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Abstract

Recent advancements in experimental and computational techniques have created

tremendous opportunities in the study of fundamental questions of science and en-

gineering by taking the approach of stochastic modeling and control of dynamical

systems. Examples include but are not limited to neural coding and emergence of be-

haviors in biological networks. Integrating optimal control strategies with stochastic

dynamical models has ignited the development of new technologies in many emerg-

ing applications. In this direction, particular examples are brain-machine interfaces

(BMIs), and systems to manipulate submicroscopic objects. The focus of this disser-

tation is to advance these technologies by developing optimal control strategies under

various feedback scenarios and system uncertainties.

Brain-machine interfaces (BMIs) establish direct communications between living

brain tissue and external devices such as an artificial arm. By sensing and interpreting

neuronal activity to actuate an external device, BMI-based neuroprostheses hold great

promise in rehabilitating motor disabled subjects such as amputees. However, lack of

the incorporation of sensory feedback, such as proprioception and tactile information,

from the artificial arm back to the brain has greatly limited the widespread clinical

deployment of these neuroprosthetic systems in rehabilitation. In the first part of the

dissertation, we develop a systematic control-theoretic approach for a system-level
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rigorous analysis of BMIs under various feedback scenarios. The approach involves

quantitative and qualitative analysis of single neuron and network models to the

design of missing sensory feedback pathways in BMIs using optimal feedback control

theory. As a part of our results, we show that the recovery of the natural performance

of motor tasks in BMIs can be achieved by designing artificial sensory feedbacks in

the proposed optimal control framework.

The second part of the dissertation deals with developing stochastic optimal con-

trol strategies using limited feedback information for applications in neural and small

length scale dynamical systems. The stochastic nature of these systems coupled with

the limited feedback information has greatly restricted the direct applicability of ex-

isting control strategies in stabilizing these systems. Moreover, it has recently been

recognized that the development of advanced control algorithms is essential to facili-

tate applications in these systems. We propose a novel broadcast stochastic optimal

control strategy in a receding horizon framework to overcome existing limitations of

traditional control designs. We apply this strategy to stabilize multi-agent systems

and Brownian ensembles. As a part of our results, we show the optimal trapping of

an ensemble of particles driven by Brownian motion in a minimum trapping region

using the proposed framework.

2



Chapter 1

Introduction

The approach of stochastic modeling in dynamical systems allows one to distinguish

internal fluctuations of the system from the external ones and to study their effects on

the system behavior. This approach has become essential to understand dynamical

behaviors of many biological and physical systems in their natural noisy environment.

Examples include but are not limited to neurons and their networks [161, 10], bio-

logical processes [7], and micro and nano scale dynamical systems [9]. Integration of

control theory with stochastic dynamical models has recently offered many emerging

applications in biological and physical systems. In this direction, particular examples

are an artificial arm controlled by the brain activity of an amputee [117], design of

smart robots [25], biological processes on a chip [58], and drug delivery systems to

cure diseases efficiently [130]. The key challenges in facilitating these applications are

the stochastic nature of the system coupled with the limited feedback information

in designing appropriate control actions. The focus of this dissertation is to develop

advanced optimal control strategies to facilitate emerging applications in biological

and physical systems. Particular systems studied are brain-machine interfaces (BMIs)
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and small length scale dynamical systems.

1.1 Brain-Machine Interfaces

Brain-machine interfaces (BMIs) [100, 117, 118] are broadly defined as systems that

establish direct communications between living brain tissue and external devices such

as artificial arm. The major components of these systems include measurements of

cortical neuronal activity, extraction of task-relevant motor intention (decoder), and

an encoder that feeds back the motor relevant sensory information back to the brain.

Thus the brain, the BMI and the prosthetic device together act as a closed-loop

BMI. Fig. 1.1 shows a closed-loop BMI (also known as brain-machine-brain interface

(BMBI) [38]) structure.

Figure 1.1: A closed-loop brain-machine interface (BMI). Brain shot courtesy of
wikipedia.

By sensing and interpreting neuronal activities to actuate an external device, BMI-

based neuroprostheses hold great promise in rehabilitating motor disabled subjects
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such as amputees. Design and implementation of BMIs are beneficial to human

subjects suffering from peripheral neuropathies, Parkinsons, and amputations etc.

The impact of such remedies is substantial in providing relief and enabling motor

impaired individuals who are otherwise able citizens to lead productive lives which

provide motivation for developing such systems.

BMIs are classified into two categories, namely non-invasive [170, 23] and invasive,

based on methods of electrophysiological measurements of neuronal firing activity of

the brain [98]. Non-invasive BMIs are based on electroencephalograms (EEGs) meth-

ods of capturing neuronal firing activity and captures an average behavior with lim-

ited capacity. On the other hand, invasive BMIs uses ensemble recordings of multiple

neurons associated with a particular activity by implantation of multiple physical

micro-electrodes. In this dissertation, we only consider invasive BMIs. Therefore

from here onwards, we omit the term invasive and we always mean that BMIs are

invasive whenever they are mentioned.

1.1.1 State of the art

The scientific origins of controlling external devices using the brain activity go back at

least to the initial electrophysiological experiments in late 1960s from primary motor

cortex (M1) of awake, behaving non-human primates. In 1968, Evarts showed in a

classic experiment that the firing of M1 neurons in monkeys were strongly correlated

with the amount of force generated by the joints during the arm movements [44].

An experiment performed by Fetz in 1969 showed that monkeys could modulate and

control the activity of M1 neurons using visual feedback and reward based cortical

learning [47]. In 1970, Humphrey et. al. showed using simple quantitative procedures
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that a small sets of M1 neurons are adequate to predict the accurate time course of

kinematic and kinetic measurements during simple arm movements [75]. In mid-

1970s, several studies by Fetz and colleagues demonstrated the existence of a linear

correlation between the firing rate of M1 neurons and the force generated by the

joints during the arm movements [48, 49, 87]. These early studies demonstrated (1)

the encoding of the kinetics of arm movement in the activity of M1 neurons, and (2)

control of the activity of single M1 neurons using biofeedback and learning.

In 1980, Edvard Schmidt raised the possibility to control external devices by

extracting voluntary motor commands from raw cortical neural activity of M1 neurons

[144]. After two decades, in 1999, the first experiment in BMI research was performed

in which the control of a robotic arm with a single degree of freedom was demonstrated

using the recorded neural activity of a population of M1 neurons from behaving

rats [24]. During 2000-2005, several laboratories performed experiments on rhesus

monkeys and reported BMIs that reproduced trajectories of primate arm movements

during reaching and grasping using either computer cursors or robotic manipulators

as actuators [169, 146, 154, 22, 99, 52]. In 2006, the first human experiment was

reported in which BMI was developed to control prosthetic devices (computer cursor

and physical devices) using intracortical neural ensemble spiking activity in human

with tetraplegia [70] (see [170] for noninvasive BMI in human). These early results

suggested that BMIs could be used to restore motor impairments in humans with

paralysis. Since then, BMI based motor intended neural prosthetic systems have

been studied extensively towards their clinical deployment (see [176, 111, 11, 165, 66,

68, 30, 110, 38, 71, 43]). The major effort in most of these studies has been centered

on enhancing the performance of BMIs by developing better decoding and learning
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algorithms.

1.1.2 Need of a Closed-loop Control-theoretic Framework

In most of BMIs studies, healthy subjects (mostly non-human primates) are trained

to perform a specific motor task such as reaching or grasping. Recorded data (brain

activities as well as task relevant kinematic and kinetic information) during the per-

formance of the task are then used to develop a mathematical model called decoder.

The decoder extracts the kinetic as well as the kinematic motor information from a

continuously recorded activity of motor relevant cortical neurons. The performance

of the decoder is typically measured by applying the decoded information to a pros-

thetic arm. The online movement based error correction during the reaching task

is accomplished by the subject using the available visual feedback information as

well as sensorimotor learning in the absence of the natural proprioception. Therefore

these BMIs are considered as partially closed-loop systems in their current formula-

tions where the incorporation of artificial proprioception and texture information are

neglected in their designs.

In the absence of tactile feedback, these BMIs can fail to differentiate visually

similar textures. Similarly in the absence of proprioception, these BMIs are unable to

provide the natural sensation of the arm movement which are both experienced and

used by healthy subjects in controlling their natural limb movements. It has recently

been recognized that inclusion of sensory feedback from the actuated artificial limb

is necessary to improve the versatility of motor-based BMIs [141].

Very recently, attempts have been made towards closing the BMI loop by incor-

porating artificial texture [38] and proprioception [168] information. In these studies,

7



intra-cortical micro-stimulation (ICMS) technique has been investigated as a promis-

ing approach in providing artificial sensation of motor tasks to the brain. Even though

the technique is promising for developing future BMIs, the experimental trial and er-

ror approach in designing appropriate stimulating sensory input currents may change

the natural functionality of the brain. Therefore, a systematic approach that uses

optimal feedback control theory is highly desirable towards developing stimulation

enhanced next generation BMIs. This approach provides flexibility in designing op-

timal stimulating sensory input currents and analyzing the closed-loop BMI under

various feedback scenarios.

The intellectual merit of studying such systems by taking control-theoretic ap-

proach is to exploit all the available degrees of freedom in developing the next genera-

tion of feedback-enabled neuroprosthetic devices. The development of these feedback-

enabled neuroprosthetic devices is necessary for making the prosthetic devices less

prone to error in decoding and targeting the intended action of the neurons. Neg-

ligible attention has been devoted to study these feedback-enabled neuroprosthetic

devices and impact of natural and surrogate feedback paths on the overall function-

ing of neural prosthesis systems (see [14] as exception). For example, these feedback

paths have never been considered in studies conducted on developing a robotic device,

in primates for reproducing reaching and grasping movements and in motor impaired

human subjects. At a broader level, a control-theoretic framework that considers the

various interacting systems and feedback paths in a true multi-variable context from a

systems-perspective is entirely missing from the literature. As a result, issues such as

prosthetic system stability, system reliability, impact of transmission loss, latency and

time delays, impact of model complexity and uncertainty, optimality of the modeling
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and control framework, etc. which are critical to the success of this emerging disci-

pline remain open problems. This provides the main motivation for control-theoretic

system level analysis of feedback-enabled neuroprosthetic devices for successful tran-

sition of BMIs-based neural prostheses and assistive devices to stable extended use

in human subjects.

Figure 1.2 shows our proposed design of a closed-loop BMI using an optimal

receding horizon controller. As shown in this design, an optimal receding horizon

controller replaces the encoding block shown in Figure 1.1 in designing artificial tactile

and proprioception information.

Figure 1.2: Receding horizon controller based closed-loop brain-machine interface
(BMI). Brain shot courtesy of wikipedia. Here, the receding horizon controller designs
optimal artificial sensory feedback currents IE(t;θθθ) and stimulates neurons of the
appropriate cortical sensory areas such that the closed-loop (natural) performance of
the BMI can be recovered for a given motor task.
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1.1.3 Model-based Receding Horizon Controller

As shown in Figure 1.2, the optimal artificial sensory feedback currents IE(t;θθθ) are

designed using a model based receding horizon controller (RHC). A model based RHC

[95], also known as model predictive control (MPC), is an optimal control strategy

that explicitly incorporates a dynamic model of the system as well as constraints in

determining control actions. At each time k, the system measurements are obtained

and a model of the system is used to predict future outputs of the system yk+l+1|k,

l = 0, 1, 2, · · · , Np − 1 as a function of current and future control moves uk+l|k, l =

0, 1, 2, · · · , Nc−1. How far ahead in the future the predictions are computed is called

the prediction horizon Np and how far ahead the control moves are computed is

called the control horizon Nc. Figure 1.3 illustrates the idea of prediction and control

horizon in a model based receding horizon control strategy.

Figure 1.3: Prediction and controller move optimality in MPC

Using the predictions from the model, theNc control moves uk+l|k, l = 0, 1, · · · , Nc−

1 are optimally computed by minimizing a cost function Jk over the prediction hori-

zon Np subject to constraints on the control inputs as well as any other constraints
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on the internal states and outputs of the system as follows:

min
uk+l|k,l=0,1,··· ,Nc−1

Jk (1.1)

subjects to constraints on control inputs and the system. A typical quadratic objective

cost function may be of the form

Jk =

Np−1
∑

l=0

{[yk+l+1|k − yr]TQ[yk+l+1|k − yr]}+
Nc−1
∑

l=0

{uTk+l|kRuk+l|k}. (1.2)

Here, yr is the output to be tracked. Only the first optimally computed move uk|k is

implemented out ofm computed optimal moves at time k. At the next time k+1, new

system measurements are obtained and the optimization problem is solved again with

the new measurements. Thus, the control and prediction horizon recede by one step

as time moves ahead by one step. The measurements at each sampling time provide

feedback for rejecting inter-sample disturbances, model uncertainty and noises, all of

which cause the model predictions to be different from the true system output.

1.1.4 System Dynamics

As mentioned in the previous section, a model-based receding horizon controller uses

a dynamical model of the system in computing optimal control moves. For BMI

applications, a dynamical model of the system includes a network model of cortical

neurons which captures essential cortical circuit relevant to a given motor task, a

decoder, and a model of prosthetic arm.
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Dynamical Models of Single Neurons and Cortical Networks

Figure 1.4 shows a typical structure of a single neuron. As shown in this figure,

dendrites of the neuron make synaptic connections with axons of other neurons and

thus receive input information through synaptic transmission.

Briefly, inputs received by the neuron at dendrite terminals in specific time win-

dows are integrated at the cell body which induces a voltage jump in the membrane

potential of the cell body. A positive voltage jump increases the membrane poten-

tial and leads to depolarization of the membrane potential. A negative voltage jump

decreases the membrane potential and leads to repolarization or hyperpolarization of

the membrane potential. When the depolarization of the membrane potential reaches

a critical level called threshold, the neuron fires all-or-none action potential as shown

in Figure 1.5 [87].

1. Single Neuron Models:

Neurons communicate with each other in a network by generating and trans-

ferring action potentials. The exact phenomenon through which these action

potentials encode the information contained in presynaptic activities is still

unknown. To understand this phenomenon of neural coding using rigorous

mathematical analysis is an important problem in computational and theo-

retical neuroscience [32]. One of the challenges in attempting such analysis

is to develop computationally efficient mathematical models of neurons which

can predict action potentials observed in experimental conditions, both qual-

itatively and quantitatively. Several theoretical models, deterministic as well

as stochastic, have been developed in this direction to describe the biophysical

12



Figure 1.4: A single neuron, Figure taken from Brain Facts, Society for Neuroscience
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Figure 1.5: A schematic of an action potential.
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behavior of single neurons. Based on the level of description of single neu-

rons structure included in modeling their dynamical behavior, these models are

classified into detailed compartmental models, reduced compartmental mod-

els, single-compartmental models, cascade models, and black-box models [69].

Detailed compartmental models and reduced compartmental models include

spatial structure of a neuron (dendrites) and focus on how the spatial structure

contributes to the dynamical and functional behavior of a neuron. Although

these models can capture neuron’s specific electronic structure and provide de-

tailed understanding on spatial aspects of synaptic integration in dendrites,

these models are extremely computationally expensive and are not suitable for

modeling large-scale neuronal networks. Cascade models and black-box mod-

els ignore biophysics of single neurons and provide an appropriate framework

for distilling key processing steps from experimentally measured data. These

models are often based on probabilistic framework and are suitable for under-

standing the encoding of sensory information in single neurons and networks.

On the other hand, single compartmental models neglect the spatial structure

of a neuron and focus on the contribution of various ionic currents to neurons’s

subthreshold behavior and spike generation. These models capture essential

biophysics of single neurons and provide quantitative understanding of various

dynamical phenomena of single neurons including bursting, bistability, phasic

spiking, and adaptation to spike frequency [78]. At the same time, these models

offer computationally inexpensive simulation of large neuronal networks. Since

our ultimate goal is to be able to use neuronal network models for real time pre-

diction in an optimal feedback control framework, we will focus on a particular
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class of single compartment models in this dissertation.

In the category of single compartment models, the simplest and most influential

model is Integrate-and-Fire (I&F) model [1] introduced by Lapicque in 1907.

Although mathematical simplicity of this model offers analytical analysis of the

dynamical behavior, the model is incapable in capturing the dynamical richness

of spiking behaviors in single neurons observed in experimental studies. On

the other hand, the classic Hodgkin-Huxley model, introduced by Hodgkin and

Huxley in 1952 [72], is based on biophysics of single cells and captures the

exact shape of action potential shown in Figure 1.5. Despite the dynamical

richness of spiking behaviors shown by this model, this model is still not very

computationally efficient for its use in large-scale network simulations.

In the last decade, a class of models has been derived through the systematic

mathematical reductions of the Hodgkin-Huxley model. In this class, specific

models are the spike response model [56], the Izhikevich model [77], the adap-

tive exponential integrate-and-fire model [16], the Touboul model [158], and

variations of linear integrate-and-fire model [137, 107]. These models ignore

the detail biophysics of single cells and focus on computational efficiency in

large-scale network simulations while retaining the dynamical richness of sin-

gle cells observed in experimental studies. Moreover, these models have shown

their capability in capturing broad range of qualitative behavior of biological

neurons [74, 78, 157]. Most of these models are described by coupled first-order

ordinary differential equations which show discontinuous behavior through reset

conditions:
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C
dv(t)

dt
= f(v(t), u(t)) + I(t), (1.3a)

du(t)

dt
= g(v(t), u(t)), (1.3b)

if v(t) ≥ vp(t), then

v(t)← c and u(t)← u(t) + d.

(1.3c)

Here, v(t) and u(t) are the time-varying membrane potential and the membrane

recovery variable of a neuron respectively. C is the membrane capacitance. I(t)

is the total input current delivered to the neuron. vp(t) is a firing threshold. c

and d are the model parameters. Typically, c is set to the membrane resting

potential vr. The time at which the membrane potential v(t) reaches the firing

threshold vp(t), starting from the resting state, is called the time of the occur-

rence of an action potential or the spike time. At this time, v(t) is reset to c

and u(t) is reset to u(t) + d. Again starting from this reset time and taking the

reset values of v(t) and u(t) as initial conditions, the time of occurrence of the

next action potential is determined through equation (1.3). The time difference

between the occurrence of two consecutive action potentials is called inter-spike

interval (ISI).

The obvious benefits of using these low-order models in the analysis of network

of neurons for neural coding are their mathematical simplicity and existence

of small number of model parameters which can easily be extracted from ex-

perimental data. Other benefits are in implementing neural prostheses where
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these models can be simulated at low costs. In this dissertation, we will use

the Izhikevich model [78, 76] to represent the dynamics of single neurons. The

Izhikevich model is given by equation (1.3) with f(v, u) = k(v− vr)(v− vt)− u

and g(v, u) = a(b(v − vr) − u) where a, b and k are model parameters, vr is

the membrane resting potential, and vt is the membrane instantaneous thresh-

old. Depending on the choice of model parameters, this model is efficient in

generating most of the neuronal spikes patterns observed in single neurons [78].

This model has also recently been used to simulate large number of mammalian

thalamocortical neurons with synaptic connectivities [79].

It is well known that single cells are intrinsically noisy [161, 151, 125, 167, 45, 57].

Typically, this noisy characteristic of single neurons is captured in deterministic

dynamical models of spiking neurons such as equation (1.3) by including an

additive or multiplicative noise term in form of an external input current to

the model. In this case, the dynamical model takes the form of stochastic

differential equation [123] and the resultant sequence of ISIs (also known as the

first passage times) becomes a stochastic process [133, 134, 159, 160, 150]. As

an example, the leaky integrate-and-fire model takes the form of the well known

Ornstein-Uhlenbeck process in the presence of Gaussian noise [21, 20, 10]. In

this dissertation, we will use the Izhikevich model with Gaussian noise as a

stochastic single neuron model in explaining experimentally observed single cell

spike trains.

2. Neuronal Network Models:

It is clear from Figure 1.4 that the dendrites of a postsynaptic neuron estab-

lish synaptic connections with the axons of its presynaptic neurons and thus
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receive the input information in form of synaptic currents. Mathematically, the

synaptic current Is(t) is modeled as

Is(t) = −ge(t)(v(t)− Ee)− gi(t)(v(t)− Ei). (1.4)

Here, ge(t) and gi(t) are the excitatory and inhibitory synaptic conductances

respectively. Ee and Ei are the excitatory and inhibitory membrane reversal

potentials respectively. Typically, the synaptic conductance gx(t), x ∈ {e, i} is

modeled by taking the weighted sum of all presynaptic neuronal activities and

is represented in the following form [56]:

gx(t) =
Nx
∑

j=1

∑

f

wjK(t− tfj ). (1.5)

Here, Nx is the total number of presynaptic neurons of type x. wj is the weight

of the synapse j to the post-synaptic neuron. tfj is the time of the f th incoming

action potential from the synapse j to the post-synaptic neuron. K(t − tfj )

models the stereotypical time course of postsynaptic conductances following

presynaptic spikes. Typical forms of K(t− tfj ) are

K(t− tfj ) =
qj
τs

exp(−(t− tfj )/τs)Θ(t− tfj ), (1.6)

and

K(t− tfj ) =
qj
τs
(t− tfj ) exp(−(t− tfj )/τs)Θ(t− tfj ). (1.7)

Here, qj is the maximum conductance transmitted by the jth synapse through

one action potential. τ(·) is the time constant and Θ(·) is the Heavyside function
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with Θ(t − tfj ) = 1 for t > tfj and Θ(t − tfj ) = 0 otherwise. With appropriate

choices for the weight, type and number of synapses, equations (1.4), (1.5) and

(1.7) along with single neuron dynamics such as equation (1.3) have shown

the capability of a neuronal network of synaptically connected spiking neurons

in predicting the qualitative behavior of various cortical areas under different

dynamical regimes [17, 103, 166, 104, 64].

When the number of neurons present in a network is large and the exact timing

of the occurrence of action potentials is irrelevant, a direct simulation of equa-

tions (1.3), (1.4), (1.5) and (1.7) is computationally expensive. An alternative

approach is to represent the dynamics of neurons in terms of their firing rate i.e.

rate at which spike occurs [108]. Several mathematical models based on popu-

lation density approach [124, 90, 119, 65, 56, 51, 33, 149, 109] and mean-field

density approach [46] have been developed in this direction. These models are

typically represented by a nonlinear integral-differential equation and assume

that the biophysical properties of neurons within a population are same for

all neurons and each neuron within a population receives synaptic input with

the same average rate. These assumptions make these models highly computa-

tionally efficient for simulating large number of synaptically connected similar

neurons.

In this dissertation, we will use both the direct simulation approach and the

rate-based approach to represent the dynamics of neuronal networks for BMIs

applications.
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Decoder

The problem of determining the information (such as motor intent) contained in a

spike train measured from an ensemble of neurons is referred to as the neural decod-

ing problem [126]. There exists two approaches, complementary to each other, for

extracting information encoded in neuronal populations, namely decoding algorithms

and information theory [132]. Decoding algorithms are applicable for making predic-

tion of a given stimulus or behavior from the pattern of ensemble neuronal responses

while information theory is applicable for determining the quantity of information

carried by neurons about a given stimuli.

It should be evident that the general neuronal decoding problem defies a mechanis-

tic or physically motivated modeling paradigm and lends itself much more naturally to

a range of signal processing, probabilistic and black-box techniques for the generation

of models [145, 139]. These techniques typically employ input measurements, such as

spike trains from ensemble of neurons, and the corresponding outputs such as motor

commands, grasping, etc. to develop decoding models. In BMIs research, a wealth of

tools and a variety of model families have been shown to give reasonable predictive

models for motor parameters from neural spike trains (for example see [89, 91]). Typ-

ical model forms in this category are generative models based on population vector

methods [54, 55], Kalman filters and their variations [173, 174, 112, 101, 31, 60], max-

imum likelihood estimators [11], Bayesian regression [102], Poisson processes [176],

Wiener filters [154, 89], multi-layer feed-forward artificial neural networks (ANNs)

[2, 4] and recurrent neural networks (RNNs) [153]. Among these decoding models,

the most popular are Weiner filters and Kalman filters.

In this dissertation, we will use the following adaptive Weiner filter [89] and
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Kalman filter [59] in designing BMIs:

1. Weiner Filter [89]:

Figure 1.6 shows a schematic of a discrete-time Weiner filter for BMIs. Mathe-

Figure 1.6: Schematic of a Discrete-time Weiner Filter. xm(k− l) represents the firing
rate of neuron m at time k delayed by l samples. wm,l is a weight on xm(k− l). y(k)
is the decoded output. n1(k) is the measurement noise.

matically, the decoded output y(k) can be expressed in terms of the firing rate

of neuronal ensemble as

y(k) =
L−1
∑

l=0

N
∑

m=1

xm(k − l)wml + n1(k). (1.8)

Here, y(k) is a scalar decoded output. In BMIs, it can be prediction of hand

position co-ordinate, velocity or acceleration at discrete time k. L is the number
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of delay elements. N is the total number of neurons in the population. xm(k−l)

represents the firing rate of the neuron m delayed by l samples. wml is a weight

on xm(k − l). In a vector form, equation (1.8) can be expressed as

y(k) = wTx(k) + n1(k). (1.9)

Here, w is a N.L × 1 dimensional weight vector of the current and L − 1

previous spikes counts of N neurons. (·)T is the transpose of a vector. x(k) =

[x1(k), x1(k − 1), · · · , x1(k − L+ 1), x2(k), · · · , xN(k − L+ 1)]T .

In a typical BMI experiment, a part of the experimentally recorded data is

used to train a chosen decoder model and thus estimate the unknown model

parameters of the decoder. The rest of the data is then used to validate the

performance of the decoder. Using the training data, the weighting matrix can

be computed using the following normalized least mean square algorithm [89]:

w(k + 1) = w(k) +
η

β + ||x(k)||2e(k)x(k). (1.10)

Here, η ∈ (0, 2). β is a small positive constant. || · || represents the Euclidean

norm. e(k) is the error between the recorded y(k) and the estimated value

through equation (1.9). After the training, the weight vector ‘w’ is frozen to

the final adapted value which is then used in equation (1.9) to validate the

performance of the decoder. It should be noted that the scalar y(k) in equation

(1.9) can easily be extended to vector.

2. Kalman Filter [86, 59]:
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The Kalman filter [86] uses a dynamical model of the system’s state and noisy

measurements available from sensors to estimate the future state of the system.

For example, if the state of the system is known perfectly at a given time k

and the noisy measurements of outputs (or observations) are available from the

system then the Kalman filter can be used to estimate the state of the system

at time k + 1. The basic algorithm of the Kalman filter can be described as

follows [172]:

y(k + 1) = Ay(k) + r(k), (1.11a)

x(k) = Cy(k) + q(k). (1.11b)

Here, y(k) is the state vector of dimension p× 1. A ∈ Rp×p represents the state

matrix. x(k) is the observation vector of dimension r× 1. C ∈ Rr×p represents

the observation matrix. r(k) ∼ N (0, R) and q(k) ∼ N (0, Q) are Gaussian noise

sources.

The state matrix A and the observation matrix C can be estimated by least

squares:

A = argmin
A

D−1
∑

k=1

||y(k + 1)− Ay(k)||, (1.12a)

C = argmin
C

D
∑

k=1

||x(k)− Cy(k)||. (1.12b)
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Here, D is the total time steps in the training data. The solutions of equation

(1.12) result in

A = Y2Y
T
1 (Y1Y

T
1 )−1, (1.13a)

C = XY T (Y Y T )−1. (1.13b)

Here,X =













x1,1 · · · x1,D
...

. . .
...

xr,1 · · · xr,D













, Y =













y1,1 · · · y1,D
...

. . .
...

yp,1 · · · yp,D













, Y1 =













y1,1 · · · y1,D−1

...
. . .

...

yp,1 · · · yp,D−1













,

and Y2 =













y1,2 · · · y1,D
...

. . .
...

yp,2 · · · yp,D













. Now using the estimated A and C, one can esti-

mate R and Q by

R =
1

D − 1
(Y2 − AY1)(Y2 − AY1)T , (1.14a)

Q =
1

D
(X − CY )(X − CY )T . (1.14b)

The reconstruction of the state y(k) using the Kalman filter can be described

as follows:

At time k, a previous estimate of the state y(k) i.e. ŷ(k | k − 1) and a new

observation y(k) are obtained. The first step is to compute a priori estimate of

the state y(k) using
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ŷ(k | k − 1) = Aŷ(k − 1) (1.15)

where ŷ(k | k − 1) is a priori estimate of y(k) at time k and ŷ(k − 1) is the

estimate of y(k) at time k−1. The estimate of a priori covariance of ŷ(k | k−1)

is computed using

P̂ (k | k − 1) = AP̂ (k − 1)AT +R. (1.16)

The final step is to compute a posteriori estimate ŷ(k) (the final estimation for

the state) of the state y(k) and a posteriori estimate P̂ (k) of the covariance

matrix using

ŷ(k) = ŷ(k | k − 1) +Kk(x(k)− Cŷ(k | k − 1)), (1.17a)

P̂ (k) = (I −KkC)P̂ (k | k − 1). (1.17b)

Here, I is an identity matrix. Kk is the Kalman gain which is given by

Kk = P̂ (k | k − 1)CT (CP̂ (k | k − 1)CT +Q)−1. (1.18)

For neuroprosthetic applications, the state vector y(k) can be expressed as

y(k) = [px(k), py(k), pz(k), vx(k), vy(k), vz(k), ax(k), ay(k), az(k), 1]
T . Here, pi(k),

vi(k) and ai(k) represent the position, velocity and acceleration of the arm ef-

fector in the ith direction at time k. The constant 1 is the fixed offset (e.g.
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baseline firing rate) in the observations. x(k) represents the measured neural

signal which can be firing rate at time k or the binned spike counts. The po-

sition, velocity and acceleration of the arm effector can be reconstructed from

the firing activity of cortical neurons using equations (1.13)-(1.18). The typical

bin width (in case of spike counts) ranges from 10 milliseconds (ms) to 300 ms.

It has been shown in BMIs studies that the shorter bin widths result in better

performance of the designed decoder [30].

In Chapter 2, Chapter 3, Chapter 4, and Chapter 5 of this dissertation, we aim

to develop feedback-enabled BMIs in an optimal receding horizon control framework

towards the next generation BMIs.

1.2 Small Length Scale Dynamical Systems

By a small length scale dynamical system, we mean that the system is submicroscopic

and the dynamical behavior of the system is governed by a stochastic process. Exam-

ples include but are not limited to particles driven by Brownian motion, nanobots,

subcellular biological structures suspended in a fluidic environment, and a swarm of

stochastically behaving agents.

Since the last decade, the attention of many control engineers has been focused

in developing control strategies for (1) regulating trajectories of micro and nano level

objects in a specific medium, and (2) manipulating the dynamical behaviors of in-

dividual entities in a swarm of identical agents with a goal of achieving a desired

aggregate behavior of the ensemble. Emerging applications in this direction include

but are not limited to
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1. understanding of dynamical behaviors of biological objects and systems such

as cellular interactions, DNA etc. in their natural environments for facilitating

biomedical applications ([29],[61]),

2. regulation of submicroscopic particles in fluidic systems for applications in drug

delivery systems and laboratory on a chip technologies ([42],[9],[62]),

3. design of smart robots and multi-agent intelligent systems for applications in

automation (see [162],[25] and references therein).

The key challenge in facilitating applications such as (1) and (2) lies in the control

over trajectories of these submicroscopic objects which are under continuous random

fluctuations, also called Brownian fluctuations, induced by interactions of these ob-

jects with the medium in which they are placed. Thus the main question arises here

is the design of optimal control strategies for suppressing or canceling these Brown-

ian effects while achieving the desired performance of the system. Similarly, the key

challenge in facilitating applications such as (3) lies in the control over the states of

stochastically behaving agents for stabilizing the aggregate behavior of a vast number

of identical agents when a limited feedback information is available from the system.

In Chapter 6 and Chapter 7 of this dissertation, we aim to develop stochastic

optimal control strategies in a receding horizon framework to facilitate these emerging

applications. Particular systems of study are multi-agent system (Chapter 6) and

an ensemble of particles driven by purely Brownian motion (Chapter 7).
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1.2.1 Multi-Agent System

By an agent, we mean an autonomous entity which is capable in making its own

decision in response to the input. Examples include biological cell, bacteria, bird,

human, intelligent robot etc. An agent is called simple if it possesses discrete simple

states. As an example, the states of a simple agent can be represented by switching

behaviors such as “ON” and “OFF”. Based on the input, the agent can decide to stay

at the present state or to switch to the other available state.

In Chapter 6 of this dissertation, we consider a multi-agent system consists of a

vast number of identical simple agents. Examples include an ensemble of endothelial

cells, artificial muscle actuators, a colony of E. coli bacteria, and a swarm of simple

agents. In all these examples, the common goal for agents is to achieve a desired num-

ber of particular state. The underlying complexity in assigning individual controllers

to each agent in the ensemble with very few available actuators has limited direct

applicability of traditional control strategies such as decentralized and distributed

control policies for achieving such goals.

Recently, Asada and his group [162] have introduced the concept of broadcast

feedback control, a centralized control strategy, for stabilizing the aggregate behavior

of a vast number of identical agents when limited feedback information is available

from the system. The authors have applied this control framework to the problems

of endothelial cell migration [171] and artificial muscle actuators [162], [121]. Similar

control architecture has later been applied to achieve desired aggregate behavior in a

colony of E. coli bacteria [85] and supervising a swarm of simple agents [25]. Figure

1.7 shows a broadcast feedback control architecture employed in these studies.

In all these works, the dynamical behavior of individual agents in the system has
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Figure 1.7: Broadcast feedback control architecture: Here y is the measured output,
r is the desired output, e = r − y is the system error, and u is the designed control
input. The central controller designs and broadcasts a single control input to all the
agents in the system.

been represented by the finite state Markov chain model and their state transition

probabilities have been used as manipulated variables to achieve the desired system

behavior. The computed transition probabilities in most of these works are non-

optimal (exception [121] and [122]) which may lead to a poor performance of the

overall system. This provides the main motivation for us to develop an optimal

centralized control framework for such systems in Chapter 6 of this dissertation.

1.2.2 Brownian Motion and Control

Brownian motion refers to the memoryless and non-differentiable path generated by

random movements of the particle placed in the fluid. These random movements

are the result of random collisions of a particle with the surrounding molecules of

the fluid. Typical mathematical models used to describe the trajectory of a particle

undergoing Brownian motion are random walk based models [41, 28], the Langevin

equation and its variants [136, 88].

Suppression of Brownian fluctuations to facilitate the tracking, transport, sorting
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and assembly of micro-particles as well as biological entities in solution has always

been a non-trivial problem. In recent years, experimental efforts have focused on

enhancing optical (see [62], [9] and [116]) and magnetic tweezers (see [61] and [175])

to obtain a more precise and reliable manipulation of individual particles. Feedback

control is essential to make appropriate real-time corrections in the trajectories of

these microscopic entities [6]. Recent applications of classical feedback controllers

in the design of Anti-Brownian Electrophoretic (ABEL) trap [29] and electrokinetic

tweezers (see [130] and references therein) have shown promise in this direction. Op-

timal feedback control algorithms can greatly enhance the capability of these devices

for their widespread applicability [130]. More importantly, an optimal feedback con-

trol framework should be able to address control of not just individual entities but

Brownian ensembles, an issue that is currently not fully resolved. This is the main

motivation for us to develop an optimal feedback control strategy for regulating an

ensemble of particles driven by Brownian motion in Chapter 7 of this dissertation.

1.2.3 Optimal Control Policies for Stochastic Dynamical Sys-

tems

Historically, theory of optimal control policies [140, 94] in stabilizing stochastic dy-

namical systems traces back to the seminal results of Kalman [86] and Kushner [92].

These results provided a theoretical framework which allows incorporation of proba-

bilistic tools, such as conditional expectations and the theory of martingales [41], in

designing closed-loop control policies for such systems [93]. Incorporation of receding

horizon based predictive control policy [95] such as shown in Figure 1.3 within this

framework can potentially result in a unique optimal control strategy for stabilizing
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stochastic dynamical systems. Recent applications on stabilization of linear stochastic

systems with constraints (see [129, 73] and references therein) have shown the capa-

bility of this framework for designing a model-based receding horizon control (RHC)

policy. In Chapter 6 and Chapter 7 of this dissertation, we extend this framework for

stabilizing dynamical systems consisted of an ensemble of stochastic entities.

1.3 Dissertation Overview

This dissertation is organized as follows: In Chapter 2, the problem of estimating

model parameters using limited experimental data is addressed for both the determin-

istic and the stochastic Izhikevich single neuron model. Reasonable model parameters

are estimated by formulating and solving optimization problems. The approach used

here can serve as a template for validating the efficacy of single neuron models in

predicting experimental data. In Chapter 3, we derive conditions for continuous

differentiability of inter-spike intervals of spiking neurons with respect to parameters

(decision variables) of an external stimulating input current which drives a recurrent

network of synaptically connected neurons. The derived theoretical results in this

chapter allow us to use a local gradient-based optimization algorithm in solving opti-

mal control problems formulated for closed-loop brain-machine interfaces (BMIs). In

Chapter 4, an optimal control framework using receding horizon control policy is de-

veloped to facilitate rigorous control-theoretic analysis of stimulus-based closed-loop

BMIs. The framework allows spiking models of cortical neurons and networks, both

deterministic and stochastic, as well as dynamical models of decoders in analyzing

closed-loop performance of BMIs. Under this framework, optimal control problems

are formulated using a single neuron model to investigate the role of sensory feedback
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in closed-loop BMIs. In Chapter 5, we design optimal artificial sensory feedback

to recover the closed-loop performance of a BMI for voluntary single joint extension

task in the absence of the natural proprioceptive feedback pathways. The closed-loop

BMI framework presented in this chapter allows firing rate-based cortical network

models in designing optimal artificial sensory feedback. The study presents the first

systematic approach to incorporate artificial proprioception in BMIs towards stimu-

lation enhanced next generation BMIs. Next, in Chapter 6, a broadcast stochastic

receding horizon control framework is developed using a limited feedback information

available from the system in stabilizing a swarm of identical simple agents. Theo-

retical as well as simulation results are presented to demonstrate the efficacy of the

designed controller over traditional controller designs. In Chapter 7, we investigate

the optimal trapping of an ensemble of particles driven by Brownian motion in a

minimum possible trapping region. Finally, we summarize the work presented in this

dissertation and present future work directions in Chapter 8.
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Chapter 2

Investigation on Parameter

Estimation of Single Neuron

Models

2.1 Introduction

Neurons communicate with each other in a network by generating and transferring

action potentials [87]. The exact phenomenon through which these action poten-

tials encode the information contained in presynaptic activities is still unknown. To

understand this phenomenon of neural coding using rigorous mathematical analysis

is an important problem in computational and theoretical neuroscience [32]. One

of the challenges in attempting such analysis is to develop computationally efficient

mathematical models of neurons which can predict action potentials observed in ex-

perimental conditions, both qualitatively and quantitatively. Recent efforts towards
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developing single neuron models have shown the capability of mathematically simpli-

fied low-order models such as spike response model [56], the Izhikevich single neuron

model [76, 77], the adaptive exponential integrate-and-fire model [16], and a general-

ized integrate-and-fire model [106] in capturing broad range of qualitative behavior of

biological neurons. The obvious benefits of using these low-order models in the anal-

ysis of network of neurons for neural coding are their mathematical simplicity and

existence of small number of model parameters which can easily be extracted from

experimental data. Other benefits are in implementing neural prostheses where these

models can be simulated at low costs. To choose any of these models for applications,

it is necessary to analyze the quantitative capability of these models in predicting

experimental data [83].

In the past, several results have been reported on estimating parameters of both

deterministic and stochastic single neuron models using either detailed experimental

data such as subthreshold voltage traces or inter-spike interval (ISI), the time dif-

ference between two consecutive action potentials, data [80, 128, 67, 35, 5, 36, 97,

81, 26, 37, 113, 96, 53, 82, 40, 137, 18, 39, 138]. Surprisingly, none of these studies

have reported results on the deterministic and the stochastic Izhikevich single neuron

model [78] with a full set of model parameters.

In this chapter, we first estimate parameters of a reduced form of the conductance-

based representation of the deterministic Izhikevich model using single cortical neuron

experimental data obtained from a primate study [142]. The approach presented to

estimate model parameters of this model is appropriate when the only available exper-

imental data is ISIs. Next, we estimate parameters of both the deterministic and the
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stochastic Izhikevich single neuron model with full set of parameters using a bench-

mark set of experimental data available from “Quantitative single-neuron modeling

competition 2009” [114] and investigate the quantitative predictive capability of this

model in explaining experimental data. The approach presented to estimate model

parameters of these models is appropriate when both ISIs and the input current de-

livered to a single neuron are available from experiments. Our analysis may serve

as a benchmark comparison of the performance of this model against other existing

single neuron models.

2.2 Single Neuron Models

We consider two forms of the Izhikevich single neuron model [76, 77, 78] namely,

“Model I” and “Model II” to represent the dynamics of a single neuron. “Model I”

is a reduced form of the conductance-based representation of the Izhikevich model

(“Model II”) with a full set of model parameters. The mathematical description of

both models is given as follows:

2.2.1 Model I

In a reduced form, the Izhikevich model [76, 77] is represented as

dv(t)

dt
= 0.04v2(t) + 5v(t) + 140− u(t) +RI(t), (2.1a)

du(t)

dt
= a(bv(t)− u(t)), (2.1b)
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if v(t) ≥ 30, then

v(t)← c and u(t)← u(t) + d.

(2.1c)

Here, v(t) and u(t) are the time-varying membrane potential and the membrane

recovery variable of a neuron respectively in millivolts (mV). I(t) is an external input

current in nano-Ampere (nA). R is the membrane resistance. Throughout this work,

we assume that R = 106 Ω. a, b, c, d are the model parameters. The occurrence of

an action potential (spike) is assumed whenever v(t) exceeds 30 mV. At this time,

v(t) is reset to c and u(t) is reset to u(t) + d. In this model, unknown parameters

are a, b, c, d which can be estimated using experimental data. The presence of small

number of parameters makes this model appropriate for simulating single neurons.

The recovery variable u(t) accounts for the activation and inactivation of K+

and Na+ ionic currents respectively and provides a negative feedback to the mem-

brane potential v(t). The time scale of the recovery variable u(t) is described by

the parameter a whereas the sensitivity of u(t) to the subthreshold fluctuations of

the membrane potential v(t) is characterized by the parameter b. After-spike reset

value of the membrane potential caused by the fast high-threshold K+ conductances

is described by the reset parameter c. After-spike reset of the recovery variable u(t)

caused by slow Na+ and K+ conductances is given by parameter d [76]. Detailed

geometric characterization of these variables are given in [78]. In this work, the mem-

brane potential reset value c is chosen to be the membrane resting potential or the

equilibrium potential veq and is calculated here as

veq =
(b− 5)− ((5− b)2 − 22.4)0.5

0.08
. (2.2)
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2.2.2 Model II

The Izhikevich model [78] with a full set of model parameters is given by

Cdv(t) = (k(v(t)− vr)(v(t)− vt)− u(t) + I(t))dt+ σdW (t), (2.3a)

du(t) = a(b(v(t)− vr)− u(t))dt, (2.3b)

if v(t) ≥ vp, then

v(t)← c and u(t)← u(t) + d.

(2.3c)

Here, v(t) and u(t) are the time-varying membrane potential and the membrane

recovery variable of a neuron respectively in mV. C is the membrane capacitance in

micro-Farad (µF). vr is the membrane resting potential in mV. vt is the instantaneous

threshold in mV. I(t) is the deterministic total input current, external as well as

synaptic, delivered to the neuron in nano-Ampere (nA). σ2 is the variance. W (t) is

the standard Wiener process. vp is a firing threshold in mV. a, b, c, d are the model

parameters. With σ = 0, the model is deterministic and with σ > 0, the model is

stochastic. The occurrence of an action potential is assumed whenever v(t) exceeds

vp. At this time, v(t) is reset to c and u(t) is reset to u(t)+ d. An inter-spike interval

(ISI) is defined as the time difference between the occurrence of two consecutive

action potentials. In this model, unknown parameters are a, b, c, d, vr, vt, vp, k, C, σ.

The model is appropriate for simulating large scale networks of conductance-based

synaptically connected neurons.
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2.3 Parameter Estimation: Model I

In this section, we estimate unknown parameters of “Model I” using experimental

inter-spike intervals (ISIs) of a single cortical neuron obtained from a primate study.

For this, we formulate two optimization problems, namely unconstrained and con-

strained. Since the only available data for model fitting is ISIs, we also estimate the

input current I(t) to the model.

2.3.1 Problem Statement

Our goal is to estimate optimal values of unknown parameters a, b, c, d and the input

current I(t) of “Model I” such that the estimated ISIs using the model matches the

experimental ISIs. We assume that the input current I(t) within an ISI is constant.

The value of c is given by equation (2.2). With this, we formulate the following non-

linear optimization problems to estimate the remaining parameters of the model as

well as the input current I(t):

1. Unconstrained Non-Linear Optimization Problem We formulate the un-

constrained non-linear optimization problem as follows:

min
a,b,d,Ij

N(Tm
j − T e

j )
2. (2.4)

Here, J is the optimization cost function. j = 1, · · · , n represents the index

of the experimental ISI data. T e
j and Tm

j are the jth experimental ISI data

and jth ISI estimated by the model respectively. a, b, d are unknown model

parameters. Ij is the input current corresponding to the jth ISI. N is the

number of replications of the jth ISI.
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2. Constrained Non-Linear Optimization Problem We formulate the con-

strained non-linear optimization problem as follows:

min
a,b,d,Ij

N(Tm
j − T e

j )
2, (2.5a)

such that

22.4− (5− b)2 < 0, (2.5b)

ℜ(0.08veq + 5− a+ ((a− 0.08veq − 5)2 − 4a(b− 0.08veq − 5))0.5) < 0. (2.5c)

Here, ℜ represents the real part of a complex number. The constraint defined by

equation (2.5b) ensures the existence of feasible equilibrium points of equation

(2.1) in the absence of any external input current (Ij = 0). The constraint

defined by equation (2.5c) ensures the existence of a stable equilibrium point of

equation (2.1) in the absence of any external input current.

2.3.2 Primal-Dual Interior-Point Method

In this section, we describe a basic primal-dual interior-point algorithm [15] for solving

constrained optimization problems. In later sections, we will apply this algorithm in

solving equation (2.5). To begin with, let us consider the following optimization

problem:

min
x

f0(x), (2.6a)

such that

fi(x) ≤ 0, i = 1, 2, · · · ,m (2.6b)
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Ax = b. (2.6c)

Here, x is a vector of parameters (decision variables) of dimension n × 1. fi(x) :

Rn −→ R, i = 0, 1, · · · ,m is a convex function on the real space and is two times

continuously differentiable with respect to (w.r.t.) x. A is a real matrix of dimension

p× n with rank(A) = p < n. b is a vector of dimension p× 1.

The modified Karush-Kuhn-Tucker (KKT) conditions [15] which lead to a feasible

optimal solution of equation (2.6) are given by

∇f0(x) +
m
∑

i=1

λi∇fi(x) +ATν = 0, (2.7a)

−λifi(x) = 1/t, i = 1, · · · ,m, (2.7b)

Ax = b. (2.7c)

Here, ∇ is a gradient operator. λi, i = 1, 2, · · · ,m and ν are Lagrange multipliers

associated with equation (2.6b) and equation (2.6c) respectively. m/t with t > 0 is

the duality gap. In a vector form, equation (2.7) can be expressed as

rt(x, λ, ν) =













∇f0(x) +Df(x)Tλ+ATν

−diag(λ)f(x)− (1/t)1

Ax− b













= 0. (2.8)
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Here, (·)T represents the transpose of a vector. f(x) and Df(x) are given by

f(x) =













f1(x)

...

fm(x)













, (2.9a)

Df(x) =













∇f1(x)T
...

∇fm(x)T













. (2.9b)

x = x∗(t), λ = λ∗(t) and ν = ν∗(t) are called the optimal solution of equation (2.6)

if x = x∗(t), λ = λ∗(t) and ν = ν∗(t) satisfy equation (2.8) along with fi(x) < 0 for

i = 1, 2, · · · ,m. In the absence of an analytical expression for the solution of equation

(2.8), equation (2.8) is solved numerically using the Newton method:













∇2f0(x) +
∑m

i=1 λi∇2fi(x) Df(x)T AT

−diag(λ)Df(x) −diag(f(x)) 0

A 0 0

























∆x

∆λ

∆ν













= −













rdual

rcent

rpri













. (2.10)

Here, rdual, rpri, and rcent are given by

rdual = ∇f0(x) +Df(x)Tλ+ATν, (2.11a)

rpri = Ax− b, (2.11b)

rcent = −diag(λ)f(x)− (1/t)1. (2.11c)
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Primal-dual interior-point algorithm:

Choose an initial guess x = x0 such that fi(x) < 0 for i = 1, 2, · · · ,m. Choose

values of λ, µ, ǫfeas, and ǫ such that λ ≻ 0, µ > 1, ǫfeas > 0, and ǫ > 0. Define

η̂(x, λ) = −f(x)Tλ. Let y = (x, λ, ν)T and ∆y = (∆x,∆λ,∆ν)T . Now apply the

following steps to compute x∗(t), λ∗(t) and ν∗(t):

1. Set t := µm/η̂.

2. Compute the primal-dual search direction y by solving equations (2.10) and

(2.11).

3. Use a line search method to compute step length s > 0 and update y := y+s∆y.

4. Repeat 1, 2 and 3 until ||rpri|| ≤ ǫfeas, ||rdual|| ≤ ǫfeas, and η̂ ≤ ǫ.

2.3.3 Algorithm

We apply the following strategy in solving the unconstrained and the constrained

optimization problem defined by equation (2.4) and equation (2.5) respectively:

1. Minimize N(Tm
1 − T e

1 )
2 w.r.t. a, b, d, I1 and obtain the optimal value of a, b, d

and I1;

2. Fix the optimal value of a, b, d obtained in the previous step and estimate the

input current Ij for j > 1 by minimizing objective function N(Tm
j − T e

j )
2 w.r.t.

Ij.
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Unconstrained Optimization Problem (equation (2.4))

Using the above strategy, the solution of the unconstrained optimization problem

(equation (2.4)) leads to the following conditions:

min
a,b,d,I1

J =⇒ ∇J = 0 and ∇2
J > 0. (2.12)

Here, J = N(Tm
1 − T e

1 )
2. ∇J represents the gradient of J w.r.t. a, b, d, I1. ∇2J

represents the second derivative of J w.r.t. a, b, d, I1. Given the initial guess of a, b,

d, and I1, ∇J and ∇2J are computed numerically using finite difference schemes. At

each iteration, a, b, d, and I1 are updated using the following Newton method:

xnew = xold − t(∇2
J)−1∇J. (2.13)

Here, x = [a b d I1]
T . At each iteration, the value of c is updated using equation (2.2).

The parameter t is updated using the backtracking line search method. Stopping

criterion is determined by the Newton decrement function which is defined as β(x) =

(∇J(x)T∇2J(x)−1∇J(x))0.5 [15].

Constrained Optimization Problem (equation (2.5))

The Primal-dual interior-point method given in section (2.3.2) is applied to solve

the constrained optimization problem. The following modified Karush-Kuhn-Tucker

(KKT) conditions are used for the implementation of the primal-dual interior-point
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algorithm:

rt(x, λ1, λ2) =













∇J(x) + λ1∇g(x) + λ2∇h(x)

−λ1g(x)− 1
t

−λ2h(x)− 1
t













= 0. (2.14)

Here, g(x) = 22.4− (5− b)2. h(x) = ℜ(0.08veq + 5− a+ ((a− 0.08veq − 5)2 − 4a(b−

0.08veq − 5))0.5). veq = (b−5)−((5−b)2−22.4)0.5

0.08
. λ1 and λ2 are the Lagrange multipliers.

t = µ
η̂
. η̂ = −λ1g(x)− λ2h(x) is the surrogate gap [15].

2.3.4 Experimental Data

We use the experimentally obtained cortical neuron ISI data from a primate study to

estimate the unknown parameters of “Model I”. All the experiments were carried out

at the University of Rochester Medical Center by Prof. Marc H. Schieber. Experi-

mental set-up and details are discussed in [142, 3]. Briefly, a male rhesus monkey - K

-, trained to perform visually-cued finger and wrist movements, placed his right hand

in a pistol-grip manipulandum in order to extend or flex a digit by a few millime-

ters. For instructing the monkey to close the switch by extension or flexion, visual

cues were presented to the monkey using LEDs. Experimental data acquisition was

accomplished using single unit recordings of neuronal activities in the primary motor

cortex (M1) area of a monkey. Self-made, glass-coated, Pt-Ir microelctrodes [3] were

implanted through surgical procedure to record the time of single neuron action po-

tentials. A schematic diagram of spikes recording from a single neuron is shown in

Figure 2.1.
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Figure 2.1: Experimental recordings of spike timings from a single neuron. The
neuron figure is taken from www.brainconnections.com
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2.3.5 Numerical Results

In this section, we solve the optimization problems defined by equations (2.4) and

(2.5) numerically and estimate the unknown parameters of “Model I” using experi-

mental ISI data. In particular, we use the ISIs of two neurons namely “K11404” and

“K15906” which were recorded during an extension of the right hand index finger of

a primate [4]. The finger movement trials selected for the present analysis lasted in

an approximate time duration of 700ms − 1300ms [142]. The total number of ISIs

occurred during this time period was 34 and 43 for the neuron “K11404” and the

neuron “K15906” respectively.

Unconstrained Optimization Problem

To solve the unconstrained optimization problem defined by equation (2.4) numeri-

cally, we set N = 20 in equation (2.4) and applied the algorithm described in section

2.3.3 for the unconstrained optimization problem. a = 0.02, b = 0.25, d = 6 and

I1 = 20 were chosen as the initial guess for performing numerical optimization. We

set β2

2
< 10−4 as the stopping criteria for the optimization algorithm. Using the first

ISI of the neuron “K11404”, we estimated a = 0.08, b = 0.59, and d = 15.57. Using

these values, we computed the input current Ij for the remaining 33 ISIs. Figure 2.2

shows our simulation results.

In Figure 2.2, the top plot represents the experimentally obtained action poten-

tials. The second plot shows action potentials predicted by the model using the

estimated parameters and the input current. Almost exact matching of theoreti-

cal and experimental ISIs shows that the estimated parameters are appropriate to
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Figure 2.2: Unconstrained parameter estimation for the neuron “K11404”.
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characterize properties of the “K11404” neuron. The third plot represents the tra-

jectory of the membrane potential in the absence of input currents i.e. Ij = 0 for

j = 1, 2, · · · , 34. The variation in the input current from one ISI to another is shown

in the last plot. A positive current represents an excitatory and a negative current

represents an inhibitory input to the neuron.

As shown in the third plot of Figure 2.2, the model predicts a sequence of action

potentials even in the absence of any external input currents. It is well known that

an isolated single neuron fires action potentials only in the presence of input currents.

This indicates that the estimated parameters for this model are not appropriate to

characterize the dynamical behavior of a biophysical single neuron.

Mathematical analysis of “Model I” (equations (2.1) and (2.2)) with I(t) = 0

shows that (5 − b)2 − 22.4 ≥ 0 i.e. b ∈ (−∞, 0.27] ∪ [9.73,∞) is necessary to obtain

real equilibrium points of equation (2.1). Solution of the unconstrained optimization

problem clearly shows that the estimated value of b i.e. b = 0.59 is outside the domain

of the feasible equilibrium space. This clearly indicates that the above estimated

model parameters are not appropriate to represent the dynamical behavior of a single

neuron.

These analyses suggest that there is a need to impose constraints on the parame-

ters of the Izhikevich model such that feasible equilibrium points exist for the model

in the absence of any external input currents.

Constrained Optimization Problem

To solve the constrained optimization problem defined by equation (2.5) numeri-

cally, we set N = 5 in equation (2.5) and implemented the primal-dual interior-point
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method in MATLAB. a = 0.02, b = 0.25, and d = 6 were chosen as the initial guess

for performing numerical optimization. I1 = 20 and I1 = 25 were chosen as an initial

guess of the input current to the neuron “K11404” and the neuron “K15906” respec-

tively. The stopping criteria for the primal-dual interior-point algorithm was chosen

based on ||rt(x, λ)||2 ≤ 0.3. µ = 10 and µ = 4 were chosen to initialize the parameter

t for the neuron “K11404” and the neuron “K15906” respectively. Using the first ISI

of the neuron “K11404” and the neuron “K15906”, we estimated a = 0.23, b = 0.24

and d = 27.19 for the neuron “K11404” and a = 0.21, b = 0.25 and d = 16.71 for

the neuron “K15906”. Using these values, we computed the input current Ij for the

remaining 33 ISIs of the neuron “K11404” and 42 ISIs of the neuron “K15906”. Fig-

ures 2.3 and 2.4 show our simulation results for the neuron “K11404” and the neuron

“K15906” respectively.

In both Figure 2.3 and Figure 2.4, the top plot shows the experimentally recorded

action potentials. The second plot shows action potentials predicted by the Izhike-

vich model in the presence of input currents. The third plot shows the trajectory of

the membrane potential predicted by the Izhikevich model in the absence of input

currents. As clearly shown in this plot, the predicted trajectory of the membrane po-

tential by the Izhikevich model is at the membrane resting potential in the absence of

input currents. This indicates that the estimated parameters are appropriate to char-

acterize the dynamical behavior of both neurons. The fourth plot shows the estimated

input currents. The last plot shows the percentage error between the experimental

and the model predicted spikes time. This error was computed as
100|(T e

j −Tm
j )|

T e
j

where

T e
j and Tm

j are the experimental and the model predicted spike time for the jth action

potential.
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Figure 2.3: Constrained parameter estimation for the neuron “K11404”.
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Figure 2.4: Constrained parameter estimation for the neuron “K15906”.
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To support our simulation results, we performed mathematical analysis of the

Izhikevich model for both neurons, “K11404” and “K15906”, using the estimated

model parameters along with I(t) = 0. The computed equilibrium points for the

neuron “K11404” i.e. (−53.16,−12.76) and (−65.84,−15.80) and the computed equi-

librium points for the neuron “K15906” i.e. (−53.77,−13.19) and (−65.09,−15.98)

clearly show that the model possesses real equilibrium states in the absence of any ex-

ternal input currents which was not true in the case of the unconstrained optimization

problem. Each pair of equilibrium points represents (v, u), the membrane potential

and the membrane recovery variable respectively, at the equilibrium. v = −65.84mV

and v = −53.16mV for the neuron “K11404” and v = −65.09mV and v = −53.77mV

for the neuron “K15906” are the membrane resting potential and the neuron firing

threshold respectively.

The computed eigenvalues at the membrane resting potential are −0.25 ± 0.23i

for the neuron “K11404” and −0.21±0.23i for the neuron “K15906”. Here, i =
√
−1.

These eigenvalues show that the membrane resting potential is a stable focus in both

neurons. The existence of this stable focus supports experimental evidences that a

neuron stays at its membrane resting potential in the absence of any input currents.

The computed eigenvalues at the neuron firing threshold are 0.69 and −0.17 for the

neuron “K11404” and 0.64 and −0.15 for the neuron “K15906”. These eigenvalues

clearly suggests the existence of a saddle at the firing threshold in both neurons.

Mathematical analysis of the Izhikevich model using estimated parameters for

neurons “K11404” and “K15906” supports the experimentally observed dynamical

behaviors of spiking neurons. Based on the parameter estimation results from other

M1 neurons, we have found that this approach can be used to estimate parameters
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of the Izhikevich single neuron model when the only available information is the

inter-spike intervals (ISIs) data.

2.4 Parameter Estimation: Model II

In this section, we estimate unknown parameters of “Model II” using a benchmark set

of experimental data available from “quantitative single-neuron modeling competition

2009” [114]. Figure 2.5 shows a framework for analyzing the quantitative predictive

capability of the stochastic Izhikevich single neuron model in explaining experimental

data.

Figure 2.5: A framework for quantitative assessment of the stochastic Izhikevich single
neuron model. The diagram has been modified and redrawn from Gerstner et al. [57].

As shown in this figure, an input current is injected to the soma of a single

neuron. As a result, the neuron fires a sequence of action potentials (also called

spike train). The time of the occurrence of action potentials are recorded to generate

an experimental data set. The same input current is then used to simulate the
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stochastic Izhikevich single neuron model. A part of the experimental data is used

to optimize the model parameters. The remaining data is then used to validate the

model predictability against the experimental data.

2.4.1 Problem Statement

In this section, we consider both deterministic (σ = 0) and stochastic (σ > 0) form of

the Izhikevich single neuron model (see equation (2.3)) and formulate two problems in

the framework shown in Figure 2.5 for analyzing the quantitative predictive capability

of the model in explaining experimental data.

Problem I

It is clear that equation (2.3) is a two dimensional stochastic differential equation for

σ > 0. Therefore, the time at which an action potential occurs (also known as the

first passage time of the process) is a stochastic process. We define τi, the time of

occurrence of the ith action potential starting from t = 0 or the first passage time

after the occurrence of the (i− 1)th action potential, as

τi = inf{t : v(t) ≥ vp | v(τi−1) = c, u(τi−1) = u(τi−1) + d, t > τi−1}. (2.15)

Here, τ0 = 0. We formulate the following optimization problem using the maximum

likelihood framework to estimate parameters of the stochastic Izhikevich single neuron

model given by equation (2.3):

max
a,b,c,d,vr ,vt,vp,k,C,σ

n
∑

i=1

log(pi(τi | τk, k = 1, · · · , i− 1)). (2.16)
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Here, n is the total number of spikes in a given experimental spike train. In words,

given an experimentally observed sequence of the first passage times {τ1, τ2, · · · , τn},

estimate the unknown parameters a, b, c, d, C, k, vr, vt, vp, σ optimally such that the

joint probability of the occurrence of this sequence is maximum over these parameters.

pi(τi | τk, k = 1, · · · , i−1) is a conditional first passage time probability density given

by

pi(τi | τk, k = 1, · · · , i− 1) = −[ d
dt

∫ vp

−vm

∫ umax

−umin

P (t, v, u)dudv]t=τi . (2.17)

Here, P (t, v, u) is the joint probability density for the time evolution of the membrane

potential v(t) and the membrane recovery variable u(t) and satisfies the following two-

dimensional Fokker-Planck equation:

∂P (t, v, u)

∂t
= −∂Jv(t, v, u)

∂v
− ∂Ju(t, v, u)

∂u
, (2.18)

with

P (t, vp, u) = 0 (Boundary condition), (2.19a)

P (t, vm, u) = 0 (Boundary condition), (2.19b)

P (τ+i−1v, u) =
1

Z
δ(v−c)R(−∂Jv(τ

−
i−1, v, u− d)
∂v

|v=vp) (Initial condition). (2.19c)

Here, Jv(t, v, u) =
1
C
(k(v− vr)(v− vt)− u+ I(t)))P (t, v, u)− σ2

2C2

∂P (t,v,u)
∂v

is the prob-

ability flux in the direction of v and Ju(t, v, u) = a(bv−u)P (t, v, u) is the probability

flux in the direction of u. δ(·) is the Dirac Delta function. R(x) = x for x > 0,
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otherwise 0. Z is a normalization factor give by

Z =

∫ umax

umin

R(−∂Jv(v, u− d, τ
−
i−1)

∂v
|v=vp)du. (2.20)

To compute the objective function in equation (2.16) for one iteration of numerical

optimization, one requires the solution of equations (2.17), (2.18), (2.19) and (2.20)

at each i for i = 1, 2, · · · , n. In the absence of a closed form solution of equations

(2.17), (2.18), (2.19) and (2.20), solving these equations numerically at each i for a

large n (say n = 100) are computationally expensive.

One way to reduce this computational complexity is to use a deterministic mem-

brane recovery variable ud(t) in equation (2.3) for σ > 0, which can be computed

using equation (2.3) with σ = 0 [39]. This leads to the following one dimensional

approximation of the stochastic Izhikevich single neuron model:

Cdv(t) = (k(v(t)− vr)(v(t)− vt)− ud(t) + I(t))dt+ σdW (t), (2.21a)

Cdvd(t) = (k(vd(t)− vr)(vd(t)− vt)− ud(t) + I(t))dt, (2.21b)

dud(t) = a(bvd(t)− ud(t))dt, (2.21c)

if v(t) ≥ vp, then

v(t)← c and ud(t)← ud(t) + d,

(2.21d)

if vd(t) ≥ vp, then

vd(t)← c.

(2.21e)

Equation (2.21) approximates the dynamical evolution of the membrane potential
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v(t) given in equation (2.3) for an arbitrary small σ > 0 using one dimensional

stochastic differential equation. Moreover, equation (2.21) reduces to equation (2.3)

when σ = 0. The probability density P (t, v) describes the time evolution of the

membrane potential v(t) in probability and satisfies the following one dimensional

Fokker-Planck equation:

∂P (t, v)

∂t
= −∂((F (v)−

1
C
ud(t) +

1
C
I(t))P (t, v))

∂v
+

σ2

2C2

∂2P (t, v)

∂v2
, (2.22a)

Initial Condition:

P (t, v) |t=τi−1
= δ(v − c), (2.22b)

Boundary Conditions:

P (t, v) |v=vm= 0, (2.22c)

∂P (t, v)

∂t
|v=vp= −

∂((F (v)− 1
C
ud(t) +

1
C
I(t))P (t, v))

∂v
|v=vp . (2.22d)

Here, F (v) = k
C
(v − vr)(v − vt). Equation (2.22c) represents an absorbing bound-

ary condition at the left boundary and (2.22d) represents a no diffusion boundary

condition at the right boundary of the v-space. We modify the first passage time

probability density in equation (2.17) as

pi(τi | τk, k = 1, · · · , i− 1) = −[ d
dt

∫ vp

vm

P (t, v)dv]t=τi . (2.23)

Equations (2.16), (2.21), (2.22) and (2.23) define the parameter estimation problem
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for the stochastic Izhikevich single neuron model in the maximum likelihood frame-

work.

To solve the one dimensional Fokker-Planck equation given by equation (2.22)

numerically, we implemented the method of lines [143] with a 5-point upwind scheme

in MATLAB. For this, we approximated the Dirac Delta function given in the ini-

tial condition defined by equation (2.22b) by a Gaussian distributed function and

redefined the initial condition as

P (t, v) |t=τi−1
=

1

5
√

(2π)
exp(
−(v − c)2

50
). (2.24)

We discretized the v space by defining ∆v = (vp − vm)/(N − 1) and vj = vm + (j −

1)∆v for j = 1, 2, · · · , N . At each j, we defined Pj(t) = P (t, vj). With this, we

approximated the first derivative
∂Pj(t)

∂v
by a 5-point upwind scheme as follows: When

F (vj)− 1
C
ud(t) +

1
C
I(t) > 0,

∂Pj(t)

∂v
=

3Pj+1 + 10Pj − 18Pj−1 + 6Pj−2 − Pj−3

12∆v
for j = 3, 4, · · · , N − 1,

(2.25a)

∂Pj(t)

∂v
=
−25Pj + 48Pj+1 − 36Pj+2 + 16Pj+3 − 3Pj+4

12∆v
for j = 1, (2.25b)

∂Pj(t)

∂v
=
−3Pj−1 − 10Pj + 18Pj+1 − 6Pj+2 + Pj+3

12∆v
for j = 2, (2.25c)

∂Pj(t)

∂v
=
Pj−2 − 8Pj−1 + 0Pj + 8Pj+1 − Pj+2

12∆v
for j = 3, (2.25d)

∂Pj(t)

∂v
=

3Pj−4 − 16Pj−3 + 36Pj−2 − 48Pj−1 + 25Pj

12∆v
for j = N. (2.25e)

When F (vj)− 1
C
ud(t) +

1
C
I(t) < 0,
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∂Pj(t)

∂v
=
−3Pj−1 − 10Pj + 18Pj+1 − 6Pj+2 + Pj+3

12∆v
for j = 2, 3, · · · , N − 2,

(2.26a)

∂Pj(t)

∂v
=
−25Pj + 48Pj+1 − 36Pj+2 + 16Pj+3 − 3Pj+4

12∆v
for j = 1, (2.26b)

∂Pj(t)

∂v
=
Pj−2 − 8Pj−1 + 0Pj + 8Pj+1 − Pj+2

12∆v
for j = N − 2, (2.26c)

∂Pj(t)

∂v
=

3Pj+1 + 10Pj − 18Pj−1 + 6Pj−2 − Pj−3

12∆v
for j = N − 1, (2.26d)

∂Pj(t)

∂v
=

3Pj−4 − 16Pj−3 + 36Pj−2 − 48Pj−1 + 25Pj

12∆v
for j = N. (2.26e)

We approximated the second order derivative
∂2Pj(t)

∂v2
by the standard second order cen-

tral finite difference scheme. For j = 2, 3, · · · , N−1, equation (2.22a) was discretized

as

dPj

dt
= −(F (vj)−

1

C
ud(t) +

1

C
I(t))

∂Pj

∂v
− ∂F (vj)

∂v
Pj +

σ2

2

∂2Pj

∂v2
. (2.27)

For j = 1, we implemented the boundary condition given by equation (2.22c) as

dP1

dt
= 0. (2.28)

For j = N , we implemented the boundary condition given by equation (2.22d) as

dPN

dt
= −(F (vN)−

1

C
ud(t) +

1

C
I(t))

∂PN

∂v
− ∂F (vN)

∂v
Pj. (2.29)

For solving these N set of ordinary differential equation at each time t, we used

MATLAB ODE solver “ode15s”. We set N = 201. To compute the first passage time
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given by equation (2.23), we used MATLAB numerical integration function “trapz”.

Figure 2.6 shows a numerical solution of equations (2.22) and (2.23) with i = 1 for

a constant and a time varying input current I(t). Here, we used C = 100, k = 0.07,

vt = −40, vr = −60, a = 0.003, b = −2, c = −50, d = 100, vp = 35, σ = 1000.
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Figure 2.6: Numerical solution of the first passage time density function. Here,
“FPTD” stands for first passage time density and represents p1(t). I(t) is the net
current to the neuron at time t.

Problem II

As an alternative to the maximum likelihood estimation approach described in the

previous section, here we formulate the following optimization problem to estimate

unknown parameters of the one dimensional approximation of “Model II” given by
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equation (2.21):

max
a,b,c,d,vr ,vt,vp,k,C,σ

1

n

1

m

n
∑

i=1

m
∑

j=1

Γi,j +
1

n

n
∑

i=1

(1− |maxj N
j
data −N i

model|
maxj N

j
data

). (2.30)

Here, Γi,j is the coincident factor between two spike trains [83] defined as

Γi,j =
N i,j

coinc− < N i,j
coinc >

(N i,j/2)(N j
data +N i

model)
. (2.31)

n is the number of realizations of spike train generated by the model. m is the total

number of spike trains in the experimental data set. N j
data is the number of spikes

(action potentials) in the jth spike train of the experimental data set in a given time

interval. N i
model is the number of spikes (action potentials) in the ith realization of the

spike train predicted by the model in the same time interval. N i,j
coinc is the number

of coincidences of spikes with precision ∆ = 4 ms between the jth spike train of

the experimental data set and the ith realization of the spike train predicted by the

model. < N i,j
coinc >= 2fi∆N

j
data is the expected number of coincidences generated by

a homogeneous Poisson process with the same firing rate fi as the model. N i,j =

1− 2fi∆ is a normalization factor.

Equation (2.30) maximizes the average coincidence factor defined by the first term

while keeping the average number of spikes predicted by the model in a given time

interval close to the maximum number of spikes in the experimental spike trains of

the same duration. When the model is deterministic i.e. σ = 0, n = 1 and the

maximization in equation (2.30) is over a, b, c, d, vr, vt, vp, k, C. Moreover for σ = 0,

the modified form of “Model II” given by equation (2.21) is same as the “Model II”

i.e. equation (2.3).
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The average coincidence factor is defined as Γ = 1
n

1
m

∑n
i=1

∑m
j=1 Γi,j with Γ ∈ [0, 1].

Γ = 0 means that the model is not better than if the spike trains were drawn from a

homogeneous Poisson process with mean firing rate same as the model. On the other

hand, Γ = 1 means that the model is optimal [114].

2.4.2 Results

In this section, we present our results on the efficacy of the modified Izhikevich single

neuron model given by (2.21) in explaining experimental data by solving “Problem I”

and “Problem II” numerically. In “Problem I”, we used MATLAB based local opti-

mization algorithm “fminsearch” to solve equation (2.16) for the modified stochastic

Izhikevich single neuron model given by equation (2.21). The numerical solution of

the one dimensional Fokker-Planck equation (equations (2.21) and (2.22)) was ob-

tained by solving equations (2.24) - (2.29) in MATLAB. In “Problem II”, we used

a direct optimization algorithm MATLAB routine [84, 50] to solve equation (2.30).

All the computations were performed on Lehigh high performance computing cluster

machines.

To estimate the model parameters in both “Problem I” and “Problem II”, we used

the experimental data from “quantitative single-neuron modeling competition 2009:

Challenge A” [114]. These data were obtained from a regular spiking L5 pyramidal

neuron in in vivo like conditions. Details of the experimental protocol and the method

applied to record data are discussed in [114]. Figure 2.7 shows a part of the injected

input current to the regular spiking L5 pyramidal neuron and the recorded spike

trains for two repeated trials with the same input current.

The data set was consisted of 13 independent spike trains, each of 38 seconds (s)
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Figure 2.7: Recording of spike trains from a regular spiking L5 pyramidal neuron in
response to in vivo like current injection [114].

duration, obtained from the regular spiking L5 pyramidal neuron in response to the

same (deterministic) input current. For estimating parameters in “Problem I”, we

used the data from only 11 spike trains. For estimating parameters in “Problem II”,

we used the data from all the 13 spike trains. In both “Problem I” and “Problem

II”, we used the data recorded in each independent trials during 17.5 s and 28 s

(10.5 s duration) to optimize the model parameters (training data) and the data

recorded in each independent trials during 28 s and 38 s (10 s duration) to compare

the model performance against the experimental data (performance data). The model

performance on the training data and the performance data was computed using the

coincidence factor defined by equation (2.31) and

Γ = EΓ± SD(Γ). (2.32)
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Here, EΓ = 1
n

1
m

∑n
i=1

∑m
j=1 Γi,j and SD(Γ) =

√

1
m

∑m
j=1(

1
n

∑n
i=1 Γi,j − EΓ)2.

Problem I

In this section, we studied the parameter estimation problem in the maximum likeli-

hood framework described in “Problem I” of section 2.4.1 and investigated the pre-

dictive capability of the modified stochastic Izhikevich single neuron model (equation

(2.21)) using the optimized parameters obtained from this framework. Before opti-

mizing the model parameters using experimental data, we validated the maximum

likelihood approach used in estimating model parameters against a synthetic data

set.

To generate a synthetic data set, we simulated equation (2.21) with C = 100,

k = 0.07, vt = −40, vr = −60, a = 0.003, b = −2, c = −50, d = 100, vp = 35,

σ = 1000. Figure 2.8 shows the input current I(t) used to simulate equation (2.21).

We generated 52 independent spike trains, each consisting of 322 ± 7 spikes over

a period of 39 seconds. We fixed vp = 35 and σ = 1000. and used the first

200 spikes from each spike trains to optimize the remaining 8 model parameters

C, k, vt, vr, a, b, c, d using the maximum likelihood approach. For this, we solved the

maximum likelihood optimization problem defined by equation (2.16) for each spike

trains and obtained 52 estimated values of the same parameter. Using the mean val-

ues of the optimized parameters, we validated the efficacy of the model in explaining

the remaining spikes in each spike trains. Table 2.1 shows the optimized parameters

using the synthetic data set.

It is clear from Table 2.1 that the mean values of parameters estimated using the

maximum likelihood approach are significantly different from the values of parameters
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Figure 2.8: Input current I(t) used for generating the synthetic data set.

Parameter True Guess Estimated (mean ± stan-
dard deviation)

C 100.00 80.00 66.06± 14.50
k 0.70 0.50 0.50± 0.38
vt −40.00 −45.00 −44.46± 8.62
vr −60.00 −65.00 −88.54± 8.95
a 0.0030 0.0025 0.0036± 0.0023
b −2.00 −4.00 −6.59± 3.29
c −50.00 −55.00 −67.68± 12.05
d 100.00 80.00 48.28± 20.15

Table 2.1: Estimated parameters of the modified stochastic Izhikevich single neuron
model (equation (2.21)) for “Problem I” using a synthetic data set. Here, the mean
value of a given parameter was computed by taking the average of its estimated value
over 52 trials. The standard deviation of a given parameter was computed by taking
the square root of its variance over 52 trials.
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used to generate the data (“True”). One of the reason for this may be the limited

data (52 spike trains with 200 spikes in each) used in estimating parameters. In the

maximum likelihood approach, the mean estimated values of parameters match the

true parameters of the model if the number of data used in estimating parameters are

large enough (theoretically infinite). Since our data set was small, we wondered if the

average coincidence factor (a benchmark measure of a single neuron model perfor-

mance) computed using the “True” parameters are closed to the one computed using

the mean values of the estimated parameters. For this, we computed EΓ over the

training data set (consists of 200 spikes from each spike trains) and the performance

data set (the remaining spikes,approximately 100, from each spike trains) using equa-

tion (2.32) with n = 16000 and m = 52. On the training data set, the computed

EΓ with “True” parameters was 0.2748 and with the mean values of the estimated

parameters was 0.2965. On the performance data set, the computed EΓ with “True”

parameters was 0.4985 and with the mean values of the estimated parameters was

0.5381. Clearly, the difference between the computed coincident factor with “True”

parameters and the mean values of the estimated parameters is small over both the

training and the performance data set. These results suggest that the maximum

likelihood approach can be used to estimate parameters of the modified stochastic

Izhikevich single neuron model given by equation (2.21) using a small data set.

Next, we optimized the parameters of the model given by equation (2.21) using

a part of the experimental data in the maximum likelihood framework. Here, we

optimized all 10 parameters C, k, vt, vr, vpa, b, c, d, σ. For this, we solved the maximum

likelihood optimization problem defined by equation (2.16) for 11 spike trains and

obtained 11 estimated values of the same parameter. To initialized the optimization,
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we computed the initial values (“Guess”) of parameters by matching the average firing

rate in an experimental spike train with the average firing rate predicted by model

in the same time duration. Moreover, we fixed the non-positive value, if occurred, of

the first passage time by assigning it a value of 10−15 during the optimization. Table

2.2 shows the optimized parameters using the experimental data set.

Parameter Guess Estimated (mean ± stan-
dard deviation)

C 94.52 237.78± 24.46
k 0.84 0.66± 0.03
vp 34.77 44.91± 7.29
vt −26.37 −19.05± 1.82
vr −72.20 −73.89± 1.09
a 0.03 0.04± 0.01
b −1.84 −1.26± 0.26
c −58.01 −123.36± 21.16
d 118.72 126.67± 24.07
σ 500.00 1414.10± 153.39

Table 2.2: Estimated parameters of the modified stochastic Izhikevich single neuron
model (equation (2.21)) for “Problem I” using a part of the experimental data set.
Here, the mean value of a given parameter was computed by taking the average of
its estimated value over 11 trials. The standard deviation of a given parameter was
computed by taking the square root of its variance over 11 trials.

Using the mean values of the estimated parameters, we computed EΓ over the

training data set and the performance data set using equation (2.32) with n = 10000

and m = 11. On the training data set, the computed EΓ with the mean values of the

estimated parameters was 0.0364. On the performance data set, the computed EΓ

with the mean values of the estimated parameters was 0.0427. These results clearly

show that the modified stochastic Izhikevich single neuron model (equation (2.21))

performs poor on the experimental data set with the optimized parameters obtained
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through the maximum likelihood approach.

Problem II

In this section, we studied the parameter estimation problem using the approach

of maximizing the average coincident factor described in “Problem II” of section

2.4.1. We investigated the predictive capability of the deterministic Izhikevich single

neuron model (equation (2.3 with σ = 0) and the modified stochastic Izhikevich single

neuron model (equation (2.21)) using the optimized parameters obtained through this

approach.

We first considered the deterministic Izhikevich single neuron model and optimized

9 parameters of this model. Table 2.3 shows the optimized value of these parameters.

Parameter Minimum bound Maximum bound Optimum
C 10 400 75.00
k 0.001 5 2.50
vp 0 60 0.37
vt −50 −20 −45.00
vr −100 −50 −75
a 0.0001 5 0.83
b −10 −0.01 −1.68
c −100 −50 −75
d 0 400 330.04

Table 2.3: Estimated parameters of equation (2.3) with σ = 0 for “Problem II”.

Using the estimated value of parameters given in Table 2.3, we computed Γ for the

training data set and the performance data set using equation (2.32) with n = 1 and

m = 13. On the training data set, the computed Γ was 0.40 ± 0.06. The average

number of spikes in the training data was 120 and the number of spikes predicted by

the model was 124. On the performance data set, the computed Γ was 0.38 ± 0.09.
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The average number of spikes in the performance data was 80 and the number of

spikes predicted by the model was 66. These results are consistent with the reported

study in literature where 6 parameters were optimized for a modified form of “Model

I” [137].

Clearly, the deterministic Izhikevich single neuron model (equation (2.3) with

σ = 0) with estimated parameters using the coincidence factor approach shows a bet-

ter performance in predicting experimental data compared to the modified stochastic

model (equation (2.21)) with estimated parameters using the maximum likelihood

approach. We wondered if this approach can also provide at least the similar perfor-

mance of the modified stochastic model (equation (2.21)) in predicting experimental

data.

Next we optimized 10 parameters of the modified stochastic Izhikevich single

neuron model (equation (2.21) with σ > 0) including σ and investigated the capability

of the model in predicting experimental data. Table 2.4 shows the obtained value of

these optimized parameters.

Parameter Minimum bound Maximum bound Optimum
C 10 400 75.00
k 0.001 5 2.50
vp 0 60 3.33
vt −50 −20 −45.00
vr −100 −50 −75
a 0.0001 5 2.50
b −10 −0.01 −1.68
c −100 −50 −91.67
d 0 400 66.67
σ 0.5 100 6.03

Table 2.4: Estimated parameters of equation (2.21) with σ > 0 for “Problem II”.
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Using the estimated value of parameters given in Table 2.4, we computed Γ for the

training data set and the performance data set using equation (2.32) with n = 100

and m = 13. On the training data set, the computed Γ was 0.40± 0.02. The average

number of spikes in the training data was 120 and the average number of spikes

predicted by the model was 126. On the performance data set, the computed Γ

was 0.39 ± 0.02. The average number of spikes in the performance data was 80 and

the average number of spikes predicted by the model was 66. These results clearly

shows that the performance of the modified stochastic Izhikevich model (equation

(2.21)) on experimental data is comparable to the deterministic model (equation (2.3)

with σ = 0) using this approach. Moreover, the model with estimated parameters

using this approach performs much better than the one with the maximum likelihood

approach.

2.5 Concluding Remarks

In this chapter, we have investigated the estimation of parameters of both the de-

terministic and the stochastic Izhikevich single neuron model using experimentally

obtained inter-spike intervals (ISIs) of single neurons. For a dimensionless form of the

deterministic Izhikevich model (“Model I”), 4 parameters as well as the input current

to the neuron have been estimated using experimentally recorded single neuron ISI

data from a primate study. Non-linear constrained and unconstrained optimization

problems have been formulated to characterize the neuron physical properties appro-

priately. Numerical results have been presented for two cortical neurons (“K11404”

and “K15906”). Need for the constrained optimization problem has been empha-

sized and discussed through a rigorous mathematical analysis. We believe that this
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approach can be used to efficiently estimate parameters of the single neuron models

when the only available information is the experimentally obtained ISIs.

For the conductance-based detailed Izhikevich model (“Model II”), we have es-

timated 10 parameters of the stochastic Izhikevich single neuron model using the

approach of maximizing the likelihood of the joint probability distribution of the oc-

currence of an experimentally observed sequence of action potentials in a benchmark

set of experimental data available from “quantitative single-neuron modeling com-

petition 2009” [114]. The data set included the input current delivered to a regular

spiking L5 pyramidal neuron and the recorded ISIs in response to the input current

for 13 repeated trials. For computational efficiency, the two dimensional stochastic

Izhikevich model has been approximated by a one dimensional stochastic model cou-

pled with the deterministic Izhikevich model. One dimensional Fokker-Planck equa-

tion has been derived to compute the first passage time density. We have found that

the model with estimated parameters using this approach shows poor predictability

in explaining experimental data (approximately 4% of predictability). We have also

found that one of the possible reasons for this poor performance is the large value of

the noise term σ (1414.10 ± 153.39) estimated by the maximum likelihood method

(since the optimization was unconstrained) which makes the predicted spike trains by

the model extremely unreliable. This suggests further investigations of the maximum

likelihood estimation approach by formulating constrained optimization problems.

Finally, we compared the results obtained using the maximum likelihood approach

with the approach of maximizing the average coincident factor between the experi-

mental and the model predicted spike trains. For this, we estimated 8 and 10 param-

eters of the deterministic and the one dimensional approximation of the stochastic

72



Izhikevich single neuron model respectively using the approach of coincident factor.

We have found that both form of the model can explain approximately 38% of the

experimental data using the parameters estimated using this approach.

In conclusion, both the deterministic and the one dimensional approximation of

the stochastic Izhikevich single neuron model with estimated parameters using the

coincident factor approach shows better predictability of these models in explaining

experimental data as opposed to the maximum likelihood estimation approach.
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Chapter 3

Investigation on Continuity and

Differentiability of Inter-Spike

Intervals

3.1 Motivation

As discussed in Chapter 1 (see Figure 1.2 in Chapter 1), the receding horizon con-

troller designs optimal artificial sensory feedback currents and stimulates neurons of

the appropriate cortical sensory areas such that the closed-loop performance of the

BMI can be recovered for a given motor task. Briefly, the controller computes op-

timal stimulating input currents IE(t;θθθ) by solving an optimal control problem in a

predictive framework [95]. Here θθθ is a set of parameters or decision variables. At a

given time, system measurements are obtained and a dynamic model of the cortical

network of spiking neurons, decoder, and the prosthetic arm is used to predict the

outputs of the system. An optimal control problem is then formulated to minimize
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the difference between the predicted and the desired outputs. The design of artificial

sensory feedback currents is constrained by experimentally observed minimum and

maximum limit on the instantaneous firing rate or the corresponding ISI of neurons

in the cortical network model as well as any constraints on the system outputs. These

constraints appear explicitly in the resultant nonlinear optimization problem. A local

gradient-based optimization algorithm for solving the optimization problem requires

at least the first-order continuous differentiability of the objective and constraint

functions with respect to (w.r.t.) decision variables. The reset of state variables at

the occurrence of each action potential in typical single neuron models such as the

Izhikevich model [78] makes it nontrivial to determine the continuous differentiability

of ISIs.

ISIs and their gradients have also been used in developing gradient-based learning

rules for training spiking neural networks (for example see [127, 105] and references

there in). In most of these works, the Leaky Integrate-and-Fire model or the theta

neuron model has been used where analytical solution for the error gradient has been

derived. Extension of these learning rules to models such as the Izhikevich neuron

model [78] require investigation of differentiability of ISIs w.r.t. the synaptic weights

since analytical solutions in these models are difficult to obtain.

With this motivation, in this chapter, we consider a recurrent network of n in-

terconnected neurons. We assume that each neuron is connected with the remaining

n − 1 neurons. The dynamical behavior of each neuron is represented by a class of

discrete event-based discontinuous single neuron models. The flow of synaptic infor-

mation from one neuron to another is modeled using a synaptic conductance model.

Stimulation of an input neuron using an external input current drives the network.
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Measured inter-spike intervals of a single output neuron defines the output of the

network. In this set-up, we derive sufficient conditions under which the first-order

continuous differentiability of ISIs of this output neuron w.r.t. parameters (decision

variables) of the external stimulating current can be guaranteed.

3.2 Mathematical Tools

In this chapter, we make use of the following well known existence and uniqueness the-

orems for ordinary differential equations (Theorems 3.2.1 and 3.2.2) and the implicit

function theorem (Theorem 3.2.3) in deriving our results.

Theorem 3.2.1. [27] Suppose D is a domain in the (t, x) space. Iµ be the domain of

µ space, i.e. |µ− µ0| < c for c > 0 where µ0 is fixed. Dµ is defined as Dµ := (t, x) ∈

D,µ ∈ Iµ. Let f ∈ C on Dµ and satisfy a Lipschitz condition in x uniformly on Dµ.

For a given fixed µ = µ0, let ψ be the solution of

ẋ = f(t, x, µ) (3.1)

on an interval a ≤ t ≤ b. There exists a δ > 0 such that for any (τ, ξ, µ) ∈ Uµ where

Uµ := {(τ, ξ, µ) | a < τ < b, |ξ − ψ(τ)|+ |µ− µ0| < δ}, there exists a unique solution

φ of equation (3.1) on a ≤ t ≤ b satisfying φ(τ, τ, ξ, µ) = ξ. Moreover, φ ∈ C on

n+ k + 2 dimensional domain Vµ := {(t, τ, ξ, µ) | a < t < b, (τ, ξ, µ) ∈ Uµ}.

Theorem 3.2.2. [27] Let the hypothesis of Theorem 3.2.1 be satisfied. Suppose that

fx ∈ C, fµ ∈ C on Dµ. Then the solution defined in Theorem 3.2.1 is of class C1 on

Vµ.
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Theorem 3.2.3. [8] Let f = (f1, f2, · · · , fn) be a vector-valued function defined on an

open set S in En+k with values in En. Suppose f ∈ C1 on S. Let (x0; t0) be a point in

S for which f(x0; t0) = 0 and for which the n× n determinant det[Djfi(x0; t0)] 6= 0.

Then there exists a k− dimensional neighborhood T0 of t0 and one, and only one,

vector-valued function g, defined on T0 and having values in En, such that

1. g ∈ C1 on T0,

2. g(t0) = x0,

3. f(g(t); t) = 0 for every t ∈ T0.

3.3 Problem Statement

Let the dynamics of a single neuron is given by the following dynamical equations:

C
dv(t)

dt
= f(v(t), u(t)) + I(t), (3.2a)

du(t)

dt
= g(v(t), u(t)), (3.2b)

if v(t) ≥ vp(t), then

v(t)← c and u(t)← u(t) + d.

(3.2c)

Here, v(t) and u(t) are the time-varying membrane potential and the membrane

recovery variable of a neuron respectively. C is the membrane capacitance. I(t) is

the total input current delivered to the neuron. vp(t) is a firing threshold. c and d

are the model parameters.
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We define tf , the time of occurrence of the f th action potential starting from t = 0,

as

tf = {t : v(t) = vp(t) | v(tf−1) = c, u(tf−1) = u(tf−1) + d}. (3.3)

An inter-spike interval (ISI) is defined as the time difference between the occurrence

of two consecutive action potentials. Thus, the f th ISI is ∆tf = tf − tf−1 for f ≥ 1

with the convention t0 = 0. As a result of this, tf can be expressed in terms of the

summation of ISIs as follows:

tf =

f
∑

k=1

∆tk. (3.4)

The input current I(t) can be an external current IE(t;θθθ) to the neuron or a synaptic

current Is(t) delivered to the neuron in a network or a combination of both. Here

θθθ = [θ1, θ2, · · · , θr]T is a vector of parameters or decision variables over the real space.

Mathematically, the synaptic current Is(t) is modeled as

Is(t) = −ge(t)(v(t)− Ee)− gi(t)(v(t)− Ei). (3.5)

Here, ge(t) and gi(t) are the excitatory and inhibitory synaptic conductances respec-

tively. Ee and Ei are the excitatory and inhibitory membrane reversal potentials

respectively. Typically, the synaptic conductance gx(t), x ∈ {e, i} is modeled by

taking the weighted sum of all presynaptic neuronal activities and is represented in

the following form [56]:

gx(t) =
Nx
∑

j=1

∑

f

wjK(t− tfj ). (3.6)

Nx is the total number of presynaptic neurons of type x. wj is the weight of the

synapse j to the post-synaptic neuron. tfj is the time of the f th incoming action
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potential from the synapse j to the post-synaptic neuron. K(t − tfj ) models the

stereotypical time course of postsynaptic conductances following presynaptic spikes.

We assume that each presynaptic neuron establishes only one synapse with each of its

postsynaptic neurons and all synaptic connections within the network are excitatory

i.e. gi = 0 and ge ≥ 0 with Ee ≥ vp. Moreover, we assume that there is no time delay

in the feedback loop. With this, we state the problem as follows:

Consider a network of n(≥ 1) cortical spiking neurons denoted by S1, S2, · · · , Sn.

The neuron Sj, 1 ≤ j ≤ n in this network is synaptically connected with the remaining

n−1 neurons and thus receives and transfers synaptic information within the network

in the form of synaptic input currents Is(t) according to equations (3.5) and (3.6). The

dynamics of neuron Sj are given by equation (3.2). External input current IE(t;θθθ)

drives the network by stimulating the neuron S1. Here θθθ = [θ1, θ2, · · · , θr]T is a vector

of parameters or decision variables over the real space. The measured output of the

neuron Sj is represented as a sequence of ISIs {∆t1j ,∆t2j , · · · }. With this setup, we

formulate the problem as follows: Under what conditions is the f th ISI ∆tfj of the jth

neuron Sj expressible as

∆tfj = hj,f (θθθ) (3.7)

for all f ≥ 1, where hj,f is a continuously differentiable function of θθθ in a δ(> 0)

neighborhood of θ0θ0θ0 i.e. hj,f ∈ C1 on a domain Nδ(θ0θ0θ0) with Nδ(θ0θ0θ0) := {θθθ : |θθθ−θ0θ0θ0| < δ}?

3.4 Theoretical Results

We first consider a single neuron which is stimulated by an input current I(t;θθθ). The

dynamics of the neuron are given by equation (3.2) with I(t) = I(t;θθθ). We establish
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conditions under which the ith ISI of this neuron is expressible as

∆ti = hi(θθθ). (3.8)

Here, hi ∈ C1 on a domain Nδ(θ0θ0θ0) for some δ > 0 and i ≥ 1. We call this

“Problem 1”. Then we consider a single neuron stimulated by synaptic currents

induced by spikes of a presynaptic neuron. We represent the ith spike time of the

presynaptic neuron by tip. Here, the subscript “p” stands for the presynaptic neuron.

The synaptic current Is(t; t1p, t
2
p, · · · , trp) induced by a sequence of spikes {t1p, t2p, · · · , trp}

of a presynaptic neuron (see equations (3.5) and (3.6)) stimulates the postsynap-

tic neuron. Here, r ≥ 1. We define ∆tip as the ith ISI of the presynaptic neuron.

Since ∆tip = tip − ti−1
p by definition, we can write Is(t; t1p, t

2
p, · · · , trp) = Is(t;βββ) where

βββ = [∆t1p,∆t
2
p, · · · ,∆trp]T is a vector of first r ISIs of the presynaptic neuron. With

this, we establish conditions under which the ith ISI ∆ti, i ≥ 1 of the postsynaptic

neuron is expressible as

∆ti = h∗i (βββ) (3.9)

where h∗i ∈ C1 on a domain Nδ(β0β0β0) for some δ > 0. Here Nδ(β0β0β0) := {βββ : |βββ−β0β0β0| < δ}.

We call this “Problem 2”. Finally, we use results of Problem 1 and 2 to establish

conditions for the existence of equation (3.7).

It is clear from section 3.3 that S1 is the only neuron in the network which is

stimulated by both the external input current IE(t;θθθ) and the synaptic currents

available from the remaining n− 1 neurons in the network. The other n− 1 neurons

in the network are driven by only the synaptic currents and thus have indirect effect

of IE(t;θθθ) through the ISIs of the neuron S1. Also, IE(t;θθθ) is the only stimulating
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current to the neuron S1 till the time at which synaptic currents from the remaining

neurons in the network arrive to the neuron S1. Therefore, the problem described by

equation (3.7) can also be viewed as the combination of the following subproblems:

1. Under what conditions are ISIs of neuron S1 continuously differentiable w.r.t.

θθθ when the only available stimulating input current to the neuron S1 is the

external input current IE(t;θθθ)?

2. Under what conditions are ISIs of neuron Sj, j 6= 1 continuously differentiable

w.r.t. θθθ?

3. Under what conditions are ISIs of neuron S1 continuously differentiable w.r.t. θθθ

when the stimulating input current to the neuron S1 is the sum of the external

input current IE(t;θθθ) and the synaptic currents from the remaining n−1 neurons

of the network?

Let us first consider an example of a recurrent network of two synaptically connected

neurons and show that the establishment of conditions for the existence of equations

(3.8) and (3.9) is sufficient to solve subproblems (a), (b) and (c) and thus guarantee

the existence of equation (3.7) in case of two neurons.

Example 3.4.1. Fig. 3.1 shows a network of two synaptically connected neurons

which is driven by an external stimulating input current IE(t;θθθ).

At this point, let us assume that equations (3.8) and (3.9) hold. For simplicity, let

us further assume that ∆t11 < ∆t12 < ∆t21 i.e. the first spike of the neuron S2 occurs in

between the time of the first and the second spike of the neuron S1. Thus the neuron

S1 receives the feedback information, in form of the synaptic input current Is(t; t12),

from the neuron S2 at time t = t12.
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Figure 3.1: A recurrent network of two neurons: Here IE(t;θθθ) is the external input
current with parameter θθθ. Is(t; t11, t

2
1, · · · ) and Is(t; t12, t22, · · · ) are synaptic input cur-

rents to the neuron S2 and S1 respectively. Here t
1
1, t

2
1, · · · and t12, t22, · · · are the spike

trains of neurons S1 and S2 respectively.

We first consider the subproblem (a) and show that this subproblem can be solved

using equation (3.8) i.e. Problem 1. It is clear that IE(t;θθθ) is the only stimulating

input current to the neuron S1 for t < t12. Therefore by setting I(t;θθθ) = IE(t;θθθ) in

Problem 1 till t = ∆t11, the continuous differentiability of the ISI ∆t11 of the neuron

S1 w.r.t. θθθ can be established using equation (3.8).

Next we consider the subproblem (b) and show that this subproblem can be solved

using equations (3.8) and (3.9) i.e. Problem 1 and 2. Since ∆t11 is the only ISI of the

neuron S1 till the time t = t12, equation (3.9) establishes that ∆t12 is a continuously dif-

ferentiable function in a small neighborhood of ∆t11 (Problem 2). Also from equation

(3.8), we know that ∆t11 is a continuously differentiable function of θθθ (Problem 1).

Now using the fact that a continuously differentiable function of a continuously differ-

entiable function is also continuously differentiable w.r.t. the underlying arguments,

equations (3.8) and (3.9) together establish that ∆t12 is a continuously differentiable

function of θθθ.

Finally, we consider the effect of feedback on S1 and show that the subproblem (c)

can be solved using equation (3.8). It is clear that for t ∈ [t11, t
1
2), I

E(t;θθθ) is the only
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input to the neuron S1. For t ∈ [t12, t
2
1], the total input to the neuron S1 is the sum

of IE(t;θθθ) and Is(t; t12) (the synaptic current from S2 to S1). By definition t12 = ∆t12.

From subproblem (b), we know that ∆t12 is a continuous differentiable function of θθθ.

Thus, Is(t; t12) is an implicit function of θθθ and the total input current to the neuron

S1 for t ∈ [t12, t
2
1] i.e. the sum of IE(t;θθθ) and Is(t; t12) is a function of θθθ. Since the

input current to the neuron S1 is continuous in t at t = t12, equation (3.8) establishes

the continuous differentiability of ∆t21 w.r.t. θθθ.

If we continue the arguments presented above for t ≥ ∆t21, we find that the ISIs

of neurons S1 and S2 beyond the time t = ∆t21 are also continuously differentiable

function of θθθ. Thus, the establishment of the existence of equations (3.8) and (3.9) is

sufficient to guarantee the existence of equation (3.7) for a network of two neurons.

Example 3.4.1 demonstrates that equations (3.8) and (3.9) along with the fact “a

continuously differentiable function of a continuously differentiable function is also

continuously differentiable w.r.t. the underlying arguments” establishes the existence

of equation (3.7) for a recurrent network of two neurons. By following the arguments

in this example, it is not difficult to show that the existence of equations (3.8) and

(3.9) is sufficient to guarantee the existence of equation (3.7) for a recurrent network

of n > 2 synaptically connected neurons.

We next establish the existence of equations (3.8) and (3.9) by solving Problem

1 and Problem 2 respectively. In both problem 1 and problem 2, we first make use

of the well known existence and uniqueness theorems (Theorems 3.2.1 and 3.2.2) for

ordinary differential equations. These existence theorems ensure the existence of a

continuously differentiable solution of equation (3.2). Then we apply the implicit

function theorem (Theorem 3.2.3) and establish conditions under which equations
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(3.8) and (3.9) exist.

3.4.1 Problem 1

In this section, we establish conditions under which equation (3.8) exists. The de-

scription of the underlying problem is as follows:

An input current I(t;θθθ), which is a function of t and θθθ, stimulates a single neuron.

For θθθ = θ0θ0θ0, the neuron fires a sequence of action potentials according to equation

(3.2). The goal is to find conditions under which equation (3.8) exists in a small

neighborhood (may be infinitesimally small) of θ0θ0θ0.

Notation 3.4.2. In this section, ti0 and ∆ti0 represent the time of the ith action

potential and the ith ISI of a single neuron respectively when θθθ = θ0θ0θ0. ∆ti represents

the ith ISI of a single neuron otherwise. C stands for continuity. C1 stands for

continuous differentiability.

Definition 3.4.3. We define a domain Di on the (t,xxx,θθθ) space with xxx = [v, u]T as

Di := (ti−1
0 − ǫ, ti0+ ǫ)× (vmin, vmax)× (umin, umax)× (θ0θ0θ0− δ, θ0θ0θ0+ δ) where ǫ > 0, δ > 0

and t00 = 0. Here vmin > −∞, umin > −∞, vmax <∞, and umax <∞.

Definition 3.4.4. We define Nδ(θ0θ0θ0) := {θθθ : |θθθ − θ0θ0θ0| < δ}.

Assumption 3.4.5. There exists an ǫ > 0 such that the solution of equation (3.2)

exists on the domain Di for θθθ = θ0θ0θ0.

Assumption 3.4.6. The solution of equation (3.2) is non-chaotic.

The following result states conditions under which equation (3.8) exists.
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Lemma 3.4.7. Under Assumptions 3.4.5 and 3.4.6, there exists a δ∗(≤ δ) > 0 and

a unique function hi such that ∆ti = hi(θθθ) with hi ∈ C1 and i ≥ 1 on Nδ∗(θ0θ0θ0) if

1. ∂f(v,u)
∂v
∈ C on Di and

∂f(v,u)
∂u
∈ C on Di,

2. ∂g(v,u)
∂v
∈ C on Di and

∂g(v,u)
∂u
∈ C on Di,

3. I(t;θθθ) ∈ C on Di and
∂I(t;θθθ)

∂θθθ
∈ C on Di,

4.
∂v(t,xxx(ti−1

0 ),θ0θ0θ0)

∂t
|t=ti0
6= ∂vp(t)

∂t
|t=ti0

i.e. the partial derivative of the membrane po-

tential v(t,xxx(ti−1
0 ), θ0θ0θ0) w.r.t. t is not equal to the partial derivative of the firing

threshold vp(t) w.r.t. t at the time of the ith action potential t = ti0.

Remark 3.4.8. If the firing threshold vp(t) is time invariant i.e. ∂vp(t)

∂t
= 0 for all

t ≥ 0 (as is the case for most of the spiking neuron models), the required condition

of Lemma 3.4.7 reduces to the nonzero slope of v(t,xxx(ti−1
0 ), θ0θ0θ0) at the time of the ith

action potential i.e.
∂v(t,xxx(ti−1

0 ),θ0θ0θ0)

∂t
|t=ti0
6= 0.

Proof. We first consider equation (3.2) with an initial condition xxx(0) ≡ [v(0), u(0)]T

at t = 0 where v(0) ∈ D1 and u(0) ∈ D1 are constants. We define f1(t,xxx,θθθ) =

f(v, u)+I(t;θθθ) where xxx ≡ [v, u]T . From the hypothesis of Lemma 3.4.7, f1(t,xxx,θθθ) ∈ C

on D1 and g(xxx) ∈ C on D1. Also, the partial derivative of f1(t,xxx,θθθ) w.r.t. xxx and θθθ is

continuous on D1 and the partial derivative of g(xxx) w.r.t. xxx is continuous on D1. Thus

by Theorems 3.2.1 and 3.2.2 along with Assumption 3.4.5, there exists a δ1(≤ δ) > 0

such that for any θθθ ∈ Nδ1(θ0θ0θ0), there exist unique solutions v(t) = v(t,xxx(0), θθθ) ∈ C1

and u(t) = u(t,xxx(0), θθθ) ∈ C1 of equation (3.2) for all t ∈ [0, t10 + ǫ).

We define a function H(t,xxx(0), θθθ) = v(t,xxx(0), θθθ) − vp(t). Clearly, H(t,xxx(0), θθθ) is

continuously differentiable w.r.t. t and θθθ for t ∈ [0, t10 + ǫ) and θθθ ∈ Nδ1(θ0θ0θ0). Also,
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H(t10,xxx(0), θ0θ0θ0) = 0. In addition, the partial derivative of H(t,xxx(0), θθθ) w.r.t. t at

t = t10 and θθθ = θ0θ0θ0 is nonzero i.e. ∂v(t,xxx(0),θ0θ0θ0)
∂t

|t=t10
6= ∂vp(t)

∂t
|t=t10

from the hypothesis of

Lemma 3.4.7. Now by applying the implicit function theorem (Theorem 3.2.3) on the

function H(t,xxx(0), θθθ) for t ∈ [0, t10 + ǫ) and θθθ ∈ Nδ1(θ0θ0θ0), we find that there exists a

δ∗1(≤ δ1) > 0 and a unique function h1 on the domain Nδ∗1
(θ0θ0θ0) such that

• h1 ∈ C1 on Nδ∗1
(θ0θ0θ0),

• ∆t10 = h1(θ0θ0θ0),

• H(h1(θθθ),xxx(0), θθθ) = 0 i.e. ∆t1 = h1(θθθ) for every θθθ ∈ Nδ∗1
(θ0θ0θ0).

Next we consider equation (3.2) with xxx(h1(θθθ)) ≡ [c, u(h1(θθθ),xxx(0), θθθ) + d]T as the

initial condition at t = h1(θθθ), where θθθ ∈ Nδ∗1
(θ0θ0θ0). It should be noted that t = h1(θθθ)

is the time at which the reset of v(t,xxx(0), θθθ) and u(t,xxx(0), θθθ) occurs according to

equation (3.2).

From the hypothesis of Lemma 3.4.7, f1(t,xxx,θθθ) ∈ C on D2 and g(xxx) ∈ C on D2.

Also, the partial derivative of f1(t,xxx,θθθ) w.r.t. xxx and θθθ is continuous on D2 and the

partial derivative of g(xxx) w.r.t. xxx is continuous on D2. We know from the reset

conditions of equation (3.2) that at t = h1(θθθ), xxx(t) ≡ [c, u(h1(θθθ),xxx(0), θθθ) + d]T . We

also know that u(h1(θθθ),xxx(0), θθθ) + d ∈ C1 on Nδ∗1
(θ0θ0θ0). Thus again by Theorems 3.2.1

and 3.2.2 along with Assumptions 3.4.5 and 3.4.6, there exists a δ2(≤ δ∗1) > 0 such

that for any θθθ which satisfies

|c− v(h1(θθθ),xxx(0), θ0θ0θ0)|+ |u(h1(θθθ),xxx(0), θθθ)− u(h1(θθθ),xxx(0), θ0θ0θ0)|+ |θθθ−θ0θ0θ0| < δ2, (3.10a)

h1(θθθ) ≥ t10 − ǫ, (3.10b)
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there exist unique solutions v(t) = v(t,xxx(h1(θθθ)), θθθ) ∈ C1 and u(t) = u(t,xxx(h1(θθθ)), θθθ) ∈

C1 of equation (3.2) for all t ∈ [t10 − ǫ1, t20 + ǫ).

We define a function H(t,xxx(h1(θθθ)), θθθ) = v(t,xxx(h1(θθθ)), θθθ) − vp(t). It is clear that

H(t,xxx(h1(θθθ)), θθθ) is continuously differentiable w.r.t. t and θθθ for all t ∈ [t10− ǫ1, t20 + ǫ)

and for all θθθ satisfying equation (3.10). Also, H(t20,xxx(h1(θ0θ0θ0)), θ0θ0θ0) = 0. In addi-

tion, the derivative of H(t,xxx(h1(θθθ)), θθθ) w.r.t. t at t = t20 and θθθ = θ0θ0θ0 is nonzero i.e.

∂v(t,xxx(h1(θ0θ0θ0)),θ0θ0θ0)
∂t

|t=t20
6= ∂vp(t)

∂t
|t=t20

from the hypothesis of Lemma 3.4.7. Now by apply-

ing the implicit function theorem (Theorem 3.2.3) on the function H(t,xxx(h1(θθθ)), θθθ)

for t ∈ [t10 − ǫ1, t20 + ǫ) and θθθ satisfying equation (3.10), we find that there exists a

δ∗2(≤ δ2) > 0 and a unique function h2 on Nδ∗2
(θ0θ0θ0) such that

• h2 ∈ C1 on Nδ∗2
(θ0θ0θ0),

• ∆t20 = h2(θ0θ0θ0),

• H(h2(θθθ),xxx(h1(θθθ)), θθθ) = 0 i.e. ∆t2 = h2(θθθ) for every θθθ ∈ Nδ∗2
(θ0θ0θ0).

Now the claim in Lemma 3.4.7 for i ≥ 3 follows directly from mathematical induction.

3.4.2 Problem 2

In this section, we establish conditions under which equation (3.9) exists. The de-

scription of the underlying problem is as follows:

The synaptic current Is(t;βββ) stimulates the postsynaptic neuron. Here βββ =

[∆t1p,∆t
2
p, · · · ,∆trp]T is a vector of first r ISIs of the presynaptic neuron. For βββ = β0β0β0,
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the postsynaptic neuron fires its ith action potentials at the time ti according to equa-

tion (3.2). The goal is to find conditions under which equation (3.9) exists in a small

neighborhood (may be infinitesimally small) of β0β0β0.

Notation 3.4.9. In this section, ti0 and ∆ti0 represent the time of the ith action

potential and the ith ISI of a single neuron respectively when βββ = β0β0β0. ∆ti represents

the ith ISI of a single neuron otherwise.

Definition 3.4.10. We define a domain Fi on the (t,xxx,βββ) space with xxx = [v, u]T as

Fi := (ti−1
0 − ǫ, ti0 + ǫ) × (vmin, vmax) × (umin, umax) × (β0β0β0 − δ,β0β0β0 + δ) where ǫ > 0,

δ > 0 and t00 = 0. Here vmin > −∞, umin > −∞, vmax <∞, and umax <∞.

Definition 3.4.11. We define Nδ(β0β0β0) := {βββ : |βββ − β0β0β0| < δ}.

Assumption 3.4.12. There exists an ǫ > 0 such that the solution of equation (3.2)

exists on the domain Fi for βββ = β0β0β0.

The following result states conditions under which equation (3.9) exists.

Lemma 3.4.13. Under Assumptions 3.4.6 and 3.4.12, there exists a δ∗(≤ δ) > 0

and a unique function h∗i such that ∆ti = h∗i (β0β0β0) with h
∗
i ∈ C1 and i ≥ 1 on Nδ∗(β0β0β0)

if

1. ∂f(v,u)
∂v
∈ C on Fi and

∂f(v,u)
∂u
∈ C on Fi,

2. ∂g(v,u)
∂v
∈ C on Fi and

∂g(v,u)
∂u
∈ C on Fi,

3. Is(t;βββ) ∈ C on Fi and
∂Is(t;βββ)

∂βββ
∈ C on Fi,

4.
∂v(t,xxx(ti−1

0 ),β0β0β0)

∂t
|t=ti0
6= ∂vp(t)

∂t
|t=ti0

i.e. the partial derivative of the membrane poten-

tial v(t,xxx(ti−1
0 ),β0β0β0) w.r.t. t is not equal to the the partial derivative of the firing

threshold vp(t) w.r.t. t at the time of the ith action potential t = ti0.
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By following the steps provided in proving the claim of Lemma 3.4.7, it is straight-

forward to show the claim of Lemma 3.4.13.

Remark 3.4.14. If synaptic currents induced by spikes of more than one presynaptic

neuron stimulate the postsynaptic neuron, then Is(t;βββ)) in Lemma 3.4.13 can be

replaced by the sum of synaptic currents from all the presynaptic neurons.

With the establishment of results for Problem 1 and 2, next we state our main

result on the existence of equation (3.7).

Notation 3.4.15. From here onwards, tij,0 and tij represent the time of the ith action

potential of the neuron Sj in the network defined in section 3.3 for θθθ = θ0θ0θ0 and θθθ 6= θ0θ0θ0

respectively.

Theorem 3.4.16. Let us assume that neurons in the network defined in section 3.3

fire sequence of action potentials for θθθ = θ0θ0θ0. Let us also assume that the conditions

of Lemma 3.4.7 are satisfied for the neuron S1 and the conditions of Lemma 3.4.13

are satisfied for the neuron Sj for j ∈ {2, 3, · · · , n} till time t = tij,0 + ǫ for some

ǫ > 0. Then there exists a δ(> 0) neighborhood Nδ(θ0θ0θ0) such that the ith ISI ∆tij of

the neuron Sj is expressible as ∆tij = hj,i(θθθ) for all i ≥ 1 and j ∈ {1, 2, · · · , n}, where

hj,i ∈ C1 on Nδ(θ0θ0θ0).

Proof. Let us define a time t∗ = min{t12,0, t13,0, · · · , t1n,0}. Without loss of generality,

lets say that the total number of action potentials occurred in neuron S1 till time

t = t∗ is k1 ≥ 1. It is clear from section 3.3 that the only stimulating input current

to the neuron S1 till time t = t∗ is the external input current IE(t;θθθ) with θθθ in a

small neighborhood of θ0θ0θ0. From the hypothesis of Theorem 3.4.16, the conditions of

Lemma 3.4.7 are satisfied for the neuron S1 till time t = t∗ + ǫ for some (arbitrarily
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small) ǫ > 0. Thus from the conclusion of Lemma 3.4.7, there exists a δ1(> 0) and

a continuously differentiable function h1,i = hi on a domain Nδ1(θ0θ0θ0) such that the ith

ISI ∆ti1 of the neuron S1 is expressible as ∆ti1 = h1,i(θθθ) for all i ∈ {1, 2, · · · , k1} and

θθθ ∈ Nδ1(θ0θ0θ0).

We now consider the remaining n − 1 neurons in the network. Till time t =

t∗ + ǫ, the total stimulating input current to individual neurons in the remaining

n − 1 neurons is the synaptic current Is(t; t11, t
2
1, · · · , tk11 ) from the neuron S1 for

θθθ ∈ Nδ1(θ0θ0θ0). Defining βββ = [∆t11,∆t
2
1, · · · ,∆tk11 ]T , we can write Is(t; t11, t

2
1, · · · , tk11 ) as

Is(t;βββ). Since t∗ = min{t12,0, t13,0, · · · , t1n,0} by definition, lets say that t∗ = t1j,0 for some

j ∈ {2, 3, · · · , n}. From the hypothesis of Theorem 3.4.16, the conditions of Lemma

3.4.13 are satisfied for the neuron Sj till time t = t∗+ ǫ. Thus from the conclusions of

Lemma 3.4.13, there exists a δ2(> 0) ≤ δ1 and a continuously differentiable function

h∗1 such that the first ISI ∆t1j of the neuron Sj is expressible as ∆t1j = h∗1(βββ) for

βββ ∈ Nδ2(β0β0β0). We know that ∆ti1 for i ∈ {1, 2, · · · , k1} is continuously differentiable

w.r.t. θθθ for θθθ ∈ Nδ1(θ0θ0θ0). Now using the fact that a continuously differentiable function

of a continuously differentiable function is also continuously differentiable w.r.t. the

underlying arguments, it is easy to see that ∆t1j is also continuously differentiable

w.r.t. θθθ for θθθ ∈ Nδ3(θ0θ0θ0) where δ3(> 0) ≤ δ2. Thus there exists a δ3(> 0) and a

continuously differentiable composite function hj,1 on Nδ3(θ0θ0θ0) such that the first ISI

∆t1j of the neuron Sj is expressible as ∆t1j = hj,1(θθθ).

It is clear that the synaptic current Is(t; t1j), induced by the first action potential of

the neuron Sj, contributes in the total stimulating input current to the remaining n−1

neurons beyond time of this action potential. Since the hypothesis of Lemma 3.4.13

is satisfied by neuron Sl with l 6= j and l 6= 1, Is(t; t1j) is continuously differentiable
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w.r.t. ∆t1j . We know that ∆t1j is continuously differentiable w.r.t. θθθ on Nδ3(θ0θ0θ0).

Thus, Is(t; t1j) is continuously differentiable w.r.t. θθθ and the total input current to

the neuron S1 i.e. IE(t;θθθ) + Is(t; ∆t1j) is a function of t and θθθ on Nδ3(θ0θ0θ0). Now

by applying the arguments presented in previous paragraphs to subsequent action

potentials in the network, it is easy to see that the conclusion of Theorem 3.4.16 hold

for all j ∈ {1, 2, · · · , n} and i ≥ 1.

3.5 Simulation Results

In this section, we use simulations to demonstrate our theoretical results for a recur-

rent network of synaptically connected neurons. We begin with a single neuron whose

dynamics is represented by the following Leaky Integrate-and-Fire model:

C
dv(t)

dt
= −v(t)

R
+ I(t). (3.11)

Here, v(t) is the membrane potential, C is the membrane capacitance, and R is the

membrane resistance. I(t) is a smoothly varying stimulating input current to the

neuron. v(t) is reset to c whenever v(t) exceeds a constant firing threshold vp. We

simulate equation (3.11) with C = 1 µF, R = 10 kΩ, c = 0 mV, and vp = 20 mV.

Figure 3.2(a) shows our simulation result for the case where ISIs are discontinuous

w.r.t. I(t).

As shown in Figure 3.2(a), a stimulating input current I(t) is designed such that

the membrane potential v(t) reaches the firing threshold vp with zero slope at the

time of the first action potential (shown by the solid line). A small perturbation in
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Figure 3.2: Continuity of ISIs w.r.t. a time-continuous stimulating input current I(t)
in single neuron models. The top plot of both (a) and (b) shows trajectories of the
membrane potential v(t) predicted by the Leaky Integrate-and-Fire model in response
to a smoothly varying stimulating input current (solid line) and its perturbed form
(dashed line). (a): The membrane potential reaches the firing threshold with zero
slope at the time of the first action potential. As a result, the first ISI is discontinuous
w.r.t. I(t). (b): The membrane potential reaches the firing threshold with a positive
slope at the time of both action potentials. As a result, the corresponding ISIs are
continuous w.r.t. I(t).
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I(t) shifts the occurrence of this action potential by (≈) 15 ms (shown by the dashed

line). This large deviation in the timing of the first action potential w.r.t. a small

perturbation in I(t) clearly indicates that the corresponding ISI is not continuous

w.r.t. I(t). Figure 3.2(b) shows the case where the membrane potential v(t) reaches

the firing threshold vp with a positive slope at the time of action potentials (shown

by solid line). As shown in this figure, a small perturbation in I(t) leads to a small

change (shown by the dashed line) in the timing of the occurrence of both action

potentials. Thus the corresponding ISIs are continuous w.r.t. to I(t).

Next we consider a recurrent network of two synaptically connected neurons S1

and S2 as shown in Figure 3.1. The dynamics of both neurons are represented by

equation (3.11). An external input current (same as the one used in Figure 3.2(a))

drives the network by stimulating the neuron S1. Thus the total input current I(t)

to the neuron S1 is the sum of the external input current and synaptic currents from

the neuron S2. The neuron S2 is driven by synaptic currents induced by the action

potentials of the neuron S1. With this setup, we simulate the recurrent network.

Figure 3.3(a) shows our simulation results for the case where ISIs of both neurons are

discontinuous w.r.t. the external input current.

As shown in the top plot of Figure 3.3(a), the membrane potential v1(t) of the

neuron S1 reaches the firing threshold with zero slope at the time of the first action

potential (shown by the solid line). A small perturbation in the designed step input

current shifts the timing of the occurrence of this action potential by (≈) 15 ms

(shown by the dashed line) which clearly indicates that the first ISI of the neuron S1

is discontinuous w.r.t. the designed input current. Next we analyze the effect of this

small perturbation in the designed input current on the first ISI of the neuron S2.
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Figure 3.3: Continuity of ISIs w.r.t. a time-continuous stimulating input current in
a recurrent network of two synaptically connected neurons. The top plot of both (a)
and (b) shows trajectory of the membrane potential v1(t) of the neuron S1 predicted
by the Leaky Integrate-and-Fire model in response to an external input current (solid
line) and its perturbed form (dashed line). The bottom plot of both (a) and (b)
shows trajectories of the membrane potential v2(t) of the neuron S2. (a) shows the
case where ISIs of both neurons are discontinuous w.r.t. the designed input current
and (b) shows the case where ISIs of both neurons are continuous w.r.t. the designed
input current.
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It is clear that the neuron S2 is initially stimulated by the synaptic current induced

by the first action potential of neuron S1. We model this synaptic current as

Is(t) = (q/τs)(t− t11)2 exp(−(t− t11)/τs)Θ(t− t11). (3.12)

Here, q is the maximum conductance transmitted by the synapse of the neuron S1.

τs is a time constant, t11 is the time at which the first action potential occurs in

neuron S1, and Θ(·) is the heavy-side function. For fixed q(> 0) and τs(> 0), Is(t)

is a function of t − t11. Moreover, Is(t) = 0 for t ≤ t11. Clearly, a change in t11 will

change the time at which Is(t) becomes greater than zero and thus the time at which

the first action potential occurs in neuron S2. This is shown in the bottom plot of

Figure 3.3(a). As shown in this plot, the change in t11 by (≈) 15 ms (shown in the top

plot Figure 3.3(a)) leads to same change (≈ 15 ms) in the timing of the occurrence

of the first action potential in the neuron S2. Thus, the first ISI of neuron S2 is

also discontinuous w.r.t. to the designed input current even though the membrane

potential v2(t) reaches the firing threshold with a positive slope.

Figure 3.3(b) shows the case where the membrane potential reaches the firing

threshold with a positive slope at the time of action potentials in both neurons. As

shown in this figure, a small perturbation in the designed input current (same as

the one used in Figure 3.2(b)) leads to a small change in ISIs of both neurons which

clearly indicates that the ISIs are continuous w.r.t. the designed input current.
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3.6 Examples

We consider a single neuron which is stimulated by an external input current IE(t;θθθ).

Here, θθθ = [θ1, θ2, · · · , θr]T is a vector of parameters or decision variables. The neuron

fires a sequence of action potentials according to equation (3.2) for θθθ = θ0θ0θ0. We assume

that IE(t;θθθ) is continuously differentiable w.r.t. θθθ along with its continuity w.r.t. t

in a δ(> 0) neighborhood of θ0θ0θ0. We also assume that the qualitative behavior of the

neuron remains same in the δ > 0 neighborhood of θ0θ0θ0. We represent the dynamics

of the single neuron by the following known spiking single neuron models and state

conditions (see Lemma 3.4.7) under which a δ∗(> 0) ≤ δ neighborhood of θ0θ0θ0 exists

such that ISIs of the neuron are continuously differentiable function of θθθ in the δ∗

neighborhood of θ0θ0θ0. Here we assume that parameters of these models are such that

these models exhibit non-chaotic behaviors.

1. Bidimensional models with linear f(v, u): In this class of models, we con-

sider the Adaptive Integrate-and-Fire (aIF) model and the Adaptive Threshold

Integrate-and-Fire (aTIF) model [137].

The aIF model is given by

τ
dv(t)

dt
= −v(t)− u(t) +RI(t), (3.13a)

τw
du(t)

dt
= −u(t), (3.13b)

if v(t) ≥ 1, then

v(t)← 0 and u(t)← u(t) + d.

(3.13c)
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Clearly, f(v, u) = −v − u is continuously differentiable w.r.t. v and u. Also,

g(v, u) = −u is continuously differentiable w.r.t. v and u. Since vp(t) = 1, the

required conditions of Lemma 3.4.7 are satisfied if the slope of v(t) w.r.t. t at

the time of action potentials is nonzero i.e. RIE(ti0;θ0θ0θ0) − u(ti−1
0 ) exp(−(ti0 −

ti−1
0 )/τw) 6= 1 for all i ≥ 1. The same conclusion holds for the the integrate-and

fire model since this model is a special case of the aIF model with u(t) = 0 for

all t ≥ 0. Here, ti0 is the time of the ith action potential for θθθ = θ0θ0θ0.

The aTIF model is given by

τ
dv(t)

dt
= −v(t) +RI(t), (3.14a)

τw
du(t)

dt
= av(t)− u(t), (3.14b)

if v(t) ≥ 1 + u(t), then

v(t)← 0 and u(t)← u(t) + d.

(3.14c)

Clearly, f(v, u) = −v is continuously differentiable w.r.t. v and u. Also,

g(v, u) = av − u is continuously differentiable w.r.t. v and u. Since vp(t) =

1 + u(t), the required conditions of Lemma 3.4.7 are satisfied if the partial

derivative of v(t) w.r.t. t is not equal to the partial derivative of u(t) w.r.t. t

at the time of action potentials.

2. Bidimensional models with nonlinear f(v, u): In this class of models, we

consider the Izhikevich model, the Adaptive Exponential (AdEx) Integrate-and-

Fire (IF) model, and the Touboul model. The Izhikevich model is represented
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by equation (3.2) with f(v, u) = k(v−vt)(v−vr)−u and g(v, u) = a(b(v−vr)−

u) [78]. The AdEx IF model is represented by equation (3.2) with f(v, u) =

−gL(v − EL) − u + gL∆T exp((v − vT )/∆T ) and g(v, u) = a(v − EL) − u [16].

The Touboul model is represented by equation (3.2) with f(v, u) = v4+2av−u

and g(v, u) = a(bv−u) [158]. In all these models, the firing threshold vp(t) = vp

(time invariant). Clearly, f(v, u) is continuously differentiable w.r.t. v and

u. Also, g(v, u) is continuously differentiable w.r.t. v and u. By assumption,

IE(t;θθθ) is continuously differentiable w.r.t. θθθ along with its continuity w.r.t.

t in a δ > 0 neighborhood of θ0θ0θ0. Because of the convexity, faster growth and

regularity behavior of the nonlinear function f(v, u) [158], the slope of v(t)

w.r.t. t at v(t) = vp i.e. at the time of action potentials is always greater than

0 (required condition for the existence of the inverse of the Jacobian in order to

apply the implicit function theorem). Thus, these models satisfy the required

conditions of Lemma 3.4.7. From the conclusion of Lemma 3.4.7, there exists

a δ∗(> 0) ≤ δ neighborhood of θ0θ0θ0 such that ISIs predicted by these models are

continuously differentiable function of θθθ in the δ∗ neighborhood of θ0θ0θ0. The same

conclusion holds for the quadratic integrate-and-fire model since this model is

a special case of the Izhikevich model with u(t) = 0 for all t ≥ 0.

As an example, Figure 3.4 shows the continuity of ISIs w.r.t. θ in a small

neighborhood of θ0 for the Izhikevich model. The model parameters are chosen

such that the model shows regular spiking behavior with a step input current.
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Figure 3.4: Continuity of ISIs w.r.t. θ in a small neighborhood of a θ0 in the Izhikevich
model. The top plot shows the trajectories of membrane potential v(t) predicted by
the model in response to IE(t;θθθ) (shown in the bottom plot), a time-continuous input
current with its continuous differentiability w.r.t. θθθ.
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3. Spike Response Model: The spike response model (SRM) is represented as

vi(t) = η(t− t̂i) +
∑

j

wij

∑

f

ǫij(t− t̂i, t− t(f)j )

+

∫ ∞

0

κ(t− t̂i, s)IE(t− s;θθθ)ds,
(3.15)

where vi(t) is the membrane potential of a single neuron i. t̂i is the firing time

of the last spike of the neuron i and t
(f)
j are spikes of presynaptic neurons j.

wij is the synaptic efficacy. The function η(·) describes the form of the action

potential and its spike after-potential. The function ǫ describes the time course

of response to an incoming spike and κ(·) is a linear response to an input pulse.

The next action potential occurs when vi(t) hits a threshold vth(t − t̂i) with

dvi(t)/dt > 0 [56].

In this model, the required conditions of Lemma 3.4.7 are satisfied if (1) vi(t)

is continuously differentiable w.r.t. t and θθθ in a small neighborhood of θ0θ0θ0, and

(2) the difference between partial derivatives of v(t) and vth(t − t̂i) w.r.t. t is

nonzero at the time of the next action potential. Clearly, satisfaction of these

conditions require restrictions on functions η, ǫ, and κ. As an example, let us

assume that vth(t − t̂i) is time invariant and wij = 0. Now if η is continuously

differentiable w.r.t. t for t ≥ t̂i, κ is continuous in t for t ≥ t̂i, and η and κ

are continuously differentiable w.r.t. θθθ at t = t̂i in a small neighborhood of θ0θ0θ0,

then all the required conditions of Lemma 3.4.7 are satisfied by the model. As a

result, there exists a small neighborhood of θ0θ0θ0 such that the next ISI predicted

by the model is continuously differentiable w.r.t. θθθ in that neighborhood of θ0θ0θ0.
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3.7 Concluding Remarks

In this chapter, we have established conditions under which inter-spike intervals (ISIs)

of individual neurons in a recurrent network of synaptically connected spiking neurons

are continuously differentiable with respect to (w.r.t.) parameters (decision variables)

of an external stimulating input current which drives the network. Dynamical be-

havior of a spiking neuron has been represented by two-state first order ordinary

differential equation with reset of state variables at the occurrence of each ISI. Us-

ing existence theorems for solution of ordinary differential equations and the implicit

function theorem, we have found that ISIs are continuously differentiable w.r.t. the

decision variables if

1. continuously differentiable solution of spiking neurons w.r.t. time t and the

decision variables exists between consecutive action potentials, and

2. the partial derivative of the membrane potential of spiking neurons w.r.t. time

is not equal to the partial derivative of their firing threshold w.r.t. time at the

time of action potentials.

Under certain assumptions, we have shown that these conditions are fulfilled by non-

linear bidimensional spiking neuron models in the presence of a time continuous input

current which is also continuously differentiable w.r.t. its parameters (see section 3.6).

In case of linear bidimensional spiking neuron models, additional constraints must be

imposed on the stimulating input current in order to fulfill these conditions.

Throughout our work, we have assumed that each presynaptic neuron establishes

only one synapse with each of its postsynaptic neurons and all synapses within the

network are identical i.e. excitatory. These assumptions are used only to simplify the
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mathematical complexity of our work. Relaxation of these assumptions by includ-

ing multiple synapses of both types, excitatory and inhibitory, will not change the

conclusion of the reported work as long as our derived conditions are satisfied.
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Chapter 4

Optimal Control Problems in

Closed-loop Neuroprostheses: A

Generalized Framework

4.1 Introduction

As discussed in Chapter 1, a control-theoretic system level analysis of feedback-

enabled neuroprosthetic devices is highly desirable for successful transition of these

devices to stable extended use in human subjects. In this direction, optimal feed-

back control theory [140, 94] provides an ideal theoretical framework to perform such

analysis rigorously under various feedback scenarios.

In the past, the theory of optimal feedback control has been used in the con-

text of motor control to investigate physical principles underlying the execution of

skilled movements [115] and to understand optimal trajectory formation and control

in multi-joint arm movements [163]. This theory has recently been applied to develop
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a theoretical framework which can provide an enriched understanding of how our

brain coordinates biomechanical degrees of freedom to achieve a common goal during

complex reaching and grasping tasks [156, 155, 34, 147, 148, 131], a central problem

in motor control. The main goal in these studies was to investigate underlying prin-

ciples of motor coordination and control during complex voluntary movements using

the theory of optimal feedback control to facilitate robotic applications. Therefore,

these studies primarily ignored the neurophysiology of the brain involved during vol-

untary movements which limits the applicability of the developed framework in these

studies for studying neuroprosthetic systems.

In this chapter, we propose a generalized control-theoretic framework using op-

timal feedback control theory for facilitating rigorous analysis of closed-loop neuro-

prostheses under various sensory feedback scenarios. Unlike the framework developed

for investigating principles of motor control, this framework allows modulations in

spiking activities of neurons by designing optimal stimulating input currents and si-

multaneously studying their effect on the entire system in a controlled environment.

Using this framework, we formulate a minimum time optimal control problem for

accomplishing voluntary single-joint movement tasks. Using the results derived in

previous chapters, we perform a rigorous analysis of the closed-loop neuroprosthetic

system and elucidate the importance of sensory feedback during the movement of a

single-joint prosthetic arm driven by the activity of a single cortical motor neuron.
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4.2 Closed-Loop Neuroprosthetic Control: A Gen-

eralized Framework

Figure 4.1 shows our proposed framework for rigorous control-theoretic analysis of

a closed-loop neuroprosthetic system using a model-based optimal receding horizon

controller (RHC) [95]. Here, “Intent” represents the direction and the goal of the

Figure 4.1: An optimal receding horizon control based closed-loop neuroprosthetic
system framework.

movement. We assume that this intent information is available to the controller prior

to design of the closed-loop system. “Receding Horizon Controller” represents the

external controller. This controller uses a predictive model of the system and designs

“optimal input current” IEk|k. IEk|k together with Ip(t), the proprioceptive feedback

current, stimulates the “Cortical Motor Neurons Network”. The measured output of

the “Cortical Motor Neurons Network” is the time of action potentials of neurons in

the network occurred between the discrete time k and k+1 and is represented here by

“Spike Time” tk. Motor relevant information contained in tk is then extracted using
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the “Decoder” which provides a continuous time “Joint Torque” τ(t) information.

This joint torque is then used to drive the “Prosthetic Arm”. The loop is closed

by including “Visual Feedback” and “Proprioceptive Feedback” available from the

system. Feedback information available from the “Torque” and the “Movement” of

the “Prosthetic Arm” constitutes the proprioceptive feedback and represented here

in the form of Ip(t). The feedback information, f(θ(t)) measured through the “Eye”

represents the “Visual Feedback”. θ(t) and θ̇(t) are continuous time angular position

and velocity of the joints respectively.

4.3 An Optimal Control Problem

Our brain plans the sequence of movements to accomplish relevant task goals. Mini-

mum cortical effort [34] or minimum time [115] for reaching a given target using an

arm represent such goals. These goals are motivated by associated rewards. A natu-

ral human tendency is to look for rewards that can easily be acquired with minimum

efforts. This tendency varies with constraints on rewards. A familiar constraint is

the association of the reward with the accomplishment time of the task where mini-

mum time implies more reward. In this situation, the primary goal within the task

becomes the minimum time. This goal can formally be defined as a cost function

in a model-based optimal receding horizon control framework where the objective is

to minimize the task relevant accomplishment time. In this section, we formulate a

minimum time control problem in the framework shown in Figure 4.1 to accomplish

a single joint movement task in a minimum possible time.
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4.3.1 System Dynamics

As shown in Figure 4.1, the closed-loop neuroprosthetic system “System” is consisted

of five different blocks, namely cortical motor neurons network, decoder, prosthetic

arm, proprioceptive feedback, and visual feedback. For a single joint reaching task,

we use the firing activity of a single cortical motor neuron to drive the single joint

prosthetic arm. Therefore, we replace the “Cortical Motor Neurons Network” block

in Figure 4.1 by a “Single Cortical Motor Neuron”. With this, we next describe the

dynamical model of individual blocks which are used in formulating the minimum

time optimal control problem to accomplish a single joint movement task.

1. Single Cortical Motor Neuron Model: We represent the dynamical be-

havior of a single cortical motor neuron by the Izhikevich single neuron model

[76, 77]:

dv(t)

dt
= 0.04v2(t) + 5v(t) + 140− u(t) + I(t), (4.1a)

du(t)

dt
= a(bv(t)− u(t)), (4.1b)

if v(t) ≥ 30, then

v(t)← c and u(t)← u(t) + d.

(4.1c)

Here, v(t) is the membrane potential (in millivolt (mV)) at real continuous time

t (in millisecond (ms)). u(t) is the membrane recovery variable. I(t) is the total

external input current to the neuron. a, b, c, d are the model parameters which

can be estimated from experimental single neuron data using the approach

discussed in Chapter 2 of this thesis. At the initial time t = 0, v(0) = c and

u(0) = d. Whenever the membrane potential v(t) exceeds the cut-off potential
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of 30 mV, the occurrence of an action potential is assumed. At this time, the

membrane potential v(t) is reset to c and the value of the recovery variable u(t)

is increased by d. This reset of the membrane potential and the recovery variable

makes the dynamical model discontinuous in nature. Using these reset values

as new initial conditions, the time of next occurrence of an action potential is

determined.

We assume that the first action potential has already been occurred at time

t1 = 0. With this, we define tk is the time of the kth action potential. An

inter-spike interval (ISI) is defined as the time interval between two consecutive

action potentials. Mathematically, the kth ISI is represented as

∆tk = min{t− tk : v(t) ≥ 30|v(tk) = c, u(tk) = u(tk) + d}. (4.2)

2. Decoder: As discussed in Chapter 1 of this thesis, typical decoders developed

for neuroprosthetic applications such as the Weiner filter or the Kalman filter are

primarily based on the average firing rate of cortical neurons which lose motor

intended information because of their averaging characteristics. Also, these

models are static in nature. ISI based dynamical decoder models can enhance

the neuroprosthetic performances by decoding more detailed motor intended

information. With this motivation, here we develop a dynamical decoder model

that relates the torque generated at the joint of the prosthetic arm to the timings

of action potentials of the cortical motor neuron. We express the torque induced

by the kth action potential of the cortical motor neuron at the joint of the

prosthetic arm as
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τ(t) =















τ(tk) + (t− tk)α tk ≤ t ≤ t(τm)

−(t− tk − Tc)β t(τm) ≤ t ≤ tk+1,

(4.3a)

t(τm) =
tkα + (Tc + tk)β − τ(tk)

α + β
. (4.3b)

with τ(t1) = τ(0) = 0. τ(tk) is the measurement of the torque induced by the

(k − 1)th action potential at time t = tk. t(τ
m) is the time at which the torque

induced by the kth action potential reaches its maximum. α and β are constant

model parameters. Tc assumes a constant value and defines the maximum time

in which the torque induced by the kth action potential diminishes to zero.

3. Single Joint Prosthetic Arm Model: We consider the following one dimen-

sional mechanical model to represent the dynamics of a single joint prosthetic

arm which captures flexion/extension movement of the arm:

Inθ̈(t) = −knθ̇(t) + τ(t). (4.4)

Here, θ(t) is the angular position of the joint at time t. θ̇(t) is the derivative of

θ(t) with respect to time t and represents the velocity of the movement. In is

the moment of inertia. knθ̇(t) is the friction term which captures the frictional

loss during the movement.

4. Proprioceptive Feedback Model: Proprioceptive feedback carries informa-

tion such as the sense of movement, position, force and effort through natural

sensory pathways which together provides the perception of the limb position.
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Since these natural pathways are lost in amputees, one possibility to include pro-

prioception in neuroprosthetics is to send information such as the joint torque

and the velocity measured from the prosthetic arm to the brain in the form of

external stimulating input currents. Therefore, we represent the proprioceptive

feedback in the form of an external input current as

Ip(t) = Kττ(t) +Kθθ̇(t). (4.5)

Here, Kτ and Kθ are constant gain parameters for the joint torque and the

velocity respectively.

5. Visual Feedback Model: We include the visual feedback information as the

angular difference between the final and the present position of the joint during

the movement. We assume that this information is measurable at each ISI.

4.3.2 Problem Formulation

We formulate the overall optimal closed-loop neuroprosthetic control problem in the

receding horizon control framework for all k ≥ 1 as follows:

min
IE
k+j|k

,j=0,1,··· ,Nc(k)−1
Jp(k) (4.6a)

s.t.

∆tm ≤ ∆tk+j|k ≤ Tc for 0 ≤ j ≤ Nc(k)− 1, (4.6b)

(θf |k − θk+Np(k)−1|k)
2 ≤ ǫ. (4.6c)
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Here, the cost function Jp(k) is defined as Jp(k) = Tc +
∑Np(k)−1

j=0 ∆tk+j|k. This cost

function represents the total time required to drive the single joint prosthetic arm to

the desired angular position. k ≥ 1 represents the event of the occurrence of the kth

action potential. IEk+j|k, j = 0, 1, · · · , Nc(k) − 1 is a sequence of external stimulating

input currents over the time varying control horizon Nc(k). Np(k) is the time varying

prediction horizon. Throughout this work, it has been assumed that IEk+j|k is constant

during the time interval of ∆tk+j|k. ∆tk+j|k, j = 0, 1, · · · , Np(k) − 1 is the sequence

of predicted inter-spike intervals (ISIs) over the prediction horizon Np(k) at time

k. These ISIs are computed using equation (4.1) with I(t) = IEk+j|k + Ipk+j|k(t) for

j = 0, 1, · · · , Nc(k)− 1 and I(t) = IEk+Nc(k)|k + Ipk+j|k(t) for j = Nc(k), · · ·Np(k)− 1.

Equation (4.6b) defines the minimum and maximum limit on an ISI and ensures

that the movement of the single joint prosthetic arm is continuous. The minimum

limit ∆tm captures the refractory period of a cortical motor neuron. This means

that the cortical motor neuron cannot fire the next action potential within this time

period. The maximum limit Tc captures the minimum firing rate of a cortical motor

neuron. This limit ensures the occurrence of the next action potential before the

movement of the single joint prosthetic arm ceases. Based on our observations on

experimentally recorded cortical motor neurons firing rate from a primate study, we

fix the value of Tc to 50 ms in this study.

Equation (4.6c) defines a target space around the final angular position to be

reached during the voluntary movement of the single joint prosthetic arm. ǫ ≥ 0 is a

user defined parameter which ensures that the control problem is feasible. θk+Np(k)−1|k

is the prediction of the angular position of the single joint prosthetic arm in the next
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Np(k) ISIs predicted by the controller at time k. θf |k = θf−θk|k is the desired angular

position of the single joint prosthetic arm at time k. θf is the desired extension /

flexion of the single joint prosthetic arm assuming that the joint is initially at 0◦. At

time k, θf |k is used by the controller as visual feedback in designing the next time

optimal input currents.

Out of Nc(k) optimally computed input currents, only the first input current IEk|k

is implemented to the single cortical motor neuron for generating the (k+1)th action

potential or the spike time. At time k + 1, the control problem is again solved with

the new measurements obtained from the system. Thus at each k, the overall control

problem is to compute optimal IEk+j|k, j = 0, 1, · · · , Nc(k) − 1 such that the cost

function Jp(k) attains a minimum value while satisfying equations (4.6b) and (4.6c)

on the system.

4.3.3 Feasibility

Claim 4.3.1. The minimum time control problem defined by equation (4.6) is feasible

for all k > 1 if it is feasible at k = 1.

Proof. By the hypothesis of Claim 4.3.1, the minimum time control problem defined

by equation (4.6) is feasible at k = 1. Thus, we can find a sequence of IEi|1 for

i = 1, 2, · · · , Nc(1) and I
E
Nc(1)+j|1 = IENc(1)|1 for j = 1, 2, · · · , Np(1) − Nc(1) such that

the control problem is feasible. Now at k = 2, we can choose a set of admissible

control inputs [95] IEi|2 = IEi|1 for i = 2, 3, · · · , Nc(1) and IENc(1)+j|1 = IENc(1)|1 for

j = 1, 2, · · · , Np(1) − Nc(1), assuming Nc(1) is fixed. This set can steer the θNp(1)|2

to the ǫ region of θf |2. If we continue this way, we find that the control problem is

feasible for all k > 1.
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4.4 Nonlinear Optimization Problem

For notational simplicity, we write the control problem defined by equation (4.6) as

min
xk

Jp(k) (4.7a)

s.t.

h(xk) ≥ 0. (4.7b)

Here, xk = [IEk|k, I
E
k+1|k, · · · , IEk+Nc(k)−1|k]

T is a vector of decision variables. h(xk) =

[∆tk|k −∆tm, · · · ,∆tk+Nc(k)−1|k −∆tm, Tc −∆tk|k, · · · , Tc −∆tk+Nc(k)−1|k, ǫ− (θf |k −

θk+Np(k)−1|k)
2]T is a vector of system constraints given by equations (4.6b) and (4.6c).

(·)T denotes the transpose of a vector.

We write the Lagrangian [15] of the optimization problem define by equation (4.7)

as

L(xk,w, λ, µ) = Jp(k)− µ
2Nc(k)+1
∑

i=1

log(wi)− λT (h(xk)−w). (4.8)

Here, µ is a barrier parameter. w = [w1, w2 · · · , w2Nc−1]
T is a vector of slack variables

and satisfies h(xk)−w = 0 for w ≥ 0. λ is the non-negative vector of Lagrange multi-

pliers with 2Nc(k)+1 elements. (Jp(k)−µ
∑2Nc(k)+1

i=1 log(wi)) represents a logarithmic

barrier function.
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4.4.1 First-Order Optimality Conditions

The first-order optimality conditions for a minimum of equation (4.7) can be given

by well known Karush-Kuhn-Tucker (KKT) conditions [15] and are here derived as

∇xk
L = ∇Jp(k)−∇h(xk)

Tλ = 0, (4.9a)

∇wL = −µW−1e− λ = 0, (4.9b)

∇λL = h(xk)−w = 0. (4.9c)

Here, W is a diagonal matrix with elements of w. e is a unit vector of length

2Nc(k) + 1. ∇ represents the gradient. The optimization problem now is to find

optimum values of xk, w and λ which satisfy the KKT optimality conditions i.e.

equation (4.9).

4.4.2 Optimization Algorithm

In order to find a local solution numerically that satisfies the KKT conditions given

by equation (4.9), we implement a primal-dual interior point algorithm [164]. This

algorithm uses an iterative approach to search the optimality direction of decision

variables. Starting from an initial guess of decision variables, a new guess of deci-

sion variables for the problem shown in equation (4.9) is determined by solving the
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following Newton system:







−H(xk, λ) ∇h(xk)
T

∇h(xk) WΛ−1













∆xk

∆λ






=







∇Jp(k)−∇h(xk)Tλ

c(xk) +WΛ−1(µW−1e− λ)






, (4.10a)

∆w = WΛ−1(µW−1e− λ−∆λ). (4.10b)

Here, H(xk, λ) represents the Hessian and is defined as H(xk, λ) = ∇2Jp(k) −
∑2Nc(k)+1

i=1 λi∇2hi(xk). c(xk) = w−h(xk). Λ is the diagonal matrix with elements of

λ. ∆xk, ∆λ and ∆w are the Newton steps in xk, λ and w respectively. After com-

puting step directions ∆xk, ∆λ and ∆w, the implemented optimization algorithm

proceeds to a new point

xk
N = xk + γ∆xk, (4.11a)

wN = w + γ∆w, (4.11b)

λN = λ+ γ∆λ. (4.11c)

γ is a step control variable which is chosen such that the following conditions are

satisfied:

1. wN > 0,

2. λN > 0,

3. bµ(xk
N ,wN) < bµ(xk,w),

4. ||ρ(xk
N ,wN)||2 < ||ρ(xk,w)||2.

Here, bµ(xk,w) = Jp(k) − µ
∑2Nc(k)+1

i=1 log(wi) is a barrier function. µ = νmin((1 −

r)1−ζ
ζ
, 2)3w

Tλ
m

is the barrier parameter. r is the steplength factor which is set to
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0.95. ν ∈ [0, 1) is a settable scale factor which is set to 0.1. ||ρ(xk,w)|| measures

infeasibility of the optimization problem and is defined as ρ(xk,w) = w − h(xk).

The last two conditions form a search strategy called the Markov filter [12]. This

strategy ensures that the new point is moving towards optimality in a feasible region.

Using this new point as a starting guess of decision variables, the above procedure is

repeated till the following optimization stopping conditions are satisfied [164, 12]:

1. max(− log10
|λT (h(xk)−w)|
(|bµ(xk,w))+1|) , 0) ≥ 8,

2. ||ρ(xk,w)|| ≤ 10−6,

3. ||∇Jp(k)−∇h(xk)
Tλ|| ≤ 10−6.

4.5 Results

In previous sections, we developed a minimum time optimal control problem (equation

(4.6)) in a model-based receding horizon control framework for a cortically driven

closed-loop single joint prosthetic arm. In this section, we solve the control problem

numerically.

We set the Izhikevich single neuron model (equation (4.1)) parameters a, b, c, d to

0.0404, 0.2497,−64.4679, 21.2777 respectively which were obtained in Chapter 2 using

an experimental data set from a primate study. ∆tm, the minimum time duration of

two consecutive action potentials, was set to 2 ms. Model parameters α, β, and Tc

in equation (4.3) were set to 0.5, 0.01, and 50 respectively. The moment of inertia

In and the friction parameter kn in equation (4.4) were set to 5 and 30 respectively.

These choices of parameters allowed us to extend the joint of the prosthetic arm by

20◦ in the time interval of 1−2 s. Using these parameters, we studied the importance
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of proprioceptive and visual feedbacks in extending the joint of the prosthetic arm by

20◦ in a minimum possible time.

The flexibility of a modeling framework in activating or inactivating individual

feedback pathway provides an ideal platform to identify importance of these pathways

in designing a closed-loop neuroprosthetic system. Therefore, here we studied four

systems namely closed-loop, partial closed-loop-V, partial closed-loop-P and open-

loop based on the nature of sensory feedbacks incorporated in their design. Table 4.1

shows the distinction among these systems.

System Visual feedback Proprioceptive feedback

Closed-loop Yes Yes
Partial closed-loop-V Yes No
Partial closed-loop-P No Yes
Open-loop No No

Table 4.1: System Design

As shown in Table 4.1, the activation and inactivation of visual and proprioceptive

feedbacks in these systems allowed us to explore the fundamental importance of these

feedbacks in driving a joint of the prosthetic arm. With this, we solved the minimum

time control problem defined by equation (4.6) at each k ≥ 1. We implemented the

optimization algorithm described in the previous section in MATLAB. Initial values

of w were set to h(I). Initial values of the Lagrange multipliers were set to λi = 1/hi

for i = 1, · · · , 2Nc and λ2Nc+1 = 1. We observed that this particular choice works for

almost every problem we solved in our context. We analyzed the effects of visual and

proprioceptive feedback in designing the closed-loop neuroprosthetic system shown in

Figure 4.1.
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For systems with visual feedback, initial value of ǫ was set to 0.2. ǫ was mono-

tonically decreased during the receding horizon problem and finally fixed to 0.01.

For systems without visual feedback, ǫ was set to 0.01. Thus the final target loca-

tion of θ was 19.9◦ − 20.1◦. The control horizon Nc(0) was set to 4. Initial guesses

for {I1|1, {I2|1, · · · , INc(1)|1} were set to 25. The initial prediction horizon Np(1) was

computed based on the feasibility of optimization problem at the initial guesses. It

should be noted here that the prediction horizon Np(k) was not decreased monotoni-

cally during the receding horizon computation. Equations (4.1), (4.3) and (4.4) were

computed numerically using the Euler scheme with a fixed step size of 10−3.

4.5.1 Importance of Visual Feedback

It has been shown in motor intended neuroprosthetics studies that visual as well as

proprioceptive feedback play important role in guiding voluntary movement tasks

such as reaching or grasping [152, 14]. In [14], it has been shown that the difficulty in

using a prosthetic limb for grasping a virtual object increases as one or both of these

feedback signals are switched off. Particularly, it may even be impossible to attain

the goal in the absence of visual feedback. In this section, we show this point using

the receding horizon based optimal control framework and elucidate the importance

of visual feedback in guiding the single joint prosthetic arm in attaining the desired

goal.

It is well known that single neurons are intrinsically noisy. To incorporate this

noisy characteristic of single neurons in the Izhikevich single neuron model given by

equation (4.1), we modified equation (4.1) as
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dv(t)

dt
= 0.04v2(t) + 5v(t) + 140− u(t) + I(t) + Inoise(0, σ

2), (4.12a)

du(t)

dt
= a(bv(t)− u(t)), (4.12b)

if v(t) ≥ 30, then

v(t)← c and u(t)← u(t) + d.

(4.12c)

Here, Inoise(0, σ
2) is a Gaussian noise with mean 0 and variance σ2. We say that the

system shown in Figure 4.1 is nominal (WN) if σ = 0 and stochastic (N) if σ > 0.

We assumed that it is possible to reach the desired extension of the joint in

the open loop, partial closed-loop-V and partial closed-loop-P system under nominal

system conditions i.e. with σ = 0 in equation (4.12). With this assumption, we

solved the control problem (equation (4.6)) for the open-loop system and the partial

closed-loop-P system and computed optimal external input currents for both systems

under the nominal condition. We set proprioceptive feedback gains Kτ and Kθ to

0 for the open-loop and partial closed-loop-V system. For the partial closed-loop-P

system, we set Kτ = 1 and Kθ = 100. It should be noted that a model of the nominal

system dynamics have been used in the receding horizon controller for predicting and

computing optimal external input currents. Therefore, there is no model mismatch

between the system and the controller in the nominal case. This provided us the

number of ISIs required to reach the desired angular position of the joint in both

systems under nominal conditions. We implemented the computed optimal external

input currents using a model of the nominal system on the stochastic system with

σ = 20 for the open-loop and partial closed-loop-V system and obtained same number
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of ISIs as in the nominal case. This provided us angular position trajectories of the

prosthetic joint for both stochastic systems.

The top plot in Figure 4.2 represents these trajectories with respect to real-time.

For comparing angular position trajectory of the open-loop stochastic system with

the nominal system, we have included the angular position trajectory of the open-loop

nominal system in this plot of which is shown by “Open-loop(WN)”.
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Figure 4.2: Importance of visual feedback in designing neural prosthetic system. Here,
the top plot shows the angular position trajectory during the extension movement
of the prosthetic joint. The y-axis represents the angular position (θ measured in
degrees) and the x-axis represents the time (t in milliseconds). “N” indicates the
presence of noise during the design, “WN” indicates the absence of noise during the
design. The bottom plot represents modulations in inter-spike intervals (ISIs) of the
cortical motor neuron in the absence and the presence of visual feedback information.

In Figure 4.2, the angular trajectory of the open-loop stochastic system, “Open-

loop (N)”, and partial closed-loop-P stochastic system, “partial closed-loop-P (N)”,

clearly show that the desired angular position is not reached in both cases. Therefore
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to reach the desired angular position in the presence of noise, it is necessary to modify

the number of ISIs. Now we show that this modification is only possible using the

available information of the prosthetic joint angular position via the visual feedback.

In reaching relevant tasks, the visual feedback carries information such as the

location of the arm and the target position in the space. Naturally, this feedback

is processed through eye to the visual cortex of the brain and helps the brain in

modifying the planning of the movement to attain the desired goal of reaching. In a

similar way, here we used the difference of the desired and measured angular position

of the prosthetic joint at each time k to guide the receding horizon controller for

modifying the planning of the movement. Using this concept of visual feedback

inclusion in the modeling framework, next we show that the prosthetic joint can be

driven to the desired angular position which was impossible in the absence of the

visual feedback.

We solved the control problem (equation (4.6)) using the nominal system models

(equations (4.1), (4.3), and (4.4)) at time k. Out of Nc(k) = 4 computed optimal

external input currents over the prediction horizon Np(k) at time k, we implemented

the first computed external current IEk|k on the partial closed-loop-V stochastic system

(equations (4.12), (4.3), and (4.4)). We measured the angular position θ(t) of the

prosthetic joint at time k + 1 and used this information as a visual feedback in

designing the next input currents at time k + 1. The angular trajectory for this

system is shown in the top plot of Figure 4.2 as “Partial closed-loop-V (N)”. Clearly

the trajectory for this system shows the accomplishment of the reaching task by

accounting the visual feedback for corrections.

The bottom plot in Figure 4.2 shows the modulation in cortical activity of the
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neuron in the presence of noise for the open-loop, the partial closed-loop-V and the

partial closed-loop-P system. It indicates that the visual feedback helps the brain in

rejecting the effect of external perturbations during the extension movement of the

prosthetic arm by modifying the cortical activity of the neuron in the partial closed-

loop-V (N) system. Next, we studied the role of proprioception in a closed-loop neural

prosthetic system.

4.5.2 Importance of Proprioceptive Feedback

Experimental evidence indicates that there is a direct relation between the muscle

force and activities of cortical motor neurons [152, 87]. Particularly in [152], it has

been shown that proprioception affects firing rates of cortical motor neurons signif-

icantly and enhances performance of BMIs in on-line operation. Therefore, here we

studied firing rate of the cortical motor neuron in the closed-loop and the partial

closed-loop-V designs for the nominal system. By analyzing firing patterns in both

systems, we investigated a role of proprioceptive feedback in designing closed-loop

neural prosthetic system.

It is known that a part of afferent fibers provides the proprioceptive feedback infor-

mation directly to M1 neurons by making synaptic connections with them. Therefore,

we included the proprioceptive feedback current, Ip(t) = Kττ(t) + Kθθ̇(t), directly

to the cortical motor neuron. We set proprioceptive feedback gains Kτ and Kθ to 1

and 100 respectively in the closed-loop system design. Further, we assumed that it is

possible to reach the desired extension of the finger in the absence and the presence of

proprioceptive feedback. With this assumption, we solved the control problem (equa-

tion (4.6)) for the closed-loop system and the partial closed-loop-V system under
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nominal conditions i.e. in the absence of noise and computed optimal external input

currents for both systems. We implemented these optimal external input currents on

the nominal closed-loop and partial closed-loop-V system and computed ISIs of the

cortical motor neuron firings for the reaching task. Figure 4.3 shows firing patterns,

shown here in terms of ISIs, for both systems.
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Figure 4.3: Modulations in inter-spike intervals (ISIs) of the cortical motor neuron
in the presence and the absence of proprioception for the extension movement of the
prosthetic joint by 20◦. Here the y-axis represents ISIs variations (∆ts in milliseconds)
and the x-axis represents the control action index (k).

Figure 4.3 clearly shows that ISIs of the cortical motor neuron decreased after

including the proprioceptive feedback in the design (i.e. increased in the firing rate).

It is also shown in Figure 4.3 that these decrements in ISIs are not significant to

conclude necessity of proprioception in enhancing the performance of neuroprosthetic

systems. We suspect that a possible reason for this small decrement may be the small

gain value of Kτ used in the proprioceptive feedback. Therefore, next, we studied how

the activity of the cortical motor neuron changes as we change the value of the gain

Kτ in the proprioceptive feedback. This is equivalent to weakening or strengthening

afferent fibers which carry the proprioceptive feedback back to the brain. For this,
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we fixed the gain Kθ to 100 and varied the gain Kτ . It should be noted that the

gain Kτ carries torque information in the proprioceptive feedback current model and

resembles the perception of the torque exerted by the muscle at the joint. With this,

we studied variation in ISIs as a function of the gain Kτ for the closed-loop system.

Figure 4.4 shows ISIs for Kτ = 1, 5, and 10.
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Figure 4.4: Modulations in inter-spike intervals (ISIs) of the cortical motor neuron
in presence of three different proprioceptive feedbacks for the extension movement of
the prosthetic joint by 10◦. Here the closed-loop system includes proprioception as
well visual feedbacks. Increasing values of the gain Kτ resemble more perception of
the required torque for accomplishing the task. The y-axis represents ISIs variations
(∆ts in milliseconds) and the x-axis represents the control action index (k).

Figure 4.4 shows that ISIs of the cortical motor neuron changed significantly when

we increased the torque perceived by the proprioceptive feedback current.
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4.6 Concluding Remarks

In this chapter, we have proposed a generalized optimal control framework using a

model-based receding horizon control policy to rigorously analyze neuroprosthetic sys-

tems by including various sensory feedback pathways in the system. This is the first

systematic attempt to formalize a system-level closed-loop neuroprosthesis analysis

in an optimal predictive control framework. Using this framework, a minimum time

control problem has been formulated to elucidate the importance of sensory feedback

pathways in a single joint prosthetic arm movement controlled by the firing activity

of a single cortical motor neuron. From our results we conclude that visual feedback

is important in rejecting internal noises, naturally occurs in neuronal network, while

reaching the desired goal of the task. Our results clearly indicate significant advan-

tages of using an optimal control framework in studying complex biological systems

such as neuroprosthetic systems which may be difficult in an experimental framework.
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Chapter 5

Design of Closed-loop

Brain-Machine Interfaces: An

Optimal Control Approach

5.1 Introduction

In the previous chapter, we proposed a generalized optimal control-theoretic frame-

work for a system-level rigorous analysis of closed-loop neuroprosthetic systems using

a model-based receding horizon control policy [95]. The formulation of a minimum

time control problem within this framework for accomplishing reaching tasks in a min-

imum time demonstrated the capability of the optimal controller in designing higher

level motor planning. In this chapter, we show that the framework can be modified

to design missing sensory feedback pathways in brain-machine interfaces (BMIs) op-

timally and thus to close the loop in BMIs for developing stimulus-enhanced next
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generation BMIs as motivated in Chapter 1. In particular, we theoretically demon-

strate the recovery of closed-loop performance of a BMI for voluntary single joint

extension task by designing an optimal artificial sensory feedback in the absence of

the natural proprioceptive feedback pathways.

Using synthetic data obtained through the simulation of an experimentally vali-

dated psycho-physiological cortical circuit model for voluntary single joint reaching

task [19], we design a brain-machine interface (BMI). We analyze the performance of

the BMI in the presence and the absence of natural proprioceptive feedback informa-

tion. Through simulation, we show that the BMI performance degrades significantly

in the absence of the natural proprioception. Throughout our analysis, we exclude the

treatment of visual feedback as well any form of cortical learning. Finally, we design

an optimal artificial sensory feedback in the receding horizon control framework to

stimulate appropriate cortical sensory area neurons and thus to recover the natural

performance of the reaching task during the online operation of the designed BMI.

5.2 A Psycho-physiological Cortical Circuit Model

Figure 5.1 shows a psycho-physiological cortical circuit model, proposed by Bullock

et al. [19], for voluntary control of a single joint movement. This minimal model

captures the essential cortical pathways as well as the proprioceptive feedback path-

ways which are relevant during voluntary extension or flexion of a single joint such

as elbow. Although the model excludes the treatment of visual feedback during the

movement, the model has shown its capability in a qualitative reproduction of sev-

eral experimentally observed results on voluntary control of a single joint movement.

The details of the model and its connection with neurophysiology of a single joint
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voluntary movement can be found in [19].

Figure 5.1: A psycho-physiological cortical circuit model for voluntary control of single
joint movement: The diagram has been redrawn from Bullock et al. [19], Figure 1.1.
Nomenclature (adopted from [19]): “GO” is a scalable gating signal; “DVV” is the
desired velocity vector; “OPV” is the outflow position vector; “OFPV” is the outflow
force and position vector; “SFV” is the static force vector; “IFV” is the inertial
force vector; “PPV” is the perceived position vector; “DV” is the difference vector;
“TPV” is the target position vector; “γd” and “γs” are dynamic and static gamma
motoneurons respectively; “α” is alpha motoneuron; “Ia” and “II” are type Ia and
II afferent fibers; − represents inhibitory feedback. The rest of the connections are
excitatory.

Briefly, a population of area 5 (“DV”) neurons computes the difference between

the target and the perceived limb position vectors. The average firing activity of a

population of these neurons is represented as

ri(t) = max{Ti − xi(t) + Br, 0}. (5.1)

Here, 0 ≤ ri(t) ≤ 1 represents the average firing activity of a population of “DV”
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neurons associated with the agonist muscle i and shows a phasic behavior during the

movement. Throughout the paper, we will denote the average firing activity of neu-

rons associated with the agonist muscle i by the subscript i and the corresponding

antagonist muscle by the subscript j. Ti is the target position vector (“TPV”) com-

mand for the target position of the agonist muscle i. xi(t) is the average firing activity

of a population of area 5 “PPV” neurons. These neurons continuously compute the

present position of the agonist muscle i. Br is the base firing activity of the “DV”

neurons. Continuously computed difference vector information by the area 5 “DV”

neurons is then scaled by a population of area 4 “DVV” neurons as

ui(t) = max{g(t).(ri(t)− rj(t)) + Bu, 0}. (5.2)

Here, ui(t) is the average firing activity of a population of area 4 “DVV” neurons.

Bu is the base firing activity of the “DVV” neurons. g(t) is an internal “GO” signal

which is assumed to be originated from the basal ganglia. “DVV” neurons fire only

during the movement and thus their average firing activity shows a phasic-movement

time (MT) behavior. The dynamics of the internal “GO” signal is modeled as

dg1(t)

dt
= ǫ(−g1(t) + (C − g1(t))g0), (5.3a)

dg2(t)

dt
= ǫ(−g2(t) + (C − g2(t))g1(t)), (5.3b)

g(t) = g0
g2(t)

C
. (5.3c)

Here, ǫ represents a slow integration rate and is treated as constant. C is a constant
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value at which the “GO” neurons saturate. The area 4 “OPV” neurons receive

information from the area 4 “DVV” neurons as well as the area 5 “PPV” neurons

and show tonic firing activity. The average firing activity of a population of “OPV”

neurons is modeled as

dyi(t)

dt
= (1− yi(t))(ηxi(t) + max{ui(t)− uj(t), 0})

− yi(t)(ηxj(t) + max{uj(t)− ui(t), 0}).
(5.4)

Here, η is a scaling factor. The average firing activity of a population of static (γSi (t))

and dynamic (γDi (t)) gamma motoneurons are modeled as

γSi (t) = yi(t), (5.5a)

γDi (t) = ρmax{ui(t)− uj(t), 0}. (5.5b)

Here, ρ is a scaling parameter. The average firing activity of the primary (“Ia”) and

the secondary (“II”) muscle spindles afferents are modeled as

s1i (t) = S(θmax{γSi (t)− pi(t), 0}+ φmax{γDi (t)−
dpi(t)

dt
, 0}), (5.6a)

s2i (t) = S(θmax{γSi (t)− pi(t), 0}). (5.6b)

Here, s1i (t) and s2i (t) are the primary and the secondary spindles afferents average

firing activity respectively. pi is the position of the agonist muscle i. θ is the sensitivity

of the static nuclear bag and chain fibers. φ is the sensitivity of the dynamic nuclear
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bag fibers. The saturation of spindles afferents activity is given by the function

S(ω) = ω/(1 + 100ω2). The average firing activity xi(t) of a population of area 5

“PPV” neurons is modeled as

dxi(t)

dt
= (1− xi(t))max{Θyi(t) + s1j(t− τ)− s1i (t− τ), 0}

− xi(t)max{Θyj(t) + s1i (t− τ)− s1j(t− τ), 0}.
(5.7)

Here, τ is the delay time of the spindles feedback. Θ is a constant gain. The average

firing activity qi(t) of a population of area 4 “IFV” neurons is modeled as

qi(t) = λi max{s1i (t− τ)− s2i (t− τ)− Λ, 0}. (5.8)

Here, Λ is a constant threshold. The average firing activity fi(t) of a population of

area 4 “SFV” neurons is modeled as

dfi(t)

dt
= (1− fi(t))hs1i (t− τ)− ψfi(t)(fj(t) + s1j(t− τ)). (5.9)

Here, h is a constant gain which controls the strength and speed of an external load

compensation. ψ is an inhibitory scaling parameter. The average firing activity ai(t)

of a population of the area 4 “OFPV” neurons is modeled as

ai(t) = yi(t) + qi(t) + fi(t). (5.10)

The average firing activity of these neurons shows a phasic-tonic behavior. The
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average firing activity αi(t) of alpha motoneurons is modeled as

αi(t) = ai(t) + δs1i (t), (5.11)

where δ is a stretch reflex gain. The limb dynamics is described by

d2pi(t)

dt2
=

1

I
(M(ci(t)− pi(t))−M(cj(t)− pj(t)) + Ei − V

dpi(t)

dt
). (5.12)

Here pi(t) is the position of the agonist muscle i within its range of origin-to-insertion

distances. pj(t) is the position of the antagonist muscle such that pi(t) + pj(t) = 1. I

is the moment of inertia of the limb. V is the joint viscosity. Ei is the external force

applied to the joint. M(ci(t), pi(t)) = max{ci(t)− pi(t), 0} represents the total force

generated by the agonist muscle i. ci(t) is the muscle contraction activity dynamics

of which is given by

dci(t)

dt
= ν(−ci(t) + αi(t)). (5.13)

In this chapter, we use this model in generating synthetic experimental data for

voluntary control of a single joint extension task and use these data in designing a

closed-loop brain-machine interface.

5.3 Closed-Loop Brain-Machine Interface Design

5.3.1 Data Generation

In a typical non-human primate experiment, a monkey is trained to accomplish a

given motor task such as reaching or grasping. After the training, spiking activity of
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single neurons are recorded through implanted multi-channel electrodes from various

motor relevant cortical areas such as the primary motor cortex (M1), the premotor

area (PMv, PMd), and the primary somatosensory area (S1). Simultaneously, kinetic

and kinematic information such as joint torque, velocity and position of the real arm

are measured to generate a data set.

Here, we generated a synthetic experimental data set for voluntary control of a

single joint extension task by simulating the system model shown by equations (5.1)

- (5.13) in MATLAB. The target position of the agonist muscle i was set to the

desired one at t = 0. The “GO” signal was turned on at t = 50 ms. During the

initial 50 ms, the system was at the priming state. The initial condition of variables

was set to 0 except xi(0) = xj(0) = 0.5, yi(0) = yj(0) = 0.5, pi(0) = pj(0) = 0.5,

ui(0) = uj(0) = Bu and ri(0) = rj(0) = Br. For the simulation, we used the following

model parameters [19]: I = 200, V = 10, ν = 0.15, Br = 0.1, Bu = 0.01, Θ = 0.5,

θ = 0.5, φ = 1, η = 0.7, ρ = 0.04, λ1 = 150, λ2 = 10, Λ = 0.001, δ = 0.1, C = 25,

ǫ = 0.05, ψ = 4, h = 0.01, T1 = 0.7 and τ = 0.

In BMI experiments, a trial is considered successful if the trained monkey accom-

plishes the specified motor task in a given time duration. Thus the accomplishment

time of the task in successful trials is allowed to vary. In our case, the “GO” signal

controls the velocity of the joint movement and thus the accomplishment time of a

given task. Therefore we assumed that there is a trial-to-trial variability in the in-

ternal “GO” signal. To introduce the trial-to-trial variability in the “GO” signal, we

modeled g0 as a Gaussian distributed random variable with mean 0.75 and variance

0.0025. For a given trial, g0 is constant. It should be noted that the “GO” signal has

no effect on the accuracy of the movement.
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We simulated the model and generated synthetic experimental data for 1600 in-

dependent trials of the voluntary single joint extension task. In each of these trials,

the simulation was performed for the duration of 1.45 seconds which includes a vari-

able holding period at the target position after the accomplishment of the task. To

generate a synthetic experimental data set, we measured the average firing activity

of a population of area 4 “DVV”, “OPV”, and “OFPV” agonist and the correspond-

ing antagonist neurons sampled at every 10 ms. Simultaneously, we measured the

total force difference between the agonist and the corresponding antagonist muscle

i.e. ∆M(k) =M(ci(t), pi(t))−M(cj(t), pj(t)), the agonist muscle position pi(k), and

the agonist muscle velocity vi(k) =
dpi(t)
dt

(k). Here, k = 1, 2, · · · is a discrete sample

time at which data were recorded for a given trial. With this, we created a data set

of 233600 samples by embedding the recorded data from 1600 trials.

5.3.2 Decoder

In Chapter 1, we discussed decoder models such as a discrete-time Weiner filter and

the Kalman filter which are typical used in BMI studies to extract motor information

from continuously recorded spike trains of the cortical area 4 neurons. In this section,

we use both the Weiner filter and the Kalman filter based decoder models to extract

the total force difference between the agonist and the corresponding antagonist muscle

(∆M(k)), the agonist muscle position pi(k), and the agonist muscle velocity vi(k)

from the recorded average firing activity of the area 4 “DVV”, “OPV”, and “OFPV”

neurons. It should be noted that these neurons have direct contribution to the spinal

cord circuit of the real system shown in Figure 5.1.
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Weiner Filter

In a discrete-time adapted Weiner filter based decoder design [89] as described in

Chapter 1 (see equations (1.8), (1.9) and (1.10) in Chapter 1), the relation between

∆M(k) and the average firing activity of area 4 neurons i.e. “DVV”, “OPV”, and

“OFPV” neurons can be expressed as

∆M(k) = wTz(k). (5.14)

Here, w is a (L.N)× 1 weight vector. L is the number of delay elements. (·)T is the

transpose of a vector. z(k) = [z1(k), z1(k − 1), · · · , z1(k − L + 1), z2(k), · · · , zN(k −

L+1)]T . zm(k− l) represents the average firing activity of the population m delayed

by l samples. For our system, z1 = yi, z2 = yj, z3 = ui, z4 = uj, z5 = ai, and z6 = aj.

Thus, N = 6. We assume the number of delay elements L = 10. Thus the weight

vector w has a dimension of 60 × 1. We also assume that there is no measurement

noise in obtaining data i.e. n1(k) = 0 in equations (1.8) and (1.9). Similarly, the

relation between [pi(k), vi(k)]
T and the average firing activity of area 4 neurons i.e.

“DVV”, “OPV”, and “OFPV” neurons can be expressed as

[pi(k), vi(k)]
T = WTz(k). (5.15)

Here, WT is a weight matrix of dimension 60× 2.

For consistency with BMI experiments, in this work, we used 220000 samples of

the recorded synthetic data to train the weight vector ‘w’ and the weight matrix ‘W’

of the designed decoders (equations (5.14) and (5.15)). For this, we used the following

normalized least mean squares algorithm [89] (see equation (1.10) in Chapter 1):
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w(k + 1) = w(k) +
η

β + ||z(k)||2z(k)e(k). (5.16a)

W(k + 1) = W(k) +
η

β + ||z(k)||2z(k)(e(k))
T . (5.16b)

Here, η and β are constants. || · || represents the Euclidean norm. In equation (5.16a),

e(k) represents a scalar error between the recorded ∆M(k) and the estimated value

through equation (5.14). In equation (5.16b), e(k) represents the error vector between

the recorded [pi(k), vi(k)]
T and the estimated value through equation (5.15). For our

study, we set η = 0.01 and β = 1. After the training, we froze the weight vector

‘w’ and the weight matrix ‘W’ to the final adapted value. Then we used the rest of

13600 samples to validate the performance of both decoders. Figure 5.2 and Figure

5.3 show the offline performance of the adapted Weiner filter based decoder defined

by equation (5.14) and equation (5.15) respectively on the test data for 1000 samples.

Kalman Filter

As described in Chapter 1 (see equations (1.13), (1.14), (1.15), (1.16), (1.17) and

(1.18) in Chapter 1), the Kalman filter based decoder design is given by

x̂(k | k − 1) = Ax̂(k − 1), (5.17a)

P̂ (k | k − 1) = AP̂ (k − 1)AT +R, (5.17b)

x̂(k) = x̂(k | k − 1) +Kk(z(k)− Cx̂(k | k − 1)), (5.17c)

P̂ (k) = (I −KkC)P̂ (k | k − 1), (5.17d)
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Figure 5.2: The actual (dotted line) and the estimated (solid line) force difference
between the agonist and the corresponding antagonist muscle, ∆M(k), using the
Weiner filter based decoder (equation (5.14)) for the single joint reaching task on a
sample part of the test data.
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Figure 5.3: The actual (dotted line) and the estimated (solid line) (a) position, pi(k),
and (b) velocity, vi(k), of the agonist muscle using the Weiner filter based decoder
(equation (5.14)) for the single joint reaching task on a sample part of the test data.
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Kk = P̂ (k | k − 1)CT (CP̂ (k | k − 1)CT +Q)−1. (5.17e)

Here, x̂(k | k − 1) and x̂(k) represent a priori and a posteriori estimate of the state

vector x(k) of dimension p × 1 at time k respectively. P̂ (k | k − 1) and P̂ (k) are

the estimate of a priori and a posteriori covariance matrix respectively. z(k) is the

observation (firing rate) vector of dimension r×1. Kk is the Kalman gain and I is an

identity matrix. A ∈ Rp×p is the state matrix and is given by A = X2X
T
1 (X1X

T
1 )

−1.

C ∈ Rr×p represents the observation matrix and is given by C = ZXT (XXT )−1.

R = 1
D−1

(X2 − AX1)(X2 − AX1)
T and Q = 1

D
(Z − CX)(Z − CX)T are covariance

matrices of Gaussian noise sources with mean zero to the state and the observa-

tion vectors respectively. Z, Y , X1, and X2 are given by Z =













z1,1 · · · z1,D
...

. . .
...

zr,1 · · · zr,D













,

X =













x1,1 · · · x1,D
...

. . .
...

xp,1 · · · xp,D













, X1 =













x1,1 · · · x1,D−1

...
. . .

...

xp,1 · · · xp,D−1













, and X2 =













x1,2 · · · x1,D
...

. . .
...

xp,2 · · · xp,D













respectively. Here, zi,j represents the jth firing rate data of the ith neuron. xi,j

represents the jth data of the ith state.

For our system, x(k) ≡ ∆M(k) (p = 1) if the total force difference between the

agonist and the corresponding antagonist muscle (∆M(k)) is extracted and x(k) ≡

[pi(k), vi(k)]
T (p = 2) if the position and the velocity of the agonist muscle are ex-

tracted from the average firing activity of area 4 neurons i.e. “DVV”, “OPV”, and

“OFPV” neurons. r = 6 andD = 220000. z(k) = [yi(k), yj(k), ui(k), uj(k), ai(k), aj(k)]
T .

For consistency with the Weiner filter design, we used 220000 samples of the
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recorded synthetic data to compute A, C, R, and Q for both x(k) ≡ ∆M(k) and

x(k) ≡ [pi(k), vi(k)]
T . Then we used the rest of 13600 samples to validate the perfor-

mance of the decoder for both cases. Figure 5.4 shows the offline performance of the

Kalman filter based decoder on the test data for 1000 samples when x(k) ≡ ∆M(k)

and Figure 5.5 shows the offline performance of the Kalman filter based decoder on

the test data for 1000 samples when x(k) ≡ [pi(k), vi(k)]
T . Clearly, the Kalman filter

based decoders performed better than the Weiner filter based decoders on the test

data.
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Figure 5.4: The actual (dotted line) and the estimated (solid line) force difference
between the agonist and the corresponding antagonist muscle, ∆M(k), using the
Kalman filter based decoder for the single joint reaching task on a sample part of the
test data.
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Figure 5.5: The actual (dotted line) and the estimated (solid line) (a) position, pi(k),
and (b) velocity, vi(k), of the agonist muscle using the Kalman filter based decoder
for the single joint reaching task on a sample part of the test data.
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5.3.3 Need of a Closed-loop BMI

In this section, we first study the performance of the designed decoders in the previ-

ous section in an open-loop BMI system design shown in Figure 5.6. We show that

the performance of these decoders degrades substantially in the absence of the nat-

ural proprioceptive feedback information. It should be noted here that we are not

considering the visual feedback or any form of learning in this work for the online

trajectory corrections during the movement.

Figure 5.6: An open-loop BMI system design.

As shown in Figure 5.6, the average firing activity of area 4 neurons i.e. “DVV”,

“OPV”, and “OFPV” neurons are used by the decoder to extract either the total

force (∆M(k)) or the position (pi(k)) and the velocity (vi(k)) of the agonist muscle.

To compare the performance of both decoders (the Weiner filter and the Kalman

filter), we simulate equations (5.1) - (5.9) along with the particular decoder model.
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We set g0 = 0.75, θ = 0 and ρ = 0 in equations (5.1) - (5.9). Rest of the model

parameters are same as given in section 5.3.1.

Figure 5.7 compares the open-loop performance of the Weiner filter based decoder

and the Kalman filter based decoder with the performance of the closed-loop real

system shown in Figure 5.1 when the extracted information from both the decoders

was the total force (∆M(t)) in real time t.
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Figure 5.7: Comparison of the open-loop performance of the Weiner filter based
decoder and the Kalman filter based decoder with the performance of the closed-loop
real system shown in Figure 5.1 when the extracted information from both decoders
was the force difference between the agonist and the corresponding antagonist muscle,
∆M(t).

As shown in Figure 5.7, the performance of both decoders degraded substantially

in the absence of the natural proprioception information. Moreover, the Kalman

filter performed better than the Weiner filter based decoder. Figure 5.8 compares

the open-loop performance of the Weiner filter based decoder and the Kalman filter
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based decoder with the performance of the closed-loop real system shown in Figure

5.1 when the extracted information from both decoders was the position (pi(t)) and

the velocity (vi(t)) of the agonist muscle in real time t. As shown clearly in this

figure, the performance of both decoders degraded substantially in the absence of

the natural proprioception information. Moreover, the Kalman filter showed better

performance than the Weiner filter in decoding the position compared to the velocity

of the agonist muscle.

Next, we consider the Weiner filter based decoder with ∆M(k) as the extracted

information and study the online performance of this decoder in the presence and

the absence of the natural proprioceptive feedback information when the decoder

interacts with the dynamics of the muscle as shown in Figure 5.9.

To make a realistic comparison of the performance of the decoder with the real

system, we first study the performance of the real system shown in Figure 5.1 in

the presence and the absence of the natural proprioceptive feedback i.e. the sensory

feedback. For both cases, we simulate equations (5.1) - (5.13) with g0 = 0.75. Rest of

the model parameters are same as given in section 5.3.1 for both cases except θ = 0

and ρ = 0 in the case of no proprioception. This means that the primary (“Ia”)

and the secondary (“II”) muscle spindles afferents become inactive (see equation 5.6)

in the absence of proprioception. The top plot of Figure 5.10 shows the position

trajectory of the agonist muscle i in the presence and the absence of proprioception.

As shown in the top plot of Figure 5.10, the desired position of the agonist muscle

i has been achieved in both cases for the real system. The result is consistent with

a prior neurophysiological experiment where it was shown that a trained monkey (in

the absence of visual feedback) can reach the desired target position in the presence
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Figure 5.8: Comparison of the open-loop performance of the Weiner filter based
decoder and the Kalman filter based decoder with the performance of the closed-loop
real system shown in Figure 5.1 when the extracted information from both decoders
was (a) the position (pi(t)) of the agonist muscle, and (b) the velocity (vi(t)) of the
agonist muscle.
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Figure 5.9: A closed-loop BMI system design using the natural proprioceptive feed-
back information (sensory feedback).

and the absence of proprioception [13].

Next we study the performance of the closed-loop BMI (decoder) (in the presence

of the natural proprioceptive feedback information) and the open-loop BMI (decoder)

(in the absence of the natural proprioceptive feedback information) shown in Figure

5.9. For this, we simulate equations (5.1) - (5.10), equation 5.12, and equation 5.14.

Here we assumed that the limb dynamics is same for the real and the prosthetic

system. For the open-loop BMI, we again set θ = 0 and ρ = 0. The bottom plot of

Figure 5.10 shows the position trajectory of the agonist muscle i for the closed-loop

and the open-loop BMI.

It is clear from the bottom plot of Figure 5.10 that the decoder performance

degrades substantially when the decoder, trained with the closed-loop data, is applied

on the open-loop system. Since the decoder was trained with the closed-loop firing
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Figure 5.10: The position trajectory of the agonist muscle i as a function of time in
the presence (solid line) and the absence (dotted line) of the natural proprioceptive
feedback information: The top plot shows the position trajectory for the real system
shown in Figure 5.1. The bottom plot shows the position trajectory for the prosthetic
system. The desired position target (Ti) for the agonist muscle i is 0.7.
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activity of the area 4 “OPV”, “DVV” and “OFPV” neurons, the firing activity of these

neurons must have changed significantly in the absence of the natural proprioception

feedback information. To see this, we plot the firing activity of these neurons in the

presence and the absence of the natural proprioception feedback information for the

BMI design shown in Figure 5.9. Figure 5.11 shows the firing activity of the area 4

“OPV”, “DVV” and “OFPV” neurons and the area 5 “PPV” neurons in the presence

and the absence of the natural proprioceptive feedback information.
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Figure 5.11: The average firing activity of a population of agonist “DVV” (ui(t)),
“OPV” (yi(t)), “OFPV” (ai(t)) and “PPV” (xi(t)) neurons in the presence (solid line)
and the absence (dotted line) of the natural proprioceptive feedback information.

As shown in Figure 5.11, the firing activity of cortical neurons deviates signif-

icantly from the closed-loop activity in the absence of the natural proprioceptive

feedback information. Since the weights of the designed decoder were not adapted to

accommodate these significant deviations in the firing activity of the area 4 neurons,
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the decoder performance degrades substantially in the absence of the natural propri-

oceptive feedback information. These results clearly show that there is a necessity for

designing an artificial proprioceptive feedback to regain the closed-loop performance

of the designed decoder in the absence of the natural proprioceptive feedback.

5.3.4 Artificial Proprioceptive Feedback Design

As shown in Figure 5.1, the area 5 “PPV” neurons receive the position feedback

information through the primary (Ia) muscle spindles afferents. These neurons then

use this proprioceptive feedback information to compute the present position vector

command. In the absence of the natural proprioceptive feedback pathways, this

feedback information is lost. In order to compensate the lost feedback information of

the area 5 “PPV” neurons, we design an artificial sensory feedback in a model-based

optimal receding horizon control (RHC) framework. The goal is to recover the closed-

loop performance of the decoder (the Weiner filter based decoder with ∆M(k) as the

extracted information) by providing the designed optimal artificial sensory feedback

to the “PPV” neurons in the absence of the natural proprioceptive feedback pathways.

It should be noted that we are not designing artificial feedback to compensate the

loss of sensory feedback to the area 4 “IFV” and “SFV” neurons in this study. Thus

in the absence of the natural sensory feedback, these neurons remain inactive during

our analysis.

In order to recover the closed-loop (natural) performance of the decoder, we for-

mulate two control problems in this section. In the first problem, we design an optimal

artificial sensory feedback to stimulate the population of area 5 “PPV” neurons such

that the position trajectory of the agonist muscle i matches the position trajectory
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obtained in the presence of the natural proprioception during the reaching task. We

call this “Problem 1”. Although we are not treating the visual feedback in this work,

this position trajectory tracking problem can be considered equivalent to the BMI

experiments where the visual feedback is used by the subject to make online correc-

tions in the trajectory during the reaching task in the absence of proprioception. In

the second problem, the goal is to match the average firing activity of the agonist

population of “PPV” neurons to its natural firing activity by designing an optimal

artificial feedback to stimulate the agonist population of the area 5 “PPV” neurons.

We call this “Problem 2”. This firing rate trajectory tracking problem can be consid-

ered equivalent to the BMI experiments where the primary somatosensory area (S1)

neurons are stimulated artificially to restore the natural proprioception information.

Figure 5.12 and Figure 5.13 show the design of a closed-loop BMI operation during

the reaching task for problem 1 and 2 respectively.

Figure 5.12: RHC based closed-loop BMI for Problem 1: Here the receding horizon
controller designs the “Artificial Feedback” to stimulate “PPV” neurons such that
the system output (“Single Joint Position” trajectory) mimics the “Desired Joint
Position” trajectory.

As shown in Figure 5.12 and Figure 5.13, for both problems we use a model-based

optimal receding horizon controller to design the optimal artificial sensory feedback.

150



Figure 5.13: RHC based closed-loop BMI for Problem 2: Here the receding horizon
controller designs the “Artificial Feedback” to stimulate “PPV” neurons such that
the system output (“PPV Neurons Firing Rate” ) mimics the “Desired PPV Neurons
Firing Rate”.

Briefly, a model based RHC policy is an optimal control strategy that explicitly

incorporates a dynamic model of the system as well as constraints in determining

control actions. At each time k ≥ 1, the system outputs are obtained and a model of

the system is used to predict future outputs O(k+m+1 | k), m = 0, 1, 2, · · · , Np−1 as

a function of current and future control moves I(k+l | k), l = 0, 1, 2, · · · , Nc−1. How

far ahead in the future the predictions are computed is called the prediction horizon

Np and how far ahead the control moves are computed is called the control horizon Nc.

Using these predictions, the Nc control moves I(k + l | k), l = 0, 1, 2, · · · , Nc − 1 are

optimally computed by minimizing a cost function Jp(k) over the prediction horizon

Np subject to constraints on the control inputs as well as any other constraints on the

internal states and outputs of the system. Only the first optimally computed move

I(k | k) is then used by the system to compute the outputs. At the next time k + 1,

new system measurements are obtained and the optimization problem is solved again
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with the new measurements. Thus, the control and prediction horizon recede by one

step as time moves ahead by one step.

For the systems shown in Figure 5.12 and Figure 5.13, we use the described model-

based RHC policy and formulate the following control problem:

min
I(k|k),I(k+1|k),··· ,I(k+Nc−1|k)

Jp(k) (5.18a)

such that

I(k + l | k) ∈ [−0.5, 0.5] for 0 ≤ l ≤ Nc − 1, (5.18b)

I(k + l | k) = 0 for Nc ≤ l ≤ Np − 1. (5.18c)

Here, I(k + l | k) for l = 0, 1, · · · , Nc − 1 is the designed artificial sensory input.

Jp(k) =
∑Np−1

m=0 (O(k +m + 1 | k) − R(k +m + 1 | k))2 is the cost function. In case

of Problem 1 (Figure 5.12), the measured output of the system O(k | k) at a given

time k is the position of the agonist muscle i i.e. pi(k | k). R(·) represents the desired

position trajectory. In case of Problem 2 (Figure 5.13), the measured output of the

system O(k | k) at a given time k is the average firing activity of the area 5 “PPV”

neurons associated with the agonist muscle i i.e. xi(k | k). R(·) represents the desired

average firing activity of the area 5 “PPV” neurons.

To solve the control problem, first we compute the desired position and firing

activity trajectory for Problem 1 and 2 respectively. For this, we simulate equations

(5.1) - (5.5), equation (5.6a), equation (5.7), equation (5.10), equation (5.12), and

equation (5.14). It should be noted that we have included only the natural sensory

feedback (Ia) to the area 5 “PPV” neurons through equation 5.6a for computing
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the desired trajectory. Thus in the absence of natural proprioception to the area 4

“IFV” and “SFV” neurons, qi(t) = fi(t) = 0 in equation (5.10). Next we compute

pi(k + m + 1 | k) and xi(k + m + 1 | k) for m = 0, 1, 2, · · · , Np − 1 for Problem 1

and 2 respectively. For this, we use a model of the system given by equation (5.1) -

(5.4), equation (5.10), equation (5.12), and equation (5.14) along with the following

modified firing activity dynamics of the “PPV” neurons:

dxi(t)

dt
= (1− xi(t))max{Θyi(t)− I(k + l | k), 0}

− xi(t)max{Θyj(t) + I(k + l | k), 0}.
(5.19)

Here, I(k + l | k) is constant during t and t + 10 ms i.e. between the sample time.

With this, we solve the optimization problem (equations (5.18a), (5.18b), and (5.18c))

numerically in MATLAB for both problems. We use the MATLAB optimization

function “fmincon” with the sequential quadratic programming “sqp” algorithm. For

both problems, we set Nc = 5 and Np = 30. Figure 5.14 shows the performance of

the controller in tracking the desired position trajectory of the agonist muscle i for

“Problem 1”.

As shown in the top plot of Figure 5.14, the controller performs well in tracking

the desired position trajectory. Also the stimulation of the area 5 “PPV” neurons

by the designed optimal artificial sensory feedback recovers the closed-loop velocity

trajectory, as shown in the bottom plot of Figure 5.14. Thus the designed optimal

artificial sensory feedback is sufficient in recovering the closed-loop performance of

the decoder in the absence of the natural proprioceptive feedback pathways. Next

we wonder if the designed optimal artificial sensory feedback in “Problem 1” also

recovers the natural average firing activity of the cortical neurons. Figure 5.15 shows
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Figure 5.14: The position and velocity trajectory profile for “Problem 1” (Figure
5.12): The top plot shows the position trajectory of the agonist muscle i in the
presence of the designed artificial sensory feedback (solid line) and the natural sensory
feedback (dotted line). The bottom plot shows the velocity trajectory of the agonist
muscle i in the presence of the designed artificial sensory feedback (solid line) and
the natural sensory feedback (dotted line).
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the average firing activity of the cortical area 4 and 5 neurons during the reaching

task.
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Figure 5.15: The average firing activity of a population of the cortical area 4 “DVV”
neurons (ui(t)), “OPV” neurons (yi(t)), “OFPV” neurons (ai(t)), and the cortical
area 5 “PPV” neurons (xi(t)) in the presence of the artificial sensory feedback (solid
line) and the natural sensory feedback (dotted line) for “Problem 1” (Figure 5.12).

As shown in Figure 5.15, the average firing activity of the cortical area 4 and 5

neurons during the artificial stimulation differs significantly from the natural. This

shows that although the artificial stimulation of the “PPV” neurons through the

design of “Problem 1” recovers the closed-loop performance of the decoder, it fails to

recover the natural firing activity of the cortical neurons.

Next we study the performance of the designed controller for “Problem 2” (Figure
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5.13). Remember that the objective of the controller here is to track the natural

average firing activity of the area 5 “PPV” neurons by designing optimal artificial

sensory input to the “PPV” neurons. Figure 5.16 shows the average firing activity of

the cortical area 4 and 5 neurons.

0 500 1000 1500
0

0.05

0.1

0.15

0.2

t (ms)

u i (
t)

0 500 1000 1500

0.5

0.6

0.7

0.8

t (ms)

y i (
t)

0 500 1000 1500

0.5

0.6

0.7

0.8

t (ms)

a i (
t)

0 500 1000 1500

0.5

0.6

0.7

0.8

t (ms)

x i (
t)

Figure 5.16: The average firing activity of the cortical area 4 “DVV” neurons (ui(t)),
“OPV” neurons (yi(t)), “OFPV” neurons (ai(t)), and the cortical area 5 “PPV”
neurons (xi(t)) in the presence of artificial sensory feedback (solid line) and the natural
sensory feedback (dotted line) for “Problem 2” (Figure 5.13).

As shown in the bottom right plot of Figure 5.16, the designed controller performs

well in tracking the natural firing activity of the area 5 “PPV” neurons. Moreover,

the stimulation results in recovering the natural firing activity of the area 4 cortical

neurons. Figure 5.17 shows the position and velocity trajectory of the agonist muscle
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i during the movement.
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Figure 5.17: The Position and velocity trajectory for “Problem 2” (Figure 5.13):
The top plot shows the position trajectory of the agonist muscle i in the presence of
artificial sensory feedback (solid line) and the natural sensory feedback (dotted line).
The bottom plot shows the velocity trajectory of the agonist muscle i in the presence
of artificial sensory feedback (solid line) and the natural sensory feedback (dotted
line).

As shown in Figure 5.17, the decoder recovers the closed-loop (natural) perfor-

mance in this case. This shows that the designed controller in “Problem 2” not only

recovers the closed-loop performance of the decoder but also recovers the natural

firing activity of the cortical neurons through the optimal artificial stimulation.
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5.4 Concluding Remarks

Brain-machine interfaces (BMIs) offer applications of control theory from their design

to the real implementation. In this chapter, we have designed optimal artificial sensory

feedback in a control-theoretic framework to recover the closed-loop performance of a

BMI during voluntary single joint extension task. This is the first systematic attempt

to incorporate artificial proprioception in BMIs towards stimulation enhanced next

generation BMIs. A psycho-physiological cortical circuit model for the voluntary

control of a single joint movement has been used to design the BMI. A need for

designing an artificial sensory feedback has been shown by analyzing the performance

of the BMI in the presence and the absence of the natural proprioceptive feedback

pathways. Two control problems namely, the position trajectory tracking problem

and the cortical sensory neurons average firing rate tracking problem, have been

investigated towards designing an optimal artificial sensory feedback for the BMI in

the receding horizon control framework. From our results, we conclude that tracking

the natural firing activity of the cortical sensory neurons using an external stimulating

controller is the appropriate approach towards recovering the natural performance of

the motor task. Although we have excluded the treatment of visual feedback as well

any form of cortical learning throughout our analysis, the designed framework allows

incorporation of both the visual feedback and the cortical learning during a reaching

task.
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Chapter 6

Optimal Regulation of Multi-Agent

Systems: A Centralized Approach

6.1 Introduction

In this chapter, we propose an optimal centralized control strategy called “Broadcast

Stochastic Receding Horizon Control (BSRHC)” for the dynamical stabilization of

a class of multi-agent systems such as a swarm of identical agents. The proposed

control strategy is a generalization of previous broadcast feedback strategy reported

in literature [162, 121, 171, 85, 25] and allows incorporation of realistic physical con-

straints of the dynamical system in the control problem formulation. The central

idea of the proposed strategy is to design and broadcast the optimal control inputs

in a predictive framework to all the agents in a swarm using the aggregate behavior

of agents as the only available feedback information. Our novelty here is in integrat-

ing the broadcast concept with existing probabilistic tools and the theory of finite

receding horizon based optimal control policy.
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Using the developed strategy in this chapter, we theoretically demonstrate the

stabilization of a swarm of stochastically behaving agents to the desired state. Each

agent in the system is capable of making random transitions from one state to another

among a finite number of available states. The desire to regulate a swarm of agents

simultaneously using a centralized controller as well as the presence of a nonlinear

constraint on control inputs make the strategy suitable for the particular problem.

The dynamical behavior of individual agents is represented by the discrete time finite

state Markov chain model. Probabilistic tools such as the supermartingale theory and

the bounded convergence theorem are applied to guarantee the almost sure conver-

gence of the closed-loop system behavior to the desired one. The derived stability and

convergence results establish key principles applicable to stabilize general stochastic

dynamical systems.

6.2 Mathematical Tools

In this chapter, we make use of the following known results from probability theory

in deriving our system model as well as results:

1. Bernoulli Random Variable: Let X be a Bernoulli random variable with

X =















1 w.p. p,

0 w.p. 1− p.
(6.1)

Here “w.p.” is the abbreviation of “with probability”. The expected value and

variance of X are given by EX = p and V ar(X) = p(1− p).
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2. Conditional Expectation Results [41]: Let X be a random variable. F1

and F2 are two σ-fields. If F1 ⊂ F2 then

(a) E[E[X | F1] | F2] = E[X | F1],

(b) E[E[X | F2] | F1] = E[X | F1].

3. Supermartingale [41]: Let Fn be a filtration, i.e. an increasing sequence of

σ-fields. A sequence Xn is said to be adapted to Fn if Xn ∈ Fn for all n. If Xn

is a sequence with

(a) E|Xn| <∞,

(b) Xn is adapted to Fn,

(c) E[Xn+1 | Fn] ≤ Xn for all n,

then Xn is said to be a supermartingale with respect to Fn.

4. Supermartingale Results [41]: If Xn is a supermartingale then for n > m,

E[Xn | Fm] ≤ Xm.

5. Supermartingale Convergence Theorem [41]:

Theorem 6.2.1. [41] If Xn is a supermartingale then for n > m, E[Xn | Fm] ≤

Xm.

6. Bounded Convergence Theorem [41]:

Theorem 6.2.2. If Xn → X a.s., |Xn| ≤ M for all n where M <∞ and is a

constant, then E[Xn]→ E[X].
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6.3 Stochastic Two-State Multi-Agent System

6.3.1 System Model

We define a stochastic two-state multi-agent system as an ensemble of identical agents,

where each agent assumes a state value stochastically out of two possible states. Each

state has an associated value which is defined as

Xi,k =















1 when “ON”,

0 when “OFF”.

(6.2)

Here, Xi,k is the state of the ith agent at time k. We assume that all agents in

this system behave independently. At time k, an agent at the state ‘ON’ can make

transition to the state ‘OFF’ with a transition probability pk|k. Similarly, an agent at

the state ‘OFF’ can make transition to the state ‘ON’ with a transition probability

qk|k. Figure 6.1 illustrates the state transition behavior of agents in a two-state multi-

agent system.

We write the conditional expectation of the state of the ith agent at time k+ 1 given

the information till time k as

E[Xi,k+1 | Xi,k] = Xi,k(1− pk|k) + (1−Xi,k)qk|k. (6.3)

Since we are interested in the aggregate system behavior, we define an ensemble

behavior of the system at time k as

Nk =
N
∑

i=1

Xi,k, (6.4)
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Figure 6.1: State transition behavior of agents in a two-state multi-agent system.

Here, Nk is the number of agents with ‘ON’ state at time k. N is the predefined num-

ber of agents present in the system. Now by applying the summation
∑N

i=1 on both

sides of equation (6.3) and using equation (6.4), we derive the conditional expectation

of the number of agents at the ‘ON’ state at time k+1 given the information till time

k as

E[Nk+1 | Nk] = Nk(1− pk|k) + (N −Nk)qk|k. (6.5)

Equation (6.5) states that the conditional expectation of number of agents at the state

‘ON’ at time k+ 1 is equal to the sum of the expected number of agents at the state

‘ON’ at time k which stays at the state ‘ON’ at time k+ 1 and the expected number

of agents at the state ‘OFF’ at time k which makes transition to the state ‘ON’ at

time k + 1. We define the system error at time k + 1 as ek+1 = Nr −Nk+1, where Nr

is the time invariant desired number of agents at the state ‘ON’. Now by replacing

Nk+1 with Nr − ek+1 in equation (6.5), we express the conditional expectation of the

system error at time k + 1 as
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E[ek+1 | Fk] = ek + (Nr − ek)pk|k − (N −Nr + ek)qk|k

= (1− pk|k − qk|k)ek +Nr(pk|k + qk|k)−Nqk|k
= Ak|kek + Fk|k.

(6.6)

Here, Fk is a σ-algebra generated by the set {e0, e1, · · · , ek} [41]. Now using equation

(6.6) and a conditional expectation property E[ek+j | Fk] = E[E[ek+j | Fk+j−1] | Fk]

for j ≥ 1, we derive a predictive expression for the conditional expectation E[ek+2 | Fk]

as

E[ek+2 | Fk] = E[E[ek+2 | Fk+1] | Fk]

= E[Ak+1|k+1ek+1 + Fk+1|k+1 | Fk]

= Ak+1|kE[ek+1 | Fk] + Fk+1|k

= Ak+1|kAk|kek + Ak+1|kFk|k + Fk+1|k

= (
∏1

m=0Ak+m|k)ek +
∑1

m=0 Fk+m|k(
∏1

n=m+1Ak+n|k).

(6.7)

In general, we can write a predictive expression for the conditional expectation

E[ek+j | Fk] for j ≥ 1 as

E[ek+j | Fk] = (

j−1
∏

m=0

Ak+m|k)ek +

j−1
∑

m=0

Fk+m|k(

j−1
∏

n=m+1

Ak+n|k). (6.8)

Here, Ak+m|k = 1 − pk+m|k − qk+m|k and Fk+m|k = Nr(1 − Ak+m|k) − Nqk+m|k for

m ≥ 0. Next, we compute the conditional variance of the system error at time k + 1

i.e. V ar[ek+1 | Fk]. Using the standard variance formula for a Bernoulli random

variable, we first compute the conditional variance of the ith agent state at time k+1

as

V ar[Xi,k+1 | Xi,k] = Xi,kpk|k(1− pk|k) + (1−Xi,k)qk|k(1− qk|k). (6.9)
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Using V ar[
∑N

i=1Xi,k+1 | Xi,k, i = 1, 2, · · ·N ] =
∑N

i=1 V ar[Xi,k+1 | Xi,k, i = 1, 2, · · ·N ],

ek+1 = Nr−Nk+1 and equation (6.9), we write the conditional variance of the system

error at time k + 1 as

V ar[ek+1 | Fk] = (Nr − ek)pk|k(1− pk|k) + (N −Nr + ek)qk|k(1− qk|k)

= Ck|kek +Gk|k.
(6.10)

Here, Ck|k = qk|k(1 − qk|k) − pk|k(1 − pk|k) and Gk|k = Nqk|k(1 − qk|k) − NrCk|k.

Since E[e2k+1 | Fk] = V ar[ek+1 | Fk] + (E[ek+1 | Fk])
2, we can write the conditional

expectation E[e2k+1 | Fk] as

E[e2k+1 | Fk] = Ck|kek +Gk|k + (Ak|kek + Fk)
2. (6.11)

Now using conditional expectation properties E[e2k+j | Fk+j−1] = V ar(ek+j | Fk+j−1)+

(E[ek+j | Fk+j−1])
2 and E[e2k+j | Fk] = E[E[e2k+j | Fk+j−1] | Fk] along with equations

(6.8) and (6.10), we derive an expression for the conditional expectation of e2k at a

future time k + j with j ≥ 1 as

E[e2k+j | Fk] = (

j−1
∏

m=0

A2
k+m|k)e

2
k +

j−1
∑

m=0

((2Fk+m|kAk+m|k + Ck+m|k)

(
m−1
∏

n=0

Ak+n|k)(

p−1
∏

n=m+1

A2
k+n|k))ek

+

j−1
∑

m=0

((2Fk+m|kAk+m|k + Ck+m|k)(
m−1
∑

n=0

Fk+n|k

(
m−1
∏

l=n+1

Ak+l|k)) + F 2
k+m|k +Gk+m|k)(

j−1
∏

n=m+1

A2
k+n|k).

(6.12)
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Here, Ck+m|k = qk+m|k(1 − qk+m|k) − pk+m|k(1 − pk+m|k), Gk+m|k = −NrCk+m|k +

Nqk+m|k(1− qk+m|k) for m ≥ 0.

6.3.2 Problem Formulation

In the previous section, we derived conditional expectation based predictive dynamical

models to represent the evolution of the aggregate system behavior in future time

given the information till the present time. In this section, we use these models

to formulate an optimal control problem in the broadcast stochastic receding horizon

control (BSRHC) framework, as shown in Figure 6.2, to stabilize the aggregate system

behavior.

Figure 6.2: Broadcast RHC: Here at the current time step k, the “Receding Hori-
zon Controller” designs control inputs, “uk|k” and “Broadcast” them to the system
(“Agents Ensemble”). Each agent in the system makes independent decision and con-
tributes to the “Cumulative Response” of the system. The “Cumulative Response”
of the system is then compared with the “Desired Target” and the “System Error” is
fed back to the controller for designing new control inputs at time step k + 1.
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In the design of the broadcast stochastic receding horizon control policy for the two-

state multi-agent system, the objective is to minimize the system error by computing

optimal transition probabilities. To achieve this objective, we formulate a constrained

non-linear stochastic finite receding horizon control (RHC) problem as follows:

min
pk|k,··· ,pk+Nc−1|k,

qk|k,··· ,qk+Nc−1|k

Jk (6.13)

s.t.

(pk+m|k, qk+m|k) ∈ [0, 1]× [0, 1] for 0 ≤ m ≤ Nc − 1, (6.14a)

pk+m|k = qk+m|k = 0 for m ≥ Nc, (6.14b)

E[e2k+m+1 | Fk] < e2k for ek 6= 0, 0 ≤ m ≤ Nc − 1, (6.14c)

E[e2k+m+1 | Fk] = e2k for ek = 0, 0 ≤ m ≤ Nc − 1. (6.14d)

The cost function Jk at time k is defined as

Jk =

Np−1
∑

m=0

E[e2k+m+1 | Fk] +
Nc−1
∑

n=0

(p2k+n|k + q2k+n|k). (6.15)

Np and Nc are time invariant prediction and control horizon respectively. The opti-

mization problem defined by equations (6.13), (6.14) and (6.15) is solved at each time
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k and the computed optimal transition probabilities are updated using the following

steps:

step 1: Given ek at time k ≥ 0, express equations (6.14c), (6.14d) and (6.15) in

terms of ek, pk+m|k and qk+m|k for m = 0, 1, · · · , Nc − 1 using (6.12).

step 2: Solve equations (6.13), (6.14) and (6.15) and compute optimal transition

probabilities pk+m|k and qk+m|k for m = 0, 1, · · · , Nc − 1.

step 3: Broadcast pk|k and qk|k to the system and measure the aggregate system

behavior at time k + 1 i.e. ek+1.

step 4: Using ek+1 as a feedback, repeat step 1, 2 and 3 for time k + 1 by receding

the prediction horizon by one time step.

Remark 6.3.1. Replacing equation (6.14b) in the broadcast finite RHC problem de-

fined by equations (6.13),(6.14), and (6.15) with

pk+m|k = pk+Nc−1|k for m ≥ Nc, (6.16a)

qk+m|k = qk+Nc−1|k for m ≥ Nc, (6.16b)

provides an alternative design for regulating behaviors of agents in the multi-agent

system. It should be noted that stability and convergence theorems, presented in the

next section, are equally applicable to both designs.

Next, we show that the control problem defined by equations (6.13), (6.14) and

(6.15) is feasible. This feasibility is sufficient to conclude the stability and convergence

of the constrained non-linear finite RHC control problem, as stated in Theorem 6.3.4.
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6.3.3 Stability and Convergence

Claim 6.3.2. For all k ≥ 0, there exists a pair of transition probabilities (pk|k, qk|k) ∈

[0, 1]× [0, 1] for the two-state multi-agent system such that E[e2k+1 | Fk] < e2k whenever

ek 6= 0. Moreover, if (pk|k, qk|k) = (0, 0) then E[e2k+1 | Fk] = e2k.

Proof. We define a function f(pk|k, qk|k) as

f(pk|k, qk|k) = E[e2k+1 | Fk]− e2k. (6.17)

Using equation (6.12) for j = 1, we express f(pk|k, qk|k) as

f(pk|k, qk|k) =N
2
r + [(Nr − ek)pk|k(1− pk|k) + (N −Nr + ek)qk|k(1− qk|k)]

+ [(Nr − ek)(1− pk|k) + (N −Nr + ek)qk|k]
2

− 2Nr[(Nr − ek)(1− pk|k) + (N −Nr + ek)qk|k]− e2k.

(6.18)

Clearly, f(0, 0) = 0. Thus to show E[e2k+1 | Fk] < e2k for some (pk|k, qk|k) ∈ [0, 1]×[0, 1],

it is sufficient to show that f(pk|k, qk|k) is a decreasing function of pk|k and qk|k on

(pk|k, qk|k) ∈ [0, x]× [0, y], where (x, y) ∈ [0, 1]× [0, 1]. For this, we consider two cases

based on the sign of ek at a given time step k. As a first case, we consider ek < 0

and fix qk|k in equation (6.18). We compute partial derivative of f(pk|k, qk|k) w.r.t.

pk|k. We then impose
∂f(pk|k,qk|k)

∂pk|k
< 0 and pk|k > 0 on the computed partial derivative.

This results in

pk|k <
N −Nr + ek
Nr − ek − 1

qk|k −
1 + 2ek

2(Nr − ek − 1)
, (6.19a)

qk|k >
1 + 2ek

2(N −Nr + ek)
. (6.19b)

Since ek < 0, equation (6.19) implies that qk|k ∈ [0, y] with y = 1 and pk|k ∈ (0, x)
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with x = N−Nr+ek
Nr−ek−1

qk|k +
ek+0.5

Nr−ek−1
for all ek < 0. Next, we consider ek > 0 and fix pk|k

in equation (6.18). Now we compute partial derivative of f(pk|k, qk|k) w.r.t. qk|k. We

then impose
∂f(pk|k,qk|k)

∂qk|k
< 0 and qk|k > 0 on the computed partial derivative. This

results in

qk|k <
Nr − ek

N −Nr + ek − 1
pk|k +

ek − 0.5

N −Nr + ek − 1
, (6.20a)

pk|k >
0.5− ek
Nr − ek

. (6.20b)

Since ek > 0, equation (6.20) implies that pk|k ∈ [0, x] with x = 1 and qk|k ∈ (0, y)

with y = Nr−ek
N−Nr+ek−1

pk|k +
ek−0.5

N−Nr+ek−1
for all ek > 0. Thus for all k ≥ 0, there exists a

pair of transition probabilities (pk|k, qk|k) ∈ [0, 1] × [0, 1] such that E[e2k+1 | Fk] < e2k

whenever ek 6= 0.

Claim 6.3.3. The broadcast finite stochastic RHC problem defined by equations (6.13),

(6.14) and (6.15) is feasible for the stochastic two-state multi-agent system.

Proof. To prove Claim 6.3.3, it is sufficient to show the existence of a pair of tran-

sition probabilities (pk+m|k, qk+m|k) for 0 ≤ m ≤ Nc − 1 which satisfies equations

(6.14c) and (6.14d). We first analyze the feasibility of equation (6.14d). We ob-

serve that if (pk+m|k, qk+m|k) = (0, 0) for 0 ≤ m ≤ Nc − 1 and k ≥ 0 in equation

(6.12) with j = m + 1, equation (6.12) reduces to E[e2k+m+1 | Fk] = e2k. Thus,

equation (6.14d) is feasible. Next we consider equation (6.14c). From Claim 6.3.2,

we know that equation (6.14c) is feasible for m = 0. Now we write E[e2k+m+1 | Fk]

for m = 1 as E[e2k+2 | Fk] = E[E[e2k+2 | Fk+1] | Fk]. We know from Claim 6.3.2

that there exists (pk+1|k+1, qk+1|k+1) ∈ [0, 1] × [0, 1] such that E[e2k+2 | Fk+1] < e2k+1.

Thus for this pair of transition probability, E[E[e2k+2 | Fk+1] | Fk] < E[e2k+1 | Fk]

from the monotonicity property [41] of conditional expectations. Now by choosing
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(pk+1|k, qk+1|k) = (pk+1|k+1, qk+1|k+1) and using the results for m = 0, one can guaran-

tee the existence of (pk+1|k, qk+1|k) ∈ [0, 1] × [0, 1] satisfying E[e2k+2 | Fk] < e2k. The

existence of a pair of transition probabilities (pk+m|k, qk+m|k) ∈ [0, 1]× [0, 1] for m ≥ 2

follows directly from mathematical induction.

Theorem 6.3.4. If there exists a pair of transition probabilities (pk+m|k, qk+m|k) for

all k ≥ 0 and 0 ≤ m ≤ Nc−1 such that the optimization problem defined by equations

(6.13), (6.14) and (6.15) is feasible then

ek
a.s.−→ 0.

Here, a.s. means Pr(limk→∞ ek = 0) = 1. Further,

Jk
a.s.−→ 0.

Proof. To show the claim in the Theorem 6.3.4 for the two-state multi-agent system,

we consider following sequential steps:

step 1: Results of Claim 6.3.3 guarantee the existence of (pk+m|m, qk+m|m) ∈ [0, 1]×

[0, 1] for all k ≥ 0 and 0 ≤ m ≤ Nc − 1 such that the optimization problem

defined by equations (6.13), (6.14) and (6.15) is feasible. Moreover under these

transition probabilities, e2k is a supermartingale.

step 2: By the supermartingale convergence theorem [41]

e2k
a.s.−→ X
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and

EX ≤ Ee20,

where X is a limit random variable.

step 3: Since Ee2k < ∞ for all k ≥ 0, |e2k| ≤ max{(N − Nr)
2, N2

r } = constant for

the two-state multi-agent system and e2k
a.s.−→ X , by the bounded convergence

theorem [41]

Ee2k
k→∞−→ EX .

step 4: Since Ee2k+1 < Ee2k for all ek 6= 0 and k ≥ 0, Ee2k ↓ 0. Thus, EX = 0.

step 5: From Chebyshev inequality, Pr(|ek| > ǫ) ≤ Ee2k/ǫ
2 for all ǫ > 0. Since

Ee2k
k→∞−→ 0 , limk→∞ Pr(|ek| > ǫ)−→0. Thus, ek converges to 0 in probability.

step 6: Since ek converges to 0 in probability implies that f(ek) converges to f(0)

for any continuous function f , e2k converges to 0 in probability. From step 2,

we know that e2k converges to X a.s. This means that e2k also converges to X in

probability. Therefore, X must be 0.

step 7: Since e2k
a.s.−→ 0 , Pr(|ek| > ǫ i.o.) = 0 for all ǫ > 0 (here i.o. stands for

infinitely often). Thus, ek
a.s.−→ 0 .

step 8: Since the optimization problem defined by equations (6.13), (6.14) and (6.15)

is feasible and ek
a.s.−→ 0, E[e2k+m+1 | Fk]

a.s.−→ 0 for m = 0, 1, · · · , Nc − 1 (see

equation (6.14d)). Therefore, E[ek+m+1 | Fk]
a.s.−→ 0 a.s. and V ar[ek+m+1 |

Fk]
a.s.−→ 0 for m = 0, 1, · · · , Nc−1. By using these results in equations (6.6) and
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(6.10), it is easy to verify that (pk|k, qk|k)
k→∞−→ (0, 0) if Nr 6= N and Nr 6= N/2.

If Nr = N/2 then (pk|k, qk|k) can be (0, 0) or (1, 1) as k → ∞ . If Nr = N

then pk|k = 0 and qk|k ∈ [0, 1] as k → ∞. Since the designed controller also

minimizes the total input cost, the optimality of inputs will lead to (pk|k, qk|k) =

(0, 0) as k → ∞. Now by using mathematical induction along with equations

(6.8) and (6.12), it is not difficult to verify that (pk+m|k, qk+m|k)
k→∞−→ (0, 0) for

m = 1, 2, · · · , Nc − 1.

step 9: Since Jk =
∑Nc−1

m=0 E[e2k+m+1 | Fk]+
∑Nc−1

m=0 (p
2
k+m|k+q

2
k+m|k)+

∑Np−1
m=Nc

E[e2k+Nc
|

Fk], an upper and lower bound on Jk is computed using E[e2k+m+1 | Fk] ≤

e2k for m = 0, 1, · · · , Np − 1 as

0 ≤ Jk ≤ (Np)e
2
k +

Nc−1
∑

n=0

(p2k+m|k + q2k+m|k).

step 10: Since e2k
a.s.−→ 0 and (pk+m|k, qk+m|k)

k→∞−→ (0, 0), =⇒ Jk
a.s.−→ 0.

Remark 6.3.5. An alternate proof of Theorem 6.3.4: Since the optimization

problem defined by equations (6.13), (6.14) and (6.15) is feasible and Pr(ek = 0) > 0

for all k > 0, ek will hit zero in some finite time (say k = k1 > 0) under the designed

transition probabilities. At k = k1, (6.14d) ensures that E[e2k+m+1 | Fk] = 0 for

m = 0, 1, · · · , Nc−1. Thus the cost function Jk reduces to Jk =
∑Nc−1

m=0 (p
2
k+m|k+q

2
k+m|k)

at k = k1. Since the minimum value of the cost function is zero when pk+m|k =

qk+m|k = 0 for m = 0, 1, · · · , Nc − 1, Jk also converges to zero.
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6.3.4 Analytical and Numerical Results

In this section, we provide the solution of the control problem defined by equations

(6.13), (6.14) and (6.15) for the two-state multi-agent system. For the control horizon

Nc = 1, we show the optimal solution analytically by solving first order Karush-Kuhn-

Tucker (KKT) conditions [15] for the resultant non-linear constrained optimization

problem. For Nc > 1, we show the optimal solution of the problem numerically using

the MATLAB optimization toolbox. Obtained numerical results show consistency

with our theoretical findings.

Analytical

In this section, we find the optimal solution of equations (6.13), (6.14) and (6.15)

analytically for the two-state multi-agent system. For Nc = 1, we write the resultant

optimization problem as

min
pk|k,qk|k

Jk (6.22)

s.t.

(pk|k, qk|k) ∈ [0, 1]× [0, 1], (6.23a)

pk+m|k = qk+m|k = 0 for m = 1, 2, · · · , Np, (6.23b)

E[e2k+1 | Fk] < e2k for ek 6= 0, (6.23c)
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E[e2k+1 | Fk] = e2k for ek = 0. (6.23d)

The cost function Jk over a prediction horizon Np (see equation (6.15)) is expressed

as

Jk = NpE[e
2
k+1 | Fk] + p2k|k + q2k|k. (6.24)

Now we write the Lagrangian [15] of the optimization problem (equations (6.22),

(6.23) and (6.24)) as L(pk|k, qk|k, λi, i = 1, 2, · · · , 5) = Jk(1 + λ5/Np) + λ1(pk|k −

1) + λ2(−pk|k) + λ3(qk|k − 1) + λ4(−qk|k) + (λ5/Np)(−p2k|k − q2k|k − Npe
2
k). Here,

λi, i = 1, 2, · · · , 5 are non-negative Lagrange multipliers. We derive first order KKT

conditions [15] for the optimization problem which is represented here in the following

form:

∂L

∂pk|k
=

∂L

∂qk|k
= 0, (6.25a)

λ1(pk|k − 1) = 0, (6.25b)

λ2(−pk|k) = 0, (6.25c)

λ3(qk|k − 1) = 0, (6.25d)

λ4(−qk|k) = 0, (6.25e)

λ5(Jk − p2k|k − q2k|k −Npe
2
k) = 0, (6.25f)

λi ≥ 0 for i = 1, 2, · · · , 5. (6.25g)

A closed-form of the optimal solution which satisfy equation (6.25) is presented in
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Table 6.1.

Parameter ek < 0 ek > 0

pk|k − NpNk(1+2ek)

2(1−NkNp+N2
k
Np)

0

qk|k 0 − Np(N−Nk)(1−2ek)

2(1+Np(N−Nk)(N−(Nk−1)))

λ1 0 0
λ2 0 α(k)(> 0)
λ3 0 0
λ4 β(k)(> 0) 0
λ5 0 0

Table 6.1: Optimal Solution: Two-State Multi-Agent System for Nc = 1.

In Table 6.1, α(k) = NpNk

1+Np(N−Nk)(N−Nk−1)
(1 + 2ek +Np(N −Nk)(2(N −Nr)− 1)) and

β(k) = N−Nk)Np

1−NkNp+N2
k
Np

(1− 2ek +NpNk(2Nr− 1)). Now with a bit of algebraic analysis,

it is easy to verify that pk|k ∈ (0, 1) for ek < 0 and qk|k ∈ (0, 1) for ek > 0. We find

that the solution presented in Table 6.1 is optimal for all ek except cases when ek = 0,

ek = Nr > 0 and ek = (Nr − N) < 0. For ek = 0, the optimal solution is given by

pk|k = qk|k = 0, λ1 = λ3 = 0, λ2 = (1 + λ5/Np)NpNk, λ4 = (1 + λ5/Np)Np(N − Nk)

and λ5 > 0. For ek = Nr > 0, the solution is same as represented in Table 6.1 except

λ2 = α(k) = 0. For ek = (Nr −N) < 0, again the solution is same as represented in

Table 6.1 except λ4 = β(k) = 0. Because of the algebraic complexity (nonlinearity)

in optimal finding closed-form solution for Nc > 1, next, we solve the optimization

problem numerically.

Simulation

We consider a two-state multi-agent system consisting of N = 1000 independently

behaving agents. Dynamical behavior of this system is defined by equations (6.8) and

(6.12). Initially, at time step k = 0, there are Nk=0 = 300 agents possessing ‘ON’ state
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and rest of 800 agents possessing ‘OFF’ state. The number of desired agents with ‘ON’

state, Nr, is set to 200. To show the efficacy of the control design for large prediction

and control horizons, we choose Np = 1000 and Nc = 13. With this configuration

of the system, we solve the optimization problem stated by equations (6.13), (6.14)

and (6.15) numerically in the MATLAB simulation environment. For this, we use the

MATLAB inbuilt optimization function for the non-linear constrained optimization

problems, ‘fmincon’ and the binomial random variable generator function ‘binorand’.

At each time step t, the optimization problem (equations (6.13), (6.14) and (6.15))

is solved for the system using the measured system error at the previous time step.

The first optimally computed transition probability pair (pk|k, qk|k) is then broadcast

to all agents in the system. With these probabilities, each of the agents within the

system makes a random decision about the switching of their states which follows a

Bernoulli distribution and thus contribute towards the next time step system error.

Fig. 6.3 shows realizations of the system error ek and optimal transition probabilities

pk|k and qk|k for this particular system. For most of the systems we studied by

varying number of agents, prediction horizon, control horizon, initial conditions and

the desired number of agents with ‘ON’ state, we found that the system error converge

to zero within 20 time steps. During this study, we also observed that optimal value

of transition probabilities pk|k = 0 and qk|k > 0 whenever ek > 0 and pk|k > 0 and

qk|k = 0 whenever ek < 0 which is consistent with the analytical solution for Nc = 1.
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Figure 6.3: Realizations of the system error ek and optimally computed transition
probabilities pk|k and qk|k within the framework of the “Broadcast RHC” for a two-
state multi-agent system consists of 1000 stochastically behaving agents.
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6.4 Stochastic Multi-State Multi-Agent System

In this section, we generalize the broadcast finite stochastic RHC design by extending

the control problem from a two-state multi-agent system to a Ns (≥ 3) state multi-

agent system. In this Ns state system, each agent is capable of making random

transitions from one state to another among Ns available states. As an example,

Figure 6.4 illustrates the state transition behavior of agents in a three-state multi-

agent system.

Figure 6.4: State transition behavior of agents in a three-state multi-agent system.

In the rest of this chapter, we derive the predictive dynamical model of the system

and guarantee the convergence and stability of the closed-loop system under broadcast

stochastic RHC.
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6.4.1 System Model

We define ek,m = Nr,m − Nk,m as the system error at state m at time k. Here

m = 1, 2, · · · , Ns. Nr,m is the desired number of agents at statem andNk,m is the total

number of agents possessing the state m at time k.
∑Ns

m=1Nr,m =
∑Ns

m=1Nk,m = N

defines the total number of agents present in the system. Clearly,
∑Ns

m=1 ek,m = 0 for

all k ≥ 0. With this, we write the conditional expectation and variance of the error

at state m at time k + 1 as

E[ek+1,m | Gk] = Nr,m −
Ns
∑

l=1

(Nr,l − ek,l)ok|k(l,m), (6.26a)

V ar[ek+1,m | Gk] =
Ns
∑

l=1

(Nr,l − ek,l)ok|k(l,m)(1− ok|k(l,m)). (6.26b)

Here Gk is a σ-algebra generated by {{ei,m}ki=0}Ns

m=1, as defined in [41]. ok|k(l,m) is

the transition probability with which an agent switches the state from l to m at time

k. Conservation of transition probabilities at any state m satisfies

Ns
∑

l=1

ok|k(m, l) = 1. (6.27)

Remark 6.4.1. In equation (6.26), we have assumed that the system error at each

state is measurable at time k. The only measurable information in the broadcast

framework is the aggregate emergent behavior of agents which in our case is the cu-

mulative error ek =
∑Ns

m=1 e
2
k,m. The formulation can be extended to incorporate an

optimal observer design to estimate the system error ek,m for m = 1, 2, · · · , Ns using
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the cumulative error ek and the known transition probabilities at time k − 1. One

such observer design has recently been reported for inhomogeneous population Markov

chains using the approach of Kalman filter [120].

Now using conditional expectation properties E[e2k+j,m | Gk+j−1] = V ar(ek+j,m |

Gk+j−1) + (E[ek+j | Fk+j−1])
2 and E[e2k+j,m | Gk] = E[E[e2k+j,m | Gk+j−1] | Gk] along

with equation (6.26), it is not difficult to write the expression for the conditional

expectation E[e2k+j,m | Gk] at a future time k + j for j > 1.

6.4.2 Problem Formulation

We formulate a constrained non-linear finite stochastic RHC problem for Ns state

multi-agent system as follows:

min
ok|k(l,m),··· ,ok+Nc−1|k(l,m)

l=1,2,··· ,Ns
m=1,2,··· ,Ns

l 6=m

Jk (6.28)

s.t.

ok+j|k(l,m) ∈ [0, 1] for 0 ≤ j ≤ Nc − 1, l 6= m, (6.29a)

ok+j|k(l,m) = 0 for j ≥ Nc, l 6= m, (6.29b)

Ns
∑

m 6=l=1

ok+j|k(l,m) ≤ 1 for 0 ≤ j ≤ Nc − 1, (6.29c)

E[ek+j+1 | Gk] < ek for ek 6= 0, 0 ≤ j ≤ Nc − 1, (6.29d)
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E[ek+j+1 | Gk] = ek for ek = 0, 0 ≤ j ≤ Nc − 1. (6.29e)

The cost function Jk is defined as

Jk =

Np−1
∑

j=0

E[ek+j+1 | Gk] +
Nc−1
∑

j=0

Ns
∑

l=1

Ns
∑

m 6=l=1

o2k+j|k(l,m) (6.30)

where ek =
∑Ns

m=1 e
2
k,m and ok+j|k(l,m) is the transition probability with which an

agent switches its state from l to m at a future time k + j given the information till

time k.

6.4.3 Stability and Convergence

In this section, we show that the control problem defined by equations (6.28), (6.29)

and (6.30) is feasible. This feasibility is sufficient to conclude the stability and con-

vergence of the control problem, as stated in Theorem 6.4.3.

Claim 6.4.2. The broadcast finite stochastic RHC problem defined by equations (6.28),

(6.29) and (6.30) is feasible for the stochastic Ns state multi-agent system.

Proof. To prove Claim 6.4.2, it is sufficient to show the existence of transition prob-

ability ok+j|k(l,m) for 0 ≤ j ≤ Nc − 1, l = 1, 2, · · · , Ns, m = 1, 2, · · · , Ns and

l 6= m which satisfies equation (6.29). We first consider the case when ek = 0. We

observe that if we set ok+j|k(l,m) = 0 for j = 0, 1, · · · , Np − 1 whenever l 6= m

and ok+j|k(l,m) = 1 for j = 0, 1, · · · , Np − 1 whenever l = m, then equation (6.29)

satisfies for ek = 0. Thus for ek = 0, the optimization problem is feasible. For
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ek 6= 0, we choose two arbitrary state l1 and l2 among Ns available states. Now we

set ok+j|k(l,m) = 0 for j = 0, 1, · · · , Np − 1 whenever l 6= m and ok+j|k(l,m) = 1 for

j = 0, 1, · · · , Np−1 whenever l = m except for (l,m) ∈ {(l1, l1), (l1, l2), (l2, l1), (l2, l2)}.

Clearly, E[e2k+j+1,m | Gk] = e2k,m for j = 0, 1, · · · , Np − 1 and m = 1, 2, · · · , Ns except

for m = l1 and m = l2. Now if we set pk+j|k = ok+j|k(l1, l2) and qk+j|k = ok+j|k(l2, l1)

for j = 0, 1, · · · , Np − 1 in the two-state system shown in Figure 6.1, Claim 6.3.3

guarantees the existence of ok+j|k(l1, l2) ∈ [0, 1] and ok+j|k(l2, l1) ∈ [0, 1] such that

E[e2k+j+1,m | Gk] < e2k,m for m = l1, l2 and j = 0, 1, · · · , Np − 1. Since ek+j+1 =
∑Ns

m=1 e
2
k+j+1,m by definition, E[ek+j+1 | Gk] < ek with these transition probabilities.

Thus the optimization problem is also feasible for ek 6= 0.

Theorem 6.4.3. If the optimization problem defined by equations (6.28), (6.29) and

(6.30) is feasible for all k ≥ 0 then

ek,m
a.s.−→ 0 for m = 1, · · · , Ns.

Further,

Jk
a.s.−→ 0.

Proof. step 1: Results of Claim 6.4.2 guarantee the existence of transition probabil-

ities such that the optimization problem defined by equations (6.28), (6.29) and

(6.30) is feasible. Moreover under these transition probabilities, E[ek+1 | Gk] ≤

ek for all k ≥ 0. Thus {ek}k≥0 is supermartingale.

step 2: By the supermartingale convergence theorem, ek
k→a.s.−→ X, where X is a limit

random variable.
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step 3: Clearly, |e2k,m| ≤ max {N2
r,m, (N −Nr,m)

2} for all k ≥ 0 andm = 1, 2, · · · , Ns.

Also, Ee2k,m < ∞ and ek
k→a.s.−→ X Thus by the bounded convergence theorem,

Eek
k→a.s.−→ EX.

step 4: Since Eek+1 < Eek for all ek 6= 0 and k ≥ 0, Eek ↓ 0. Thus, EX = 0.

step 5: Thus ek → 0 in probability by Chebyshev inequality [41] (If z > 0 and

E|Xk|z → 0 then Xk → 0 in probability).

step 6: From step 2, we know that ek converges to X a.s. This means that ek also

converges to X in probability. From step 5, ek converges to 0 in probability.

Therefore, X must be 0. Thus ek
k→a.s.−→ 0.

step 7: Since ek =
∑Ns

m=1 e
2
k,m by definition, e2k,m

k→a.s.−→ 0 for m = 1, 2, · · · , Ns.

step 8: Since e2k,m
k→∞−→ 0 a.s., Pr(|ek,m| > ǫ i.o.) = 0 for all ǫ > 0 (here i.o. stands

for infinitely often). Thus, ek,m
k→a.s.−→ 0 for m = 1, 2, · · · , Ns.

step 8: Since the optimization problem defined by equations (6.28), (6.29) and (6.30)

is feasible and ek
k→a.s.−→ 0, E[ek+j+1 | Gk] k→a.s.−→ 0 for j = 0, 1, · · · , Nc − 1

(see equation (6.29e)). Therefore, E[ek+j+1,m | Gk] k→a.s.−→ 0 and V ar[ek+j+1,m |

Gk] k→a.s.−→ 0 for j = 0, 1, · · · , Nc − 1 and m = 1, 2, · · · , Ns. By using these

results in equations (6.26) and (6.27) and the argument of optimality of inputs

presented in the proof of Theorem 6.3.4, it is easy to verify that ok+j|k(m, l)
k→∞−→

0 for m = 1, 2, · · · , Ns, l = 1, 2, · · · , Ns, m 6= l and j = 0, 1, · · · , Nc − 1.

step 9: Since
∑Np−1

j=0 E[ek+j+1 | Gk] ≤ Npek, ek
k→a.s.−→ 0 together with step 8 conclude

Jk
k→a.s.−→ 0.
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6.5 Concluding Remarks

In this chapter, we have proposed a centralized optimal control strategy called “Broad-

cast Stochastic Receding Horizon Control (BSRHC)” by incorporating the concept of

broadcast in a probabilistic framework of receding horizon control. The applicability

of this strategy is shown by achieving a desired aggregate system behavior in a swarm

of stochastically behaving identical agents when the available feedback information

is limited by the system. Almost sure (with probability 1) convergence of the system

behavior to the desired one has been shown by utilizing supermartingale theory. Sta-

bility and convergence results have been presented in generalized form applicable to

various similar systems. The efficacy of the controller design has been illustrated by

presenting analytical and simulation results for a two-state multi-agent system.
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Chapter 7

Investigation on Optimal Trapping

of Brownian Ensemble

7.1 Introduction

As soon as a drop of ink is placed on the surface of water, it diffuses and eventually

covers the entire volume of the water in a container. This observation leads to visu-

alization of an important phenomenon, namely, Brownian motion. This motion, also

known as diffusion, is the cumulative effect of multitudinous interactions of ink parti-

cles with water molecules. The question is whether this diffusive phenomenon can be

controlled, even in an idealized theoretical sense, such that the volume occupied by

ink particles in the container can be minimized. More importantly, if we place several

well separated drops of ink on the surface of water, is it possible to suppress the

diffusion of these droplets in a manner such that they remain well separated forever?

If so, what would be the best control strategy? In this chapter, we attempt to answer

this question theoretically by developing an optimal control framework.
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In the previous chapter, we developed an optimal centralized control strategy

called “Broadcast Stochastic Receding Horizon Control” (BSRHC) and applied this

strategy to stabilize the aggregate system behavior in a vast number of stochastically

behaving agents. Each agent in the ensemble was capable of making random transi-

tions from one state to another among a finite number of available states. Assuming

that a agent possesses only two states, the transition from one state to another can

also be viewed as the transition in the direction of movement of a particle undergoing

Brownian motion in one dimensional space. Thus in this sense, a particle undergoing

Brownian motion in one dimensional space can be represented by an agent having

two states. This representation suggests a potential application of BSRHC strategy

in addressing the problem of optimal trapping of Brownian ensemble in a smallest

possible trapping region for an extended period of time and thus the optimal sup-

pression of Brownian fluctuations in an ensemble of particles undergoing Brownian

motion.

In this chapter, we use the BSRHC framework developed in the previous chapter

with relevant modifications to demonstrate the trapping of an ensemble of Brownian

particles in the smallest trapping region in one, two and three dimensional homo-

geneous medium. The modified BSRHC strategy uses the measured distance of a

particle outside the trapping region that is closest to the origin, as the only available

feedback information and designs the optimal control inputs in a predictive frame-

work. By a Brownian particle, we mean that the dynamical behavior of the particle

is represented by the standard Brownian motion [41] which is approximated here by

a discrete time random walk model. We assume that particles behave independently
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within the ensemble, i.e. we neglect inter-particle interactions as well as hydrody-

namic forces induced by the medium. We also assume that a uniform external force

field is acting on all the particles in the Brownian ensemble.

7.2 System Model

We consider a system consisting of n particles. Each particle in the system undergoes

independent Brownian motion in a homogeneous medium which is approximated here

with a discrete time random walk model. To define the motion of the jth particle

in one dimensional space, we assume that there are N independent and identically

distributed (i.i.d.) replications of the jth particle indexed as {j1, j2, · · · , jN}. The

displacement ∆Xji,k of the jthi replication between the discrete time k and k + 1 is

approximated as

∆Xji,k =















δx w.p. pxj,k = 1− qxj,k,

−δx w.p. qxj,k.

(7.1)

Here “w.p.” is the abbreviation of “with probability”. δx > 0 is the displacement of

the jthi replication of the jth particle on the x-axis. qxj,k is the probability with which

the jthi replication of the jth particle moves towards the origin on the x-axis between

the discrete time step k and k + 1. Equation (7.1) holds if the jth particle is located

at the origin or on the positive side of the x-axis at time k. If the jth particle is

located on the negative side of the x-axis at time k, the displacement ∆Xji,k of the
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jthi replication between the discrete time k and k + 1 is approximated as

∆Xji,k =















−δx w.p. pxj,k = 1− qxj,k,

δx w.p. qxj,k.

(7.2)

The net displacement of the jth particle between the discrete time step k and k + 1

along x-axis is defined as ξxj,k = 1
N

∑N
i=1 ∆Xji,k, which is the average displacement

over N replications. We define the position of the jth particle at the time step k as

Sj,k =
∑k−1

l=1 ξ
x
j,l with Sj,1 = 0. Now by considering qxj,k = 0.5 for all k ≥ 1, we obtain

the discrete time representation of the one dimensional unbiased Brownian motion of

the jth particle as follows:

We define a sequence of random variable ξ̄xj,k by normalizing the random variable

ξxj,k as ξ̄xj,k =
√
N
δx
ξxj,k for k = 1, 2, · · · ,m. Clearly with qxj,k = 0.5, ξ̄xj,1, ξ̄

x
j,2, · · · are i.i.d.

random variables with mean 0 and variance 1. Now writing S̄j,m = ξ̄xj,1 + · · ·+ ξ̄xj,m as

the mth partial sum, a continuous trajectory Bm
j,t on 0 ≤ t ≤ 1 is defined as

Bm
j,t =















S̄j,k/
√
k if t = k/m,

S̄j,k/
√
k + B̄m

j,t if t ∈ (k/m, (k + 1)/m).

(7.3)

Here B̄m
j,t = (mt− [mt])ξ̄xj,[mt+1]/

√
k. [·] is the greatest integer of the argument. With

this, the following well known Donsker’s theorem [41] tells us that Bm
j,t converges to

the standard one dimensional Brownian motion Bt in distribution as m −→∞.

Theorem 7.2.1. (Donsker’s Theorem ([41])) As m −→ ∞, Bm
j,t =⇒ Bt i.e.

the associated measures on C[0, 1] converges weakly. Here Bt is the standard Brownian

motion.
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We extend the discrete time representation of Brownian motion in two and three

dimensional space by defining the net displacement of the jth particle between the

discrete time step k and k + 1 as ξyj,k = 1
N

∑N
i=1 ∆Yji,k and ξzj,k = 1

N

∑N
i=1 ∆Zji,k in

the y and z direction respectively. ∆Yji,k and ∆Zji,k are defined by equations (7.1)

and (7.2) where we replace ∆Xji,k by ∆Yji,k and ∆Zji,k respectively in the left hand

side of equations (7.1) and (7.2), and x by y and z respectively in the right hand side

of equations (7.1) and (7.2). With this, we define the position of the jth particle in

two and three dimensional space at the time step k as Sj,k =
∑k−1

l=1 (ξ
x
j,lêx+ ξ

y
j,lêy) and

Sj,k =
∑k−1

l=1 (ξ
x
j,lêx + ξyj,lêy + ξzj,lêz) respectively. Here we assume that Sj,1 = 0. êx, êy

and êz are unit vectors in x, y and z directions respectively.

7.3 Problem Formulation

7.3.1 Region of Trapping

To explore the possibility of trapping a particle in spatial dimension, it is necessary to

quantify how far the particle can travel from the origin in a fixed number of discrete

time steps for a given system. Traditionally in both experimental and theoretical

designs, the standard notion for measuring this spreading is the mean square distance.

Before we compute this quantitatively, we define a convenient notion for measuring

the distance of a particle from the origin at time k. At time k, we define the minimum

distance of the jth particle from the origin in the ith direction as dij,k = |dij,k−1+ξ
i
j,k−1|

where i ∈ {x, y, z} with dij,1 = 0. Here, ξij,k−1 is given by equation (7.1). | · | represents

the absolute value of the underlying argument.

Remark 7.3.1. Since |ξij,k−1| ≤ δx, d
i
j,k−1 + ξij,k−1 can be negative. The modulus
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operation in the recursive expression i.e. dij,k = |dij,k−1 + ξij,k−1| ensures that the

computed distance of the jth particle at time k from the origin is always positive. As

an example, lets consider the diffusion of the jth particle in one dimensional space.

If the distance of the particle at time k − 1 is δx/2 i.e. dxj,k−1 = δx/2 and the particle

moves towards the origin by a distance δx between time k− 1 and k i.e. ξxj,k−1 = −δx
(see equation (7.1)) then the position of the particle at time k will be −δx/2 and the

distance of the particle from the origin will be δx/2. Now if we compute dxj,k using

our recursive definition, it is easy to verify that dxj,k = | − δx/2| = δx/2. Moreover, if

dxj,k ≥ δx then dxj,k = dxj,k−1 + ξxj,k−1.

The position Sj,k of the particle at time k can be computed using ξxj,k−1 and Sj,k−1.

If Sj,k−1 ≥ 0 then Sj,k = Sj,k−1 + ξxj,k−1 and if Sj,k−1 < 0 then Sj,k = Sj,k−1 − ξxj,k−1

(clear from equations (7.1) and (7.2)). Here ξxj,k−1 is computed using equation (7.1).

It is not difficult to verify that the distance dxj,k is essentially the same as the modulus

of the position Sj,k i.e. dxj,k = |Sj,k|. Table 7.1 shows computations of dxj,k and Sj,k

for a particular case.

k ξxj,k dxj,k+1 with dxj,1 = δx/2 Sj,k+1 with Sj,1 = δx/2

1 −δx (towards origin) δx/2 −δx/2
2 δx (away from origin) 3δx/2 −3δx/2
3 −δx (towards origin) δx/2 −δx/2
4 −δx (towards origin) δx/2 δx/2
5 δx (away from origin) 3δx/2 3δx/2
6 −δx/2 (towards origin) δx δx

Table 7.1: Relation between dxj,k and Sj,k

With these new notations, next we quantify the spreading of the particle trajectory

in k time steps by computing the mean square distance. In one dimensional space,
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the conditional expectation of (dxj,k)
2 for k ≥ 2 is given as

E[(dxj,k)
2 | dxj,k−1] = E[(|dxj,k−1 + ξxj,k−1|)2 | dxj,k−1]

= (dxj,k−1)
2 + 2dxj,k−1E[ξ

x
j,k−1] + E[(ξxj,k−1)

2].
(7.4)

Here E[·] is the expectation of the underlying argument. Substituting E[ξxj,k−1] =

δx(1− 2qxj,k−1) and E[(ξxj,k−1)
2] = δ2x

N
(1+ (N − 1)(1− 2qxj,k−1)

2) in equation (7.4) using

equation (7.1), we obtain

E[(dxj,k)
2 | dxj,k−1] = (dxj,k−1)

2 + 2dxj,k−1δx(1− 2qxj,k−1)

+
δ2x
N
(1 + (N − 1)(1− 2qxj,k−1)

2).

(7.5)

The mean square distance traveled by the jth particle till the time step k is computed

recursively by taking the expectation on both sides of equation (7.5) at qxj,k−1 = 0.5:

E[(dxj,k)
2] = E[E[(dxj,k)

2 | dxj,k−1]]

= (k − 1)δ2x/N.
(7.6)

The computed expression for the mean square distance clearly shows that the spread-

ing of the particle trajectory grows proportionally with k. In particular, as k tends to

infinity, the mean square distance reaches infinity. Next by substituting qxj,k−1 = 0.5

in equation (7.5) and using the well known Chebyshev’s inequality, we compute an

upper bound of the conditional probability Pr{dxj,k ≥ dxj,k−1 | dxj,k−1} as

Pr{dxj,k ≥ dxj,k−1 | dxj,k−1} ≤
E[(dxj,k)

2 | dxj,k−1]

(dxj,k−1)
2

= 1 +
δ2x

N(dxj,k−1)
2
.

(7.7)
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Equation (7.7) shows that with qxj,k−1 = 0.5, the particle can travel further away

from the origin in the next time step with a probability, which is bounded above

by a quantity greater than one. By reducing the upper bound on this conditional

probability, it is possible to suppress the spreading of the trajectory of the particle.

Traditionally, the continuous manipulation of qxj,k−1 using a feedback controller

results in the suppression of Brownian trajectories of particles and thus the trapping

of particles in a desired spatial region of the medium. The minimum spatial region in

which particles can be trapped depends on the maximum limit on the applied external

field, properties of particles, the nature of the medium in which particles are diffusing

and an efficient feedback control architecture for designing external forces. These

conditions together provide an upper bound on qxj,k−1 and defines the minimum spatial

region in which it is possible to trap particles over an extended period of time. We

assume the existence of such an upper bound on qxj,k−1, j = 1, 2, · · · , n for our model

and design the minimum possible region of the trapping of an ensemble of particles

using the minimum possible feedback information measured from the system.

We begin with the one dimensional system consisting of n independently behaving

particles. We assume that the probability qxj,k−1 for j = 1, 2, · · · , n belongs to the

interval [0, qxm] where q
x
m ≤ 1. With this, we find conditions on qxj,k−1 and dxj,k−1 by

enforcing E[(dxj,k)
2 | dxj,k−1] < (dxj,k−1)

2 which makes the right hand side of equation

(7.7) strictly less than one.

It should be noted that the right side of equation (7.5) is always less than (dxj,k−1)
2+

2dxj,k−1δx(1−2qxj,k−1)+δ
2
x. Thus by making this quantity less than (dxj,k−1)

2, we obtain

qxj,k−1 > 0.5 + δx/(4d
x
j,k−1). Since qxj,k−1 ≤ qxm, 0.5 + δx/(4d

x
j,k−1) must be less than

qxm for the existence of qxj,k−1. This results in dxj,k−1 > δx/(4q
x
m − 2). Also, qxj,k−1 >
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0.5 implies that qxm > 0.5. Under these conditions, E[(dxj,k)
2 | dxj,k−1] < (dxj,k−1)

2.

In addition, depending on the maximum strength of the applied force field on a

physical system i.e. qxm ∈ (0.5, 1], there exists a minimum region defined by the

interval G1 := [−δx/(4qxm− 2), δx/(4q
x
m− 2)] outside which it is possible to reduce the

likelihood of further spreading of the trajectory of the jth particle in subsequent time

steps. As an example by choosing qxm = 1, the minimum possible region is given by

G1 := [−δx/2, δx/2].

Recall that our objective is to trap all the particles in an ensemble for an extended

period of time by broadcasting the same control inputs, designed using the minimum

feedback information measured from the system, to all the particles in the ensemble.

We fulfill this objective by first defining the minimum trapping region in which it is

possible to trap all the particles forever. Since the maximum distance traveled by a

particle in the ensemble in one time step is δx, the designed trapping region is H1 :=

[−γxδx, γxδx]. Here γx ≥ 1. Next, we define a manipulated transition probability

which can be designed by the controller as qxk−1 ∈
⋂n

j=1(0.5 + δx/(4d
x
j,k−1), 1]. Here

we assume that the maximum bound on the transition probability is 1.
⋂n

j=1(·) is the

common interval of the manipulated transition probability among all particles. We

define dxk−1 = max{min1≤j≤n{dxj,k−1 : dxj,k−1 > γxδx}, 0} as the minimum measured

feedback information which can be used by the controller in designing optimal qxk−1.

Thus, qxk−1 ∈ (0.5 + δx/(4d
x
k−1), 1]. Now by broadcasting the optimally designed

transition probability qxk−1 using dxk−1 as the only measured feedback information to

all the particles in the ensemble, the trapping of all particles in H1 can be guaranteed.

We design the minimum region in two and three dimensional spaces in which

it would be possible to trap an ensemble of Brownian particles. For this, we first
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compute the conditional expectation E[(dij,k)
2 | dij,k−1] < (dij,k−1)

2 for i ∈ {x, y} in

two dimensional space and for i ∈ {x, y, z} in three dimensional space:

E[(dxj,k)
2 + (dyj,k)

2 | dxj,k−1, d
y
j,k−1] = (dxj,k−1)

2 + (dyj,k−1)
2

+
δ2x
N
(1 + (N − 1)(1− 2qxj,k−1)

2)

+
δ2y
N
(1 + (N − 1)(1− 2qyj,k−1)

2)

+ αx + αy.

(7.8a)

E[(dxj,k)2 + (dyj,k)
2 + (dzj,k)

2 | dxj,k−1, d
y
j,k−1, d

z
j,k−1] = (dxj,k−1)

2 + (dyj,k−1)
2 + (dzj,k−1)

2

+
δ2x
N
(1 + (N − 1)(1− 2qxj,k−1)

2)

+
δ2y
N
(1 + (N − 1)(1− 2qyj,k−1)

2)

+
δ2z
N
(1 + (N − 1)(1− 2qzj,k−1)

2)

+ αx + αy + αz.

(7.8b)

Here αi = 2dij,k−1δi(1 − 2qij,k−1) for i ∈ {x, y, z}. The minimum trapping region

in two and three dimensional spaces is now computed by forcing E[(dxj,k)
2 + (dyj,k)

2 |

dxj,k−1, d
y
j,k−1] < (dxj,k−1)

2+(dyj,k−1)
2 and E[(dxj,k)2+(dyj,k)

2+(dzj,k)
2 | dxj,k−1, d

y
j,k−1, d

z
j,k−1] <

(dxj,k−1)2 + (dyj,k−1)
2 + (dzj,k−1)

2 respectively. Using equation (7.8) and the fact that

δ2i
N
(1 + (N − 1)(1− 2qij,k−1)

2) ≤ δ2i for i ∈ {x, y, z}, we obtain

αx + αy + δ2x + δ2y < 0, (7.9a)
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αx + αy + αz + δ2x + δ2y + δ2z < 0. (7.9b)

It should be noted that both expressions in equation (7.8) are satisfied if αi + δ2i < 0

for i ∈ {x, y, z} i.e. 2dij,k−1δi(1 − 2qij,k−1) + δ2i < 0 for i ∈ {x, y, z}. This results in

qij,k−1 > 0.5+δi/(4d
i
j,k−1) and d

i
j,k−1 > δi/(4q

i
m−2) for i ∈ {x, y, z} where qim ∈ (0.5, 1]

is the maximum transition probability in the ith co-ordinate. With this, we obtain the

minimum region in two dimensional space as a rectangle with co-ordinates (±βx,±βy).

Here βi = δi/(4q
i
m− 2) outside which it is possible to reduce the likelihood of further

spreading of the trajectory of the jth particle in subsequent time steps. Similarly, we

obtain the minimum region in three dimensional space as a cuboid with co-ordinates

(±βx,±βy,±βz).

Since the maximum distance traveled by a particle in the ensemble in the ith direc-

tion in one time step is δi, the designed trapping region in two and three dimensional

space is a rectangle with coordinates (±γxδx,±γyδy) and a cuboid with coordinates

(±γxδx,±γyδy,±γzδz). Here, γi ≥ 1 for i ∈ {x, y, z}. For both two and three di-

mensional systems, we define dik−1 = max{min1≤j≤n{dij,k−1 : dij,k−1 > γiδi}, 0} as the

minimum measured feedback information in the ith direction which can be used by

the controller in designing optimal qik−1. Here i ∈ {x, y, z}.

7.3.2 Need for Optimality

In this section, we ask questions about the need of an optimal design for suppressing

Brownian ensemble. Do we really need an optimal control design for such systems?

If not, then can we replace this optimal controller with a classical control design such

as a constant gain proportional controller and obtain a reasonable performance of the
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system compared to the optimal controller? To answer these questions, we design a

proportional controller for one dimensional system as

qxk =















Kpd
x
k if 0 ≤ dxk ≤ qxm/Kp,

qxm if dxk > qxm/Kp.

(7.10)

Here, Kp is a constant gain. dxk is the distance of a particle outside the specified

trapping region at the time step k which is closest to the origin among all the particles

in the ensemble. qxm ≤ 1 is the maximum limit on the control output qxk . Now we

find qxk for which E[(dxk+1)
2 | dxk] < (dxk)

2 is satisfied. By inserting qxk = Kpd
x
k from

equation (7.10) in the expression of E[(dxk+1)
2 | dxk] < (dxk)

2 and using the fact that

(δ2x/N)(1+(N−1)(1−2qxj,k−1)
2) ≤ δ2x (see equation (7.5)), we obtain the final control

design as

qxk =































1/2 if dxk ≤ f(Kp, δx),

Kpd
x
k if f(Kp, δx) < dxk ≤ qxm/Kp,

qxm if dxk > qxm/Kp.

(7.11)

Here,Kp satisfies 0 < Kp < ((4qxm−1)2−1)/(4δx) and f(Kp, δx) is given by f(Kp, δx) =

(1 +
√

1 + 4Kpδx)/(4Kp).

Equation (7.11) clearly shows that the designed proportional controller is an adaptive

gain based controller without any optimality which sets its output at the saturation

limits in most of the one dimensional space. As an example, consider f(Kp, δx) = δx

with qxm = 1 in equation (7.11). In this case, it is easy to verify that Kp = 3/(4δx)

and qxk = Kpd
x
k for dxk ∈ (δx, 4δx/3].

Forcing the controller output to its saturation limits for most of the time clearly
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shows the limitation of the designed proportional controller in handling non-linear

input constraints such as the supermartingale condition. Also, the saturation of the

controller output to its maximum limit in this design induces an unnecessary increase

in the total input cost which can certainly be minimized by choosing qxk < qxm, as

shown in the previous section. The presence of physical constraints in experimental

designs imposed by limitations of the external force fields greatly limit the utility of

such a controller design, since proportional controllers inherently cannot handle con-

straints. Therefore, a natural question arises in designing an optimal control strategy

which can overcome these limitations while retaining, at a minimum, similar closed-

loop performance. An optimal control design provides a framework to incorporate

realistic constraints as well as system dynamics explicitly in the problem formulation.

Specifically, a model-based receding horizon control design provides a suitable frame-

work for handling realistic constraints as well as for enhancing the overall performance

of the system when the problem is formulated as a trajectory tracking problem. Many

problems such as tracking of a predefined trajectory by the average motion of parti-

cles while constraining all the particles in a fixed radial distance from the trajectory

(a relevant problem in drug delivery) and replacing random walk based models with

more realistic Langevin equations in the present context would require the optimal

framework. With this motivation, next we develop “Broadcast Stochastic Reced-

ing Horizon Control (BSRHC)” framework to trap an ensemble of particles driven

by Brownian motion in the minimum trapping region. The framework provides a

unified predictive framework to incorporate realistic constraints and system dynam-

ics explicitly in the problem formulation, leading to optimal regulation of Brownian

noise-driven dynamical systems.
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7.3.3 Optimal Control Problem

In this section, we formulate an optimal control problem in the broadcast stochastic

receding horizon control (BSRHC) framework, as shown in Figure 7.1, to trap an

ensemble of Brownian particles in the minimum possible trapping region.

Figure 7.1: Broadcast Stochastic Receding Horizon Control (BSRHC): At the current
discrete time k, the “Receding Horizon Controller” designs control inputs, “uk|k”
and “Broadcasts” them to the system (“Particle Ensemble”). Each particle in the
ensemble possesses independent Brownian motion. The “Measured Feedback” is the
distance of the particle that is closest to the origin. This feedback information is used
by the “Receding Horizon Controller” to design new control inputs at the next time
k + 1.

As shown in Figure 7.1, the strategy differs from the one introduced in Chapter 6 in

terms of the measured feedback information. In Chapter 6, the ensemble behavior of a

swarm of agents was used as the measured feedback information in designing optimal

transition probabilities by the controller. Here, the controller uses the distance of a

particle outside the trapping region in a given direction which is closest to the origin as

the only available feedback information in designing optimal directional probability.

To clarify which particle is chosen to obtain feedback information, we consider a
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distribution of particles in a two dimensional space as shown in Figure 7.2.

Figure 7.2: Two dimensional distribution of particles undergoing Brownian motion

As shown in Figure 7.2, the green region is the specified trapping region. At a

given time k, we measure the distance of the particle outside the trapping region

which is closest to the x-axis and is located at a distance greater than y1/2 among all

the particles in the ensemble (red particle located at a distance y2 > y1/2 from the

x-axis). This information is then used by the controller as feedback in designing the

optimal bias (probability) in y-direction towards the origin. Similarly, we measure

the distance of the particle outside the trapping region which is closest to the y-axis

and is located at a distance greater than x1/2 among all the particles in the ensemble

(blue particle located at a distance x2 > x1/2 from the y-axis). This information is

then used by the controller as feedback in designing the optimal bias (probability) in

x-direction towards the origin.
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In the design of the broadcast stochastic receding horizon control policy for trap-

ping an ensemble of Brownian particles, the objective is to minimize the system error

by computing optimal probability with which a particle is moving towards the ori-

gin. To achieve this objective, we formulate a constrained non-linear stochastic finite

receding horizon control (RHC) problem as follows:

min
qi
k|k

,··· ,qi
k+Nc−1|k

J
i
k (7.12)

s.t.

qik+l|k ∈ [0, 1] for 0 ≤ l ≤ Nc − 1, (7.13a)

qik+l|k = 0.5 for l ≥ Nc, (7.13b)

E[(dik+l+1)
2 | F i

k] < (dik)
2 for 0 ≤ l ≤ Nc − 1. (7.13c)

Here, F i
k is a σ-algebra generated by the sequence di1, · · · , dik where i ∈ {x, y, z}.

Np and Nc are time invariant prediction and control horizon respectively. The cost

function Jik is given by

J
i
k =

Np−1
∑

l=0

E[(dik+l+1)
2 | F i

k] +
Nc−1
∑

l=0

δ2i ((q
i
k+l|k)

2 + (1− qik+l|k)
2). (7.14)

The control problem stated in equation (7.12), (7.13) and (7.14) is solved for each

k ≥ 1 till dik becomes zero for the first time i.e. all the particles are inside the designed

trapping region for the first time. At this time, we set the transition probability qik|k
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to 1. This ensures that all the particles are inside the trapping region after they

entered in the trapping region for the first time as we show in the next section.

Remark 7.3.2. For practical implementation of the controller, we switched “OFF”

the controller once all the particles are inside the trapping region for the first time.

This allow all the particles to make unbiased Brownian motion as long as they are

inside the designed trapping region. Whenever a particle crosses the boundary of the

trapping region, the controller becomes active. The controller remains active until all

particles are again brought back inside the trapping region. We discuss this design in

detail in the simulation results section.

7.4 Results

7.4.1 Feasibility

Claim 7.4.1. The broadcast RHC problem stated in equations (7.12), (7.13) and

(7.14) is feasible.

Proof. The Claim 7.4.1 states that the control problem defined by equations (7.12),

(7.13) and (7.14) is feasible i.e. there exists qik+l|k ∈ [0, 1] for l = 0, 1, · · ·Nc − 1 and

i ∈ {x, y, z} such that E[(dik+l+1)
2 | F i

k] < (dik)
2 is true. To show this claim, we first

consider l = 1 and show that there exists qik+1|k ∈ [0, 1] such that E[(dik+2)
2 | F i

k] <

(dik)
2 satisfies. For this, we derive the expression for E[(dik+2)

2 | F i
k] using the system

dynamics as follows:
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E[(dik+2)
2 | F i

k] = (dik)
2 + 2dikδi(1− 2qik|k)

+ 2δiE[d
i
k+1 | F i

k](1− 2qik+1|k)

+
1

∑

j=0

δ2i
N
(1 + (N − 1)(1− 2qik+j|k)

2).

(7.15)

Now by noticing the fact that the right hand side of equation (7.15) is always less

than or equal to (dik)
2 + 2dikδi(1 − 2qik|k) + 2δiE[d

i
k+1 | F i

k](1 − 2qik+1|k) + 2δ2i and

2dikδi(1− 2qik|k)+ δ
2
i < 0, it would be sufficient to show that there exists qik+1|k ∈ [0, 1]

such that 2δiE[d
i
k+1 | F i

k](1−2qik+1|k)+δ
2
i < 0. Since E[dik+1 | F i

k] ≤ dik+δi, we obtain

qik+1|k >
2dik + 3δi
4(dik + δi)

. (7.16)

It should be noted that dik > 0 by definition. Using this, it is easy to verify that

2di
k
+3δi

4(di
k
+δi)
∈ (0, 1). Thus there exists qik|k, q

i
k+1|k ∈ [0, 1] such that E[(dik+2)

2 | F i
k] < (dik)

2.

Next we assume that this is true for any l > 1, i.e. there exists qik|k, q
i
k+1|k, · · · , qik+l−1|k

such that E[(dik+l)
2 | F i

k] < (dik)
2 for any l > 1. Next we show that there exists

qik|k, q
i
k+1|k, · · · , qik+l|k such that E[(dik+l+1)

2 | F i
k] < (dik)

2. By writing the expression

for E[(dik+l+1)
2 | F i

k] as

E[(dik+l+1)
2 | F i

k] = E[(dik+l)
2 | F i

k] + 2δiE[d
i
k+l+1 | F i

k]

(1− 2qik+l|k) +
δ2i
N
(1 + (N − 1)

(1− 2qik+l|k)
2)

(7.17)

and using the fact that E[(dik+l)
2 | F i

k] < (dik)
2, it would be sufficient to show that

2δiE[d
i
k+l+1 | F i

k](1 − 2qik+l|k) + δ2i < 0 for some qik+l|k ∈ [0, 1]. Since E[dik+l+1 |

F i
k] > δi/2, there exists a qik+l|k ∈ [0, 1] such that E[(dik+l+1)

2 | F i
k] < (dik)

2. Thus by
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mathematical induction, it follows that there exists qik|k, q
i
k+1|k, · · · , qik+l|k such that

E[(dik+l+1)
2 | F i

k] < (dik)
2 for l = 0, 1, · · · , Nc − 1 is true.

Remark 7.4.2. Throughout the work, we have neglected the measurement uncer-

tainties in obtaining the feedback information. The proposed framework allows the

incorporation of measurement uncertainties as long as the optimization problem (see

equations (7.12), (7.13) and (7.14)) is feasible. As an example, consider the case

for Np = Nc = 1. The measurement noise can be added to the computed distance in

the ith direction as dik+1 = |dik + ξik+1| + N (0, σk+1). Here, N (0, σk+1) is the Gaus-

sian noise with mean 0 and variance σ2
k+1. For the feasibility of the optimization

problem, one requires E[(dik+1)
2|F i

k] < (dik)
2. Using (7.5), it is easy to verify that

this condition satisfies if qik|k > 1/2 + δi/(4d
i
k) + σ2

k+1/(4d
i
kδi). Since qik|k ∈ [0, qim],

σk+1 <
√

δi((4qik − 2)dik − δi.

Finally, we show that the controller is capable of driving all the particles inside the

trapping region with probability 1.

Claim 7.4.3. There exists a finite time in which all the particles are inside the trap-

ping region for the first time under the designed control actions. Moreover, particles

are trapped inside the trapping region H1 forever.

Proof. Let us define d̂ik = maxj=1,2,··· ,n d
i
j,k1{d

i
j,k ≥ γiδi}. Here 1{d

i
j,k ≥ γiδi} is the

indicator function defined as

1{d
i
j,k ≥ γiδi} =















1 if dij,k ≥ γiδi,

0 otherwise.

(7.18)
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Here γi ≥ 1. Since the particles are allowed to visit all the space in the ith coordinate

and the movement of particles are biased towards the origin, Pr{d̂ik = 0} > 0.

Therefore, there will a finite time (say k0 < ∞) when all the particles are inside

the designed trapping region for the first time. Once all the particles are inside the

trapping region H1, the controller output i.e. qik|k is set to 1. Since the maximum

distance traveled by a particle in one time step is δi towards the origin and the

minimum trapping region with γi = 1 is of total length of 2δi, all the particles are

trapped inside the trapping region for all future time.

7.4.2 Analytical Results

In this section, we derive the closed-form solution of the control problem (equations

(7.12), (7.13) and (7.14)) for the one dimensional system. For the one dimensional

system with Nc = Np = 1, the optimization problem results in

min
qx
k|k

Jk (7.19)

s.t.

qxk|k ∈ [0, 1], (7.20a)

E[(dxk+1)
2 | Fx

k ] < (dxk)
2. (7.20b)

The cost function Jk is defined as Jxk = E[(dxk+1)
2 | Fx] + δ2x((q

x
k|k)

2 + (1 − qxk|k)
2).

From Claim 7.4.1, we know that the optimization problem (equations (7.19) and

(7.20)) is feasible. Next, we find the optimal qxk|k by solving equations (7.19) and
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(7.20) analytically. For this, we define the Lagrangian function [15] L(qxk|k, λ1, λ2, λ3)

as follows:

L(qxk|k, λ1, λ2, λ3) = E[(dxk+1)
2 | Fx

k ] + δ2x((q
x
k|k)

2 + (1− qxk|k)2)

+ λ1(q
x
k|k − 1) + λ2(−qxk|k) + λ3(2d

x
kδx(1− 2qxk|k) + δ2x).

(7.21)

Here λi, i = 1, 2, 3 are non-negative Lagrange multipliers. The first order Karush-

Kuhn-Tucker (KKT) conditions [15] for the optimization problem are derived as fol-

lows:

∂L

∂qxk|k
= 0, (7.22a)

λ1(q
x
k|k − 1) = 0, (7.22b)

λ2(−qxk|k) = 0, (7.22c)

λ3(2d
x
kδx(1− 2qxk|k) + δ2x) = 0, (7.22d)

λi ≥ 0 for i = 1, 2, 3. (7.22e)

By solving (7.22), we obtain the following closed form solution of the optimization

problem: For dxk ∈ (
√

0.5(3/2− 1/N)δx, (3/2 − 1/N)δx), λ1 = λ2 = λ3 = 0 and

qxk|k = 1
2
+

dx
k

δx(3−2/N)
. For dxk ≥ (3/2 − 1/N)δx, λ1 = λ2 = λ3 = 0 and qxk|k ∈

(1/2 + δx/(4d
x
k), 1). For dxk ≥ (3/2 − 1/N)δx, if q

x
k|k = 1, λ1 > 0, λ2 = λ3 = 0. For

dxk ∈ (δx/2,
√

(3/4− 1/(2N))δx], λ1 = λ2 = λ3 = 0 and qxk|k ∈ (1/2+ δx/(4d
x
k), 1). For

dxk ∈ (δx/2,
√

(3/4− 1/(2N))δx], if q
x
k|k = 1, λ1 > 0, λ2 = λ3 = 0.
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7.4.3 Simulation Results

In this section, we use simulations to demonstrate the efficacy of our control design

in trapping an ensemble of Brownian particles in a predefined region. We simulate

trajectories of 100 independently behaving Brownian particles in one, two and three

dimensional homogeneous medium with the implemented “BSRHC” strategy. For

simulation, the prediction and control horizon are set to 1 in designing the receding

horizon controller i.e. Np = Nc = 1. A constraint on the control input is imposed by

setting its upper bound at 0.9.

Figure 7.3 shows a realization of uncontrolled and controlled trajectories of parti-

cles in one dimensional space with the implemented control architecture. The “Un-

controlled” region of Figure 7.3 shows the trajectories of particles undergoing inde-

pendent unbiased Brownian motion in one dimension in the absence of the controller.

We simulated these trajectories up to time k = 500000 which allowed particles in the

ensemble to acquire random positions in one dimensional space prior to implemen-

tation of our designed controller. Next, we switch the controller “ON” at the next

time step k = 500001. The trajectories of the particles are now controlled according

to the designed “BSRHC” strategy and shown in the “Controlled” region of Figure

7.3. The designed controller drives all the particles into the trapping region for the

first time within 100 time steps.

The basic principles of the designed controller in driving all the particles inside

the trapping region can be explained as follows: At the time step k = 500001, the

controller designs an optimal control input using the measured distance of a particle

outside the trapping region that is closest to the origin at time k = 500000, as the

only available feedback information. The controller then broadcasts this designed
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Figure 7.3: Trapping of 100 particles in one dimensional space: The horizontal axis
represents discrete time steps. The vertical axis shows the position of particles, mea-
sured from the origin on a scale of 10−4, as a function of discrete time steps. Sj,k

is the position of the jth particle at the time step k. For clarity, trajectories of 6
particles are shown here. The “Uncontrolled” region shows the unbiased independent
Brownian trajectories of particles till the time step k = 500000. The “Controlled”
region shows the trajectories of particles under the designed control action. Within
100 time steps, the designed control action brings all particles into the trapping region
which is defined as the region inside the interval [−0.87δx, 0.87δx]. Here, δx = 10−4.
The inset plot shows the trajectories of particles inside the trapping region between
the time step k = 700001 and k = 700100.
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control input to all the particles and thus drives the particles towards the trapping

region. This process continues until the closest particle enters the trapping region.

Subsequently, the controller designs the control input using the measured distance

of the next nearest particle outside the trapping region that is closest to the origin

and broadcasts this control input to all the particles to drive the rest of the particles

towards the trapping region. This process of designing the control input is repeated

at each time step until all the particles are inside the trapping region, at which point

the controller is switched “OFF”. The particles now undergo unbiased Brownian

motion as long as they are inside the trapping region. Whenever a particle crosses

the boundary of the trapping region, the controller becomes active. The controller

remains active until all particles are again brought back inside the trapping region.

Thus the controller switches between “ON” and “OFF” for all the time steps once

all the particles are inside the trapping region for the first time. The reason for this

switching strategy has been provided in the theoretical section where we have shown

that the designed controller cannot enhance the overall performance of the system

further once all the particles are inside the trapping region.

The “inset plot” of Figure 7.3 shows the trajectories of 6 particles for 100 time

steps, starting from k = 700001. Particles 54, 75 and 96 cross the trapping region

boundary at three distinct time steps. At all these time steps, the controller becomes

active and drives the particle into the trapping region within a few time steps. Once

the particle is inside the trapping region, the controller becomes inactive and all the

particles in the ensemble follow unbiased independent Brownian trajectories. This

demonstrates that the designed controller is effective in keeping all particles inside

the trapping region for a long period of time. Figure 7.4 shows the implemented
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control action in trapping 100 particles in one dimensional space.
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Figure 7.4: Optimally designed control inputs for trapping 100 particles in one di-
mensional space: The horizontal axis represents discrete time steps. The vertical axis
shows the implemented control action designed using “BSRHC” strategy.

Next, we show the trapping of an ensemble of particles in two and three dimen-

sional homogeneous medium by extending the design of the one dimensional controller

to two and three dimensional systems. For the two dimensional system, two indepen-

dent control inputs are designed to control the trajectories of particles in the x − y

plane. For the three dimensional system, three independent control inputs are de-

signed to control the trajectories of particles in the x− y− z space. We note that the

number of designed control inputs depends only on the dimensionality of the system.

Figures 7.5 and 7.6 show the snapshots of the positions of 100 particles at 8 distinct

time steps in two and three dimensional space respectively.

As shown in Figures 7.5 and 7.6, the top 3 plots demonstrate the uncontrolled
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Figure 7.5: Trapping of 100 particles in two dimensional space: In each plot, the
horizontal and vertical axes respectively represent the x and y co-ordinates of particles
on a scale of 10−4. The top left plot shows that all particles are placed at the origin at
time step k = 1. The next two plots show the diffusion of particles in two dimensional
space by following the unbiased independent Brownian trajectories. The controller
is “ON” at time step k = 50001 which is shown in the middle left plot. The next
five plots show the efficacy of the controller in driving all particles into the trapping
region within 35 time steps.
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Figure 7.6: Trapping of 100 particles in three dimensional space: In each plot, the
horizontal plane represents the x− y co-ordinates and the vertical axis represents the
z-co-ordinate of particles on a scale of 10−4. The top left plot shows that all particles
are placed at the origin at the time step k = 1. The next two plots show the diffusion
of particles in three dimensional space by following unbiased independent Brownian
trajectories. The controller is “ON” at time step k = 50001 which is shown in the
middle left plot. The next five plots show the efficacy of the controller in driving all
particles into the trapping region within 35 time steps.
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diffusion of 100 particles till the time step k = 50000 in two and three dimensional

space respectively. The next 6 plots in both figures illustrate the efficacy of the

designed controller in driving all the particles into the defined trapping region within

35 time steps. The principles on which the controller works in driving all the particles

into the trapping region in two and three dimensional space are the same as those

described in the one dimensional case. Figures 7.7 and 7.8 demonstrate that the

controller is effective in trapping all the particles inside the trapping region for an

extended period of time, beyond the initial trapping time.

Figures 7.9 and 7.10 show the implemented control action in trapping 100 particles

in two dimensional space.

7.5 Concluding Remarks

Advances in experimental techniques for manipulating micro and nano scale particles

in the last decade have stimulated considerable interest in regulating Brownian en-

semble dynamics. In this chapter, we have proposed a novel “Broadcast Stochastic

Receding Horizon Control (BSRHC)” strategy as a unified optimal feedback control

framework for regulating small length scale Brownian dynamical systems. The frame-

work assumes the existence of physical / biological mechanisms which can manipulate

the transition probabilities of particles, undergoing predominantly Brownian motion,

in a broadcast fashion. Additionally, realistic models describing the effect of exper-

imentally feasible external force fields on the transition probabilities can be readily

incorporated in this framework. Using the measurement of the position of a single

particle in the ensemble, the technique eliminates the traditionally required tracking

of individual particles within the ensemble in regulating their dynamical behaviors.
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Figure 7.7: The performance of the controller in two dimensional space over an ex-
tended period of time. The x and y co-ordinates of particles are on a scale of 10−4.
The top left plot shows the placement of particles at the origin at time step k = 1. The
trapping region is shown by a square with coordinates (±α,±α). Here, α = 0.87δx
and δx = 10−4 inside the plot. The next three plots show the efficacy of the controller
in trapping all particles inside the square over an extended period of time.
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Figure 7.8: The performance of the controller in three dimensional space over an
extended period of time. The x − y − z co-ordinates are shown on a scale of 10−4.
The top left plot shows the placement of particles at the origin at the time step
k = 1. The trapping region is shown by a cube with coordinates (±α,±α,±α). Here,
α = 0.87δx and δx = 10−4. The next three plots show the efficacy of the controller in
trapping all particles inside the cube over an extended period of time.
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Figure 7.9: Optimally designed control inputs in the x-direction for trapping 100
particles in two dimensional space: The horizontal axis represents discrete time steps.
The vertical axis shows the implemented control action in the x-direction designed
using “BSRHC” strategy.
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Figure 7.10: Optimally designed control inputs in the y-direction for trapping 100
particles in two dimensional space: The horizontal axis represents discrete time steps.
The vertical axis shows the implemented control action in the y-direction designed
using “BSRHC” strategy.
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Similarly, by broadcasting a common optimal transition probability to the ensemble,

the technique eliminates the need to have distributed actuators. The presented fea-

sibility and convergence results of the controller guarantee the trapping of Brownian

ensemble independent of the choice of external force fields typically used to manipu-

late transition probabilities of particles in experimental designs. Our results assume a

uniform force field acting on all the particles in the ensemble. However, the generality

of the control problem formulation allows incorporation of spatially dependent tran-

sition probability models for non-uniform force fields in the “BSRHC” framework.

As long as a certain conditional expectation condition is satisfied, the results readily

apply to these non-uniform field situations.
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Chapter 8

Summary and Directions for

Future Work

8.1 Summary

The approach of stochastic modeling and control of dynamical systems has recently

become essential for facilitating many emerging applications in biology and physi-

cal sciences. In this dissertation, our focus was brain-machine interfaces (BMIs) and

emerging applications in small length scale dynamical systems. In Chapters 2−5, our

main focus was to develop a generalized control-theoretic framework using a model-

based optimal receding horizon controller to facilitate rigorous analysis of closed-loop

BMIs under various feedback scenarios. In this direction, in Chapter 2, we investi-

gated the quantitative predictive capability of the Izhikevich single neuron model in

explaining experimental data. We used a part of experimental data to first estimate

the unknown parameters of the model and then analyzed the capability of the model

in predicting the remaining data. In particular, we explored two approaches namely,
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the coincidence factor approach and the Fokker-Planck based maximum likelihood

approach, for estimating parameters of both the deterministic and the stochastic

form of the model using a part of experimental inter-spike interval (ISI) data. Our

results showed that both forms of the model can explain approximately 38% of the

experimental data using the parameters estimated by the approach of maximizing the

average coincidence factor. Moreover, the stochastic Izhikevich model with estimated

parameters using the maximum likelihood approach showed poor predictive capabil-

ity in explaining experimental data in comparison to the approach of maximizing the

average coincidence factor. In conclusion, the Izhikevich single neuron model showed

poor predictive capability in explaining experimental data in comparison to other

similar computationally efficient single neuron models.

In Chapter 3, we studied a recurrent network of synaptically connected spiking

neurons and established conditions under which inter-spike intervals (ISIs) of indi-

vidual neurons in the network are continuously differentiable with respect to (w.r.t.)

parameters (decision variables) of an external stimulating input current which drives

the network. The dynamical behavior of individual neurons was represented by a

class of discontinuous single neuron models. We found that ISIs of neurons in the

network are continuously differentiable w.r.t. decision variables if (1) continuously

differentiable trajectory of the membrane potential exists between consecutive ac-

tion potentials w.r.t. time and decision variables, and (2) the partial derivative of

the membrane potential of spiking neurons w.r.t. time is not equal to the partial

derivative of their firing threshold w.r.t. time at the time of action potentials.

In Chapter 4, we developed a generalized optimal control framework using a
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model-based receding horizon control policy for a rigorous control-theoretic analy-

sis of closed-loop neuroprosthetic systems under various feedback scenarios. Using

this framework, we formulated a minimum time control problem for accomplishing

reaching tasks in a minimum time and demonstrated the capability of the optimal

controller in designing higher level motor planning. In particular, we studied the

importance of sensory feedback pathways in a single joint prosthetic arm movement

controlled by the firing activity of a single cortical motor neuron. From our results,

we concluded that visual feedback is important in rejecting internal noises, naturally

occurs in neuronal network, while reaching the desired goal of the task.

Finally in Chapter 5, we designed optimal artificial sensory feedback in an opti-

mal control-theoretic framework to recover the closed-loop performance of a brain-

machine interface (BMI) during voluntary single joint extension task. Using a psycho-

physiological cortical circuit model for the voluntary control of a single joint move-

ment, we developed a BMI and analyzed its performance in the presence and the

absence of the natural proprioceptive feedback pathways. We explicitly showed that

the performance of the BMI degrades substantially in the absence of natural proprio-

ception. Two control problems namely, the position trajectory tracking problem and

the cortical sensory neurons average firing rate tracking problem, were investigated

towards designing an optimal artificial sensory feedback for the BMI in the receding

horizon control framework. From our results, we concluded that tracking the natural

firing activity of the cortical sensory neurons using an external stimulating controller

is the appropriate approach towards recovering the natural performance of the motor

task.

In Chapters 6− 7, our focus was to develop stochastic optimal control strategies
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in a receding horizon framework for facilitating emerging applications in small length

scale dynamical systems. In this direction, we proposed a novel “Broadcast Stochastic

Receding Horizon Control (BSRHC)” strategy in Chapter 6 for stabilizing the aggre-

gate system behavior of a class of multi-agent systems. In particular, we studied a

stabilization problem in a multi-state multi-agent system consisted of a vast number

of stochastically behaving agents. Conditional expectation based time-horizon predic-

tive dynamical models were developed to represent the time evolution of the collective

behavior of agents. Probabilistic tools such as the supermartingale theory and the

bounded convergence theorem were applied to guarantee the almost sure convergence

of the closed-loop system behavior to the desired one. The derived stability and con-

vergence results established key principles applicable to stabilize general stochastic

dynamical systems.

In Chapter 7, we used the BSRHC strategy developed in Chapter 6 with relevant

modifications to show the optimal trapping of an ensemble of particles driven by

Brownian motion in the smallest trapping region in one, two and three dimensional

homogeneous medium. Using the measurement of the position of a single particle in

the ensemble, the developed technique eliminated the traditionally required tracking

of individual particles within the ensemble in regulating their dynamical behaviors.

Similarly, by broadcasting a common optimal transition probability to the ensemble,

the technique eliminated the need to have distributed actuators. Our derived stability

and convergence results guaranteed the trapping of Brownian ensemble independent of

the choice of external force fields typically used to manipulate transition probabilities

of particles in experimental designs.
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8.2 Future Work

8.2.1 Artificial Feedback Design in BMIs using Currents in

a Biphasic Waveform

In Chapter 5, we designed optimal artificial sensory feedback in a control-theoretic

framework to recover the closed-loop performance of a BMI during voluntary single

joint extension task. In this study, an average firing activity based cortical circuit

model (see Figure 5.1 in Chapter 5) was used by the receding horizon controller in

designing the artificial sensory feedback to stimulate the area 5 “PPV” neurons. Since

the stimulating input to individual neurons in this model was based on average firing

activity, the designed stimulating input by the controller in the form of an average

firing activity was appropriate for the system considered in this chapter.

However in experimental BMIs studies, currents in a charge balanced biphasic

waveform such as shown in Figure 8.1 are typically used to stimulate cortical sensory

neurons externally and thus to provide artificial sensory feedback during closed-loop

operation of BMIs [38, 168, 63]. One possible way to allow the use of such form of

currents in the present firing activity based framework is to modify the cortical circuit

model (See Figure 5.1) as shown in Figure 8.2.

As shown in Figure 8.2, we have included a network of spiking neurons which

are driven by the firing activity of the primary spindle fibers “Ia”. Each neuron in

the network receives input in the form of both the external currents and synaptic

currents. For simplicity, we have not included inputs to “SFV” neurons and “IFV”

neurons from the secondary spindle fibers “II”. As we will show later in this section,

this modification in the cortical circuit model will allow us to design optimal artificial
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Figure 8.1: A sketch of a typical charge balanced intra-cortical micro-stimulation
(ICMS) current in a biphasic waveform. Here the net current

∫ T

0
I(t)dt is zero for

T =
∑4

i=1wi.

Figure 8.2: An extension of the psychophysiological cortical circuit model for volun-
tary control of single joint movement shown in Figure 5.1. Here, we have included
a network of spiking neurons which are driven by the firing activity of the primary
spindle fibers “Ia”.
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sensory feedback by constraining the stimulating input current to bi-phasic waveforms

in closed-loop BMIs. Moreover, this extension will provide a generalized stimulation

based closed-loop BMI framework which can be implemented on real systems.

The dynamical behavior of synaptically connected neurons in the network of spik-

ing neurons can be given either by the network model described in section 3.3 or by

the following population based firing rate model for the Integrate-and-Fire neurons

[124, 56]:

∂P (t, v)

∂t
= −∂J(t, v)

∂v
, (8.1a)

Initial Condition:

P (t, v) |t=0= δ(v − 0), (8.1b)

Boundary Conditions:

P (t, v) |v=1= 0, (8.1c)

J(t, v) |v=0= J(t, v) |v=1 . (8.1d)

Here, P (t, v) is the membrane potential density defined by [56]

lim
N→∞

(
neurons with v0 < vi(t) ≤ v0 +∆v

N
) =

∫ v0+∆v

v0

P (t, v)dv. (8.2)

vi(t) is the membrane potential of the ith neuron at time t whose dynamics is given

by the following Integrate-and-Fire single neuron model:

τm
dvi(t)

dt
= −vi(t) +RIi(t). (8.3)
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Here τm is the membrane time constant, R is the input resistance, and Ii(t) is the

total input current to the neuron (the external input current IE(t) and the synaptic

input). At vi(t) = 1, the membrane potential is reset to vi(t) = 0. P (v, t) satisfies
∫ 1

−∞ P (t, v)dv = 1 for all t ≥ 0. J(t, v) is the probability flux defined by

J(t, v) =
1

τm
[−v +RIE(t)]P (t, v) +

∑

k

νk(t)

∫ v

v−wk

P (t, v′)dv′. (8.4)

Here wk is the jump in the membrane potential caused by an input spike at a synapse

of type k. νk(t) is the effective spike arrival rate. The obvious benefit of using this

firing rate model over the network model described in section 3.3 is the small number

of unknown parameters present in this model which can easily be trained to match

the output of the model i.e. firing rate with the activity of “Ia” fiber. With this

modification in the cortical circuit model, Figure 8.3 and Figure 8.4 show designs of

biphasic stimulation based closed-loop brain-machine interfaces (BMIs) similar to the

one shown in Figure (5.12) and Figure (5.13) respectively.

For the systems shown in Figure 8.3 and Figure 8.4, the following control prob-

lem can be formulated in the receding horizon control framework to design optimal

artificial feedback currents in biphasic bipolar waveform:

min
a1(k+l|k),a2(k+l|k),w1(k+l|k),w2(k+l|k),w4(k+l|k),nt(k+l|k)

l=0,1,··· ,Nc−1

Jp(k) (8.5a)

such that

Ts = nt(k + l | k)[w1(k + l | k) + w2(k + l | k)(1 + a1(k + l | k)/a2(k + l | k))

+ w4(k + l | k)] for 0 ≤ l ≤ Nc − 1,

(8.5b)
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Figure 8.3: Receding horizon controller based closed-loop BMI design I: Here the
receding horizon controller designs the “Artificial Feedback” stimulating current in a
charge balanced bi-phasic waveform to stimulate “Network of Spiking Neurons” such
that the system output (“Single Joint Position” trajectory) mimics the “Desired Joint
Position” trajectory.
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Figure 8.4: Receding horizon controller based closed-loop BMI design II: Here the
receding horizon controller designs the “Artificial Feedback” stimulating current in a
charge balanced bi-phasic waveform to stimulate “Network of Spiking Neurons” such
that the system output (“PPV Neurons Average Firing Rate”) mimics the “Desired
PPV Neurons Average Firing Rate”.

a1(k + l | k) ∈ [0, Amax] for 0 ≤ l ≤ Nc − 1, (8.5c)

a2(k + l | k) ∈ [Amin, 0] for 0 ≤ l ≤ Nc − 1, (8.5d)

wi(k + l | k) ≥ 0 for 0 ≤ l ≤ Nc − 1, i ∈ {1, 2, 4}, (8.5e)

nt(k + l | k) ∈ {1, 2, 3, · · · } for 0 ≤ l ≤ Nc − 1. (8.5f)

Here, Jp(k) =
∑Np−1

m=0 (O(k + m + 1 | k) − R(k + m + 1 | k))2 is the cost function.

Nc and Np are the control and the prediction horizon respectively. a1(k + l | k),

a2(k + l | k), w1(k + l | k), w2(k + l | k), and w4(k + l | k) for l = 0, 1, · · · , Nc − 1

characterize a single biphasic pulse of current I(t) shown in Figure 8.1. w3(k + l |

k) = w2(k + l | k)(a1(k + l | k)/a2(k + l | k)) for l = 0, 1, · · · , Nc − 1 is given by
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the total charge balance in a single biphasic pulse of current I(t). Ts is the decoder

sample time. nt(k + l | k) for l = 0, 1, · · · , Nc − 1 is the number of biphasic pulse in

the sample time Ts.

In Figure 8.3, the measured output of the system “Joint Position” O(k | k) at

a given time k is the position of the agonist muscle i i.e. pi(k | k). R(·) represents

the desired position trajectory. In Figure 8.4, the measured output of the system

“Average Firing Rate” O(k | k) at a given time k is the average firing activity of

the area 5 “PPV” neurons associated with the agonist muscle i i.e. xi(k | k). R(·)

represents the desired average firing activity of the area 5 “PPV” neurons. The

control problem defined by equation (8.5) can be solved using the approach described

in Chapter 5.

8.2.2 Continuous Differentiability of First Passage Time in

Stochastic Spiking Neuron Models and Networks

In Chapter 3, we derived conditions to ensure continuous differentiability of inter-spike

intervals (ISIs) with respect to (w.r.t.) decision variables in a network of non-chaotic

deterministic spiking neuron models. It is well known that single neurons are intrin-

sically noisy [45, 57]. Typically, this noisy characteristic of single neurons is captured

in deterministic dynamical models of spiking neurons by including an additive or

multiplicative noise term in form of an external input current to the model. In this

case, the dynamical model takes the form of stochastic differential equations and the

resultant sequence of ISIs (also known as the first passage times) becomes a stochastic

process [135, 159, 160, 150] (also see Chapter 1). From optimization point of view,

relevant questions here would be to find conditions under which the expectation or the
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conditional expectation of first passage time is continuously differentiable w.r.t. to

decision variables. Deriving such conditions would not only allow more rigorous anal-

ysis of closed-loop neuroprosthetic systems under various feedback scenarios studied

in Chapter 4 by formulating stochastic control problems but would also facilitate the

development of realistic learning algorithms to train a network of spiking neurons.

8.2.3 Minimum Time Control Problem in Closed-Loop Neu-

roprostheses: An Extension

In Chapter 4, we proposed a generalized control-theoretic framework using optimal

receding horizon control theory for facilitating rigorous analysis of closed-loop neu-

roprostheses under various sensory feedback scenarios. Using this framework, we

formulated a minimum time control problem to drive a single joint prosthetic arm

using the activity of a single cortical motor neuron. It is well known in neuroscience

that various functional areas of the brain contribute in controlling even a single joint

movement tasks. As an example, we have shown in Chapter 5 that a minimal cortical

circuit for single joint movement tasks involves various types of neurons even from a

single cortical functional area (see Figure 5.1). One possible way to make our study

in Chapter 4 more realistic is to develop a functionally connected network of cortical

neurons such as shown in Figure 8.5 and use the spike train of the primary motor

cortex neurons to drive a single joint prosthetic arm.

As shown in Figure 8.1, the neurons of PFC area, believed to be involved in the

long term planning of movement, are stimulated using input currents designed by the

external controller. The evoked firing activity of neurons in the PFC area eventually

stimulate the network by transferring information through synaptic connectivities in
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Figure 8.5: A simplified function cortical network model of spiking neurons involved
in motor tasks. Here solid lines are showing strong connectivity and dashed lines are
representing weak connectivity among cortical areas. Connectivity among various
areas, shown here, are based on the existing experimental evidences [87].
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the network. In terms of input-output model, the manipulating input to the network

is the external current IE(t) and the measured output is the spike train of M1 neurons.

At the simplest level, each cortical area in the functional cortical circuit model

shown in Figure 8.1 can be represented by a single neuron whose dynamics can be

given by equations (1.3), (1.4), (1.5) and (1.7). The dynamical decoder dynamics,

the single joint prosthetic arm dynamics and the proprioceptive feedback current can

be given by equations (4.3), (4.4) and (4.5) respectively. The inter-spike intervals

(ISIs) of the primary motor cortex (M1) neuron can be used by the decoder to drive

the single joint prosthetic arm. With this, the minimum time control problem in the

receding horizon framework can be defined by equation (4.6). To solve the minimum

time control problem numerically, one would require at least first order continuous

differentiability of ISIs of the primary motor cortex neuron w.r.t. IEk+j|k for j =

0, 1, · · · , Nc(k)−1 and k ≥ 1 (see equation (4.6) in Chapter 4 for detailed description).

In Chapter 3, we derived sufficient conditions to ensure continuous differentiability

of ISIs w.r.t. decision variables (in this case IEk+j|k) in a network of synaptically con-

nected spiking neurons. By applying these results on the closed-loop neuroprosthetic

system model defined by equations (1.3), (1.4), (1.5), (1.7), (4.3), (4.4) and (4.5), it is

easy to verify that the ISIs of the primary motor cortex neuron are not continuously

differentiable w.r.t. IEk+j|k for j = 0, 1, · · · , Nc(k) − 1 and k ≥ 1. One way to ensure

continuously differentiable of these ISIs w.r.t. IEk+j|k is to replace K(t − tfj ) model

given by equation (1.7) by

K(t− tfj ) =
qj
τs
(t− tfj )2 exp(−(t− tfj )/τs)Θ(t− tfj ), (8.6)
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and the decoder (joint torque) model given by equation (4.4) by

τ(t) = τ(tk) + (2α/β)(t− tk)2 exp(−(t− tk)/β) for t ∈ (tk, tk+1] (8.7)

with τ(t1) = τ(0) = 0. Here, α and β are fixed parameters. These modifications in the

system model ensure that the inter-spike intervals (ISIs) of neurons in the functional

network are continuously differentiable w.r.t. IEk+j|k for j = 0, 1, · · · , Nc(k)−1 and k ≥

1. With the new system model, the performance of the closed-loop neuroprosthetic

system can be analyzed rigorously under various feedback scenarios by solving the

minimum time control problem using a local gradient based optimization algorithm.

Further extension of the neuroprosthetic system model by including more than one

neurons in individual cortical areas, a dynamical model of cerebellum, and multi-joint

prosthetic arm model would allow one to investigate principles of motor coordination

during complex reaching and grasping tasks and to study the effect of learning on the

closed-loop performance of neuroprosthetic systems.

8.2.4 Stochastic Receding Horizon Control of Constrained

Non-linear Stochastic Dynamical Systems

In Chapter 6, we proposed an optimal broadcast stochastic receding horizon control

strategy to stabilize the aggregate system behavior in a vast number of stochastically

behaving agents. In Chapter 7, we extended this strategy to trap an ensemble of

particles driven by Brownian motion optimally for an extended period of time. In

both systems, we have ignored interactions among entities and used discrete time

simplified models to represent the stochastic dynamical behavior of a single entity.

233



These simplified models with appropriate assumptions allowed us to develop the ba-

sic framework of the optimal broadcast stochastic receding horizon control strategy.

However in many physical and biological applications, typical models used to repre-

sent dynamics of an agent or a particle undergoing Brownian motion are in the form

of continuous time stochastic differential equations.

Recent advances in stochastic receding horizon control policy have shown the sta-

bilization of constrained linear systems with additive as well as multiplicative noise

in both the states and the control actions (see [129, 73] and references therein). An

extension of this policy for stabilizing constrained non-linear stochastic dynamical

systems would not only facilitate emerging applications in small length scale dynam-

ical systems but would also allow more rigorous analysis of closed-loop neuropros-

thetic systems under various feedback scenarios studied in Chapter 4 and the design

of closed-loop BMIs presented in Chapter 5 using non-linear stochastic models of

cortical neurons such as the stochastic Izhikevich single neuron model.
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