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Abstract

Colloidal particles exhibit versatile dynamic behaviors and structures, dependent on

various interactions between these particles. In this dissertation, we studied two

representative colloidal systems: one with classic repulsive interparticle interactions

and the other with novel DNA-mediated interparticle interactions.

In the first part of this dissertation, we studied the equilibrium and nonequilib-

rium dynamics and structure of soft particles, which are modeled by the inverse power

potential. The freezing-point scaling relation, to a good approximation, collapses

diffusivity and viscosity data of different particle softness. Using the freezing-point

scaling relation as a starting point, shear rheology and microstructures of particles

with different softness are studied. A universal shear-thinning behavior was observed

for particles with different softness in absence of hydrodynamics, albeit softer parti-

cles exhibit stronger shear-thinning tendency. By investigating the microstructure of

these systems, a strong relation between the changes of the structures and the par-

ticle softness was found in presence of shear. These different microstructure changes

in responses to the shearing might explain the extent of shear-thinning behavior for

different particle softness.

In the second part of this dissertation, we studied the self-assembly of DNA-

functionalized particles (DFPs). The coarse-grained model was developed for DFPs.

The potential of mean forces (PMFs) between two DFPs were computed as a func-

tion of temperatures, DNA grafting density and lengths of the hybridizing and non-

1



hybridizing parts of DNA. The computed PMFs were used to study the self-assembly

of ordered 2D binary crystal lattices. Three crystal phases were identified: square

lattice, alternating-string (A-S) hexagonal lattice, honeycomb lattice, by controlling

the binding energies between different particle species. The square lattices always

exhibit perfect compositional ordering while significant defects appear in hexagonal

lattices due to the interplay between thermodynamic and kinetic factors.
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Chapter 1

Introduction

Colloids are particles with sizes ranged approximately from one nanometer to ten

micrometers suspended in a medium. These particles experience Brownian motion

because of their interaction with solvent molecules [122]. Colloids can also form crys-

tals that can exhibit precise particle arrangements and periodic structures spanning

hundreds of particle diameters in two or three dimensions [36]. All of these prop-

erties of colloids make them very useful for various applications including photonic

materials and sensors [55, 133]. The equilibrium state in which a colloidal system

exists, either gas, liquid or solid, is highly dependent on the various interactions

between colloidal particles [20]. The knowledge of particle interactions is not only

helpful for the understanding the relations between these interactions and properties

of equilibrium states, but also can be used to tune these interactions to favor the

assembly of one structure over another [83].

It is very difficult to determine the relation between initial system conditions

and final assembled structures from both theoretical and experimental point of view.

Simulation offers an effective method to map various system variables to final states.

Modeling of colloidal particle system at the microscopic level is based on comprehen-

sive description of the constituent components. In principle, the rigorous description

3



relies on the theory of quantum mechanics. By representing atoms or molecules as

point masses interaction through some forces, molecular dynamics not only does it

work, but works surprisingly well [111]. The aim of this work is to apply computa-

tional method to study the relation between particle interaction and accessible states

for a given colloidal suspension.

1.1 Colloidal interactions

1.1.1 Classic colloidal interactions

In terms of forces between the colloidal particles, the first contribution stems from

the van der Waals attraction [48]. This attraction diverges at particle contact and

vanishes as r−6 for interparticle distances r. In absence of other interparticle inter-

actions, the particles will aggregate and form large clusters. Hence, the stability of a

colloidal suspension requires the existence of additional stabilizing forces. There are

two common stabilizating forces for colloidal systems, steric force and electrostatic

force. For steric force, the colloidal particles are coated with polymers on their sur-

faces, which prevent two neighboring particles to come in close contact. This steric

force generally can be described as the pairwise hard sphere potential or repulsive

potential dependent on the particle hardness [18, 121]. In regards to electrostatic

force, the charged surface groups of colloidal particles dissociate into the polar sol-

vent and form counterions, which make the colloidal particles become highly charged

macroions. These counterions form an atmosphere of ions in rapid thermal motion

close to the surface, known as the diffuse electric double layer. Two particles with

similarly charged surfaces usually repel each other electrostatically in solution. The

van der Waals attraction always excesses the electrostatic repulsion at small distance

due to its power-law interaction. The combination action of electrostatic and van

der Waals forces can be described quantitatively by the celebrated DLVO theory of

4



colloidal stability [124].

1.1.2 DNA-mediated interactions

Specific functionalization of colloidal particles can be used to tailor interparticle

interactions [113]. Due to their abilities of forming highly complex and precise struc-

tures, biomolecules such as DNA are good candidate to glue particles together. The

specificity and tunability of DNA-mediated interactions arise from the assignment of

the DNA base pair sequence. The DNA sequence is comprised of four different bases:

adenine (A), cytosine (C), guanine (G), and thymine (T). Complementary binding

of base pairs A:T and G:C makes two single DNA strands forms double helices.

Many researchers have studied the sequence-specific binding and programmability of

DNA-mediated interactions [19, 102, 108, 146]. These DNA-mediated interactions

can drive the crystallization of nano-sized and micro-sized particles with abundant

crystal morphology [85].

1.2 Self assembly

Self-assembly is one powerful method that can be used to create long-range ordered

crystals from systems with disordered initial states. The crystallization is driven by

the interactions between system components without the need for external mechani-

cal forces. In addition, predefined equilibrium structures can also be created through

self-assembly. The simplest case is the hard sphere system, which has no interactions

between particles. The fluid-solid phase transition as increasing the packing density

is driven only by entropy [152]. The complexity of phase diagram increases when

introducing attractive and repulsive forces, while the inclusion of different particle

shapes and sizes further increases the its complexity [98]. Colloidal suspensions with

van der Waals and electrostatic interactions self assemble into limited nanocrystals,

5



such as fcc, bcc and hcp [71]. The morphological diversity of assembled crystals

from these suspensions is greatly improved with the introduction DNA-mediated

interactions [85].

1.3 Dissertation Outline

In this dissertation, two distinct systems are studied: first, the soft particle flu-

ids which are modeled by inverse power potential and second, DNA-functionalized

colloidal particles. This dissertation is arranged as follows:

Chapter 2: Equilibrium structure and dynamics of soft particles

In this chapter we test freezing-point scaling relation. This freezing-point scaling

relation, to a good approximation, collapses diffusivity and viscosity data of differ-

ent particle softness. Although the freezing-point scaling relation cannot perfectly

collapse the transport coefficient, it is a convenient and effective parameter for com-

paring the structure and dynamics of the system with different softness, especially

from the experimental point of view.

Chapter 3: Structure and dynamics of sheared soft particles

Using the freezing-point scaling relation as a starting point, shear rheology and

microstructures of particles with different softness are studied using nonequilibrium

molecular dynamics simulations. Our results show that a universal shear-thinning

behavior for particles with different softness in absence of hydrodynamics, albeit

softer particles exhibit stronger shear-thinning tendency. By investigating the mi-

crostructure of these systems, we found a strong relation between the changes of the

structures and the particle softness in presence of shear. These different microstruc-

ture changes in responses to the shearing might explain the extent of shear-thinning

behavior for different particle softness.

Chapter 4: Coarse-grained DNA model

6



DNA has emerged as an exceptional molecular building block for nanoconstruc-

tion due to its predictable conformation and programmable intra- and inter-molecular

Watson-Crick base-pairing interactions. The emergence of DNA nanotechnology at

the same time also inspires the development of the design rules and reliable assembly

methods to engineer DNA nanostructures of increasing complexity, which requires

the understanding these systems at the molecular level. Simulation provides a very

powerful tool due to its convenience, high efficiency as well as the level of details. In

this chapter, two coarse-grained DNA model is presented for the application of mod-

eling self-assembly processes. These two models are relatively simple yet accurately

portrays the dynamics and denaturing of DNA and allow for the analysis of larger

systems of interest for a long time without sacrificing computational efficiency.

Chapter 5: DNA-mediated interparticle interactions

DNA-functionalized particles have great potential for the design of complex self-

assembled materials. The major hurdle in realizing crystal structures from DNA-

functionalized particles are expected to be kinetic barriers that trap the system in

metastable amorphous states. Therefore, it is vital to explore the molecular de-

tails of particle assembly processes in order to understand the underlying mecha-

nisms. Molecular simulations based on coarse-grained models can provide a conve-

nient route to explore these details. Most of the currently available coarse-grained

models of DNA-functionalized particles ignore key chemical and structural details

of DNA behavior. These models therefore are limited in scope for studying ex-

perimental phenomena. In this chapter, we present a new coarse-grained model

of DNA-functionalized particles, which incorporates some of the desired features of

DNA behavior. The coarse-grained DNA model used here provides explicit DNA

representation (at the nucleotide level) and complementary interactions between

Watson-Crick base pairs, which lead to the formation of single-stranded hairpin and

double-stranded DNA. Aggregation between multiple complementary strands is also
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prevented in our model. We study interactions between two DNA-functionalized

particles as a function of DNA grafting density, lengths of the hybridizing and non-

hybridizing parts of DNA, and temperature. The calculated free energies as a func-

tion of pair distance between particles qualitatively resemble experimental measure-

ments of DNA-mediated pair interactions.

Chapter 6: Self-assembly of DNA-functionalized particles

In this chapter, we report a comprehensive computational analysis of the self

assembly of ordered 2D binary crystal lattices, in which the interactions are governed

by DNA bridging between particles. Three crystal phases were identified: square

lattice, alternating-string (A-S) hexagonal lattice, honeycomb lattice, by controlling

the binding energies between different particle species. The attractive interactions

between like particles i.e. EAA and EBB, are required to stabilize the hexagonal

lattices over square lattices. At the same time, a large difference in the binding

energies, i.e. between EAB and EBB or EAA, is required to reduce the equilibrium

concentration of defects. As a result, highly constrained conditions were required in

order to achieve good ordering in the hexagonal lattices. On the other hand, without

the complication of EAA and EBB, it is much easier to grow perfect square lattices.

Chapter 7: Future work and preliminary results

In this chapter, we propose possible extensions with preliminary results to the

current computational work.
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Chapter 2

Equilibrium structure and

dynamics of soft particles

2.1 Introduction

Concentrated suspensions of soft particles, such as microgel suspensions, polymer

coated colloids and compressed oil in water emulsions, have attracted a lot of interest

both from academic and industrial aspects. These soft particles are deformable

and impenetrable and can be packed beyond the random close packing fraction for

hard spheres [21]. Purely repulsive systems have been widely used to model soft

particles to understand fundamental questions related to the their behavior in a

suspension [18, 121]. Among the various soft repulsive potentials, the inverse power

(IP) potential, U(r) = ε(σ/r)n, has been studied extensively due to its simple form

and ability to capture interesting physical phenomenon [17, 40, 41, 42, 43]. The

IP potential model has simply two phases: fluid phase and crystal phase, with a

well-known universal phase diagram [2, 53, 110]. The states of IP potential fluid

is governed by a single dimensionless parameter that coupling the temperature and

density, Γ = ρσ3(ε/kBT )3/n, where ρ is the number density, σ is particle diameter, kB
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is Boltzmanns constant, T is the absolute temperature and n mediates the softness

of the particle.

The exploration of the relations between particle softness and the static and dy-

namic properties of fluids has been the major topic for soft particles [4, 8]. Since the

transport coefficient (e.g. diffusion coefficient or viscosity) is problematic to measure

experimentally, it is desired to establish possible relationships between these coef-

ficients and some quantities which are usually more readily measured. The recent

simulations of IP potentials attempted to establish the scaling relations between the

transport coefficients and the particle softness. For large values of n (n ≥ 72), the

behavior of IP potential approaches the hard sphere limit [39]. A scaling law derived

from the perturbation theory has also claimed to collapse transport coefficients for

extremely soft systems (n ≤ 12), while ineffective for higher n due to ignoring the

higher order terms in the expansion of interaction energy [118]. More recently, for

intermediate n (18 ≤ n ≤ 36) a scaling relation based on freezing point are able to

collapse the transport coefficients [67]. In addition to explore the scaling relations

specifically for IP potentials, Rosenfeld proposed a simple universal relationship be-

tween reduced transport coefficient and the excess entropy sex [114]. This relationship

is supported by many studies on various model [30, 115] and real fluids [117, 150].This

treatment has also been extended to binary fluid mixtures [30, 44, 93, 117], anomalies

in waterlike model fluids [31, 32, 62, 129] and particles under molecular-dimensional

confinement [91, 92]. However in the very diluted and dense fluid region, a simple ex-

ponential dependence between transport coefficients and sex fails. Therefore, despite

various proposed scaling relations, none of the existing empirical scaling relations in

the literature correctly describes transport coefficients over the entire fluid range.

In this chapter, we test the freezing-point scaling relation for soft particles for

extended parametric space through molecular dynamics simulations. We report that

by using reduced formulations, diffusion coefficient and viscosity of inverse power
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potentials collapse when plotted against reduced coupling parameter for a broader

set of potential softness and wider range of coupling parameters. The width of the

collapsed master curve indicates that although this scaling law accurately captures

the long-range structure, structural differences at short distances may limit this

correlation. We also report data of universal scaling between the reduced transport

coefficient and two-body excess entropy for inverse power potentials. We show a

strong correlation between two-body excess entropy and reduced coupling parameter,

which is denoted by the collapsing for different softness when two-body excess entropy

is plotted against reduced coupling parameter.

2.2 Methods

The soft sphere potential has the form:

U(r) = ε
(σ
r

)n
, (2.1)

where r is the distance between two particles, σ is particle diameter, ε sets energy

scale and n determines the potential steepness with 1/n representing the softness

of potential. Throughout the paper we use the Lenard-Jones reduced system of

units, where σ is the unit of distance, ε is the unit of energy, and mass is measured

in units of particle mass. The potential is cut at the distance rc = 2.5, at which

all the potential are very close to zero. The system of 500 particles is simulated

in a canonical ensemble (constant N, V and T) using the Nose-Hoover thermostat.

Equations of motion are integrated by the velocity Verlet algorithm using a time

step of 0.001 in LJ unit. The initial configuration is started from the fcc lattice at

temperature T = 4.0. The system is first melted at T = 4.0 and then quenched to

the temperature T = 1.0 and the equilibrated. The diffusion coefficient is calculated
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from the mean square displacement via the Einstein relation, while the zero-shear

viscosity is determined by using the Green-Kubo relation.

2.3 Results and discussion

Following the work by Lange [67], a scaling law based on the coupling parameter at

the freezing point, Γf , is used to scale the diffusion coefficient and viscosity. Since at

the freezing point the structural and dynamical quantities are independent of particle

interactions, by scaling Γ with Γf , the long-range structure is almost identical for

systems with different softness. This reduced coupling parameter Γ/Γf basically

measures how far the system away from the freezing transition, which can be treated

as the key parameter for comparing the structure to that of a system with different

softness. In this study, we first test this scaling law for an extended parametric space.

Specifically, we investigate n = 4, 6, 8, 10, 12, 24, 36 and 0.01 ≤ Γ/Γf ≤ 1.

Before showing the data, it is worthy to note that the relevant length scale of

each system with different n is the average particle separation Γ−1/3. This can be

clearly demonstrated by checking the pair distribution function g(r) for different n at

freezing point [67], which is maximally collapsed when r is scaled by Γ−1/3. Therefore,

reduced transport coefficients according to Rosenfeld [114], D∗ = Dρ1/3(kBT/m)−1/2

and η∗ = ηρ−2/3(mkBT )−1/2 are used, instead of original D and η, to account for this

average interparticle distance for different potential softness.

The reduced diffusion coefficient D∗ for the different particle softness is presented

in Figure 2.1 as a function of reduced coupling parameter Γ/Γf with the original data

D plotted with Γ presented in the inset of Figure 2.1. It can bee seen from the inset

of Figure 2.1 the value of the diffusion coefficient at the freezing transition is almost

identical for each case of n, which is around 0.01. By plotting the reduced diffusion

coefficient against Γ/Γf , to a good approximation, a collapse of the data of different
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Figure 2.1: Reduced diffusion coefficient, Dρ1/3(kBT/m)−1/2, versus reduced cou-
pling parameter Γ/Γf for different softness n described in the legend. The inset
shows the original diffusion coefficient D plotted against coupling parameter Γ.

softness is observed. Similarly, we show the viscosity data in Figure 2.2. As might

be expected from diffusion data, a convincing collapse of the viscosity data is found.

Although the scaling law leads to a better collapse of both diffusion and viscosity

data, one can notice that width of master curve is still large. Due to the noise of

the viscosity data, the collapsed single curve is much thicker than diffusion data. As

predicted previously [115], there is a minimum in viscosity plot, which separates into

weak coupling and strong coupling region. As the density increases and approaches

freezing, the both curves are collapsing as one might expect. Therefore it is clear that

although the scaling law captures the identical long range structure for systems with

equal Γ/Γf , structure differences at short distances due to the different interaction

potentials might be responsible for the quality of collapsing.

Another interesting statistical quantity that can also be measured in a simula-

tion is the two-body excess entropy s2 [97]. This quantity is essentially the N-body

interparticle correlation function expansion of the excess entropy truncated at the
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Figure 2.2: Reduced viscosity, ηρ−2/3(mkBT )−1/2, versus reduced coupling parameter
Γ/Γf for different softness n described in the legend of Figure 2.1. The inset shows
the original viscosity η plotted against coupling parameter Γ.

two-body level. Although excess entropy can be rigorously calculated in simula-

tions [7, 92, 93], it has been shown in earlier studies that two-body excess entropy is

a reasonable approximation for the full excess entropy in many model liquids [30, 115].

This two-body excess entropy is also a measure of the order of the system [140]. s2 is

zero for completely disordered systems like ideal gas, becomes large and negative for

ordered structures and goes to negative infinity for perfect crystal. Rosenfeld [114]

observed that reduced transport coefficients approximately exponentially depend on

the excess entropy of the liquid. In fact, this relation is approximately true for many

“strongly correlating” simple liquids [125]. The quantitative link between reduced

transport coefficient and −s2 is tested here for soft sphere fluids. Figure 2.3 shows

reduced diffusion coefficient D∗ (top) and viscosity η∗ (bottom) as a functions of −s2

for different softness, respectively. Both D∗ and η∗ appears to collapse onto single

curves when plotted versus −s2, with a much better quality of collapse than Γ/Γf
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Figure 2.3: (top) Reduced diffusion coefficient, Dρ1/3(kBT/m)−1/2, and (bottom)
reduced viscosity ηρ−2/3(mkBT )−1/2, versus negative two-body excess entropy, −s2,
for different softness n described in the legend of Figure 2.1.

Since both Γ/Γf and s2 are indications of structural order in the system, it is

naturally to ask whether there is any relations between these two quantities. Fig-

ure 2.4 shows −s2 plotted versus Γ/Γf for different particle softness. A well collapse

of our curves implies that there is strong correlation between Γ/Γf and s2. This

strong correlation is physically intuitive since two-body excess entropy is essentially

a measure of the difference from the ideal gas in terms of available states, while Γ/Γf

is a natural parameter measuring the distance from the freezing transition. Both

reference points are independent of specific particle interaction. The discrepancy

between those curves can be explained by the way of particle with difference softness

approach two reference states.

It was found that the excess entropy sex for inverse-power potentials follows a

quasi-universal scaling law of the form sex ' f(κ/κf ), where κ is related to our cou-

pling parameter Γ by the form of κ = ((4π/3)Γ)n/3 [116]. By combining this scaling
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pling parameter Γ/Γf for different softness n described in the legend of Figure 2.1.
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pling parameter Γ.
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law with semiempirical universal relation between reduced transport coefficient and

excess entropy, Rosenfeld [116] found that reduced transport coefficient is scaled ap-

proximately as a function of κ/κf for n ≤ 12. Since this relation is a combination

of two approximate scaling relations, the error of the combined relation might be a

propagation of two.

2.4 Conclusions

In this chapter we test freezing-point scaling relation. This freezing-point scaling

relation, to a good approximation, collapses diffusivity and viscosity data of differ-

ent particle softness. Although the freezing-point scaling relation cannot perfectly

collapse the transport coefficient, it is a convenient and effective parameter for com-

paring the structure and dynamics of the system with different softness, especially

from the experimental point of view. The calculation of the two-body excess entropy

is still quite difficult from experiments especially for 3D systems. The validity of this

universal scaling law in experiments has not been well tested for colloidal particle

suspensions. Recently, Ma et al. [84] tested of this excess-entropy scaling law of diffu-

sion by using colloidal monolayers. By considering above points, in the next chapter

we will apply the freezing-point scaling relation as a reasonable starting point to

study the shear rheology and microstructure of particles with different softness.
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Chapter 3

Structure and dynamics of sheared

soft particles

3.1 Introduction

Colloidal suspensions exhibit many nonlinear responses to the applied flow rate, i.e.

shear thinning, thickening or a mixture of the both nonlinear responses. Understand-

ing the shear rheology of dense colloidal suspensions still remains a challenge. Many

experimental studies and computer simulations have attempted to relate changes in

particle configurations to the nonlinearity of these phenomena [22, 23, 35, 51, 78,

79, 147], albeit no conclusive statement has been made. Recently simultaneous ap-

pearance of the layering structural change and the shear thinning was observed by

Cheng et al. [22]. However the results of Xu et al. [148] indicated the simultaneous

appearance of layering and shear thinning is coincidental rather than causal. They

demonstrated that pair structure in the suspension has a stronger correlation with

shear-thinning phenomenon. Layer formation can be enhanced by the presence of

planar boundaries, i.e. walls in experiments or simulations [148]. Several groups

observed hydroclusters in the shear thickening regime [22, 51], which is consistent
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with the prediction by Brady and coworkers [13, 15, 34, 109] that shear thickening

is caused by the formation of transient hydroclusters induced by shearing.

Shear rheology of hard sphere systems, such as silica, poly(methyl methacrylate)

or PMMA and polystyrene (PS), have been extensively studied due to its simplicity

and abundances of relevant theoretical work [95, 134]. Soft sphere systems, spanned

from ultrasoft polymeric coils and star polymers to quasi-hard sphere such as core-

shell microgels and emulsions, show very richer rheological properties than the hard

counterparts [21, 143, 145]. The understanding the relation between structure and

macroscopic rheological properties of soft sphere systems and prediction their be-

havior is much more challenging. The versatile rheological properties of soft particle

systems are closely linked to the softness of interparticle interactions, which imply

the tunability of rheological behaviors by varying the particle softness. Nazock-

dast and Morris [99] investigated the effect of steepness of repulsive interactions on

the structure and rheology of sheared colloidal systems from both simulations and

theory. In this study, soft colloids, modeled by Yukawa interactions, exhibited the

shear-thinning behavior and no shear thickening was observed. They proposed the lu-

brication forces are significantly reduced in soft colloidal system and the interparticle

repulsive forces balance the shearing forces to determine the pair microstructure. Re-

cently, Zhou et al. [151] examined the effect of microgel softness on its shear thicken-

ing behavior using core-shell microgel particles. The measured interaction potentials

between microgel particles were successfully mapped to the inverse power potential.

They observed as effective volume fraction increased, temperature increased or shell

thickness decreased, the shear thickening behavior became more obvious. The reason

of shear thickening for their system is still under investigation. Xu et al. [147] also

examined the effect of “softness” of particles on the structure of colloidal suspension

by tuning electrostatic interactions. The tuning of electrostatic interactions changes

the effective particle diameter preventing the direct contact between particles. They
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found electrostatic interactions played a complex role in suspension structure.

In this chapter we investigate the effect of particle softness on microstructure

and rheology of sheared soft particle system. Soft particles are modeled by the

inverse power (IP) potential, which has been successfully mapped to the interac-

tions of poly(12-hydroxystearic acid) or PHSA particles [18] and several types of

core-shell microgel particles [60, 121, 127, 151]. Nonequilibrium molecular dynamics

(NEMD) are used for shearing simulation. By decoupling the hydrodynamic interac-

tions, we would expect only shear-thinning behavior are captured in our simulation.

Our results show that a universal shear-thinning behavior for particles with different

softness, albeit softer particles exhibit stronger shear-thinning tendency. By investi-

gating the microstructure of these systems, we found a strong relation between the

changes of the structures and the particle softness in presence of shear. Specifically,

the shearing slightly enhanced the overall translational ordering of quasi-hard sphere

by strengthening the correlation of nearest-neighbor particles and slightly weakening

the long-range ordering, while significantly decreased the ordering of softer parti-

cles. The shearing has a much pronounced effect on enhancing the correlation along

flow direction for quasi-hard sphere, while at the same time induce a pronounced

secondary depletion region for ultrasoft particles. These different responses to the

shearing might explain the extent of shear-thinning behavior for different particle

softness.

3.2 Methods

The soft sphere potential has the form:

U(r) = ε
(σ
r

)n
, (3.1)
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where r is the distance between two particles, σ is particle diameter, ε sets energy

scale and n determines the potential steepness with 1/n representing the softness of

potential. Throughout the paper we use the Lenard-Jones reduced system of units,

where σ is the unit of distance, ε is the unit of energy, and mass is measured in units

of particle mass. The potential is cut at the distance rc = 2.5, at which all the po-

tential are very close to zero. The system of 500 particles is simulated in a canonical

ensemble (constant N, V and T) using the Nose-Hoover thermostat. Equations of

motion are integrated by the velocity Verlet algorithm using a time step of 0.001

in LJ unit. The initial configuration is started from the fcc lattice at temperature

T = 4.0. The system is first melted at T = 4.0 and then quenched to the temperature

T = 1.0 and the equilibrated. The diffusion coefficient is calculated from the mean

square displacement via the Einstein relation, while the zero-shear viscosity is deter-

mined by using the Green-Kubo relation. For nonequilibrium molecular simulation

(NEMD), the thermostatted SLLOD equations of motion with the appropriate peri-

odic boundary conditions are used to study the system under shear. The x-direction

is set as the flow direction, while the y-direction is velocity gradient. Shear rate is

defined as γ̇ = dvx/dy. Shear viscosity is calculated by η = −〈σxy〉/γ̇. The two-body

structural order parameter −s2 was computed using the expression [140]

−s2 =
ρ

2

∫
{g(r)lng(r)− [g(r)− 1]}dr, (3.2)

where ρ is number density and g(r) is the pair distribution function. The cumulative

order integral Is2 was defined as [61]

Is2 =
ρ

2

∫ r

0

dr′
∫ 2π

0

dθ

∫ π

0

dφr′2sin(φ)f(r), (3.3)

where f(r) = g(r′, θ, φ)lng(r′, θ, φ)− [g(r′, θ, φ)− 1].
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3.3 Results and discussion

3.3.1 Rheological properties

As showed in equilibrium simulation, by maintaining the equal Γ/Γf , the systems

with different particle softness have similar long-range structure and dynamics. We

select the state close to freezing transition, Γ/Γf = 0.85, for the shear simulations.

The shear rate dependence of η(γ̇) as well as zero-shear viscosity by Green-Kubo

relation for different particle softness is given in Figure 3.1. The extrapolation of the

finite shear rate values to zero shear-rates is consistent with the Green-Kubo values.

The rheological behavior becomes Newtonian at low shear rate where η approach

its zero-shear viscosity η0. At high shear rate, the fluids display a shear-thinning

behavior. We note that the shear-thinning behavior is dependent on the softness of

particle interactions even by maintaining the same Γ/Γf . The softer particles exhibit

stronger shear-thinning phenomenon.
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Figure 3.1: Shear viscosity η versus shear rate γ̇ for the different particle softness n
described in the legend at Γ/Γf = 0.85. Dashed lines represent zero-shear viscosity
η0.
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We have also calculated first and second normal stress difference as a function of

shear rate. First and second normal stress difference are defined as N1 = Σxx − Σyy

and N2 = Σyy − Σzz, which are both zero at equilibrium and become nonzero under

shear. As can be see in Figure 3.2, the sign of N2 is negative for both n = 36 and 4

under the shear, while N1 is positive for n = 4 and slightly negative for n = 36. The

positive sign of N1 and the negative sign of N2 for ultrasoft particles confirms previous

results of charged colloids [112]. The negative sign of N1 and N2 of quasi-hard sphere

particles resemble the hard sphere behavior [34]. In addition, we observed that the

increase of particle softness leads to a more positive first normal stress difference

(data are not shown).

-1

0

1

2

N
1

n = 36
n = 4

0.01 0.1 1
Shear rate

-2

-1

0

N
2

Figure 3.2: First normal stress difference (N1) and second normal stress difference
(N2) as function of shear rate for n = 36 and 4.

3.3.2 Microstructure

In order to investigate how particle softness relates to the deformation of fluid struc-

ture under steady shear, pair distribution functions (PDF) at the shear plane (x-y
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plane), g(x, y) are constructed for each of the systems at different shear rate. Fig-

ure 3.3 shows pair distribution function g(x, y) for n = 36 and 4. For better contrast,

an upper cut-off value at g(x, y) = 4 and g(x, y) = 6 are imposed for n = 4 and 36

respectively. From Figure 3.3, one can see clearly the anisotropy of structure under

steady shear. In general, moving from top to bottom, inner and outer rings of high-

probability are being deformed and reduced therefore less identifiable, which imply

that structural ordering and symmetry is attenuated with the increasing shear. At

low shear rate, the structure is nearly isotropic and no angular variation in the first

and second nearest-neighbor rings. As the shear rate increased, there is a buildup

of particles in the compressive axis (about 135◦) and a depletion of particles in the

extensional axis (about 45◦) as shown at γ̇ = 1.0 for n = 36 and 4. This oval-like

structure is initially symmetrical along the compressive axis. As the shear further in-

creased, the symmetry is broken by appearance of vague tails near the opening of the

innermost ring that indicate the convection of probability downstream into neigh-

boring extensional region and high-probability dots at 0◦ and 180◦ that indicates

stronger correlation along flow direction. In addition, by comparing the right and

left column, the quasi-hard sphere and ultrasoft cases, the ultrasoft particle shows

thicker rings than quasi-hard sphere particle and the deformation of these rings with

respect to shear rate is not as significant as quasi-hard sphere particles.

To see how quantitatively the shear-induced anisotropy is related to softness of

particle interactions, angularly averaged PDF, gs(r), is shown as a function of shear

rate γ̇ for two particle softness in Figure 3.4 (upper panel). For n = 36, we observed

a slightly sharpened nearest-neighbor peak and flatter second and third peaks with

the increase of shear rate. For the cases of n = 4, the effect of shear on the gs(r) is to

weaken both the short-range and long-range ordering as all the peaks are flattened by

increasing the shear rate. To quantify the subtle changes of ordering, we exanimate

the cumulative structure order Is2 shown in Figure 3.4 (lower panel). For the ultrasoft
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Figure 3.3: Pair distance function g(x, y) for n = 36 (left column) and 4 (right
column) at shear plane (x-y plane) at different shear rate γ̇.
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particles (n = 4), the contributions to the overall structural order by multiple peaks

become less pronounced under the increased shear rate, which is denoted by both the

downshift and flattening of Is2 curves in Figure 3.4. For quasi-hard sphere particle

(n = 36), the enhanced first peak make a significant contribution to the overall

structural order as increased the shear rate, which make the Is2 curves shift up at

the point of nearest-neighbor peak.
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Figure 3.4: (Upper panel) Angularly averaged pair distribution function gs(r) for
n = 36 (left column) and n = 4 (right column) at several shear rates. (Lower panel)
Cumulative order integral Is2(r) calculated corresponds to upper panel.

Recent simulations have also shown the average structure was flattened by the

increase of shear rate for the Debye-Huckel repulsive potential [13], while a enhanced

nearest-neighbor peak was found for hard sphere interaction [96]. Although the hy-

drodynamic interactions were included in their simulations, we observed the quite
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similar results by NEMD, which implies that hydrodynamic interactions have no

significant effect on the altering of translational order in response to shear forces. In

addition, we noted that when hydrodynamic interactions are present, the enhanced

nearest-neighbor correlation for quasi-hard sphere particles might facilitate the hy-

drocluster formation, which has been confirmed from both experiments [22, 51] and

simulations [13, 15, 34, 109] as the cause of the shear thickening. For the softer

particles, the decayed nearest-neighbor correlation tends to suppress the formation

of hydroclusters and therefore the difficulty to observe the shear thickening.

For a better illustration of first peak variation in gs(r) under shear, the angular

variations of PDF at the radius where first peak of gs(r) locates, g(rc, θ), is shown in

Figure 3.5. For n = 36 case, no obvious deviation from equilibrium value is found for

γ̇ = 0.01 and 0.1. At γ̇ = 1.0, g(rc, θ) display an approximately sinusoidal variation

around isotropic value with the maximum and minimum located at around θ = 130◦

and 40◦. At γ̇ = 2.0, secondary maximum and minimum are found at θ = 115◦ and

150◦, with a deeper depleted correlation region at θ = 40◦ and enhanced correlation

at flow direction. The correlation along the flow direction becomes more pronounced

as the shear rate further increased combined with more clear first and secondary

depletion regions.

For the ultrasoft case (n = 4), although similar elevation and reduction of g(rc, θ)

relative to the equilibrium value can be observed under shear, the difference from

n = 36 is clear. At γ̇ = 1.0, there is no symmetrically distributed variation about

minimum and maximum values of g(rc, θ). Instead a pair of minima are found at

θ = 40◦ and θ = 150◦. The enhanced correlation along the flow direction due to

shearing becomes less pronounced as compared to n = 36. Two contact values at

θ = 40◦ and 150◦ are found to be decreased with the increase of shear rate. To sum

up, for n = 36, the area under the g(rc, θ) curve is slightly increase with the shear

rate, while for n = 4 the corresponding area is clearly decrease with the shear rate.
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Figure 3.5: Angular variation of PDF g(rc, θ) at the radius of first peak of gs(r) for
the particle softness n=36 (upper) and 4 (bottom).
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The flattened first peak for n = 4 is closely related to the formation of secondary

depletion region at θ = 150◦ as well as weaker correlation along the flow direction

due to the effect of particle softness.

3.4 Conclusions

Shear rheology and microstructures of particles with different softness are studied

using NEMD simulations. Our results show that a universal shear-thinning behavior

for particles with different softness in absence of hydrodynamics, albeit softer par-

ticles exhibit stronger shear-thinning tendency. By investigating the microstructure

of these systems, we found a strong relation between the changes of the structures

and the particle softness in presence of shear. These different microstructure changes

in responses to the shearing might explain the extent of shear-thinning behavior for

different particle softness.
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Chapter 4

Coarse-grained DNA model

4.1 Introduction

DNA, a very important molecule in biological systems, is composed of sugar-phosphate

backbone with four different types of bases: adenine A, thymine T, cytosine C, and

guanine G. The specificity of complementary base pairing (A-T and C-G) not only

determines the formation of double helical structures, but also makes DNA a useful

tool for self-assembly, e.g., DNA-functionalized particles as building blocks for the

assembly of nanostructures [85].

In order to understand the role of DNA in the emerging DNA nanotechnology, ac-

curate computational models need to be developed. Quantum chemistry calculation,

due to its high computational demand, has very limited applications in modeling

dynamical processes involving breaking and forming of base pairs, which are the

critical processes in these DNA nanotechnology. All-atom models with empirical

force fields, such as the CHARMM and AMBER force fields, have been used to

model transitions in small duplexes and hairpins [103]. However the minimal unit

in a DNA nanotechnology typically involves tens to hundreds of DNA chains with

around 10-100 nucleotides for each chain. The events, which involve chain diffusion
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as well as base pair stacking, and hydrogen bonding happen at the ms timescale or

even longer. As an alternative, coarse-grained (CG) models of DNA reduce degrees

of freedom by replacing a group of atoms by a single site with effective interactions

between CG sites. By sacrificing details at some level, these CG models allow one

to study much larger systems and also for a longer time (Figure 4.1).

length scale

tim
e 
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al
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quantum 
mechanics
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molecular
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continuum

Figure 4.1: Molecular simulation scales

Numerous coarse-grained DNA models have been proposed varying in complex-

ity [45, 52, 59, 82, 136]. These CG models typically simplify the physical structure

of the nucleotide into two or three interaction sites (or beads). The base is rep-

resented by one site and then the sugar-phosphate backbone is either defined as a

single or two interaction sites (i.e. one site for sugar group and the other for phos-

phate group). Despite the huge reduction of interaction site numbers as compared to

the corresponding all-atom models, most of these CG models are still parameterized

with very complicated interaction potentials involving multi-body interactions. The

examples shown in the literature are limited to simulations of two or three DNA

strands. The capability of simulating typical minimal unit involved in the DNA

nanotechnology with these available CG models is still questionable.

In this chapter, we focus on developing CG DNA model for studying the self-
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assembly of DNA-functionalized particles (DFPs). DNA provides a natural tool for

directed particle assembly because of the chemical specificity of double helix for-

mation. Particles with short single-stranded DNA, grafted on their surfaces will be

bridged together if and only if those strands have complementary base sequences

due to the spontaneous formation of double-stranded DNA [102, 108]. Moreover,

the temperature-dependent stability of such DNA bridges allows the resulting at-

traction to be modulated from negligibly weak to effectively irreversible over a con-

venient range of temperatures [113]. The key features of the proposed CG DNA

model required to successfully simulate the DNA-mediated assembly processes is

to capture the dynamic processes of double-stranded DNA melting. Moreover, the

coarse-grained model must be properly designed to capture the structural, thermody-

namical, and mechanical properties of DNA in both the single- and double-stranded

forms. Therefore in this chapter we first present a simpler coarse-grained DNA model,

which is based on an earlier ssDNA model proposed by Dofman and Kenward [52],

and then we introduce an advance version, which are parameterized according to pre-

vious all-atom simulation data. This new version CG model includes the properties

of helix of dsDNA, angular-dependent hydrogen bonding interactions and accurate

structure (i.e. diameter and length of dsDNA). The helix of backbone is induced by

DNA stacking and hydrogen bonding without any extra torsional constraints

4.2 Coarse-grained DNA model in the reduced

unit

4.2.1 DNA model

In order to achieve an accurate description of DNA behavior in a CG DFP model,

the DNA model itself should be suitable for studying the properties of ssDNA and
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dsDNA. The model proposed here is expected to include the following key aspects

of DNA behavior that may be important for understanding the assembly of DFPs:

(i) attractive interactions between complementary base pairs A:T and G:C, (ii) at-

tractive interactions between adjacent bases to capture base stacking, (iii) the ability

to study sequence-dependent behavior, (iv) hairpin formation in a suitable ssDNA

sequence with complementary WC pairs at both ends, (v) hybridization between

two fully or partially complementary strands, and (vi) no multi-strand association

or aggregation in the form of large bundles.

It is also desirable to include base pair dependent non-WC interactions [128], but

is something that will require extensive parameterization and testing. We plan to

do this in future refinement of the model proposed here. By taking into account the

requirements above, we have developed our CG model, which is based on an earlier

DNA model proposed by Dorfman and co-workers [52]. Our choice is based on a

compromise between computational efficiency and accurate representation of DNA

behavior. Other DNA models are available in the literature, which can be computa-

tionally more efficient or physically more accurate. In our model (see Figure 4.2), a

two bead representation is used for a nucleotide, one bead for the phosphate-sugar

backbone and another for the nitrogenous base.

The connectivity between base and backbone beads and between adjacent back-

bone beads is modeled by the finite extensible nonlinear elastic (FENE) bond po-

tential [63], which is given by

Ubond(rij) = −kbond

2
R2

0ln

[
1−

(
rij
R0

)2
]
, (4.1)

where kbond is the effective strength of the potential, and R0 is the cutoff distance

at which this potential diverges. Following Kenward et al., we use kbond = 30ε/σ2

and R0 = 1.5σ here [52]. Here, ε is the characteristic energy scale and σ is the
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(a) (b)

(c)Figure 4.2: (a) All-atom model of dsDNA. (b) Two-bead coarse-grained model of
dsDNA

characteristic length scale. The angle potential is used to provide additional bending

rigidity to the backbone with the following functional form:

Uangle(θ) =
kangle

2
(cosθ + cosθ0)2, (4.2)

where θ the angle between three adjacent backbone beads, θ0 = 180◦ is the reference

bending angle, and kangle = 24ε is the stiffness parameter. Inter-chain and intra-chain

stacking (st) and WC hydrogen bonding (hb) attractions between DNA base beads

are modeled as [52]

Uk(rij) = −εukδkij
{

exp
(

20
[rij
σ
− Γs

])
+ 1
}−1

, (4.3)

where k ∈ {hb, st} and Γs sets the range of interaction; we use Γs = 1.5. The

interactions between possible base pairs out of the four base alphabet (A, T, C or

34



G) can be simply represented in a matrix form [δkij] as [52]

[δstij ] =



δstAA δstAT δstAC δstAG

δstTA δstTT δstTC δstTG

δstCA δstCT δstCC δstCG

δstGA δstGT δstGC δstGG


=



3
4

1
2

1
2

3
4

1
2

1
4

1
4

1
2

1
2

1
4

3
4

3
4

3
4

1
2

3
4

1


, (4.4)

[δhbij ] =



δhbAA δhbAT δhbAC δhbAG

δhbTA δhbTT δhbTC δhbTG

δhbCA δhbCT δhbCC δhbCG

δhbGA δhbGT δhbGC δhbGG


=



0 2
3

0 0

2
3

0 0 0

0 0 0 1

0 0 1 0


. (4.5)

In Eq. (4.3), uk sets the relative energy scale between base stacking ust and

hydrogen bonding uhb. We use ust = 2.5 and uhb = 1.0 and keep ust/uhb = 2.5 as

suggested previously by Linak et al. [81]. The stacking potential Ust is only applied

to adjacent bases in a DNA strand connected to backbone beads i and i±1, which are

less than distance 2σ apart. The hydrogen bonding potential Uhb is applied between

all possible WC inter-strand base pairs and intra-strand base pairs, which are less

than distance 2σ apart, excluding adjacent (i and i±1) and next-nearest neighbors (i

and i±2). In addition, short-range repulsive interactions between backbone-base and
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base-base beads are modeled by the Weeks-Chandler-Andersen (WCA) potential as

UWCA(rij) =


4ε

[(
σ

rij

)12

−
(
σ

rij

)6
]

+ ε, if rij ≤ 2
1
6σ,

0, if rij > 2
1
6σ.

(4.6)

The repulsive interactions between negatively charged backbone beads are mod-

eled by the Yukawa potential (screened electrostatics) as [50]

Uele(rij) = A
e−κrij

rij
, (4.7)

where A is a prefactor with units of energy×distance, κ = 2/σ is the screening length,

and rcut = 3.2σ is the potential cutoff value. In our reduced unit model, the actual

strength of electrostatic interactions (A = 100 εσ) is selected so as to prevent triple-

or multi-strand aggregation as shown in Figure 4.3. The undesired aggregation of

multiple DNA strands results from the absence of electrostatic repulsion between

backbone beads, whereas well-separated dsDNA pairs form in the presence of such

repulsion modeled as the Yukawa interaction potential, Eq. (4.7). We note that

aggregation of multiple DNA strands can also be avoided by accounting for the

directional nature of hydrogen bonding interactions between DNA base beads with a

multi-body interaction potential instead of the isotropic distance dependent potential

given by Eq. (4.3). To account for electrostatic interactions in a more transparent

manner, we are currently developing a DNA model in real units with appropriate

size scaling for the backbone and base beads as well as disparate bond lengths for

backbone-backbone and base-backbone bonds [14]. No attempt is made here to

convert the reduced simulation units to SI units as was done previously by Linak et

al. [80, 81] for the temperature based on the experimental data. Without significant

experimental input, such a mapping will likely yield inconsistent results.
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(a) (b) 

Figure 4.3: Simulation snapshots of four pairs of partially complementary DNA
sequence without (a) and with (b) the Yukawa interaction potential temperature
below the DNA melting temperature.

4.2.2 Results

In order to validate the CG DNA model, we first present the simulation data to

characterize the melting behavior of ssDNA and dsDNA. The melting temperature

is identified as the temperature at which the heat capacity (calculated from potential

energy fluctuations) shows a maximum, the so-called calorimetric definition [56]. We

also use a structure based definition to define melted or unhybridized states. We

define ssDNA hairpin or dsDNA duplex configurations to be hybridized (Figure 4.4)

if at least a certain number of the possible complementary base pairs are bonded. Up

to a certain threshold value of number of bonded pairs, the melting curves are quite

similar. The melting temperature, identified from this structure based criteria as

the temperature at which 50% of the states are melted, is similar to the calorimetric

definition based on the heat capacity.

Figure 4.5 shows the melting curves for a ssDNA hairpin: A10G20T10 and a ds-

DNA S1S2: GCGTCATACAGTGC obtained from REMD simulations. The shape of

these melting curves is similar to what is expected based on thermodynamic melting

behavior of hairpins and dsDNA formation from experiments [106, 144], although the
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A

B

Figure 4.4: Illustration of the hydrogen bonds formed between the stem bases of
a hairpin (A10G20T10) and dsDNA (S1S2: GCGTCATACAGTGC). The red lines
represent hydrogen bonds formed between the bases.

widths of the melting transitions are much broader as found by Linak et al. [80, 81]

as well for a similar model as used here. Such broad transitions (unphysical) are

also found in more detailed atomistic models of biomolecular systems such as pro-

teins [10]. From Figure 4.5 we observe that at very low temperatures almost all

states are found to be hybridized and at high temperatures all states are melted.

The transition between these two states is occurring in a cooperative manner, more

so in the case of dsDNA. The temperature at which the fraction of melted states

equals the fraction of hybridized states can be defined as the melting temperature.

We note that the melting curve obtained from simulation of a single pair of duplex

in the canonical ensemble is different from the bulk experimental situation involv-

ing hybridization between many pairs of complementary strands, due to finite-size

effects, as discussed in detail by Ouldridge et al. [104, 105] If a comparison between

simulation data from a finite system and experiment is desirable, melting temper-

ature can be estimated as the temperature at which 33% of states are melted, as

opposed to 50%. We also note that in the case of dsDNA hybridization, the melting

temperature is also a function of the DNA concentration or simulation box volume

for a fixed number of DNA strands.
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Figure 4.5: Thermodynamic melting behavior. The fraction of melted states as a
function of temperature (red symbols) (and typical DNA configurations) and heat
capacity (black symbols) are shown for (a) a ssDNA hairpin:A10G20T10 and (b) a
pair of dsDNA S1S2:GCGTCATACAGTGC.
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Based on the results above, the CG DNA model is expected to capture the es-

sential thermodynamics of dsDNA hybridization and ssDNA properties. Specifically,

cooperative transitions between hybridized and unhybridized states for dsDNA and

ssDNA, as a function of temperature are captured.

4.3 Coarse-grained DNA model in the real unit

4.3.1 DNA model

The advanced version of CG DNA model proposed here is mainly based on previous

ladder-like model, which is relatively simple yet accurately portrays the dynamics and

denaturation of DNA. We designed our new CG model in the real unit to facilitate the

direct comparison with available experiment data. In order to save the computational

cost, the model is still a bead-spring type model that divides the nucleotide into two

beads. One bead represents the sugar-phosphate backbone and the other represents

the base. We parameterized the base interactions according to the previous all-

atom model studies by our group, which contains a more accurate quantification

of different base interactions. The anisotropic nature of the hydrogen bonds are

included in this model, which combined with stacking interactions induces the helix

structure of double-stranded DNA. This new model also differentiates the backbone-

backbone bond length and the backbone-base bond length, which is also important

for double helix formation. We note this model does not differentiate between bases

in size, mass, or bond length to backbone. It also does not differentiate between the

backbone beads and the base beads in terms of mass or size.

The overall potential energy in the model is defined as the sum of each interaction:

Utotal = Ust + Uhb + UWCA + Ubond + Uangle + Uele (4.8)
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The stacking interactions of adjacent bases are modeled as 12-10 Lennard-Jones

potential:

Ust(rij) = εij

[
5

(
σst

rij

)12

− 6

(
σst

rij

)10
]
. (4.9)

The Watson-Crick (WC) hydrogen bonding potentials between complementary base

pairs (A:T and C:G) are also represented by 12-10 type Lennard-Jones potentials

with the exception of additional modulating function f(θ) to account for the angular

dependence of hydrogen bonding.

Uhb(rij) =


εij

[
5

(
σhb

rij

)12

− 6

(
σhb

rij

)10
]

+ εij[1− f(θ)] if rij ≤ σhb,

εijf(θ)

[
5

(
σhb

rij

)12

− 6

(
σhb

rij

)10
]

if rij > σhb,

(4.10)

where

f(θ) =



0 if 0 ≤ θ ≤ π/3,

|cos(3θ/2)| if π/3 ≤ θ ≤ 2π/3,

1 if 2π/3 ≤ θ ≤ π.

(4.11)

The θ is defined as an angle formed by two vectors, each of which is composed of a

hydrogen-bonded base and its connected backbone bead. The stacking potential Ust

is only applied to adjacent bases in a DNA strand connected to backbone beads i and

i±1. The hydrogen bonding potential Uhb is applied between all possible WC inter-

strand base pairs and intra-strand base pairs excluding adjacent (i and i±1) and next-

nearest neighbors (i and i±2). The parameters of the hydrogen bonding and stacking

interactions between possible base pairs out of the four base alphabet (A, T, C or G)

are listed in Table 4.1. The εij and σst/hb correspond to the minimum value of the
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12-10 Lennard-Jones potential and the distance where the minimum occurs. All the

values of εij and σst/hb listed in Table 4.1 are derived from all-atom simulations using

the CHARMM27 force field by coupling umbrella sampling with Hamiltonian replica

exchange from the previous study [128]. In that study, the constructed potential of

mean force (PMF) between possible base pairs in the bulk mimic the Lennard-Jones

type potential, which lead to the choice of 12-10 Lennard-Jones potential with values

of εij and σst/hb matching the minimum and corresponding distances of PMFs. We

note the εij in the Table 4.1 represent the values taken from the all-atom data. In

order to make them more robust for the propose of simulation, these values are scaled

with respect to the maximum counterpart (i.e. for stacking, all the εij are scaled with

respect to the value of G:G pair and for hydrogen bonding, all the εij are scaled with

respect to the value of G:C pair). The anisotropic nature of the hydrogen bonds also

greatly diminishes the actual strength of hydrogen bonding interactions. The relative

strength between stacking and hydrogen bonding interactions are tuned to provide

the greatest representation of the physical nature of the system (i.e. structural

stability, melting transition). Finally, the cutoff distances for stacking and hydrogen

bonding interactions are chosen to be 6.5 Å and 9.5 Å respectively, where the both

interactions diminish almost to zero.

The connectivity between base and backbone beads and between adjacent back-

bone beads is modeled by the harmonic bond potential:

Ubond(rij) = kbond(rij − r0)2. (4.12)

The three-body angle potential is applied to the backbone beads is defined by the

harmonic angle potential:

Uangle(θ) = kangle(cos θ − cos θ0)2. (4.13)
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Table 4.1: Parameters for base pair interactions

Stacking Hydrogen bonding

base pair εij σst base pair εij σhb

AT 4.05 3.6 AT 2.82 6.0

CG 4.04 3.8 CG 3.49 5.5

AA 4.60 3.6

AC 4.02 3.6

AG 4.80 3.6

CC 2.97 3.7

CT 3.37 3.8

GG 5.25 3.6

GT 4.26 3.6

TT 3.65 3.7

Electrostatic interactions are applied to backbone beads to account for the negative

charge on the phosphate group based on the Debye-Huckel approximation, which

assumes the high salt concentrations:

Uele(rij) =
qiqj

4πε0εkrij
e−rij/κ =

A

rij
e−rij/κ, (4.14)

where

κ =

(
ε0εkRT

2N2
Aq

2
eI

)0.5

. (4.15)

This interaction is only applied to the backbone beads that are not bonded or not part

of the same angle. In addition, short-range repulsive interactions between backbone-

base and base-base beads are modeled by the Weeks-Chandler-Andersen (WCA)
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potential as:

UWCA(rij) =


4ε

[(
σ

rij

)12

−
(
σ

rij

)6
]

+ ε if rij ≤ 21/6σ,

0 if rij > 21/6σ.

(4.16)

The addtional parameters for potentials used in this study are tabulated in Table 4.2.

Table 4.2: Values of parameters for potential energy functions

Parameter Value Unit

σ 5.5 Å

ε 4 kcal/mol

kbond 50 kcal/mol/Å
2

rbb-b 5.75 Å

rbb-bb 5.5 Å

kangle 80 kcal/mol

θ0 180o

A 4.243 kcal/mol

κ120mM 8.8 Å

κ50mM 13.6 Å

κ20mM 21.5 Å

4.3.2 Results

4.3.2.1 Melting behavior of dsDNA

Here we study the melting transition of our CG DNA model using sequence of S1S2,

whose melting behavior has been studied experimentally in several salt solutions.

Figure 4.6 shows simulated results for the fraction of melted states and correspond-

ing heat capacity as a function of temperature for S1S2 at three salt concentrations.
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Parameterization are only based on [Na+] = 120mM. The curves at other salt con-

centrations, as well as all other simulation results presented hereafter, represent

predictions of the model. Since the model are parameterized to reproduce melting

data at [Na+] = 120mM, the melting temperature obtained from simulation at this

salt concentration is, by construction, in agreement with experiment. However, the

simulated results are also in close agreement with the melting temperatures for other

salt concentrations (Table 4.3). Although the simulated melting transition is slightly

broader than its experimental counterpart, this phenomenon is common in coarse

grain approaches, and the discrepancy in this case is minor compared to that of our

previous ladder-like model. We note our parameterization is based on very limited

data set: S1S2. In order to improve the accuracy of prediction by our CG model,

a large data set (i.e. hundreds of dsDNA sequences) should be used to select the

parameters by minimizing the discrepancy between predicted melting temperatures

(from experiment data or thermodynamic calculations) and simulated temperatures.
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Figure 4.6: Thermodynamic melting behavior. The fraction of melted states as a
function of temperature (symbols) and heat capacity (dashed lines) are shown for a
pair of dsDNA S1S2:GCGTCATACAGTGC at three salt concentrations.
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Table 4.3: Melting temperatures of S1S2 at different salt concentrations from exper-
iments, thermodynamic prediction and simulation

Melting temperature (K)

[Na+] (mM) Experiment Prediction Simulation

120 333.2 323.0 331.4

50 328.5 316.7 316.1

20 321.0 310.1 285.2

4.3.2.2 Structure of dsDNA

Our CG DNA model not only exhibits reasonable hybridization-melting thermo-

dynamics, but also spontaneously forms B-form like dsDNA over a wide range of

temperatures. We used dsDNA sequences of S1S2, containing 14 base pairs and

performed simulations at 16 different temperatures from 180 K to 390 K. We found

that within the temperature range that stabilizes dsDNA structure, right-handed he-

lices are formed in 48% of the structures and the remaining are left-handed helices.

This result is reasonable since our model has no built-in handedness; the formation

of either left-handed for right-handed helices should has equal probability. In Fig-

ure 4.7, we provide two snapshots of the dsDNA configuration from our simulations,

which shows the left-handed and right-handed helical dsDNA.

B-DNA has about 10 bases per turn. For the 14 base pair helix, it has less than

1.5 turns. From Figure 4.7, our dsDNA has about 12 bases per turn. We attribute

this discrepancy to the limitation of one-bead representation of backbone. Since our

model has no torsional constraints that favor helical structures and the helix is solely

induced by stacking and anisotropic hydrogen bonding, the energy penalty due to

bending and torsion of backbone is higher than for example two-bead representation

of backbone. The decrease of the rigidity of backbone helps dsDNA structure but

disrupts the ssDNA structure and leads to clumped states.
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Figure 4.7: Left-handed (left) and right-handed (right) helical dsDNA.
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Figure 4.8: The distribution of end-to-end distance (R) of dsDNA.
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Figure 4.9: The distributions of distances between backbones. (a) backbone pairs at
center of the DNA chain. (b) backbone pairs at two ends of the DNA chains

Figure 4.8 shows the distribution of end-to-end distance (R) of dsDNA. The end-

to-end distributions are computed based on both base and backbone beads for each

of the two ssDNA that hybridized into dsDNA. Depending on the reference bead

(base or backbone), we obtained end-to end distance of 3.83 nm (base-to-base), 4.6

nm (backbone-to-backbone). We also estimate the diameter of our dsDNA by com-

puting the distributions of distances between a pair of backbones that connected

to the hybridized bases in Figure 4.9. The distributions are relatively narrow for

backbone beads located at center of DNA chains comparing to those at two ends

of DNA chains. This observation is related to the so-called fraying of the terminal

base pairs. Our estimation of diameter of dsDNA is about 1.8-1.9 nm. These struc-

tures are essentially unchanged whether they are the left-handed or right-handed

helices, because the potentials are symmetric with respect to the handedness. The

comparison of structure data between our simulations and experiments are tabu-

lated in Table 4.4. Although these numbers are not exactly same, they are within

reason despite not require Gö-type structural terms such as a forced dihedral. The

structural representation is also assisted by the anisotropic nature of the hydrogen

bonding which more closely represents reality. This along with the short stacking
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distance coupled with the longer backbone-backbone bond length gives the B-DNA

like structure its helical shape.

Table 4.4: Structure data for dsDNA

Property Experiment Simulation

Base pairs per turn 10-10.6 12

diameter (nm) 2.0 1.8-1.9

length (nm) 4.76 4.6
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Chapter 5

DNA-mediated interparticle

interactions

5.1 Introduction

It is now well recognized that self-assembly of particles functionalized with biomolecules

is a promising way to form unique nanostructured materials [37, 88]. The distinct

advantage of inter-particle interactions mediated by DNA molecules is the specificity

of Watson-Crick (WC) pairing [3, 90]; the functionalized particles can be bridged

together either by direct hybridization of complementary single-stranded DNA (ss-

DNA) molecules (sticky end) or indirectly via “linker” DNA molecules that can

bind simultaneously to the complementary ssDNA sequences on two different parti-

cles [37]. While significant progress has been made in recent years, the fundamental

details of DNA-mediated particle assembly are not very well understood [37, 88].

Specifically, the assembly of micron-sized particles into crystalline structures is still

quite challenging, though nanoparticles have been assembled into a wide variety of

periodic arrangements via DNA-mediated interactions [85, 102, 108].

Computer simulations can provide a convenient route to explore the large parame-
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ter space of DNA-functionalized particles (DFPs), which can be useful for developing

basic understanding and to test existing theoretical design models [75, 85, 94, 132].

Using all-atom models to study the properties of DFPs is still beyond the current

state-of-the-art computational capabilities [69, 70, 100]. Simple and accurate coarse-

grained (CG) models are, therefore, needed to overcome existing computational chal-

lenges and are actively being developed. Starr and co-workers [26, 46, 47, 107, 141]

have developed a “two-bead” DFP model in which each nucleotide is represented by

two force sites, one for the phosphate-sugar backbone and one for the nitrogenous

base. The backbone beads are connected by the standard finite extensible nonlin-

ear elastic (FENE) bond potential. The beads representing the nucleotide bases

are also connected to the backbone beads by the FENE potential. To model WC

pairing, the 12-6 Lennard-Jones (LJ) nonbonded potential between complementary

bases is used. The particle itself is modeled as a single spherical or icosahedral core

for simplicity. This model has extensively been applied to understand nanoparticle

dimers, the stability of nanoparticle crystals, polymorphism, equilibrium clustering

and dynamics [26, 46, 47, 107, 141]. Seifpour et al. also proposed a modified model

based on this model and applied it to study the effect of DNA strand composition

and sequence on the structure and thermodynamics of DFPs [126].

Li et al. [76, 77] recently introduced a CG DFP model which is based on an earlier

model by Travesset et al. [57, 58]. In this model, the DNA molecule is made up of

three parts: single-stranded DNA, double-stranded DNA (dsDNA), and a “sticky

end”. Connected beads of different sizes are used to represent ssDNA and dsDNA.

The sticky end is modeled by multiple beads to take into account the selectivity and

directionality of hydrogen bonding between complementary DNA bases. With this

model, Li et al. reproduced all nine crystal structures observed experimentally by

Macfarlane et al. [85], and also proposed new linker sequences for future experiments.

Frenkel and co-workers [75, 86, 87, 94] have developed a CG “core-blob” DFP model
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by further reducing the DNA degrees of freedom. In their model, the sticky end of

tethered DNA is modeled as a blob connected to an effective spherical core. This

model can capture several important features of DNA-mediated particle assembly,

from pair-particle interactions [75] to thermodynamic phase transitions [86, 94].

When moving from the CG model with explicit DNA-like chains to a simplified

core-blob model, the structural and chemical details of DNA molecules are gradu-

ally lost. Although it is obvious that significant coarse graining is needed to explore

DFP system behavior (in particular spontaneous crystallization), certain molecular

details, which are often ignored in these previous models, are important to under-

stand DNA-mediated particle assembly. For example, most current models use an

average base representation (ignoring the differences between A:T and G:C pair in-

teractions), thereby neglecting the dependence of particle interactions on the DNA

sequence. Not only is the difference between strengths of G:C pairing (stronger due

to the presence of three interbase hydrogen bonds) compared to A:T pairing (two

interbase hydrogen bonds) important, but the actual DNA sequence can also affect

properties of hybridized DNA molecules [126, 136]. In addition, it has been reported

that in order to capture surface-adsorbed or interfacial DNA structure, one needs to

account for non-WC base pairing as well, since dsDNA melting and ssDNA proper-

ties will be affected by these additional interactions [82, 119, 120, 128]. Base stacking

interactions, which drive the coplanar alignment of neighboring bases, are also impor-

tant to the overall stability of helical duplexes and are also sequence-dependent [149].

Furthermore, the intra-particle interactions, which are the interactions between DNA

strands on the same particle, are often ignored but can be quite important for particle

diffusion and kinetics of assembly [24].

In this chapter, we present a new CG DFP model in which we use a two-bead

representation for each nucleotide of tethered DNA molecules. The DNA model,

as described in section 4.2, displays typical experimentally observed temperature
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melting behavior for dsDNA hybridization and ssDNA hairpin formation. The DNA

strands are connected to spherical particle cores (made up of smaller point particle

beads) by FENE bonds to simulate DFPs. We use this model to study the potential of

mean force (PMF) between two DFPs as a function of DNA grafting density, spacer

length, sticky end length, and temperature. The results presented in this paper

suggest that this new DFP model can be useful for studying the thermodynamics

and kinetics of particle assembly mediated by DNA hybridization.

5.2 Model and simulation details

5.2.1 Coarse-grained model for DNA-functionalized particle

The model of DNA is described in details in Chapter 4.2, which is formulated in

the reduced unit and exhibits a ladder-like structure for dsDNA. The particles are

modeled as rigid body hollow spheres (radius 5σ used throughout this work), and

each particle is made up of 100 beads uniformly distributed on the surface of a

sphere [1]. The particle beads are uncharged and interact with DNA and other

particle beads via the WCA interaction potential. Single strand DNA molecules are

covalently linked to the particle surface beads by the FENE bond potential. We

select particle surface beads that are farther than a certain distance value, which

varies with DNA grafting density, to ensure uniform distribution of DNA strands

on the particle surface. Figure 5.1 shows a snapshot of two CG DFPs with several

ssDNA molecules attached at random locations to the particle surface. In our model,

DNA molecules that are attached to the same particle can interact via the WC base

pair interactions, in contrast to previous CG DFP models that neglect intra-particle

base pair interactions even between A:T and G:C base pairs. Therefore, appropriate

DNA sequences in our model can form hairpin or loop structures, which have been

proposed as ideal candidates for novel design schemes [5, 72, 73, 74]. Both inter-
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Potential of mean force (PMF)

Figure 5.1: Coarse-grained DNA functionalized particle model. Two particles with
multiple DNA molecules attached to the particle surface atoms are shown. The DNA
sequence is composed of two parts, the spacer (6T: TTTTTT) and the sticky end as
shown in the schematic.

particle and intra-particle base pair interactions are naturally incorporated in our

CG DFP model.

5.2.2 Simulation details

To enhance equilibrium sampling, the replica exchange molecular dynamics (REMD)

method is used for all of our simulations [135]. REMD simulations are carried out

under the canonical ensemble using a Langevin thermostat with damping parameter

τ = 1 (ε/m/σ2)−1/2 in a cubic simulation box with periodic boundary conditions in

all directions. The size of the simulation box is chosen to be 100σ so that there are

no interactions between molecules and their periodic images. In our REMD simu-

lations, we typically use 16 to 48 temperature replicas to obtain sufficient exchange

probability and, therefore, convergence. The replica temperatures were chosen by

trial and error such that the potential energy distributions adjacent replicas overlap

sufficiently to ensure exchange between any two adjacent replicas with at least 50%

probability. The total number of timesteps that we performed for each simulation
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is of the order of 108 steps with a step size of ∆t = 0.01 (ε/m/σ2)−1/2. About 108

timesteps per replica are required to obtain a reasonable estimate of the melting pro-

files of the hairpin and the duplex, which takes approximately 144 hours of processor

time (for 32 replicas) on the Lehigh computing server corona (corona.cc.lehigh.edu)

equipped with AMD Opteron 8-core 6128, 2GHz processors. For DFPs, we need

about 5×108 timesteps per replica, requiring approximately 2304 hours of processor

time (for 32 replicas) on the Lehigh computing server corona.

DFPs are placed randomly inside the simulation box. The initial part of the sim-

ulation is discarded as equilibration, and the equilibration length is decided based on

observables such as number of hydrogen bonds and distance between the particles.

The equilibration length for DFPs is about 108 steps. We use the block averag-

ing scheme to estimate errors by dividing the production data into three sets and

calculating the standard deviation from the mean.

When simulating DFPs, we also tested to ensure that results remain unchanged

with a box size of 200σ. For the larger box size, we find it useful to employ um-

brella sampling simulation [139] to obtain free energies as a function of pair distance

between particles in a reasonable time. This also helps validate results obtained

from REMD simulation. For umbrella sampling, we use harmonic umbrella potential

with spring constant = 5.0 ε/σ2 along the pair distance between the particles with

a sufficient number of copies to obtain overlap between distance distributions.

Finally, we have used two different pairs of complementary DNA sequences in our

simulation [11, 113]: a 12-mer, long sticky end (TTTTTTATGTATCAAGGT and

TTTTTTACCTTGATACAT) and a 7-mer, short sticky end (TTTTTTTTTTTGTC-

TACC and TTTTTTTTTTTGGTAGAC).
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5.3 Results

Since attentive control of particle interactions is needed to obtain ordered structures,

several previous efforts have been focused on understanding pair interactions between

DNA-functionalized particles. On the experimental side, Crocker and co-workers

measured DNA-mediated pair interactions between micron-sized particles [12, 113].

The separation distances between particles were obtained by confining two DFPs

in harmonic potentials in an optical tweezer setup. The pair interaction potential

(or free energy as a function of distance) is then obtained by the Boltzmann re-

lation, accounting for optical forces. These direct measurements have allowed the

development of statistical physics-based theoretical models for understanding the

underlying physical phenomena [113] of interactions between micron-sized particles.

Though experimentally very challenging, it is desirable to obtain such information

for interactions between nanoparticles as well.

Estimates of pairwise interactions between nanoparticles have been obtained by

simulation with the help of CG DFP models [68, 138]. These previous studies con-

sider pair interactions between DFPs for very low DNA grafting densities of 4 to 6

DNA molecules per particle. Frenkel and co-workers [94, 142] have developed nu-

merical schemes to extract pair interactions using their core-blob DFP model with a

combination of statistical mechanics theory and Monte Carlo simulations. Our new

DFP model presented here is meant to act as a bridge between the core-blob type

simplified description (which is computationally tractable even for phase behavior

calculations) and experiment by including a more detailed description of DNA de-

grees of freedom (see section IIA). Ultimately, it may turn out that some of these

details are not necessary to capture essential details of DFP assembly thermody-

namics, including phase diagrams. But we anticipate that some of these additional

details in our model may be important for understanding issues related to particle
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dynamics and the kinetics of assembly.

We simulate two DFPs grafted with either the 12-mer long sticky end or the

7-mer short sticky end as described previously. The potential of mean force (PMF)

or free energy as a function of pair distance between two DFPs, with respect to

unhybridized particles, is calculated as

∆FI(r) = −kBT ln[g(r)] + c, (5.1)

where g(r) is the pair correlation function (normalized with respect to an ideal gas),

kB is the Boltzmann constant, c is an additive constant, and I is used to identify par-

ticle types in a pair, i.e., I = {A-A,B-B,A-B}. In addition to binning data collected

at a single temperature in an REMD simulation, we also use the weighted histogram

analysis method (WHAM) [65, 131] to combine data from all of the temperatures to

obtain PMFs.

5.3.1 Effect of temperature

Figure 5.2 shows a representative set of PMFs for different temperatures (see legend)

between three possible pairs of particles (A-A, B-B, and A-B). The symbols repre-

sent data from the REMD simulations sampled at a single temperature, and the

lines are the WHAM reconstruction based on the data from all temperatures. The

agreement between the two estimates clearly indicates that the simulation times are

long enough to obtain PMFs. The interactions between like pairs (A-A and B-B) are

purely repulsive at all of the temperatures, as shown in Fig. 5.2b, as these ssDNA

sequences were designed to have minimal self-interactions. Moreover, the repulsive

interactions between like pairs are independent of the temperature, except at very

low pair distances.

The PMFs between unlike particle pairs (A-B), which are coated with comple-
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Figure 5.2: Potential of mean force (PMF) calculated for a grafting density of 16
DNA molecules per particle with long sticky end for pairs A-B (a), A-A (b, top panel),
and B-B (b, bottom panel). The data from simple binning at a single temperature
shown by empty symbols, and solid lines are estimates from the weighted histogram
analysis method. Symbol and line colors are used to distinguish between various
temperatures as labeled in panel a.
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mentary ssDNA with a long sticky end, are shown in Fig. 5.2a. The free energy as

a function of pair distance shows a distinct minimum at low temperatures, which

corresponds to the bound configuration between particles A and B (stabilized by

DNA hybridization). Specifically, the general shape of the pair potential and its

dependence on temperature resemble the experimentally measured effective pair po-

tentials [113]. For two particle simulations in a large enough box (approaching zero

density limit), the minimum in free energy is an important parameter to characterize

interactions between particles as a function of system parameters such as tempera-

ture, DNA grafting density, and length of sticky or spacer end [28].

Figure 5.3 shows the minimum interaction free energy as a function of temper-

ature, which we find to vary in a highly non-linear manner. Previously, Dreyfus et

al. [28] also predicted a similar non-linear dependence of the minimum interaction

free energy on temperature with the help of a theoretical model. In their model, the

minimum interaction free energy depends on the number of bonds formed between

the two particles as well as the entropy associated with the selection of various combi-

nations of strands or bonds on the two particles; the sharp decrease in the minimum

interaction free energy as a function of decreasing temperature is most likely due to

enhanced hydrogen bonding (due to the increase in the number of hydrogen bonds

as the temperature decreases and the increased stability of a hydrogen bond with

decreasing temperature), which is further facilitated by shorter distances at which

the minimum occurs. However, in their model DNA is simplified as a rigid rod with

a sticky point at the end (to represent complementary ssDNA), and the two particles

are approximated as flat plates. In our model, ssDNA strands are relatively flexible,

and the length of the sticky end is comparable to the length of the spacer. Given

these differences between our simulation model and the theoretical model of Dreyfus

et al., the non-linear dependence of the minimum interaction free energy on tem-

perature is expected to be a general feature of DNA-mediated particle interactions.
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At low temperatures, the minimum interaction free energy can be quite significant

compared to the thermal energy, thereby leading to irreversible particle binding. Ap-

pearance of such irreversible particle binding at temperatures not too far from the

desired temperature range (weak binding regime) due to non-linearity is likely to be

an inherent hindrance to particle rearrangement, and, therefore, crystallization in

DNA-mediated particle assembly.
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Figure 5.3: The minimum interaction free energy is shown as a function of tem-
perature corresponding to system parameters used in Fig. 5.2a. The inset shows a
zoomed-in view of the main plot.

5.3.2 Effect of DNA grafting density

In experiments, DNA grafting density on the particle surface can be controlled by

synthesis methods [27, 101] as well as by adding non-hybridizing ssDNA in the so-

lution buffer [29]. By controlling the fraction of sticky ends that can hybridize

with complementary ssDNA on other particles, it was shown that the particle dis-

sociation behavior (melting temperature and sharpness) can be controlled quanti-
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tatively [19, 29]. It is still less well understood how this particular parameter can

affect the pair interaction potential and the associated assembly mechanism. Here,

we study the first question by calculating PMFs as a function of DNA grafting density

ranging from 1 DNA molecule per particle to 32 DNA molecules per particle.

Figure 5.4 shows the minimum interaction free energy as a function of temper-

ature for varying DNA grafting densities for the case of a short sticky end. For a

given temperature, the minimum interaction free energy becomes lower with increas-

ing DNA grafting densities as a greater number of complementary DNA molecules

can hybridize between a pair of particles. According to Dreyfus et al. [28], the non-

linear dependence of the minimum interaction free energy can be categorized into

three different regimes. The weak-binding regime, in which the minimum interac-

tion free energy is comparable to the thermal energy, is most relevant for successful

DNA-mediated particle assembly in laboratory experiments. In this regime, the min-

imum interaction free energy is expected to be proportional to the average number

of hydrogen bonds formed [28]. In Figure 5.4, we limit the range of the minimum

interaction free energy from −10kBT to −kBT , which approximately corresponds to

the so-called weak-binding regime. We find that even in this regime, the variation

in minimum interaction free energy as a function of temperature is quite non-linear.

Similar behavior in the weak binding regime was also observed previously by Mirjam

et al. [75].

To identify changes in pair PMF as a function of DNA grafting density, we use

two special cases – constant temperature and constant minimum interaction free en-

ergy. Figure 5.5a shows PMFs between unlike particles (A-B) for different grafting

densities, but the minimum interaction free energy is kept constant at −4kBT by

changing the temperature (see legend). We find that the change in temperature

is related logarithmically to the DNA grafting density in order to obtain a constant

minimum interaction free energy (data not shown). Though not entirely unexpected,
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Figure 5.4: The minimum interaction free energy is shown as a function of temper-
ature for different grafting densities (see legend) for the short sticky end.

the DNA grafting density significantly alters the shape of the pair interaction poten-

tial or PMF. The minimum in free energy is quite broad for lower grafting densities,

but the attractive well becomes narrower with increasing DNA grafting density. This

narrowing of the attractive well is most likely due to stronger repulsion caused by

overlap between grafted DNA molecules at small pair distances. Although some

previous work has been done relating shape of the pair potential with particle dy-

namics [130], there is no general framework to determine which of these potential

shapes will be most desirable for ordered particle assembly. Our hypothesis is that

intermediate DNA grafting densities will yield an optimum in the width of the attrac-

tive well so that pair distance can change as needed for structural rearrangements,

while the resulting ordered structure is still stable without significant fluctuations in

lattice parameters.

In Figure 5.5b, we compare PMFs at the same temperature for varying DNA

grafting densities. The minimum interaction free energy decreases with increas-
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ing DNA grafting density as expected due to the higher number of complementary

strands that can hybridize. However, the maximum number of hydrogen bonds,

defined as the number of hydrogen bonds formed between the two particles at the

lowest temperature of our simulation, does not linearly increase with the number of

grafted DNA chains (see Figure 5.6). This is most likely due to the excluded volume

(repulsive) interactions between the DNA molecules on the same particle, thereby

limiting the number of strands that can hybridize with increasing DNA grafting

density. Similar to Figure 5.5a, we also observe narrowing of the attractive well

in addition to deepening at higher DNA grafting densities, again due to enhanced

repulsion between DNA molecules at small pair distances.

Finally, we note that the current model, due to its approximate nature, can only

provide qualitative changes in the potential function, and therefore the observed

changes in the potential width should be interpreted accordingly.

5.3.3 Effect of spacer length

Experimentally, Jin et al. [49] showed that an increase in the spacer length (the non-

hybridizing part of the ssDNA) increases the melting temperature of DNA grafted

on nanoparticles. Later, Sun et al. [137] also observed a similar increase in DNA

melting temperature with increasing spacer length. From molecular simulations of

the CG DFP model, Fernando et al. [141] found that longer spacer length can actually

destabilize a preformed crystal lattice of DFPs at lower temperatures. Although

there are several studies on the relationship between spacer length and DNA melting

temperature, relatively little information is available on the dependence of the pair

interaction potential between DFPs on spacer length.

Figure 5.7 shows PMFs between a pair of unlike DFPs (A-B) when each par-

ticle is grafted with 16 complementary ssDNA molecules with the long sticky end

at the same temperature. The minimum interaction free energy decreases slightly
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Figure 5.5: (a) Potential of mean force (PMF) for different DNA grafting densities
for the short sticky end with the same attraction free energy of −4kBT . (b) PMF for
different grafting densities for the short sticky end at the same temperature of 0.23.
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Figure 5.6: The average number of hydrogen bonds (HB) formed are shown as a
function of DNA grafting density at the lowest temperature in our REMD simulation
for the short sticky end (7 bases).

(by about 1 kBT ) with increasing spacer lengths from 0 to 8 bases. This suggests

that increasing the spacer length may help in the formation of more hydrogen bonds

between DFPs, but other parameters such as DNA grafting density and particle cur-

vature may be more important determinants of enhanced hydrogen bond formation.

More importantly, the pair distance at which the minimum in the PMF occurs shifts

to a higher value with increasing spacer length. These results are consistent with

experimental observations, as the decrease in the minimum interaction free energy

will lead to a higher melting temperature and the increase in preferred pair distance

will lead to a longer translational lattice parameter [85]. As the width of the PMF

also increases with increasing spacer length, one may expect destabilization of certain

crystal lattices as observed by Fernando et al. [141] in their simulations.
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Figure 5.7: Effect of spacer length on the potential of mean force for long sticky end
with 16 DNA molecules per particle at temperature 0.224.

5.3.4 Effect of sticky end length

In addition to varying the DNA grafting density, one can also alter the minimum

interaction free energy between DFPs by changing the number of complementary

base pairs (or type of base pairs formed, A:T versus G:C [126]) of the sticky end.

Crocker et al. [89] found that reducing the sticky end length leads to a decrease in

melting temperature. Similar conclusions were also drawn by others using separate

linker-mediated interactions between DFPs [38]. Figure 5.8 compares PMFs obtained

for a pair of DFPs with short and long sticky ends for three temperatures. Both of

the DNA sequences (long and short sticky ends) have a total of 18 bases, out of

which 7 and 12 are part of the sticky end for short and long sticky ends, respectively.

Intuitively, varying the length of the sticky end (while keeping the total DNA length

constant) can have two effects on the shape of the PMF – change in the depth

and change in the width of the attractive potential well. As shown in Fig. 5.8, the

minimum interaction free energy for the short sticky end is higher than for the long
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sticky end at the same temperature, as expected. The minimum in free energy for

the short sticky end is also shifted to longer pair distances due to shorter overlap

between shorter sticky ends as compared to long sticky ends. Interestingly, the PMF

well in the case of the short sticky end is wider as compared to that of the long sticky

end. Current CG DFP models, which assume a point-like sticky end, cannot capture

the effect of sticky end length on the shape of the PMF. This is not expected to

be limiting for small variations in sticky end length but may be important for large

changes in the sticky end length to model associated changes in the particle assembly

behavior.
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Figure 5.8: Comparison of potential of mean force between short and long sticky
ends at three different temperatures. ss: short sticky end; ls: long sticky end.

5.4 Conclusions

In this chapter, we use the coarse-grained DNA model as described in section 4.2 to

study the behavior of DNA-functionalized particles. The coarse-grained DNA model

used here provides explicit DNA representation (at the nucleotide level) and comple-
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mentary interactions between Watson-Crick base pairs, which lead to the formation of

ssDNA hairpins and dsDNA. Aggregation between multiple complementary strands

is prevented. We use this model to calculate the dependence of the free energy on

the distance between a pair of DNA-coated particles as a function of temperature,

DNA grafting density, and lengths of sticky end and spacer DNA. The change in

the minimum interaction free energy as a function of system temperature is found

to be non-linear even in the weak-binding regime. Our results of particle pair po-

tentials as a function of system parameters can also be useful for future design of

crystal lattices based on DNA-mediated particle assembly. For example, Macfarlane

et al. [85], suggests that the lattice spacing can be adjusted by varying the hydro-

dynamic size ratio between two types of particles grafted with complementary DNA

molecules. Based on our effective pair potentials, one should be able to modify the

lattice spacing with the same hydrodynamic particle size ratio by varying the sticky

end length while keeping the total DNA length the same. Moreover, we find that

several system parameters (such as DNA grafting density and sticky end length) can

be used to change the width of the attractive well. We hypothesize that shallower

and broader attractive potentials may be preferable for particle assembly in ordered

structures due to dynamic DNA hybridization [77], but may also lead to lower lat-

tice stability. In the future, we plan to address these questions with multiparticle

assembly simulations using the new coarse-grained model.
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Chapter 6

Self-assembly of

DNA-functionalzied particles

6.1 Introduction

Colloidal crystals have shown promise for their potential applications in photonic

band-gap materials, sensors, catalytic supports and scaffold structures [55, 133]. Due

to the advantages of direct visualization, they also serve as model systems to study

the phase behaviour and crystallization kinetics of atomic and molecular crystals.

Depending on the number of particle types, particle size ratio and particle interac-

tions, a variety of colloidal crystal structures can be formed [36]. Due to the entropic

driving force, hard spheres are known to be crystallized into limited types of close-

packed crystals: the face-centered cubic (fcc) or hexagonal close-packed (hcp) [152].

For binary systems, more types of crystal structures can be obtained. Relying on

the size ratio, the binary mixing of hard spheres can lead to three types of crystal

structures: AB, AB2 and AB13 [66]. The incorporation of attractive interactions

can lead to additional crystal structures such as body-centered cubic (bcc), fcc and

other exotic crystals. For example, CsCl, LS6 and LS8, and NaCl are reported for
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oppositely charged ionic colloidal particles [71].

With the demand of achieving more complex crystals (e.g. diamond crystals)

and abilities to program the formation of crystals, the DNA-functionalized particles

(DFP) have been proposed [3, 90], in which the attractive interactions between par-

ticles are induced by the hybridization of complementary DNA sequences. The use

of grafted, single-stranded DNA with engineered sequences can effectively tune the

interactions between particles [72, 74, 113]. Albeit the versatility of this technology,

the successes in obtaining desired crystals relies greatly on the some external factors

such as operating conditions [19, 108, 123]. The interplay between thermodynamic

and kinetic factors further complicates polymorph selection in the DNA-mediated

interaction systems [123]. Most current studies are focus on 3D systems, while with

its simplicity and advantage of visualization, 2D system should be a better system

to study the self-assembly via DNA-functionalized particles.

In the previous chapter, we establish a new model system that consists of two

nano-sized spheres, A and B, which are grafted with strands of ssDNA molecules,

whose sequences are designed to be complementary to each other. Our previous

computational study measures the potential of mean force between these two DNA-

functionalized spheres and its dependence of various parameters in a systematic

manner. We note that the interactions between two like particles, A-A or B-B,

are purely repulsive and those between two unlike particles, A-B, are attractive.

The repulsive interactions between two like particle have very weak temperature-

dependence, while the attractive interactions between two unlike particle exhibit a

strong temperature-dependence trend. In this chapter we first fit those potential of

mean force via modified continuous Jagla (MCJ) potential function and study the

crystallization and polymorphism of crystal phases of DNA-functionalized particles

in 2D with MCJ potentials.
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6.2 Fitting of pair potential

In the previous chapter, we use a detailed model, which includes the explicit repre-

sentation of the grafted DNA strands, to find the effective pair potentials between

DNA-functionalized particles. Here we extend our study to the crystallization of

the binary system in 2D using the computed effective pair potentials. Now each

DNA-functionalized particle is coarse-grained into a single spherical bead interact-

ing via an effective pair potential due to the grafted DNA chains. By considering

the intrinsic physics of the bridging between two DFPs, we fit the potential of mean

force between two DFPs with a modified continuous Jagla (MCJ) potential, which

has three terms to represent the contribution from (1) sphere-sphere repulsion due to

volume exclusion, (2) repulsion due to compression of the grafted DNA chains and

(3) attraction due to DNA hybridization respectively as follows:

U(r) = ε
(σ
r

)n
+

A0

1 + exp(A1r − A2)
+

B0

1 + exp(B1r −B2)
(6.1)

Figure 6.1(Left) shows one example of comparison between the original data and the

fitted MCJ potential. The original data (black circles) is the potential of mean force

between two DFPs with each particle grafted by 16, 12-mer long sticky end, DNA

strands at temperature T=0.228. In order to improve the fitting quality, we also

apply umbrella sampling to obtain additional data point at short contact distances

(red circles). Although not based on formal statistical mechanics argument, the fitted

MCJ potential exhibits a very good representation of the original data for a wide

range of temperatures (Figure 6.1(Right)) and grafting density (data not shown).

We use the MCJ potential to fit a large amount of PMF data from the previous

chapter. We have the following conclusive points for a specific grafting scheme: (1)

Sphere-sphere repulsion, which can be modeled as 36th power repulsive potential,

is temperature independent as expected; (2) Polymer-type repulsions between over-
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Figure 6.1: (Left) Fitting of potential of mean force (PMF) between two DNA-
functionalized particles with each particle grafted by 16, 12-mer long sticky end,
DNA strands at T=0.228. (Right) Fitting of PMFs as described in the left panel
but for different temperatures.

lapped DNA chains are also temperature independent; (3) Attractive interactions

due to DNA hybridization are temperature dependent; (4) Only single parameter B0

is needed to capture the temperature dependence of attractive interactions. There-

fore all the parameters related to the sphere-sphere repulsion are only dependent on

particle size; all the parameters relevant to polymer-type repulsion is only dependent

on the grafting scheme, i.e. number of grafted DNA chains and length and sequences

of DNA strands; all the parameters for the attractive portion of interaction except

B0 are dependence on grafting scheme. Only by varying B0, we can obtain pair

interactions at all the temperatures if the particle size and grafting scheme are fixed.

6.3 Binary lattice analysis

Possible crystal lattices comprised of equal size of A and B particles interacting with

self-similar and isotropic potentials in 2D are either square lattice or hexagonal (hex)

lattice. Based on the principle of maximizing the number of nearest neighbors to
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which it can form DNA connections, four types of lattice are identified as shown in

Figure 6.2 varying by the number of nearest neighbors. For the 4-fold coordinated

square lattice, each particle is surrounded by 4 unlike nearest neighbors; i.e. each A

(green) particle connects to 4 (silver) B particles and vice versa (Figure 6.2(a)). For

the 6-fold coordinated hex lattice, each particle is surrounded by 6 nearest neigh-

bors. We can assign each nearest neighbor as either like or unlike particles. Therefore

possible combinations of nearest neighbors are: (0A, 6B), (1A, 5B), (2A, 4B) and

(3A, 3B), if we assume the center particle is type A. The case of (0A, 6B) leads to

honeycomb lattice as shown in Figure 6.2(c); (2A, 4B) forms the type of hex lat-

tice exhibited in Figure 6.2(b), which we call alternating-string (A-S) lattice; (3A,

3B) corresponds to the honeycomb lattice of Figure 6.2(d), which is similar to Fig-

ure 6.2(c) by only switching the green and silver color. We also note that for the

(1A, 5B) case, no crystal lattice can be formed by replicating the unit cell.

We define NAB =
∑
i

niAB/2n as an order parameter that describes the average

number of A-B bonds formed for each particle in the lattice, where n is total number

of particles in the lattice and niAB is the total number of A-B bonds between particle

i and its nearest neighbors. The summation is over all the particles in the lattice and

the factor of 2 is used to account for the double counting of bonds. We find that all

the four crystal lattices in Figure 6.2 achieved the same NAB value of 2. Therefore

if we only consider attractive interactions between nearest-neighbor unlike particle,

i.e. EAB > 0, EAA = EBB = 0 where EAB, EAA and EBB are the depth of relevant

attractions, all the four crystal lattice are energetically degenerate. Served as an

lower bound, we also compute this order parameter for completely random square

lattice and hex lattice with A:B stoichiometry of 1:1 by simple probability argument.

We find NAB is 1 for square lattice and 1.5 for hex lattice.

Following the definition of NAB, we can also define NAA =
∑
i

niAA/2n and

NBB =
∑
i

niBB/2n to characterize the average number of A-A and B-B bonds be-
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Figure 6.2: Possible crystal lattices comprised of equal size of A and B particles in
2D by considering maximizing nearest-neighbor unlike bonds.
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tween each particle and its nearest neighbors in the lattice. We find that for square

lattice (Figure 6.2(a)) NAA = NBB = 0; NAA = 2/3 and NBB = 1/3 for A-S hex

lattice (Figure 6.2(b)); the value of NAA and NBB equals to 0 and 1 for honeycomb

(Figure 6.2(c)); NAA = 1 and NBB = 0 for honeycomb (Figure 6.2(d)). Although

the value of NAB is same for all the four crystal lattices, the values of NAA and NBB

are different among these lattices, which change the relative stability of these crystal

phases if one can tune the interactions between each particle and its like nearest

neighbors.

6.4 Lattice energies calculations

The results presented in the previous section suggest that in 2D both square lattice

and hexagonal lattice are theoretically possible due to energetical degeneration with

respect to the nearest neighbor binding energy, which is assumed to be dominant

because of short-ranged nature of DNA-mediated interactions. Next, we apply the

effective pair interactions derived from coarse-grained DFPs model to compute lattice

energies which is free energy at ground state for each of the four crystal lattices shown

in Figure 6.2. If we just include the attractive interaction between each particle and

its unlike-nearest neighbors, the lattice energies curves are same for the four possible

lattice phases (Figure 6.3), which is consistent with previous NAB-based predictions.

However if we turn on the repulsive interactions between each particle and its like-

nearest neighbors, we can see in Figure 6.3, square crystal lattice has lower lattice

energies comparing with hex lattice, which indicates the square crystals as the stable

crystal phase at the ground state. The relative stability of the square lattice arises

from the fact that the extra like bonds (see section previous section), which stem

from overlap of the non-hybridizing DNA chains from nearest-neighbor like particles,

increase the lattice energy of the hex lattices. We note the lattice energies are same
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for the two different hex lattices because the total number of like bonds is same for

these two lattices.
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Figure 6.3: (Left) Lattice energies calculations for square and hexagonal lattices
by including attraction between unlike particles, EAB. (Right) Lattice energies cal-
culations for square and hexagonal lattices by including attraction between unlike
particles, EAB, and repulsion between like particles.

Due to the specificity and versality of DNA-mediated interactions, we can also

make the interactions between like particles attractive by mixing different DNA se-

quences in single particle species. The detail strategies of how to induce attractive

interactions between like particles will be discussed in the later of this chapter. Now

we assume EAB > EAA = EBB > 0. We compute the lattice energies for different

values of EAA (or EBB) and data are shown in Figure 6.4. By increasing of EAA (or

EBB), the lattice energies of hex lattices decrease and at some point the lattice ener-

gies of hex lattice are smaller than those of square lattice, which indicate hex lattice

is a stable crystal phase. We note that lattice energies of square crystal lattice are

independent on the value of EAA and EBB since all the like particles do not belong

to the nearest neighbors in square lattices. We also note that the lattice energies

of two hex lattice, honeycomb and alternating strings, are same under the condition

EAA = EBB because the total number of like bonds are identical for the two case. On

the other side, because honeycomb has 2/3 more A-A bonds and 2/3 less B-B bonds
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than alternating-string structure, under the condition EAA < EBB or EAA > EBB,

honeycomb can be stabilized.
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Figure 6.4: Lattice energies calculations for square and hexagonal lattices by increas-
ing the attractions between like particles, EAA = EBB > 0

To conclude, from lattice energies calculations, we predict square crystal lattice is

the stable phase when the interactions between like particles are repulsive. By adding

attractive interactions between like particles, hex crystal lattice becomes more sta-

ble. By differentiating the attractions of different types of like particles, honeycomb

crystal lattice can be stabilized. The lattice-energy based predictions only consider

the ground states. The presence of finite temperature and entropy effect complicates

the polymorph selection. In the next section we will apply direct molecular dynam-

ics simulations to determine the physical plausibility of these predictions and related

defects due to kinetics.
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6.5 Molecular dynamics simulation of crystalliza-

tion of binary mixtures in 2D

In this section, we apply direct molecular dynamics simulations to study the crystal-

lization of the 2D binary system, in which particles interact through coarse-grained

DNA-mediated interactions. These simulations are helpful to establish whether it

would be possible to achieve different crystal phases by tuning the relative binding

strength between different particle species. We perform MD simulations with various

binding energy combinations at the packing fraction of 10%. We initialized simula-

tions with total 400 particles with equal numbers of A and B particles in a random

initial state.

We first develop a pseudo-crystal phase diagram for lattice ordering in Figure 6.5

at the condition of EAA = EBB ≤ EAB. Overall, this pseudo-phase diagram is

found to exhibit structures that are in excellent agreement with the lattice energies

predictions. For the relatively small value of EAA or EBB, the crystal are all found

to be highly ordered square lattices. Further increasing the value of EAA or EBB, we

obtain hex lattices. From snapshots of the MD simulations. We find square lattices

exhibit almost perfect compositional ordering while hex lattices show a significant

disorder in composition. We quantify the lattice ordering by computing 2NAB for

each point in the phase diagram of Figure 6.5. As mentioned in section 6.3, the order

parameter 2NAB has maximum value of 4 for both perfect square and hex lattices

and minimum value of 2 for completely random square lattices and 3 for completely

random hex lattices. From Figure 6.5, we find square lattices always exhibit very

high ordering, while the ordering of hex lattices decay by increasing EAA or EBB.

The hex lattices become completely random as EAB = EAA,BB.

In addition, at the condition EAA,BB ≈ 0.3 − 0.4, we observe a transformation

between the square and alternating-string hex lattices. Our observations indicate
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Figure 6.5: Phase diagram for binary crystals under the condition of EAA = EBB ≤
EAB. Three phases that nucleate and grow from fluid are identified: square lattice
(sq), hexagonal lattice (hex) and a transformation region (trans), in which initially
nucleated square lattices undergo a rapid transformation into hexagonal lattices be-
fore continuing to grow further. The order parameter NAB is computed to quantify
the ordering of square and hexagonal lattice. Representative crystal lattice config-
urations at the three regions of the phase diagram are also shown in this figure (A
and C) and Figure 6.6 (B).
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that the small crystal nuclei in the system initially display the morphology of square

lattices, but transfer to alternating-string hex lattices once the square lattice grow

further as shown in Figure 6.6. The plausible explanation would be due to the kinetic

limitations with respect to the compositional ordering during initial nucleation stage

as also observed for other systems [19]. Therefore, the system initially choose square

lattices because the ground state, ordered hex lattices, is kinetically inaccessible,

although ordered hex lattice state has lower free energy.

The fact that hex lattice crystals are subject to a significant compositional dis-

order under equilibrium conditions is related to both thermodynamic and kinetic

issues for hex lattices. Firstly, we discuss the kinetic issues. We consider only the

scenario of the antisite, which is defined as a single compositional ordering defect

in a binary lattice, as its importance for crystal growth. The energy penalty for

a single antisite on the edge of a binary lattice is dependent on the numbers and

types of nearest neighbors for that antisite. We tabulate the possible combinations

of the numbers and types of nearest neighbors and the corresponding probabilities of

occurrence (Appendix A). The expected value of energy penalty is 2EAB for a single

antisite on the edge of a perfect binary square lattice and ∆AB (or EAB−EAA,BB) for

a single antisite on the edge of alternating-string hex lattice. Because the expected

energy penalty of an antisite on a square lattice is substantially larger than that

on a alternating-string hex lattice, square lattices tend to more ordered in terms of

compositions. Secondly, from the thermodynamic side, honeycomb and alternating-

string lattices are energetically degenerate at the ground state since both have equal

average number of like and unlike bonds under the condition of EAA = EBB. There-

fore the obtained the hex lattice is composed of mixture of these two hex lattice. It

is difficult to obtain perfect alternating-string hex lattices from the growth of hex

nucleates under EAA = EBB, while the most ordered alternating-string hex lattices

are obtained from transformations.
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We also develop a pseudo-crystal phase diagram in Figure 6.7 at the condition

of EAA ≤ EBB and EAB = 1.0, where we expect to obtain honeycomb lattices

(Figure 6.2c) according to the lattice energies predictions. From the snapshot of MD

simulations, we find the honeycomb lattices have less defects for the relatively small

value of EAA. Therefore, we quantify the ordering of honeycomb lattice by computing

2(NBB−NAA) and rB/A, which is defined as the number ratio of B and A particles in

the formed crystal lattices. rB/A = 2.0 for perfect honeycomb lattices and rB/A = 1.0

for completely random hex lattices at the mixing ratio of 1:1. 2(NBB−NAA) = 2.0 for

perfect honeycomb lattices. For completely random hex lattices, 2(NBB −NAA) = 0

at the mixing ratio of 1:1. Both 2(NBB−NAA) and rB/A can deviate from their perfect

honeycomb value upward or downward dependent on the type of defects formed in

the crystal lattices. As shown in Figure 6.7, the increase of EAA always leads to the

lower ordering while the dependence of ordering on EBB is relatively weak. In order

to explain this observation, we compute the expected energy penalty for honeycomb

lattices (Appendix A), which is equal to EAB − EAA or ∆′AB. This result confirms

the strong relation between the defects and magnitude of EAA and the validity of

our single-antisite-based crystal growth model.

To conclude, we identify three different crystal lattices by direct MD simulations,

which is consistent with lattice energies predictions. When there are only repulsions

between like particles, ordered square lattices are obtained. The adding of attractive

interactions between like particles stabilizes the hexagonal lattices. The most ordered

alternating-string hex lattices always come from square lattice transformations, while

the most ordered honeycomb lattices are grown from hexagonal nucleates at the

condition of no attractions between particle species that locates at the center of

hexagonal cells.
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Figure 6.7: Phase diagram for binary crystals under the condition of EAA ≤ EBB and
EAB = 1.0, at which honeycomb crystal lattice is predicted as the stable phase. Three
phases that nucleate and grow from fluid are identified: square lattice (sq), hexagonal
lattice (hex) and a transformation region (trans), in which initially nucleated square
lattices undergo a rapid transformation into hexagonal lattices before continuing to
grow further. Two order parameters are computed for hexagonal phase, NBB −
NAA (color) and rB/A (gray), to quantify the ordering of honeycomb-type hexagonal
structure. Snapshots from MD simulations at three points (A, B, C) of the phase
diagram show different compositional ordering.
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6.6 Design of DNA-functioinalized particles

In order to induce attraction between a particle and others of its own kind, the par-

ticle have to contain DNA strands that can hybridize to other strands on its own

surface. The possible approach is to attach mixtures of different DNA sequences to

each particle species. For example, particles A species can be functionalized with a

mixture of two complementary sequences of α and β. If we assume each particle A is

to a good approximation grafted with an equal number of DNA molecules, a mixing

ratio wα/β = 0.4 means 40% of the grafted DNA strands are sequence α and the

remaining 60% are sequence β. Such mixing strategy basically introduce the attrac-

tion between a particle and others of its own kind due to the hybridization between

complementary sequences, i.e. α and β sequences, from two different particles of

the same species. By varying the mixing ratio of different particle species, one can

simply control the relative strength of attraction of different particles species, i.e.

A-A and B-B. We note the above mixing scheme is not limited to the mixture of two

different DNA sequences. By following the similar mixing scheme, one in essence can

specify a matrix of binding strengths between numbers of different particle species

by mixing variety of different DNA sequences in different particle species.

We now consider two different interactions: (1) mixed interactions where each

particle contains mutually complementary DNA sequences and (2) unmixed interac-

tions where each particle contains non-complementary DNA sequences but two differ-

ent particle species contain complementary sequences. We compute the potential of

mean forces for the two cases by using our detailed CG model for DNA-functionalized

particle. Figure 6.8 shows two representative sets of measured pair-interaction po-

tentials between two mixed and unmixed (i.e. A and B are fully complementary),

DFPs as a function of temperature with total 16, 7-mer short sticky end, DNA

strands grafted on particle surfaces. As is observed for unmixed case, pair potentials
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for mixed case show a temperature-dependent attraction that decreases monotoni-

cally with increasing temperature and the same temperature-independent repulsion.

Comparing to unmixed case at the same temperature, we notice that the strength

of interactions are weakened by ∼ 50% for mixed case.
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Figure 6.8: Two representative sets of measured pair-interaction potentials between
two mixed (left) and unmixed (right), DNA-functionalized particles as a function
of temperature. Total 16, 7-mer short sticky end, DNA strands are grafted on the
surface of each particle.

A simple thermodynamic argument can be derived as follows to explain the∼ 50%

reduction of attractive interaction strength. Let the hybridzation free energy between

two complementary DNA sequences denoted as Ehyb. The binding probability of pair

of complementary DNA strands (i.e. α and β) from two particles (i.e. A and B) for

the unmixed case can be expressed as:

Pbind = exp(−Ehyb)PA
α P

B
β , (6.2)

where PA
α is the probability that the binding strand from particle A is α-DNA, which

is equivalent to the concentration of α-DNA on particle A. The similar definition can

be applied to PB
β . For the unmixed case, PA

α = PB
β = 1. For the mixed case,
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addtional term is needed to account for the binary mixing:

Pbind = exp(−Ehyb)(PA
α P

B
β + PA

β P
B
α ). (6.3)

Therefore for the mixing ratio wα/β = 0.5, PA
α = PA

β = PB
α = PB

β = 0.5. The

attractive interaction strength is propotional to average number of hybridized DNA

strands:

Eatt ∼ min(NA
DNA, N

B
DNA)Pbind, (6.4)

where N i
DNA is the number of accessible DNA strands on particle species i. By simple

calculations, we know that Emixed
att /Eunmixed

att = 0.5, if we assume NA
DNA = NB

DNA, which

confirms our CG simulation data. We note the 50% reduction can only be served

as a lower bound. In reality due to intraparticle self binding which competes with

interparticle bridging, the reduction would be much higher.

Now we consider mixing strategies to achieve ordered honeycomb lattices. The

problem can be described as follows: we have two different particle species (i.e. A

and B) and two DNA sequences who have complementary sticky ends (i.e. α and

β). Particle species A has a strands of α-DNA and b strands of β-DNA. Particle

species B has c strands of α-DNA and d strands of β-DNA. We can assume A is

the α-DNA rich species and B is the β-DNA rich species without loss of generality.

We require EAB > EBB > EAA, which means the attractive interactions between

A species and B species are greater than that between B species and itself and the

attractive interactions between B species and itself are greater than that between A

species and itself. We need to achieve the above goal by proper mixing two different

sequences in each particle species.

This problem can be reformulated as nonlinear optimization problem. If we

denote the hybridization free energy of α and β sequences as Ehyb, we can express

the EAB, EBB and EAA as:
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EAB = min(NA
DNA, N

B
DNA)exp(−Ehyb)

[(
a

a+ b

)(
d

c+ d

)
+

(
b

a+ b

)(
c

c+ d

)]
.

EAA = 2min(NA
DNA, N

B
DNA)exp(−Ehyb)

[(
a

a+ b

)(
b

a+ b

)]
.

EBB = 2min(NA
DNA, N

B
DNA)exp(−Ehyb)

[(
c

c+ d

)(
d

c+ d

)]
.

For convenient, we assume a + b = c + d: the total number of DNA strands in

each particle, no matter A species or B species, are roughly same. Therefore NA
DNA

and NB
DNA are also same. The scale of a, b, c, d with respect to a+b (or c+d) now can

be replaced by a, b, c, d, which represent the percentage of α- and β-DNA on Particle

A and B respectively. The mathematical formulation of this problem is shown as:

minimize
a,b,c,d

ab− cd

subject to ad+ bc ≥ 2cd+ γ,

cd ≥ ab,

a ≥ b,

d ≥ c,

a, b, c, d ≤ 1,

a, b, c, d ≥ 0,

a+ b = 1,

c+ d = 1,

where, γ is an input variable that controls differences between EAB and EBB. Accord-

ing to constraints, 0 ≤ γ ≤ 1 should be satisfied. The above constraint nonlinear op-

timization problem has optimal solution and can be solved by routine method such as

interior point method. If we assume total number of DNA strands on particle A and

B species are same and γ = 0.22, the optimal solution are [a, b, c, d] = [1, 0, 1/3, 2/3],
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which means we only functionalize particle A species with α-DNA and we function-

alize particle B species with 1/3 α-DNA and 2/3 β-DNA. The attraction strength

between A-B, B-B and A-A are EAB/EBB = 3/2 and EAA = 0. Finally we note

the assumption of equal number of grafting density is just for illustration and is not

necessary. The above optimization formulation can be extended to the nonequal

grafting density cases.

6.7 Conclusions

In this chapter, we report a comprehensive computational analysis of the self assem-

bly of ordered 2D binary crystal lattices, in which the interactions are governed by

DNA bridging between particles. The attractive interactions between like particles

i.e. EAA and EBB, are required to stabilize the hexagonal lattices over square lat-

tices. At the same time, a large difference in the binding energies, i.e. between EAB

and EBB or EAA, is required to reduce the equilibrium concentration of defects. As

a result, highly constrained conditions were required in order to achieve good order-

ing in the hexagonal lattices. In addition, the binding and rolling kinetics of DFPs,

which are still poorly understood, are likely to be much more slower than our CG

pair-interaction type simulations. Therefore in reality it may be more challenging to

obtain well-ordered hexagonal lattices. On the other hand, without the complication

of EAA and EBB, it is more easily to grow perfect square lattices. We also observe

the mixing ratio has no strong influences on the ordering of crystal lattices. However

due to the slow kinetics, the mixing ratio can play an important role in determining

the final structures as observed from our experimental studies (not published). The

interplay between kinetic and thermodynamic factors that observed in this study is

also present in more complex systems, i.e. ones with more components and different

particle sizes. The methods we apply in this study can be extended to explore more

88



complex phase diagrams.
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Chapter 7

Future work and preliminary

results

7.1 Simulation of colloidal suspension with hydro-

dynamic interactions

7.1.1 Hydrodynamics

The dynamic behavior of colloidal particles in a viscous fluid is strongly influenced

by hydrodynamic forces arising from the relative motion of colloidal particles and the

fluid. Hydrodynamic interactions are extremely important in accurately simulating

such kind of systems due to their long-range and multi-body nature, which can

only be neglected at very dilute concentration. The Reynolds number indicates the

importance of inertia relative to viscous forces. For colloidal suspension, the Reynolds

number depends on the particle size and the relative velocity between the particle

and the fluid, which are generally very small. Therefore viscous forces dominate

the effects of inertia and inertia is negligible for the flows on the scale of colloidal

particles. When the Reynolds number is small, the flow is governed by the Stokes
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equations. Because of the linearity of Stokes equations, the hydrodynamic forces

on the particle are proportional to the relative velocity between the particle and

the fluid. If the velocity for the particles are specified and the force is unknown,

this is the resistance problem [54]. If the force is specified, one needs to seek the

velocity of the particle. This is known as the mobility problem [54]. There are many

approaches to solve the Stokes equations for spheres moving in the Newtonian fluid.

One approach is to use the so-called fundamental solutions or Stokeslet which is

the solutions of Stokes equations under a point force. The velocity field in creeping

flow then can be expressed in terms of a surface distribution of point forces:

u(x)− u∞(x) = − 1

8πµ

∫
Sy

G(x− y) · S(y)dSy (7.1)

where u∞(x) is the velocity field in the absence of the particles, Sy is the surface of

the particle, S(y) is the surface stresses and G is the Oseen tensor of the form:

G(x) =
I

x
+

xx

x3
(7.2)

Rather than solving the integral equation, we can use multipole expansion to obtain

the velocity field:

Gij(x− y) =
∞∑
n=0

(−1)n

n!
(yk1 − αk1)(yk2 − αk2) · · · (ykn − αkn)(

∂nGij(x− y)

∂yk1∂yk2 · · · ∂ykn
)y=α

(7.3)

, where i, j and ks are coordinate indices. The integer n is the order of the multipole

expansion. If we truncate the multipole expansion, then the integral representation

can be written as:

ui(x)− u∞i (x) = − 1

8πµ
GijFj +

1

8πµ
Gij,kDjk (7.4)
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, where the first term is the monopole contribution and the second term is the dipole

contribution. The monopole contribution is due to a point force,

Fj = −
∫
Sy

fjdSy. (7.5)

The dipole is due to the force dipole,

Djk =

∫
Sy

fj(yk − αk)dSy. (7.6)

The force dipole can be represented as the sum of symmetric and antisymmetric

parts,

Djk −
1

3
Diiδjk = Sjk + Tjk (7.7)

The symmetric part Sjk is also called as stresslet which result in the straining motion

at a point, and the antisymmetric part Tjk is also named as rolet which result in a

point torque.

Sjk =
1

2

∫
Sy

(fj(yk − αk) + fk(yj − αj))dSy −
1

3

∫
Sy

fi(yi − αi)δjkdSy (7.8)

and

Tjk =
1

2

∫
Sy

(fj(yk − αk)− fk(yj − αj))dSy (7.9)

The exact solutions of force, torque and stresslet on a single sphere can be derived

by the Faxén Laws [54]. In low Reynolds number regime, hydrodynamics interac-

tions among dense particle suspensions are completely characterized by either the

resistance or the mobility matrix. The resistance matrix gives the forces in terms of

the velocities and the mobility matrix gives the velocities in terms of forces.
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7.1.2 Stokesian dynamics

Stokesian dynamics is a molecular-dynamics type approach for simulating the dy-

namic behavior of many particles suspended in a fluid [16]. Being different from the

Brownian dynamics, which oversimplifies the hydrodynamic interactions by using

Oseen tensor and therefore is generally valid only in dilute suspensions, Stokesian

dynamics incorporate many-body hydrodynamic interactions, which is valid even for

dense suspensions. The dynamics of particles in a suspension is governed by N-body

Langevin equation:

m · ∂U

∂t
= FH + FB + FP (7.10)

This equation states that total forces equals mass times acceleration. The total

forces can be separated into the hydrodynamic force FH , interparticle force FP and

Brownian forces FB. The linearity of Stokes equation requires the force/torque and

stresslet exerted by the fluid on the particles, and the particles velocities and the

rate of strain are related in the form of: F

S

 = −R ·

 U−U∞

−E∞

 , (7.11)

and

R =

RFU RFE

RSU RSE

 (7.12)

where RFU , RFE, RSU and RSE are the resistance matrices and R is called grand

resistance matrix. The evolution equation is obtained by integrating the N-body
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Langevin equation two times over a time step ∆t:

∆x = Pe{U∞ +R−1
FU · [RFE : E∞ + γ̇−1FP ]∆t+∇ ·R−1

FU∆t+ X(∆t) (7.13)

where ∆x is the change of particle position during the time step ∆t, X(∆t) is a ran-

dom displacement due to Brownian motion. In order to make use of the evolution

equation, we must determine the grand resistance matrix R. A method that incorpo-

rates the near-field lubrication effects and the dominant many-body interactions has

been developed [16]. The mobility matrix M , which is the inverse of the grand resis-

tance matrix, can be approximated by combining Faxén’s law for particle velocities

with a truncated multipole moments representation of the particles. The approxi-

mated grand mobility matrix M∞ can be inverted to yield a far-field approximation

to the grand resistance matrix. This many-body approximation to the resistance

matrix does not account to the lubrication effects, which can only be reproduced

by inverting of the grand mobility matrix if all multipole moments are included. In

order to incorporate the lubrication effects, a pairwise-additive two-body resistance

matrix is added:

R = (M∞)−1 +Rlub (7.14)

7.1.3 Fast lubrication dynamics

According to Kumar et al. [64], the grand resistance matrix R can be expressed as a

sum of a diagonal isotropic resistance tensor R0 and a pairwise interaction tensor Rδ

coming from the asymptotic approximation for the lubrication contribution Rlub as

R = R0 + Rδ (7.15)
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. The pairwise interaction tensor Rδ, can be obtained based on the pair-drag model

by Ball and Melrose [6], which throws out all long-range and multibody hydrody-

namic interactions and simplifies the hydrodynamics to pairwise interactions with

suitable cutoffs. The isotropic resistance tensor R0 consists of three different scalars:

R0
FU , R0

TΩ, and R0
SE, respectively denoting force-velocity, torque-angular velocity,

and stresslet-rate of strain coupling as follows:

R0 =


R0
FUI 0 0

0 R0
TΩI 0

0 0 R0
SEI

 . (7.16)

The value of R0
FU , R0

TΩ, and R0
SE were chosen to match the short-time translational

and rotational self-diffusivity obtained from Stokesian dynamics simulation.

7.1.4 Equilibrium transport coefficients of quasi-hard sphere

particle suspension by fast lubrication dynamics

We first presents the data of the effects of volume fraction on the long-time self

diffusivity. Figure 7.1 shows the long-time diffusivity at equilibrium as a function of

φ with hydrodynamic interaction by fast lubrication dynamics. Particles are modeled

by inverse power potential, U(r) = ε(σ/r)36, which approximates the hard sphere

particles. Also shown in the figure are previous simulation results of hard spheres by

Stokesian dynamics [33].

The zero-shear viscosity from the Green-Kubo formula by Foss and Brady [34], is

compared with data from steady-shear simulation by fast lubrication dynamics as a

function of volume fraction, in Figure 7.2. The values calculated by fast lubrication

dynamics from steady-state averages at the lowest shear rate (Pe = 0.01 and 0.005)
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Figure 7.1: Equilibrium values of the long-time self-diffusivity as a function of φ.
Data include those from both the Brownian Dynamics [25, 33] and Stokesian Dy-
namics [33] simulation results. D0 = kBT/6πηa

are virtually indistinguishable from the previously reported viscosities determined

from Green-Kubo analysis.

7.1.5 Rheological properties of quasi-hard sphere particle

suspension by fast lubrication dynamics

In Figure 7.3, we compare the viscosities simulated from fast lubrication dynam-

ics and Stokesian dynamics. In fast lubrication dynamics, particles are modeled by

inverse power potential, U(r) = ε(σ/r)36, which approximates the hard sphere par-

ticles. The viscosities from fast lubrication dynamics and Stokesian dynamics are in

good quantitative agreement and both exhibit shear-thinning behavior at low shear

rate and shear-thickening behavior at high shear rate for dense suspensions.

96



0 0.1 0.2 0.3 0.4 0.5 0.6
φ

1

10

100

1000

η
r

FLD Pe = 0.18
FLD Pe = 0.09
Foss & Brady GK

Figure 7.2: Zero-shear limiting relative viscosity, ηr, as a function of volume fraction
from fast lubrication dynamics. Simulation results include both previously measured
values determined from an equilibrium Green-Kubo analysis by Boss and Brady [34].
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Figure 7.3: Comparison of the relative viscosity of quasi-hard sphere suspensions
determined by fast lubrication dynamics as a function of Péclet number Pe with
hard-sphere suspensions determined by Stokesian dynamics [34].
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7.2 Effect of shear force on self-assembly of DNA-

functionalized particles

It is well known that shear has a large effect on colloidal self-assembly. Shear-induced

crystallization is the result of flow-induced rearrangements in the microstructure of

the fluid, caused by an interplay between hydrodynamics interactions, Brownian mo-

tion and interparticle forces. Besseling et al. [9] characterized the real-space structure

of four oscillatory shear-induced phases in hard-sphere fluids: the twinned fcc phase,

the sliding layer phase, the string phase and the tilted layer phase, via Brownian Dy-

namics simulations and experiments on PMMA colloids (Figure 7.4). The structures

obtained from simulations (with imposed linear velocity profile and no hydrodynamic

interactions) are in strong agreement with the experiments. Their results suggested

that deviations from a linear profile can be neglected for small Pe number and ex-

cept for large Pe numbers, hydrodynamic interactions do not strongly affect the

shear-induced structures

The crystallization of DNA-functionalized particles is still quite challenging due

to the interplay of thermodynamic and kinetic factors. In the future, we plan to use

nonequilibrium molecular dynamics (NEMD) to study the shear-induced crystalliza-

tion for binary particle suspensions with coarse-grained pair interactions in both 2D

and 3D. We want to answer the questions such as how the shear forces alter the equi-

librium crystal phase diagrams and whether shear forces can facilitate the annealing

of crystal structures.
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Figure 7.4: The out-of-equilibrium phase diagrams of hard-sphere like particles [9].
(A) Experimental results. (B) Simulation results by Brownian Dynamics.
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Appendix A

Estimation of energy penalty of

single antisite

Here we compute the expected value of energy penalty of single antisite on the edge

of perfect lattices. In order to grow the desired crystal lattices, we make the following

assumptions: for square lattices, we assume EAA = EBB = 0; for alternating-string

hex lattices, we assume EAA = EBB; for honeycomb lattices, we assume EAA ≤ EBB.

∆ is defined as EBB − EAA. ∆AB is defined as EAB − EAA,BB. ∆′AB is defined as

EAB − EAA. The maximum number of nearest neighbors (NNs) on the edge of

formed crystal lattice is assumed to be four. This is true for square lattices. While

hex lattices can have up to 6 NNs, those additional NNs are assumed to be less stable

and therefore rare in reality.
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A.1 Square lattice

Table A.1: Estimated energy penalty of single antisite for square lattice (=2EAB)

Number of NNs Energy penalty Probability

1 NN

A EAB
1
8

B EAB
1
8

2 NN

AA 2EAB
1
4

BB 2EAB
1
4

3 NN

AAA 3EAB
1
8

BBB 3EAB
1
8
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A.2 Alternating-string (A-S) lattice (side 1)

Table A.2: Estimated energy penalty of single antisite for A-S lattice (=∆AB)

Number of NNs Energy penalty Probability

2 NN

AB 0 1
8

BA 0 1
8

3 NN

BBA ∆AB
1
8

ABA ∆AB
1
8

AAB ∆AB
1
8

BAB ∆AB
1
8

4 NN

BBAB 2∆AB
1
8

AABA 2∆AB
1
8
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A.3 Alternating-string (A-S) lattice (side 2)

Table A.3: Estimated energy penalty of single antisite for A-S lattice (=∆AB)

Number of NNs Energy penalty Probability

2 NN

AA 2∆AB
1
8

BA 2∆AB
1
8

3 NN

BBA ∆AB
1
8

ABB ∆AB
1
8

AAB ∆AB
1
8

BAA ∆AB
1
8

4 NN

BAAB 0 1
8

ABBA 0 1
8
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A.4 Honeycomb lattice

Table A.4: Estimated energy penalty of single antisite for honeycomb lattice (=∆′AB)

Number of NNs Energy penalty Probability

2 NN

AB ∆ 1
12

BA ∆ 1
12

BB 2∆AB
1
12

3 NN

BAB ∆−∆AB
1
6

ABA ∆ + ∆′AB
1
6

BBB 3∆AB
1
6

4 NN

ABAB 2∆ 1
12

BABA 2∆ 1
12

BBBB 4∆AB
1
12
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