better represent the system

of particles. Next, the substitution in equation 4.13 is made relating the velocity of
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the collisions to the temperature of the collision. The result is equation 4.14 which

is the equation to calculate the collision rate coefficients given a gas temperature T

and collision temperature T’.

E =
1

2
µv2 = kT ′ (4.13)

γi→f = (
2

T
)(
3

2
)(
k

πµ
)
1
2

∫ ∞

0

σi→f (T
′)e−

T ′
T dT ′ (4.14)

Performing this integral by hand would be too complicated tedious. So instead

there are a number of numerical methods available to calculate these integrals. A

Fortran program was written to calculate this integral using Simpson’s 3/8th rule,

equation 4.15, for the de-excitation coefficients for gas temperatures of 100, 500,

1000, 2000, 5000, 7000, 10000, 15000, 20000, 25000, 30000, and 40000 K.

h = b−a
3n∫ b

a
f(x)dx ≈ 3h

8

∑n
k=1[f(x3k−2) + 3f(x3k−2) + 3f(x3k−1 + f(x3k)]

(4.15)

Referring back to equation 4.5, the populations for two energy levels can be

written as equation 4.16.

nf

ni

=
gfe

−
Ef
kT

gie
−Ei
kT

=
gf
gi
e−

(Ef−Ei)

kT (4.16)

As stated in the previous chapter, when the system is in steady state, the exci-

tation transitions must equal the de-excitation transitions. This can be written in
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the form of equation 4.17.

ninHγi→f = nf (nHγf→i + Af→i) (4.17)

By detailed balance, equation 4.17 can be rewritten as equation 4.18.

nf

ni

=
γi→f

γf→i

(4.18)

So now the excitation coefficients can be calculated as equation 4.19.

γi→f

γf→i

=
gf
gi
e−

(Ef−Ei)

kT (4.19)

FITTING THE RATE COEFFICIENTS

Next, the rate coefficients were fit to equation 4 from Martin & Mandy (1995),

equation 4.20 in this discussion, to the parameters a, b, c, and d. This was done

using the general least squares fitting algorithm from section 15.4.1 from Press et

al. (2007). This section describes this algorithm and how it was used.

log10γ(t) = a+bz+cz2 − d(1
t
− 1)

t = T/4500 K

z = log10t

(4.20)

This algorithm works by finding the solution that minimizes χ2 (equation 4.21)

for equation 4.20 written as a system of 12 equations for the temperatures Ti =

45



100 → 40000K identified earlier.

χ2 =
∑12

i=1[log10γ(ti)− (a+ bz + cz2 − d(1
t
− 1)]2

=
∑12

i=1[yi −
∑4

k=1 akXk(ti)]
2

yi = log10γ(ti)

ak = a, b, c, and d respectively

Xk(ti) = 1, zi, z
2
i , and 1

ti
− 1 respectively

(4.21)

Following the algorithm as in Press et al. (2007), three matrices b = bi, a vector

of 12 elements, A = Aij, a 12 × 4 matrix of the values of Xk(ti), and a, a 4 element

vector with unknown values of a = ak were identified. The goal is to solve for the

vector a. Taking the derivative of equation 4.21 and setting it equal to zero gives

equation 4.22.

0 =
∑12

i=1[yi −
∑4

j=0 ajXj(ti)]Xk(ti)

k = 1,4
(4.22)

Equation 4.22 is then solved for aj giving the values of the coefficients of the fit.

This is done as represented by equations 4.23.

α = AT · A

β = AT ·b

α·a = β

a = α−1 · β

(4.23)

This procedure was done using a program I wrote in Fortran. Figures 20 through

24 show some examples of fits to the collision rate coefficients using equation 4.20.
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When considering the error bars it is clear that the fit is sufficient even for the

largest RMS error (table 2) for a calculation with a large value range. Martin and

Mandy (1995) report this fit to be sufficient to 5 percent of the calculated data

points. All the significant transitions (low initial energy) are well behaved and

well fit. Any difficulty in fitting is a result of the fact that these cross sections

can behave very erratically due to few trajectories. They also have many different

behaviors at various temperatures. However, equation 4.20 works very well for

most of the cross sections. A new trajectory calculation with a larger sample may

produce better results. Of course a new function may also be required for more

precision.

COMPARISON WITH OTHER CALCULATIONS

The coefficient fits can now be compared with previous work. The rate coef-

ficients presented in Martin & Mandy (1995) are available at Martin (1996). The

calculations presented here match within an order of magnitude of the Martin &

Mandy (1995) calculations. These plots include the calculations for the Mielke po-

tential with bmax = 5a.u. and for a varying maximum impact parameter. Varying

the impact parameter appears to have minimal significance. At the most extreme

the varying impact parameter is still within 10 percent of the constant impact pa-

rameter (eg. table 7 for the 0,4 to 0,2 transition) . In each instance this difference

is less than 10 percent. However, for the cooling calculation the varying impact

parameter for the Mielke potential was used. For the BKMP2 potential the impact

parameter was fixed at 5a.u. Figures 25 through 33 compare the Martin & Mandy

(1995) BKMP coefficients to the coefficients calculated here.
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Figure 20 v=0,j=4 to v=0,j=2
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Figure 21 v=0,j=6 to v=0,j=2
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Figure 22 v=1,j=0 to v=0,j=0
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Figure 23 v=1,j=5 to v=0,j=5
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Figure 24 v=0,j=1 to v=0,j=0
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Table 6 RMS error of the randomly selected fits presented in figures 20 through 24
as a percentage

Transition BKMP2 Mielke
v = 0, j = 1 to v = 0, j = 0 2.767 3.978
v = 0, j = 4 to v = 0, j = 2 2.325 1.358
v = 0, j = 6 to v = 0, j = 2 276.4 234.4
v = 1, j = 0 to v = 0, j = 0 0.138 1.219
v = 1, j = 5 to v = 0, j = 5 1.395 0.958
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Table 7 Discrepency between coefficients calculated using bmax = 5a.u. and a vary-
ing maximum impact parameter for the 0,4 to 0,2 transition (cm3s−1)

T(K) bmax = 5 a.u. bmax = varying percent difference
1000 3.589E − 12 3.265E − 12 9.030
2000 1.618E − 11 1.512E − 11 6.588
3000 2.815E − 11 2.673E − 11 5.051
4000 3.807E − 11 3.654E − 11 4.016
5000 4.629E − 11 4.477E − 11 3.273
6000 5.325E − 11 5.180E − 11 2.716
7000 5.926E − 11 5.790E − 11 2.285
8000 6.453E − 11 6.328E − 11 1.945
9000 6.923E − 11 6.807E − 11 1.671
10000 7.347E − 11 7.240E − 11 1.448

Figure 25 BKMP2 and Mielke coefficients for v=3,j=8 to v=2,j=10
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Figure 26 BKMP2 and Mielke coefficients for v=0,j=4 to v=0,j=2
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Figure 27 BKMP2 and Mielke coefficients for v=0,j=6 to v=0,j=0
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Figure 28 BKMP2 and Mielke coefficients for v=0,j=6 to v=0,j=2
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Figure 29 BKMP2 and Mielke coefficients for v=0,j=8 to v=0,j=6
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Figure 30 BKMP2 and Mielke coefficients for v=1,j=2 to v=1,j=0
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Figure 31 BKMP2 and Mielke coefficients for v=1,j=5 to v=0,j=5
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Figure 32 BKMP2 and Mielke coefficients for v=1,j=7 to v=1,j=1
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Figure 33 BKMP2 and Mielke coefficients for v=2,j=1 to v=0,j=1
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CHAPTER 5

EINSTEIN COEFFICIENTS

In this calculation, the Einstein coefficients for spontaneous emission used are

the ones calculated by Turner et al. (1977). There are 3 coefficients to consider

in this case; Ai,f(i > f) is the spontaneous emission coefficient, Bi,f(i > f) is the

stimulated emission coefficient, and Bfi(f < i) is the absorption coefficient. Again,

this calculation considers only spontaneous emission because it assumes a low H2

density, as well as a low photon flux, however, this discussion is necessary to un-

derstand detailed balance in the previous chapter and because the code used in this

calculation has the stimulated emission and absorption capabilities already written

into it if one wishes to redo the calculation to include these values. It is standard to

only consider spontaneous emission in these types of calculations making the low

density assumption necessary when comparing a calculation to previous results.

The absorption and stimulated emission coefficients would become significant in

systems such as a maser where the gas is subjected to a very intense photon field.

EINSTEIN COEFFICIENTS DERIVATION

The following discussion summarizes the calculation presented by Turner et al.

(1977). Where it doesn’t conflict with what was used so far in this document, their

notation is preserved. The spontaneous emission coefficients from state i to f is

simply the probablility of a spontaneous emission to occur. It is given by equation

5.1. J is the rotational quantum number, Ψi is the nuclear rotation-vibration wave

function, Q(R) is the quadrupole moment, R is the distance between nuclei, f(JJ’)is
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the branching ratio, and Ei,f are the energies of states i and f.

Ai→f ∝ (Ei − Ef )
5| < Ψi|Q(R)|Ψf > |2f(JJ ′) (5.1)

The branching ratio is the ratio of the number of transitions from i → f to the

sum of the number of transitions from i → f′ and i → f” . In the case of H2 the

selection rules state that only three transitions can occur; J → J + 2, J → J − 2, and

J → J. The ratios are presented in equation 5.2 as presented in Turner et al. (1977).

f(JJ ′) = 3(J+1)(J+2)
2(2J+1)(2J+3)

J ′ = J + 2

= J(J+1)
(2J−1)(2J+3)

J ′ = J

= 3J(J−1)
2(2J−1)(2J+1)

J ′ = J − 2

(5.2)

They solved for the wave functions by solving the radial Schrodinger equation

(equation 5.3). µ is the reduced mass, V(R) is the potential calculated by Kolos

& Wolniewicz (1965, 1968). Q(R) is calculated by Kolos & Wolniewicz (1965) and

Dalgarno et al. (1969).

d2

dR2
Ψi(R) + 2µ[Ei − V (R)− J(J + 1)

2µR2
]Ψi(R) = 0 (5.3)

ABSORPTION AND STIMULATED EMISSION

The coefficients for spontaneous emission, absorption, and stimulated emission

must balance each other in thermal equilibrium. That is, for every molecular tran-

sition into an energy level there must be a transition out of the energy level so that

the population of each energy level remains the same. This is represented by equa-
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tion 5.4. uEi→Ef is the energy density for photons of energy Ei − Ef. Note that the

energy density would be the place to include the contribution from CMB photons.

This can be done by modifying the code in the appendix CD. For the purposes of

the calculation presented in this paper, the CMB is coupled to the gas temperature

particularly at high redshifts but must be included separately at lower redshifts.

ni(Ai→f +Bi→fuEi→Ef
) = nfBf→iuEi→Ef

(5.4)

The derivation of the B coefficients can be found in any undergraduate modern

physics textbook so it won’t be described here. However, the end result is that

they are related to the A coefficients by equation 5.5. These can easily be included

in the calculation presented here by uncommenting the subroutine Bvalues in the

program cooling curve BDF.f95 (Appendix A demonstrates how to do this).

Bf→i = gi
gf

c2

2hν3
Ai→f

Bi→f = c2

2hν3
Ai→f

(5.5)
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CHAPTER 6

COOLING FITS

The final step was to fit the cooling rates to a function of temperature and nH.

This was done by first fitting the low and high density limits then determining a

cooling function using those limits to fit the intermediate densities. Finally, errors

were calculated for the fits and compared to previous work. Fits in previous work

have been known to be very complicated. For example, Martin et al. (1996) used a

fit that was a function of 21 parameters. Tiné et al. (1998) used 3 low density limit

and 3 high density limit equations each representing a temperature range as well

as 2 temperature dependent parameters to fit their curves.

LOW AND HIGH DENSITY LIMITS

In order to fit the low and high density limits a very generalized equation was

selected. 2 functions L and H were defined which have the forms of equations 6.1.

Here the high density limit is defined as nH = 1E8cm−3 which is consistent with

Martin et al. (1996). The high density limit is defined as a value that the cool-

ing approaches where increasing the hydrogen density doesn’t lead to an increase

in cooling. The low density limit was found by plotting the cooling for a range

of densities and determining the limit. The low density limit is acheived when

△Λ/NH2 ∝ △NH. In this calculation the low density limit is nH = .01cm−3 but

realistically could be set as high as 10cm−3. Figure 34 demonstrates this. Notice

that at low densities the cooling changes proportionally to hydrogen density and

at high density the curve flattens out. Also defined were two intermediate limits

at nH = 1E4cm−3, an intermediate high density limit H1, and nH = 1E5cm−3, an

intermediate low density limit L2. The purpose for these limits will become clear
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Figure 34 Cooling vs. Density for the Mielke Potential T = 3000K
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later.

ΛnH=.01cm−3

nH2
= (.01cm−3)L

ΛnH=1E4cm−3

nH2
= H1

ΛnH=1E5cm−3

nH2
= (1E5cm−3)L2

ΛnH=1E8cm−3

nH2
= H

(6.1)

Next a functional form to fit the limits was selected based on their logarith-

mic behavior. This was done, after considerable trial and error, using equation

6.2 for the 24 parameters ai, bi, ci,di, ei, fi where i = 1 to 4 . The fitting was done

using GNUPLOT (Williams & Kelley 2004) which uses the Levenberg-Marquardt

method for non linear least squares fitting. The calculated parameters are pre-

sented in table 9. Figure 35 is a plot of equation 6.2. The plots show that the low

and high density limits of each potential are almost identical. Table 10 shows the

normalized RMS error of the fits. From this table it is clear that the fitting equa-

tions are very good approximation of the calculated low and high density limit

data values.

log10H = a1log10T + b1(log10T )
c1 + d1(log10T )

e1 + T/f1

log10[(.01cm
−3)L] = a2log10T + b2(log10T )

c2 + d2(log10T )
e2 + T/f2 + log10.01

log10H1 = a3log10T + b3(log10T )
c3 + d3(log10T )

e3 + T/f3

log10[(1E5cm
−3)L2] = a4log10T + b4(log10T )

c4 + d4(log10T )
e4 + T/f4 + log101E5

(6.2)
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Table 8 Parameters for the high and low density limits for the BKMP2 potential

Parameter 1 2 3 4
a −1.964 −0.087 −0.964 −2.414
b −42.364 −21.979 −30.251 −32.382
c −1.137 −0.523 −0.608 −1.110
d −43.255 −21.979 −31.665 −32.382
e −2.593 −0.556 −2.376 −1.190
f −1.073 0.472 −0.364 0.439

Table 9 Parameters for the high and low density limits for the Mielke potential

Parameter 1 2 3 4
a −2.248 −0.0822 −1.697 −3.008
b −38.483 −21.978 −34.678 −58.027
c −1.580 −0.528 −1.314 −1.359
d −38.483 −21.978 −34.678 −58.441
e −1.585 −0.551 −1.347 −2.529
f 0.0778 0.472 0.432 −1.627
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Figure 35 Low and High Density fits
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Table 10 Normalized RMS Error of the Limit Fits T ≥ 800K Expressed as a percent-
age

potential L H L2 H1

Mielke 4.38 .859 .0438 3.29
BKMP2 3.03 .769 .0697 2.377
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FITTING FUNCTION

The final step was to select a function that would accurately predict the cooling

curve between the limits while at the same time approaching the limits at their

respective densities. Equation 6.3 was an inital attempt. It accurately predicted

the limits however it failed to predict the intermediate ranges particularly at nH =

1E4cm−3 as seen in figure 36 for the BKMP2 and Mielke potentials. Table 11 shows

the error using this fit at nH = 1E4cm−3.

Λ

nH2

=
nHL

1 + nHL
H

(6.3)

After plotting the cooling rates for densities of .001cm−3 to 1E8cm−3 it became

clear that the function needed to be fit to density. This can be done using the

intermediate limits to define two separate critical densities, equation 6.4.

ncr,i =
Hi

Li

(6.4)

This has the effect of separating the cooling curve into two separate compo-

nents such that H = H1 + H2 and L = L1 + L2. H1 is defined as the cooling at

nH = 104cm−3 and L210
5 is the cooling at nH = 105cm−3. L1 and H2 can then be

calculated using equation 6.5.

H2 = H − H1

L1 = L − L2

(6.5)
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Figure 36 Fit from equation 6.3 for nH = 1E4 cm−3
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Table 11 Relative error of the fit from equation 6.3 for the BKMP2 potential at nH =
1E4cm−3

T(K) Data value (ergs−1cm−3) Fit Value (ergs−1cm−3) Relative Error as a percentage
1000 6.680E − 22 1.981E − 21 196.473
1500 4.489E − 21 1.070E − 20 138.469
2000 1.652E − 20 3.067E − 20 85.691
3000 7.971E − 20 1.135E − 19 42.440
4000 2.013E − 19 2.557E − 19 26.983
5000 3.774E − 19 4.492E − 19 19.038
6000 5.974E − 19 6.817E − 19 14.109
8000 1.104E − 18 1.215E − 18 10.054
10000 1.591E − 18 1.775E − 18 11.555
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The two individual cooling curves can now be summed to get the total cool-

ing as in equation 6.6. Figures 37 and 38 show the fit when applied to the data.

Tables 12 and 13 show the relative errors for a range of temperatures for densities

nH = 1E4 and 1E8cm−3. The high rms error for the mid densities come from the

high temperatures (T7000K) where the calculation should be taken with caution.

At these high temperatures dissociation would be important making this fit less

reliable anyway. The conclusions section offers a possible fix to this.

Λ

nH2

=
L1nH

1 + L1nH

H1

+
L2nH

1 + L2nH

H2

(6.6)

RESULTS

The resulting cooling curves are plotted in figures 39 through 42 for various

densities. Also plotted are the results of Hollenbach & Mckee (1979), Lepp & Shull

(1983), and Martin et al. (1996).

COSMIC COOLING CURVE

Referring back to the application of this calculation to the early universe, it

is possible to calculate the cooling rate as a function of redshift. Since most of

the baryons in the early universe were atomic hydrogen, one can assume that the

number density of hydrogen in the early universe is equal to .9 times the baryonic

density. The baryonic number density as a function of redshift can be estimated

using Friedmann’s equations. The result is equation 6.8 where nγ,CMB is the baryon

to photon density (equation 6.7), nB is the baryon density, ρc is the critical density,

72



Figure 37 BKMP2 and Mielke cooling nH = 1E4cm−3
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and mp is the mass of a proton. Also present are the gravitational constant, G =

6.7×10−8 erg cm g−2, the Hubble constant, H0 = 69.7 km s−1 Mpc−1, and w = −.94.

H0 and w were calculated by Suyu et al. (2010).

nγ,CMB ∼ aT 4

2.8kT
(6.7)

nB(z) ≈
nγ,CMBρc

mp

=
nγ,CMB3H

2

mp8πG
=

3nγ,CMB

8πmpG
[H0(1 + z)3(1+w)/2]2 (6.8)

The temperature of matter in the universe can be set to approximately the radia-

tion temperature until z∼ 100 when Compton heating from the CMB can no longer
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Figure 38 BKMP2 and Mielke cooling nH = 1E8cm−3
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overcome the adiabatic cooling of the universe due to large heating timescale.

However, for calculations requiring more precision, adiabatic cooling of baryons

should be considered around z ∼ 500. Here, however, since the matter tempera-

ture is set to the radiation temperature, it goes as T ∝ (1 + z). Figure 43 shows the

behavior of the cooling over redshift with the assumption that the matter temper-

ature is coupled to the CMB via compton heating. Studies have been conducted

since Gamow (1949) to determine the matter temperature in terms of the radiation

temperature more precisely for applications to lower redshifts. A difinitive deter-

mination of the matter temperature evolution of the early universe will be vital for

an accurate cosmological cooling calculation.
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Table 12 Relative error of the fit from equation 6.6 for the BKMP2 and Mielke po-
tentials at nH = 1E4cm−3

T(K) Mielke BKMP2
1000 5.325 4.956
1500 12.848 17.574
2000 1.658 6.146
3000 10.059 7.722
4000 13.393 12.996
5000 14.086 15.331
6000 13.554 16.196
8000 9.034 14.077
10000 .0241 7.423

Table 13 Relative error of the fit from equation 6.6 for the BKMP2 and Mielke po-
tentials at nH = 1E8cm−3

T(K) Mielke BKMP2
1000 2.335 2.525
1500 5.205 5.419
2000 1.234 1.466
3000 4.585 4.563
4000 3.387 3.505
5000 0.454 0.273
6000 3.278 3.098
8000 2.902 2.885
10000 2.557 2.286
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Table 14 RMS of the fit from equation 6.6 for the BKMP2 and Mielke potentials

log10(nH cm−3) Mielke BKMP2
−3 4.424 3.127
−2 4.358 3.117
0 4.007 1.814
1 23.878 7.922
2 28.106 12.464
3 20.171 9.159
4 2.982 4.757
5 4.790 5.042
6 1.629 1.578
7 1.335 1.264
8 1.320 1.248
9 1.318 1.245
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Figure 39 BKMP2 and Mielke with previous calculations nH = 1cm−3
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Figure 40 BKMP2 and Mielke with previous calculations nH = 100cm−3

 1e-23

 1e-22

 1e-21

 1e-20

 1e-19

 1000  10000

Λ
/n

H
2

Temperature (K)

BKMP2
Mielke

Hollenbach McKee (1979)
Lepp Shull (1983)
Martin et al. (1996)

78



Figure 41 BKMP2 and Mielke with previous calculations nH = 1E4cm−3
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Figure 42 BKMP2 and Mielke with previous calculations nH = 1E8cm−3
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Figure 43 Evolution of the BKMP2 and Mielke potentials over cosmic timescale
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CHAPTER 7

CONCLUSIONS

Overall, the calculations presented here are consistent with previous calcula-

tions particularly at intermediate temperatures and higher densities. At lower

temperatures (T ≤ 500K) the calculation needs to include a quantum mechani-

cal method as the quasi-classical method is no longer sufficient. The discrepency

of the cooling curves calculated here with respect to the calculations by Hollen-

bach & Mckee (1979) and Lepp & Shull (1983) could possibly be explained by the

use of different potential energy surfaces and improved computational methods

and capabilities. Also it should be noted that H2 dissociation (Appendix B) was

not considered in this calculation. However, for example, in the case of the BKMP

potential, Martin et al. (1996) did include dissociation.

Also, one will notice that most of the plots presented in this document were

confined to the 1000 to 10000K range. This was done because the collision cross

sections were only calculated for temperatures up to 30000K. So, in order to avoid

contributions from temperatures greater than 30000K, the maxwellian velocity dis-

tribution was only integrated up to 10000K. All the fits were performed for temper-

atures in the range of 1000 to 10000K. Also, since this is a quasi-classical trajectory

calculation that does not include unbound energy levels or dissociation, the range

of 1000 to 10000K is the applicable range for this calculation.

Another option for improving the fit is to perform the fit in stages. Planned

improvements to this fit will involve fitting some of the major transitions individ-

ually. For example, cooling from transitions to the 0, 0 energy level can be picked

out from the total cooling, fit by itself, and added to the cooling from the rest of

the transitions. Since 0, 0 will have a significant number of transitions, fitting this
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energy level alone should significantly improve the fit. The results of this fitting

technique will be the subject of a future publication (Kelley & Lepp 2012).

As far as application to the early universe is concerned, this calculation is a

good step. However, a more complete study would include helium, deuterium,

and lithium. Also it would include all the molecules they form with each other

and their ions, and the collisions between them.

Luckily the universe has provided almost unlimited astrophysical environments

to use as laboratories in the form of nebulae. However, no nebula is pure; so

again, H2 collisions with other elements and molecules need to be understood

better as well. Also, with improved instrumentation, our ability to probe these

processes in the early universe will also improve. For example, missions such as

WMAP and follow up missions will provide information about the last scattering

surface. Someday perhaps neutrino detectors will achieve the sensitivity to peer

past the last scattering surface. Unfortunately modern neutrino detectors have

only enough sensitivity to observe the milkyway and the very local universe. Any

number of instruments are possible to study the universe at this early, and crucial,

time in our universe’s evolution.
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APPENDIX A

CODE DOCUMENTATION

This section outlines the Fortran 95 code used to do the calculations presented

in this document. This code was designed by the author specifically for this calcu-

lation and is not recomended for use other than H + H2 cooling. It comes with no

guarantees or warranty. It consists of 16 files (some of which are optional) which

must be executed and/or modified only as described in this appendix. As an ad-

ditional warning, these programs are by no means elegant but they are functional.

There are certainly more efficient means to conduct these calculations but the code

presented here was the quickest and most intuitive to the author to write. These

programs assume access to the open source programs Maxima and Octave. All of

these programs are available on the appendix CD. The calculations were done us-

ing gcc fortran on a Fedora 10 laptop. gfortran on Mac OSX 10.6.8 gave erroneous

results or at times failed to compile all together. The reason for this is unclear. An

Ubuntu computer using f95 was also used successfully for the cooling calculation,

but failed when used for the spectrum predictions. Other compilers have not been

tested. Units used in these programs are cm, s, eV, K, and eV/c2 for mass.

RATE COEFFICIENTS

mcr2c.f95 (Molecular Collision Rate Coefficient Calculator) takes trajectories

provided by Dr. Stephen Lepp, calculates the cross sections, fits them to a cu-

bic spline and then integrates using Simpson’s rule as described in chapter 4. It

is composed of two subroutines; ”cross sections” and ”fitting.” It does not work

with other data files. The original trajectory data files were in 31 smaller files

for initial rotational states 0 to 31, which were compressed to 1 large file named
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”cross section.dat” to add more autonomy to this program. A cross section.dat

file must be placed in the main directory. The first part of the code is fairly straight

forward. It calculates collision cross sections for temperatures T = 500, 1000, 2000,

5000, 7000, 10000, 20000, and 30000K and passes them to the subroutine ”fitting.”

The subroutine fitting fits the coefficients to a cubic spline and integrates them.

To get an expression for the cubic spline Maxima was used. The cubic spline

can be calculated by running the script ”spline.wxm” under Maxima. Maxima

then produces an 8 term equation that calulates the cross sections for the ranges

0 → 500, 500 → 1000, 1000 → 2000, 2000 → 5000, 5000 → 7000, 7000 → 10000,

10000 → 20000, and 20000 → 30000K. Cross sections are then calculated for every

10K for temperatures 1 → 30000K. These are then integrated using Simpson’s rule

as explained in chapter 4. It produces rate coefficients for temperatures listed in

the file ”templist.”

Now the rate coefficients can be fit to the functional form of Martin & Mandy

(1995) discussed in chapter 4. This is done through the linear regression algorithm

also discussed in chapter 4 using the program fitting.f95. This program reads in

the file coefficients from clean.f95 and produces a file called ”fit parameters.” As its

name indicates it is simply a list of the individual fit parameters (a,b,c, and d) of all

the rate coefficients. Also this program weeds out any coefficients of zero. The file

templist is also required for this program with the exact same temperatures used

in mcr2c.f95. An executable called cooling.sh allows one to automatically execute

all these codes.

COOLING RATES

The program used to actually calculate the cooling rates is cooling curve.f95.

It comes with a number of options that were used to study different master equa-
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tions. It starts by asking the user to enter a density in cm−3. The program be-

gins by reading in the Einstein coefficients for spontaneous emission from the files

A values.dat and A values2.dat which it then uses to calculate the absorption and

stimulated emission coefficients. Next it collects the collision rate coefficient fit pa-

rameters and determines the total number of state transitions. Next it calls up the

subroutine curves. Line 33 names the output file that should be changed for each

density. In the case presented in the appendix CD, the output file will be named

b.E8.txt. The code then calls up ”templist2.txt” which contains a list of user speci-

fied gas temperatures to calculate cooling rates for. This list has the same format as

”templist” and can contain as many temperatures as the user desires. Since this is

a quasi-classical calculation, temperatures below ∼ 500K should be avoided. Next

the radiation density is calculated based on the temperatures in templist2. Then

the level densities are calculated using the subroutine ”density.”

At this point the user has two options. 1) A backward differentiation (BDF) can

be used or 2) a singular value decomposition (SVD). This can be done by uncom-

menting the desired method on lines 368 and 369. The BDF has the advantage that

it produces less residual error, however it takes as much as a day to do a single

density (the higher the density the longer it takes). While the SVD is fast, it seems

to produce a significant amount of error. Both methods are valid and in fact pro-

duce very similar results. The calculations presented in this discussion were done

using the BDF method.

BDF

The only thing the BDF requires is for the user to decide if they would like to

include dissociative tunneling, absorption, and stimulated emission. Dissociatve

tunneling requires the data file ”dissociative tunneling.dat.” This contains some

86



of the dissociative tunneling coefficients used by Martin et al. (1996) which can be

easily modified for different coefficients. Dissociative tunneling can be included by

uncommenting the variable ”dis” on line 420. Stimulated absorption and emission

can be included by uncommenting the u and B1 variables on lines 405, 417, and

425. The program will then calculate the level populations using Octave, and pass

them on to calculate the cooling rates. The level populations are printed out in

the file on line 477 which is ”bT=1000” in this case. Lines 480-483 must also be

uncommented to print energy level densities. Line 477 must be commented out if

the user wants to calculate cooling for multiple temperatures. There is an optional

stop command on line 485 if the user is only interested in the level populations.

This can be commented on or off depending on the user’s desire.

SVD

As in the BDF, the SVD has the option of adding dissociative tunneling, absorp-

tion, and stimulated emission. These can be added via lines 523, 535, 557, and 543.

Next the program calls Octave to perform the SVD. This requires the file ”equa-

tions” to tell Octave to just print out the level densities. This is done as file ”x.dat.”

Next the user must decide what their error tolerance is. From trial and error a

good number to uses is 1E-5. Also its a good idea to have the program eliminate

any values less than .1 percent of the maximum population density. This can be

done by editing lines 592, 595, 597, and 599. The SVD has a tendancy to multiply

the densities by -1 to give an all negative density matrix. The program will auto-

matically fix this. Again, there is an optional stop on line 617 if the user is only

interested in the density matrix. This stop must be used if spectrum.f95 is going to

be run. Line 607 allows the user to again specify an output file. It, along with lines

610 through 613 must be commented out if the user wants to calculate cooling for
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multiple temperatures. As can be seen, the densities or the cooling curve can be

calculated but not both at the same time.

ADDITIONAL CODE OPTIONS

levels.f95

An optional program ”levels.f95” can also be used. It’s purpose is to calculate

and print out all the harmonic energy levels with their associated vibrational and

rotational quantum numbers in a file called energy levels.txt. Also, it displays the

index number each energy level is assigned which is used throughout this code.

This program needs to be run in order to use spectrum.f95. E.dat contains the

non-harmonic energy levels.

spectrum.f95

This is another useful program that is used for plotting the predicted emis-

sion spectrum of the molecule with one of the potentials. This program works by

reading in the density matrix from cooling curve.f95 and using the Einstein coeffi-

cients as well as the output from levels.f95, and producing a normalized emission

file. The only manipulation needed for this program is to define the name of the

density file on line 20 and the name of the output file on line 86. It should be noted

that this program suffers significantly from rounding errors however does provide

a good general estimate of the emission shape.

sorttool.f95

This tool allows one to organize and pick out desired data. Simply start the

program and decide which states you are interested in and all the data for that
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transition is printed out in 3 files, data, errorbars, and parameters.The file data

contains the calculated rate coefficients at a given temperature. The file errorbars

prints out the coefficients from the Martin & Mandy (1995) fits, the errorbars, and

the collision cross sections. The file parameters contains the 4 fit parameters for

the Martin & Mandy (1995) fits.
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APPENDIX B

QUASI-BOUND STATES

The calcuations presented in this document included only the 301 bound states.

However, Martin et al. (1996) included 47 quasi bound states (302 through 348) ta-

ble 15. A quasi-bound state is a state with energy higher than the dissociation

energy. These states are short lived states that become important at high tem-

perature and high hydrogen density held together by the rotational barrier which

must be breached by either quantum tunneling, or the introduction of additional

energy through collisions. Due to the low density, intermediate temperature con-

siderations of this document, these quasi-bound states were intentionally ignored.

Including these states would require a new master equation which would include

2 additional coefficients, the collisional dissociation and dissociative tunneling co-

efficients.

The dissociation coefficients result in the destruction of the H2 molecule. Being

a second order reaction, the collisional dissociation coefficients from some state i to

dissociation (γi→349) would have units identical to the collisional rate coefficients,

except they would lead to and unbound energy state (i = 349) thus lowering the to-

tal H2 level populations and would not be subject to detailed balance for a reverse

transition. The dissociative tunneling coefficients from some state i to dissociation

(ki→349) are a first order reaction with units s−1. These would result in a new master

equation with the form of equation B.1.

dni

dt
= nH(

348∑
f=1;f ̸=i

nfγf→i−ni

349∑
f=1;f ̸=i

γi→f )+
348∑

f=i+1

nfAf→i−ni(
i−1∑
f=1

Ai→f+ki→349) (B.1)
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Table 15 Bound and Unbound H2 energy levels. i is the energy level index number
(eg. level v = 0, j = 0 has an index number of i=1) and energy level with respect to
dissociation (E = 0 eV)

i v,j E(eV) i v,j E(eV) i v,j E(eV)
1 0, 0 −4.479 117 4, 14 −1.522 233 6, 19 −0.329
2 0, 1 −4.465 118 2, 19 −1.510 234 9, 12 −0.328
3 0, 2 −4.435 119 7, 0 −1.466 235 14, 19 −0.327
4 0, 3 −4.392 120 3, 17 −1.462 236 10, 9 −0.322
5 0, 4 −4.334 121 6, 8 −1.458 237 7, 17 −0.318
6 0, 5 −4.264 122 7, 1 −1.456 238 3, 21 −0.311
7 0, 6 −4.180 123 7, 2 −1.437 239 11, 5 −0.309
8 0, 7 −4.084 124 5, 12 −1.416 240 8, 15 −0.293
9 0, 8 −3.977 125 7, 3 −1.408 241 0, 30 −0.283
10 1, 0 −3.963 126 4, 15 −1.394 242 1, 23 −0.281
11 1, 1 −3.949 127 6, 9 −1.376 243 11, 6 −0.275
12 1, 2 −3.921 128 7, 4 −1.371 244 10, 10 −0.266
13 1, 3 −3.880 129 1, 22 −1.364 245 9, 13 −0.256
14 0, 9 −3.859 130 0, 24 −1.361 246 7, 23 −0.238
15 1, 4 −3.825 131 2, 20 −1.350 247 11, 7 −0.237
16 1, 5 −3.758 132 7, 5 −1.324 248 12, 0 −0.224
17 0, 10 −3.731 133 3, 18 −1.316 249 12, 1 −0.219
18 1, 6 −3.679 134 5, 13 −1.305 250 7, 18 −0.218
19 0, 11 −3.595 135 6, 10 −1.288 251 6, 20 −2.218
20 1, 7 −3.588 136 7, 6 −1.270 252 12, 2 −0.209
21 1, 8 −3.486 137 4, 16 −1.263 253 10, 11 −0.208
22 2, 0 −3.476 138 7, 7 −1.208 254 8, 16 −0.206
23 2, 1 −3.463 139 6, 11 −1.194 255 5, 22 −0.205
24 0, 12 −3.450 140 0, 21 −1.191 256 11, 8 −0.196
25 2, 2 −3.436 141 5, 14 −1.189 257 12, 3 −0.194
26 2, 3 −3.397 142 11, 19 −1.189 258 9, 14 −0.182
27 1, 9 −3.374 143 7, 21 −1.177 259 4, 25 −0.182
28 2, 4 −3.345 144 3, 19 −1.168 260 4, 24 −0.179
29 0, 13 −3.298 145 8, 0 −1.151 261 12, 4 −0.174
30 2, 5 −3.282 146 8, 1 −1.142 262 11, 9 −0.153
31 1, 10 −3.253 147 7, 8 −1.139 263 12, 5 −0.151
32 2, 6 −3.206 148 4, 17 −1.129 264 10, 12 −0.148
33 0, 14 −3.140 149 8, 2 −1.124 265 3, 26 −0.139
34 1, 11 −3.124 150 8, 3 −1.098 266 12, 6 −0.124
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i v,j E(eV) i v,j E(eV) i v,j E(eV)
35 2, 7 −3.120 151 6, 12 −1.095 267 7, 19 −0.121
36 2, 8 −3.024 152 5, 15 −1.070 268 8, 17 −0.121
37 3, 0 −3.018 153 7, 9 −1.063 269 1, 27 −0.112
38 3, 1 −3.005 154 8, 4 −1.063 270 9, 15 −0.109
39 1, 12 −2.987 155 2, 22 −1.028 271 15, 19 −0.109
40 3, 2 −2.980 156 8, 5 −1.020 272 11, 10 −0.107
41 0, 15 −2.976 157 3, 20 −1.019 273 12, 7 −9.456E − 2
42 3, 3 −2.943 158 1, 24 −1.019 274 13, 0 −9.405E − 2
43 2, 9 −2.918 159 0, 26 −0.994 275 13, 1 −9.022E − 2
44 3, 4 −2.894 160 4, 18 −0.993 276 10, 13 −8.884E − 2
45 1, 13 −2.843 161 6, 13 −0.993 277 2, 28 −8.715E − 2
46 3, 5 −2.834 162 7, 10 −0.982 278 4, 21 −8.558E − 2
47 0, 16 −2.807 163 8, 6 −0.970 279 13, 2 −8.269E − 2
48 2, 10 −2.804 164 5, 16 −0.949 280 13, 3 −7.176E − 2
49 3, 6 −2.762 165 8, 7 −0.913 281 12, 8 −6.339E − 2
50 1, 14 −2.693 166 7, 11 −0.896 282 11, 11 −6.154E − 2
51 2, 11 −2.681 167 6, 14 −0.886 283 13, 4 −5.785E − 2
52 3, 7 −2.681 168 12, 19 −0.870 284 2, 23 −4.948E − 2
53 0, 17 −2.633 169 1, 21 −0.867 285 13, 5 −4.156E − 2
54 3, 8 −2.590 170 0, 9 −0.866 286 9, 16 −3.828E − 2
55 4, 0 −2.587 171 9, 1 −0.858 287 8, 18 −3.727E − 2
56 4, 1 −2.575 172 4, 19 −0.856 288 12, 9 −3.155E − 2
57 2, 12 −2.552 173 8, 8 −0.850 289 10, 14 −3.063E − 2
58 4, 2 −2.552 174 8, 21 −0.848 290 7, 20 −2.607E − 2
59 1, 15 −2.538 175 9, 2 −0.842 291 13, 6 −2.369E − 2
60 4, 3 −2.517 176 5, 17 −0.825 292 1, 30 −2.240E − 2
61 3, 9 −2.490 177 5, 17 −0.818 293 14, 0 −1.719E − 2
62 4, 4 −2.471 178 5, 23 −0.813 294 11, 12 −1.674E − 2
63 0, 18 −2.457 179 7, 12 −0.806 295 14, 1 −1.507E − 2
64 2, 13 −2.416 180 9, 4 −0.787 296 14, 2 −1.102E − 2
65 4, 5 −2.414 181 8, 9 −0.782 297 14, 3 −5.515E − 3
66 3, 10 −2.382 182 6, 15 −0.777 298 13, 7 −5.331E − 3
67 1, 16 −2.378 183 9, 5 −0.748 299 6, 22 −3.840E − 3
68 4, 6 −2.347 184 3, 22 −0.721 300 0, 25 −9.832E − 4
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i v,j E(eV) i v,j E(eV) i v,j E(eV)
69 0, 19 −2.278 185 4, 20 −0.719 301 12, 10 −4.649E − 4
70 2, 14 −2.274 186 7, 13 −0.712 302 14, 4 7.228E − 4
71 4, 7 −2.270 187 8, 10 −0.708 303 13, 8 1.186E − 2
72 3, 11 −2.267 188 2, 24 −0.707 304 10, 15 2.454E − 2
73 1, 17 −2.215 189 9, 6 −0.703 305 11, 13 2.528E − 2
74 5, 0 −2.185 190 5, 18 −0.701 306 12, 11 2.765E − 2
75 4, 8 −2.184 191 1, 26 −0.678 307 9, 17 2.936E − 2
76 5, 1 −2.174 192 6, 16 −0.666 308 5, 24 2.994E − 2
77 5, 2 −2.152 193 9, 7 −0.652 309 8, 19 4.211E − 2
78 3, 12 −2.145 194 0, 28 −0.634 310 0, 32 5.467E − 2
79 2, 15 −2.129 195 8, 11 −0.630 311 5, 25 5.978E − 2
80 5, 3 −2.119 196 7, 14 −0.615 312 11, 14 6.103E − 2
81 0, 20 −2.096 197 10, 0 −0.615 313 16, 19 6.428E − 2
82 4, 9 −2.090 198 10, 1 −0.608 314 10, 16 7.388E − 2
83 5, 4 −2.075 199 9, 8 −0.595 315 4, 26 7.546E − 2
84 1, 18 −2.049 200 10, 2 −0.593 316 9, 18 9.101E − 2
85 5, 5 −2.022 201 13, 19 −0.582 317 5, 21 9.681E − 2
86 3, 13 −2.017 202 5, 19 −0.576 318 8, 20 0.115
87 4, 10 −1.989 203 2, 21 −0.573 319 2, 27 0.133
88 2, 16 −1.978 204 10, 3 −0.572 320 3, 28 0.133
89 5, 6 −1.959 205 6, 17 −0.554 321 3, 23 0.140
90 9, 19 −1.913 206 8, 12 −0.549 322 7, 22 0.148
91 5, 7 −1.887 207 0, 23 −0.549 323 17, 19 0.177
92 3, 14 −1.884 208 10, 4 −0.544 324 6, 24 0.190
93 4, 11 −1.881 209 9, 9 −0.533 325 1, 25 0.195
94 1, 19 −1.880 210 7, 15 −0.517 326 2, 30 0.202
95 2, 17 −1.825 211 6, 23 −0.510 327 5, 27 0.217
96 6, 0 −1.811 212 10, 5 −0.510 328 6, 21 0.220
97 5, 8 −1.807 213 10, 6 −0.470 329 5, 26 0.243
98 6, 1 −1.801 214 9, 10 −0.468 330 6, 25 0.261
99 6, 2 −1.780 215 8, 13 −0.465 331 4, 23 0.272
100 4, 12 −1.766 216 3, 25 −0.457 332 1, 32 0.283
101 6, 3 −1.749 217 5, 20 −0.451 333 4, 28 0.307
102 3, 15 −1.747 218 4, 22 −0.446 334 2, 25 0.334
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i v,j E(eV) i v,j E(eV) i v,j E(eV)
103 0, 22 −1.729 219 6, 18 −0.441 335 3, 27 0.338
104 5, 9 −1.719 220 3, 24 −0.426 336 0, 34 0.375
105 1, 20 −1.709 221 10, 7 −0.425 337 3, 30 0.381
106 6, 4 −1.709 222 7, 16 −0.417 338 0, 27 0.407
107 2, 18 −1.668 223 11, 0 −0.399 339 0, 29 0.427
108 6, 5 −1.659 224 9, 11 −0.399 340 2, 32 0.467
109 4, 13 −1.647 225 11, 1 −0.393 341 4, 27 0.490
110 5, 10 −1.624 226 2, 26 −0.393 342 2, 29 0.528
111 3, 16 −1.606 227 11, 2 −0.381 343 1, 34 0.564
112 6, 6 −1.600 228 8, 14 −0.379 344 1, 29 0.585
113 18, 19 −1.545 229 10, 8 −0.376 345 0, 36 0.673
114 10, 19 −1.537 230 11, 3 −0.362 346 3, 29 0.691
115 6, 7 −1.533 231 1, 28 −0.344 347 4, 29 0.811
116 5, 11 −1.523 232 11, 4 −0.338 348 0, 38 0.934
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APPENDIX C

The impact parameters used in the calculation of the collision cross sections are

modeled as Gaussians with a defined maximum impact parameter. In the case of

the BKMP2 potential, the maximum impact parameter is set at 5 a.u. In chapter

4, calculations for the cross sections using the Mielke potential are done using a

varying maximum impact parameter for each energy level. Figure 44 is an exam-

ple of a few transitions for temperatures 1000K and 10000K. The maximum impact

parameter for the 2,1 energy level was chosen to be 4 a.u.

The smaller cross sections, for the most part, are a result of relatively few tra-

jectories for that particular transition. As a result, there are very large error bars

associated with these transitions (eg. The transition 1,2 to 0,0 is very sporadic).

However, the larger cross sections, which generally correspond to a higher trajec-

tory count, tend to generate smoother lines that flatten out at approximately the

selected maximum impact parameter. This implies that there is a limit at which

expanding the impact parameter does not increase transitions. This limit was cal-

culated as follows.

Grids of transitions for a variety of initial energy levels was done for 10000K

and 1000K courtesy of Stephen Lepp. Based on these, the maximum impact pa-

rameter was chosen as the smallest impact parameter that produced no transitions.

Then a set of selection rules to describe these results was produced. Table 16 out-

line these rules.

If j > 15 b is increased to 4 if neccessary, and if j > 25 b can be increased to

5 if needed. Using these selection rules, grids for the 301 bound energy levels for

energies 500 through 30000K were produced.
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Figure 44 Maximum Impact Parameter vs Cross Section for Energy Level v = 1, j =
2 at 10000 K
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Table 16 bmax selection Rules

For E ≤ 7000K For E > 7000K

v bmax (a.u.) bmax

0-1 3 3
2 3 4
3-7 5 5
> 7 7 7

96



REFERENCES

[1] Archer, D.M. 2006, PhD thesis, University of Nevada-Las Vegas

[2] Blais, N.C., Truhlar, D.G. 1976, J. Chem. Phys., 65, 5335

[3] Boothroyd, A.I., Keogh, W.J., Martin, P.G., & Peterson, M.R. 1991, J. Chem.
Phys., 95, 4343

[4] Boothroyd, A.I., Keogh, W.J., Martin, P.G., & Peterson, M.R. 1996, J. Chem.
Phys., 104, 7139

[5] Bougleux, E., & Galli, D. 1997, MNRAS, 288, 638

[6] Dalgarno, A., Allison, A.C., & Browne, J.C. 1969, J. Atm. Sci., 26, 946

[7] Eaton, J.W. 2009, software, GNU Octave version 3.2.3

[8] Eyring, H., & Polanyi, M. 1931, Z. Phys. Chem., B12, 279

[9] Gamow, G. 1949, Rev. Mod. Phys., 21, 367

[10] Galli, D., & Palla, F. 1998, A&A, 335, 403

[11] Gay, C.D., Stancil, P.C., Lepp, S., & Dalgarno, A. 2011, ApJ, 737, 44

[12] Hollenbach, D., & McKee, C.F. 1979, ApJS, 41, 555

[13] Hubble, E. 1928, Proceedings of the National Academy of Sciences, 15, 168

[14] James, H.M., & Coolidge, A.S. 1933, J. Chem. Phys., 1, 825

[15] Karplus, M., Porter, R.N., & Sharma, R.D. 1965, J. Chem. Phys., 43, 3259

[16] Kelley, M.T., & Lepp, S.H. 2012, ApJ, in preparation

[17] Knowles, P.J., & Werner, H.J. 1988, Chem. Phys. Lett., 145, 514

[18] Kolos, W., & Wolniewicz, L. 1965, J. Chem. Phys., 43, 2429

[19] Kolos, W., & Wolniewicz, L. 1968, J. Chem. Phys., 49, 404

[20] LeBourlot, J.Z., Pineau des Forêts, & Flower, D.R. 1999, MNRAS, 305, 802

[21] Lepp, S., & Shull, J.M. 1983, ApJ, 270, 578

[22] Lepp, S., Stancil, P.C., & Dalgarno, A. 1998, Mem. S.A.It., 69, 331

[23] Liu, B. 1973, J. Chem. Phys., 58, 1925

97



[24] London, F. 1929, Elektrochem. Angew. Phys. Chem., 35, 552

[25] Marshall, R.M., & Purnell, J.H. 1968, J. Chem. Soc. A, 1968, 2301

[26] Mandy, M.E., & Martin, P.G. 1991, J. Phys. Chem., 95, 8726

[27] Mandy, M.E., & Martin, P.G. 1992, J. Phys. Chem., 97, 265

[28] Mandy, M.E., & Martin, P.G. 1993, ApJS, 86, 199

[29] Martin, P.G., & Mandy, M.E. 1995, ApJ, 455, L89

[30] Martin, P.G., Schwarz, D.H., & Mandy, M.E. 1996, ApJ, 461, 265

[31] Martin, P.G. 1996, http://www.cita.utoronto.ca/ pgmartin/h2hdist/

[32] Mielke, S.L., Garrett, B.C., & Peterson, K.A. 2002, J. Chem. Phys., 116, 4142

[33] Oka, T. 2004, J. Mol. Spec. 228, 635

[34] Penzias, A.A., & Wilson, R.W. 1965, ApJ, 142, 1149

[35] Puy, D., Dubrovich, V., Lipovka, A., Talbi, D., & Vonlanthen, P. 2007, A&A,
476, 685

[36] Press, W.H., Teukolsky, S.A., Vetterling, W.T., & Flannery, B.P. 2007, Numerical
Recipes: The Art of Scientific Computing, (3rd ed.; New York, New York:
Cambridge University Press)

[37] Rutherford, E., The Scattering of α and β Particles by Matter and the Structure
of the Atom, Philosophical Magazine. Series 6, vol 21. May 1911

[38] Scott, D. Moss, A. 2009, MNRAS, 397, 445

[39] Shaw, G., Ferland, N.P., Abel, N.P., Stancil, P.C., & van Hoof, P.A.M. 2005, ApJ,
624, 794

[40] Siegbahn, P., & Liu, B. 1978, J. Chem. Phys., 68, 2457

[41] Smith, F.T. 1960, Phys. Rev., 120, 1058

[42] Smith, M.S., Kawano, L.H., & Malaney, R.A. 1993, ApJ, 85, 219

[43] Suyu, S.H., Marshall, P.J., Auger, M.W., Hilbert, S., Blandford, R.D., Koop-
mans, L.V.E., Fassnacht, C.D., & Treu, T. 2010, ApJ, 711, 201

[44] Tiné, S., Lepp, S., & Dalgarno, A., 1998, Mem. Soc. Astron. Ital., 69, 345

[45] Tolstikhin, O.I., & Nakamura, H. 1998, J. Chem. Phys., 108, 8899

[46] Truhlar, D.G., & Wyatt, R.E. 1976, Ann. Rev. Phys. Chem., 27, 1

98



[47] Truhlar, D.G., & Horowitz, C.J. 1978, J. Chem. Phys., 68, 2466; erratum 71,
1514E(1979)

[48] Truhlar, D.G. 1981, Potential Energy Surfaces and Dynamics Calculations
(New York: Plenum)

[49] Turner, J., Kirby-Docken, K., & Dalgarno, A. 1977, ApJ, 35, 281

[50] Varandas, A.J.C., Brown, F.B., Mead, C.A., Truhlar, D.G., & Blais, N.C. 1987, J.
Chem. Phys., 86, 6258

[51] Vodopivec, & A., Lenarcic, Z. 2010, software, wxMaxima version 11.04.0

[52] Vonlanthen, P., Rauscher, T., Winteler, C., Puy, D., Signore, M., & Dubrovich,
V. 2009, A&A, 503, 47

[53] Werner, H.J. 1987, Adv. Chem. Phys., 69, 1

[54] Werner, H.J. 1988, J. Chem. Phys., 89, 5803

[55] Williams, T., & Kelley, C. 2004, software, GNUPLOT version 4.0

[56] Wilson, R.W., & Penzias, A.A. 1965, AJ, 70, 697

99



VITA

Graduate College
University of Nevada, Las Vegas

Matthew T. Kelley

Local Address:
1509 E. Harmon Ave. Apt. 101
Las Vegas, Nevada 89119

Degrees:
Bachelors of Science, Physics, 2007
Marquette University
Milwaukee, Wisconsin

Dissertation Title:
Molecular Processes in Astrophysics: Calculations of H + H2 Excitation,
De-excitation, and Cooling

Dissertation Committee:
Committee Chairperson: Dr. Stephen Lepp, Ph.D.
Committee Memeber: Dr. Bing Zhang, Ph.D.
Committee Memeber: Dr. Kentaro Nagamine, Ph.D.
Graduate Faculty Representative: Dr. Balakrishnan Naduvalath, Ph.D.

100


	Molecular Processes in Astrophysics: Calculations of H + H2 Excitation, De-Excitation, and Cooling
	Repository Citation

	tmp.1373568225.pdf.3KlM6

