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[80] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

xi



3.4 The change in binding free energy data calculated from simulations

(symbols) are shown as a function of crowder-protein attraction

strengths (ϵa) for various crowder packing fractions ϕ for the Cc/CcP

complex. The fit curves for different ϕ converge around the point

where ∆∆F bind ≈ 0 [80] . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.5 Cumulative distribution of bound complexes in the presence of repul-

sive crowders are shown as a function of dRMS calculated based on

the experimental native structure for the Cc/CcP. [80] . . . . . . . . 64

3.6 Cumulative distribution of bound complexes in the presence of attrac-

tive crowders are shown as a function of dRMS calculated based on the

experimental native structure for the Cc/CcP. [80] . . . . . . . . . . . 65

3.7 A. The specific bound complexes are shown where the red-blue com-

bination is used for the experimental structure (PDB:2pcc) and the

red-green combination is used for the complex structure obtained from

simulation. B. Several instances of the nonspecific bound complexes

(red-yellow combination) are shown and the experimental native struc-

ture red-blue is also shown for reference. [80] . . . . . . . . . . . . . . 66

4.1 A. Solution structure of the pKID-KIX complex. KIX contains three α

-helical domains. pKID contains two helical domains - αA (colored red)

and αB (colored green). B. Cα based coarse-grained representation of

the pKID-KIX complex. C. Schematic of our model system in the

presence of crowders. . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.2 Titration curves obtained from simulations over a wide range of crow-

der packing fractions and crowder sizes. The black data points repre-

sents the bulk data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

xii



4.3 Titration curve (magenta line) obtained for a protein-crowder attrac-

tion strength of ϵa = 0.9kBT (magenta squares) and crowder size
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Abstract

The cellular environment is highly crowded owing to the presence of several kinds of

macromolecules such as lipids, sugars, nucleic acids, and proteins, along with large

organized macromolecular arrays such as the Chaperones. Thus, most of the in vivo

processes such as the interaction between proteins and folding of proteins into their

compact three-dimensional structures, that are of paramount biological importance,

occur in restricted spaces. The primary focus of this dissertation is to broaden the

understanding of protein folding and protein-protein interactions in a cell mimetic

environment.

We have reviewed the important developments that have furthered our under-

standing of the effects of macromolecular crowding on protein-protein interactions.

We have outlined the development of a comprehensive crowding theory that can pre-

dict the binding thermodynamics considering both repulsive and attractive protein-

crowder interactions. It has been observed that favorable weak interactions between

proteins and crowders destabilize the protein complex formation in contrast to the

traditional understanding that owing to the excluded volume effects, the primary

effect of macromolecular crowding is to stabilize the bound complex.

Additionally, we have performed replica exchange molecular dynamics (REMD)

simulations to study the binding thermodynamics of proteins modeled as conforma-

tionally ‘flexible’ entities under the influence of macromolecular crowding. We observe

similar destabilization due to attractive interactions between proteins and crowders.

Interestingly, we observe that the Scaled Particle Theory, originally developed for

hard-sphere particles, can be utilized to predict the binding thermodynamics of flex-

ible proteins.
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In order to study the effects of confinement, we have performed extensive REMD

simulations using all-atom explicit solvent models to study the conformational stabil-

ity of the sixteen residue GB1-hairpin confined between planar Lennard-Jones walls.

We observe that confinement significantly alters the free-energy landscape. Under

confinement, the misfolded state of the peptide is completely absent owing to the

preferential adsorption of the hydrophobic residues on the confinement walls.

Finally, in order to study the effect of cylindrical confinement, we have performed

extensive REMD simulations of polyalanine helices confined within carbon nanotubes

using all-atom explicit solvent models. We observe that the α-helix propensity of

polyalanine is significantly reduced under confinement and that the effect is indepen-

dent of the lengthscale of confinement.
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Chapter 1

Introduction

Protein folding and protein-protein interactions in vivo occur in a highly crowded

and heterogeneous environment, owing to the presence of biomolecules such as DNA,

RNA and proteins in high concentrations. Biomolecules other than the protein(s)

under study are referred to as ‘crowders’ and the crowded cellular environment is

expected to alter both the thermodynamics and kinetics of biophysical processes

relative to what is observed in bulk. Experimental and theoretical studies probing the

effects of macromolecular crowding [142, 155] on protein folding and protein-protein

interactions have shown that the effect of the presence of crowder particles range

from volume exclusion to non-specific attractive interactions between the proteins

and crowders.

In the limit where the dimensions of the crowder particles are significantly larger

than the proteins, thereby static at the protein’s relevant timescales, macromolecu-

lar crowding effects can be approximated by confinement effects. Moreover, protein

folding in vivo occurs in the presence of cellular machinery, such as the approxi-

mately spherical chaperonin cavity, that can assist folding by preventing misfolding

3



Chapter 1

and aggregation [56, 152]. The exact mechanism of these chaperones is still unknown.

Folding of proteins may also be coupled directly to their synthesis, commonly referred

to as co-translational folding, during which newly synthesized proteins emerge out of

the narrow, roughly cylindrical, ribosome exit tunnel [55, 43]. Additionally, protein

folding may also occur near the cellular membrane surfaces which provide the basis of

cellular compartmentalization [40]. Thus, confinement refers to the volume excluded

by a fixed (or confining) boundary to the protein(s) under study.

The steric excluded volume effects of ‘inert’ crowding agents on the formation

of complexes had been the prime focus of most of the studies [98, 153, 78]. How-

ever, several additional effects arising due to electrostatic interactions, non-specific

attractive interactions (like hydrophobic interactions), and hydrogen bonding maybe

important in a crowded environment. In the early models of crowding developed

by Minton, attractive interaction potentials were approximated by an effective hard-

sphere potential [98]. However, more serious consideration to the effects of attractive

interactions between proteins and crowders on protein-protein association has been

given quite recently [31, 71, 124]. These studies have highlighted the importance

of accounting for enthalpic effects arising from attractive interactions in addition to

commonly invoked excluded volume effects. It was found that the enthalpic effects

can actually increase the binding free energy, thereby destabilizing the bound complex

in contrast to predictions based on theoretical models capturing solely the entropic

effects.

It has been shown using theoretical arguments, that confining a protein in an

‘inert’ space would stabilize the protein against reversible unfolding [154]. This sta-

bilization could be explained to be arising from entropic forces, where the confining

entities are expected to exclude an increased number of conformational states of the

4



Chapter 1

unfolded protein as compared to the folded state. A similar argument was put for-

ward by Ziv et al. [159] while elucidating the role of the ribosome exit tunnel in

stabilizing α-helices. The ribosome exit tunnel was modeled as a cylindrical cavity

in their studies. Entropic stabilization of the folded state has also been suggested in

the simulation studies of Takagi et al. [135]. Using a coarse-grained model they have

shown that the shift in the folding temperature with respect to bulk scaled with the

radius of the confining cage. Baumketner et al. have shown that repulsive confine-

ment raises the collapse temperature of peptides [10]. Another study by Rathore et al.

showed that the stabilization of proteins under confinement varies with the nature of

the confining potentials [119]. They showed that the effect of increased confinement

of a soft-repulsive potential on a protein is the destabilization of the folded state.

Mittal and Best have shown that the effect of the confining entity on the folding

thermodynamics and kinetics is nearly independent on the geometry of confinement.

Additionally, they have shown that the effects of confinement are specific to the pro-

tein under consideration [101]. Using simple lattice models it has been shown that

confinement enhances the rate of protein folding [21]. Hayer-Hartl et al. have studied

the dependence of the rate of folding of a polypeptide confined within a spherical cav-

ity upon the size of the cavity of confinement. They showed using simple analytical

expressions that the rate of two-state folding is maximized at an intermediate size of

the spherical cavity and this optimal size increases with increasing molecular weights

of polypeptides [58]. Maximization of folding rates at an optimum cavity size has

been also been observed in simulation studies of Cheung et al. [25]. They also show

that the yield of folding can be enhanced by repeated switching between favorable

(hydrophobic) and unfavorable (hydrophilic) interactions between the peptide and

the confining cavity.
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However, most of these studies represented proteins using polymer models and

solvent effects were not considered directly. The seminal role of water molecules

in driving various biomolecular processes is widely recognized now [68]. The first

study probing the behavior of proteins under confinement, in the presence of explicit

solvent was performed by Lucent et al. [92]. They found, that the primary effect

of repulsive confinement on a protein immersed in a bath of water molecules is the

destabilization of the folded state. Repulsive confinement is a natural choice as it

acts as the basic simplification to represent physical boundaries in a system without

any effect on the biomolecule under study. Their study highlighted that the solvent-

mediated effect was more dominant than the excluded volume effect of the confining

entity on the folding of the peptide. In a later simulation study, Sorin and Pande

have shown that confining the α-helical polyalanine peptide with explicit solvent

inside carbon nanotubes denatures peptide helicity [129]. They have shown that

α-helicity decreases monotonically with increasing confinement and correlates with

the decrease in solvent entropy due to confinement. Tian et al. have shown that

for Trp cage, non-polar confinement stabilizes the folded state due to the effects of

volume reduction destabilizing the unfolded state. However, polar confinement has

a net destabilizing effect arising from the competitive entropic forces stabilizing the

folded state and the enhanced interactions between the charged side chains of the

peptide and the surface of the confinement [138]. Another study on the Trp cage

peptide under hydrophobic confinement showed that adsorption of the peptide on

the hydrophobic walls of confinement stabilizes intermediate structures not observed

in bulk [95]. Trp cage has been a popular model for studying protein folding as

it has been found to fold rapidly and spontaneously into a globular structure with

well-defined secondary and tertiary structure elements. Moreover, it has been studied
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extensively by both experiments and simulations [97] and thus acts as a natural choice

for studying protein folding in perturbed environments.

Several experimental studies have been conducted attempting to understand the

folding stability of peptides in cell-like milieus. Generally, encapsulation is either

achieved by porous silica gels or by bis(2-ethylhexyl) sulfosuccinate (AOT) reverse

micelles. In both cases, the cage sizes can be controlled. Ravindra et al. have

shown that the stability of the protein RNase A confined in the mesoporous silicate

system is significantly stabilized with the melting temperature of the protein being

raised by ≈30oC. Peterson et al. utilized a three-helix bundle protein of de novo

design, α3W, and mutated some of the residues such that it becomes unfolded in a

dilute solution. When the variant α3W was encapsulated in AOT reverse micelles

with a low (smaller cage) water loading (ratio of water to AOT), NMR experiments

revealed helical propensities corresponding to that of the non-mutated α3W [113]

suggesting stabilization of folded states due to confinement. Mukherjee et al. observed

increased helix formation of alanine-rich peptides in AOT reverse micelles [107]. They

attributed the increased helix formation to decreased hydration of backbone amide

and carbonyl groups.

Thesis Organization

The purpose of this thesis is to broaden the understanding the effects of macro-

molecular crowding on protein-protein interactions, and study the effect of simple

confinement entities on protein folding using molecular dynamics simulations cou-

pled with enhanced sampling methods. Although there has been significant progress

in the experimental forefront [26, 67, 114], comprehensive understanding of protein
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folding and protein-protein interactions relies, to a great extent, on molecular dynam-

ics simulations that allow for characterization of the dynamics of proteins at spatial

and temporal scales difficult to access by experiments [75, 82]. Chapter 2 describes

the standard molecular dynamics simulation protocols along with enhanced sampling

methods. In chapter 3, important developments towards a comprehensive under-

standing of protein-protein interactions under the effect of macromolecular crowding

are reviewed. Understanding of macromolecular crowding effects on protein-protein

interactions usually considers proteins as ‘rigid’-entities. Chapter 4 investigates the

effects of macromolecular crowding on protein-protein interactions considering the

interacting proteins as flexible entities. Chapters 5 and 6 investigate the effects of

confinement using simplistic confining entities such as planar walls and cylindrical

carbon nanotubes respectively. Below is an elaborate outline of the latter chapters in

the thesis:

Chapter 2: Molecular Dynamics Simulations of Biomolecules

In this chapter we describe in detail the standard protocols usually employed while

performing molecular dynamics simulations. Additionally, two methods employed to

enhance sampling of the conformational space of proteins are described. We have

performed extensive replica exchange molecular dynamics (REMD) [134] simulations

with alanine dipeptide and the GB1-hairpin in explicit solvent. Additionally, we have

also performed replica exchange with solute tempering [145] (REST2) simulations

using the same assemblies. We show that although REST2 appears to be an excel-

lent alternative in terms of improvement of computational efficiency, there are some

differences between the results obtained using REMD and REST2. We conclude that

REST2 requires further investigation using various forcefields and peptide models.
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Chapter 3: Effects of Macromolecular Crowding on Protein-Protein

interactions

In this chapter, we describe the important developments in recent years that

have furthered our understanding and even allowed prediction of the consequences

of macromolecular crowding on proteinprotein interactions. We outline the develop-

ment of a crowding theory developed in our group that can predict the change in

binding free energy due to crowding quantitatively for both repulsive and attractive

proteincrowder interactions. One of the most important findings from our recent

work is that weak attractive interactions between crowders and proteins can actually

destabilize protein complex formation as opposed to the commonly assumed stabiliz-

ing effect predicted based on traditional crowding theories that only account for the

entropic-excluded volume effects. We also discuss the implications of macromolecular

crowding on the population of encounter versus specific native complex.

Chapter 4: Effects of Macromolecular Crowding on the binding ther-

modynamics of flexible proteins

In chapter 3, the effects of macromolecular crowding on protein-protein interac-

tions has been discussed with the assumption that proteins are ‘rigid’-bodies inter-

acting with each other. However, in reality, proteins are flexible entities. Morever,

several well-characterized protein-protein interactions involve disorder-to-order tran-

sitions upon binding, which is called coupled binding and folding. One or even both

proteins can be disordered prior to the interaction. In such cases, it is imperative to

consider flexibility. We have studied the effects of macromolecular crowding on the

thermodynamics of binding proteins in which the proteins are represented as ‘flexible’

bodies using a coarse-grained representation. We have studied the effects of both re-

pulsive and attractive crowders in order to study the effects of volume exclusion and
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non-specific interactions between the crowders and binding proteins. Additionally,

we also show, how our comprehensive understanding of binding of ‘rigid’ proteins can

be utilized to study the binding of ‘flexible’ proteins.

Chapter 5: Planar confinement significantly modulates the Free-Energy

landscape of GB1 hairpin

In this chapter, we study the effects of confinement between planar walls on the

folding thermodynamics of a β-hairpin, using large-scale replica-exchange molecular-

dynamics simulations with an all-atom model and explicit solvent. We find that the

folding free-energy landscape of this peptide observed in bulk is significantly modified

when the peptide is confined between the walls. Most notably, the propensity of the

peptide to form a misfolded state observed in the bulk solution becomes negligible

under confinement. The absence of the misfolded state under confinement can be

explained by an increased tendency of hydrophobic aromatic side chains to stay near

the walls, because the misfolded state is characterized by a nonnative arrangement

of aromatic side chains. These results from a simple confinement model may provide

clues about the role of chaperonin confinement in smoothing folding landscapes by

avoiding trapped intermediates.

Chapter 6: Nanotube confinement de-stabilizes helical propensities of

peptides

In this chapter we study the effects of confinement within the cylindrical cav-

ity of carbon nanotubes on α-helical peptides. We have performed extensive replica

exchange molecular dynamics simulations in explicit solvent, with all-atom represen-

tations of the carbon nanotube and peptide. Various degrees of confinement has been

studied by confining the peptide within nanotubes of varying diameters. We observe

that the primary effect of nanotube confinement is the destabilization of α helices
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and that this effect is nearly independent of the diameter of the cylindrical cavity.

Additionally, we also observe that extended conformations of peptides are stabilized

under such conditions.

11



Chapter 2

Molecular Dynamics Simulations of

Biomolecules

2.1 Introduction

Seminal research in the past have provided atomic resolution models of biomolecules

including various proteins, DNA and the RNA. Although information regarding the

static structures of even single molecules can be obtained with great accuracy us-

ing a wide variety of experimental methods [104, 130, 48, 6], the molecules are, in

reality, dynamic and their motions are critical to function. Additionally, it might

be extremely challenging to devise experimental protocols probing the behavior of

these molecules under conditions resembling that of the living cell. Moreover, exis-

tence of functional, yet intrinsically disordered protein domains [35] posits signifi-

cant challenges in characterizing conformations experimentally. Molecular Dynamics

(MD) Simulations provide insight into the workings of biomolecular systems at spatio-

temporal scales usually difficult to probe by experimental methods.

12



Chapter 2

Recent developments hold significant promise to increase the utility of MD sim-

ulations in the study of biomolecular systems [82]. First, accurate simulations of

biological systems to the atomistic detail at physiologically relevant timescales, are

possible owing to the recent advances in parallelization schemes achieved through

general purpose computer-chips, graphical processing units and even development of

special-purpose parallel architectures [32]. Second, utilization of enhanced sampling

methods, in combination with the improvement of force fields (or energy functions)

has made it possible to extensively sample the conformational space of proteins and

other biomolecules [161]. Improved sampling, reveals shortcomings in force fields usu-

ally not elucidated by shorter simulations. Third, development of simplified models,

based on implicit solvation and coarse-graining can be used to access even longer

timescales. Finally, concurrent progresses in laboratory methods offer opportunities

to compare computational results to experimental data gathered on nearly similar

timescales thereby validating models and methods underlying molecular simulations

[125].

In this chapter, we describe the fundamentals of molecular dynamics simulations

followed by a description of enhanced sampling methods.

2.2 Fundamentals of Molecular Dynamics Simula-

tions

Molecular simulations are based on the validity of a few assumptions. The first of these

is the Born-Oppenheimer approximation which allows the wavefunction of a molecule

to be broken into its electronic and nuclear components. The Born-Oppenheimer

approximation stems from the fact that the inertia of the electrons are negligible as
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compared to the inertia of the nucleus and thus, the potential energy is calculated as

a function of the nuclear positions only. Molecular dynamics simulations are based

upon a model of interactions within the system which comprises of stretching of bonds,

opening and closing of angles, the rotations about single bonds and the inter-molecular

interactions between atoms which are not involved in any bonded interaction. The

set of parameters, and mathematical functions, which describe these interactions,

collectively constitute the force field. One of the key attributes of a force field is

transferability, for it enables a set of parameters developed and tested on relatively

small number of cases to be applied to a much wider range of problems. Additionally,

parameters developed from data on small molecules can be used to study larger

molecules such as proteins and DNA molecules.

Many of the molecular modeling force fields are interpreted in terms of the intra-

and inter- molecular forces within the system under study. There are energetic penal-

ties that are associated with the deviation of bonds and angles away from their ref-

erence or equilibrium values. Additionally there is a function that describes how the

energy changes as bonds are rotated and finally the force field contains terms that

describe the interaction between non-bonded parts of the system. This representa-

tion allows various terms to be ascribed to changes in specific internal coordinates

such as bond lengths, angles, the rotation of bonds or movements of atoms relative to

each other. A functional form for such a force field that can be used to model single

molecules or assemblies of atoms and/or molecules is:
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U(rN) =

∑
bonds

ki
2
(li − li,0)

2 +
∑
angles

ki
2
(θi − θi,0)

2 +
∑

torsions

Vn
2
(1 + cos(nω − γ))

+
N∑
i=1

N∑
j=i+1

(
4ϵij

[(
σij
rij

)12

−

(
σij
rij

)6]
+

qiqj
4πϵ0rij

)
.

(2.1)

U(rN) denotes the potential energy, which is a function of the positions r of N

particles (usually atoms). The various contributions are schematically represented

in figure 2.1. The top row of eq. 2.1 refers to the bonded interactions within the

system of atoms. The first term models the interaction between pairs of bonded

atoms, modeled here by a harmonic potential that gives the increase in energy as the

bond length li deviates from the reference value li,0. The second term is a summation

over all valence angles in the molecule, again modeled using a harmonic potential

(a valence angle is the angle formed between three atoms A-B-C in which A and

C are both bonded to B). The third term is a torsional potential that models how

the energy changes as the bond rotates. The fourth term represents the contributions

from the non-bonded interactions. This is calculated between all pairs of atoms (i and

j) that are in different molecules or that are in the same molecule but separated by

at least three bonds (i.e. have a 1,n relationship where n ≥ 4). In a simple force field

the non-bonded terms are usually modeled using a Lennard-Jones potential for van

der Waals interactions (the first term in the bottom row of eq. 2.1) and a Coulomb

potential term for electrostatic interactions (the second term in the bottom row of

eq. 2.1).

To define a force field not only does the functional form needs to be specified but

also the parameters (i.e. the various constants such as ki, Vn, σij, ϵij in eq. 2.1). Two

force fields may use an identical functional form but different parameters. It should
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be noted that the force fields are usually empirical since most of the parameters are

derived from different types of experimental data [94]. Some of the most popular force

fields used are AMBER [28], CHARMM [23] and GROMOS [127]. To study a partic-

ular biomolecular system, one needs to perform molecular simulations with various

force fields. The one that satisfies most of the important experimental characteristics

of a control system consisting of a particular biomolecule is usually chosen to study

more sophisticated assemblies with the same. An example of such an approach can

be found in the works of Best et al. [18].

Having chosen a particular force field to describe a biomolecular system, two

principal aspects constitute a molecular dynamics calculation: a. the algorithm used

to integrate the equations of motion, b. the calculation of forces using information

from the force field, which should be done accurately and efficiently. Various molecular

simulation engines with emphasis on biomolecular simulations have been developed

over the past few years [111, 116, 61]. All the simulations in this work has been

carried out using the Gromacs Simulation package [61]. We focus on each of the

above mentioned aspects below:

2.3 Algorithms used to integrate the equations of

motion

The position of a particle at a time t+∆t is expressed in terms of its position, velocity,

and acceleration at time t according to:

ri(t+∆t) ≈ ri(t) + ∆tṙi(t) +
1

2
∆t2r̈i(t), (2.2)
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Figure 2.1: Schematic representation of the key contributions to a molecular mechan-
ics force field.

where all terms higher than second order in ∆t have been dropped. Since ṙi(t) =

vi(t) and r̈i(t) = Fi(t)/mi by Newton’s second law, eq. 2.2 can be written as

ri(t+∆t) ≈ ri(t) + ∆tvi(t) +
∆t2

2mi

Fi(t). (2.3)

Now a velocity independent scheme is obtained by writing a similar expansion for

ri(t−∆t):
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ri(t−∆t) ≈ ri(t)−∆tvi(t) +
∆t2

2mi

Fi(t). (2.4)

Adding eqs. 2.3 and 2.4 and rearranging,

ri(t+∆t) = 2ri(t)− ri(t−∆t) +
∆t2

mi

Fi(t). (2.5)

Eq. 2.5 is known as the Verlet algorithm [143]. Given initial positions and veloc-

ities eq. 2.3 can be used to obtain positions at time t + ∆t after which eq. 2.5 can

be used to generate a trajectory of an arbitrary length. Velocities are constructed at

any point in the trajectory using:

vi(t) =
ri(t+∆t)− ri(t−∆t)

2∆t
. (2.6)

A variant of the Verlet integrator, known as the Velocity Verlet algorithm, explic-

itly evolves positions and velocities. This approach is more elegant, since the phase

space is composed of both positions and velocities (or momenta). In this method,

the initial condition is considered to be ri(t + ∆t) and vi(t + ∆t). Also, instead of

Fi(t), Fi(t + ∆t) are computed and the trajectory is evolved backwards in time to

ri(t) according to:

ri(t) = ri(t+∆t)−∆tvi(t+∆t) +
∆t2

2mi

Fi(t+∆t). (2.7)

Substituting eq. 2.2 for ri(t+∆t) into eq. 2.7 and solving for vi(t+∆t) yields:

vi(t+∆t) = vi(t) +
∆t

2mi

[Fi(t) + Fi(t+∆t)]. (2.8)
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Thus, the velocity Verlet algorithm uses both eqs. 2.3 and 2.8 to evolve positions

and velocities simultaneously.

Another similar scheme, Leapfrog integration algorithm has been used to generate

most of the data in the subsequent chapters. The Leapfrog scheme, conserves an-

gular momentum unlike the Velocity Verlet algorithm and calculates more accurate

velocities, using velocities at half time steps.

vi

(
t+

∆t

2

)
= vi

(
t− ∆t

2

)
+

Fi(t)

mi

∆t. (2.9)

The velocities at time t can be computed from

vi(t) =
vi(t+

∆t
2
) + vi(t− ∆t

2
)

2
, (2.10)

and the atomic positions are then obtained from

ri(t+∆t) = ri(t) + vi

(
t+

∆t

2

)
∆t. (2.11)

The main advantages of these integrators are that they are time reversible and

symplectic in nature. Time reversibility ensures that the motion in the phase space

can be traced back in time. The symplectic characteristic ensures that the area in the

phase space is preserved along the trajectory. Additionally, these algorithms conserve

energy and thus generate the microcanonical ensemble (constant N , V , E where N

are the number of particles, V is the volume of the system and E is the total energy).

However, most of the laboratory experiments performed correspond to either a

canonical (constant N , V , and T where T is the temperature of the system ) or a

isothermal-isobaric (constant N , P , T with P being the constant pressure acting on

the system) ensemble.
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Various thermostats have been developed [64] and Berendsen, Nosé-Hoover,

Langevin, velocity rescaling thermostates are the commonly used among others. Two

thermostats that have been extensively used to generate the results in the subsequent

chapters are discussed below.

2.3.1 Langevin Thermostat

In the implementation of this type of thermostat, r̈i in eq. 2.2 is expressed as

r̈i(t) = m−1
i Fi(t)− γi(t)ṙi(t) +m−1

i Ri(t), (2.12)

where Ri (t) is a stochastic force and γi a positive friction coefficient. Using this

thermostat, each particle i is considered to be moving as if it is immersed in a bath

of much smaller particles which continuously “jostle” the particle, giving rise to the

stochastic noise Ri(t) term in the force and provide a viscous drag proportional to

the velocity −γ(t)vi(t). The drag and the noise terms balance each other over time

and a canonical distribution is thus generated.

2.3.2 Nosé - Hoover Thermostat

In this formulation, the system Hamiltonian is extended by introducing a thermal

reservoir and a friction term in the equations of motion. The friction force is pro-

portional to the product of each particle’s velocity and a friction parameter ξ. This

friction parameter (or “heat bath” variable) is a fully dynamic quantity with its own

momentum (pξ) and equation of motion; the time derivative is calculated from the

difference between the current kinetic energy and the reference temperature.

r̈i in eq. 2.2 is expressed as
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r̈i(t) = m−1
i Fi(t)−Q−1pξṙi, (2.13)

and the equation of motion for the heat bath is :

ṗξ = (T − T0), (2.14)

where T0 is the reference temperature while T is the current instantaneous tem-

perature of the system. The strength of the coupling is determined by the constant Q

usually called the “mass parameter” of the reservoir in combination with the reference

temperature. The conserved quantity for the Nosé-Hoover equations of motion is not

the total energy, but rather

H =
N∑
i=1

pi

2mi

+ U(r1, r2, ..., rN) +
p2ξ
2Q

+NfkBTξ, (2.15)

where Nf is the total number of degrees of freedom.

In addition to thermostats, various barostats are also used in practice to gen-

erate the Isothermal-isobaric ensemble using molecular simulations. For an exten-

sive treatise the reader is referred to chapter 5 of [139]. In practice, there is no

widely agreed-upon theory of selecting and parameterizing the correct thermostat and

barostat that guarantees a correct and reliable simulation. General rules of thumb,

such as Berendsen thermostat/barostat for relaxation, and Nose-Hoover thermostat/

Parinello-Rahman barostat for production simulations, have been established as a

reasonably good practice.

One question that we have set apart thus far is: How do we calculate the forces

in the equations of motion?
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Figure 2.2: A. Lennard-Jones potential to model the van der Waals interactions
between atoms. B. The close neighbors of a molecule.

2.4 Calculation of forces acting on all molecules

The calculation of forces acting on all molecules in a system forms the kernel of a

molecular dynamics simulation program. The forces at a particular time-step t are

obtained from the negative gradient of the force field (eq. 2.1) using the coordinates

at t.

Fi(t) = −∇U(rN). (2.16)

For the simulation of conformationally flexible molecules such as proteins and

DNA molecules, the behavior is usually a complex superposition of different motions.

The high frequency (such as bond vibrations) are usually of less interest than the

lower frequency modes, which often correspond to major conformational changes. In

molecular dynamics simulations, the time step is dictated by the highest frequency

motion present in the system and thus, it would be of considerable benefit to be
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able to increase the time step without prejudicing the accuracy of the simulations.

Constraint dynamics enables individual internal coordinates or combinations of spec-

ified coordinates to be constrained, or ‘fixed’ during the simulations without affecting

other internal degrees of freedom. Various methods exist for applying constraints in

molecular dynamics simulations. The underlying principle of all these methods is the

minimization of constraint forces by the technique of lagrange multipliers or projec-

tion methods. Common methods used are SETTLE, SHAKE, RATTLE and LINCS

[87, 60].

During the computation of forces using eq. 2.16, calculation of the non-bonded

interactions is the most computationally intensive. Since this part of the code is

executed countless number of times, great care needs to be taken to make it as

efficient as possible. Various methodologies such as avoiding square roots methods

while evaluating odd-exponent potentials, preparing tables for evaluation of more

sophisticated potentials, usage of shifted potentials, etc. are discussed in Chapter 5

of [4]. The van der Waals forces are of the short-range order while the electrostatic

forces are long-range. We discuss a few methods for calculations of both short-range

and long-range forces below:

2.4.1 Calculation of short-range forces

Cutoff distance

For an N particle system, taking Newton’s third law into account, N(N − 1)/2 cal-

culations of forces are necessary per unit time step. In the short-range order, the

interaction energies between the particles rapidly decreases with the particle-particle

separation over a distance of only a few times the particle diameter.
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The most commonly used potential to calculate short-range forces is given by the

Lennard-Jones potential ULJ(r) which is expressed as:

ULJ(r) = 4ϵ

[(
σ

r

)12

−

(
σ

r

)6]
, (2.17)

where σ is the quantity corresponding to the particle diameter, and r is the

particle-particle separation. Fig. 2.2A shows the curve of the Lennard-Jones po-

tential. A steep potential barrier in the range r ≤ σ is illustrated, which induces

such a repulsive interaction that the particles are prevented from overlapping, and

an attractive interaction in the range r ≥ σ, which rapidly decreases to zero. These

characteristics of the potential indicate that the interaction energy after a distance

of approximately r = 3σ can be assumed to be negligible. Hence forces do not need

to be calculated in the range r > 3σ in simulations. The distance for cutting off the

calculation of forces is the cutoff distance rcoff .

Verlet Neighbor List Method

In the Verlet neighbor list method [137], a distance rl, which is longer than the cutoff

radius, is adopted, and for each particle i, a list is created of all the particles that are

within the range rl from its center. Referring to Fig. 2.2B, it is clear that particles

within range of r < rcoff are certainly within range of r < rl. Now the list of particles

within range of r < rl is renewed with a frequency such that the particles outside

r = rl cannot penetrate the shell r < rcoff . Hence it is sufficient to calculate the

forces between i and particles r < rcoff resulting in a significant reduction in the

amount of computational time.
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Figure 2.3: A. Construction of a system of periodic cells in the Ewald method. B. In
the Ewald summation method, the initial set of charges are replaced by a Gaussian
distribution (calculated in real space) to which a canceling charge distribution must
be added (calculated in the reciprocal space).

2.4.2 Calculation of long-range Forces

Interactions which decay no faster than r−n, n being the dimensionality of the sys-

tem, are problematic as their range is often greater than half the box length. The

charge-charge interaction, which decays as r−1, is particularly problematic in molec-

ular simulations. With the increase in computational power, various rigorous ways

of dealing with long-range forces can be considered, even in simulations of large sys-

tems. A variety of methods have been developed to handle long-range forces [87].

The method of Ewald summation, is discussed below:
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The Ewald Summation Method

In this method, a particle interacts with all the other particles in the simulation box

and with all of their images in an infinite array of periodic cells. Fig. 2.3A illustrates

how the array of the simulation cells is constructed; in the limit, the cell array is

considered to have a spherical shape. The position of each image box (assumed to be

cube of side L containing N charges) can be related to the central box by specifying

a vector, each of whose components is an integral multiple of the length of the box,

( ±iL,±jL,±kL ) ; i, j, k = 0, 1, 2, 3,etc. The charge-charge contribution to the

potential energy due to all pairs of charges in the central simulation box can be

written:

U(rij) =
1

2

N∑
i=1

N∑
j=1

qiqj
4πϵ0rij

, (2.18)

where rij is the minimum distance between the charges i and j. There are six

boxes at a distance L from the central box with coordinates ( rbox ) given by (0, 0, L),

(0, 0,−L), (0, L, 0), (0,−L, 0), (L, 0, 0) and (−L, 0, 0) (only four of these are shown in

the two-dimensional picture in Figure 2.3A). The contribution of the charge-charge

interaction between the charges in the central box and all images of all particles in

these six surrounding boxes is given by:

U(rij) =
1

2

6∑
n box = 1

N∑
i=1

N∑
j=1

qiqj
4πϵ0|rij + rbox|

. (2.19)

In general, for a box which is positioned at a cubic lattice point n (=

(nxL, nyL, nzL) with nx, ny, nz being integers):

26



Chapter 2

U(rij) =
1

2

∑
n

N∑
i=1

N∑
j=1

qiqj
4πϵ0|rij + n|

. (2.20)

| n | thus takes values 1,
√
2, .... This expression is often written in such a way as

to incorporate the interactions between pairs of charges in the central box (for which

| n |= 0):

U(rij) =
1

2

′∑
|n|=0

N∑
i=1

N∑
j=1

qiqj
4πϵ0|rij + n|

. (2.21)

The prime on the first summation indicates that the series does not include the

interaction i = j for n = 0.

There is, thus, a contribution to the total energy from the interactions in the

central box together with the interactions between the central box and all image

boxes. Also, there is a contribution from the interaction between the spherical array

of boxes and the surrounding medium. However, eq. 2.21 converges extremely slowly

and is conditionally convergent. A conditionally convergent series is a mixture of

positive and negative terms such that the positive terms alone form a divergent series

(i.e. a series which does not have a finite sum) as do the negative terms when taken

alone. The sum of a conditionally convergent series depends on the order in which

its terms are considered. The rapid variation at small distances also poses a problem

while considering the Coulomb interaction.

An elegant way while calculating the Ewald sum is to convert the summation into

two series, each of which converges much more rapidly. The mathematical foundation

for this is the following identity:

1

r
=
f(r)

r
+

1− f(r)

r
. (2.22)
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The aim is now to choose an appropriate function f(r) which will deal with the

rapid variation of 1
r
at small r and the slow decay at long r. In the Ewald method

each charge is considered to be surrounded by a neutralizing charge distribution of

equal magnitude but of opposite sign as shown in figure 2.3B . A Gaussian charge

distribution of the following functional form is commonly used

ρi(r) =
qiα

3

π3/2
exp(−α2r2). (2.23)

The sum over point charges is now converted to a sum of the interactions between

the charges plus the neutralizing distributions. The dual summation (the ’real space’

summation) is given by:

U =
1

2

N∑
i=1

N∑
j=1

′∑
|n|=0

qiqj
4πϵ0

erfc(α|rij + n|)
|rij + n|

, (2.24)

where erfc is the complementary error function, defined as

erfc(x) =
2√
π

∞∫
x

exp(−t2)dt. (2.25)

The Ewald method uses erfc(r) for the function f(r) in eq. 2.22. The crucial

point is that this new summation involving the error function converges rapidly and

beyond some cutoff distance its value can be considered negligible. The rate of con-

vergence depends upon the width of the cancelling Gaussian distributions; the wider

the Gaussian, the faster the series converges. Specifically, α should be chosen so that

the only terms in the series 2.24 are those for which | n |= 0 (i.e. only pairwise inter-

actions involving charges in the central box, or if a cutoff is used α is chosen so that

only interactions with other charges within the cutoff are included). A second charge
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distribution is added to the system which exactly counteracts the first neutralizing

(Fig. 2.3B). The contribution from this second charge distribution is

U =
1

2

N∑
k ̸=0

N∑
i=1

N∑
j=1

1

πL3

qiqj
4πϵ0

4π2

k2
exp

(
− k2

4α2

)
cos(k·rij). (2.26)

This summation is performed in reciprocal space. The vectors k are reciprocal

vectors and are given by k = 2πn/L. This reciprocal sum which corresponds to the

second term in eq. 2.23, too, converges much more rapidly than the original point-

charge sum. However, the number of terms that must be included increases with the

width of the Gaussians. There is thus a clear need to balance the real-space and

reciprocal-space summations; the former converges more rapidly for large α, whereas

the latter converges rapidly for small α. The Fourier transform of this summation

can be represented by a small number of reciprocal vectors. The sum of Gaussian

functions in real space includes the interaction of each Gaussian with itself. A third

self-term must therefore be subtracted:

Usubtract = − α√
π

N∑
k=1

q2k
4πϵ0

. (2.27)

A fourth correction term may also be required, depending upon the medium that

surrounds the sphere of simulation boxes. If the surrounding medium has an infinite

relative permittivity (as in the case of a conductor) then no correction term is required.

However, if the surrounding medium is a vacuum (with relative permittivity of 1) then

the following energy must be added:

Ucorrection =
2π

3L3

∣∣∣ N∑
i=1

qi
4πϵ0

ri

∣∣∣2. (2.28)

29



Chapter 2

The final expression is thus:

U =
1

2

N∑
i=1

N∑
j=1



∞∑
|n|=0

′ qiqj
4πϵ0

erfc(α|rij + n|)
|rij + n|

+
N∑
k ̸=0

1

πL3

qiqj
4πϵ0

4π2

k2
exp

(
− k2

4α2

)
cos(k·rij)

− α√
π

N∑
k=1

q2k
4πϵ0

+
2π

3L3

∣∣∣ N∑
i=1

qi
4πϵ0

ri

∣∣∣2
(2.29)

The Ewald sum is the most ‘correct’ way so far to accurately include all the effects

of long-range forces in a computer simulation. It has been extensively used [151, 50]

in simulations involving highly charged systems and is increasingly being applied to

other systems where electrostatic effects are important, such as proteins, DNA and

lipid bilayers. However, the Ewald summation is computationally expensive. Several

approaches have been proposed such as the use of fast Fourier transform (FFT) to

compute the reciprocal space summation. However, the FFT method requires that the

data are not continuous but are discrete values. In order to employ FFT in the Ewald

summation, the point charges with their continuous coordinates must be replaced by

a grid-based charge distribution. Each of the atomic charges are distributed among

the surrounding grid points in some fashion so as to reproduce the potential of the

charge at the original location. A number of variants on this general idea exist, such

as the particle-mesh Ewald (PME) method [30] and the particle-particle particle-mesh

Ewald summation [93]. The PME summation method has been extensively used to

generate most of the results in the subsequent chapters.
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2.5 Enhanced Sampling Methods

For a comprehensive understanding of molecular functions, it is imperative to ade-

quately sample the conformational space of biomolecules. However, most molecular

dynamics trajectories involving complex biomolecular systems are not ergodic and

leave many relevant regions of the conformational space unexplored. Typically, these

systems have frustrated or rugged energy landscapes. At low temperatures, it is dif-

ficult for the system to move between the relevant low-energy regions and thus the

probabilities of the system surmounting the energy barriers are almost negligible.

Surmounting energy barriers, are thus, rare events at low temperatures.

A wide range of methods [161, 1] exist which are designed to accelerate equilibra-

tion in simulations of systems with rugged energy landscapes. Two such enhanced

sampling techniques are discussed below:

2.5.1 Replica Exchange Molecular Dynamics

The replica exchange molecular dynamics simulation involves running MD simula-

tions at constant temperatures in parallel on a set of replica systems, each at dif-

ferent temperatures {T0, T1, T2, ..., Tk} where the temperatures are ordered from the

lowest T0 to the highest Tk. After every certain number of time steps, an attempt is

made to exchange configuration of a pair of neighboring replicas, and this exchange

is accepted satisfying the condition of detailed balance. In general, different repli-

cas can have not only different temperatures but also different potential functions

{U0(r0), U1(r1), U2(r2), ..., Uk(rk)} where ri represents the configurational coordinates

of the ith replica system. It is assumed that the probability of configuration ri in the

ith replica obeys the Boltzmann distribution. Therefore:
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P (ri) =
exp(−βiUi(ri))

Zi

, (2.30)

where β = (kBTi)
−1 and Zi is the partition function. The joint probability distri-

bution of the extended K-replica system is thus given by:

P =
K∏
i

Pi(ri) =
K∏
i

exp{−βiUi(ri)}
Zi

. (2.31)

At this point, the transition probability that the configuration rm of replica m

(with potential energy function Um) is exchanged with the configuration rn of replica

n (with potential energy function Un) is introduced. This probability is denoted

by w(rm, βm, Um; rn, βn, Un) and the probability of the reverse process is denoted by

w(rn, βn, Un; rm, βm, Um).

At equilibrium ,the detailed balance condition for the system is satisfied. That is,

before and after exchange:

Pm→n × w(rm, βm, Um; rn, βn, Un) = Pn→m × w(rn, βn, Un; rm, βm, Um), (2.32)

holds true. Here, Pm→n (Pn→m) is the joint probability of the extended K-replica

system to be in a state such that the configuration rm (rn) of replicam(n) is exchanged

with configuration rn (rm) of replica n (m).

This leads to

w(rm, βm, Um; rn, βn, Un)

w(rn, βn, Un; rm, βm, Um)
=
Pn→m

Pm→n

. (2.33)

The probabilities on the right hand side of eq.2.33 can be expressed as:
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Pm→n =
exp{−βmUm(rm)}

Zm

× exp{−βnUn(rn)}
Zn

×
K∏

i̸=m,n

exp{−βiUi(ri)}
Zi

,

Pn→m =
exp{−βmUm(rn)}

Zm

× exp{−βnUn(rm)}
Zn

×
K∏

i̸=m,n

exp{−βiUi(ri)}
Zi

.

(2.34)

For temperature replica exchange, all the replicas have the same potential energy

function and thus the subscripts of Ui are dropped. Also the transition probabilities

are expressed as w(rm, βm; rn, βn) instead of w(rm, βm, Um; rn, βn, Un)

Hence from eqs. 2.33 and 2.34:

w(rm, βm; rn, βn)

w(rn, βn; rm, βm)
= exp(−∆mn), (2.35)

where

∆mn = (βm − βn){U(rm)− U(rn)}. (2.36)

For the exchange between the adjacent replicas, the Metropolis acceptance crite-

rion is adopted. Thus:

w(rm, βm; rn, βn) =

 1 for ∆mn ≤ 0

exp(−∆mn) for ∆mn > 0
(2.37)

In order to perform replica exchange molecular dynamics simulations usually a

parallel computing scheme is used, in which a specific number of computer nodes (or

processors) is assigned to each replica.
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How do we choose the number of replicas? Let us consider a swap between two

adjacent temperatures Tm and Tn and that Tn > Tm. We expect that the configuration

drawn from the higher temperature will have a higher energy. Thus, U(rn) > U(rm)

and βm > βn. Hence ∆mn > 0 and thus from eq. 2.39, the exchange probability

will decrease, with increasing difference between the adjacent temperatures. Hence,

the temperatures must be placed close enough in order to achieve a good rate of

swaps. The usual protocol is to choose Tmin as the temperature at which we intend

to exhaustively sample the conformational space of a biomolecule. Tmax should be

chosen high enough such that free energy barriers can be crossed, but not so high as

to require many intermediate temperatures.

2.5.2 Replica Exchange with Solute Tempering (REST)

The replica exchange method (REM) has been extremely popular in the sampling

of biomolecular systems [18, 138, 53, 24]. However, the REM method is limited to

small systems, since the number of replicas required scales as O(
√
N) where N is the

number of degrees of freedom of the system. A large number of replicas are required

to simulate systems with large systems of physiological relevance. The main reason

for this is that the overall Hamiltonian grows with the system size. The acceptance

probability for the exchange between two adjacent replicas is exp(∆β∆E), a quantity

that depends exponentially on the change in energy. Thus for a large system a smaller

∆β must be chosen to obtain viable acceptance probabilities, which is obtained by

choosing replica systems spaced more closely in temperature and, thus, more replicas

to cover a given range of upper and lower temperatures. Replica exchange with

solute tempering (REST) is a method in which the exchange depends on the change

in energy of a small part of the system, achieving a sufficiently large acceptance
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probability for replicas with widely separated temperatures, thus reducing the need

for a large number of replicas.

For simulations of biomolecular assemblies, it is desirable to explicitly include

water molecules primarily because water plays an important role in various physio-

logical processes [122, 70] and also, implicit solvent models cannot quite capture the

thermodynamics as comprehensively as explicit solvent models [156, 51]. Usually in

solute-solvent systems, the primary interest is the conformational ensemble of the

solute. REST originally proposed by Liu et al. in [91] and later improved by Wang

et al. in [145] is based on the idea that the potential energy of the system scales with

temperature in such a way that the molecule of interest appears to get hotter, “but

the water stays cold as one climbs the replica ladder”. The acceptance probability

for replica exchange scales only with the number of degrees of freedom of the solute

molecule and not the water molecules. Since water molecules contribute significantly

to the Hamiltonian, REST holds promise for simulation of large, physiologically rel-

evant biomolecular systems.

Methodology

For the more general case where every replica has a different potential energy function,

eqs. 2.33, 2.34 and 2.35 yields

∆mn = −βm{Um(rm)− Um(rn)} − βn{Un(rn)− Un(rm)} (2.38)

A biomolecular system such as a protein solution consists of a protein molecule

(labeled p) dissolved in a large number of water molecules (labeled w), the system is

decomposed into two parts. The protein is taken as the central part(p) dissolved in

a bath of water molecules(w). The potential energy of the system can be written as
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U0(r) = Up(r) + Upw(r) + Uww(r). (2.39)

where Up, Upw and Uww are, respectively, the intramolecular energy of the protein,

the interaction energy between the protein and water, and the interaction of water

molecules with each other. Usually, the first two terms depend on only a relatively

small set of coordinates compared with the last term.

Now, the lowest replica is considered to be the replica of interest with the potential

energy given by eq. 2.39 at temperature T0. This replica is labeled by the index 0. For

the replicas at higher temperatures the potential energy surface is rescaled. According

to the original implementation (hereafter referred to as REST1), [91], the replica at

temperature Tm has the following potential energy:

UREST1
m (r) = Up(r) +

β0 + βm
2βm

Upw(r) +
β0
βm

Uww(r). (2.40)

Substituting eq. 2.40 in 2.38:

∆mn(REST1) = (βm − βn)
[{
Up(rn) +

1

2
Upw(rn)

}
−
{
Up(rm) +

1

2
Upw(rm)

}]
. (2.41)

It is to be noted that Uww, interaction energy between the water molecules does

not appear in eq. 2.41 and this is the reason only a relatively small number of replicas

are sufficient to achieve good exchange probabilities in REST1.

In REST1 both the potential energy and the temperature are different for different

replicas. According to the law of corresponding states, the thermodynamic properties

of a system with potential energy Em at temperature Tm. are the same as those for

a system with potential energy (T0/Tm)Em at temperature T0. Using this concept in
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the variant REST [145] method (hereafter referred to as REST2), all of the replicas

are run at the same temperature T0, but the potential energy for replica m is scaled

differently:

UREST2
m (r) =

βm
β0
Up(r) +

√
βm
β0
Upw(r) + Uww(r). (2.42)

The interaction energies in eq. 2.42 is achieved by scaling the bonded interaction

energy terms, the Lennard-Jones (LJ) ϵ parameters and the charges of the solute

atoms by (βm/β0), (βm/β0) and (βm/β0)
1/2 respectively, and the scaling factor for

the Upw term is a consequence of the combination rules used to calculate the cross-

interaction parameters for LJ interactions. The different scaling factor for the Upw

term in REST2 as compared to REST1 is reported to increase the efficiency of the

REST method [145]. The acceptance ratio in REST2 between replicas m and n is

determined by:

∆mn(REST2) = (βm−βn)
[{
Up(rn)−Up(rm)

}
+

√
β0√

βm +
√
βn

{
Upw(rn)−Upw(rm)

}]
.

(2.43)

REST2 has been implemented in GROMACS [61] as described in [136]. The

implementation involves defining two end potentials UL and UH as:

UL =
βL
β
Up +

√
βL
β
Upw + Uww

UH =
βH
β
Up +

√
βH
β
Upw + Uww

, (2.44)
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where β is the inverse of the system temperature, βL is the inverse of the lowest

effective solute temperature, which is usually the same as the system temperature

(thus βL = β), and βH is the inverse of the highest effective solute temperature.

Using the above potentials as two-ends, we now introduce many potentials as the

linear combination of these two end-potentials. The potential energy function for the

ith replica is defined by:

Ui = (1−λi)UL+λiUH =
βL(1− λi) + βH

β
Up+

(√
βL
β
(1− λi) +

√
βH
β
λi

)
Upw+Uww.

(2.45)

The replica with λi = 0 corresponds to the Hamiltonian of our interest and all the

other replicas are artificial ones introduced solely for the purpose of solute tempering.

To study the sampling efficiency of REST2 we have performed simulations with

two different peptides in explicit solvent: a. Alanine dipeptide which is the simplest

model peptide that has been extensively studied by both experimental and theoretical

methods [59]. For proof of concept, we have compared the results against standard

molecular dynamics and REMD simulations. b. To study the β-sheet propensity,

the GB1-hairpin has been simulated and the results are compared against REMD

simulations.

Simulation Details

a. Alanine Dipeptide

The Amber03w forcefield[16] was used to model the peptide along with the

TIP4P/2005 model for the 708 water molecules used to solvate the peptide. For

the solute tempering simulations, the two end-potentials are chosen such that TL =
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300 K and TH = 595K. The two intermediate ‘λ-points’ chosen are λ = {0.3, 0.65}.

Thus in all we have simulated four replicas in parallel. For the REMD simulations,

we have used 32 replicas spanning 300 - 650 K. Using eq. 2.45, we have scaled

the Hamiltonians such that the 300 K replica corresponds to the ‘λ-points’ chosen

for the solute tempering simulations. Using these scaled Hamiltonians, we have

performed three additional REMD simulations with 32 replicas spanning 300 - 650

K for comparison. Finally, we have performed four standard molecular dynamics

simulations using the scaled Hamiltonians (corresponding to the ‘λ-points’) at 300

K. All the simulations were performed in cubic box with side 2.8 Å using periodic

boundary conditions in the x, y,and z directions. The Langevin thermostat has been

used with a friction coefficient of 1 ps−1. The Particle Mesh Ewald method [41]

has been used to calculate electrostatic interactions with a real space cutoff of 1.0

nm. The cutoff for van der Waals interactions was also taken to be 1.0 nm. All the

simulations were performed for sufficient time to attain convergence.

b. GB1-hairpin

For the GB1-hairpin simulations the Amber03∗ [17] forcefield has been used along

with TIP3P model [72]for water molecules. For the solute tempering simulations using

the GB1-hairpin, the ‘λ-points’ chosen are λ = {0, 0.137, 0.273, 0.409, 0.545, 0.682,

0.841, 1.0}. The end potentials are chosen such that TL =300 K and TH =520 K.

Other details of the simulations can be found in [18].

Results and Discussion

Figure 2.4 shows the probability distribution functions of the potential energies

obtained from molecular dynamics (MD), replica exchange with solute tempering

(REST2) and replica exchange molecular dynamics (REMD) simulations. At the
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Figure 2.4: The probability distributions of the potential energies obtained from
Molecular Dynamics, Replica Exchange with Solute Tempering-2 and Replica Ex-
change Molecular Dynamics at different ‘λ’-points

40



Chapter 2

Figure 2.5: One dimensional free energy based on the ϕ (left) and ψ (right) angles of
the alanine dipeptide

Figure 2.6: Conformational free energies at 300 K in the Ramachandran space for
alanine dipeptide obtained from Molecular Dynamics, Replica Exchange with Solute
Tempering-2 and Replica Exchange Molecular Dynamics simulations.
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Figure 2.7: Time series of fraction of native minus non-native contacts Qn−nn of the
GB1 hairpin obtained from Replica Exchange with Solute Tempering - 2 simulations
initiated from A. the folded state and B. the unfolded state of the hairpin. The
guides are window averages obtained with a window size of 10ns. C. The window
averages are re-plot for comparison.
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Figure 2.8: The two-dimensional potential of mean force based on Qaa and Qn−nn

obtained from Replica Exchange Molecular Dynamics (left) and Replica Exchange
with Solute Tempering - 2 (right) simulations.

temperature of interest (300 K / λ = 0), it can be observed that the distributions

obtained from the MD and the REST2 simulations are almost exactly same. The

peak of the distribution obtained from the REMD simulation is slightly shifted

owing to a better sampling obtained. However, the mean values obtained from

the distributions are the same. It should be noted that at the other λ-points the

distributions exactly overlap with each other.

Figure 2.5 shows the free energies based on ϕ (left) and ψ (right) angles of alanine

dipeptide at 300 K. The characteristic minima of the free energy profile obtained

from REMD simulations based on ϕ are ϕ ≈ −75o, ϕ ≈ −150o and ϕ ≈ 75o. As

can be observed, the profiles obtained from REST2 and MD simulations compare

well with the one obtained using REMD simulation at ϕ ≈ −75o, and ϕ ≈ −150o.

Moreover, the barrier around ϕ ≈ −120o between the two states overlap with each

other. However, the region around ϕ = 75o is not sampled using MD simulation.
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The characteristic minima based on ψ are ψ ≈ −30o and ψ ≈ 150o. As is observed,

the free energy profiles obtained from all three simulations overlap with each other

around these minima. However, the barrier around ψ ≈ 110o is not sampled well

enough using MD simulation.

Figure 2.6 shows the Ramachandran map for the alanine dipeptide. It is ob-

served that the characteristic minima near the polyprolene-II helix region (−100o <

ϕ < −50o, 120o < ψ < 170o), the right-handed α-helical region, αR, (−80o < ϕ <

−60o,−40o < ψ < −10o) and the β-sheet region (−170o < ϕ < −150o, 150o < ψ <

170o) are sampled with nearly equal propensities from all the three simulations. How-

ever, there are subtle differences near the αL-region (60o < ϕ < 80o,−30o < ψ < 30o).

REST2 is found to sample the conformational space with nearly equal propensity as

REMD simulations.

To check convergence we have performed two sets of REST2 simulations with

the GB1-hairpin, one initiated from the unfolded state (Qn−nn = 0) and the other

initiated from the folded state (Qn−nn = 1) of the peptide. Figure 2.7 shows the

timeseries of Qn−nn for the λ = 0 replica. The red and the green guides in figure

2.7 A and B respectively, show the window averaged value with a window size of

10ns. In figure 2.7 C, the two window averaged data from the timeseries are plot for

comparison. It appears that using REST2 the system converges after ≈ 200 ns of

simulation time per replica. Using REMD, the simulations were performed for 0.5 µs

per replica [18], which is the same as the length of REST2 simulations performed here.

The computational efficiency of REST2 in which just 8 replicas have been used is thus

quite significant as compared to REMD in which simulations have been performed

with 32 replicas.
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The free energy landscape of the GB1-hairpin is characterized by two parameters

the fraction of heavy atom native contacts, Qaa, [12, 15, 16] and an alternative coordi-

nate, the fraction of native minus non-native contacts, Qn−nn. These coordinates are

defined in section 5.2.2. It is observed in in figure 2.8 that the folded Qn−nn = 0.7 and

the unfolded states Qn−nn ≈ 0 are sampled sufficiently using REST2. However, when

compared to REMD simulations, the misfolded state characterized by Qn−nn ≈ −0.4

is sampled quite poorly. However, quite remarkably, REST2 can be used to fold

complex peptides such as

Conclusion

Molecular dynamics simulations coupled with enhanced sampling methods enables us

to comprehensively sample the conformational space of the biomolecules under study.

Replica exchange molecular dynamics has been used quite extensively to study the

behavior of proteins [82], under physiologically relevant conditions. One of the major

drawbacks of REMD is the need for a large number of replicas to effectively sample the

conformational space of proteins. As the number of replicas required increases with

larger systems, REMD can be somewhat preventive while studying large systems of

physiological relevance. Replica exchange with solute tempering, provides an excellent

alternative. Although there are apparent differences in the estimates of free energies

obtained from REMD and REST2, REST2 can be used to obtain the correct folded

structure of the GB1 hairpin in close agreement with the native structure of the

peptide. Future work should be directed towards validation of REST2 using various

peptides and forcefields before it can be used to study larger systems of physiological

relevance.
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Effects of Macromolecular

Crowding on Protein-Protein

interactions

3.1 Introduction

Many biological processes rely on protein-protein interactions in a highly crowded

cellular environment; a cell is typically occupied up to 40% of its volume by various

macromolecules, such as DNA, RNA, proteins, sugars and other organelles. Conse-

quently, it is necessary for a protein to move around crowding macromolecules to find

its way to bind its interaction partner(s) to carry out some specific biological function.

Therefore it is important to understand the effects of macromolecular crowding on

protein-protein interactions to better understand biological processes in a living cell.

In recent years, significant progress has been made in understanding protein-

protein interactions at the molecular level by both experimentation and simulation
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[27]. However, most studies have been performed in dilute solutions - in vitro or in

silico, which are not representative of in vivo conditions. This raises some important

following questions - (i) how can we understand protein-protein interactions in a

living cell given the difficulties in designing experiments and simulations that attempt

to mimic the in vivo environment? (ii) Can we utilize the enormous information

collected over the years on protein-protein interactions in dilute solutions and relate

it to protein-protein interactions in a crowded cellular environment?

Studying protein-protein interactions via in vivo experiments is extremely chal-

lenging though in-cell spectroscopic techniques are making great progress in terms of

achieving this goal [146]. Thus, to answer the above questions, many experimental

studies have been performed using synthetic polymers or specific proteins as crowd-

ing agents. These studies have addressed both the thermodynamics and kinetics of

protein-protein interactions in a crowded environment [99, 98, 69, 142, 148, 106, 110,

85, 160, 115, 146, 44, 114]. Using “inert” crowding agents, the primary focus in

most of these studies had been to understand the non-specific excluded-volume ef-

fects of crowding agents on the formation of protein complexes [98, 78]. As expected

based on simple theoretical models, these experiments have shown that the conse-

quence of excluded-volume effects (entropic in nature) is to force proteins to form a

stable complex thereby increasing the volume available to the crowding agents. How-

ever, few experiments have shown an unexpected trend, i.e., destabilization of protein

complexes in the presence of crowding agents [115, 114, 71]. This observation can be

explained by attractive interactions between proteins and crowding agents, which can

inevitably arise from a combination of electrostatic interactions, hydrogen bonding,

hydrophobic interactions, and van der Waals interactions. As opposed to the stabliz-

ing effect of entropic-excluded volume interactions, the attractive protein-crowders
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will actually increase the binding free energy due to the enthalpic penalty in break-

ing favorable protein-crowder contacts to form a protein complex. The separation of

these competing effects in an experimental setup is quite challenging due to unknown

interaction parameters and presents a major barrier in developing a theoretical model

to interpret (and even predict a priori) experimental observations.

Computational models can help form a basis of our understanding in separating

these various effects as the interactions between proteins and crowding agents can

be tuned precisely. Earlier computational studies based on purely repulsive protein-

crowder interactions (such as hard-sphere as well as soft repulsive interactions) have

shown that the repulsive interactions stabilize the formation of the protein complex by

lowering the binding free energy. However, the extent of such stabilization has been

found to be rather modest [78]. Interestingly, the population of nonspecific encounter

complexes, which are now believed to play an important role in forming the native

functional complex, may well be decreased by the presence of repulsive crowders.

Rosen et al. have considered attractive protein-crowder interactions in their protein

binding simulations [124]. The work of these researchers has highlighted the impor-

tance of accounting for enthalpic effects arising from the attractive protein-crowder

interactions (if present) in addition to the commonly invoked excluded volume effects

[31]. Modest protein-crowder attractions can actually increase the binding free energy

with respect to the crowder-free solution. Even if the binding free energy is decreased

with respect to the crowder-free solution (weak protein-crowder attractions), the ex-

tent of this decrease is overestimated by theoretical models based solely on repulsive

protein-crowder interactions.

Most analytical theories of macromolecular crowding are based on the scaled par-

ticle theory (SPT) of hard-sphere fluids developed almost half a century ago [88].

48



Chapter 3

The theory is outlined in A. The SPT provides an analytical expression for the

free energy cost of creating a spherical cavity in a bath of hard-sphere particles. By

approximating proteins as spherical particles, these theories have been applied to

interpret experimental [110, 128] and computational data with varying degrees of

success [155, 78, 102]. However, these theories fail to account for any kind of attrac-

tive protein-crowder interactions and need to be modified before they can be applied

to more realistic scenarios.

Modifications to account for protein-crowder attractions, have been proposed by

Jiao et al. [71] and Rosen et al. [124]. These researchers added a phenomenological

mean-field term (proportional to the protein surface area) to their respective SPT-

based crowding theories to interpret experimental and simulation data respectively.

More recently, a microscopic theory based on statistical mechanics of simple liquids

has been introduced to describe the protein-binding simulation data in the presence

of attractive protein-crowder interactions [80]. Without any adjustable parameter in

the model, this theory has been able to predict the change in binding free energy from

the molecular simulation data remarkably well over a wide range of parameters, such

as crowder size, packing fraction and the protein-crowder attraction strength. A brief

summary of the efforts to understand thermodynamics of protein-protein interactions

in a crowded environment using computational methods has been presented.

3.2 Thermodynamics of protein-protein interac-

tions in a crowder solution

The thermodynamics of protein-protein interactions is based on Fig.3.1 for the case

of a simple dimerization reaction, A+B ⇀↽ AB, in the presence of spherical crowders.
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Figure 3.1: Thermodynamic cycle for the formation of a protein complex (between
ubiquitin and UIM1) in bulk and in a crowded solution.

The thermodynamic quantity that is mostly sought in both experiments and simu-

lations is the change in the binding free energy relative to that of the crowder-free

solution (ϕ = 0), ∆∆F bind(ϕ), in a crowded solution with crowder packing fraction

ϕ (bottom horizontal reaction in Fig.3.1). Theoretically, given the various solvation

(or crowding) free energies, ∆F crowd
X (X = A,B,AB) - the free energy of inserting X

in a crowded solution, ∆∆F bind(ϕ) is given by (using a thermodynamic cycle),

∆∆F bind(ϕ) = ∆F bind(ϕ)−∆F bind(ϕ = 0), (3.1)

= ∆F crowd
AB −∆F crowd

A −∆F crowd
B .
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A major challenge is thus to calculate the crowding free energy ∆F crowd
X for a protein

or a complex X.

The procedure for calculating the crowding free energy is described next. Without

loss of generality, let Uint, X(Ω) be the overall interaction energy between a protein

X and a crowder, where Ω denotes the collective variables of protein atoms and the

crowders. Thus the crowding free energy, ∆F crowd
X , can be obtained by,

exp{−β∆F crowd
X } = ⟨⟨exp{−βUint, X}⟩⟩, (3.2)

where β = 1/kBT and ⟨⟨·⟩⟩ refers to the canonical ensemble average over protein and

crowder configurations. For weakly-to-moderately interacting proteins, structural

changes are minimal during binding events. Thus the double ensemble average in eq.

2 can be further approximated to,

exp{−β∆F crowd
X } ≈ ⟨exp{−βUint, X}⟩native, (3.3)

where ⟨·⟩native is the ensemble average over crowder configurations using the native

structures of individual proteins and complexes.

Following the Weeks-Chandler-Andersen (WCA) theory [147], we decompose

Uint, X into the repulsive and attractive parts. The crowding free energy, ∆F crowd
X (ϕ),

can thus be divided into two separable contributions as,

∆F crowd
X (ϕ) = ∆F crowd

X,rep (ϕ) + ∆F crowd
X,att (ϕ), (3.4)

where ∆F crowd
X,rep(att) is the contribution to the crowding free energy from the repulsive

(attractive) protein-crowder interactions.
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Now, for any generic type of interaction between proteins and crowders, the task of

calculating crowding free energy is divided into calculating the repulsive and attractive

contributions for isolated proteins and the bound complex.

It is to be noted that most of the currently used theoretical models aiming to

describe experimental data ignore the attractive contribution to the change in the

binding free energy, assuming that the interactions between inert crowding agents

and proteins can be approximated effectively by repulsive potentials.

A recent theory [80] takes into account both the attractive and repulsive protein-

crowder interactions. It is outlined below:

3.3 Repulsive contribution to the crowding free

energy

To calculate the repulsive contribution to the crowding free energy, scaled particle

theory (SPT) [121] has been adopted. The SPT provides an analytical expression

for the free energy of creating a spherical cavity of radius R in a hard-sphere fluid

(particle radius Rc) at packing fraction ϕ which is given by,

∆FSPT(ϕ) = (3y + 3y2 + y3)ϕ̃+ (4.5y2 + 3y3)ϕ̃2 + 3y3ϕ̃3 − ln(1− ϕ). (3.5)

where ϕ̃ = ϕ/(1 − ϕ) and y = R/Rc. The most important question that may arise

from the use of SPT to predict first term in eq. 3.4 is : can anisometric proteins and

commonly-used crowding agents be represented as hard spheres to form the physical

basis of excluded volume interactions?
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It can be argued that for the cases in which long-range electrostatic interactions

are negligible, the interactions between proteins and crowders and between crow-

ders themselves can be approximated by effective hard-sphere potentials with contact

distances adjusted to fit the experimental/simulation data. Previous successes in

this direction indicates that such an approximation is acceptable in several cases

[98, 38, 57, 39, 132] and in fact one can even come up with rational ways to define

effective hard-sphere diameter for proteins [102, 78]. On the other hand, the failure

of the SPT to explain the crowding data does not necessarily invalidate the SPT

or the underlying spherical approximation. In fact, it highlights the importance of

attractive interactions that must be present between proteins and crowders.

In most simulations, crowders are represented by hard spheres or spheres with

purely repulsive potentials. In addition, the details of pairwise interactions between

protein atoms (or collection of atoms in a coarse-grained protein model) and crowders

are given explicitly. Thus to validate the SPT for the effects of repulsive protein-

crowder interactions on protein binding thermodynamics, it is essential to provide

an unambiguous way to determine the effective sphere radius, RX , for a protein or

complex X. One approach suggested, is to use the Boltzmann factor criteria [11] and

define the effective radius for a crowder size Rc as,

4π

3
(RX +Rc)

3 =

∫
Uint,X,rep(rrr)≥fkBT

drrr, (3.6)

where Uint,X,rep is the repulsive part of the interaction energy between protein X and

a spherical crowder, while rrr is the three-dimensional vector pointing from the center

of mass of the protein to the center of the crowder. We use f = 2 that has been

successful in describing the thermodynamic and dynamic behavior of Lennard-Jones
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fluid based on hard-sphere fluid [100]. Further justification of this f value can be

found in the work of Speedy et al. [131]. Moreover, a slightly different value of f

(e.g., f = 1) doesn’t result in significantly different results. Note that RX will then

depend weakly on Rc as well as on a given protein conformation X.

The success of the SPT eq. 3.5 using the above prescription for the spherical

approximation for anisometric proteins has been demonstrated in simulation stud-

ies of two distinct protein complexes, ubiquitin/UIM1 (Ubq/UIM1) and cytochrome

c/cytochrome c peroxidase (Cc/CcP). Here, Ubq, Cc, CcP are globular proteins close

to spherical shape with 76, 108 and 294 residues, respectively. On the other hand,

UIM1 is the 24-residue rod-like protein. It was observed that ∆∆F bind(ϕ,Rc) from

the SPT based theory for repulsive protein-crowder interactions agreed remarkably

well with simulation data for a wide range of ϕ and Rc even for Ubq/UIM1 complex

[78].

3.4 Attractive contribution to the crowding free

energy

Calculating the attractive contribution, ∆F crowd
X,att , to the crowding free energy is more

challenging even for a simple spherical solute. In principle, one can use thermody-

namic perturbation theory approach to obtain an approximate analytical expression

for ∆F crowd
X,att . Validity of this approach will then depend on the strength of the at-

tractive interactions proteins and crowders and if the reference repulsive interactions

can describe the structure (protein-crowder, crowder-crowder) well. Thus, up to the

first order in the attractive part of the interaction energy, Uint,X,att, ∆FX,att can be
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expressed as [47],

∆F crowd
X,att ≈ ⟨Uint,X,att⟩rep =

∫
ρUint,X,att(r, ω)g0(r)r

2drdω, (3.7)

where ρ is the crowder number density related to ϕ via ρ = ϕ/(4πR3
c/3), and g0(r)

is the radial distribution function between a protein and a crowder in the reference

repulsive ensemble ⟨·⟩rep, while ω denotes the angular degree of freedom. We ap-

proximate g0(r) to be a stepwise function, i.e., g0(r) = 0 for r < r0, g0(r) = gmax

for r0 ≤ r < r1, and g0(r) = 1 for r > r1. Employing accurate Carnahan-Starling

equation of state for a hard sphere fluid for gmax, we thereby obtain crowding free

energy up to linear order in ϕ as,

∆F crowd
X,att ≈ −κ(Rc)uXSXϕ, (3.8)

where SX is the surface area of a protein or complex encompassed by the center of a

crowder, uX is the average strength of the attractive protein-crowder interaction on

the surface SX , while κ depends only on Rc.

It was observed that uX depends weakly on the type of protein X [80]. We then

obtain the attractive contribution to the change in the binding free energy using Eqs.

3.2, 3.4, and 3.8 as,

∆∆F bind
att ≈ −κ(Rc)ū∆Sϕ, (3.9)

where ū = (uA+uB+uAB)/3 and ∆S = SAB−SA−SB is the change in the surface

area upon binding. The theory outlined above, provides a microscopic foundation for
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the phenomenological expressions proposed earlier by Jiao et al. [71] and Rosen et

al. [124].

From eq. 3.9 it is evident that the attractive protein-crowder interactions destabi-

lize complex formation or stabilize isolated proteins in a crowded solution (∆∆F bind
att >

0) because ∆S < 0 in general. This enthalpic effect (dependent on protein surface

areas) is in contrast to the entropic effect caused by repulsive interactions (depen-

dent on protein volumes) that favors compact structures that occupy lesser volume.

This competition can then give rise to numerous different scenarios in experiments or

simulations depending on their individual contributions.

3.5 Computational model of protein-protein inter-

actions in a crowded solution

It is quite challenging to test the theory presented above experimentally, since the

exact nature of the microscopic interactions between proteins and crowders is un-

known in most cases. In case of experimental data (if available), one can consider the

physical parameters in the crowding theory outlined above, as fitting parameters to

describe the experimental data. The resulting fit parameters will have a sound physi-

cal basis and can therefore provide information on unknown microscopic interactions.

However, such an approach is still ambiguous as pointed out by Elcock [37]; for dex-

tran, a commonly used crowding agent, three different spherical approximations have

been used to fit SPT equation in three different experiments [8, 7].

Computational models provide a concrete platform to test a theory without much

difficulty and can also provide new physical insight. Although there have been compu-

tational studies mimicking the cellular environment by employing various molecules
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measured experimentally inside the cytoplasm of Escheria coli [96], such an approach

can be computationally prohibitive to sample binding thermodynamics and kinetics

accurately. Thus most simulations have been performed using spherical crowders and

can still provide valuable insights [144]. Though atomistic description is desirable

for protein simulations, computational cost is again prohibitive in sampling protein-

protein interactions. Thus a coarse-grained protein model is often used in simulating

protein-protein interactions [79]. In particular, the residue-level coarse-grained model

developed by Rosen et al. has been quite successful in yielding binding free energies

for weak-to-moderately binding protein complexes and in describing the non-specific

complexes in good agreement with NMR experiments [81].

For interaction between a protein residue and a crowder, modified Lennard-Jones

(LJ) potential has been found to be suitable and is given by,

V (r) = 4

[
ϵr

(
σr

r − σ + σr

)12

− ϵa

(
σr

r − σ + σr

)6
]
, (3.10)

where σ is the contact radius (i.e., V (r = σ) = 0) between a protein residue and a

crowder, while σr is the interaction range (set equal to 6 Å). The potential

3.6 Effects of crowding on the thermodynamic sta-

bility of a protein complex

The crowding theory described here and its variants proposed earlier by others pre-

dict that excluded volume interactions due to repulsive protein-crowder interactions

will lower the binding free energy thereby favoring complex formation in a crowded

solution. The extent of this binding free energy change with respect to crowder-
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free solution will depend on various factors like the crowder packing fraction, crow-

der size, and size of the protein molecules. Simulation studies employing repulsive

protein-crowder interactions have essentially validated this qualitative expectation

and showed strengthened protein complex formation [78]. In a recent work from our

group [78], using LJ-type repulsive interaction potential, we also observed a similar

trend as shown here in Fig. 2a. for the Cc/CcP complexes. Again, these results are

anticipated, since these protein complexes occupy less volume as compared to the total

volume occupied by the isolated proteins. With increasing crowder packing fraction,

the binding free energy is lowered in a non-linear fashion. Also, for a given crowder

packing fraction, smaller crowders have a more stabilizing influence on the complex

formation — a prediction borne out by the SPT. The predictions of our crowding

theory presented in the previous section, for which proteins are mapped onto spheres,

agrees remarkably well with the simulation data over a wide range of crowder sizes

and crowder packing fraction. This theory can provide quantitative predictions for

the change in binding free energy in the presence of repulsive spherical crowders with

minimal information (protein structures). Note, however, that whether the theory

can be still valid for highly anisometric proteins, in general, requires further tests in

future work.

Thus, thermodynamically the excluded volume effect due to crowding favors the

association of macromolecules. Various experimental studies that are consistent with

this expectation are reviewed by Zimmerman and Minton [158] (Table 2) and Zhou

[155] (Table 1). Adding to the repertoire, a recent study [2] probed the effect of

crowding (using Ficoll 70) on a heptameric protein (human cpn10 or GroES in E. coli)

consisting of seven identical β−barrel subunits assembling into a ring. Using tyrosine

fluorescence, it was observed that the monomer-heptamer dissociation constant value
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is lower in the Ficoll 70 solution than in the buffer thereby suggesting a stabilization

of the heptameric complex due to crowding.

Although crowding effects by hemoglobin, serum albumin and dextran can be

quantitatively accounted for [123], excluded-volume based models fail to account for

the crowding effects exerted by another commonly used crowding agent, i.e., polyethy-

lene glycol (PEG). Phillip et al. [115] found negligible impact due to increased PEG

1000 crowding varying up to 30% packing fraction, on the binding affinity of TEM1-

β-lactamase with its inhibitor β-lactamase and barnase with barstar. Experimen-

tal studies [29, 115] suggest the presence of an attractive interaction between PEG

molecules and proteins. Based on our earlier discussion, attractive protein-crowder

interactions will actually counteract the stabilizing effect of excluded volume on com-

plex formation and can help explain this trend.

To probe the effect of attractive interactions in addition to the excluded volume

effects, we conducted simulations over a wide range of parameters [124]. As shown in

fig. 3.4, after a critical threshold, increasing the protein-crowder attraction strength

results in the destabilization of the protein complex relative to the crowder-free so-

lution (i.e., ∆∆F bind > 0). This effect is found to be more pronounced for crowders

of smaller sizes. At low protein-crowder attraction strengths, we find that the stabi-

lizing entropic effect is dominant over the destabilizing enthalpic effect. In fact, the

critical attraction strength for which the binding free energy exhibits no change in

a crowded solution as compared to the crowder-free solution (i.e., ∆∆F bind = 0) is

approximately independent of the crowder packing fraction ϕ as shown in Fig. 3.4.

This observation is a reflection of the approximately linear dependence of the binding

free energy with packing fraction up to modest packing fractions. Importantly, the
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agreement between our crowding theory (solid curves in fig. 3.4) and simulation data

is quite remarkable.

Probing the effects of attractive interactions experimentally also have begun only

quite recently. Jiao et al. [71] have recently studied catalase and superoxide dismutase

interactions in the presence of dextran 70, ficoll 70 and polyethylene glycol 2000 at

various concentrations and temperatures. They found that above a particular temper-

ature, denoted by Tθ, the primary effect of addition of crowders was the enhancement

of protein association, whereas, at a temperature below Tθ, attractive interactions

between the proteins and polymers predominate, inhibiting protein association. At

a temperature T approximately equal to Tθ the two effects cancel each other thereby

showing no effect on protein association (similar to our critical protein-crowder inter-

action strength) upon increasing the concentration of the crowding polymers.

3.7 Effects of mixed macromolecular crowding

So far we have discussed the development of a theory and associated simulation

results for a single type of crowder in a crowded solution only. On the other hand,

macromolecules present in a cell are quite diverse in their sizes and interactions.

Therefore, mixed crowding with different types of crowder particles will be a more

realistic description of cellular crowding. One then may ask if there is any difference

in treating the effects of mixed macromolecular crowding compared to the single-

component crowders and if one may observe qualitatively different results? A few

recent studies, experimental as well as theoretical, have proposed that the mixed

crowding solution may actually enhance the effect of crowding and may result in non-

monotonic effects unlike single-component results [33, 8]. However, our simulation
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Figure 3.2: The change in binding free energy (∆∆F bind(ϕ) ) data obtained from
replica exchange Monte Carlo simulations (symbols) are shown as a function of the
crowder packing fraction (ϕ) for different crowder sizes for a purely repulsive protein-
crowder interaction strength of ϵr = 1.69 kBT [80]

data for a binary crowder mixture (repulsive protein-crowder interactions) did not

show anything qualitatively different from a single-component crowder solution [78].

Moreover, within the SPT-like approach the effects of mixed repulsive crowding on the

binding free energy are actually additive and we had proposed the following ansatz,

∆∆F bind(ϕ1, ϕ2, · · · , ϕN) =
∑
i

xi∆∆F bind
i (ϕ), (3.11)

where i = 1 toN , ϕi is the packing fraction of component i in a crowding mixture, xi =

ϕi/ϕ is the relative fraction of component i, ϕ =
∑

i ϕi, and ∆∆F bind
i is the change

61



Chapter 3

Figure 3.3: The change in binding free energy (∆∆F bind(ϕ) ) data obtained from
replica exchange Monte Carlo simulations (symbols) are shown as a function of the
crowder packing fraction (ϕ) for different protein-crowder interaction strengths for a
particular crowder of radius 20 Å [80]

in the binding free energy of a pure component i at total crowder packing fraction ϕ.

Simulations for repulsive protein-crowder interactions with a binary crowder mixture

for the sizes between 12 Å and 20 Å showed an excellent agreement with the prediction

of eq. 11 [78]. In case of attractive protein-crowder interactions, the additivity ansatz

eq. 11 still holds for a range of crowder sizes, 12 Å- 20 Å and for weak attractive

interactions. However mutual attraction between different crowder components can

affect the behavior in a way that cannot be captured in an additive sense. More work
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Figure 3.4: The change in binding free energy data calculated from simulations (sym-
bols) are shown as a function of crowder-protein attraction strengths (ϵa) for various
crowder packing fractions ϕ for the Cc/CcP complex. The fit curves for different ϕ
converge around the point where ∆∆F bind ≈ 0 [80]

is needed to identify the parameter range for which eq. 11 is a good approximation

to yield accurate estimate of ∆∆F bind for a crowder mixture.

3.8 Effects of crowding on protein complex speci-

ficity: native vs encounter complex

Recent experiments and simulation have shown the existence of nonspecific complexes

in solution, albeit in low population (< 10%), which may play an important role in
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Figure 3.5: Cumulative distribution of bound complexes in the presence of repulsive
crowders are shown as a function of dRMS calculated based on the experimental
native structure for the Cc/CcP. [80]
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Figure 3.6: Cumulative distribution of bound complexes in the presence of attractive
crowders are shown as a function of dRMS calculated based on the experimental
native structure for the Cc/CcP. [80]

the complex formation by reducing the degree of freedom during the binding target

search process [126, 90, 146]. What is the effect of macromolecular crowding on the

presence and stability of such nonspecific complexes? Fig. 3.5 shows the cumulative

distributions of dRMS with increasing crowder packing fraction ϕ for the Cc/CcP

complex in the presence of repulsive crowders. Here dRMS is a measure of similarity

between the experimental native complex and simulated structures. Structures with

dRMS less than 5 Å are very similar to the native complex structure. It was observed

that as the crowder packing fraction increases, the population of native-like structures
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Figure 3.7: A. The specific bound complexes are shown where the red-blue combina-
tion is used for the experimental structure (PDB:2pcc) and the red-green combination
is used for the complex structure obtained from simulation. B. Several instances of
the nonspecific bound complexes (red-yellow combination) are shown and the exper-
imental native structure red-blue is also shown for reference. [80]
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with dRMS less than 5 Å increases, while the populations of transient encounter

complexes (dRMS greater than 5 Å) decrease [78]. This suggests that proteins in the

presence of repulsive crowders are more likely to form more compact native complexes

(fig. 3.7A) than metastable intermediate states (fig. 3.7B).

On the contrary, as the attractive protein-crowder interactions tend to maximize

contact between a protein and crowders, one would expect that the nonspecific com-

plexes with larger surface area exposed to the crowders pare stabilized in this case.

This expectation is confirmed in our simulations as shown in fig. 3.6; the population

of nonspecific complexes (dRMS greater than 5 Å) is enhanced as the protein-crowder

attraction strength increases. These findings are also consistent with recent experi-

mental results [114].

3.9 Conclusions

We have presented a review of the development of a general theory to describe the

effects of macromolecular crowding on protein-protein interactions. The theory ac-

counts for both repulsive and attractive protein-crowder interactions. The change in

the binding free energy due to crowding can be separated into repulsive and attrac-

tive contributions. The repulsive contribution is well described by the scaled particle

theory (SPT) by approximating proteins as spherical objects. An approximate analyt-

ical expression, meanwhile, is obtained for weak protein-crowder interactions by using

the statistical mechanics of hard-sphere fluid and the first-order perturbation theory.

To validate the theory, simulations were performed on two distinct protein com-

plexes, Ubq/UIM1 and Cc/CcP, using a residue-level coarse-grained protein model

and spherical crowders. It was shown that the theory can describe the simulation
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data remarkably well for both repulsive and attractive protein-crowder interactions

over a wide range of parameters. In addition, simulations show that the repulsive

protein-crowder interactions increase the population of the native complex at the ex-

pense of transient encounter complexes, while the opposite trend was observed for

the attractive protein-crowder interactions.

Most of the work so far, however, has been focused on the complex formation

between well-structured proteins, thus ignoring any protein conformational change.

In such cases it was found that a single conformation of a protein or complex was

sufficient to calculate the crowding free energy. However, there exist many eukaryotic

proteins which are disordered in isolation under physiological conditions, but fold

into their native conformations upon binding to target proteins [150]. No theoretical

and computational studies have focused on the effects of macromolecular crowding

on such protein complexes. Since the folding of a protein is tightly coupled to the

binding event and crowding agents may exert a different level of effect on the sta-

bility of the folded state and the association equilibria, one may encounter complex

scenarios in the presence of crowders. Although it can easily be predicted that the

binding of these complexes would be enhanced by the excluded-volume effects, it is

still unclear whether the theory introduced here will be adequate to describe their

behavior. In addition, one may ask whether the kinetics [77], and, in particular,

underlying mechanism remain the same in the presence of generic crowding agents.

Thus further theoretical as well as computational studies are warranted along these

directions.
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Effects of Macromolecular

Crowding on the binding

thermodynamics of proteins

modeled as flexible entities

4.1 Introduction

Proteins are conformationally ‘flexible’ entities and it is necessary to take into account

their dynamical properties to understand their function. Binding of one protein to an-

other, thus, is more involved than what is envisaged using the ‘rigid-body’ assumption

commonly made while studying protein-protein interactions [89].

In general, in the timescale of binding, proteins fall onto a structural continuum,

from tightly folded single domains all the way to highly flexible heterogeneous un-

structured states [35]. Significant research is being carried out to understand the role
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of these intrinsically unstructured (or disordered) proteins in various physiological

processes such as the regulation of transcription and translation [49], cellular signal

transduction [65, 34], protein phosphorylation [66] and macromolecular self-assembly

[108]. It is hypothesized that the lack of intrinsic structure in IDPs plays an impor-

tant role in their varied functions in these processes. It is, thus, imperative to venture

beyond the ‘rigid-body’ assumption while studying protein-protein interactions.

However, prior to understanding the binding of flexible proteins to their targets

under physiologically relevant conditions (such as macromolecular crowding), it is

necessary to identify a model, that comprehensively captures important details of

the process. Sugase et al., using NMR titration and 15N relaxation dispersion have

shown that the unstructured phosphorylated kinase-inducible domain (pKID) of tran-

scription factor CREB binds to the KIX domain of a CREB binding protein (CBP),

inducing the folding of pKID into two α-helical domains [133]. Previous experimen-

tal studies [118, 117] have also revealed that the KID domain is largely unstructured.

This model has been used in various simulation studies [140, 46] to understand the

microscopic details of the binding mechanism.

Having identified an appropriate model for study, we intend to study the effects

of macromolecular crowding on the thermodynamics of binding of flexible proteins.

Secondly, are the theories described in chapter 3 adequate enough to describe the

behavior of flexible proteins? To address these issues, in this chapter, we study

the effects of macromolecular crowding on the pKID:KIX complex considering the

proteins as flexible bodies. A Cα based coarse grain model was used to represent

the pKID:KIX complex. To account for the varying crowder-protein interactions we

have used Lennard-Jones type potentials representing both repulsive and attractive

protein-crowder interactions. For repulsive crowding, we study the effects over a
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range of crowder sizes and the effects of attractive crowding were studied by varying

the interaction strength for a representative particle size. We observe that repulsive

crowding stabilizes the bound complex. Smaller crowders have a more stabilizing

effect towards the bound complex as compared to the larger ones. In the scenario

where there is an additional attractive interaction between the crowders and the

peptides, we observe a destabilizing effect towards the bound complex. Additionally,

we observe that the scaled particle theory (eq. 3.5) which was originally developed

for hard-sphere particles, remarkably predicts the simulation data for a wide range of

ϕ and Rc. In order to predict the simulation data using attractive crowders, we have

modified the SPT by adding a phenomenological term as described in eq. 3.9.

4.2 Models and Methods

4.2.1 Model

We used a minimalist representation of the protein where each amino acid residue

is described by one bead located at the Cα position. The mass of each bead is con-

sidered to be the mass of the entire amino acid residue it represents. The beads

are connected by a coarse-grained representation of the peptide bond by a harmonic

potential along the protein backbone [74] and the angle between the three adjacent

beads were also represented by a harmonic potential. A knowledge-based sequence

specific, but topology-independent torsional potential has been used to represent the

virtual torsional angles between four adjacent beads along the Cα chain. Such se-

quence specificity and native structure independence has been effective in capturing

the subtle differences in folding mechanisms and kinetics arising from sequence differ-

ences in topologically similar peptides [74]. All the force constants are proportional
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to an energy scale defined as the average native contact per residue, which is directly

proportional to the folding temperature of a particular protein.

The non-bonded interaction terms include favorable interactions for residues that

are in contact in the native state and a repulsive interaction between all other pairs

of residues. For residues involved in intra-molecular native contacts, separated in

sequence by two or more bonds, the potential is of the form

Vij(rij) = ϵij

[
13

(
σij
rij

)12

− 18

(
σij
rij

)10

+ 4

(
σij
rij

)6]
, (4.1)

where rij is the distance between residues i and j, σij is the distance between i and

j at which the interaction energy is a minimum (equal to −ϵij). The σij was set

to the α-carbon separation distance of the pair i and j in the native state. Dif-

ferent values of ϵij have been used accounting for varying types of native contacts.

Residues which are hydrogen-bonded in the native state interact with an ϵij value of

unity. This particular assignment takes into account the backbone hydrogen bonds

between residues involved in α-helices. To maintain backbone orientation for residues

involved in β-strands, four additional native contacts each with ϵij = 0.25 were de-

fined in the vicinity of a hydrogen bonded pair, i.e., for residues i and j involved

in a hydrogen bond, the additional weak native contacts were defined for residues

(i−1, j), (i, j−1), (i, j+1) and (i+1, j). Incorporating the variegated chemistries of

the sidechains, for side chains involved in native contacts, the contact energies were

obtained from knowledge based values reported by Miyazawa and Jernigan [105] and

scaled appropriately [74]. This scaling was necessary because of the introduction of

a new energy scale relative to the hydrogen bond native contact energy.

For residues involved in inter-molecular native contacts between pKID and KIX,

a 12-6 Lennard Jones type potential was used.
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Vij(rij) = ϵij

[(
σij
rij

)12

− 2

(
σij
rij

)6]
. (4.2)

The advantage of this particular form of the potential is two-fold. The value of the

binding dissociation constant Kd obtained in bulk using replica exchange molecular

dynamics simulations at 300K was just an order of magnitude different from the

experimental value. This was achieved without the introduction of any further scaling

of the interaction parameters. A faster convergence was also observed. Owing to the

lack of structural experimental evidence of the transition transition complex ensemble,

Kd emerges to be the sole parameter bridging experimental and simulation studies.

For pairs of residues not involved in native contacts, a purely repulsive potential

of the form,

Vij(rij) = ϵij

[(
σij
rij

)12]
, (4.3)

have been used where ϵij is set to a very low value proportional to the energy scale

discussed above.

For protein-crowder interactions of the repulsive form, the following potential has

been used:

Vij(rij) = ϵ

[(
σref

rij − σij + σref

)12]
. (4.4)

For attractive protein-crowder interactions, the potential used is of the following

form:

Vij(rij) = 4ϵr

(
σref

rij − σij + σref

)12

− 4ϵa

(
σref

rij − σij + σref

)6

(4.5)
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Figure 4.1: A. Solution structure of the pKID-KIX complex. KIX contains three
α -helical domains. pKID contains two helical domains - αA (colored red) and αB

(colored green). B. Cα based coarse-grained representation of the pKID-KIX complex.
C. Schematic of our model system in the presence of crowders.

For both repulsive and attractive protein-crowder interactions, σref is the interac-

tion range set equal to 6Å and σij = (σi + σj)/2 is the interaction diameter calculated

from crowder radius rc = σi/2 and van der Waals radius σj/2 for a given residue .

For crowder-crowder interactions, we used eq. 4.4 with σij = 2rc. For repulsive

protein-crowder and crowder-crowder interactions, ϵ in eq. 4.4 was set to 1.67kBT .

For repulsive protein-crowder interactions, we used crowders of varying sizes ranging

6Å , 9Å and 12Å . For attractive protein-crowder interactions, simulations were per-

formed using a single crowder size of 9Å and protein-crowder interaction strengths of

ϵr(= ϵa) = {0.45, 0.90} kBT .
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4.2.2 Simulation Details

To obtain the equilibrium ensemble of protein complexes, we performed replica ex-

change molecular dynamics [134] (REMD) in the NVT ensemble using the langevin

thermostat with a friction coefficient of 0.2 ps−1 which is smaller than that used

to mimic water (50-100ps−1). Cubic boxes of varying sides were used with periodic

boundary conditions. The box sizes were so varied as to vary the concentration of

the complex. Sufficiently long REMD simulations were run for each of the 16 replicas

spanning 276 to 665K with a timestep of 10fs with an exchange frequency of 5ps en-

suring adequate sampling as shown from negligible standard errors in fig.4.2 and 4.3.

The simulation times varied between 4-6 µs. The non bonded interactions were cutoff

at 30 Å . We discarded the first 500ns in lieu of equilibration. All the simulations were

performed using Gromacs 4.0.5 modified to incorporate the nonbonded interactions.

4.2.3 Free Energy Calculations

In order to determine the binding free energy ∆Fb, we measured the dissociation

constant Kd of the complex which is related to the binding free energy via ∆Fb =

kBT (lnKd/K0) where K0=1M. We calculated the fraction of bound complexes by as-

signing complexes as bound if the inter-molecular interaction energies between pKID

and KIX is less than -1 kBT . The choice of the cutoff was based on the bimodal

distribution of the interaction energies obtained from the simulations. The binding

dissociation constant was obtained by fitting the fraction of bound complexes as a

function of protein concentration via the titration formula,

y =
[P ]

[P ] +Kd

(4.6)
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where [P] is the protein concentration and y is the fraction of bound complexes. Eq.

4.6 is a consequence of the Langmuir isotherm of adsorption.

4.3 Results and Discussion

The top panel of figure 4.2 shows data for the fraction of bound complexes for the

pKID-KIX system as a function of the protein concentration at different crowder

packing fraction ϕ and crowder sizes. The top panel shows the data for crowders

of radius rC = 6Å, the middle panel shows the data for rC = 9Å and the bottom

panel shows the data for rC = 12Å. The error bars were obtained by dividing the

equilibrated trajectory into four equal parts and calculating the standard deviations

of the four observations. The lines were fits obtained using eq. 4.6. The dissociation

constant (Kd) obtained from the simulations without any crowders (black curves in

fig. 4.2) is 273 µM. Kd (in µM)obtained from simulations over various crowder sizes

and packing fractions are:

HHHHHHHHHH
ϕ

rC(Å)
6 9 12

0.05 (red) 132.5 185.7 195.1

0.15 (green) 59 64 102

0.25 (blue) 12.4 23.2 47

It is observed that for a particular crowder size, the bound complex is stabilized

as the packing fraction of the crowders is increased. Also, for a particular packing

fraction, smaller crowders stabilize the complex more than the larger ones.

In figure 4.3, we plot a representative case where for the attractive protein-crowder

interaction (magenta). For the plot, the crowder packing fraction is ϕ = 0.15 and
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Figure 4.2: Titration curves obtained from simulations over a wide range of crowder
packing fractions and crowder sizes. The black data points represents the bulk data.
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Figure 4.3: Titration curve (magenta line) obtained for a protein-crowder attraction
strength of ϵa = 0.9kBT (magenta squares) and crowder size rC = 9Å. Data obtained
from bulk simulations and in the presence of repulsive protein crowder interaction are
shown for comparison

the crowder size is rC = 9Å. For comparison, we plot the data obtained from the

repulsive protein-crowder interaction with the same parameters (green) along with

the bulk data. The protein-crowder attraction in this particular case is 0.9 kBT . It

is observed that attractive crowding destabilizes the protein complex with respect to

bulk.

For a quantitative treatment, the effects of crowding on the protein binding are

described by calculating the difference in the binding free energy between the cases

in bulk (ϕ = 0) and in the presence of crowders. Figure 4.4 shows the binding

free energy difference ∆∆Fb = ∆Fb(ϕ) − ∆Fb(ϕ = 0), as a function of crowder

packing fraction ϕ for the pKID-KIX system. As discussed above, increased crowding

stabilizes the bound complex by lowering the binding free energy ∆F (ϕ). The binding
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Figure 4.4: The change in binding free energy ∆∆Fb(ϕ) = ∆Fb(ϕ) − ∆Fb(ϕ = 0)
data obtained from REMD simulations (symbols) are shown as a function of crowder
packing fraction ϕ for various cases. Black circles, red squares and green triangles
denote the value obtained for repulsive crowding using rc = 6Å, 9Å, and 12Å respec-
tively. The blue diamonds and magenta triangles (pointed down) indicate the values
obtained for attractive protein crowder interactions at ϵa/kBT values of 0.45 and 0.90
respectively with rc = 9Å for both cases. The black, red and green lines are the predic-
tions of our theoretical model using SPT for the respective crowder sizes and the blue
and magenta lines are the predictions using the modified SPT model incorporating
attractive crowder protein interactions for the respective attractive strengths.
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free energy changes up to 3 kBT at the highest crowder packing fraction simulated

here (ϕ = 0.25). This behavior is consistent with the previous studies as shown in

chapter 3[78].

To what extent can we use the theories described in chapter 3 for ‘rigid’ proteins

to this particular case where the proteins are considered to be ‘flexible’ entities ? To

answer this, we use the scaled particle theory (reiterated here for convenience) where

the free energy required to form a spherical cavity of radius R in a hard sphere fluid

with particle radius rc and density ϕ is given by

∆F SPT/kBT = (3y + 3y2 + y3)ρ+

(
9

2
y2 + 3y3

)
ρ2 + 3y3ρ3 − ln(1− ϕ) (4.7)

Here, ρ = ϕ/(1 − ϕ) and y = R/rc. The underlying idea is that the free energy

difference between the bound and unbound states in the presence of crowders can

be calculated by considering a thermodynamic cycle of the complex formation as

described in section 3.2. Specifically, we calculate the effect of crowding on the free

energy of bound and unbound complex separately. The difference in the two quantities

determined by SPT provides us with an analytic estimate of crowding effects on

binding equilibrium, i.e., ∆∆Fb while the simulation estimate is obtained along the

other edges of the cycle.

Although scaled particle theory is defined in terms of spherical objects, we have

shown previously that a simple spherical approximation of aspherical proteins can be

incorporated into eq. 4.7 to describe the excluded volume effect on protein binding.

We obtained the effective radius of a protein, Reff by considering the protein as a

set of solvated spheres of radii σi/2 + rc where σi/2 is the radius of residue i, and
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by equating the total volume occupied by these spheres to the volume of a sphere

of radius Reff + rc. It was observed that the above mapping in conjunction with

SPT model was able to predict quantitatively the effect of crowding on the binding

equilibria [78]. This result asserts the robustness of the SPT model in predicting the

binding thermodynamics of proteins.

In order to capture the effect of attractive protein-crowder interactions explicitly,

we have augmented the SPT equation with a mean-field free energy term due to

attractive interactions. Thus:

∆∆F (rc, ϕ, ϵa) = ∆∆F SPT (rc, ϕ) + ∆∆F att(rc, ϕ, ϵa) (4.8)

where

∆∆F att(rc, ϕ, ϵa) = −κ(rc)∆Sϵaϕ/r3c (4.9)

In eq. 4.9, κ is a phenomenological constant which depends on rc and ∆S is

the change in accessible protein surface area to crowder particles in going from the

unbound proteins to a bound complex. The accessible surface area was obtained by

calculating the overall surface area represented by the spheres solvated with crowders.

The predictions of this modified SPT model are shown in fig. 4.4, with fit parameter

κ/Å = 3.15 (rc = 9Å). The blue diamonds along with the curve corresponds to

ϵa = 0.15 kT and the magenta triangles along the curve corresponds to ϵa = 0.90 kT

Previous studies as described in chapter 3 focused on protein-protein interactions

in the presence of crowders where the proteins were represented as ‘rigid’ bodies.

We hypothesized that the spherical representation of proteins may only work well

for those that are modestly anisometric rigid objects and for crowders of size similar
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to proteins. In plotting, although the data points in figure 4.4 were obtained using

flexible proteins, we calculated the Reff values for eq. 4.8 based on the coarse-grained

structure of the complex obtained from the PDB. In other words, we have obtained

the ∆FX values in the vertical edges of the thermodynamic cycle of 3.1 by considering

the individual peptides as ‘rigid’ bodies and fit the data obtained from simulation of

‘flexible’ bodies along the horizontal edges. What happens to the fit if we calculate

the ∆FX values by considering the horizontal edges in the thermodynamic cycle of

fig. 3.1?

To answer the question, we estimated the Reff values of the proteins and the

complex averaging over the ensemble in the absence of crowders. The distribution

of the Reff values were observed to be unimodal. We used the mean values of Reff

and re-plot 4.4. From figure 4.5 the nature of the fits obtained are comparable to

what was obtained previously. We used the same κ value used to plot 4.4 in this case.

This further asserts the robustness of the SPT in predicting the thermodynamics of

binding of proteins in a crowded environment.

4.4 Conclusion

Using a Go like Cα based coarse grain model, we have performed extensive replica

exchange molecular dynamics simulations of the pKID:KIX complex in the presence

of crowders to understand how macromolecular crowding affects the thermodynamics

of binding by considering proteins as ‘flexible’ bodies. In order to account for the

effects of volume exclusion by the crowders and possible non-specific attractive in-

teractions, we studies both attractive and repulsive protein-crowder interactions. We

show that repulsive crowding stabilizes the bound complex whereas attractive crowd-
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Figure 4.5: Figure 4.4 re-plot with the curves obtained using Reff values from en-
semble averages of the simulation data.

ing destabilized the bound complex. This observation is consistent with what one

would expect by considering proteins as ‘rigid’ bodies. The most remarkable obser-

vation of this study was the robustness of the scaled particle theory in predicting the

binding thermodynamics of proteins in the presence of crowders. It should be noted

that scaled particle theory was originally developed to estimate the free energy of

cavity formation in a hard-sphere fluid. SPT thus has been quite successful in study-

ing the behavior of proteins considered as ‘rigid’ effective spheres under the influence

of macromolecular crowding. In this study, we have asserted that the theory can

be used to study the thermodynamics of proteins which are considered as ‘flexible’
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entities. Studies should be directed to further strengthen our assertion with various

protein complexes and improved coarse-grained models.
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Planar confinement significantly

modulates the Free-Energy

landscape of GB1 hairpin

5.1 Introduction

In vivo protein folding, like protein-protein interactions, is expected to be affected

by the crowded cellular milieu, [155] especially, due to the presence of cellular ma-

chinery such as chaperones that can assist folding by preventing misfolding and

aggregation.[152]. Several plausible mechanisms of chaperone function have been

proposed including the suggestion that extreme protein confinement inside a chaper-

one cavity could be an important factor. Brinker et al. hypothesized that confinement

of an unfolded protein inside GroEL/GroES chaperonin system may smoothen the

energy landscape by preventing population of kinetically trapped intermediates [22].

Folding of proteins may also be coupled directly to their synthesis, commonly referred
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to as co-translational folding, where newly synthesized proteins emerge out of a nar-

row ribosome tunnel [55, 43]. The potential importance of confinement on protein

folding is thus well recognized in the protein folding literature.

Confinement of a polymer-like protein chain to an inert space has been theoret-

ically shown to entropically stabilize the compact folded state with respect to the

expanded unfolded state [21, 154, 101]. A more recent simulation study by Ziv et al.

shows that confinement in a cylindrical cavity mimicking ribosome exit tunnel can

also entropically stabilize α helices [159]. Protein stabilization was also reported for

a β-protein in a spherical pore [83] by Klimov and Thirumalai. Friedel et al. [45]

and Baumketner et al. [10] found that long-lived intermediates present in bulk have

relatively shorter lifetimes when the protein in confined. Similar protein stabilization

have been observed for proteins confined in silica pores in laboratory experiments

[36, 120]. Mukherjee et al. [107] showed that the helicity of alanine-rich peptides

confined within AOT reverse micelles, can be tuned by varying the degree of hydra-

tion.

It is worth mentioning that most previous simulation studies employed coarse-

grained protein models in which solvent effects are included in a very indirect manner.

For protein folding in bulk such models have been reasonably successful but they may

not be able to capture all of the effects of confinement on folding. This is partly due

to the fact that water behavior and hydrophobic effects under confinement are not

well understood [68]. Hence, it becomes imperative to consider the solvent explicitly

in a simulation model in order to provide an accurate description of the effects of

confinement on protein folding. Lucent et al. [92] performed the first such study

using a distributed computing environment (Folding@home) on an α-helical protein,

the villin headpiece domain. They found that protein confinement alone stabilized
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the folded state. However, when both protein and solvent were confined in a repulsive

spherical cavity, the folded state was actually destabilized. This observed destabiliza-

tion is in contrast to most previous work on protein confinement in a repulsive pore

and clearly highlights solvent’s role in protein folding under confinement.

The repulsive interactions between a protein and confining entities are a simplifi-

cation to represent physical boundaries in a system without any direct affinity of the

protein with the confining entity. It is known that attractive interactions between

confinement boundaries and protein molecules can further affect protein behavior

significantly. For example, a comprehensive study utilizing a coarse-grained protein

model has shown that a protein populates new structural conformations under attrac-

tive confinement [25]. The modified protein conformations near an attractive surface

might be useful in surface assisted peptide folding to achieve a specific functional state

[157]. Mukherjee et al. [107] also found that the folding rate of a β-hairpin peptide

can decrease in the presence of common crowding agents, a result that cannot be ex-

plained solely on the basis of excluded volume effects of crowding agents. This study

was the first of its kind, in which the influence of attractive confining boundaries has

been studied by an all-atom protein folding model, including explicit solvent. Any

biological surface (chaperonin surface or large protein assemblies), if modeled using

simple confining boundaries, must include attractive interactions in some form.

The folding of a β hairpin under the influence of an attractive planar confinement

(Figure 5.1) has been investigated in this chapter using an all-atom representation

of the peptide and water molecules. The planar confinement between rectangular

walls serves as a basic model for future studies of more complex confinement entities.

Extensive studies on the folding thermodynamics and kinetics of this hairpin in bulk

[17, 18, 19] provides a comprehensive understanding of the otherwise unperturbed
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Figure 5.1: Model systems. Schematics of the GB1 hairpin solvated in (A) bulk
water and (B) , (C) confined between planar Lennard Jones walls with two different
separation distances of 1.8nm abd 2.4nm respectively.

assembly in bulk. Although typical Chaperonin substrates maybe significantly large,

the size of the current system permits a thorough equilibrium sampling. Moreover,

the system includes representative features of the folding of larger proteins, i.e., it

folds in an approximately two-state fashion while populating stable nonnative states

in the phase space. Specifically, in previous studies [18, 19], it had been found that

this peptide populates a misfolded intermediate state, in which one strand of the

hairpin is “flipped” and the hydrophobic side-chains on the two strands are found

are on opposite faces of the hairpin. In this study it was observed that when this

peptide is confined between two planar attractive walls, this misfolded state com-

pletely disappears from the free-energy surface. The misfolded state was found to be

destabilized because the hydrophobic side-chains are most likely to be found on the

same side due to their interactions with the confining walls. Although these results
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were obtained from a very simple confinement model, they may provide insights into

the role of chaperonin confinement in tackling protein misfolding by nonspecific weak

interactions.

5.2 Methods

5.2.1 Simulation Details

The Amber03∗ forcefield [14, 17] was used for the peptide because it has been shown

to alleviate biases toward a particular secondary structure [14], and the TIP3P model

[72] for water, consistent with earlier studies on this peptide in bulk. The structure

of the 16-residue GB1 hairpin was taken from residues 4156 of the full-length GB1

protein (Protein Data Bank ID: 1GB1). The protein was solvated using 3234 wa-

ter molecules, and eight sodium and five chloride ions were added to neutralize the

charge. To simulate confined systems with explicit solvent, we chose the separation

between the walls to be 1.8 nm and 2.4 nm, respectively. Simulation boxes of di-

mensions 5.0233 × 5.0233 × 1.8 nm3 and 4.1645 × 4.1645 × 2.4 nm3 were used for

the two cases, respectively, and periodic boundary conditions were applied in the x

and y directions only. To enhance equilibrium sampling, replica exchange molecular

dynamics (REMD) [134] simulations in the NVT ensemble has been performed us-

ing 32 replicas spanning a temperature range 278-595K for 500 ns per replica. The

following temperatures (in K) has been used: 278, 287, 295, 303, 312, 321, 329, 338,

346, 355, 365, 375, 385, 396, 406, 416, 427, 437, 448, 459, 470, 482, 493, 505, 517,

528, 539, 551, 562, 573, 584, and 595. The Particle Mesh Ewald method [41] has

been used to calculate electrostatic interactions with a real space cutoff of 0.9 nm.

The cutoff for van der Waals interactions was taken to be 1.4 nm and the parameters
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of the Lennard-Jones potential for the cross interactions between nonbonded atoms

were obtained from Lorentz-Berthelot combination rules. The attractive confining

walls are modeled using the Lennard-Jones 9-3 potential V given by,

V (z) = ϵ

[
2

15

(σ
z

)9
−
(σ
z

)3]
, (5.1)

where z is the distance of an atom (protein and solvent) from the wall, σ is the charac-

teristic length scale, and ϵ is the characteristic energy scale. To simulate stable liquid

water between planar walls, [103] the values of σwall−OW = 0.346 nm and ϵwall−OW =

1.14 kcal/mol. All simulations have been performed using GROMACS 4.0.4 [61].

5.2.2 Reaction Coordinates

The fraction of ordered contacts, Qs, relative to a given structure, s (not necessarily

the native state), is defined as

Qs = N−1
s

∑
i,j

1

1 + exp(γ(rij − λr0ij))
(5.2)

where the sum runs over the Ns pairs (i, j) of native atomic contacts that are

separated by distances rij in the configuration of interest and by r0ij in s (γ = 5Å−1;

λ = 1.5). The parameter λ accounts for the fluctuations in distance between the

residues in contact in the native state, and γ controls the steepness of the contact

step function [18].

One of the reaction coordinates chosen, the fraction of all-atom (excluding hydro-

gen atoms) native contact, Qaa, is defined using the native structure (Fig. 5.7F). Qaa

has been shown to be a very good reaction coordinate [13, 18]. Qaa has a low value

when the protein is unfolded and a value near unity for a folded state. However, this
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Figure 5.2: Free energy based on Qn−nn of the GB1-harpin for A. Bulk B. confined
between planar walls of distance 1.8 nm between them and C. confined between
planar walls of distance 2.4 nm between them.

coordinate is not suitable for distinguishing between folded and misfolded states. In

the misfolded structure of the hairpin, one of the strands of the hairpin is flipped

[20] (Fig. 5.7 M). To separate this native-like off-pathway intermediate, which would

otherwise stay close to the folding transition state on Qaa, an alternative coordinate,

Qn−nn = Qn − Qnn, where Qn and Qnn are defined as above using the native and

misfolded structures, respectively. For both Qn and Qnn atom pairs closer than 4.5

Å in s, belonging to residues separated by > 3 in the sequence, are considered.

5.2.3 Free-energy Calculations

From Fig. 5.2, the free energy of folding ∆FN−U based on Qn−nn where

∆FN−U = −kBT ln

∫ 1

Q‡
n−nn

e−βF (Qn−nn)dQn−nn∫ Q‡
n−nn

−0.2

e−βF (Qn−nn)dQn−nn

(5.3)

is the difference between the native FN and unfolded FU free energies, and

Q‡
n−nn(= 0.4) is the location of the barrier along Qn−nn.
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Figure 5.3: Two dimensional free-energy surfaces at 303 K are shown as a function
of the order parameters Qaa and Qn−nn for the GB1-haripin in bulk. The three
distinguishable states are labeled as M: misfolded, U: unfolded and F: folded

5.3 Results and Discussion

To characterize the folding thermodynamics in bulk and under confinement, we calcu-

late the two-dimensional potential of mean force (PMF) as a function of two suitable

reaction coordinates. The PMF plot is a convenient way to look at free energy pro-

jected onto various order parameters. Moreover, good order parameters are expected

to provide an accurate description of system’s thermodynamics and kinetics. Here,

we use the fraction of heavy atom native contacts, Qaa, [12, 15, 16] and an alter-

native coordinate, the fraction of native minus non-native contacts, Qn−nn, as two

order parameters to project folding free energy onto a low-dimensional surface. Qn−nn

was proposed earlier [20] to resolve a native-like off-pathway intermediate in which

one strand of the hairpin is “flipped” (fig. 5.7M), which would otherwise lie close to

the folding transition state on Qaa. A combination of Qaa and Qn−nn was found to
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Figure 5.4: Two dimensional free-energy surfaces at 303 K are shown as a function of
the order parameters Qaa and Qn−nn for the GB1-haripin confined between LJ walls
separated by 1.8 nm . The three distinguishable states are labeled as M: misfolded,
U: unfolded and F: folded

provide a good description of the hairpin folding landscape in bulk, and the folding

free energy barrier estimated from Qn−nn is consistent with experimental and detailed

simulation data [20].

Figures 5.3 shows the folding free energy surfaces (FES) in bulk and figs. 5.4 and

5.5 show the FES under two different types of confinement (1.8 nm and 2.4 nm respec-

tively). The most significant difference between the free energy surfaces in bulk and

under confinement is the complete absence of misfolded state (Qn−nn ≈ −0.4) under

confinement. This disappearance of the misfolded basin is observed independent of

the confinement size which suggests that it is an interfacial effect presumably due to

peptide proximity near one of the walls. To rule out insufficient simulation sampling

time as a cause for the observation, addition REMD simulations under confinement
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Figure 5.5: Two dimensional free-energy surfaces at 303 K are shown as a function of
the order parameters Qaa and Qn−nn for the GB1-haripin confined between LJ walls
separated by 2.4 nm . The three distinguishable states are labeled as M: misfolded,
U: unfolded and F: folded

were performed in which all the replicas are initiated from the misfolded structure

obtained from the bulk simulation. As shown in Fig. 5.10, the misfolded state under

confinement is unstable and therefore disappears after a relatively short simulation

time.

What is the rationale behind the disappearance of the misfolded basin under

confinement? To address this question, we plot the density of the protein (5.8A) and

of each residue’s side-chain atoms along the z-direction (perpendicular to the walls)

(5.9). Because of the attractive nature of the wall surface, the peptide backbone is

more likely to be found near one of the walls as shown in (5.8A). More importantly,

we find that the hydrophobic side-chain atoms of residues TRP3, TYR5, PHE12, and

VAL14 are mostly found near the walls as opposed to other polar and neutral residues.
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Figure 5.6: Two dimensional free-energy surfaces at 303 K are shown as a function of
the order parameters Qaa and Qn−nn for the GB1-haripin confined between LJ walls
separated by 1.8 nm . The interaction between the peptide and the walls were set to
be repulsive in this case. The three distinguishable states are labeled as M: misfolded,
U: unfolded and F: folded

Figure 5.7: The structures of the peptide used in this study M misfolded peptide in
which one of the strands of the hairpin is ‘flipped’ U a representation of the unfolded
ensemble peptide F the folded hairpin in the native state.
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Figure 5.8: A. Density of the peptide confined between LJ-walls. B. The density
of water molecules confined between the LJ-walls. The black and red curves are for
cases in which the separation between the walls is 1.8 and 2.4 nm respectively.

Vaitheeswaran and Thirumalai [141] observed a similar preference for hydrophobic

side chains to stay near the surface in hydrophobic nanopores, and found it to be

related to the peptides stability under confinement. Therefore, configurations with

hydrophobic residues on the same side near a wall are preferred due to the favorable

association of hydrophobic residues with the wall, and hence the misfolded state,

with hydrophobic residues on the opposite side of the backbone, is avoided. We also

ran a control simulation in which the peptide-wall interactions were made repulsive

(achieved by eliminating the second term in 5.1) but all other parameters were the

same as in the attractive-wall simulation for a confinement size of 1.8 nm. As shown

in fig. 5.6, the misfolded state in this case is still populated as in bulk. This provides

further evidence in favor of our reasoning that the misfolded state in the case of

attractive walls is eliminated due to preferential interactions with hydrophobic side

chains.
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Figure 5.9: Protein side-chain number density profile (normalized by number of side-
chain atoms) normal to the confining walls. The left wall is located at z = 0 nm and
the right wall is located at z = 1.8 or 2.4 nm (shown by dashed vertical lines). Note
that the slight asymmetry results only from statistical error.
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Figure 5.10: Qn−nn as a function of time for all the 32 replicas for simulations initiated
from the misfolded state. It is observed that the misfolded state Qn−nn = 0.45 is
unstable and disappears completely in a relatively short simulation time.

Such a simple mechanism may also be plausible in the case of chaperonin func-

tion, as misfolded states appear as traps with nonnative arrangement of hydrophobic

residues. Thus, in addition to providing an inert cage (and thereby preventing pro-

tein aggregation), protein-chaperonin wall interactions may also facilitate the correct

formation of hydrophobic contacts and thus protein folding. In addition, some of the

misfolded states may be depopulated within a chaperonin cavity due to these specific

protein-chaperonin wall interactions. Our observations here therefore provide support

for the hypothesis that confinement can prevent the population of kinetically trapped

misfolded states, with the caveat that chaperone systems are more complicated than

the one considered here.
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As a secondary effect, we find that attractive confinement destabilizes the folded

state with respect to the unfolded state. The folding free energy ∆FN−U, based

on one-dimensional reaction coordinate Qn−nn, is -0.43 kcal/mol in bulk. Under

confinement ∆FN−U = −0.08 and 0.74 kcal/mol for wall separations 1.8 and 2.4 nm,

respectively. The unfolded state stabilization near an attractive wall is expected as

larger protein conformations can interact favorably with the wall surface as compared

to the compact folded state. This effect is expected to be stronger in case of longer

proteins as the size ratio of unfolded to folded state increases.

5.4 Conclusion

In conclusion, extensive molecular simulations has been carried out of the GB1 hairpin

using an explicit solvent model in bulk solution as well as confined between planar

attractive walls. It is observed that a misfolded state, which is otherwise observed in

bulk is completely absent under confinement. It has been shown that hydrophobic

residues tend to populate the region near the walls thereby avoiding the misfolded

state. The current chapter provides an important insight into the role of direct

interactions between protein and chaperonin walls in “smoothing” protein’s folding

landscape by eliminating off-pathway intermediate states.
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Nanotube confinement de-stabilizes

helical propensities of peptides

6.1 Introduction

Besides serving as an excellent model for cylindrical confinement, owing to its remark-

able properties such as large surface areas, high mechanical strengths yet ultra-light

weights, rich electronic properties and outstanding chemical and thermal stabilities

[3], carbon nanotubes continue to be the primary interest for several researchers, who

have been exploring their potential in bioapplications [149, 9, 84]. Particularly, there

has been significant interest in the ability of CNTs to serve as biocompatible trans-

porters for drugs, genes, proteins and other biomolecules into the cells by penetrating

the cellular membrane.

Many diseases are linked to the alterations in the functions of intracellular pro-

teins which are engaged in performing essential biological functions such as enzyme

catalysis, signal transduction, gene regulation, to name a few. Therefore, a robust
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method of delivering active forms of proteins to specific cells and organs is an im-

portant goal in many medical applications, including cancer therapy, vaccination,

regenerative medicine, treating loss-of-function genetic diseases and imaging. Target

protein cargoes can be loaded into the CNTs using various strategies, such as physical

adsorption and covalent/non-covalent encapsulation [52]. It is expected that one of

the key functions of CNTs or any nano-carrier for that matter would be to protect

the proteins from premature degradation and shield them from various denaturing

interactions in the cellular milieu [112, 42]. There have been insightful works on the

encapsulation of proteins inside carbon nanotubes [5]. Moreover, quite recently, there

has been significant approaches in purifying [76] and synthesizing [54] single walled

carbon nanotubes of large diameters. Strategies have been developed for the produc-

tion of more than 90% population of vertically aligned SWCNTs with diameters ¿

3nm. The large internal diameters can be utilized for the encapsulation of proteins

and other biomolecules.

An obvious question thus arises. How stable are the functional proteins inside

single walled carbon nanotubes? Insightful studies have been carried out to under-

stand the stability of secondary structures under nanotube confinement. Modeling

the proteins simply as random flight Gaussian chains, it has been theoretically shown

[154], that confinement eliminates expanded unfolded conformations, thereby stabiliz-

ing the folded state. Ziv et al. [159] used a coarse grained representation of a sixteen

residue polypeptide chain containing either hydrophobic or hydrophilic beads in a

cylindrical confining potential. Using a self-avoiding random walk model of a helical

polymer, they showed that α-helices are stabilized under cylindrical confinement and

the stabilization is entropic.
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However, Sorin and Pande [129] have shown that when polyalanine - an α-helical

peptide is confined to a single-walled carbon nanotube with explicit solvent, the re-

sults were contrary. They observed that the 23-residue helical polyalanine denatured

under confinement. The secondary structure propensity of the polyalanine was shown

to be decreasing monotonically with increasing confinement. The observation was

explained in terms of solvent entropy. They argued that in bulk, protein folding

is expected to maximize solvent entropy which becomes limited under confinement,

and thereby intra-peptide interactions, stabilizing secondary structures experience

reduced entropic stabilization relative to protein-water interactions. Another study

by Lucent et al. [92] highlights the importance of solvent in protein folding under

confinement.

Another insightful study [109] on the confinement of different helix forming se-

quences inside a carbon nanotube using a coarse-grained model has elucidated the

interplay of various factors such as the strength of nanotube peptide interactions,

peptide-sequence and the tube diameter on the stability of helices. They predict that

confinement-induced helix stability can be significantly altered by varying the intra-

peptide interactions or by changing the interaction strength between the peptide and

the nanotube.

In this current chapter, we explore the effects of nanotube confinement, on the

stability of peptides. We have performed extensive replica exchange molecular dy-

namics simulations using all-atom representations of a sixteen residue polyalanine

peptide in explicit solvent inside carbon nanotubes of various diameters. The general

trend observed from our simulations was that polyalanine, which otherwise possesses

a high propensity of α-helical structures in bulk, denatures significantly under the

effect of nanotube confinement. We hypothesize that this denaturation is primarily
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due to the presence of inner-surface of the carbon nanotubes, as the same trend was

observed from simulations of polyalanine near a graphite surface.

6.2 Models and Methods

The Amber03∗ forcefield [14, 17] has been used to model the peptide along with the

TIP3P [72] model for water. The forcefield water model combination has been shown

to alleviate biases toward a particular secondary structure. We constructed sixteen

residue polyalanine sequences and the C and the N terminals were capped using

Acyl and amide groups respectively. Single walled armchair Carbon nanotubes with

chiral indices ({m = n} = 10, 11, 12, 13, 14, 15, 17, 19, 22) were constructed using the

nanotube builder plugin of Visual Molecular Dynamics package [63]. The length of the

carbon nanotubes were set to 4nm. The interaction parameters of the carbon atoms

were so chosen such that the carbon-water Lennard-Jones were σCO = 3.2751Å and

ϵCO = 0.11433 kcal mole−1 consistent with [62]. The carbon nanotubes were held fixed

in space and was aligned along the z-axis of the simulation box. The peptide in the α-

helical (ϕ = −57o, ψ = −47o) configuration was inserted inside the carbon nanotube

and an energy minimization was performed for the peptide-nanotube assembly using

the conjugate gradient algorithm. The nanotube peptide assembly was centered in

a periodic box such that water molecules can diffuse freely in and out of the carbon

nanotubes. The peptide-nanotube assembly was solvated such that the Pzz element of

the pressure tensor was within ± 100 bars during the production NVT runs. This was

ensured by performing short simulations before production runs. All the simulations

were carried out in the NVT ensemble using the Nosé-Hoover thermostat. All the

simulations were performed using Replica Exchange Molecular Dynamics, using 40
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Figure 6.1: Secondary structure propensities of polyalanine (obtained using DSSP
analysis) in bulk, near Graphene and under the effects of confinement of various
carbon nanotubes simulated. All the simulations were initiated from the α-helical
configuration of polyalanine. For confinement inside (10,10) nanotube, additionally,
a simulation initiated from the coil state of the peptide was performed.

replicas spanning a temperature range of 300 to 517 K. The Particle Mesh Ewald

method [41] has been used to calculate electrostatic interactions with a real space

cutoff of 0.9 nm. The cutoff for van der Waals interactions was taken to be 1.2 nm.

All the simulations were performed for 20 ns per replica with a total simulation time

of 800 ns. The final 10ns of the data was used for analysis. The DSSP algorithm [73]

was used to assign secondary structures to the peptides.
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Figure 6.2: econdary structure propensities of polyalanine (obtained using DSSP
analysis) in bulk, near Graphene and under the effects of confinement of various
carbon nanotubes simulated. Helix refers to the sum of α and 310-helix.

6.3 Results and Discussion

Figure 6.1 shows the secondary structure propensities from DSSP analysis of the equi-

librated trajectory. The propensities of β-sheets, Turns and Bends have been added

and represented as Other. It is observed that polyalanine under bulk conditions, has

nearly 35% helix propensity to form α-helices. This observed propensity is signifi-

cantly reduced to 10 % when simulated near graphene or inside carbon nanotubes.

An outlier in the series is the (10, 10) nanotube, which stabilizes the α-helix with

respect to bulk. To rule insufficient simulation time as a cause of the observation, we

performed another REMD simulation initiated with polyalanine in the random coil
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Figure 6.3: The coil and α-helix propensities as obtained from DSSP analysis. The
values on the y-axes are normalized by the propensities observed in Bulk whereas the
values on the x-axis are normalized by the diameter of an α-helix (1.2 nm).

state under (10, 10) confinement. The observations were consistent. From fig. 6.1, it

should also be noted that the 310-helix propensities for polyalanine is maximum near

graphene and, for the cases of confinement, it decreases with increasing confinement.

Distinguishing between the two types of helices, experimentally had been quite chal-

lenging. Hence, we re-plot figure 6.1 adding the two helicities in fig 6.2. As can be

observed, the combined helicity of polyalanine first decreases with increasing confine-

ment (15,15) and seems to increase with increasing confinement upto (10, 10). This

observation is contradictory to a previous study by Sorin et al. in [129] in which both

the helicities were lumped and was shown that the combined helicity decreased with
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increasing confinement. The disparity might be attributed to insufficient sampling of

standard molecular dynamics simulations over REMD.

In figure 6.3, we plot only the α-helical propensities of polyalanine under confine-

ment normalized by the propensity observed in bulk against the inverse of nanotube

diameters multiplied by the diameter of an ideal α-helix (1.2 nm). As can be observed,

the ratio of the α-helicities are almost negligible compared to bulk. The singular case

of (10, 10) confinement stabilizes helix owing to the fact that the diameter of helix

is nearly equal (0.9 times) to the diameter of (10, 10) nanotube. Another interest-

ing observation from figure 6.3 is that the coil propensity decreases with increasing

confinement. It should be noted that the β-sheet propensities of polyalanine were neg-

ligible, and although there has been work directed towards characterizing 310-Helices

[86], the turn and bend structures characterized by DSSP cannot be probed by tra-

ditional experimental methods. The loss of coil propensity, thus, does not imply an

increase in helical propensity.

Fig. 6.4 shows conformational free energies of polyalanine in the Ramachandran

space. We have shown some representative plots from our analyses. In bulk, polyala-

nine has a distinct free energy minimum around (ϕ, ψ)=(-57o,-47o) corresponding to

α-helices. Also, another distinguishable minimum is around (ϕ, ψ)=(-75o,150o) which

corresponds to the polyproline-II helix region. Near a graphene surface, the free en-

ergy minimum corresponding to (ϕ, ψ)=(-57o,-47o) in bulk, appears to be shifted

slightly towards increasing values of ϕ and ψ. Additionally, a basin corresponding

to (ϕ, ψ)=(-75o,-160o) corresponding to extended conformations is observed. These

three notable minima appear to be even more prominent under confinement inside

carbon nanotubes. This appears to be a common feature under other cases of con-

finement in our study (data not shown) upto (13, 13). Under (12, 12), however, the
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Figure 6.4: Conformational free energies at 300K in the Ramachandran space for
polyalanine in bulk, near Graphene and confinement inside (22, 22), (17, 17) (11, 11)
and (10, 10) carbon nanotubes.

polyprolene-II helix region is destabilized compared to bulk and the extended confor-

mations observed near graphene surfaces and other cases of nanotube confinement,

appear to be destabilized. A broad minimum appears around -90o<ϕ<-50o and -

50o<ψ<0o. For the case of extreme confinement, (10, 10) nanotube, the only notable

free energy minimum, is the α-helical basin corresponding to (ϕ, ψ) = (-57o,-47o).

This observation was consistent from the DSSP analysis as discussed previously. This

plot shows the same trend that α-helices denature near graphene surfaces or under

nanotube confinement.
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6.4 Conclusion

In this chapter, we have performed extensive all-atom replica exchange molecular

dynamics simulations with polyalanine in bulk and under the effects of nanotube

confinement of varying diameters. The common trend that appears is that carbon

nanotubes denature α-helices significantly and that the denaturation is independent of

the size of the cylindrical cavity. These results suggest that Carbon nanotubes cannot

be effectively used to deliver peptide-based drugs. Although proteins can be easily

encapsulated within Carbon nanotubes, the encapsulated protein would denature

due to the effects of confinement. However, for a comprehensive understanding of

the cause of this denaturation, systematic studies need to be performed varying the

hydration of the backbone, and the interaction strengths between the protein and the

inner walls of the Carbon nanotube.
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Scaled-Particle Theory

The Scaled-particle theory [121] is a statistical mechanical theory of fluids which

yields an approximate expression for the reversible work required to introduce a spher-

ical particle into a fluid of spherical particles.

Let us consider a fluid of N hard spheres of diameter d = 2R at a number density

ρ. Let W (R0) be the reversible work required to create a spherical cavity of R0

centered on a point r within the fluid. The probability that such a cavity will appear

as an outcome of spontaneous thermodynamic fluctuations within the system is

p0(R0) = exp[−βW (R0)] (A.1)

This is the same as the probability that there are no spheres whose centers lie

within the spherical region of radius R0 + R around r. This interpretation can be

extended to negative values of R0 in the range −R ≤ R0 ≤ 0, in which case the radius

of the region of interest is 0 ≤ R0 + R ≤ R. Since overlap of hard spheres is not

possible, the region of interest might have at most one particle in such a region. The

probability of such a situation is
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p1(R0) =
4

3
πρ(R0 +R)3 = 1− p0(R0) (A.2)

Combination of A.1 and A.2 gives

W (R0) = −kBT ln[1− 4

3
πρ(R0 +R)3], R0 ≤ 0 (A.3)

In the other limit for R0 ≫ R, the reversible work is given by,

W (R0) = P∆V0 = P
4

3
π(R0)

3, R0 ≫ R (A.4)

Now an assumption is made that for R0 > 0,W (R0) is given by a cubic polynomial

in R0 and the term in R3
0 (the dominant contribution for large cavities) is given by

A.4.

Expanding W (R0) around R0, we have,

W (R0) = W (0) +W ′(0)R0 +
1

2
W ′′(0)R2

0 +
4

3
πP (R0)

3, R0 ≥ 0 (A.5)

Now, at R0 = 0, W (R0) and its derivatives are continuous. Hence W(0) is given

by A.3. Consequently,

βW (0) = − ln(1− η)

βW ′(0) =
4πρR2

1− η

βW ′′(0) =
8πρR

1− η
+

(4πρR2)2

(1− η)2
(A.6)

where η is the hard-sphere packing fraction.
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The excess chemical potential of the fluid is the reversible work required to insert

a hard sphere of radius R0 = R, thus from A.4 and A.6

βµex = βW (R0)

= − ln(1− η) +
6η

1− η
+

9η2

2(1− η)2
+
βPη

ρ
(A.7)

Using, ∂P
∂ρ

= ρ(∂µ
∂ρ
),

βP

ρ
=

1 + η + η2

(1− η)3
(A.8)

Putting A.8 in A.7

W (R0) = − ln(1− η) +
6η

1− η
+

9η2

2(1− η)2
+ η

1 + η + η2

(1− η)3
(A.9)
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