
Lehigh University
Lehigh Preserve

Theses and Dissertations

2012

Microstructure, rheology, and mixing of
suspensions
Bu Xu
Lehigh University

Follow this and additional works at: http://preserve.lehigh.edu/etd

This Dissertation is brought to you for free and open access by Lehigh Preserve. It has been accepted for inclusion in Theses and Dissertations by an
authorized administrator of Lehigh Preserve. For more information, please contact preserve@lehigh.edu.

Recommended Citation
Xu, Bu, "Microstructure, rheology, and mixing of suspensions" (2012). Theses and Dissertations. Paper 1053.

http://preserve.lehigh.edu?utm_source=preserve.lehigh.edu%2Fetd%2F1053&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F1053&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F1053&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd/1053?utm_source=preserve.lehigh.edu%2Fetd%2F1053&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:preserve@lehigh.edu


Microstructure, rheology, and

mixing of suspensions

by

Bu Xu

Presented to the Graduate Committee and Research Committee

of Lehigh University

in Candidacy for the Degree of

Doctor of Philosophy

in

Chemical Engineering

Lehigh University

May 2012



c© Copyright by Bu Xu 2012

All Rights Reserved

ii



Approved and recommended for acceptance as a dissertation in partial

fulfillment of requirement for the degree of Doctor of Philosophy.

Date

Dr. James F. Gilchrist

Accepted Date

Committee members:

Dr. Anthony J. McHugh

Dr. Hugo S. Caram

Dr. Eugenio Schuster
(Mechanical Engineering and Mechanics)

*

iii



Acknowledgments

This work is conducted under the guidance of my advisor, Dr. James Gilchrist to

whom I pay great gratitude and respect. Jim is always positive, supportive and

constructive, regardless of my performance. His care surpasses the area of research

and work, and instigates me with an energetic spirit.

Dr. Changbao Gao provided me the basic lab trainings before I took over his

project, the experimental part of this work. Other people in my lab have been friendly

and cooperative. Dr. Pisist Kumnorkaew taught me many tips for doing lab work

and cheered me up with his optimism; Alex Weldon supervised my particle synthesis

experiments and proof-read my journal paper and PhD proposal; Yajun Ding likes

printing many papers and discussing theoretical problems, which benefit me with

refreshing knowledge; Tanyakorn Muangnapoh, Tharanga Perera and Midhun Joy

are all kind and ready to give a hand.

I also acknowledge collaborators from outside my lab: Prof. Mark Snyder and

Zheng Tian; Prof. Anand Jagota and Ying Bai; Prof. Xuanhong Cheng and Bu

Wang, Chao Zhao, Krissada.

I would like to express my gratefulness to my course instructors in graduate school,

especially Professors Philip Blythe, Anthony McHugh, Anand Jagota, Hugo Caram

and Manoj Chaudhury. As the only committee member who has never taught me

iv



in classroom, Prof. Eugenio Schuster is acknowledged for his time in examination of

this thesis.

Last but not the least, I will never reach this point without my friends around

who seemingly do not have direct contributions to this research. Their friendship

always offers momentous joy and hope. They are: Chih-Hsiu Lin, Fan Ni, Shi Wang,

Jon Longley, Aishuang Xiang, Gautam Kumar, Reza Arastoo, Yuzhen Yang, Funian

Zhao, Chip Roberts, Chris Keturakis, etc.

v



Contents

Acknowledgments iv

Abstract 1

1 Introduction 3

1.1 Computational Hydrodynamics . . . . . . . . . . . . . . . . . . . . . 6

1.2 Colloid science . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.2.1 Brownian force . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.2.2 Electrostatic force . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.3 Rheology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.4 Thesis layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2 Methods 29

2.1 Synthesis of fluorescent particles and preparation of suspension . . . . 29

2.2 Flow device . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.3 Confocal microscopy . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3 Microstructure and rheology of sheared colloidal suspensions 37

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

vi



3.2 Experimental . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.3 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.3.1 Pair correlation . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.3.2 Calculation of viscometric functions . . . . . . . . . . . . . . . 52

3.3.3 Hydrocluster analysis . . . . . . . . . . . . . . . . . . . . . . . 63

3.3.4 Shear-induced crystallization . . . . . . . . . . . . . . . . . . . 67

3.3.5 Effect of electrostatics . . . . . . . . . . . . . . . . . . . . . . 70

3.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4 Shear-induced migration and segregation in one-dimensional shear

flow 75

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5 Chaotic mixing of suspensions in two-dimensional flow 90

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.2 Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

6 Conclusions and outlook 117

Vita 136

vii



List of Figures

1.1 Variation of viscosity of a typical suspension with shear rate (Wagner

& Brady, 2009). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.2 Light diffraction pattern before (A) and after (B) shear-thickening

(Hoffman, 1972). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.3 Measured torque and shear rate of a concentrated suspension in Cou-

ette device; transients only appear when shear is reversed (Gadala-

Maria & Acrivos, 1980). . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.4 Experimentally obtained pair distribution function on v- ∇v plane

showing a broken fore-aft symmetry (Parsi & Gadala-Maria, 1987). . 24

1.5 Anisotropic microstructure of sheared suspension displayed by pair dis-

tribution function on v- ∇v plane. From Stokesian Dynamics simula-

tion in Foss & Brady (2000). . . . . . . . . . . . . . . . . . . . . . . . 25

2.1 Illustration of a straight microchannel. Edited from Gao (2010). . . . 33

2.2 Experimental setup. (a): objective scanned at bottom of channel and

flow was finely controlled by electronic devices; (b): multiple stopped-

flow scans were performed immediately after flow cessation. . . . . . . 35

viii



3.1 g(r) plots on three orthogonal planes obtained experimentally (left

column) and computationally (right column) by Gao et al. (2010) at

Pe=1700 and φ=0.32. . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.2 SEM image of synthesized silica particles, taken by Alex Weldon. . . 44

3.3 Measured velocity and estimation of shear rate from bottom layer to-

ward the center of a suspension of hard spheres. . . . . . . . . . . . . 47

3.4 Comparison of experimental and computational g(r) at high Pe and φ. 49

3.5 g(r) as a function of Pe and φ. . . . . . . . . . . . . . . . . . . . . . 51

3.6 Relative viscosity (upper) and its Brownian component (lower) as a

function of Pe. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.7 Relative viscosity vs Pe, rescaled. Black symbols: data from Foss &

Brady (2000); red symbols: current work. . . . . . . . . . . . . . . . . 56

3.8 Brownian relative viscosity vs Pe, rescaled. Black symbols: data from

Foss & Brady (2000); red symbols: current work. . . . . . . . . . . . 57

3.9 Variation of normal stress differences with Pe across the channel. . . 59

3.10 First normal stress difference N1 vs Pe, rescaled. Black symbols: data

from Foss & Brady (2000); red symbols: current work. . . . . . . . . 60

3.11 Second normal stress difference N2 vs Pe, rescaled. Black symbols:

data from Foss & Brady (2000); red symbols: current work. . . . . . . 61

3.12 Normalized average cluster length as a function of Pe. . . . . . . . . 65

3.13 A linear growth of ln with ln(Pe) is fitted from experiments. . . . . . 66

3.14 Order parameter |Ψ6| on x-z plane and volume fraction φ as functions

of Pe. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.15 g(r) as a function of κ−1. Pe of all samples are greater than 1000. . . 72

ix



3.16 g(r) as a function of Pe and φ when κ−1 = 80 nm. . . . . . . . . . . 73

4.1 Shear-induced migration in a plane Poiseuille flow. (a) The velocity

profile is blunted by higher concentrations in the low shear rate region

near the center; (b) the corresponding concentration profile (Lyon &

Leal, 1998). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.2 Concentration distribution on channel cross section, φbulk=0.30 (Gao

et al., 2009). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.3 Model (solid lines) vs. experiment at average volume fractions, φa
bulk

= 0.25 (crosses), 0.27 (diamonds), 0.29 (squares), 0.34 (triangles), 0.37

(circles), 0.39 (asterisks) and 0.41 (hexagrams). . . . . . . . . . . . . 85

4.4 Power law correlation between the non-local shear rate γ̇NL and volume

fraction at channel center, φc. . . . . . . . . . . . . . . . . . . . . . . 86

4.5 Predicted intensity of segregation vs. experiment. . . . . . . . . . . . 87

5.1 Periodic points in fluid flow (Ottino, 1989b). . . . . . . . . . . . . . . 94

5.2 Chaotic mixing in a cavity flow (Ottino, 1990). . . . . . . . . . . . . . 96

5.3 Mixing protocols and instantaneous streamlines for the time-periodic

lid-driven cavity. S1 (top) advances the upper lid to the right at ve-

locity vt for time T the half-period of the cycle and then advances the

lower lid to the left at vb = −vt for T . S2 (bottom) advances the

upper lid vt for T and the lower lid vb = vt for T . Each protocol is

repeated until a steady concentration profile at the end of each cycle

2T is obtained. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

x



5.4 a): Shear rate profile in a steady lid-driven cavity flow with φave = 0.2

and λ = 1×10−2; b), c) and d): Steady concentration profiles for λ =

1×10−4 (b), 2.5×10−3 (c) and 1×10−2 (d). . . . . . . . . . . . . . . . 104
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Abstract

A concentrated suspension of solid microspheres dispersed in a Newtonian fluid ex-

hibits complex non-Newtonian behaviors. Rheological studies in the past few decades

have pointed out that a strong coupling between suspension microstructure and rhe-

ology exists. The key to understanding flow property therefore lies in comprehension

of microstructural information. However, due to practical difficulties, most previous

work on microstructure is produced through numerical simulations.

This study provides an innovative experimental approach based on previous work

in our group (Gao et al., 2010; Gao, 2010), which combines confocal microscopy

and microfluidics. The former allows for accurately resolving local structure and the

latter enables high shear-rate conditions. This method yields highly consistent mi-

crostructural data in terms of the pair distribution function with previous numerical

studies. Viscometric functions are calculated in the light of the known pair distribu-

tion, and qualitative agreements are established. Our results also testify between two

competing mechanisms about the shear-thickening of suspensions, namely hydroclus-

ter formation (Brady & Bossis, 1985) and order-disorder transition (Hoffman, 1972).

Our findings strongly supports the former and a nearly linear correlation between

the hydrocluster size and Pe is found. Existence of shear-induced crystallinity in

our experiment does not support the order-disorder transition as the mechanism of

1



shear-thickening.

As a consequence of the microstructure in sheared suspensions, an interesting

phenomenon, namely shear-induced migration occurs in nonlinear shear field. Shear-

induced migration has been modeled as either a diffusive process (Leighton & Acrivos,

1987b) or a stress relaxation (Nott & Brady, 1994). Shear-induced migration has sig-

nificant effects on practical handling of suspensions as it causes inhomogeneity out

of uniform concentration and thus complicates the rheology. The demixing nature of

shear-induced migration in one-dimensional straight channel is explored based on a

suspension stress model (Morris & Boulay, 1999) with a fitting parameter obtained

from experimental data (Gao et al., 2009). A systematic investigation on the inter-

play between chaotic advection and shear-induced migration is then carried out for

a suspension confined in a two-dimensional rectangular container using a diffusive-

flux model developed by Phillips et al. (1992). Variation of relative strength between

the flow topology and migration generates various patterns of concentration distribu-

tion. This study reveals the limitation of conventional wisdom in chaotic mixing of

Newtonian fluids and heralds mixing of suspension as a new area for investigation.
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Chapter 1

Introduction

The behavior of materials when subjected to stress are commonly delineated as solid-

or fluid-like. However, this clear distinction in everyday life is questioned by modern

rheology, e.g. when a system of mixture of the two is encountered. Properties of

solids and fluids often coexist in these mixtures, which produces fascinating versa-

tility. Humans began to realize the intriguing nature of such systems in primeval

time. Mythological accounts for creation and human origin are often involved with

suspensions or systems alike. For example, Chinese myth states people were cre-

ated by the goddess Nü-Wa out of mud; the Wyandot Indians tell a story in which

Toad spit on the back of Big Turtle a bit of soil she dived to obtain underwater

and this little solid mass eventually grew into a huge island, that is today’s North

America (Native Universe– Voices of Indian America, edited by G. McMaster and

C. E. Trafzer); by throwing stones over their shoulders onto flooded land, the Greek

legendary couple Deucalion and Pyrrha gave birth to the first men and women of

our epoch (Bibliotheca, Pseudo-Apollodorus); the most well-known is probably the

biblical account: “And the LORD God formed man of the dust of the ground, and

3



CHAPTER 1. INTRODUCTION

breathed into his nostrils the breath of life; and man became a living soul” (Genesis

2:7, KJV). It appears that in the dawn of civilization, people had already grasped

that combination of solidity and fluidity produces flexibility and complexity that to

a great extent constitute, sustain and replenish the world and ourselves.

One simplest solid-fluid system is a suspension: solid particles dispersed in a fluid

phase. Suspensions are ubiquitously encountered and applied in natural and artificial

processes. Humans, through adaptation in their ability to control their environment,

have necessarily developed a working understanding of geological suspensions, e.g.

rivers, mudslides and volcanic lavas. Likewise, through early industrialization of con-

sumer goods such as porridge, tea, soup, curd, herbal medicine, pottery, ink, paper,

paint, plaster, cement, rubber, fiber and skincare products, the challenges of process-

ing suspensions commonly enters daily life. Moving from small batch-wise processing

using heuristics largely derived from trial-and-error observations to the industrial era

strongly motivates the ability to develop constitutive equations that enable process

scalability. Because of these ongoing needs, the establishment of rheology of suspen-

sions as a modern science was inevitable.

Along the line from Archimedes, Newton, Bernoulli, Euler, Lagrange and Stokes,

fluid mechanics reaches its maturity, rendering scientific analysis on suspension sys-

tems. Sir George Stokes’ calculation of the drag force by a viscous flow passing

a sphere (or a sphere translating in quiescent fluid), namely Stokes’ law, sets out

the starting footstep into suspension hydrodynamics. His student, Sir Horace Lamb

gave the solution of Stokes equation in spherical coordinate using spherical harmonic

functions (Lamb, 1932), which provides the basis for study of suspension mechanics.
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CHAPTER 1. INTRODUCTION

A boom time for modern sciences, the twentieth century has seen this area of re-

search greatly extended in various directions. The author will discuss developments

in people’s understanding to suspension systems; and although a general definition of

suspensions span many physical situations, this thesis will focus on the ideal case of

a stable dispersion of equal sized rigid spheres in a Newtonian fluid limited to flows

having vanishing inertia. Particles have roughly the same density as the fluid and

their interactions with the fluid can be either purely hydrodynamic or a combination

of hydrodynamic, Brownian, and repulsive electrostatic inter-particle interactions.
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1.1. COMPUTATIONAL HYDRODYNAMICS CHAPTER 1. INTRODUCTION

1.1 Computational Hydrodynamics

Consider a single solid particle situated in a flow of Newtonian fluid under low

Reynolds number. The rigidity of solid will resist deformation from the fluid phase

and create a velocity disturbance; the resulting force and torque are given by Faxén’s

laws (Happel & Brenner, 1965). In a series of articles, Brenner solves the Stokes re-

sistance, i.e. force, torque and stress of a single particle in unbounded fluid, covering

arbitrary-shaped particle (Brenner, 1963, 1964a) in uniform shearing flow (Brenner,

1964b) and arbitrary flows (Brenner, 1964c, 1966). These results are applicable only

to very dilute conditions. Particles interact with each other through the fluid medium

because their rigidity alters the flow field from that of a pure fluid, which in turn dis-

turbs the velocity of all other particles. This hydrodynamic interaction is the key

interaction between particles, scaling as 1/r2, and is responsible for the rich variety

of physical properties of flowing suspensions. Although thought to be mathematically

described exactly, hydrodynamic interaction is known for its difficulty to approach

through analytical methods.

Study of two-particle interaction, though in the infinitely dilute regime, bridges

our understandings into concentrated conditions. Lin et al. (1970) used general solu-

tion of Stokes equation in bipolar spherical coordinates to study interaction between

two spheres in a shear field. Batchelor & Green (1972b) presented a simpler approach

in which the authors gave general forms for the unknowns, i.e. the relative trans-

lational velocity, rotational velocities and force dipole strengths of two spheres with

arbitrary radii in a linear flow field. The scalar coefficients involved in these forms

are calculated for far- and near-field conditions. The relative trajectories between two
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1.1. COMPUTATIONAL HYDRODYNAMICS CHAPTER 1. INTRODUCTION

equal spheres are also analyzed to reveal that in a linear shear flow, two spheres are

easily swept to proximity by the ambient shearing motion, confirming earlier experi-

mental observation (Darabaner & Mason, 1967). Batchelor carried on this method to

study Brownian motion in one of his later publications (Batchelor, 1976), where the

pair-interaction is posed as a mobility problem and can be written as (not originally

in the paper)

u = b · f (1.1)

where u = [u1 u2]
T is the velocity vector for two spheres, and f the force vector; b is

the coefficient tensor containing the configuration-dependent scalars which later are

called mobility functions.

On the other hand, Brenner & O’Neill (1972) formulated the pair/multi-particle

hydrodynamics in terms of a resistance problem by extending Brenner’s method for

single-particle analysis:

F = −µ[R · U + Φ · ρ] (1.2)

Here F is the force-torque vector, U the velocity-spin vector, ρ the rate-of-strain vec-

tor/tensor and µ the viscosity of the fluid. Scalar coefficients, or resistance functions,

which describe the linear relation between kinematics(translational/angular velocities

and rate of strain) and mechanics(force and torque) and depend on particle geometry

and system configuration, are arrayed in the two matrices R and Φ.

Tabulation of these mobility and resistance functions (Jeffrey & Onishi, 1984;

Kim & Mifflin, 1985) claims the pair-interaction problem. However, analytic methods

generally fall short on many-body hydrodynamic interactions due to the overwhelm-

ing computational load. Thanks to the development of computer technology in last
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1.1. COMPUTATIONAL HYDRODYNAMICS CHAPTER 1. INTRODUCTION

century, people were able to develop numerical tools for computing and simulating

multiparticle hydrodynamics. Durlofsky et al. (1987) resolved the many-body effect

by inversion of the grand mobility matrix M, defined in the mobility problem:







U − U∞

−E∞






= M ·







F

S






(1.3)

where U∞ is the velocity-spin vector of the undisturbed flow field, E∞ the undisturbed

rate-of-strain tensor; U, F and S are the N -particle velocity-spin vector, force-torque

vector and stresslet tensor, respectively.

The near-field lubrication is solved in a pairwise fashion based on aforementioned

results for the two-body problem. Combination of the two constructs the grand

resistance matrix and therefore solves the whole resistance problem:







F

S






= R ·







U − U∞

−E∞






(1.4)

This methodology, termed Stokesian Dynamics (Brady & Bossis, 1988) provides

accurate reflection of actual particle interactions in flows and is widely recognized as

a powerful tool for study of suspensions. Brady and coworkers have also developed a

variant version(Accelerated Stokesian Dynamics, or ASD) for faster CPU time (Sierou

& Brady, 2001; Banchio & Brady, 2003). Application of SD/ASD to low-Reynolds-

number suspension systems successfully predicts and reproduces phase transition,

migration (Nott & Brady, 1994) and numerous rheological behaviors to be mentioned

later.
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1.1. COMPUTATIONAL HYDRODYNAMICS CHAPTER 1. INTRODUCTION

Other notable numerical methods include Dissipative Particle Dynamics (Hooger-

brugge & Koelman, 1992; Pan et al., 2010), the lattice Boltzmann (Chen & Doolen,

1998; Ladd & Verberg, 2001; Aidun & Clausen, 2010) and Boundary-Multipole Col-

location methods (Kim & Karrila, 1991), etc.
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1.2. COLLOID SCIENCE CHAPTER 1. INTRODUCTION

1.2 Colloid science

A system with micron- or submicron-sized particles(e.g. particles, drops and bubbles)

dispersed in a fluid, is usually referred to as a “colloid” which is transliterated from

the Greek word κóλλα, meaning glue (Russel et al., 1989). Recent decades have seen

surging research activities on colloids. Leave alone practical reasons that colloids are

encountered in many fields, e.g. environmental engineering, catalysis, food industry,

optics and bioengineering, what makes them theoretically appealing is the close sim-

ilarity and even scalability between colloidal and atomic systems (Kose et al., 1973;

Arora & Tata, 1998). Since the former is much easier to control and monitor, study of

model colloidal systems provides precious insight for condensed-matter physics (Mur-

ray & Grier, 1996). Colloidal systems are also fascinating on their own account by

demonstrating intriguing phase behaviors, which is the result of interplay between

various forces present in the system (Russel et al., 1989; Murray & Grier, 1995).

When the length scale goes down to that of colloidal particles, certain forces

become pronounced to take effect in the behavior of colloidal suspensions. These

forces arise from thermal agitation of solvent molecules (Brownian or thermal force),

surface charge or potential on colloidal particles (electrostatic force), summation of

London- van der Waals force (dispersion force), interaction between adsorbed polymer

chains (steric force) and exclusion of non-adsorbing polymers between two particle

surfaces (depletion force), etc. In suspensions without polymer in the solvent, the

first three are predominant, illustrated in more details herein.

10



1.2. COLLOID SCIENCE CHAPTER 1. INTRODUCTION

1.2.1 Brownian force

Brownian motion is the constant random movement of colloidal particles as a con-

sequence of the molecular agitation from the solvent. Diffusion, a familiar and im-

portant process, originates from Brownian motion. Combining the thermodynamic

concept of osmotic pressure and Stokes’ Law in fluid mechanics, in 1905 Einstein

(1926) obtained the Stokes-Einstein-Sutherland formula for diffusion coefficient of an

isolated sphere with radius a in a fluid of viscosity η:

D =
kT

6πηa
(1.5)

where k = 1.38×10−23K−1 is the Boltzmann constant and T is absolute temperature.

On the other hand, from a dynamic viewpoint, the well-known Langevin equation

gives a Newtonian force-balance account for Brownian motion of a spherical particle

having mass m and radius a:

m
d2x

dt2
+ 6πηa

dx

dt
= f(t) (1.6)

The Brownian force f is random and satisfy (Russel et al., 1989)

< f(t) >= 0 (1.7)

< f(t)f(t + τ) >= 12πηakT I (1.8)

where I is the second-order identity tensor.
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A useful dimensionless number quantifying the relative strength between hydro-

dynamic and Brownian force is the Péclet number

Pe =
γ̇a2

D
=

6πηγ̇a3

kT
(1.9)

Pe characterizes the state of suspension in that it is zero when the system is at

equilibrium and approaches infinity in suspensions of large particles, viscous fluids

and high shear rates conditions.
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1.2.2 Electrostatic force

When put in an ionic solution, almost all solid surfaces will become charged due to var-

ious mechanisms (Russel et al., 1989), e.g. preferential adsorption of certain species.

The charged surface attracts free ions in the liquid phase to form a double layer: an

inner immobilized layer of predominately counterions (the Stern layer) and an outer

layer of ions of the same sign as the surface charge (the diffuse layer) (Adamson &

Gast, 1997). When the suspension is under shear, the Stern layer around a particle is

not affected and the mobilized shear layer lies somewhere outside the division between

the Stern and diffuse layers.

It is not always easy to measure the surface potential, and the potential at the

shear layer, the zeta-potential ζ becomes a frequently-used parameter to determine

the electrostatic force. For a stable colloidal suspension, ζ typically ranges from 10

to 100 millivolts.

Another important parameter is the Debye length κ−1, which is the characteristic

thickness of the electrical double layer. Over this distance away from a particle, the

electrical field is essentially unfelt because of screening of free ions. Debye length is

given as (Russel et al., 1989):

κ−1 =

√

ǫǫ0kT

2e2
∑

niz2
i

(1.10)

where ǫǫ0 is the dielectric constant of the medium, e = 1.60×10−19C is the elementary

charge, ni and zi are number density and valence of species i.

Eq. 1.10 indicates that κ−1 can be controlled by manipulating ionic strength.

Electrostatic repulsion between particles is crucial in stabilizing the suspension
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in that the ever-present, attractive dispersion force will pull particles together to

form clusters and aggregates under low ζ and small κ−1 conditions. Dispersion force,

also called London-van der Waals force, arises from the dipole-dipole interactions on

atomic or molecular level. However, the integral effect renders dispersion force long-

range and attractive on colloidal length scale. Competition between dispersion and

repulsive forces determines the stability of a colloidal suspension, resulting in compli-

cated phase behaviors. The influential theory due to Derjaguin, Landau, Verwey and

Overbeek (DLVO theory) sums attractive and repulsive forces into an interparticle

potential to explain colloidal stability.

This research involves with charge-stabilized colloidal suspensions well above the

stability criterion, so dispersion force is considered insignificant. Instead we will

be mostly focused on the interplay between electrostatics and hydrodynamics. A

dimensionless number representing comparison between these two may be defined in

a similar way as Eq.1.9 (Stickel et al., 2006).

γ∗ =
6πηγ̇a2

F0

(1.11)

where F0 is the characteristic magnitude of the electrostatic repulsive force.

Many of the works mentioned in Section 1.3 are carried out with colloidal sus-

pensions. However, the influence from the Brownian and interparticle forces further

complicates the measurement or computation and it is clear that any sound rheolog-

ical model must not neglect careful characterization of the colloidal forces (Jeffrey &

Acrivos, 1976). As a matter of fact, the impact of interparticle forces on rheology is

evident (Russel, 1980). For example, the electroviscous effect, effect of particle elec-

trostatic interactions on rheology, has been a long-standing interest since the work of
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Stone-Masui & Watillon (1968) which reveals an enhanced low-shear viscosity due to

electrostatics at dilute concentration. Systematic studies (Berend & Richtering, 1995;

Horn et al., 2000) have shown a transition from elastic to viscous behaviors as ionic

strength is dropped. In light of the discussions in Section 1.3 about microstructure-

dependent rheology of suspensions, these findings suggest a significant role played

by electrostatic force in determining the microstructure. An investigation of this ef-

fect will be essential for construction of a predictive rheological theory, which is still

lacking (Russel, 2009).
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1.3 Rheology

A newly emerged science in the twentieth century, rheology studies deformation and

stress in materials typically displaying both fluidity and solidity. After decades of

evolution, this discipline has developed a uniquely insightful view of flowing matters

and had at its disposal a variety of theoretical and experimental tools which are

readily applicable to suspensions. In the scope of rheology, particulate suspensions

are fully illuminated such that their properties are classified and characterized in an

unprecedented, rigorous scientific manner.

Initiation of suspension rheology actually predates the formal establishment of

“rheology” as a proclaimed subject in 1929. Originally published in German language

in 1906, Einstein (1926) proposed a relation between viscosity and volume fraction

for a suspension of isolated hard spheres,

η

η0

= 1 + 2.5φ + O(φ2) (1.12)

where η0 is viscosity of the interstitial fluid.

For decades, this achievement had led researchers to strive for a full functional

description of η vs. φ which would asymptote to Eq.1.12. One widely accepted result

(Krieger, 1972) out of such endeavor gives:

η1r = (1 − φ/0.68)−1.82 (1.13)

η2r = (1 − φ/0.57)−1.50 (1.14)

where η1r and η2r are steady-state relative viscosities for high-shear and zero-shear
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limit, respectively.

The constants 0.68 and 0.57 in Eqs. 1.13 and 1.14 are considered maximum volume

fraction of a suspension before a suspension jams and loses it flowability, or in other

words, its viscosity diverges. The exact value of this quantity is still under debate.

While empirical relations like Eqs.1.13 and 1.14 can be made through curve-

fitting of experimental data, theorists had little breakthrough until Batchelor & Green

(1972a) extended Einstein’s result to less dilute condition by consideration of pair-

interactions and obtained the exact coefficient for the second-order term. However,

the volume-fraction dependence of viscosity is inadequate to characterize the rhe-

ology. In fact, Krieger (1972) certainly demonstrates that viscosity is shear-rate-

and time-dependent as well. Rheological experiments on suspensions in steady shear

flow reveal shear-thinning behavior at intermediate shear rate (de Kruif et al., 1985;

van der Werff & de Kruif, 1989; Gondret & Petit, 1996) and thickening at high shear

rate (Hoffman, 1972; D’Haene et al., 1993; Bender & Wagner, 1996). Normal (Zarraga

et al., 2000) and yield stresses (Heymann et al., 2002) have been measured in concen-

trated suspensions as well. Oscillatory shear experiments also discovered thixotropy

(Gondret & Petit, 1996) and strain-dependent behavior in complex viscosity (Breed-

veld et al., 2001; Bricker & Butler, 2006) and normal stresses (Narumi et al., 2002).

Generally the viscosity of a suspension follows the trend in Fig. 1.1: stays constant

near equilibrium, first decreases and then increases dramatically with shear rate.

17



1.3. RHEOLOGY CHAPTER 1. INTRODUCTION

Figure 1.1: Variation of viscosity of a typical suspension with shear rate (Wagner &
Brady, 2009).
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Hoffman (1972) conducted light-scattering experiments coupled with rheological

measurement when he observed an abrupt change in diffraction pattern associated

with the outset of a discontinuous shear-thickening process. Hoffman concluded that

an order-disorder transition in the suspension microstructure is responsible for its rhe-

ology. This finding led people to realize the coupling between suspension microstruc-

ture and rheology, and has influenced this area of research ever since. On the other

hand, conventional rheological experiments also strongly suggest a microstructure-

dependent behavior, most pronounced in the transient nonlinear response when the

shear on suspension is reversed (Gadala-Maria & Acrivos, 1980; Breedveld et al.,

2001; Narumi et al., 2002, 2005; Blanc et al., 2011). For example, Fig. 1.3 shows

in the experiment by Gadala-Maria & Acrivos (1980) it is found that when shearing

is stopped, and then restarted in the original direction, the measured torque rapidly

reaches its steady-state value; whereas if shear is restarted in opposite direction,

the torque will readjust as a function of strain until the same steady-state value is

achieved. This phenomenon infers a microstructure retainment for the first case and

destruction and reformation for the second, clearly impacting a proper description of

microstructure-dependent rheology.
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Figure 1.2: Light diffraction pattern before (A) and after (B) shear-thickening (Hoff-
man, 1972).
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Figure 1.3: Measured torque and shear rate of a concentrated suspension in Couette
device; transients only appear when shear is reversed (Gadala-Maria & Acrivos, 1980).
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In a suspension of solid spheres, microstructure means the spatial arrangement of

particles with respect to each other. A complete description of the microstructure is

the N -particle configuration probability, PN(x1,x2 · · · ,xN), of which the evolution

obeys the Smoluchowski equation (Morris, 2009),

∂PN

∂t
+ ∇α · jα = 0 (1.15)

where xα, α = 1, 2 · · · , N are particle locations, and jα is probability flux related to

particle α.

The difficulty in solving Smoluchowski equation or obtaining PN is obvious, con-

sequently the simplest and most readily used function to represent microstructure is

the pair distribution function (Batchelor & Green, 1972a), g(r), obtained by inte-

grating PN over N − 2 particles. Analytic theory on microstructure is only available

for conditions with low concentration or pairwise hydrodynamic interactions (Russel

& Gast, 1986; Brady & Morris, 1997).

At pair level, it is believed the hydrodynamic interaction is reversible (Batchelor

& Green, 1972a), though interparticle forces arising from factors like surface rough-

ness (Rampall et al., 1997; Popova et al., 2007) may incur irreversibility. At high

concentration, the pairwise approach does not suffice to describe the system and ir-

reversible interaction arises due to the chaotic nature of multibody effects (Leighton

& Acrivos, 1987b). For instance, Husband & Gadala-Maria (1987) reports fore-aft

symmetry in microstructure of dilute suspension as opposed to the asymmetry in con-

centrated suspension (Parsi & Gadala-Maria, 1987). Pine et al. (2005) reveals there is

a concentration-dependent threshold of irreversibility in the total strain experienced

by a suspension. When shear rate and volume fraction are high, strong irreversibility
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and structure asymmetry are expected. Numerical and experimental studies have

confirmed this hypothesis based on obtained g(r) for concentrated suspensions under

high shear rates.

One of the earliest appearing in the literature is based on light scattering by Parsi

& Gadala-Maria (1987), which shows a fore-aft asymmetry of g(r) on flow-gradient

plane(Fig. 1.4). Rampall et al. (1997) utilized laser imaging method to measure the

pair-distribution function in dilute or semidilute suspensions of noncolloidal spheres,

focusing on the effect of particle surface roughness that renders particle interactions

irreversible and causes anisotropy. Small-angle neutron scattering (SANS) method is

also an effective way to study microstructure of flowing suspensions (Ackerson et al.,

1986; Butera et al., 1996; Newstein et al., 1999). Experimental results, although

qualitatively agree with those obtained by Stokesian Dynamics simulations (Foss &

Brady, 2000; Morris & Katyal, 2002; Wagner & Brady, 2009), generally suffer from

relatively large scatter of data, coarse quality and inability to resolve 3D structure,

as is evidenced in Fig. 1.4. Recently a high-resolution experimental procedure was

proposed by Gilchrist and coworkers (Gao et al., 2010; Gao, 2010). This technique

combines confocal laser imaging and microfluidics and is able to produce simulation-

level quantitative results for g(r), as is outlined in Chapter 2.
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Figure 1.4: Experimentally obtained pair distribution function on v- ∇v plane show-
ing a broken fore-aft symmetry (Parsi & Gadala-Maria, 1987).
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Figure 1.5: Anisotropic microstructure of sheared suspension displayed by pair dis-
tribution function on v- ∇v plane. From Stokesian Dynamics simulation in Foss &
Brady (2000).
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Besides shear viscosity, normal stress differences are also important viscometric

functions:

N1 = Σ11 − Σ22 (1.16)

N2 = Σ22 − Σ33 (1.17)

where Σ is the total stress tensor, and subscripts “1”, “2” and “3” respectively refer

to directions of flow, velocity gradient and vorticity.

For Newtonian fluids under shear, the deviatoric normal stresses are identically

zero. In polymer solutions and melts, normal stresses arise from the elasticity of

the polymer chains which are stretched along flow direction. Because of the tensile

nature of molecular resistance to this stretching, the first normal stress difference N1

is generally large and positive (Tanner, 2000). The second normal stress difference

N2 is often negative and much smaller. For convenience people scale N1 and N2 with

γ̇2.

For noncolloidal suspensions, the circumstance is different. Interactions happen

mostly along direction of velocity gradient when particles with relative velocities pass

each other, producing an effective “dilatancy”. The compressive normal stress in

velocity-gradient direction therefore gives rise to a large and negative N2. Also N1

and N2 will scale with γ̇ as the hydrodynamic interaction does. SD/ASD simulations

(Singh & Nott, 2000; Sierou & Brady, 2002) and experiments (Zarraga et al., 2000)

demonstrate that N1 and N2 are both negative and the former is smaller in magnitude;

while for colloidal systems N1 changes to positive sign when Brownian motion starts

to dominate (Foss & Brady, 2000).
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The normal stresses generated in sheared suspensions entail cross-streamline mo-

tions of particles, or shear-induced particle diffusion (Eckstein et al., 1977; Leighton

& Acrivos, 1987a). This diffusive motion is caused by interactions between particles

and therefore is stronger than the Brownian diffusion by thermal fluctuation of the

much-smaller solvent molecules. Shear-induced diffusion has profound influences on

suspension-related processes, e.g. viscous resuspension (Leighton & Acrivos, 1986).

Interestingly, since normal stresses scale with shear stress (Zarraga et al., 2000) and

increases with φ, if shear gradient exists in the flow, imbalance of normal stress (or

shear-induced diffusion flux) will drive particles from high-shear to low-shear areas,

a phenomenon called shear-induced migration (Leighton & Acrivos, 1987b). The re-

sulting inhomogeneity in particle distribution is theoretically interesting and raises

concerns for practical consideration as well. Chapter 5 will address problems involving

shear-induced migration to great extent.
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1.4 Thesis layout

This dissertation is arranged as follows: Chapter 2 describes the complete procedures

for experimental investigation on suspension microstructure; subsequently Chapter

3 presents the results and discusses our acquired understanding from a fundamental

point of view; a connection into reality is made in Chapter 4 by a study of demixing

caused by shear-induced migration as a consequence of the microstructure-dependent

rheology; finally Chapter 5 attempts to suppress demixing by introducing chaotic

advection and demonstrates results that are potentially illuminative for practical

handling of suspensions.
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Chapter 2

Methods

The experimental procedure can be streamlined into three parts: 1) preparation of

silica microspheres, and then making suspensions using these particles; 2) fabrication

of PDMS-based microfluidic device; 3) flowing the suspensions into the device and

scanning the sample with confocal microscope. Each step is elaborated as follows.

2.1 Synthesis of fluorescent particles and prepara-

tion of suspension

We performed Stöber synthesis (van Blaaderen & Vrij, 1992) to fabricate silica mi-

crospheres . The procedure is summarized as follows.

1) Preparation of dye: 32 mg of RITC (Rhodamine B isothiocyanate, Sigma-

Aldrich) and 0.07 ml liquid APS (3-aminopropyl-triethnoxysilane, Acros, 99%) were

dissolved into 7.5 ml 200-proof ethanol in a small vial wrapped with aluminium foil.

The solution was stirred for 12 hours in order for bonding reaction between APS and
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the fluorescent RITC to be completed.

2) Synthesis of fluorescent cores: A base solution consisting of 17.28 ml 200-proof

ethanol, 24.88 ml deionized water and 7.81 ml ammonia hydroxide (NH4OH) was

prepared in a 250 ml HDPE bottle. The dye solution prepared in 1) was added into

the base. 4.52 ml TEOS (tetraethyl orthosilicate, Aldrich, reagent grade 98%) was

dissolved in 45.48 ml ethanol and gently poured into the batch while the system

was stirred vigorously and smoothly by a magnetic stir bar. The hydrolysis of TEOS

produces solid silica particles, which keep growing with the reaction. The dye-bonding

APS hydrolyzes at a slower rate, rendering the particle fluorescent.

The system was kept being stirred during the whole process. TEOS/ethanol

solutions with the same composition were added periodically into the bottle and

after each addition the system was left for reaction for at least 6 hours.

3) Collection of core particles: After three additions, the particles look very

monodisperse under scanning electron microscope with an average diameter of 520

nm, ideal for imaging purpose. The batch was then stopped and centrifuged to sepa-

rate out the fluorescent particles. The particles were washed by ethanol and DI water

for several times and dispersed in 200-proof ethanol to form a suspension with volume

fraction φ=0.33.

4) Core-shell restart: The same base solution in 2) was again prepared in a clean

HDPE bottle. 3 ml of the well-dispersed fluorescent particle suspension was added

in order to provide seed particles. The system being well stirred, the same addition

and reaction of TEOS/ethanol solution as in 2) was repeated. Samples were taken

for SEM imaging every one or two additions to make sure good particle growth.

After five additions the particle average diameter reached 880 nm with a satisfactory
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monodispersity. The solution was then centrifuged and washed many times to harvest

a batch of clean silica microspheres with fluorescent cores.

Such core-shell structure is crucial in controlling species in suspension and sus-

taining imaging requirement in our experiments: by sealing the fluorescent with a

shell of pure silica, contamination from dye has been avoided.

Dried particles were mixed with a liquid mixture of glycerol and water (volume

ratio 3:1) which has the same refractive index as silica. Proper amount of solutions of

sodium hydroxide (NaOH) and sodium chloride (NaCl) were added to the suspension

so that the pH=8 and [NaCl]=10−3 M. This configuration makes sure the suspension

is charge-stabilized, but the screening length is small compared with particle size (the

Debye length κ−1=8 nm). A colloidal system like this approximates a hard-sphere

suspension where interparticle force is present only if particles touch one another.

Before being pumped into microchannel, the suspension was sonicated for suffi-

ciently long time till appearing stable, clear and homogeneous.
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2.2 Flow device

Straight microchannels with a rectangular cross section were molded from a silicon

wafer mask having two-level etched structures, fabricated at Cornell Nanoscale Fa-

cility by Dr. Changbao Gao. Two plastic connectors (Harvard Apparatus) filled

with water are put at each end of the ridge structure on the wafer to serve as inlet

and outlet. Next, polydimethylsiloxane (PDMS, Dow Corning) mixed with proper

amount of curing agent was gently poured onto the wafer and cured at 80◦C for at

least 60 minutes. We treated the solidified structure and a glass coverslip(cleaned by

Piranha solution beforehand) in a plasma cleaner (Harrick Plasma) for 45 seconds

and subsequently attach the two together to form a closed channel structure which

has a dimension of 100 µm×40 µm×50 mm(width×height×length). The channels

were kept for at least 48 hours before usage in order to neutralize charges generated

during plasma-bonding. Fig. 2.1 depicts a typical straight microchannel for the flow

experiment.

The suspension would be injected into channel inlet and compressed nitrogen

be connected to drive the suspension flow. An electropneumatic converter (Omega

Engineering) transforming analytic signal to pneumatic response was interfaced with

a PC, which enabled us to control the nitrogen flow precisely and smoothly. Such

setting allowed quick flow cessation with minimal reversal.
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Figure 2.1: Illustration of a straight microchannel. Edited from Gao (2010).
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2.3 Confocal microscopy

As a common tool for studying colloidal system, confocal laser scanning microscopy

(CLSM) is powerful in that it reveals the local structural information inside the sam-

ple while scattering methods generally can only resolve global average under limited

conditions and conventional optical video microscopy is not able to obtain data far

away from the surface (Arora & Tata, 1998). CLSM has been used to study colloidal

crystals (Morinaga et al., 2008; Wu et al., 2009), gels (Ohtsuka et al., 2008), phase

separation (Ito et al., 1994), sedimentation (Royall et al., 2005; Beckham & Bevan,

2007) and shear-induced migration (Frank et al., 2003; Gao & Gilchrist, 2008; Gao

et al., 2009), etc.

A VT-Eye confocal microscope (VisiTech International) was used to probe the

structure of suspension flow in microchannel. This high-speed microscope is able to

scan as fast as 400 frames per second (fps) over a thin focal plane (0.5µm in thickness).

A 100-times-magnification oil objective is controlled by a piezoelectric motor which

enables it to move vertically up to 100 µm distance and scan every 0.1 µm. The scan

rate can be as high as 100 fps for 512×512 pixel2 images. In the experiments the

channel (with the glass coverslip downward) was put on top of the objective so that

microscope would scan through the suspension in the direction of velocity gradient.

The experimental framework is described by Fig. 2.2(a). Confocal scannings in

our experiments were comprised of two parts: velocimetry measurement and stopped-

flow measurement. In the former, the microscope scanned from the bottom toward

top of the sample along the vertical or velocity-gradient direction, taking 10 images

every 0.1 µm while the suspension is flowing. The velocity at each point could then be
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(a)

(b)

Figure 2.2: Experimental setup. (a): objective scanned at bottom of channel and
flow was finely controlled by electronic devices; (b): multiple stopped-flow scans were
performed immediately after flow cessation.
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calculated by comparing displacements of the same particle between frames differed

by certain time interval and averaging over at least ten particles. In the stopped-flow

measurement, after the flow had reached steady state for some time, it was carefully

stopped by reducing the nitrogen pressure, manipulated by the electropneumatic

converter. Immediately after flow cessation(Fig. 2.2(b)), confocal scan through the

system was started, same fashion as in velocimetry measurement except that now we

took 1 image per 0.1 µm at 100 fps. After the scan, flow was restarted and the process

was repeated for at least ten times for each system. The stopped-flow scans were

processed in IDL. Particle-tracking routines developed by Dr. Eric Weeks at Emory

University were used to reconstruct the three-dimensional particle distribution in the

experiments. g(r) was then calculated from these renderings, using improved IDL

and Matlab routines initially developed by Dr. Changbao Gao.

Because in pressure-driven channel flow the shear rate varies along velocity-gradient

direction, g(r) has to be obtained locally. After determining the shear rate or Péclet

number at a certain shear plane, only particles within one particle diameter distance

from that plane were cropped for the calculation. On the other hand, it means we

are able to acquire microstructure at different Pe’s in one single experiment.
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Chapter 3

Microstructure and rheology of

sheared colloidal suspensions

3.1 Introduction

As is discussed in Chapter 1, when subject to flow, concentrated suspension of

particles can demonstrate intricate and irregular behaviors such as shear-thinning/

thickening, thixotropy/rheopexy, yield stress and normal stresses, etc (Stickel & Pow-

ell, 2005); and the key behind this complexity is the suspension’s underlying mi-

crostructure, i.e. how particles arrange themselves with respect to each other under

convection, thermal fluctuation and interparticle forces. Zarraga et al. (2000) calcu-

lated the stress of a dilute suspension of doublets based on the constitutive equation

of Nir & Acrivos (1973), and showed the normal stress differences are functions of

the orientation of the doublets. Gadala-Maria & Acrivos (1980) discovered the stress

recaptures its original value when the suspension experiences shear-arrest and then
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restart of shear in the same direction; but the stress will undergo some transients be-

fore reaching steady state if the shear restarts in the opposite direction. This finding

is a strong indication that shear-induced anisotropic structure exists in suspensions

and this microstructure determines rheology. Later experimental study on shear flow

of suspensions were based on light scattering (Husband & Gadala-Maria, 1987; Parsi

& Gadala-Maria, 1987) and laser sheet imaging (Rampall et al., 1997), which obtained

the pair distribution function and pointed out that anisotropy exists on flow-velocity

gradient plane. Specifically there is higher correlation around the compressive axis

and lower around the extensional.

Microstructure is also the main theme of shear-thickening mechanism of suspen-

sions. Hoffman (1972) carried out one of the earliest experimental study on the cou-

pling between rheology and microstructure of suspensions: by means of white light

diffraction, it was observed an order-disorder transition in particle arrays parallel to

shear plane, associated with a viscosity discontinuity, or an abrupt shear-thickening.

Hoffman’s theory is supported by the experiments of Gondret & Petit (1996) in their

rheo-optical measurement that disordered structures always produce larger viscos-

ity than ordered ones. However, an alternative mechanism (Brady & Bossis, 1985;

Bossis & Brady, 1989) seems more promising, which states that thickening is the result

of formation of dynamic hydroclusters under shear. Small-angle neutron scattering

experiments (Bender & Wagner, 1995, 1996) confirmed this theory. Very recently

observation from confocal microscopy (Cheng et al., 2011) also reinforced its valid-

ity. However the experimental design of Cheng et al. (2011) might be problematic,

because their flow cell is too narrow to rule out wall effects.
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Therefore the microstructural information is crucial in explaining suspension rhe-

ology and has been the focus of extensive studies. In spite of the limited number of

experimental studies and their relatively low quality, up to date, the most fruitful

and informative results on suspension microstructure have been realized from nu-

merical simulations. Stokesian Dynamics (Brady & Bossis, 1988) and accelerated

Stokesian Dynamics (Sierou & Brady, 2001) are the most extensively used methods.

For instance, SD/ASD have been applied to obtain microstructural data in order to

investigate rheology of Brownian suspension at different Pe’s (Foss & Brady, 2000;

Morris & Katyal, 2002), velocity fluctuation in sheared suspensions (Drazer et al.,

2004), phase/order transition (Kulkarni & Morris, 2009), shear-thickening (Melrose

& Ball, 2004b,a) and cluster formation (Yurkovetsky & Morris, 2006). Pan et al.

(2010) adopted Dissipative Particle Dynamics (DPD) to simulate suspension flow

and obtained similar outcome as SD. These computational results are mostly finely

plotted and reveal details of the microstructure such as shape of the near-contact

boundary layer. While computational methods and new theoretical frameworks are

quickly evolving, experiments are likely to catch up because of recent application of

various optical methods to obtain microstructural data.

The paucity and coarseness of experimental outcomes have been due to practi-

cal difficulties and applicability of the methods, e.g. opacity of the sample which

obstructs light scattering and critical requirements on solvents for neutron and X-

ray scattering approaches (Mewis & Wagner, 2009). Gao et al. (2010); Gao (2010)

devised a novel approach, in which suspension flowing in a straight microchannel is

stopped quickly and scanned by a confocal microscope. Gao and Gilchrist antici-

pate to obtain a “frozen” structure of suspension of silica microspheres under flow,
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since when Brownian motion is weak, ideally there is no apparent driving force to

alter the structure shortly after flow cessation. This method produces high-quality

data with high throughput. It also explores in one single experiment the structure

resulting from a range of shear rates or Pe’s, given the nonlinear nature of channel

flow. The pair distribution function obtained by Gao et al. (2010); Gao (2010) agrees

reasonably well with computations; nevertheless, from Fig. 3.1 notable discrepancies

also exist. This work aims to address the deviation and conduct a more complete

microstructural study of nearly hard-sphere suspension.

Before presenting this work, some background on pair distribution function, the

indicator for microstructure in our study, is given below.

The Smoluchowski equation (Eq.1.15) describes evolution of microstructure in

terms of the N -particle configuration probability, PN(x1,x2 · · · ,xN).

Given the difficulty in solving Eq.1.15, a much more accessible way is to use the

pair distribution function g(r) (Batchelor & Green, 1972a), obtained by integrating

PN over N − 2 particles. Another way to define it is:

g(r) ≡
P1|1(r)

n
(3.1)

where P1|1(r) is the conditional probability of finding a particle at position r with

respect to a reference particle, and n is the particle number density.

In this system the maximum particle Reynolds number Rep = 3.2 × 10−5, so

inertia plays an insignificant role. The remaining key parameter affecting g(r) is the

Péclet number, Pe = 6πηγ̇a3

kT
, since Pe reflects the competition between hydrodynamic

and Brownian forces from which the microstructure is dictated. Foss & Brady (2000)

conducted systematic study on g(r) at different Pe’s for a hard-sphere suspension
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and anisotropy is observed on velocity-velocity gradient plane when Pe is raised, as

opposed to isotropic structure near equilibrium. This anisotropy shows accumulation

of correlation around compressional axes and depletion around the extensional axes.

It signals shear-thickening and normal stresses and is one strong evidence of the

coupling between rheological properties and the underlying microstructure.
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Figure 3.1: g(r) plots on three orthogonal planes obtained experimentally (left col-
umn) and computationally (right column) by Gao et al. (2010) at Pe=1700 and
φ=0.32.
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3.2 Experimental

It is found that the discrepancy between experiment and simulation in Gao et al.

(2010) is most likely induced by the fluorescent dye (rhodamine B) dissolved in the

suspending fluid, for imaging purpose. Rhodamine B is acidic, pKa1=1.42 (Ramette

& Sandell, 1956), which disfavors the stability of silica colloidal suspension (Russel

et al., 1989). This effect may not be ignored at the experimental Rhodamine B

concentration, 0.1 mM, while pH is only 8 and salt concentration 0.025 mM (Gao

et al., 2009).

In order to obtain more accurate results, it is necessary to keep the suspension

from impurities such as rhodamine B, but in the meantime retain the fluorescence of

the particles. The two-stage Stöber synthesis is one solution: synthesized particles

all have a fluorescent core which is enclosed by a pure silica shell to prevent any

chemical influences. Fig. 3.2 demonstrates an image of the final product under

scanning electron microscope (SEM). The diameter is 880±80 nm, less than 10%

variation.

Particle suspensions are prepared in the way described in Section 2.1. The overall

volume fraction is controlled to be approximately 0.4. After long-time sonification,

suspension is injected into the connector at channel inlet. The channel is then put

onto the platform of confocal microscope, the objective sitting below the cover slip

(channel bottom) a few millimeters downstream from the inlet. Compressed nitrogen

is then connected to the inlet to drive suspension flow. Instead of a three-way valve

used by Gao et al. (2010), the pressure of nitrogen is finely tuned by an electropneu-

matic converter (Omega Engineering) which receives analog signals from a computer.
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Figure 3.2: SEM image of synthesized silica particles, taken by Alex Weldon.
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One can raise or drop the inlet pressure rapidly by scrolling a button on the com-

puter screen, therefore easily manipulating the flow rate. This improvement reduces

disturbances and enables flow cessation within a few seconds with minimal backflow.

Suspension was flowed for a few minutes, a time scale longer than the average

residence time of particles in the channel, and then quickly stopped and scanned by

the confocal microscope. This cycle is repeated for at least ten times for each sample.

The scans were processed in IDL and g(r) calculated for specific Pe and φ.
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3.3 Results and discussion

3.3.1 Pair correlation

A suspension with κ−1 = 8nm and pH = 8.0 was examined. Given the small Debye

length relative to particle size, this highly screened system can be regarded as suspen-

sion of hard spheres with negligible interparticle forces and has been studied through

simulations (Foss & Brady, 2000; Gao et al., 2010) and experiment (Gao et al., 2010).

The experiment in this study is a refinement of the one by Gao et al.

First the velocity and shear rate profiles across the lower half of the channel are

presented in Fig. 3.3. The distance is zero at the first layer of particles next to

channel bottom and normalized by particle diameter. Velocity profile is obtained by

tracking movement of 10 particles at each distance within given time interval. Due

to fluctuations and system errors, the flow curve is not perfectly smooth. But the

data are sufficient for us to obtain local shear rate and Péclet number with good

accuracy. Although it may appears familiar in shape, a parabolic curve is not used

to fit the velocity data, for it is indicated by previous research (Lyon & Leal, 1998)

that velocity profile of concentrated suspension in a channel flow can deviate from

the common parabolic shape.

For each specific Péclet number, we calculate the local g(r), which is plotted on

three orthogonal planes formed by three axes along directions of flow (x), velocity

gradient (y) and vorticity (z). We ignore the near-wall particles (distance < 4) in

order to exclude hydrodynamic effects caused by the channel bottom. In Fig. 3.4,

the left column arrays g(r) plots obtained experimentally on x-y, x-z and z-y planes

at Pe=1.1×103 and φ=0.30; and the right column plots obtained computationally by
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Figure 3.3: Measured velocity and estimation of shear rate from bottom layer toward
the center of a suspension of hard spheres.
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Accelerated Stokesian Dynamics (Gao et al., 2010) at Pe=1700 φ=0.32. It should

be noted that the boundary is smooth and particles experience slip near the bound-

ary. The spatial coordinates are normalized by particle diameter and color indicates

magnitude of g(r). However, for better contrast, an upper cut-off value at g(r)=2 is

imposed, which is denoted by the maximum redness (see color bar).

A quick comparison with Fig. 3.1 reveals that this new result holds more fidelity

to theory and computation, e.g. Foss & Brady (2000). On x-y plane, not only the

signature anisotropy is confirmed, but such details as vague tails near the opening of

the innermost ring are also matched between the two different approaches; however

the experiment suggests stronger correlation along flow direction with two red dots

around 0◦ and 180◦ directions, while simulation shows a uniform high-probability

incomplete ring. On x-z plane both results agree on a stronger correlation along z-

than x-direction in the first ring, except a short string structure between the first and

second rings along x-direction is seen in experiment, but absent from the simulation.

A uniform first ring on z-y plane is achieved by both methods, although the experi-

ment reveals some layering along y-direction. Multiple reasons may give rise to these

disagreements, including mismatch of Pe and φ in the two separate studies, near-

wall effect in experiment or simplifications made in the simulation regarding particle

interactions.

Microstructure at different Pe’s from one single experiment, are shown in Fig. 3.5.

Since φ changes with shear rate as a result of shear-induced migration, effects of Pe

and φ are always coupled in our system. From left to right, with Pe decreasing and φ

increasing, structural ordering and symmetry is enhanced as a consequence of reduced

hydrodynamic force as well as increase in volume fraction. The evidence is, on all
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Figure 3.4: Comparison of experimental and computational g(r) at high Pe and φ.
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three planes, the inner and outer rings of high-probability are being enhanced from

left to right; e.g. in the last two columns the third outer ring becomes identifiable,

implying longer range of correlation. In meantime, although all x-y plots demonstrate

the fingerprint anisotropy, it is gradually reduced. This is particularly clear on the

x-y plane: the accumulation of probability near the compression axes in Fig. 3.5a)

and b) starts to relax toward extensional axes in c) and d), and eventually joins to

form a fairly uniform inner ring in e). Along the columns these plots also confirm

that with decreasing Pe, the three projections are converging toward an equilibrated,

isotropic structure.
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3.3.2 Calculation of viscometric functions

Rheological measurements of suspensions have been conducted extensively in the

last few decades. Krieger (1972) measured the shear viscosity of various systems and

obtained coefficients for the Dougherty-Krieger relation (Krieger & Dougherty, 1959).

The shear rates in his study are mostly in the shear-thinning regime. Chan & Powell

(1984) found if φ <0.3 and the interstitial fluid is Newtonian, the suspension behaves

mostly like a Newtonian fluid for shear rates up to 100 s−1. de Kruif et al. (1985) and

van der Werff & de Kruif (1989) measured shear rate and concentration dependence

of viscosities at low- and high-shear limits also in the shear-thinning regime and

discussed the effect of concentration on shear-thinning transition. D’Haene et al.

(1993) performed systematic rheo-optic study of shear-thickening and suggested the

hydrocluster theory is the proper mechanism.

are challenging and only relatively recently (Zarraga et al., 2000) was able to

obtain results consistent enough for comparison with computations (Phung et al.,

1996).. The first and second normal stress differences, N1 and N2 (defined in Eq.1.17)

are both negative and |N2| > |N1|. Constitutive relations involving normal stress have

been applied to model shear-induced migration (Morris & Boulay, 1999; Frank et al.,

2003; Miller & Morris, 2006) and viscous resuspension (Ramachandran & Leighton,

2007).

In this study we calculate shear viscosity and normal stress differences based on the

g(r) data shown in the last section. The assumption here is the leading contribution

to rheology is from near-contact pair-wise interactions, i.e. lubrication and short-

range Brownian forces. We follow the method elaborated in Foss & Brady (2000),
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according to which the stress tensors can be approximated as

SH ≈ SH
b.l. ≈ −n2

∫

b.l.

rFshearg(r)dr (3.2)

SB ≈ SB
b.l. ≈ −n2kTa

∫

r=2a

r̂r̂g(r)dS (3.3)

Here SH and SB are hydrodynamic and Brownian contributions to the total stress

tensor; b.l. stands for a boundary layer with thickness of O(Pe−1) at particle-particle

contact (Brady & Morris, 1997); a is particle radius, n the number density, r̂ the unit

vector in r direction; and

Fshear ≈ −3πη
′

∞(φ)a2γ̇r̂(r̂ · E · r̂) (3.4)

where η
′

∞(φ) is the high-frequency dynamic viscosity.

Fig. 3.6 shows the calculated relative viscosity (upper) and its Brownian compo-

nent (lower) at different locations across the channel. The Brownian part is generally

insignificant and decays as hydrodynamics is enhanced, which is qualitatively con-

sistent with Foss & Brady (2000). Apparently it seems the system demonstrated a

shear-thinning behavior, however, as mentioned earlier the volume fraction changes

across the channel with opposite trend to Pe. The data need to be rescaled to take

into account implicit factors.
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We followed the scaling method of Foss & Brady (2000), where Pe is normalized

by η
′

∞(φ)/η and the newly scaled relative viscosity

ηr,n = (
ηr

η′

∞(φ)
− 1)/φ2g0(2; φ) (3.5)

in which g0(2; φ) is the equilibrium pair distribution function for hard spheres, given

by Carnahan-Starling equation of state for φ <0.50 (Carnahan & Starling, 1969),

g0(2; φ) =
1 − 1

2
φ

(1 − φ)3
(3.6)

The rescaled data are plotted in Figs. 3.7 and 3.8. From the plots, it can be seen

that although both show a thinning-thickening trend, the scaling law of Foss & Brady

(2000) does not collapse our data onto their master curve. Generally the Brownian

contribution to the viscosity predicted by us is lower than Foss & Brady (2000) by

two orders of magnitude, while our total or hydrodynamic viscosity is higher. Foss

& Brady (2000) have compared relative viscosity from their simulation with exper-

imental results by van der Werff & de Kruif (1989) and D’Haene et al. (1993), and

underestimate of thickening by the simulation also occurs for high-shear-rate and

high-concentration conditions. The reason is generally attributed to mismatch be-

tween reality and computation. Factors like interparticle forces in the real system

and uncertainty in determining volume fraction may lead to this quantitative devia-

tion (Foss & Brady, 2000). Normal stress differences across the channel are plotted
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Figure 3.7: Relative viscosity vs Pe, rescaled. Black symbols: data from Foss &
Brady (2000); red symbols: current work.
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Figure 3.8: Brownian relative viscosity vs Pe, rescaled. Black symbols: data from
Foss & Brady (2000); red symbols: current work.
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in Fig. 3.9. The negative sign of N1 and N2 confirms previous results (Phung et al.,

1996; Zarraga et al., 2000), which indicate the compressive nature of sheared suspen-

sions. For the same reason mentioned above, the normal stress differences are again

scaled by the factor η
′

∞φ2g0(2; φ) (Foss & Brady, 2000).
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Figure 3.9: Variation of normal stress differences with Pe across the channel.
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Figure 3.10: First normal stress difference N1 vs Pe, rescaled. Black symbols: data
from Foss & Brady (2000); red symbols: current work.
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Figure 3.11: Second normal stress difference N2 vs Pe, rescaled. Black symbols: data
from Foss & Brady (2000); red symbols: current work.
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It is obvious that even after rescaling, Foss & Brady (2000)’s data still show a fair

amount of scattering. Besides the qualitative agreement between our and their data,

it appears that our data demonstrate a smooth ascending trend of normalized |N1|

and descending of normalized |N2| as the scaled Pe increases from 103 to 104 where

there is a crossover of these two quantities. This feature is not clear in Foss and

Brady’s results. Zarraga et al. (2000) reported a maximum of the positive N1−N2 as

shear rate is increased. However, their experiment did not reach higher shear rates

to reveal the possibility of a crossover.

It is also interesting to see the normal stress in vorticity direction Σ33 is catching

up with Σ22 at high shear rates. People primarily recognize Σ22 as the predominant

feature of sheared suspension, i.e. the “dilatancy” effect as well as shear-induced

particle diffusion. Evolution of Σ33 and the corresponding diffusion coefficient may

worthy of further investigation.
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3.3.3 Hydrocluster analysis

The now widely accepted mechanism for shear-thickening is hydrocluster formation.

When particles pass around each other in a shear flow, hydrodynamic force brings

them close together to form dynamic clusters. Due to the lubrication and interac-

tions between near-contact particles, clusters can greatly increase the system resis-

tance against shear, which causes thickening. Brady & Bossis (1985) first observed

this clustering in their numerical simulations of a monolayer of spheres. Bossis &

Brady (1989) discussed the role of Brownian motion in destroying large clusters and

proposed hydrocluster formation as the mechanism for shear-thickening at high shear

rates. Results from Rheo-SANS measurements of suspensions of spherical (Bender

& Wagner, 1996; Maranzano & Wagner, 2001, 2002) and prolate ellipsoidal particles

(Egres et al., 2006) agreed well with the hydrocluster model. Kalman & Wagner

(2009) performed Rheo-USANS experiment on hard-sphere suspensions to probe the

structure and confirmed hydroclusters are transient and precede the measured shear-

thickening. Gopalakrishnan & Zukoski (2004) extended the hydrocluster model to

suspension of attractive particles. Nevertheless, direct experimental investigation of

hydroclusters did not appear until Cheng et al. (2011). Again, their experimental

design fails to eliminate wall effects and particle tracking error due to shear-induced

diffusion.

Clustering is readily quantified from our particle tracking data. With all particle

locations available, any two particles of which the center-to-center distance is less

than or equal to about one particle diameter are considered part of one hydrocluster.

It is easy to identify all hydroclusters and their size in the suspension. Reasonable

variation of the criterion for center-to-center distance affects the resulting number
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and size of clusters, but the qualitative behavior is preserved, also observed by Bossis

& Brady (1989).

Here we define the number of particles in each cluster as its length, L and total

number of clusters as N . Then the average cluster length for a certain Pe and φ is

obtained as l = L
N

. Taking into account the concentration variation, it is reasonable

to rescale l: ln = l
φl . We plot the normalized cluster size ln vs Pe in Fig. 3.12. And

it is clearly seen that the dynamics differentiate in low and high Pe cases. At low

Pe, the average size of the hydroclusters decays slowly with shear rate. In the high

Pe region(Pe >800), the hydrocluster size does not appear to asymptote to some

constant value, but tends to grow indefinitely as is seen in Foss & Brady (2000), for

all shear rates investigated here. But the growth rate slows down significantly as

Pe keeps increasing. We assumed ln ∼ ln(Pe) and fit the data with this relation in

Fig. 3.13). In this rate, it is not clear whether hydroclusters will not develop to the

container size as Pe approaches infinity.
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Figure 3.12: Normalized average cluster length as a function of Pe.
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Figure 3.13: A linear growth of ln with ln(Pe) is fitted from experiments.
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3.3.4 Shear-induced crystallization

It has been established that high shear rate can bring order into the system (Wu

et al., 2009). On the other hand, based on his experimental finding, Hoffman (1972)

hypothesized that it is the breakdown of layered structures where particles form 2D

hexagonal closed packing along the x-z plane, or an order-disorder transition that gives

rise to shear-thickening. Although it has been shown that order-disorder transition

is neither the sufficient nor the necessary condition for shear-thickening to happen

(Maranzano & Wagner, 2002; Kalman & Wagner, 2009), this theory has received

support from some evidences (Gondret & Petit, 1996; Hoffman, 1998). In order to

judge over the controversy, it is of necessity to examine the validity of this hypothesis

as well. The key parameter is the 2D local bond orientational order parameter Ψ6

defined as (Wu et al., 2009):

Ψ6(rkj) =
1

nC

nC
∑

j=1

ei6θ(rkj) (3.7)

where nC is the number of nearest neighbors around particle k and θ is the angle

between the vector extending from center of particle k to center of particle j and an

arbitrary axis. The closer Ψ6 is to unity, the higher degree of crystallinity the system

shows.

We calculated the order parameter Ψ6 for different Pe’s. Fig. 3.14 shows magni-

tude of Ψ6 on x-z plane as well as the corresponding volume fraction φ. It is clearly

seen that for Pe <1000, crystallinity follows well with the concentration curve, sug-

gesting ordering mainly caused by solid exclusion. For Pe >1000, the mechanism is

clearly shear-induced and strongly counteracts the descending trend of concentration.
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For instance, at Pe=1500, concentration drops significantly, while |Ψ6| stays almost

as high as in Pe=800.

It is therefore believed that ordered structures persist and are even enhanced by

shear. In these experiments we have observed shear-thickening without order-disorder

transition, a conclusion in agreement with other researchers such as Wagner (Bender

& Wagner, 1995, 1996).
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3.3.5 Effect of electrostatics

The most common and effective way of tuning the electrostatic interactions in a

colloidal system is to control its ionic strength. By reducing the [NaCl] in suspen-

sion, particles can have larger Debye length and the electrostatic interactions will be

stronger. In this study particles with Debye lengths κ−1 = 30 and 80nm are examined

along with the previous hard-sphere system of which κ−1 = 8nm.

As is shown in Fig. 3.15a) and b), when the Debye length κ−1 increases from 8 to

30nm, the first and second rings of nearest-neighbor on x-y plane is attenuated and

dissipated; the same trend is observed on the other two planes as well, i.e. a decrease

in the intensity of nearest-neighbor rings. This may suggest enhanced fluctuation

induced by electrostatic interactions between particles, equivalent to Brownian motion

(Stickel et al., 2006). However when κ−1 keeps increasing up to 80 nm, the order is

restored in that the ring intensity is raised. Particularly in Fig. 3.15c), the anisotropy

along compressional axes is to some extend resisted in favor of a more symmetric

structure. One may argue that it is because electrical repulsion has altered the original

structure after flow is stopped, but first, κ−1 is still one order of magnitude less than

particle diameter, which is the length scale for the g(r) calculation; second, pair

distribution is symmetric, that is when particles are pushing around each other, the

net force on one particle is statistically zero. Therefore this more isotropic structure is

very likely due to the long range ordering induced by strong electrostatic force. Plots

on all three planes, when viewed from the left to right columns, indicate electrostatic

force can reduce order by reinforcing fluctuation and promote order when it is strong

enough to induce long-range correlations.
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We also studied the microstructure variation across channel for the system with

the strongest electrostatics. Fig. 3.16 shows g(r) on all three planes (along the rows)

at different Pe and φ’s (Pe decreasing from left to right columns). Order is clearly

enhanced on x-y and z-y planes as Pe goes down, evidenced by the more pronounced

outer rings and raising intensity of all rings. Particularly on x-y plane the anisotropic

first ring gradually closes up to form a more or less uniform circle, even when Pe is

still on the order of hundreds. The high κ−1 clearly contributes to this ordering.

However, on the x-z plane, compared with Fig. 3.5f)-j), it seems in this system

the shear-induced crystallization occurs at much lower Pe and decreasing Pe will

diminish the ordered structures. It is hypothesized that long range correlation in

this system makes particles more coordinative with each other under the influence of

shear rate.

Large Debye length raises particle interactions, but on the other hand it also

increases particle effective volume fraction. The trend observed in Figs. 3.15 and 3.16

generally conforms with one’s expectation. However, it is also found the resulting

microstructures based on individual data sets are not congruent with one another

(remember all plots are averaged over at least ten sets). A more systematic study

is needed to sort out possible hidden factors that affect structure and /or account

for this discrepancy perhaps based on how interparticle forces may alter stability of

solutions to the Smoluchowski equation.
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Figure 3.15: g(r) as a function of κ−1. Pe of all samples are greater than 1000.
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3.4 Conclusions

We have improved an experimental method previously developed in our laboratory for

direct measurement of microstructure in suspension flows. Our experiments typically

operate under high Pe conditions, in which the anisotropy on x-y plane predicted by

theory is clearly identified. Results obtained for a spectrum of Pe’s in a near-hard-

sphere system demonstrate interplay between hydrodynamics and concentration, the

former in favor of anisotropy and the latter ordering and symmetry.

Calculated viscosity and normal stress differences agree qualitatively with the

SD simulation by Foss & Brady (2000), e.g. shear-thickening at high Pe, and the

trend for |N1| and |N2|. However, quantitative mismatch may indicate a gap between

computation and reality. Analyses on the cluster and crystalline structures under

shear suggest the hydrocluster theory is proper for explaining shear-thickening. It is

found the growth of normalized hydrocluster size scales with ln(Pe) and crystallinity

is particularly enhanced by shear for Pe >1000.

The effect of electrostatics on microstructure is also investigated. It is found that

electrostatic force has a dubious role in ordering the particles: it enhances fluctuation,

but eventually brings in long range ordering. Shear-induced crystallization is also

affected by this force in that it is noticeable under lower Pe than hard-sphere system.
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Chapter 4

Shear-induced migration and

segregation in one-dimensional

shear flow

4.1 Introduction

The preceding chapters elaborate the rheological behaviors of suspension flow and

their roots. Based on such understanding, we will be looking at one fingerprint

phenomenon, the shear-induced particle diffusion and migration, and its impact on

practical processes. Shear-induced diffusion is caused by the hydrodynamic interac-

tions when the suspension is in motion and differs from the Brownian diffusion in the

sense that the particles are pushed to cross streamlines by constituents independent

of temperature. These interactions depend on local deformation and scale nonlin-

early in volume fraction. In a simple shear flow with uniform concentration, this

mechanism leads particles to undergo a random walk with zero net flux (Eckstein
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et al., 1977; Leighton & Acrivos, 1987a), which is termed shear-induced self-diffusion.

However, when the shear or concentration distributions have gradients, this process

results in non-zero mean and incur a flux in the flow, coined shear-induced migra-

tion (Gadala-Maria & Acrivos, 1980; Leighton & Acrivos, 1987b). As is evidenced

in Fig. 4.1, shear-induced migration greatly influences the configuration of the sys-

tem through the coupling of rheology and volume fraction. Shear-induced migration

can be regarded either as a relaxation for the normal stress or a diffusion process.

Gadala-Maria & Acrivos (1980) reported a long-time viscosity decay in a Couette vis-

cometer, which is one of the earliest instances of shear-induced migration. Leighton

& Acrivos (1987b) confirmed this finding through further experiments and attributed

the decrease in viscosity to migration of particles from the shearing gap into the sta-

tionary outermost reservoir. Since it has been shown that the interaction between two

spheres in Stokes flow is reversible (Batchelor & Green, 1972b), it is hypothesized that

this migration arises from the irreversible interactions between particles as a result of

surface roughness, multibody hydrodynamic interactions, plastic and elastic particle

deformation, and even cavitation (Pine et al., 2005). In all of these accounts, interac-

tions lead to anisotropy in the suspension microstructure. Early models accounting

for migration describe shear-induced migration in an analogy to the diffusion pro-

cess with the coefficient obtained through a scaling argument (Leighton & Acrivos,

1987b). Phillips et al. (1992) divided the migration into one flux caused by gradients

in collision frequency of particles and another by viscosity gradients.
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Figure 4.1: Shear-induced migration in a plane Poiseuille flow. (a) The velocity profile
is blunted by higher concentrations in the low shear rate region near the center; (b)
the corresponding concentration profile (Lyon & Leal, 1998).
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Although the diffusive flux models manage to fit experimental data and are there-

fore widely adopted, they fail to account for the absence of migration, e.g. in parallel-

plate torsional flow (Chow et al., 1994). Krishnan et al. (1996) proposed a “curvature-

induced migration” mechanism which adds an additional flux term to the conventional

diffusive flux model to address the difficulty in curved flows. Merhi et al. (2005) de-

termined the ratios between the coefficients for each flux by fitting simulation results

to data from their experiments and those by Phillips et al. (1992).

Suspension stress models establish constitutive relations of shear-induced particle-

phase stress and resort to stress balance for the particle migration. Nott & Brady

(1994) built such a relation based on the suspension temperature, a quantity defined

to measure the particle fluctuational velocity. However in their model the normal

stress is isotropic. Morris & Boulay (1999) proposed a “normal stress viscosity”, ηn,

which connects particle pressure to shear rate; the particle phase stress tensor is

Σp = −ηnγ̇Q̂ + ηsE (4.1)

where ηs is the shear viscosity of the suspension, E the rate of strain tensor, γ̇ =

(E : E)
1

2 is the shear rate and Q̂ = diag(1, λ2, λ3) is a constant tensor representing

the anisotropy in flow. The migration flux is shown to be a consequence of normal

stress balance. But as most diffusive flux models, this one will suffer a singularity at

zero shear rate; i.e. wherever local shear rate is zero, the normal stress will be zero

and will not balance until maximum packing of particle is reached. To overcome this

difficulty, the authors came up with a correction term of “non-local shear rate”, γ̇NL,

which makes the shear rate globally nonzero.
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Fang et al. (2002) proposed an anisotropic suspension model based on the “flow-

aligned tensor”, defined in a very similar way to the Q̂ in Morris and Boulay’s. Instead

of non-local shear, the suspension temperature (Nott & Brady, 1994) was adopted in

their model to eliminate the singularity at zero shear rate.

Zarraga et al. (2000) found the normal stress components of sheared concentrated

suspensions, Σii, scale with the magnitude of shear stress τ . They determined through

various measurements and previous data the coefficients for each component,

Σ11 = −1.15ατ, Σ22 = −ατ, Σ33 = −0.46ατ (4.2)

where α is a constant and the subscripts “1”, “2” and “3” denote the direction of

flow, velocity gradient and vorticity, respectively.

In connection with these efforts to define constitutive relationships that properly

describe shear migration, many particle-level simulations such as Stokesian Dynam-

ics simulations (Brady & Bossis, 1988) have been used to empirically scale these

phenomena and probe the underlying structure that generates the normal stresses

in these flows. Extensive results from Stokesian Dynamics calculation demonstrate

anisotropy of microstructure and irreversibility as a consequence of either Brownian

motion (Phung et al., 1996; Brady & Morris, 1997; Morris & Katyal, 2002) or sur-

face roughness (Brady & Morris, 1997; Sierou & Brady, 2002; Drazer et al., 2004).

Experimental evidences also support the anisotropic structure in sheared suspensions

(Rampall et al., 1997; Gao et al., 2010). Generally, the structure of suspension un-

der deformation indicates a greater number of nearest-neighbor interactions along

the compression direction of the flow than the extensional axis, which consequently

causes the irreversible migration.
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Besides its mechanism and flow-related properties, shear-induced migration can be

viewed as a segregation or demixing process and its ability to generate inhomogeneity

may have huge impacts on real life activities. This chapter aims to address shear-

induced demixing in 1D pressure-driven flow where no active mixing is applied, while

the next chapter will study the interplay between demixing and chaotic mixing.
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4.2 Results

In modeling shear migration, it is often preferable to employ a normal stress balance

model, however current models have a significant limitation due to a singularity that

occurs at points in flow that have zero shear rate. This limits prediction in the simplest

of flows. For instance, in pressure-driven flows maximum concentration that results

in infinite viscosity is predicted at the center regardless of the suspension bulk volume

fraction. We have probed the validity of suspension models by scaling a previously

proposed correction factor, a ‘nonlocal shear rate’ that aims to average suspension

properties over many particle diameters (Morris & Boulay, 1999), to experimental

measurements (Gao et al., 2009). In this study, we also aim to predict at what

concentration is shear migration strongest.

In our experiments, the channel has a width of 100µm and height of 40µm. A

coordinate is set up such that the origin is located at the center of the entrance

cross section; x axis points to the flow direction and y and z axes along width and

height, respectively(see Fig. 4.2). We only analyze the downstream data from the

center of the straight channels (around y=0) investigating the shear in the z-direction,

which is much stronger than the shear in the y-direction. The migration at the

center of the channel is strongly dependent on the shear in z-direction, while the

concentration gradient in y-direction near the center is low. Thus, only data within

−20µm≤ y ≤ 20µm are averaged to give a 1D concentration profile. In a fully

developed pressure-driven 1D suspension flow at steady state, the normal stress in
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the particulate phase must balance:

∇ · ΣNS
P =

∂ΣNS
P,zz

∂z
= 0 (4.3)

where ΣNS
P is the normal stress tensor in particulate phase, and z is the direction of

velocity gradient.

It should also be noted that when considering the data near y = 0, the appar-

ent bulk volume fraction, φa
bulk in this region is significantly higher due to particle

migration toward the center. A set of experiments were carried out in the straight

channels: φbulk = 0.21, 0.22, 0.24, 0.275, 0.3, 0.33 and 0.35, with their corresponding

φa
bulk = 0.25, 0.27, 0.29, 0.34, 0.37, 0.39 and 0.41.
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Figure 4.2: Concentration distribution on channel cross section, φbulk=0.30 (Gao
et al., 2009).
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Particle phase normal stress can be expressed as Morris & Boulay (1999)

ΣNS
P = −ηn(γ̇ + γ̇NL)Q (4.4)

where

ηn =
0.75η0(φ/φm)2

(1 − φ/φm)2
(4.5)

is the estimation of the normal stress viscosity (Morris & Boulay, 1999), γ̇ is the local

shear rate and Q is a constant tensor describing the anisotropy of the flow. γ̇NL is the

nonlocal shear rate. Without γ̇NL, this model predicts a physically unrealistic sharp

peak in concentration at the center as a result of zero local shear rate, γ̇ = 0. The

incorporation of γ̇NL accounts for effects of finite particle size, Brownian motion and

higher order interactions that occur for moderate to high φ’s. In the previous work,

the authors assume that γ̇NL is primarily a function of particle size (Miller & Morris,

2006). The analysis presented here assumes that γ̇NL is a function of φc, the local

volume fraction at y = 0, which is also the maximum volume fraction measured in

each profile. All concentrations are averaged over one particle diameter to represent

the effective averaging resulting from the experimental measurement. To simplify the

analysis, the non-local shear rate is assumed to be constant across the channel and

used as a fitting parameter for the experimental data.
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The resulting predicted profiles of volume fraction are plotted against the exper-

imental data sampled near the channel center in Fig. 4.3. Data near the wall are

excluded in the analysis because the migration near the wall is enhanced by particle-

wall interactions which are lacking from this normal stress balance. The model fits

the data well, based on an optimum value of γ̇NL. The empirical relation between

γ̇NL and φc is shown in Fig. 4.4. The magnitude of γ̇NL is typically one order of

magnitude lower than the average local shear rate. A power law fit results in:

γ̇NL = 0.0176(φc)
−2.91 (4.6)

The fitting in Eq. 4.6 allows extension of the model to predict the volume fraction

profile at different φa
bulk and thus the corresponding intensity of segregations, which

is a tool to quantify mixing and/or segregation. Intensity of segregation is defined as

I ≡
σ2

φave(φmax − φave)
(4.7)

modified based on the definition given by Danckwerts (1952), where σ is the standard

deviation of φ. I = 0 indicates perfect mixing and I = 1 occurs for complete seg-

regation. Figure 4.5 demonstrates the predicted intensity of segregation for different

average volume fractions. It is clearly seen that the model captures the general trend

of intensity of segregation and for a plane Poiseuille flow, shear-induced migration

is strongest (poorest mixing) near φa
bulk = 0.38. The experimental data also show a

decrease in the intensity of segregation roughly for φa
bulk > 0.34 (subject to noise),

which supports the prediction from the model. This is the first prediction on mixing

quality of particle suspension under a certain flow condition.
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4.3 Conclusions

A suspension balance model (Morris & Boulay, 1999) was used to predict concentra-

tion profile determined by shear-induced migration in a 1D pressure-driven flow. A

power-law relation between the non-local shear rate and volume fraction at center was

obtained by fitting experimental data of Gao et al. (2009) to the model. This relation

enables calculation of concentration distribution across the channel at arbitrary bulk

volume fractions, which leads to the first prediction of mixing performance for all

bulk concentration in the 1D Poiseuille flow. A maximum demixing is expected when

φa
bulk = 0.38.
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Chapter 5

Chaotic mixing of suspensions in

two-dimensional flow

5.1 Introduction

The previous chapter investigates demixing caused by shear-induced migration in

a simple flow. Studies of shear-induced migration in various viscometric flows also

exist, e.g. Couette flow (Leighton & Acrivos, 1987b; Phillips et al., 1992), flow between

parallel plates (Chow et al., 1994), pressure-driven channel flows (Phillips et al., 1992;

Lyon & Leal, 1998; Gao et al., 2009), and oscillatory shear flows (Gadala-Maria &

Acrivos, 1980; Bricker & Butler, 2006). The general heuristic is that shear-induced

migration in steady flows will drive particles to migrate from high-shear regions to

low-shear regions while in oscillatory flows it is apparent the steady concentration

profiles are more complicated. Interplay between this migration causing gradients in

volume fraction φ and the concentration-dependent suspension rheology distorts the

flow from that of Newtonian fluids. As seen in Fig. 4.1, shear-induced migration
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yields concentration gradients and alters velocity variation simultaneously, and thus

can have profound interplay with the underlying concentration-dependent rheology.

In a select few studies, shear migration in more complicated geometries that have

been explored include steady flows in rectangular lid-driven cavities (Ritz et al., 2000),

symmetric and asymmetric channel bifurcations (Altobelli et al., 1997; Moraczewski

et al., 2005; Xi & Shapley, 2008; Miller et al., 2009), and open cavity flows (Miller

et al., 2009). Recent investigations have expanded to include complex flows exhibiting

instability due to shear migration (Gao & Gilchrist, 2008) and chaotic advection (Gao

& Gilchrist, 2008; Gao et al., 2009). However, the role underlying flow topology plays

in mediating or enhancing shear migration and shear migration’s influence on the flow

topology is unclear. Developing this understanding is critical since the vast majority

of industrial and natural suspension flows exhibit transient and chaotic properties.

In reality more complex time-dependency may be encountered, including that

which can induce chaotic advection. Chaos is widely used to enhance mixing, es-

pecially under low-Reynolds-number conditions, where instabilities leading to turbu-

lence are suppressed. However often the Péclet number (defined as Pe ≡ 6πη0γ̇a3

kT
) is

large, meaning that Brownian diffusion is limited and fluid elements move primarily

along well-defined streamlines with little randomness. This is pronounced in mi-

crofluidics applications and apparent in industrial processes; as a result mixing rates

are slow and progress linearly with time. To achieve better mixing, one may resort

to chaotic advection by applying time- or space-periodic driving forces to the fluid

(Ottino, 1990). In this work, we refer to ’chaos’ as continuum transport property as

opposed to the chaotic motion of individual constituents leading to diffusion and mi-

gration. It can exist when symmetry are broken in a 3D flow or when 2D or 3D flows
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undergo time modulation. By making the flow topologically complex, fluid elements

that are successively stretched and folded reach molecular length scales exponentially

fast, eventually allowing diffusion to dominate. Examples include journal-bearing

flow (Muzzio et al., 1992; Niederkorn & Ottino, 1994), lid-driven rectangular-cavity

flow (Ottino, 1989b) and egg-beater flow (Muzzio et al., 1992).

The relation between chaos and periodicity can be appreciated mathematically

(Ottino, 1990). Consider a time-periodic or steady flow that moves a particle initially

at position X to x at time t

x = Φt(X) (5.1)

In Eq.5.1 the flow is expressed as an invertible mapping. A periodic point P with

period S satisfies

P = ΦnS(P) (5.2)

for n = 1, 2, 3... but not for any t < S.

For flows in a closed system, the existence of periodic points is guaranteed by

Brouwer’s fixed point theorem for every S. In a fluid flow there are three possible sorts

of periodic points: elliptic, hyperbolic and parabolic (Fig. 5.1). Elliptic points are

surrounded by regular regions, where all particles undergo a net rotation during the

cycles. Regular regions form barriers for mixing and inhibit chaotic motions such as

stretching and folding. On the other hand, a hyperbolic or saddle point will have some

particles approaching while others moving away from it. The former set of particles is

called a stable manifold and the latter an unstable manifold. The combination of these

two manifolds of one or more hyperbolic points will incur stretchings and foldings of

fluid elements, which leads to chaos. Therefore hyperbolic points are essential for
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chaotic mixing. While the role of parabolic points on mixing is less important, the

coexistence of elliptic and hyperbolic points in fluid systems is ubiquitous and has

profound influence on mixing. For instance, in a time-periodic lid-driven cavity flow

shown in Fig. 5.2, it is easy to spot regions of good and poor mixing. For the former,

many striations develop by stretchings and foldings from a small blob; while regions

of poor mixing are characterized by the dark central area where another blob sits,

slowly deformed– it marks the regular region around an elliptic point. A useful tool

to visualize the periodic points and the manifolds around them is a stroboscopic or

Poincaré map, which will be introduced later.

93



5.1. INTRODUCTION

CHAPTER 5. CHAOTIC MIXING OF SUSPENSIONS IN TWO-DIMENSIONAL

FLOW

Figure 5.1: Periodic points in fluid flow (Ottino, 1989b).
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Chaotic advection in fluid flow is complex, and many physical systems have in-

creasing degrees of complexity including scalar (heat or mass) transport and chemical

reactions. Interplay between chaotic mixing and segregation driven by body forces,

(e.g. (Maxey & Riley, 1983; Abatan et al., 2006)) is more complex, and the interplay

between chaos and rheology-driven migration is perhaps the most complex. Per-

mutations of combinations of these effects become increasingly complex (e.g. heat

transport and reaction in chaotic flows). Studies have considered the effects of shear

thinning (Niederkorn & Ottino, 1994) and elasticity (Niederkorn & Ottino, 1993)

on the flow topology of chaotic advection without migration or phase change. The

general assumption is chaotic advection, without the increase of shear rate or energy

input, would mediate shear migration-driven segregation and enhance dispersion. In

contrast, granular flows are known to segregate readily due to body force-driven

demixing during chaotic advection in 2D (Kharkhar et al., 1999; Hill et al., 1999) and

3D (Gilchrist & Ottino, 2003) flows.
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Figure 5.2: Chaotic mixing in a cavity flow (Ottino, 1990).
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We study the behavior of suspensions with varying degrees of shear migration

in a prototypical chaotic flow known as time-periodic lid-driven cavity flow (Ottino,

1989a,b). This allows for the following two independent modes of probing the in-

terplay between chaotic advection and segregation resulting from shear migration.

First, we can adjust the topology of the flow without increasing the energy input into

the system. This breaks the symmetry of the flow and tunes the time-periodicity to

generate very weakly chaotic to chaotic advection-dominated flows. Second, we can

adjust the suspension properties including relative particle size and average volume

fraction to tune the rate of migration. This study aims to generate a set of heuristics

by which one can better understand the effect of this interplay between rate of mi-

gration and chaotic mixing in the generation of nontrivial segregation patterns. The

following sections are based on the work published in Xu & Gilchrist (2010).
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5.2 Formulation

Widely used models that have been proposed fall into two categories: the diffusive flux

approach (Phillips et al., 1992; Subia et al., 1998) and the suspension stress approach

(Nott & Brady, 1994; Morris & Boulay, 1999). Each of these models have limitations,

including neglecting particle-wall interactions and excluded volume and singularity at

localized zero shear rate (Morris & Boulay, 1999) and high curvature. For simplicity

of implementation, non-colloidal spherical particles dispersed in a Newtonian fluid is

modeled by a diffusive-flux approach (Phillips et al., 1992), where the change of local

volume fraction φ is governed by

Dφ

Dt
= a2Kc∇ · (φ2∇γ̇ + φγ̇∇φ) + a2Kη∇ · (γ̇φ2 1

η

∂η

∂φ
∇φ) (5.3)

where a is particle radius, γ̇ is shear rate. The coefficients Kc and Kc for the two fluxes

are assumed constant and fitted from experimental data in Couette and pressure-

driven tubular flows: Kc = 0.41 and Kη = 0.62. Note that for a characteristic

system size of L, the characteristic rate of migration is proportional to λ = (a/L)2.

The viscosity of the suspension is approximated by the Krieger-Dougherty relation

(Krieger, 1972)

η = η0(1 −
φ

φm

)−1.82 (5.4)

where η0 is the viscosity for the interstitial Newtonian fluid.
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(2n+1)T< t < (2n+2)T

(2    half-period)

2nT< t < (2n+1) T

(1   half-period)st nd

vt

vt

vb

vb

S :  vt -vb=1

S  : vt vb=2

Figure 5.3: Mixing protocols and instantaneous streamlines for the time-periodic lid-
driven cavity. S1 (top) advances the upper lid to the right at velocity vt for time T
the half-period of the cycle and then advances the lower lid to the left at vb = −vt for
T . S2 (bottom) advances the upper lid vt for T and the lower lid vb = vt for T . Each
protocol is repeated until a steady concentration profile at the end of each cycle 2T
is obtained.
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Neumann boundary condition is applied to ensure no flux across any wall and φ is

assumed a uniform value φave at t = 0. In relation to the limitations described above,

this model does not consider curvature-driven flux (Krishnan et al., 1996) resulting

from particle interactions on neighboring curved trajectories. In select simulations

incorporating this flux, the effect of curvature-induced migration is strongest near

the corners strengthening the near-corner concentration gradients presented here.

The continuum description of the behavior of discrete particles for increasing λ is

challenged in these regions, not considered in any of the above models.

It is shown that within Stokes-flow regime, 2D steady flow results only in simple

closed streamlines. Chaotic advection can be achieved by applying periodic driving

forces to the fluid (Ottino, 1990). Examples of closed flow exhibiting chaos include

journal-bearing flow (Muzzio et al., 1992; Niederkorn & Ottino, 1994), lid-driven

rectangular-cavity flow (Ottino, 1989b) and egg-beater flow (Muzzio et al., 1992). In

this work, we consider the 2D time-periodic lid-driven cavity flow in a rectangular

cavity with height L and an aspect ratio 2:1. As is shown in 5.3, the top and bottom

walls are sliding alternately with equal velocity, for some equal length of time. We

normalize time length by dividing by a characteristic time tslide = L/vslide. Therefore,

tslide = 1 is the time for an element on the wall to traverse L. Another parameter

that affects mixing is the moving wall direction. Two different situations are possible:

when the top and bottom walls slide in opposite directions (e.g. top wall from left to

right, then bottom wall from right to left), it is called S1; when the two walls move in

the same direction (e.g. top wall from left to right, then bottom wall), we call it S2.

The length for a full cycle of alternating flow is defined as a “period” T . Assuming a
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vanishingly small Reynolds number, the momentum transport of the flow is given by

−∇p + ∇ · (η(∇v + ∇vt = 0) (5.5)

and

∇ · v = 0 (5.6)

The boundary condition can be described as

vtop = vslide, vbottom = 0, 2nT < t < (2n + 1)T ; (5.7)

vtop = 0, vbottom = ±vslide, (2n + 1)T < t < 2(n + 1)T (5.8)

where on the second line, the plus sign stands for S2 and minus sign for S1 and

n = 0, 1, 2, ....

We simulate the evolution of concentration and velocity in time (Comsol Multi-

physics 3.4). A dimensionless 2D rectangular container with an aspect ratio of 2:1

is used. The flow velocity and pressure are represented by 2D P+
2 P−1 (Crouzeix-

Raviart) elements and concentration by 2D quadratic Lagrange elements. Equations

(1-4) combined with the boundary conditions are solved by the GMRE solver. We

have varied different values for particle radius λ, period T and average volume frac-

tion φ0 to investigate their impact on particle distribution under the two different

scenarios, S1 and S2, previously defined.
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5.3 Results

Steady lid-driven cavity flow is studied at an average bulk volume fraction φave = 0.2.

Although many previous studies of shear migration investigate φave > 0.4, φave >

0.1 is sufficient to drive significant concentration gradients (Gao & Gilchrist, 2008;

Gao et al., 2009). Fig. 5.4a shows the steady-state shear rate profile from the lid-

driven cavity flow at λ = 0.01. Despite the strong viscosity gradients resulting from

migration, the horizontal symmetry suggests only a small deviation (6%)of v in a

Newtonian fluid. As expected, γ̇ is highest near the upper moving boundary and

lowest in the lower corners opposite the moving boundary. A band of lower γ̇ extends

from the upper corners to just below the center of the cavity. There are no transients

associated with the start or stop of the wall at Re = 0.
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Concentration profiles for steady cavity flows with increasing degrees of migration

λ = 1×10−4, 2.5×10−3, and 1×10−2 are shown in Fig. 5.4b-d to demonstrate the

effect of migration in this shear profile in the absence of chaotic advection. The

concentration scale bar in these plots is the same [0,0.4] for direct comparison, and

shows that these results are nearly identical to previous simulations (Ritz et al., 2000).

For relatively weak migration, λ = 1×10−4, the steady concentration profile is uniform

with the exception of two bands of slightly higher and lower concentration extending

from the upper corners to the lower boundary. Concentration gradients are slightly

larger on the right side of the cavity downstream of the flow near the upper wall. The

closed streamlines of this flow inhibit migration toward the center. With increasing

degree of migration the concentration gradients become more pronounced and more

asymmetric with respect to a reflection across the vertical midplane. At λ = 2.5×10−3

particles migrate further into the center and more strongly into the lower corners. The

local minimum in shear rate, which forms a curved valley extending from center to

the two upper corners (Fig. 5.4a)), results in a local maximum concentration region

as well. Instead of sitting exactly in the low shear rate basin, however, this high-

concentration band is deformed and transported by convection forming discernible

asymmetry. At λ = 1×10−2 the island in the center exists as well, but it has more

pronounced asymmetry with particles concentrated on the left side and a lobe of low

concentration near the right wall. Conditions approach φ = 0 and φ = 0.4 in localized

low and high concentration regions of the flow. The bottom corners have two spires

having the highest concentration that point toward the upper corners. The same

high concentration regions are also found in the previous study (Ritz et al., 2000).

Generally, the particles migrate from regions of high shear rate to regions of low shear
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Figure 5.4: a): Shear rate profile in a steady lid-driven cavity flow with φave = 0.2
and λ = 1×10−2; b), c) and d): Steady concentration profiles for λ = 1×10−4 (b),
2.5×10−3 (c) and 1×10−2 (d). 104
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rate; this migration breaks the symmetry that would exist without migration in the

underlying flow and this material convection forms the central high concentration

island. This segregation resulting from shear migration has significant ramifications

regarding heat or mass transport from the walls to the center.
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We now consider the effect of migration in chaotic flows. Figs. 5.5 and 5.6 show

the simulations results of 16 different flows for S1 and S2, respectively. T increases

from top to bottom, effectively increases the degree of chaotic mixing. Increasing T

also means that the system spends more time as a steady flow during each half-cycle

of the period. From left to right the degree of migration increases. The first column

is the Poincaré or stroboscopic map of the Newtonian flow with increasing T . This

is produced by advecting a number of initial positions and selectively plotting their

locations at the end of each cycle. This results in a cross section of the underlying

dynamics and highlights invariant features of the flow including elliptical periodic

points at the center of regular regions, unstable periodic points that can result in

regions of chaotic mixing, and closed trajectories and chains of periodic orbits that

form KAM surfaces (Lichtenberg & Lieberman, 1983; Hilborn, 1994) which both

act as barriers to transport. The columns to the right of the Poincaré maps are

concentration profiles with increasing strength of migration and decreasing λ. Each

column has a scale bar highlighting concentration gradients and allowing comparison

with the underlying flow portrayed by the corresponding Poincaré map.

For S1, the boundary conditions of the two half-periods of the flow have rotational

symmetry through the center. For Newtonian fluids the topology of the flow has x-

axis symmetry as seen in the Poincaré maps. For T = 3/4 (Fig. 5.5a) a regular

region exists to the right of center and most of the flow is non- or weakly chaotic.

With migration at λ = 1×10−4 (Fig. 5.5b), the Poincaré map’s underlying structure

is apparent and the concentration profile has similar features to those resulting from

migration in steady flow. The lowest concentration is at the boundaries, and higher

concentration rings are found just inside the boundary and slightly right of the center
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Figure 5.5: Poincaré maps and concentration profiles of suspensions in S1. The vertical direction probes the
influence of time T the half-period of the cycle, while the horizontal direction examines increasing degree of
migration. The left column is Poincaré maps representing the evolution of initial conditions plotted after every
period 2T , with vertically symmetric topology stemming from the symmetry of the boundary conditions. The
2nd, 3rd, and 4th columns are concentration profiles plotted at the end of each cycle demonstrating the topology of
segregation with λ = 1×10−4, 2.5×10−3, and 1×10−2. The topology represented in the Poincaré map is visible at
low T and λ. High T and λ result in segregation profiles that mimic the steady profile seen in Fig. 5.4d rotated
180◦
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Figure 5.6: Poincaré maps and concentration profiles of suspensions in S2. The vertical direction probes the influ-
ence of time T the half-period of the cycle, while the horizontal direction examines increasing degree of migration.
The left column is Poincaré maps representing the evolution of initial conditions plotted after every period 2T , with
180◦ rotationally symmetric topology stemming from the symmetry of the boundary conditions. The 2nd, 3rd, and
4th columns are concentration profiles plotted at the end of each cycle demonstrating the topology of segregation
with increasing rates of shear migration λ = 1×10−4, 2.5×10−3, and 1×10−2. The topology represented in the
Poincaré map is visible at low T and λ. High T and λ result in segregation profiles that when vertically reflected
mimic the steady profile seen in Fig. 5.4d and when horizontally reflected mimic Fig. 5.5p.
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of the channel. The invariant structures surrounding the center island are barriers

to transport. At λ = 2.5×10−3 (Fig. 5.5c) the concentration profile resulting from

stronger shear migration shows features deviating from the underlying topology. The

central ring is much higher in concentration and lines of higher concentration extend

from each corner toward the center. At λ = 1×10−2 (Fig. 5.5d) shear migration

pushes most particles in suspension toward the middle with the exception of thin

lines of higher concentration near the upper left and lower corners oriented toward

corresponding higher-concentration lines extending from the center.

For S1 and T = 3/2 (Fig. 5.5e-h) the Poincaré map looks significantly different

from T = 3/4. A regular region exists right of center; however, here the flow topology

is dominated by a period-5 chain of islands. This topography is a common bifurcation

when breaking flow symmetries. Material in each of the period-5 islands and the

center-most island is confined by KAM surfaces. Transport across these surfaces

in a Newtonian fluid is diffusion-limited and in a suspension occurs either through

diffusion or migration. This underlying structure is apparent in λ = 1×10−4, where

each island is close to φave = 0.2, and is surrounded by higher concentration regions.

These islands still exist at λ = 2.5×10−3, but the positions of the period-5 regular

regions have shifted slightly counter clockwise. A center ring of high concentration is

more pronounced and the boundaries share profile characteristics with T = 3/4 and

λ = 2.5×10−3. At T = 3/2 and λ = 1×10−2 the concentration profile is most similar

to T = 3/4 and λ = 1×10−2 - the exception to this similarity is that the center region

is slightly higher in concentration and shifted to the right.

At T = 5/2 for S1 (Fig. 5.5i-l) the flow is more chaotic, with the topology again

dominated by regular regions, islands to the right of the center are much smaller than
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those seen at lower T , and two sets of larger period-3 islands. One set of period-3

islands has one left island and two additional islands located near the top and bottom

chaotic regions following close to the boundaries. The other set of period-3 islands,

located in a chaotic region bounded by a KAM surface and completely surrounded by

the chaotic region near the boundaries, has two islands near the left and one island

near the right boundaries. In this concentration map shear migration does not follow

the underlying topology as closely as in flows with shorter T . The concentration

gradients are increasingly striated and the concentration is lower within the internal

chaotic region; two lobes of lower concentration extend from the center to the left

corners suggesting the bounding KAM surface inhibits migration into this region. At

λ = 2.5×10−3 the concentration profile is the inverse of that at λ = 1×10−4. The

concentration in the center region is higher, two bands of higher concentration extend

from the center toward the left corners, and one band extends toward the lower right

corner. Near the boundaries the concentration profile is similar to T = 3/4 and 3/2 at

λ = 2.5×10−3. The segregation patterns at the corners feed particles into the interior

chaotic region. Stronger concentration gradients exist at λ = 1×10−2 and the center

region of high concentration is more pronounced than at T = 3/2 and shifted further

to the right.

At T = 6 (Fig. 5.5m-p) in the Poincaré map chaotic advection dominates every-

where except in a small group of islands located to the left. Many bifurcations occur

in the range 5/2 < T < 6 and are too numerous to make practical an elaboration of

the entire evolution. The concentration profile at λ = 1×10−4 has many striations

including a larger band of higher concentration circulating upward from the lower

left corner. With increasing λ the suspension segregates more. At λ = 1×10−2 the
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concentration profile rotated 180◦ is similar to the steady profile shown in Fig. 5.4d

because this flow spends a significant amount of time in each half cycle and is the

limiting case as T → ∞.

A similar analysis is performed for S2 in Fig. 5.6. This flow generates the exact

same instantaneous shear rate distribution as S1, except that boundary conditions

have horizontal reflectional symmetry across the x midplane. This broken symmetry

results in 180◦ rotationally symmetric topology. In Fig. 5.6a the Poincaré map for

T = 3/4 shows two regular regions separated by an invariant surface extending from

the right to left boundary. Circulation is clockwise in the upper regular region and

counter-clockwise in the lower regular region. The regular regions are smaller at T =

3/2 (Fig. 5.6e) and surrounded by higher period island chains and a chaotic region

extending to the boundaries. For T = 5/2 (Fig. 5.6i), these regular regions are smaller

and each has surrounding large period-4 islands. At T = 6 (Fig. 5.6m) the original

regular regions are no longer discernible with two distinct sets of period-2 islands

taking their place.

Concentration profiles for S2 is significantly different than those for S1 because of

the transport from the right to the left boundary through the center of the cavity.

Fig. 5.6b, λ = 1×10−4, shows lower concentration at the right and left boundaries

as well as across the center in a horizontal jet. On either side of the jet φave > 0.2

bounding the two regular regions with φ ≈ 0.2. The topology of the Poincaré map

dominates the shape of the segregation profile at low T . For T = 3/2 and 5/2 at λ

= 1×10−4 (Figs. 5.6f,j respectively) the center jet of lower concentration buckles but

does not enter the area corresponding to the Poincaré map regular regions. At T = 6

(Fig. 5.6n), the jet is located far from the center near the upper wall and between the
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two upper islands. This buckling breaks the rotational symmetry of the underlying

topology.

For stronger migration at λ = 2.5×10−3 (column 3, Figs. 5.6c,g,k,o) the concentra-

tion profile has stronger concentration gradients with similar topology to λ = 1×10−4.

The higher concentration regions form near the corners as in S1, λ = 2.5×10−3 and

1×10−2. For very strong migration, λ = 1×10−2, the jet of lower concentration is less

clear (right column, Figs. 5.6d,h,l,p). These concentration profiles, if reflected across

the x midplane, have similar features to Fig. 5.4d and thus demonstrate that unlike

in S1 the underlying flow topology has little effect on demixing regardless of T .

The effect of T on demixing in each concentration profile can be quantified by

calculating the intensity of segregation. Intensity of segregation, used as a tool to

compare these results across the various flow profiles, is defined as

I ≡
σ2

φave(φm − φave)
(5.9)

based on the definition given by Danckwerts (1952), where σ is the standard deviation

of φ. I = 0 indicates perfect mixing and I = 1 occurs for perfect segregation. Fig. 5.7

shows S1 and S2 at λ = 1×10−2 and φave = 0.2. I is normalized by I0 the intensity

of segregation in the steady lid-driven cavity, calculated for Fig. 5.4b. For T ≤6

S1 enhances segregation equal to or exceeding that found in steady lid-driven cavity

where I ∼= 0.0225. This enhanced segregation is due to the formation of the high

concentration island seen in Fig. 5.5d,h,l,p. For T > 6 this island becomes insignificant

and results in a sharp drop in I. This island is not formed in S2 and thus chaotic

advection only reduces segregation resulting from shear migration. Both S1 and S2

have asymptotes at I ∼= 0.0225 as T → ∞ because each half of the period is long
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enough to reach a steady profile similar to that found in steady lid-driven cavity flow.

Finally, we investigate the effect of φave on mixing and shear migration in this flow.

Fig. 5.8 shows 0.1 ≤ φave ≤ 0.4 for S1, T = 3/2. Shear migration-driven segregation

is non-existent at φave = 0 and φave = φm is strongest at an intermediate φave Gao

& Gilchrist (2008). For φave ≤ 0.3 (Figs. 5.7a-c) the underlying topology shown in

Fig. 5.5e influences the segregation pattern and φ > φave surrounds the period-5 and

central islands. For φave ≥0.3 migration to the center of the cavity effectively washes

out the period-5 islands. As φave → φm, the computation becomes unstable due to

lack of resolution; in this limit the underlying flow varies significantly due to the

increasingly non-Newtonian behavior of the suspension.
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Figure 5.7: Intensity of segregation I/I0 vs. period T for S1 (diamonds) and S2

(circles) at λ = 1×10−4 and φave = 0.2. The dotted line indicates I/I0 in the steady
lid-driven cavity under the same conditions equivalent to T → ∞, .
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Figure 5.8: Concentration profiles plotted at the end of each cycle of T = 3/2, λ
= 1×10−4 and φave = 0.1 (a), 0.15 (b), 0.25 (c), 0.3 (d), 0.35 (e), 0.45 (f). The
scalebar of each profile has been adjusted to enhance the resolution of the segregation
structure. There is no segregation in the limits φave → 0 and φave → φm

115



5.4. CONCLUSION

CHAPTER 5. CHAOTIC MIXING OF SUSPENSIONS IN TWO-DIMENSIONAL

FLOW

5.4 Conclusion

The interplay between 2D time-periodic chaotic advection in a lid-driven cavity and

shear migration of a suspension is highly complex. Though S1 and S2 only differ

in the translation direction of the bottom wall, this difference has a large effect on

resulting flow topology. At low T S1 produces a single recirculating flow with structure

topologically similar to that of a steady lid-driven cavity. Because shear migration

is strongest near the walls S1 effectively has twice the surface area acting to shear

fluid and I is roughly twice that of the steady case. In contrast S2 produces two

recirculation regions at low T with fluid convecting across the middle from the right

to left boundary. Concentration gradients produced near the wall are advected into

the center and as a result I is roughly half that of the steady flow. Consequently, the

same energy input into the system the flow can either enhance or reduce segregation.

Similarly, at higher T the underlying topology has a much larger area covered by

chaotic trajectories. However, the interplay with migration is such that for T → ∞,

S1, S2, and steady flow converge on the same intensity of segregation. Both of these

results contradict the perception that increasing the degree of chaos in the flow will

enhance overall mixing.

To develop a full set of heuristics for the influence of shear migration on mixing and

segregation in chaotic flows, a broader class of flows needs to be explored, especially

3D flows and open flows. This analysis could develop mixing and separations on

microscale platforms that depend only on suspension rheology eliminating the need

to incorporate complicated MEMS to achieve desired concentration profiles.
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In this work we have studied microstructure and rheology of sheared suspension under

microfluidic conditions. Direct visualization of the microstructure is rendered possible

by confocal microscopy. The results agree with previous theoretical predictions and

computations. Pair-wise calculation is conducted to obtain rheological functions from

the microstructure. Comparison with SD simulation is made and qualitative agree-

ment established. Analyses show hydroclusters exist in sheared suspensions and grow

linearly with ln(Pe), responsible for shear-thickening under high shear rates. Shear-

induced crystallization is pronounced for Pe >1000. Electrostatic force is found to

play a dubious role in either reducing or enhancing order in structure, depending on

its magnitude. Strong electrostatics will make shear-induced crystallization notice-

able for Pe ∼ O(100). The microstructural study helps us understand rheology in

real life processing of suspensions. Investigation of shear-migration effect on mix-

ing is carried out in this context. Macroscopic model reveals competition as well as

coordination between flow topology and migration, further complicating suspension

rheology. Mixing protocols with the same strain rate can perform very differently
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in terms of the intensity of segregation. New insights are shed on design of mixing

device for suspensions.

Our current experimental setting, though is convenient and economical to produce

large amount of data over a spectrum of Pe’s, has its limitations. First, the nonlinear

shear field in pressure-driven channel flow causes concentration inhomogeneity as a

result of shear-induced migration, making decoupling of shear rate and concentration

difficult. Second, all the rheological functions in this study are obtained based on

pair correlation data under near-field approximation. It is always preferential to

have rheo-optics measurement simultaneously to provide more objective mechanical

results. Third, the nitrogen-driven flow in microchannel is stable in steady flow,

but the current system is not easy to realize operations such as oscillatory shear or

reversed shear with precisely controlled strain.

An upgrade of the system may thus be amounting to confocal microscope a

mechanically-driven shear cell which carries out simple shear, oscillatory shear, quick

flow cessation and force/torque measurement, etc. Synchronization between the

force/torque measurement and imaging part is needed. With this setting, factors like

concentration and shear rate can be individually controlled and rheological effects like

shear-thinning/thickening are readily captured with their corresponding microstruc-

tures. Cheng et al. (2011)’s design is toward this direction, but not careful enough to

rule out influences from the cell wall.

With the new system, it is possible to study the destroy and formation of mi-

crostructure with shear. From Gadala-Maria & Acrivos (1980) we know when shear

is reversed, structure will decompose and reform in the new direction. A microstruc-

tural study in reversed shear flow with precise strain would be very meaningful in
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understanding the mechanism and dynamics of this process. Oscillatory shear exper-

iments can obtain the complex viscosity, loss and storage moduli, etc, of a suspension

along with the microstructure, therefore provide new insights into the coupling of

structure and rheology.

Although our numerical study reveals much information in real processing of sus-

pensions, up to now, as our understanding of microstructure-based suspension rheol-

ogy is not sufficiently deep, most macroscopic models may fall short of being quanti-

tatively accurate for a general circumstance. Particle-level simulations, e.g. Stokesian

Dynamics are more reliable but meanwhile costly. It is envisioned that a multi-scale

approach integrating simulations on both levels would yield an optimal performance.
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