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Abstract 

Fundamental Characterization Studies of Advanced 

Photocatalytic Materials 

 

 Solar powered photocatalytic water splitting has been proposed as a method for 

the production of sustainable, non-carbon hydrogen fuel.  Although much 

technological progress has been achieved in recent years in the discovery of advanced 

photocatalytic materials, the progress in the fundamental scientific understanding of 

such novel, complex mixed oxide and oxynitride photocatalysts has significantly 

lagged.  One of the major reasons for this slow scientific progress is the limited 

number of reported surface characterization studies of the complex bulk mixed oxide 

and oxynitride photocatalyst systems.  Although photocatalytic splitting of water by 

bulk mixed oxide and oxynitride materials involves both bulk (generation of excited 

electrons and holes) and surface phenomena (reaction of H2O with excited electrons 

and holes at the surface), the photocatalysis community has almost completely ignored 

the surface characteristics of such complex bulk photocatalysts and correlates the 

photocatalytic properties with bulk properties. 

 Some of the most promising photocatalyst systems (NaTaO3, GaN, (Ga1-

xZnx)(N1-xOx) and TaON)  were investigated to establish fundamental bulk/surface 

structure photoactivity relationships.  The bulk molecular and electronic structures of 
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the photocatalysts were determined with Raman and UV-vis spectroscopy.  

Photoluminescence (PL) and transient PL spectroscopy were provided insight into 

how recombination of photogenerated electrons is related to the photocatalysis 

activity.   The chemical states and atomic compositions of the surface region of the 

photocatalysts were determined with high resolution X-ray photoelectron spectroscopy 

(~1-3 nm) and high sensitivity-low energy ion scattering spectroscopy (~0.3 nm).   

The new insights obtained from surface characterization clarified the role of La 

and Ni promoters species for the NaTaO3 photocatalyst system.  The La2O3 additive 

was found to be a structural promoter that stabilizes small NaTaO3 nanoparticles 

(NPs) and increases the surface area, but not affecting the specific photoactivity.  Only 

the NiO additive was found to enhance the photoactivity due to the ability of surface 

NiOx species to trap photogenerated electrons.  The supported Rh-Cr NPs on GaN and 

(Ga1-xZnx)(N1-xOx) photocatalysts consist of Rh
+3

 which is the catalytic photoactive 

sites for H2 along with Cr
+3

, GaZnO or at their contact points being possible sites for 

O2 production.  The RuO2 promoted TaON photocatalyst system was found to consist 

of dissolved Ru
+4

 cations in the TaOx thin film and not as RuO2 NPs as previously 

proposed.  

In summary, these current studies for the first time revealed the surface nature 

of mixed oxide and oxynitride photocatalysts and stress the importance of establishing 

fundamental bulk/surface structure–photoactivity relationships for complex, 

multicomponent photocatalyst systems.   



 

3 

 

CHAPTER 1 

Overview of Heterogeneous Photocatalyst Literature for 

Water Splitting 

 

 

1.1 Introduction 

One of the great challenges facing society today is finding alternative 

renewable energy resources to help alleviate our reliance upon fossil fuels for energy.  

Hydrogen from non-carbon sources is considered to be one of the potential candidates 

for replacing fossil fuels for our energy needs.  The use of sustainable hydrogen will 

help to address the depletion of the fossil fuel supply and the environmental problems 

associated with its use.  However, there are still considerable barriers that need to be 

overcome before hydrogen can be considered a viable energy source such as 

constructing infrastructure for production, storage and use of hydrogen fuel and 

finding ways to make sustainable hydrogen economically competitive against other 

sources of energy [1].  There needs to be a strong emphasize on the research front so 

that technology can be developed that can overcome these challenging entry barriers.  

This critical research work needs to be accomplished before the dream of a hydrogen 
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economy can become a reality.  Replacing fossil fuels with hydrogen for our energy 

use is an ineffectual endeavor unless it can be derived from renewable resources. 

Naturally abundant water and solar energy can be the renewable resources that 

have the potential to produce hydrogen fuel.  The sun produces over 1000 W/m
2
 on 

the earth’s surface that far exceeds all of our energy needs [2, 3].  This vision for a 

renewable hydrogen economy is inspired from biological processes found in nature 

that have been using sunlight to convert water and carbon dioxide into glucose and 

oxygen.  The photosynthesis process is directly responsible for sustaining all forms of 

life on Earth.   Mimicking this process for production of hydrogen fuel will help to 

sustain our ever growing energy needs for our society.  In this regard, photocatalytic 

water splitting for hydrogen production is viewed as a form of artificial photosynthesis 

where a catalyst material can utilize solar energy to convert water into H2 and O2.  

Solar hydrogen fuel generated from water can be the ultimate in sustainable green 

energy due to the use of inexpensive naturally abundant H2O reactants and lack of 

environmentally damaging byproducts being formed in the reaction.  Because of this it 

is considered one of the “Holy Grails” of chemistry [4] and can be the basis of our 

hydrogen economy in the future.   

Photocatalytic water splitting was first brought to attention by the pioneering 

work of Fujishima and Honda in 1972 which showed that UV light irradiation of a 

TiO2 photoelectrode and a Pt photoelectrode in an aqueous solution led to the 

production of H2 and O2 when a small voltage was applied [5]. The system in this 

study is considered to be the first photoelectrochemical (PEC) cell designed for water 
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splitting.  Since then, much progress has been made and many PEC cells have been 

developed which can utilize visible light energy [6].   The designs of these PEC 

systems are rather complicated due to photoelectrode instability that necessitates the 

use of multi-component materials in the PEC system, i.e. integrated multilayers and 

tandem systems [7-9]. The discovery of the Honda-Fujishima effect has provided the 

inspiration for the utilization of heterogeneous semiconductor materials for 

photocatalytic water splitting.  Unlike PEC cells, the use of heterogeneous 

semiconductor materials allows for greater simplicity in design for photocatalytic 

water splitting systems. These systems can be utilized using only the semiconductor 

powder photocatalyst, water and sunlight which is advantageous since it does not 

require an external bias or voltage source like PEC cells.  The simplicity in design 

makes photocatalytic water splitting by heterogeneous semiconductors viable for 

implementation of solar hydrogen production on a large scale.  Although 

photocatalytic water splitting is still in the research phase at this time, there is great 

promise that this technology can be used to help solve our global energy problem.  

1.2 Basic Principle of Photocatalytic Water Splitting 

The basic reaction for photocatalytic water splitting given below in equation 1 

is considered an uphill reaction due to the large Gibbs free energy involved. 

   
  
→ 
 

 
         ∆G=237 kJ/mol     (1) 
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The schematic of the three step photocatalytic water splitting process is shown in 

Figure 1.  The first step of the process involves the absorption of photons in the bulk 

of the photocatalyst system to form electron/hole pairs caused by the excitation of the 

electrons from the valence band to the conduction band with the holes being left in the 

valence band.  The photo-generation of electron/hole pairs takes place on the time 

scale of femtoseconds [10, 11].  The minimum theoretical energy needed is 1.23 eV 

for the photocatalyst that requires light with wavelength of about 1010 nm, but greater 

energy is needed to overcome the activation barrier.  The bulk band gap energy of the 

photocatalyst helps to determine the energy of the light source needed to form the 

electron/hole pairs.  The second step of the photocatalytic process deals with charge 

separation of the generated electron and hole pairs followed by migration to the 

surface reaction sites.  A great challenge to the photocatalytic process is to minimize 

the immediate recombination of electron/hole pairs before the charge separation 

occurs.  Transient photoluminescence spectroscopy has determined that about 90% or 

more of the photogenerated electron/hole pairs recombine within 10 ns of excitation, 

which limits the effective quantum yield to 10% or less on TiO2 photocatalysts [12].  

Defects in the crystal structure can act as recombination centers in the photocatalyst so 

highly ordered crystalline materials are desired [13].  Particle size also has a great 

effect on charge transfer since smaller particles lead to shorter migration distances and 

a lower probability of electron/hole recombination [13].  After the electron/hole pairs 

migrate to the surface of the photocatalysts, the third and final step of the process is 

the coupled surface chemical reactions at the catalytic active sites where the excited 
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electrons react with H
+
 to form H2 at one catalytic active site and excited holes help to 

oxidize water into O2 at a different catalytic active site as depicted in Figure 1.   

A “co-catalyst”, which is commonly used terminology in the literature, is 

typically deposited on the photocatalyst that makes the photocatalyst active or 

significantly increases the activity of the photocatalyst.   It is not always clear which 

component in a multi-component photocatalyst system is the catalytic active site so it 

is not appropriate to call one component “the photocatalyst” and another component 

the “co-catalyst”.  In order to discern the functions of the different components in the 

photocatalyst system, it is more appropriate to view the bulk component as the 

electron/hole generator and the active surface components as the catalytic active sites 

in a photocatalytic system, which is analogous to supported metal oxide catalysts 

where the catalytic active component is deposited on a high surface area support [14, 

15].  This would help to clarify the role of each component in the photocatalyst 

system.  One of the main difficulties of finding appropriate component materials for 

photocatalytic water splitting is the balance between finding suitable bulk 

molecular/electronic properties and surface molecular/electronic properties of a 

photocatalytic system.   

1.3 Semiconductor Materials for Photocatalytic Water Splitting 

Since TiO2 was first used by Fujishima and Honda for their PEC cell for water 

splitting, it has become the most widely studied photocatalyst to date [16].  The main 

difficulty with using TiO2 for photocatalytic water splitting is the low activity of H2 
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production and the undetectable amounts of O2 evolution attributed to adsorbed O2 

species on the TiO2 [3, 17].  Only with the addition of another catalyst component 

such as Pt [18] or in the presence of alkali carbonates [19] has stoichiometric amounts 

of H2 and O2 been produced using TiO2 as the bulk electron/hole generator.  TiO2 

photocatalyst applications have focused more on environmental applications such as 

photocatalytic oxidation of organic toxins in water and for air purification [16].   

Over the years, many other metal oxide semiconductor materials have been 

discovered (>130) which are much more efficient for photocatalytic water splitting 

compared to TiO2 [3, 13, 20, 21].  From all of the discovered materials for 

photocatalytic water splitting, only certain semiconductor materials possess suitable 

bulk band gap structures which can generate electron/hole pairs that can be used for 

photocatalytic water splitting.  These semiconductor photocatalysts have been found to 

have either empty d orbitals (defined as having d
0
 configuration) or filled d orbitals 

(defined as having d
10 

configuration) [20].  Materials with partially filled d orbitals do 

not possess a suitable electronic structure due to the partially filled d orbitals that act 

as recombination centers for electron/hole pairs.  Transition metal oxides that satisfy 

the former criteria are those that contain Ti
4+

, Zr
4+

, Nb
5+

, Ta
5+

, and W
6+

 and main 

group metal oxides that satisfy the latter criteria are those that contain Ga
3+

, In
3+

, Ge
4+

, 

Sn
4+

, and Sb
5+

.  Photocatalytic studies for water splitting under UV light excitation 

have shown that trends in H2/O2 production follow the size of the transition metal 

oxide band gap where the larger band gaps reflect an increasing thermodynamic 

driving force for water splitting [3].    Tungstates (WO3, 2.8 eV) are less active than 
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titanates (TiO2, 3.0-3.1 eV) and are generally less active than niobates (Nb2O5, 3.1-3.5 

eV), which in turn are generally less active than tantalates (Ta2O5, 4.0-4.6 eV).  Pure 

ZrO2 (5.0 eV) with its large band gap is able to photocatalytically split water [22-24] 

but other zirconia-based photocatalysts have not been discovered like the other d
0
 

transition metal oxides possibly due to poor absorption (< 248 nm) with commonly 

used Xe and Hg light sources [3].  There have not been as many d
10

 main group metal 

oxide photocatalysts which have been discovered compared to d
0
 transition metal 

oxides and the d
10

 metal oxide photocatalyst are generally less active compared to d
0
 

metal oxide photocatalyst.   Some of the effective photocatalysts consist of the bulk 

mixed oxides of SrTiO3 [25], Ta2O5 [26], K2La2Ti3O10 [27], Sr2Nb2O7 [28], 

K3Ta3Si2O13 [29], NaTaO3 [30], NaTaO3:La [31], RbTaWO6 [32], ZnGa2O4 [33], 

CaIn2O4 [34], ZnGeO4 [35], Sr2SnO4 [36] and NaSbO3 [36].  Like TiO2-based 

photocatalysts, the activity of these bulk mixed oxide photocatalysts have been shown 

to be greatly enhanced by the presence of another catalyst component such as Pt, 

Rh2O3, NiO and RuO2.   

Out of all of these photocatalytic materials that are activated by UV 

illumination, tantalum-based photocatalysts have shown great promise for 

photocatalytic water splitting.  Kudo’s group has demonstrated that tantalum-based 

photocatalysts such as Ta2O5 [23, 26], NaTaO3 [30], K3Ta3Si2O13 [29], K2PrTa5O15 

[37], Sr2Ta2O7 [38] and NiO/NaTaO3:La [31, 39] are among the most active 

photocatalysts under UV-irradiation for the photocatalytic conversion of H2O into 

H2/O2.  The NiO/NaTaO3:La  photocatalyst system is  the most active photocatalyst 
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discovered to date with an apparent quantum efficiency (number of reacted electrons/ 

number of incident photons) of 56% using UV excitation with λ > 270 nm [31, 39]. 

The bulk NaTaO3 forms a perovskite crystal structure after calcination and is able to 

photocatalytically split water into H2 and O2.  The activity of the bare NaTaO3 was 

improved by 2.6x by the addition of La, 12.8x by addition of NiO and 116.5x with the 

simultaneous addition of both La and NiO.  Transmission electron microscopy (TEM) 

showed that the NaTaO3:La particles are smaller than the unmodified NaTaO3 and 

contain characteristic ordered nanostep structures not found in the NaTaO3.  It was 

proposed that well-dispersed NiO deposited on the edges of the nanostep structures are 

the catalytic active site for H2 production and O2 was produced at the grooves of the 

nanostep structures. The proposed model, however, was established with only bulk 

characterization techniques (XRD, TEM, XANES, and XAFS) and no surface 

characterization methods were employed to directly confirm the conclusions on the 

nature of the surface catalytic active sites. 

Although there are a large number of semiconductor metal oxide materials that 

can perform photocatalytic water splitting using UV-irradiation, the large band gap 

energies of these semiconductors hinders their ability to utilize visible light energy.  

Only NiO/InTaO4 (Q.E. = 0.7%) [40], RuO2/InTaO4 (Q.E. = 0.4%) [41] and 

RuO2/YBiWO6 (Q.E. = 0.2%) [42] have been found to be able to perform the water 

splitting reaction under visible light excitation, but with very low quantum 

efficiencies.  Metal oxynitride catalysts ((Ga1-xZnx)(N1-xOx) and (Zn1+xGe)(N2Ox)) 

discovered by Domen’s group synthesized from metal oxides calcined under NH3 flow 
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have been shown to be able to overcome band gap limitations of semiconductor metal 

oxides and can perform visible light water splitting [20, 43, 44].  DFT calculations 

have theorized that there is a strong p-d repulsive force between N2p and Zn3d 

orbitals in the valance band of these materials that shifts the valence band position 

upwards without affecting the conduction band position [45, 46].  This narrowing of 

the band gap is responsible for the visible light absorption for these metal oxynitride 

photocatalysts.  The (Rh2-yCryO3)/(Ga1-xZnx)(N1-xOx) catalyst is the most active of all 

the oxynitride photocatalysts under visible light water splitting (λ > 400nm) with an 

optimized apparent quantum efficiency of 5.9% [47-50].  The bulk structure of the 

(Ga1-xZnx)(N1-xOx) has been shown to have a wurtzite solid solution crystal structure.  

The supported (Rh2-yCryO3) mixed oxide nanoparticles are proposed to be the active 

site for H2 production while the (Ga1-xZnx)(N1-xOx) support provides the active sites 

for O2 production.  As in the other studies on photocatalyst systems, only bulk 

characterization techniques were applied and no surface characterization methods 

were employed. Thus, further work needs to be performed to fully understand the 

surface aspects of this novel photocatalyst system and especially the nature of the 

catalytic active sites at the surface.   

All of the photocatalyst systems mentioned above are conventional one-step 

systems for photocatalytic water splitting where H2 and O2 are produced on the surface 

of the photocatalyst.  There is a new class of materials being developed which utilize a 

two-step process for photocatalytic water splitting which are called “Z-Scheme” 

photocatalyst systems.  In the two-step Z-Scheme process, one catalyst is used for H2 
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evolution while another catalyst is used for O2 evolution.  A shuttle redox couple 

(Red/Ox) in solution is used to transfer electrons between the two catalysts.  A 

schematic energy diagram comparing the two types of photocatalytic water splitting 

systems is shown in figure 2.  On the H2 evolution catalyst, excited electrons are used 

to reduce water into H2 while holes in the valance band are used to oxidize the 

reductant (Red) to an oxidant (Ox).  On the O2 evolution catalyst, excited electrons are 

used to reduce the Ox into the Red while holes in the valance band are used to oxidize 

water into O2.   The advantage of using a Z-Scheme system is that the band gap 

requirement for water splitting is less restrictive compared to a one-step system [51].  

This allows for visible light irradiation to be more easily attainable since the band gap 

positioning of the H2 evolution catalysts only needs to oxidize the reductant to an 

oxidant and the O2 evolution catalyst only needs to be able to reduce the oxidant to the 

reductant that are less energetic compared to the one-step system.  The Z-scheme 

systems which have been discovered involve combining Pt/SrTiO3:Rh with BiVO4, 

Bi2MoO6, or WO3 using Fe
3+/2+ 

as the shuttle redox couple [52], combining Pt/TaON 

or Pt/ZrO2/TaON with RuO2/TaON or Pt/WO3 using IO
3-

/I
-
 as the shuttle redox couple 

[53-55].  Although Z-Scheme photocatalyst systems are a more recent discovery 

compared to one-step photocatalyst systems, the most active Z-scheme photocatalyst 

system (Pt/ZrO2/TaON with Pt/WO3) has a quantum yield of 6.3% at λ > 420 nm [55], 

which is higher than the most active one-step system ((Rh2-yCryO3)/ (Ga1-xZnx)(N1-

xOx)) at 5.9% at λ > 400 nm.  Not much research work has been devoted to Z-scheme 

photocatalyst systems since it is a more recently developed system so there is potential 
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for new materials to be discovered that can greatly improve the photoactivity for Z-

scheme systems. 

Metal sulfide materials have also attracted a good deal of attention for 

photocatalytic water splitting due to their small band gap that allows for visible light 

absorption [3, 13].  The valence band for these materials usually consist of S 3p 

orbitals which are at a higher potential than O 2p orbitals typical of metal oxides.  The 

main disadvantage of using metal sulfides is that photocorrosion occurs readily and 

the use of sacrificial reagents (Na2SO3, K2SO3, and Na2S) is required for stability and 

to act as electron donors. In the presence of H2O, sulfide species rather than H2O are 

oxidized by the photogenerated holes causing catalyst instability and preventing O2 

evolution for these photocatalysts.  With the use of sacrificial reagents the apparent 

quantum efficiency of metal sulfide photocatalysts can reach 25% at 440 nm 

(Rh/AgGaS2) [56] and 7.4% at 520 nm (Ru/Cu0.25Ag0.25In0.5ZnS2) [57, 58] for the 

production of hydrogen without any oxygen products formed in the reaction.  These 

materials are currently able to absorb light up to 650 nm for hydrogen production.  

Although metal sulfide photocatalysts act only as hydrogen evolution catalysts and do 

not stoichiometrically produce H2 and O2 for overall water splitting, metal sulfide 

photocatalysts have the potential to become important if abundant sulfur compounds 

from chemical plants or nature can be found that can be used as electron donors for 

this reaction. 

This review of photocatalyst systems for water splitting has shown that many 

advanced photocatalytic materials have been discovered over the past 40 years that 
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can perform the water splitting reaction.  The efficiency of these photocatalyst 

systems, however, is still below the desired target of 30% quantum efficiency at 600 

nm excitation that corresponds to about 5% solar energy conversion [13].  It is at this 

point where photocatalyst systems start to become more economically viable for use 

on a large-scale.  Development of more efficient photocatalytic materials is currently 

limited due to the lack of fundamental knowledge of their photocatalytic mechanisms.  

Most of these studies have focused on using bulk characterization techniques to 

propose photocatalyst models and are lacking in surface characterization of the 

catalytically active sites, surface reaction intermediate species and interfacial 

electronic mechanisms of the complex, coupled reactions involved in water splitting.  

Combining both bulk and surface characterization is essential for determining the role 

of each component in the system. This becomes even more critical since future 

photocatalyst systems will most likely have an increased number of components and 

verifying the role of each component in the system will help to establish fundamental 

structure-photoactivity relationships for the complex photocatalyst systems. 

1.4 Overview of Characterization Techniques Utilized for Heterogeneous Mixed 

Oxide Photocatalyst Systems for Water Splitting  

Most of the studies in the literature on the heterogeneous photocatalytic 

systems for water splitting have primarily focused on correlating bulk properties with 

photoactivity.  In the past, the main focus of photocatalytic water splitting research has 

been finding suitable bulk mixed oxide materials that can act as electron/hole 
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generators for the photocatalyst system.   Subsequently, bulk characterization 

techniques have been primarily employed to investigate these active photocatalyst 

systems.    The characterization techniques primarily focused on: X-ray Diffraction 

(XRD), ultraviolet-visible diffuse reflectance spectroscopy (UV-vis DRS), X-ray 

absorption near edge spectroscopy (XANES), extended X-ray absorption fine 

spectroscopy (EXAFS), electron microscopy (EM), inductively coupled plasma 

atomic emission spectroscopy (ICP-AES), photoluminescence (PL) spectroscopy, 

Brunauer-Emmett-Teller (BET) surface area, attenuated total reflectance infrared 

(ATR-IR) spectroscopy, and X-ray photoelectron spectroscopy (XPS) to give insights 

into the properties of the photocatalyst systems.  These characterization techniques, 

however, provide only bulk structural and electronic information about the 

photocatalyst systems, with the exception of BET, ATR-IR, and XPS that can give 

some limited surface information about the photocatalyst systems.  The different 

characterization techniques will be discussed in this section and the strengths and 

weaknesses of each technique for studying photocatalytic systems will be highlighted.   

1.4.1 X-ray Diffraction (XRD) 

 XRD involves focusing beams of X-rays which scatter from lattices in the 

sample forming diffraction patterns.  At certain angles, scattered X-rays are combined 

constructively and are measured as a function of diffraction angle, 2θ.  The diffraction 

patterns formed can be used as identifiers for crystal lattices found in the material.  

This allows for the determination of the crystalline phase, quantitative composition of 

multi-component systems, lattice parameters, crystalline size and shape, bulk defect 
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types and concentration (micro-strains) and the presence of doping elements in the 

crystal lattices of the photocatalyst system [59].  The disadvantages of XRD is that it  

only provides analysis of bulk crystalline phases and is unable to provide surface 

information, detect amorphous phases or detect crystalline particles smaller than 3 nm 

due to peak broadening.  XRD is, therefore, only limited to providing bulk structural 

information about large particles (> 3 nm) that tend to be the supports that are 

responsible for generating excited electron/hole of the photocatalyst system.   

1.4.2 X-ray Absorption Spectroscopy (XANES and EXAFS) 

The complimentary synchrotron-based X-ray absorption spectroscopic 

techniques of X-ray Absorption Near Edge Spectroscopy (XANES) and Extended X-

ray Absorption Fine-Structure Spectroscopy (EXAFS) are based on the absorption of 

X-rays by the sample that excites an electron from a core state to an empty state at 

above the Fermi level.  This process emits photons from the sample of interest that are 

subsequently scattered by nearby atoms.  This interaction gives off fluorescence 

emissions and transmissions modes that contain detailed local structural and electronic 

information of the photocatalyst systems [60].  The XANES region focuses on the pre-

edge, the edge and features up to 50 eV above the absorption edge of a specific 

element in the photocatalyst, while the EXAFS region includes all features in the 

spectrum above 50 eV from the edge of a specific element in the photocatalyst [61].  

XANES is used to discriminate between different oxidation states and local bonding 

geometry of a specific element.  EXAFS is used to determine the bond length and 

local geometry between different elements present in the photocatalyst. A major 
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drawback to theses characterization techniques is that they average their signal from 

multiple sites of the same element and, therefore, are not well suited for materials 

containing multiple components with different oxidation states or structures [62].  

Furthermore, surface information is only provided for highly dispersed systems or 

materials with high surface area, but the usually low surface areas of photocatalysts (< 

10 m
2
/g) assures that the XAS signals will be dominated by the elements present in the 

bulk phase of the photocatalysts. 

1.4.3 Electron Microscopy 

Electron microscopy provides the images of a photocatalyst with up to an 

atomic scale resolution (<0.1 nm) that gives insight into the structure and morphology 

of the photocatalyst system.  Electron microscopy encompasses many different 

techniques, Transmission Electron Microscopy (TEM), Scanning Electron Microscopy 

(SEM), Scanning Transmission Electron Microscopy (STEM), Energy-Dispersive X-

ray Spectroscopy (EDX), and Electron Energy-Loss Spectroscopy (EELS), which 

have been used to characterize photocatalyst systems.  TEM is the most commonly 

used of these electron techniques for studying photocatalytic materials.  TEM 

functions by generating a primary electron beam of high energy and high intensity that 

passes through a condenser to produce parallel beams that irradiate the sample.  

Magnified images of the sample are formed by combining the transmitted electrons 

using an electromagnetic objective lens.   TEM is primarily used to give information 

on topography, morphology and crystal structure at with atomic resolution (0.1 nm) 

[63] and bulk composition when coupled with EELS.  SEM is carried out by rastering 
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a narrow electron beam over the surface of the sample and detects the yield of 

secondary or backscattered electrons as a function of the primary beam.  The main 

difference between SEM and TEM is that SEM sees contrast due to topology and 

composition of a surface, while the TEM projects all information on the mass it 

encounters in a 2-D image of subnanometer resolution [62].  SEM instruments only 

have a lateral resolution of ~ 5 nm and are useful for determination of surface 

morphology and larger nanoparticles compared to TEM analysis.  STEM combines 

both modes mentioned above and utilize scanning coils to illuminate a small area of 

the sample from which bright or dark field images are obtained.   STEM can be 

combined with the high-angle annular dark field (HAADF) imaging technique to 

provide Z-contrast images which can distinguish particles of different atomic number.  

The image brightness is approximately dependent on the square of the atomic number 

(Z
2
) of the atoms present and very useful for particles with a great difference in atomic 

mass and not so useful for particles with similar atomic masses.   

The elemental composition of a sample can be determined by combining EDX 

and EELS analysis with the electron microscopic imaging techniques mentioned 

above.  EDX is the more commonly used technique and involves ionization of the 

sample from the X-rays of the microscope. The X-ray emissions from this ionization 

event are then analyzed with a solid-state energy dispersive detector. Each element 

gives out a unique pattern of X-ray lines from the K, L, and M shells which allows for 

straightforward analysis.  EELS is complimentary to EDX in that the ionization event 

that occurs in the sample leads to a characteristic loss in energy of the transmitted 
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electrons that can also be detected.  EELS is very sensitive to lighter elements (Z< 11) 

where the energy losses are small where EDX is more sensitive to heavier elements 

(Z> 11) [63].  These techniques are also useful for constructing elemental maps to 

characterize the microstructural composition and elemental distribution of 

multicomponent catalysts on the nanometer scale.  All the electron microscopy 

techniques, however, only provide structural information about crystalline components 

(<1 nm) and do not provide structural information about amorphous or surface phases. 

An exception occurs is when an element with a high Z number is dispersed as an 

amorphous surface phase on a support with low Z number elements [64]. 

1.4.4. Infrared (IR) spectroscopy 

Infrared spectroscopy provides vibrational information about chemically 

bonded surface reaction intermediates and the changes in these molecular vibrations 

give insight into the bond breaking/making process essential to understanding the 

catalytic reaction mechanism.  Infrared spectroscopy is a bulk technique that can 

provide bulk structural information as well as the nature of the surface species if the 

surface area is sufficient to accommodate significant number of surface species. 

Conventional IR spectroscopy cannot be used to probe photocatalytic water splitting 

reactions due to the strong absorption by water which requires the use of attenuated 

total reflectance infrared (ATR-IR) spectroscopy [65, 66].  An advantage of ATR-IR 

over conventional transmission IR and DRIFTS methods is that ATR-IR only probes 

the molecules that are located near the surface (μm) in the catalyst region instead of 

the entire volume of the photoreactor.  Thus, ATR-IR spectroscopy allows for in-situ 
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analysis of the solid/liquid interfaces during photocatalytic water splitting.  It can be 

used to obtain information about chemical and geometrical structures of surface 

species and also give information on reaction mechanism and kinetics [67, 68].  Some 

of the challenges with in-situ ATR-IR for photocatalytic water splitting include weak 

signals from the low surface area photocatalytic materials, difficulty discriminating 

between active and spectator species, diatomic molecules such as H2 and O2 not being 

active in IR, and the strong water absorption leading to regions that cannot be used for 

analysis.    

1.5 Approach and Outline of This Thesis 

 The previous section has highlighted the characterization techniques that have 

been employed to study photocatalytic materials.  One of the major issues with the 

previous studies has been the focus on correlating bulk structural properties of the 

photocatalyst systems with photoactivity [26, 31, 47-49, 69, 70].  The lack of surface 

characterization of the outermost surface layer has led to a catalysis paradigm for bulk 

mixed metal oxide catalysis including photocatalysts, where bulk structural features 

are correlated with catalytic activity [71, 72]. Catalytic reactions are a surface 

phenomenon and surface characterization is needed to correlate surface properties 

with catalytic activity and to better understand the fundamentals of photocatalysis.  

Only when surface characterization is performed can appropriate models for catalytic 

active sites be determined for photocatalytic systems.   
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 This section will look at characterization techniques and the photocatalytic 

reactor employed in this study for determination of bulk/surface structure – 

photoactivity relationships for photocatalyst systems for water splitting.  Raman 

spectroscopy will be used to determine the bulk molecular structure of the 

photocatalyst systems.  The bulk electronic structure will be examined using UV-vis 

diffuse reflectance spectroscopy.  Photoluminescence spectroscopy will be used to 

explore the state of the excited electrons and the lifetime of the excited electrons in the 

photocatalyst system.  Since photocatalyst systems are complex multicomponent 

systems, bulk characterization techniques are useful for determining the effect of each 

component on the bulk properties of the photocatalyst system.  The oxidation state of 

surface species (~1-3 nm) will be determined using X-ray photoemission spectroscopy 

while the composition of the outermost surface layer (~0.3 nm) of the photocatalyst 

system will be revealed for the first time using high sensitivity low energy ion 

scattering spectroscopy. Combining bulk and surface characterization will allow for 

determining the role of each component in the photocatalyst system and allow for 

more accurate models for the catalytic active sites and the photocatalytic reactions.   

1.5.1 Raman Spectroscopy 

Raman spectroscopy is a powerful characterization technique which provides 

vibrational information about the bulk mixed oxide molecular structures and can also 

give information about surface structures in a photocatalyst system for high surface 

area materials [73].  Raman spectroscopy is an ideal characterization technique 

because it can operate in all phases (gas, solid, and liquid), and over a wide range of 
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temperatures and pressures that are useful for in situ studies during photocatalytic 

water splitting reactions [73].  Like other bulk techniques, the Raman spectra are 

dominated by the signal from bulk phase due to the greater Raman scattering from the 

ordered crystalline lattice compared to disordered amorphous surface phases.  The 

ability to detect amorphous phases along with a greater sensitivity for detection of 

smaller ordered nanoparticles (< 3 nm) makes Raman a more a better tool than the 

comparable XRD characterization technique.  The sharpness of the Raman peaks help 

to qualitatively determine the relative crystallinity of the bulk phase of the 

photocatalyst system.  Sample fluorescence, one of the limitations for Raman 

spectroscopy, is not much of an issue when dealing with photocatalyst systems since 

the bulk mixed oxide photocatalysts tend to give strong Raman signals.  Additionally, 

UV Raman has greater sensitivity towards the surface region of a solid sample than 

conventional Raman spectroscopy [74]. 

1.5.2 Ultraviolet-visible (UV-vis) Diffuse Reflectance Spectroscopy (DRS) 

UV-vis diffuse reflectance spectroscopy is a characterization technique used to 

obtain information about the electronic structure of the photocatalyst system based on 

the absorptive and light scattering properties of the sample under light excitation from 

the 200–800 nm range.  The sample absorbance is then referenced against an MgO 

standard and the Kubulka Monk function can be calculated for the sample that allows 

determination of the optical band gap for photocatalyst materials [75-77].  The optical 

band gap determines how much photon energy is required to generate excited 

electron/hole pairs in the bulk of the photocatalyst material.  It is desirable for a 
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photocatalyst system to have band gap values below 3.0 eV to be able to absorb 

energy in the visible light region [20].  Since UV-vis DRS looks at electronic 

transitions from ground state to excited states in the sample, it is also used to give 

obtain information on the oxidation states, and coordination of metals from metal-

centered and charge transfer transitions [78, 79].  One of the drawbacks to using UV-

vis DRS is that it is a bulk technique so the information obtained from it is averaged 

from all the components of the photocatalysts system, bulk and surface, and cannot 

give specific information about individual components and the surface region. An 

advantage of UV-vis DRS is that it can performed under in situ conditions during 

photocatalytic splitting of water 

1.5.3 Photoluminescence (PL) Spectroscopy 

 Photoluminescence spectroscopy is a complimentary technique to UV-vis DRS 

in that it also gives information on the electronic structure from light excitation.  

Whereas UV-vis DRS looks at the transition from the ground state to the excited state, 

PL spectroscopy differs by examining the transition from the excited state to the 

ground state.  The emission of photons from this phenomenon can be measured as 

fluorescence.  This process is relevant to the study of photocatalyst systems since 

fluorescence occurs when electrons in the conduction band recombine with holes in 

the valence band.  This characterization technique can thus give direct information on 

electron transfer kinetics during the photocatalytic process.  The PL intensity can then 

be used to compare recombination rates for different photocatalyst systems, determine 

the band gap energy, and detect impurities and defects in the sample [80, 81].  PL 
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spectroscopy has the same drawback as UV-vis DRS in that it is a bulk technique and 

cannot give specific information about individual components nor surface species. 

However surface species can have a large effect on the PL spectra since surface sites 

and the presence of adsorbed surface molecules can act as efficient electron traps 

which help to decrease PL intensity preventing electron/hole recombination [74, 81].   

 Time-resolved picosecond in situ PL (TR-PL) spectroscopy will also be 

utilized to examine the recombination lifetimes of electron/hole pairs.  Whereas 

conventional or steady-state PL spectroscopy uses continuous excitation from a light 

source, TR-PL spectroscopy relies on pulsed excitation and measures 

photoluminescence at certain time intervals after the pulse excitation [80, 82].  The PL 

emission intensity over time is then fitted to an exponential decay model to determine 

the lifetimes of photo-generated electron/hole pairs [83, 84].  An increased lifetime of 

photogenerated electron/hole pairs has been shown to correlate with TiO2 for 

photocatalytic splitting [85, 86] and this relationship will be investigated for more 

active photocatalyst systems.   

1.5.4 High-Resolution X-ray Photoemission Spectroscopy (HR-XPS) 

 XPS is a surface technique that utilizes photons from an X-ray source to excite 

the electronic states of atoms near the surface (~1-3 nm) of a solid.  The electrons 

ejected from the sample are collected by a hemispherical electron energy analyzer 

which measures the kinetic energy of the ejected electrons.  The kinetic energy 

measured can then be used to determine the binding energy of the electron from the 

following equation: 
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                     (2) 

Where h is Planck’s constant, ν is the frequency of the exciting energy source, and ϕ is 

the work function of the spectrometer [62].  Each ejected electron from an element has 

a characteristic binding energy and the position of this binding energy is used to 

identify the element and core level of the electron that can be found by consulting 

binding energy tables [87].  The peak intensities can be used to quantitatively 

determine the elemental composition (detection limit ~ 1000 ppm for most elements) 

and the peak positions can be used to determine oxidation states for the elements.  In 

general, binding energies increases with increasing oxidation state typically shifting by 

about 0-3 eV [62].  Some of the disadvantages of XPS are that it requires ultra-high 

vacuum conditions, sample damage from the X-ray sources, not sensitive enough to 

get information on only the outermost layer (~0.3 nm) and overlapping elemental 

peaks that can make spectra analysis challenging.    

1.5.5 High Sensitivity Low Energy Ion Scattering Spectroscopy (HS-

 LEISS) 

 HS-LEIS is a unique surface characterization technique is a powerful tool for 

analysis of the outermost surface layer (~0.3 nm) of the photocatalyst system that 

gives insight into the nature of the catalytic active sites on the photocatalyst surface.  

During HS-LEIS, the surface of the sample is bombarded by a noble gas ion with a 

known energy and a binary collision occurs between the noble gas ion and a surface 
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atom.  The energy of the backscattered ion, Ef, can be determined by the 

conservational laws of momentum and energy by the equation: 
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In this, k is the kinematic factor, m1 and m2 are the masses of the primary ion and the 

scattered surface atom, θ is the back scattering angle, and E0 is the initial energy for 

the primary ion [88].  All of the variables are known for the experiment except for m2 

so that value is able to be back-calculated from the experimental data obtained for the 

backscattered ions.  HS-LEIS spectroscopy is used to quantitatively determine the 

atomic composition of the outermost atomic layer and can detect all elements except 

for H and He.  HS-LEIS spectroscopy is orders of magnitude more sensitive than 

conventional LEIS spectroscopy with elemental detection as low as 10 ppm and uses 

lower doses of primary gas ions to obtain static spectra sputtering less than 0.5% of a 

monolayer [89, 90].  Noble gas ions can penetrate the surface into deeper layers, but 

are usually neutralized upon scattering; however some particles can become re-ionized 

and show up as a low energy tail to the peak obtained from surface atoms.  The shape 

of this tail can give information on the distribution of the elements over deeper layers 

up to 10 nm [89].  Alternatively, a secondary ion source can be used for sputter depth 

profiling, which can also give information about deeper layers.  The disadvantages of 

using HS-LEIS spectroscopy are that it requires ultra-high vacuum conditions, it does 
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not give chemical state information (oxidation state) and it may be difficult to 

distinguish between elements with similar atomic masses. 

1.5.6 Photocatalytic Reactor for Water Splitting 

 There are two different reactor cell designs that are used for photocatalytic 

water splitting and a schematic of the two reactors are presented in Figure 3.  The 

reactor system consists of a closed-gas circulation system connected to a vacuum 

pump that removes ambient air from the system prior to the reaction so no 

atmospheric oxygen is present in the system during photocatalysis.  A suspension 

consisting of the photocatalyst and water is created in the reaction cell with a magnetic 

stirrer put in to continuously stir the suspension.  An inner irradiation reactor cell is 

used when a UV lamp (high pressure 450W Hg lamp) is used for irradiation while a 

top down reactor cell is used when a Xe arc lamp is used.  A solar simulator can also 

be used if solar hydrogen production is desired.   Appropriate filters are employed 

when the experiment requires visible light irradiation.  Typically NaNO2 is utilized to 

filter out UV light in the inner irradiation reactor while cut-off filters are employed for 

top down reactors.  These reactor cells are connected to a water cooling system to 

maintain room temperature and to minimize the effects from heating due to the high 

powered lamps.  A Liebig condenser is utilized to prevent gas phase water from 

escaping the reactor so only H2 and O2 can be found in the rest of the system.  A gas 

chromatograph is then used to quantify the amount of H2 and O2 products.   

 1.5.7 Dissertation Outline 
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 Although there are over one hundred photocatalyst systems for water splitting 

that have been discovered, only a few of the more relevant and most studied 

photocatalyst systems will be investigated.    In chapter 2,   Ta2O5 and NaTaO3 –based 

photocatalysts will be examined since these are the most active metal oxide 

photocatalyst under UV irradiation.  Chapter 3 will look at GaN which is an UV active 

oxynitride photocatalyst.  There are two different synthesis methods for the (Ga1-

xZnx)(N1-xOx) photocatalysts which have led to two different proposed models for their 

catalytic active sites.  The validity of the models for these visible light oxynitride 

photocatalysts will be the focus of investigation in Chapter 4.  Chapter 5 will look at 

TaON photocatalysts which are capable of absorbing light up to 600 nm and is used in 

Z-scheme photocatalyst systems.  Chapter 6 will give a summary of the conclusions 

found in this dissertation on the photocatalyst systems studied.  The future outlook 

will look at how other characterization techniques can be used to further elucidate the 

photoactivity of existing photocatalytic materials so fundamental structure-activity 

relationships can be established for the design of advanced photocatalyst systems.     
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Figure 1.1:  Basic Principles of Photocatalytic Water Splitting. 

 

 

 

 

 

 

 



 

44 

 

 

Figure 1.2:  Schematic Energy Diagram of photocatalytic water-splitting systems: (a) 

conventional one-step system and (b) two-step “Z-Scheme” system obtained from 

[51]. 
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Figure 1.3:  Schematic of Photocatalytic Reactor Designs obtained from [13]. 
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CHAPTER 2 

Nature of Catalytic Active Sites Present on the Surface of 

Advanced Bulk Tantalum Mixed Oxide Photocatalysts 

 

 

Abstract 

The most active photocatalyst system for water splitting under UV irradiation (270 

nm) is the promoted 0.2%NiO/NaTaO3:2%La photocatalyst with optimized apparent 

quantum efficiency (Q.E.) of 56%.  The promoted NaTaO3:2%La phase was 

synthesized by solid-state reaction between Ta2O5, NaCO3 and La2O3 at extremely 

high temperatures (1120-1470 K) and the NiO promoter was subsequently 

impregnated from an aqueous Ni(NO3)2*6H2O solution and mildly calcined at 540 K.  

Raman spectroscopy revealed the bulk molecular structure of NaTaO3 was not 

modified by the addition of the La2O3 and NiO promoters.  UV-vis spectroscopy 

showed that the bulk band gap energy was likewise not significantly affected by the 

addition of La2O3 and NiO in agreement with the same bulk structure for all the 

photocatalysts. The surface area of the NaTaO3 phase is enhanced by ~10 for the La-

containing catalysts and not altered for the NiO containing catalysts.  HR-XPS and 

HS-LEIS spectroscopy indicate that the NiO and La2O3 promoters are surface 
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segregated on the bulk NaTaO3 phase.  Photoluminescence (PL) spectroscopy reveals 

that the addition of La2O3 and NiO act as electron traps resulting in the suppression of 

the PL emission intensity.  The greater number of electron traps for the La-containing 

NaTaO3 is strictly related to the enhanced surface area of this photocatalyst and the 

enhanced number of electron traps for the NiO-containing NaTaO3 is an electronic 

effect since the surface area of this material was not altered by the addition of NiO.  

Consequently, the specific photoactivity of the NiO-containing NaTaO3 catalysts, 

when normalized per unit surface area, is enhanced by a factor of ~10
1
-10

2
 because of 

the electronic promotion of NiO.  These insights provide new fundamental 

molecular/electronic structure-photoactivity relationships about the promoted NaTaO3 

photocatalysts and the important role of surface catalytic active sites.  These new 

findings also bring into question the validity of the previously proposed model for the 

catalytic active sites for the promoted 0.2%NiO/NaTaO3:2%La photocatalyst system. 

2.1 Introduction 

 Photocatalytic water splitting is a thermodynamically challenging reaction 

requiring a large positive change in Gibbs free energy (238 kJ/mol) to produce 

hydrogen fuel and oxygen.  This phenomenon was first brought to attention by the 

pioneering work by Fujishima and Honda in 1972 [1] and research efforts since then 

have focused on finding highly active metal oxide semiconductor materials for 

photocatalytic hydrogen production by water splitting.  Hydrogen is considered to be 

one of the potential candidates to replace fossil fuel for our sustainable energy needs 
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especially if it can be generated from the photocatalytic conversion of cheap abundant 

water into clean non-carbon hydrogen from solar energy resources.  Development of 

this clean, renewable form of energy will help to address our reliance on depleted 

fossil fuel supplies and the environmental problems accompanying its use.  Many 

metal oxide semiconductor catalysts (>130) have been found which are able to 

photocatalytically convert water into hydrogen and oxygen [2-5].  These semiconductor 

catalysts are based on d
0
 (Ti, Zr, Nb, Ta, and W) transition metal oxides and based on 

d
10

 (Ga, In, Ge, Sn and Sb) main group metal oxides have emerged as candidates for 

use in heterogeneous photocatalytic systems because of their advantageous electronic 

configuration.  Although photocatalytic water splitting has garnered much interest in 

academia, there has not been much industrial interest for photocatalytic water splitting 

due to the low photocatalytic activity and lack of extensive studies on industrial scale 

up for the process [5]. Among the discovered semiconductor photocatalyst systems, 

tantalum-based photocatalysts such as Ta2O5 [6, 7], NaTaO3 [8], K3Ta3Si2O13 [9], 

SrTa2O6 [10] and NaTaO3:La [11, 12] have been found to be among the most 

promising for photocatalytic water splitting due to their high photoactivity under UV 

irradiation.   

 Some of the strategies that are used to increase the activity of the 

photocatalysts include the addition of a co-catalyst such as NiO, Pt, Rh2O3, and RuO2 

and doping of the photocatalysts with metal ions to induce changes in morphology 

[13].  These catalyst design strategies led towards the discovery of lanthanum-doped 

NaTaO3 loaded with a NiO co-catalyst (NiO/NaTaO3:La) which is currently the most 
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active photocatalyst for water splitting with an optimized apparent quantum efficiency 

(Q.E.) of 56% under UV irradiation at 270 nm with a stability of more than 400 hours 

[11].  Bulk characterization techniques (XRD, TEM, XANES and EXAFS) suggested 

that LaOx and NiO species are present as highly dispersed species on the surface of the 

catalysts because separate crystalline phases of NiO and LaOx were not detected.  

Electron microscopy revealed that the particle size of NaTaO3:La (0.1-0.7 μm) were 

smaller than undoped, La-free NaTaO3 (2-3 μm) and ordered nanostep structures were 

found only on NaTaO3:La [11].  It was proposed that the active site for H2 evolution 

was at highly dispersed NiO sites selectively deposited on the edges of the nanostep 

structures while the active site for O2 evolution was at the groove of the nanostep 

structures.  The high photoactivity of the catalysts was attributed to the separation 

between the oxidative and reductive active sites.  Deriving a model for the catalytic 

active surface sites based only on bulk techniques is highly problematic since the 

surface of bulk mixed metal oxides can be surface enriched or depleted of one or more 

of its constituent components [14, 15].  Thus, it is necessary to understand the nature 

of the outermost surface layer of a photocatalyst since the catalytic processes 

producing the H2 and O2 proceed through catalytic surface phenomena.  This 

fundamental piece of information is critical to develop solid fundamental 

photocatalytic models involving the catalytic active surface sites.        

 The current study will utilize in situ optical spectroscopic characterization 

methods (Raman, UV-vis, photoluminescence (PL) and time-resolved picosecond PL-
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Raman) to give further insight into the bulk molecular and electronic structure of 

NaTaO3 photocatalysts and how the addition of NiO and La2O3 phases affect those 

bulk properties.  The use of the surface science characterization methods of high-

resolution X-ray photoelectron spectroscopy (HR-XPS) and high-sensitivity low 

energy ion scattering (HS-LEIS) spectroscopy will provide additional information 

about the nature of the surface region (~1-3 nm) and outermost atomic layer (~0.3 nm) 

of the photocatalysts where the catalytic active sites are located, respectively.  This is 

the first study to report on the surface nature of tantalum mixed oxide photocatalysts.  

The objectives of this study are to establish (i) fundamental structure-photoactivity 

relationship for the highly active tantalum-based photocatalysts and (ii) to examine the 

roles of the surface and bulk characteristics of mixed oxide photocatalysts for water 

splitting.    

2.2. Experimental 

 2.2.1 Photocatalyst Synthesis 

 The NaTaO3 and the doped NaTaO3:La photocatalysts were synthesized by 

solid-state reactions [11].  Ta2O5 (HC Starck, ceramic grade), Na2CO3 (Aldrich, 

99.5%), and La2O3 (Alfa Aesar, 99.99%) were mixed together and calcined at 1170 K 

for 1 hour in air followed by intermediate grinding at ambient temperatures and then 

calcined in air at 1420 K for 10 hours.  The molar ratio of Na:La:Ta was = 1-X:X:1, 

with an excess amount of sodium (5% mol) used to compensate for Na volatilization.  

The optimized doping of 2 mol% of lanthanum was used in this study.  The NiO (0.2 
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wt. %) was subsequently added to the photocatalyst by impregnation of an aqueous 

solution of Ni(NO3)2*6H2O (Aldrich, 99.999%).  The powdered photocatalyst was 

placed into a porcelain crucible and heated over a water bath and the suspension was 

stirred using a glass rod until the solution was completely evaporated. The dried 

powder was then mildly calcined at 540 K for in air for 1 hour.     

 2.2.2 In Situ Raman Spectroscopy 

 The Raman spectra of the photocatalysts were obtained on a Lab Ram-HR 

Raman spectrometer (Horiba-Jobin Yvon) equipped with visible (532 nm) laser 

excitation utilizing a confocal microscope (Olympus BX-30) for focusing the laser on 

the catalyst sample. The visible laser excitation was generated by Nd:YAG laser (10 

mW) with the scattered photons directed into a single monochromator and focused 

onto a UV-sensitive liquid-N2 cooled CCD detector (Horiba-Jobin Yvon CCD-3000V) 

having a spectral resolution of ∼2 cm
-1

 for the given parameters. About 5-10 mg of the 

catalyst was placed into a high temperature in situ cell (Linkam TS-1500) with a 

quartz window and cooled with flowing water.  The catalyst samples were treated at 

673 K for 1 h in flowing 10% O2/He (Airgas, 30 mL/min) to desorb the adsorbed 

moisture and the spectra of the dehydrated samples were collected after cooling the 

catalysts back to 373 K in the flowing 10% O2/He gas to ensure that the catalyst 

surface was void of moisture. The spectral acquisition time employed was 5 scans of 5 

seconds/scan for each spectrum.  System alignment was verified using a silica 

reference standard line at 520.7 cm
-1

.   

 2.2.3 In Situ UV-Vis Diffuse Reflectance Spectroscopy 
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  The UV-Vis Diffuse Reflectance spectra were obtained using a Varian Cary 5E 

UV-vis spectrophotometer with a diffuse reflectance attachment (Harrick Praying 

Mantis Attachment, DRA-2).  The finely ground powder catalyst samples (~20 mg) 

were loaded into an in situ cell (Harrick, HVC-DR2) and measured in the 200-800 nm 

spectral region with a magnesium oxide reflectance standard used as the baseline.  The 

UV-vis spectra of the photocatalysts were obtained after the samples were treated at 

673 K for 1 h in flowing 10% O2/He (Airgas, 30 mL/min) to desorb the adsorbed 

moisture. Below 300 nm, the absorbance signal was unacceptably noisy and a filter 

(Varian, 1.5 ABS) was employed to minimize the background noise.  Determination of 

the Kubelka-Munk function, )( RF , was obtained from the UV-vis DRS absorbance 

and processed with Microsoft Excel software.  The UV-vis edge energy )( gE was 

determined by finding the intercept of the straight line in the low-energy rise of a plot 

of nhvRF
1

])([ 
, where 5.0n  for the direct allowed transition versus hv , where hv  is 

the energy of the incident photon [16-18]. 

 2.2.4 Photoluminescence Spectroscopy and Lifetime Emissions Decay 

 

 Photoluminescence spectra and lifetime emissions decay were obtained using a 

tunable Ti:sapphire laser (Mira 900, Coherent), generating 5 ps pulses with 76 MHz 

repetition rate and pumped with a frequency-doubled Nd:YVO4 laser (Coherent Verdi 

V-18), set at 267 nm and was directed into a tunable Raman/photoluminescence 

system (Jobin Yvon Horiba, T64000) with UV objective lens to focus the laser onto 
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the sample.  About 5-10 mg of the catalyst sample was placed into a high temperature 

in situ cell (Linkam TS-1500) with a quartz window and cooled with flowing water.  

The cell was pretreated at 673 K by flowing 10% O2/N2 for 30 minutes to desorb 

adsorbed moisture and then cooled back down to 298 K in flowing N2 where the 

photoluminescence spectrum was obtained.  The emission spectrum was collected in 

the 366-700 nm range.  The peak of the photoluminescence spectrum was then 

subsequently used as the emissions decay window for photoluminescence lifetime 

measurements.  For lifetime decay experiments, the luminescence light was 

subsequently backscattered through the objective lenses and focused onto a slit of a 

triple-monochromator equipped with a fast gated intensified charge coupled device 

(ICCD) camera (Picostar HR12, LaVision).  The gate width was set to 500 ps and the 

maximum delay was determined by the repetition rate of the Ti:sapphire laser, ~13200 

ps.  The laser energy at the sample was maintained at approximately 20 mW to 

prevent laser-induced sample damage.  The experimental decay curves were first fitted 

to a simple first order exponential decay model: 

0
1

exp1 y
t

t
Ay 







 
        (1) 

A double first order exponential decay “biexponential” model was also used to 

account for the case where the photoluminescence decay can be described to the decay 

of two different excited species back to their ground states independent of one another 

[19, 20]: 
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 2.2.5 High Resolution X-ray Photoelectron Spectroscopy (HR-XPS) 

 The HR-XPS spectra of the catalysts were obtained on a Scienta ESCA 300 

spectrometer equipped with a 300 mm hemispherical electrostatic analyzer and a 

monochromatic Al Kα X-ray source with energy of 1486.6 eV generated from a 

rotating anode.  This allows for improved chemical selectivity by narrowing the 

spectral peaks of elements and greatly reducing the spectral background signal 

compared to conventional XPS spectrometers.  Each spectrum was calibrated using a 

binding energy (BE) value of 285.0 eV for carbon in the C1s region.  The atomic 

concentration ratios were calculated by correcting the measured peak area ratios with 

relative sensitivity factors employed in the Casa XPS software version 2.3.15 

 2.2.6 High Sensitivity Low Energy Ion Scattering (HS-LEIS) Spectroscopy 

 Analysis of the outermost surface layer of the photocatalysts was obtained 

with the Qtac
100

 HS-LEIS Spectrometer (ION-TOF) equipped with a highly sensitive 

double toroïdal analyzer, 3000 times higher sensitivity than conventional LEIS 

spectrometers, which allows for static depth profiling.  The photocatalyst samples 

were first gently cleaned with atomic oxygen to remove surface hydrocarbon 

contamination from the atmosphere prior to being transferred inside the analysis 

chamber.  The HS-LEIS spectra were collected using both 3000 eV He
+
 with a 8600 

pA current and 4000 eV Ne
+
 with a 2830 pA current as ion sources.  For depth 
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profiling, the surface was sputtered by Ar
+ 

gas at 1000 eV at a sputter yield of 1x10
15

 

ions/cm
2

.     

2.3 Results 

 2.3.1 In Situ Raman Spectroscopy 

  The in situ Raman spectra of the tantalum-based photocatalysts are shown in 

Figure 1.  The Raman bands of the bulk Ta2O5 are indicative of the crystalline Ta2O5 

(L) phase [21].  The largest band in the spectrum for the Ta2O5 (L) phase is at 100 cm
-1

 

originating from a lattice photon mode along with the band at 199 cm
-1

.  The Raman 

bands at 256 and 338 cm
-1

 have been assigned to Ta-O-Ta and TaO6 bending modes, 

respectively.  The bands at 489, 631, 708 and 848 cm
-1

 are assigned to Ta-O-Ta 

symmetric stretching, Ta-O symmetric stretching, Ta-O-Ta antisymmetric stretching 

and higher order Ta-O symmetric stretching modes, respectively.   

  The solid state synthesis between Na2CO3 and Ta2O5 greatly changes the bulk 

crystal structure of the photocatalyst and the Raman spectrum for the undoped 

NaTaO3 photocatalyst is shown in Figure 1.  The unmodified NaTaO3 contains Raman 

bands at 133, 152, 195 and 213 cm
-1

 that can be assigned to Na translational vibration 

modes [22].  The bands at 261 and 313 cm
-1

 are assignable to bending modes for TaO6 

and the bands at 451, 498, and 629 cm
-1

 are assignable to Ta-O stretching modes.  The 

doping of La into the NaTaO3 does not result in any apparent changes to the NaTaO3 

Raman spectrum, which suggests that La doping did not significantly perturb the bulk 

NaTaO3 structure.   Crystalline La2O3 bands expected at 104, 191 and 411 cm
-1

 are not 
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present [23] indicating that La2O3 is present as an amorphous phase in the NaTaO3 

photocatalyst.  The crystalline NiO broad overlapping bands at 460 and 500 cm
-1

 are 

not detected either because of their relatively weak Raman bands [24] or the presence 

of dispersed NiO species.  Thus, the bulk molecular structure of NaTaO3 is not 

affected by the addition of the lanthanum and nickel oxide dopants.   

  2.3.2 UV-Vis Diffuse Reflectance Spectroscopy  

  The UV-Vis DRS Eg values for the tantalum-based photocatalysts are given in 

Table 1.  The bulk band gap energies are comparable for all the tantalum-based 

photocatalysts and are in agreement with previously reported Eg values in the 

literature [7, 11]. The addition of La2O3 and NiO does not have much of an effect on 

the band gap energy for the NaTaO3 reflecting the dominant contribution of the 

NaTaO3 component.   

  2.3.3 Photoluminescence Spectroscopy and PL lifetime decay 

 The photoluminescence emission spectra at 267 nm excitation for the 

tantalum-based photocatalysts are presented in Figure 2.  The bulk Ta2O5 

photocatalyst exhibits a very intense and broad peak with a peak maximum at 525 nm.  

The intensity of PL emissions spectra can give information on the crystallinity of the 

Ta2O5 and NaTaO3 [25].  The strong PL emission spectrum indicates the presence of 

electron/hole recombination sites in Ta2O5 such as defect sites.  In contrast, the 

undoped NaTaO3 PL spectrum is much broader and the peak intensity is significantly 

suppressed reflecting a more ordered crystalline structure with less defect sites.  The 

addition of La2O3 and NiO to the NaTaO3 results in further suppression of the 
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photoluminescence emission intensity suggesting that these dopants further decrease 

the concentration of defect sites.   

 The photoluminescence decay curves for the tantalum photocatalysts are 

plotted in Figure 3.  Equation 1 and Equation 2 were used to model emissions decay 

for the tantalum-based photocatalysts and the fit parameters are given in Table 2.  The 

bulk Ta2O5 photocatalyst was found to fit the simple first order exponential decay 

model while the NaTaO3 photocatalysts fit the biexponential model.  The observed 

simple first-order exponential decay model for the bulk Ta2O5 catalyst can be 

attributed to the homogeneity of this bulk catalysts, where the emission decay is 

dominated by only one type of excited tantalum species decaying back to the ground 

state [19].  This single species decay is not seen in the NaTaO3 photocatalysts where 

multiple excited species exist and decay back to their ground states independently of 

each other. Two different regimes in the decay curves can be observed for the NaTaO3 

photocatalysts that are identified as the “fast” component of decay, which dominates at 

early decay times, and the “slow” component of the decay, which dominate at later 

decay times.  The parameters t1 and t2 refer to the decay constants for the “fast” and 

“slow” components and A1 and A2 refer to the amplitudes of the “fast” and “slow” 

components, respectively.   

 The PL emissions decay is related to the lifetimes of the photo-generated 

electron/hole pairs with slower decay rates indicative of a longer lifetime [26, 27]. The 

decay constant for Ta2O5 is on the same timescale as the NaTaO3 photocatalysts for 

the “slow” component of decay.  The larger decay constant, t2, for NaTaO3 is 
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indicative of longer decay lifetimes compared to the Ta2O5.  For modified NaTaO3 

photocatalysts, the addition of La2O3 and NiO leads to a subsequent decrease of the 

decay constant of the “fast” component (t1) with a concurrent increase in the 

amplitude (A1) of the “fast” component.  Also the addition of NiO shows a decrease 

for the decay constant of the “slow” component (t2) while the addition of La2O3 leads 

to an increase in the decay constant of the “slow” component (t2). 

 2.3.4 High Resolution X-ray Photoelectron Spectroscopy  

HR-XPS was employed to determine the elemental composition of the surface region 

(~1-3 nm) for the NiO/NaTaO3:La photocatalyst.  The XPS survey spectrum for the 

NiO/NaTaO3:La photocatalyst is presented in Figure 4.  The surface region consists 

primarily of Na, La, O and Ta.  The main binding energy peak for nickel (Ni 2p) is not 

detected due to overlap with the strong La 3d binding energy peak.  The appearance of 

the Ni LMM Auger peak confirms that Ni is indeed present in the surface region, but 

the amount cannot be quantified because of the overlap of the Ni 2p peak with the La 

3d peak.  The atomic concentrations of the elements in the surface region are tabulated 

in Table 3.  The bulk atomic concentration for lanthanum is 0.4% and its 3.7% 

concentration in the surface region reveals that La is significantly surface enriched in 

the NiO/NaTaO3:La photocatalyst system.  

 2.3.5 High Sensitivity-Low Energy Ion Scattering Spectroscopy  

 The atomic composition of the outermost surface layer (~0.3 nm) of the 0.2% 

NiO/NaTaO3:2%La photocatalyst was determined by HS-LEIS.  The HS-LEIS spectra 

for the outermost layer of the 0.2% NiO/NaTaO3:2%La photocatalyst, using both He
+
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and Ne
+
 ion gases, are shown in Figure 5.   For the He

+
 HS-LEIS spectrum, scattering 

from Na, O and Ni atoms with low atomic mass are detected in the topmost surface 

layer, but He
+
 ions cannot readily distinguish between the higher atomic mass 

elements of La (139 amu) and Ta (181 amu).  With Ne
+
 ions, however, the La and Ta 

HS-LEIS peaks can readily be resolved and both elements are also found to be present 

on the topmost surface layer of the NiO/NaTaO3:La photocatalyst.   

 HS-LEIS depth profiling analysis of the NiO/NaTaO3:La photocatalyst was 

undertaken to determine its elemental composition with distance from the outermost 

surface and are presented in Figure 6.  For the bulk components O and Na the signal is 

very strong for the outermost layer and increase in intensity with the depth profile 

while the La/Ta signal is broader in intensity but also increases with the depth profile 

as shown in Figure 6a.  The HS-LEIS Ni peak is only present in the first few 

sputtering cycles of Figure 6a revealing that Ni is only present on the outermost layers 

of this photocatalyst.  The HS-LEIS signal for the La peak in Figure 6b is initially very 

strong in the first few layers and decreases with sputtering reflecting its surface 

segregation in the NiO/NaTaO3:La photocatalyst system  The appearance of a small 

La peak at the end of the sputtering indicates that a small concentration of La is also 

present in the bulk NiO/NaTaO3:La photocatalyst.  In contrast, the HS-LEIS signal for 

Ta is extremely small in the outermost surface layer and monotonically increases with 

sputtering reflecting its diminished concentration on the outermost surface and in the 

surface region.  Unlike Ta, the HS-LEIS spectra reveal that Na is present on the 
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outermost surface and that its concentration increases with sputtering suggesting some 

surface segregation of Na in the NiO/NaTaO3:La photocatalyst. 

2.4 Discussion 

 2.4.1 Bulk Molecular and Electronic Structures of NaTaO3 Photocatalysts 

  The bulk molecular structure of the NaTaO3 photocatalysts is not perturbed by 

the addition of the La2O3 and NiO promoters since the pure NaTaO3 and promoted 

NaTaO3 photocatalysts exhibit the same Raman spectra of the bulk structure.  The 

bulk electronic structure of the NaTaO3 photocatalysts is also not perturbed by the 

addition of the La2O3 and NiO promoters since the pure NaTaO3 and promoted 

NaTaO3 photocatalysts possess essentially the same optical band gap value of ~4.1-4.2 

eV. The similar bulk molecular and electronic structures of the NaTaO3 photocatalysts 

suggest that the La2O3 and NiO promoters are minimally incorporated into the bulk 

NaTaO3 lattice. 

  2.4.2 Surface Composition of Promoted NaTaO3 Photocatalyst 

  The HS-LEIS analysis of the outermost surface layer (~0.3 nm) of the 

promoted NiO/NaTaO3:La photocatalyst shows the presence of O, Na, Ta, Ni and La.  

HS-LEIS depth profile analysis demonstrates that both La and Ni are surface 

segregated in the promoted photocatalyst since their concentrations decrease during 

depth profiling. HR-XPS analysis indicates that the La is enriched by a factor of ~10 

in the surface region (~1-3 nm) and probably much greater in the topmost surface 

layer. Although Na and a minor amount of Ta are present in the outermost surface 
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layer of the promoted NiO/NaTaO3:La photocatalyst, HS-LEIS depth profiling 

indicates that their concentrations are not surface enriched because the intensity of 

their HS-LEIS signals increase with depth profiling, especially that of Ta.  The only 

element whose concentration remains relatively constant is O and reflects the oxide 

nature of the promoted NiO/NaTaO3:La photocatalyst.  The surface segregation of 

NiO and La2O3 in the promoted NiO/NaTaO3:La photocatalyst is consistent with the 

synthesis methods employed.   

  The promoted NaTaO3:La photocatalyst was synthesized by the solid-state 

method from physically mixed Ta2O5, NaCO3 and La2O3 at elevated temperatures 

(1170-1420 K).  Under these conditions, Ta2O5 reacts with NaCO3 to form bulk 

NaTaO3 because the molten state of basic Na at such extreme temperatures readily 

reacts with the acidic Ta2O5 [28, 29]. The molten basic Na does not have an affinity 

for reacting with the basic La2O3 and the low mobility of La2O3 [melting point 2588 

K] at these temperatures limits the reaction between acidic Ta2O5 and basic La2O3. 

Consequently, La2O3 is not extensively incorporated into the bulk NaTaO3 structure 

and remains in the surface region and the topmost surface layer of the promoted 

NaTaO3:La photocatalyst.  Lanthanum oxide is also well known to be a good additive 

for inhibiting particle sintering at high temperatures results in increased BET surface 

area and stabilization of small particles [30, 31].  The promotion of NaTaO3 with 

La2O3 resulted in an increased BET surface area by a factor of ~8 (see Table 4).  The 

NiO promoter was added by impregnation of aqueous Ni(NO3)2*6H2O, drying and 

calcination at 540 K for only 1 hour. This mild calcination treatment is not sufficient 
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to create a solid-state reaction between NiO and NaTaO3:La and, consequently, Ni is 

also surface segregated in the promoted NaTaO3:La photocatalyst.  In summary, basic 

Na reacted with acidic Ta2O5 at the extreme calcination temperatures to form the bulk 

NaTaO3 mixed oxide structure and La2O3 and NiO were not incorporated into the bulk 

NaTaO3 and remained segregated in the surface region and topmost surface layer. 

  2.4.3 Bulk and Surface Structures of the Promoted NaTaO3:La  

  Photocatalyst  

  A schematic of the bulk and surface structures of the promoted NaTaO3:La 

photocatalyst is depicted in Figure 7.  The NaTaO3 bulk phase has a perovskite 

structure with ABO3 stoichiometry [22]. Perovskite ABO3 structures have been shown 

to be preferentially surface enriched with the A cation (Na) and surface depleted with 

the B cation (Ta) [29, 32, 33], which is consistent with the HS-LEIS depth profiling 

measurements in this study.  The surface segregation of NiO and La2O3 is revealed by 

the depth profiling HS-LEIS measurements and the HR-XPS surface analyses, and 

indicated in the schematic of the promoted NaTaO3:La photocatalyst. 

  2.4.4 Generation of Excited Electron/Hole Pairs and Their Lifetimes 

  The main function of the bulk NaTaO3 mixed oxide support is to control the 

material’s optical band gap that generates excited electron/hole pairs for the 

photocatalytic reactions with water taking place at the surface of the photocatalyst. 

The same bulk NaTaO3 structure and optical band gap for the unpromoted and 

promoted NaTaO3 photocatalysts implies that the generation of electron/hole pairs is 

the same for all the NaTaO3 photocatalysts.   
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  The recombination of excited electrons and holes is significantly affected by 

promotion of NaTaO3 by the surface NiO and La2O3 additives as reflected by their PL 

spectra (see Figure 2).  PL spectroscopy monitors the recombination of electrons and 

holes and the decrease in the intensity of the PL signal reflects the ability of surface 

NiO and La2O3 promoters to create efficient electron traps that help prevent 

electron/hole recombination and, thus, become available for photocatalysis [34-36].  

The increase in the number of electron traps for La promoted NaTaO3, however, is 

directly related to the factor of ~10 increase in surface area of this photocatalytic 

material. The increase in the number of electron traps with the NiO promoter reflects 

the photoproperties of NiO since the unpromoted and Ni-promoted photocatalyst 

possess the same surface area.   

  The decay part of the PL spectra contains information about the lifetime of the 

excited electrons/holes, usually reflected by the slow t2 component, and the ratio 

  

     
 is indicative of the relative population of these long lived electrons with slow 

emissions decay [26, 27].  The addition of the efficient NiO electrons traps and the 

higher surface area of the La-promoted NaTaO3 also dramatically diminishes the 

relative contribution of the slow component of emissions decay with a greater 

population of electrons with fast decay lifetimes.  Although it is desirable for a 

photocatalyst to have a greater population of long lived excited electrons with slow 

decay lifetimes, the trapping of the excited electrons by the surface NiO and the high 
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surface area allows more electrons and holes to perform photocatalysis at the oxide-

water interface.     

  2.4.5 Structure-Activity Relationships for Splitting of H2O by NaTaO3 

  Photocatalysts 

  The photocatalysis community typically normalizes their activity results per 

gram of photocatalyst.  The current findings for the promoted NaTaO3 catalysts, 

however, demonstrate that the promoters are only altering the surface characteristics 

of the photocatalyst and suggest that the photoactivity should instead be normalized 

per unit surface area.  

  The La2O3 promoter has been proposed to be an electronic promoter for the 

NaTaO3 photocatalyst, but when the photoactivity for NaTaO3 and NaTaO3:La are 

normalized per unit surface area the photoactivity for both of these catalysts is 

essentially the same (see Table 4).  This indicates that La2O3 is not an electronic 

promoter, but acts as a textural promoter that enhances the BET surface area by a 

factor of ~10.  As mentioned above, lanthanum oxide is known to be a good additive 

for inhibiting particle sintering at high temperatures and stabilizing high BET surface 

area [30, 31].  The NiO, however, is an electronic promoter since it dramatically 

increases the photoactivity per unit surface area by a factor of ~10
1
-10

2
 both in the 

presence and absence of the La2O3 promoter and does not affect the overall BET 

surface area of the photocatalyst (see Table 4).   

  The accepted model for the promoted NiO/NaTaO3:La photocatalyst is that 

there is a synergistic interaction of NiO preferentially self-assembling at nanostep 
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structures created by the doped La2O3 [11].  This conclusion was only reached because 

the simultaneous addition of NiO and La2O3 to NaTaO3 resulted in extremely 

enhanced overall photoactivity for water splitting.  The current study employs the 

specific photoactivity values for water splitting and demonstrates that La2O3 is a 

textural promoter and only NiO is an electronic promoter with no synergistic 

interactions between the NiO and La2O3 promoters.  The current study also 

demonstrates that it is necessary to compare specific photoactivity rates in order to 

fully understand the fundamental structure-activity relationships for photocatalysts. 

2.5 Conclusions 

  The bulk and surface properties of promoted NiO/NaTaO3:La photocatalysts 

were investigated with bulk (Raman, UV-vis and PL) and surface (HS-LEIS and HR-

XPS) spectroscopy. The bulk NaTaO3 perovskite molecular and electronic structures 

are not affected by the La2O3 and NiO promoters, which means that the 

photogenerated excited electron/hole pairs are the same for all the NaTaO3-based 

photocatalysts.  Both promoters are surface segregated on the NaTaO3 particles.  The 

La2O3 additive is a structural promoter that stabilizes small NaTaO3 particles and 

increases the surface area by a factor of ~10, but does not affect the specific 

photoactivity for water splitting.  The higher surface area of the La2O3 promoted 

NaTaO3 photocatalyst also increases the total number of defect sites that trap excited 

electrons.  The NiO additive is an electronic promoter that increases the specific 

photoactivity for water splitting by a factor of 10
1
-10

2
 in the presence or absence of 
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the La2O3 promoter.  The new findings provide fundamental insights about the 

photocatalysis mechanism of promoted NiO/NaTaO3:La photocatalysts by 

emphasizing the role of the surface catalytic active sites and the need to normalize the 

photoactivity per unit surface area. The accepted practice of normalizing 

photocatalytic performance per unit mass is not fundamentally meaningful since the 

splitting of water occurs at surface catalytic active sites and leads to incorrect 

photocatalytic models in the literature. 
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Catalyst Eg (eV) 

Ta2O5 4.1 

NaTaO3 4.2 

0.2% NiO/NaTaO3  4.2 

NaTaO3: 2%La 4.2 

0.2% NiO /NaTaO3: 2%La  4.2 

 

Table 2.1:  Edge Energy Values from UV-Vis DRS. 
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Excitation 267 nm y=A1*exp(-x/t1)+A2*exp(-x/t2)+y0 

Catalyst 

t1 

(ns) 

fast 

A1 fast 

t2 

(ns) 

slow 

A2 slow 
A1/ 

(A1+A2) 

A2/ 

(A1+A2) 

Ta2O5 0 0 5 3.5 0 1.0000 

NaTaO3 0.8 186 17 3.6 0.9810 0.0190 

0.2%NiO/NaTaO3 0.5 473 10 2.8 0.9941 0.0059 

NaTaO3:2%La 0.3 27641 42 2.8 0.9999 0.0001 

0.2%NiO/NaTaO3:

2%La 
0.2 1.36E+10 4 5 1.0000 0.0000 

 

Table 2.2:  Photoluminescence decay fit parameters for catalysts at 267 nm excitation. 
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Elemental Core 

Electron 

% Atomic 

Concentration 

Na 1s 10.4 

Ta  4d 5/2 13.5 

O 1s 72.4 

La 3d 5/2 3.7 

Ni 2p 3/2 0 

 

Table 2.3:  XPS surface region atomic concentration of promoted 

0.2%NiO/NaTaO3:2%La photocatalyst. 
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Table 2.4: Photoactivity of Tantalum Oxide Photocatalysts for Water Splitting with 

UV Excitation (>270 nm) obtained from [7, 8, 11]. 

 

 

 

 

 

 

 

 

 

 

 

Photocatalyst  

Photoactivity  

(μmol H2/h/g) Surface Area (m
2
/g) 

Specific 

Photoactivity 

(μmol 

H2/h/m
2
) 

Ta2O5 6 4.0 1.5 x 10
0
 

1.0% NiO/Ta2O5 1154 4.0 2.9 x 10
2 

NaTaO3 170 0.4 4.3 x 10
2 

0.5%NiO/NaTaO3 2180 0.4 5.5 x 10
3 

NaTaO3:2%La 450 3.2 1.4 x 10
2 

0.2%NiO/NaTaO3:2%La 19800 3.2 6.2 x 10
3 
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Figure 2.1:  Raman Spectra of Tantalum-based Photocatalysts. 
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Figure 2.2:  Photoluminescence Spectra at 267 nm Excitation for Tantalum-based 

Photocatalysts.   
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Figure 2.3:  Photoluminescence Emissions Decay Curves for Tantalum-based 

Photocatalysts.   
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Figure 2.4:  XPS survey spectrum of surface region for 0.2%NiO/NaTaO3:2%La 

promoted photocatalyst. 
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Figure 2.5:  HS-LEIS spectra for 0.2%NiO/NaTaO3:2%La promoted photocatalyst 

using (a) He
+
 ion gas and (b) Ne

+
 ion gas. 
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Figure 2.6:  HS-LEIS Depth Profile for 0.2%NiO/NaTaO3:2%La promoted 

photocatalyst using (a) He
+
 ion gas and (b) Ne

+
 ion gas. 
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Figure 2.7:  Schematic Diagram of the Bulk and Surface of the Promoted 

0.2%NiO/NaTaO3:2%La Photocatalyst. 
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CHAPTER 3 

Fundamental Bulk/Surface Structure – Photoactivity 

Relationships of Supported (Rh2-yCryO3)/GaN Photocatalysts 

 

 

Abstract 

Bulk GaN and supported (Rh2-yCryO3)/GaN photocatalysts were characterized and 

investigated for UV activated water splitting.  The bulk and surface properties of these 

photocatalysts were characterized with Raman, UV-vis, Photoluminescence (PL) High 

Resolution-XPS and High Sensitivity-Low Energy Ion Scattering (HS-LEIS) 

spectroscopy to assist in the development of fundamental structure – photoactivity 

relationships.  Raman and UV-vis spectroscopy showed that the molecular and 

electronic structures, respectively, of the GaN support were not perturbed by the 

deposition of the (Rh2-yCryO3) mixed oxide NPs.  High Resolution-XPS and High 

Sensitivity-LEIS reveal that the surface regions of GaN and supported (Rh2-

yCryO3)/GaN photocatalysts consist of Ga oxynitride and GaO surface layers, 

respectively.  The supported (Rh2-yCryO3) NPs exclusively consist of Cr
+3

 and Rh
+3

 

cations.  Photoluminescence (PL) spectroscopy was able to reveal that the (Rh2-
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yCryO3) NPs helps to decrease the recombination of electron/holes in the bulk GaN by 

acting as efficient electron traps promoting charge transfer to the surface.  These new 

insights into the surface nature of the (Rh2-yCryO3) NPs show that Rh
3+

 species on the 

outermost surface layer are responsible for enhanced H2 while other surface sites 

(Cr
3+

, GaOx and their contact points) are possibly responsible for O2 production.   

3.1 Introduction 

Early research on photocatalytic water splitting primarily focused on the use of 

semiconductor metal oxide materials with UV irradiation [1-3].  More recently, non-

oxide materials have been discovered that are also able to perform photocatalytic 

water splitting with visible excitation [4].  Unlike the extensive list (>130) of metal 

oxide semiconductors that can perform photocatalytic water splitting, there are only a 

handful of these bulk oxynitride materials with d
10

 electronic configuration that are 

active for overall photocatalytic water splitting: Ge3N4 [5-8], (Ga1-xZnx)(N1-xOx) [9-

13], (Zn1+xGe)(N2Ox) [14] and GaN [15-17].  There have also been other bulk 

oxynitride materials discovered with d
0
 electronic configurations (Ti, Ta and Nb) that 

are able to produce H2 and O2 with sacrificial reagents, but none are capable of 

photocatalytic water splitting in pure water [2, 4].  The limited number of bulk 

oxynitride photocatalysts discovered to be capable of water splitting so far suggests 

that water splitting is a greater challenge for oxynitrides compared to metal oxide 

photocatalysts.  Although other mixed metal oxynitride materials are more active than 

GaN and can utilize visible light for photocatalytic water splitting, it is important to 
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develop fundamental structure/photoactivity relationships for this basic nitride 

photocatalyst because it is a component of (Ga1-xZnx)(N1-xOx) oxynitride 

photocatalysts and  understanding how the GaN photocatalyst functions is important 

for the design of advanced oxynitride photocatalysts. 

 The present study focuses on the bulk GaN semiconductor photocatalyst.   

Although GaN has been found to be unable to photocatalytically split water, it 

becomes an active photocatalyst with UV excitation (λ > 300 nm) when (Rh2-yCryO3) 

mixed oxide NPs are deposited on its surface (quantum efficiency (Q.E.) of 0.7%) 

[17].  The present investigation will apply high-resolution X-ray photoelectron 

spectroscopy (HR-XPS) and high-sensitivity low energy ion scattering (HS-LEIS) 

spectroscopy to provide new insights about the surface region (~1-3nm) and outermost 

atomic layer (~0.3 nm) of the supported (Rh2-yCryO3)/GaN photocatalyst system.  

Further insight into the molecular and electronic structures of the bulk GaN phase and 

influence of the supported (Rh2-yCryO3) NPs upon the bulk GaN phase properties will 

be obtained with in situ optical spectroscopic characterization (Raman, UV-vis, 

photoluminescence (PL) and time-resolved picosecond PL-Raman).  

3.2 Experimental 

3.2.1 Catalyst Synthesis 

The bulk GaN was prepared from elemental gallium obtained from Mitsubishi 

Chemicals.  The GaN was mixed in an evaporating dish with the aqueous precursors 

of Cr(NO3)3•9H2O (Wako Pure Chemicals, 99.9%) and Na3RhCl6•2H2O (Kanto 
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Chemicals, 97% as Rh) to yield a final composition of 1 wt.% Rh and 1.5wt.% Cr.  

This suspension was then placed over a water bath and continuously stirred with a 

glass rod until complete evaporation.  The powder was then collected and mildly 

calcined in air at 623 K for one hour.  The supported (Rh2-yCryO3)/GaN photocatalyst 

was then washed with distilled water and dried overnight in an oven at 343 K.    

3.2.2 Raman Spectroscopy 

The Raman spectra for the photocatalyst were performed on a Lab Ram-HR 

Raman spectrometer (Horiba-Jobin Yvon) equipped with visible (532 nm) laser 

excitation and utilizing a confocal microscope (Olympus BX-30) for focusing the laser 

on the catalyst sample. The 532nm visible laser excitation was generated by Nd:YAG 

laser (10 mW) with the scattered photons directed into a single monochromator and 

focused onto a UV-sensitive liquid-N2 cooled CCD detector (Horiba-Jobin Yvon 

CCD-3000V) having a spectral resolution of ∼2 cm
-1

 for the given parameters. About 

5-10 mg of the catalyst was placed into a high temperature in situ cell (Linkam TS-

1500) with a quartz window and the spectrums were obtained under ambient 

conditions.  The spectral acquisition time employed was 5 scans of 5 seconds/scan for 

each spectrum.  System calibration was verified using a silica reference standard line 

at 520.7 cm
-1

.   

3.2.3 UV-Vis NIR Diffuse Reflectance Spectroscopy (DRS) 

  Ultra Violet-visible-Near Infrared (UV-vis-NIR) diffuse reflectance 

spectroscopy was utilized to obtain the optical edge energy, Eg, values for the 

photocatalysts.  Spectra were obtained using a Varian Cary 5E UV-vis 
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spectrophotometer with a diffuse reflectance attachment (Harrick Praying Mantis 

Attachment, DRA-2).  The finely ground powder catalyst samples (~20 mg) were 

loaded into an in situ cell (Harrick, HVC-DR2) and measured in the 200-800 nm 

spectral region with a magnesium oxide reflectance standard used as the baseline.  A 

filter (Varian, 1.5ABS) was employed to minimize the background noise.  A 

magnesium oxide white reflectance standard baseline was collected under ambient 

conditions.  Determination of the Kubelka-Munk function, )( RF , was obtained from 

the UV-vis DRS absorbance and processed with Microsoft Excel software.  The edge 

energy was determined by finding the intercept of the straight line in the low-energy 

rise of a plot of nhvRF
1

])([ 
, where 5.0n  for the direct allowed transition versus hv

, where hv  is the energy of the incident photon [18-20]. 

3.2.4 Photoluminescence Spectroscopy and Photoluminescent Decay 

PL spectra and transient PL lifetime measurements of the photocatalysts were 

conducted using a Ti:sapphire laser (Coherent Mira 900), tunable in the 685-1000 nm 

spectra range, generating 5 ps pulses with a 76 MHz repetition rate, pumped with a 

frequency-doubled Nd:YVO4 laser (Coherent Verdi V-18). The output of the laser was 

frequency doubled using an ultrafast harmonic generator (Coherent 5-050).  To 

perform the luminescence measurements, the excitation light at 400 nm was directed 

toward a microscope of a tunable micro-, macro-Raman/photoluminescence system 

(Jobin Yvon Horiba, T6400) and was focused using a long distance objective (50x, 

N/A=0.5) onto a sample to a spot size of ~ 2 μm.  The photocatalyst sample was 
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placed into a high temperature in situ microscopy stage (Linkam, TS-1500) and 

pretreated as follows: The samples were heated at 10 
o
C/min to 673 K in flowing 10% 

O2/N2 (30 sccm) to remove water, since moisture causes quenching of the PL signal 

[21], and to fully oxidize the samples. Upon cooling to room temperature in flowing 

inert gas (N2, 30 sccm), the photoluminescence decay measurements were made.  To 

obtain complete PL spectra, the spectrometer was set to nanometer mode and the 

grating was moved several times in order to obtain the intensity over a 400 to 800 nm 

range.  The luminescence light was collected through the same objective in 

backscattering geometry and focused onto a slit of the triple-monochromator equipped 

with a fast gated intensified charge coupled device (ICCD) camera collecting in the 

350-900 nm range (LaVision, Picostar HR12).  The ICCD camera was gated using a 

sequence of 76 MHz pulses propagating with a variable delay relative to the original 

train of trigger pulses (76 MHz) from a photodiode in a Ti:sapphire laser. The 

minimum gate width was 300 ps and the maximum delay was defined by the laser 

repetition rate (~13200 ps). The laser energy at the sample was maintained at 

approximately 1.6 mW to prevent photo-degradation of the photocatalyst sample.  The 

grating was set to monitor decay centered at emission wavelengths from 500 to 700 

nm.   

3.2.5 High Resolution X-ray Photoelectron (HR-XPS) Spectroscopy 

The HR-XPS spectra of the photocatalysts were obtained on a Scienta ESCA 

300 spectrometer equipped with a 300 mm hemispherical electrostatic analyzer and a 

monochromatic Al Kα X-ray source with energy of 1486.6 eV generated from a 
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rotating anode.  This allows for improved chemical selectivity by narrowing the 

spectral peaks of elements and greatly reducing the spectral background signal 

compared to conventional XPS spectrometers.  Each spectrum was calibrated using a 

binding energy (BE) value of 285.0 eV for carbon in the C1s region.  The atomic 

concentration ratios were calculated by correcting the measured peak area ratios with 

relative sensitivity factors employed in the Casa XPS software version 2.3.15.   

3.2.6 High Sensitivity Low Energy Ion Scattering (HS- LEISS) 

 Spectroscopy 

Analysis of the outermost surface layer of the photocatalysts was obtained on 

the Qtac
100

 HS-LEIS Spectrometer (ION-TOF) equipped with a highly sensitive 

double toroïdal analyzer, 3000 times higher sensitivity than conventional LEIS 

spectrometers, which allows for static depth profiling.  The photocatalyst samples 

were first gently cleaned with atomic oxygen to remove surface hydrocarbon 

contamination from the atmosphere prior to being transferred inside the analysis 

chamber.  The HS-LEIS spectra were taken using both 4000 eV 
4
He

+
 with 11300 pA 

current and 4000 eV 
20

Ne
+
 with 478 pA current as ion sources.  TOF mass filters were 

also utilized for spectra obtained with Ne
+
 as an ion source for reduced flux 

background at low kinetic energies.  For depth profiling, the surface was sputtered by 

Ar
+ 

gas at 500 eV at a sputter yield of 1x10
15

 ions/cm
2

.  Metallic Rh and Cr standards 

were also analyzed for quantifying the elemental composition of the photocatalysts. 

 3.3 Results and Discussion 
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3.3.1 Bulk Characteristics of GaN Photocatalysts 

3.3.1.1 Bulk Molecular Structure 

 The Raman spectra for the ambient GaN photocatalysts are presented in Figure 

1 and exhibit bands that are associated with the phonon modes of the hexagonal 

wurtzite GaN crystal structure [22, 23].  The Raman band at 140 cm
-1

 has been 

assigned to the E2 phonon mode, the 413 cm
-1

 band is a combination of optical and 

acoustic modes, the 530 and 563 cm
-1

 bands are the transverse optical (TO) modes of 

A1 and E1, respectively, and the 732 cm
-1

 band is from the combination of the 

longitudinal optical modes of A1 and E1 [22, 23].  The Raman spectrum of the 

supported (Rh2-yCryO3)/GaN photocatalyst is dominated by the GaN vibrations and is 

essentially the same as that of the bulk GaN.   The characteristic sharp Raman bands 

of crystalline Cr2O3 NPs at 542 and 603 cm
-1

 [24, 25] are not observed suggesting that 

crystalline Cr2O3 NPs are not present.  Crystalline Rh2O3 possesses a characteristic 

Raman band at 550 cm
-1

 [26] that cannot be detected because it is overshadowed by 

the strong GaN band in this region.  Thus, the bulk molecular structure of the GaN 

phase is unchanged by the deposition of the (Rh2-yCryO3) mixed oxide NPs. 

3.3.1.2 Bulk Electronic Structure 

The bulk optical band gap (Eg) values determined from UV-vis DRS 

measurements and are given in Table 1.  The optical band gap for bulk GaN is 3.3 eV 

and is not perturbed by the deposition of the (Rh2-yCryO3) mixed oxide NPS, which 

indicates that the bulk GaN component dominates the UV-vis absorbance spectrum of 

the supported (Rh2-yCryO3)/GaN photocatalyst system.       
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3.3.2 Surface Composition of GaN photocatalysts 

3.3.2.1 Atomic Composition and Chemical State of the Surface Region 

 (~1-3 nm) 

The XPS survey spectra for the surface region (~1-3 nm) of the GaN 

photocatalysts are presented in Figure 2 and the atomic composition is reported in 

Table 2.  The surface region for the bulk GaN consists only of Ga, O and N and no 

contaminants were detected.  Note the O/Ga~1 atomic ratio indicating that Ga is 

extensively oxidized in the surface region under ambient exposure.  The compositions 

of the surface region for the supported (Rh2-yCryO3)/GaN and bulk GaN photocatalysts 

are compared in Table 2.  As expected for deposition of an oxide on GaN, the addition 

of the (Rh2-yCryO3) mixed oxide NPs to the GaN support doubles the O concentration, 

while decreasing the concentration of the GaN support elements (~50% Ga and ~30% 

N).    

HR-XPS surface analysis of Cr and Rh for the supported (Rh2-yCryO3)/GaN 

photocatalyst was undertaken to determine the chemical states of Cr and Rh in the 

surface region and presented in Figure 3.  The HR-XPS spectra for the Cr 2p and Rh 

3d regions of the supported (Rh2-yCryO3)/GaN photocatalyst reveal the presence of 

only Cr
3+

 and Rh
3+

 and the absence of Cr
6+

 or metallic Rh(0) in the surface region.   

3.3.2.2 Outermost Atomic Layer Composition (~0.3 nm) 

The outermost surface layer (~0.3 nm) and layers below the surface of bulk 

GaN were analyzed with dynamic HS-LEIS employing a He
+
 ion gas source and the 

findings are shown in Figure 4.  The HS-LEIS signal for N is almost absent from the 
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topmost surface layer and significantly increases in intensity into a definable peak 

with further sputtering into the bulk.  Although Ga is present on the topmost surface 

layer, its HS-LEIS signal also significantly increases with depth profiling.  In contrast 

to that of Ga and N, the HS-LEIS signal for O is strongest on the outermost layer and 

decreases with sputtering into the bulk demonstrating surface enrichment of O.  Depth 

profiling using Ne
+
 ion gas source was also performed (not shown for brevity) 

showing only a single peak for Ga. The HS-LEIS sputtering findings reveal that for 

bulk GaN the outermost surface layer consists of GaOx and that the surface region is 

present as a Ga oxynitride (GaOxNy) layer. 

 The HS-LEIS spectra comparing the untreated and atomic oxygen treated 

supported (Rh2-yCryO3)/GaN photocatalyst is presented in Figure 5.  This pretreatment 

method was used to clean off hydrocarbon deposits on the surface, increasing signal 

intensity and does not affect the surface composition of the photocatalyst.  The HS-

LEIS depth profiles for the supported (Rh2-yCryO3)/GaN photocatalyst are presented in 

Figure 6.  From Figure 6a, the outermost surface layer contains O, Cr, Ga and Rh and 

does not contain any detectable N.  It appears that the oxidation treatment to form the 

supported (Rh2-yCryO3) mixed oxide NPs on the GaN support also oxidized the outer 

surface layers of GaN and is consistent with the 100% increase of the XPS O 

concentration in the surface region (see Table 2) [27].   

More quantitative depth profiling information is provided with Ne
+
 depth 

profiling analysis as shown in Figure 6b and, surprisingly, small concentrations of Sn 

and Ba contaminants are also found to be present in the outermost surface layers.  The 
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Sn and Ba contaminants were not evident for the bulk GaN and the source of these 

impurities is not known, but could be due to handling of the material during and after 

impregnation of the Cr(NO3)3•9H2O and Na3RhCl6•2H2O precursors.  Metallic Cr and 

Rh standards were used to quantify the amounts of these two elements with respect to 

each other and their quantitative depth profile concentrations are shown in Figure 7.  

Both Rh and Cr are surface enriched since their bulk concentrations are 1.0% and 

1.5% wt., respectively, while their concentrations in the surface region are 3.2% and 

6.7%.  The outermost surface layer contains more Cr than Rh, the concentrations of Cr 

and Rh are about the same for the first few layers below the outermost surface, and the 

concentration of Cr is larger than Rh for the deeper layers below the surface.  The 

increase in the concentration of Cr at deeper layers is indicative of greater Cr 

concentration in the deeper layers of the (Rh2-yCryO3) NPs and the presence of 

dissolved Cr beneath the surface.  At all depths, the concentrations of Rh and Cr in the 

surface region are enriched compared to their bulk concentrations.  

     3.3.3 Electron/Hole Generation and Recombination 

     The steady-state PL emissions spectra at 400 nm excitation for the GaN and 

supported (Rh2-yCryO3)/GaN photocatalysts are presented in Figure 8.  Both 

photocatalysts exhibit broad emission bands with maxima at 710 and 725 nm as 

indicated in Table 1.  The intensity of the PL emissions spectra is indicative of the 

population of electron/hole recombination centers in a photocatalyst [21, 28].  Even 

with excitation at 400 nm that is greater than the optical absorption edge energy of the 

GaN (3.3 eV or 375 nm); there is still a large population of photo-excited electrons 
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generated in the bulk of the GaN.  Deposition of the (Rh2-yCryO3) mixed oxide NPs on 

GaN diminishes the PL emissions reflecting that photo-excited electrons are being 

trapped by the supported (Rh2-yCryO3) NPs at the mixed oxide/GaN interface and, 

therefore, are unavailable for recombining with holes in the GaN bulk.  In other words, 

the supported (Rh2-yCryO3) NPs on the GaN support act as efficient electron traps for 

the photoexcited electrons generated from the GaN bulk and, consequently, minimize 

electron/hole recombination and promotes charge transfer to the surface [21, 29, 30].   

The transient PL decay curves for the GaN photocatalysts using 400 nm 

excitation at different emission wavelengths are plotted in Figure 9. At all the 

examined emission wavelengths, both catalysts exhibit a constant emission intensity 

signifying no decay emissions.  The PL properties of the solid-state GaN have been 

well studied due to its importance in optical and electronic applications [31-33].  

These studies utilize excitation in the deep UV range (~325 nm) that is able to 

generate excited photoelectrons in the GaN so the electron decay can be monitored on 

the picosecond timescale.  Although a higher light excitation is used (400 nm), the 

GaN photocatalysts are able to generate steady-state PL emissions so there are excited 

electrons that are decaying and recombining at this wavelength.  On the picosecond 

timescale, the PL emission measured is generated by fluorescence from the material 

[31].  This lack of measurable fluorescence decay emissions on the picosecond 

timescale could be due to the powdered GaN exhibiting PL generated from 

phosphorescence emissions.  Phosphorescence materials tend to emit PL over a longer 

time period (ms - hrs) so there will not be detectable emissions decay on the 
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picosecond timescale.  The constant PL emissions intensity after the pulsed 400 nm 

excitation can, thus, be attributed to the GaN photocatalysts exhibiting 

phosphorescence longer than the picosecond timescale.   

3.3.4 Bulk/Surface – Photoactivity Relationships of GaN Photocatalysts 

The supported (Rh2-yCryO3)/GaN photocatalyst functions as a two-component 

system.  The role of bulk GaN is to generate electron/hole pairs using UV excitation.  

Surface analysis was able to show that the GaN bulk phase dynamically changes: GaN 

→ GaOxNy → GaOx in the surface region with some dissolved Cr
3+

 beneath the 

outermost surface layer.  The (Rh2-yCryO3) NPs are responsible for transferring the 

photoexcited electrons to the surface and act as the catalytic active sites.  In the 

previous work, GaN was unable to photocatalytically split water by itself only (Rh2-

yCryO3)/GaN was able to produce stoichiometric amount of H2/O2 [17].  It was 

proposed that (Rh2-yCryO3) were the sites for H2 production from using MeOH as a 

sacrificial reagent. The GaN was proposed as the sites for O2 production from using 

AgNO3 as a sacrificial reagent.  For another oxynitride photocatalyst, (Ga1-xZnx)(N1-

xOx), the loading of only Rh2O3 resulted in the nonstoichiometric production rate 50 

H2 : 1 O2 [10, 34].  However with the addition of Cr2O3 the production of H2 was 

increased by ~ 77x with stoichiometric O2 production.  These observations show that 

Rh
3+

 is primarily responsible for H2 evolution but it is still not clear which site is 

active for O2 evolution.  From the surface analysis, the possible sites for O2 evolution 

are the Cr
3+ 

in the (Rh2-yCryO3) NPs, the GaOx surface layer or at the contact point 
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between the two.  A schematic modeling the photocatalytic process on (Rh2-

yCryO3)/GaN is shown in Figure 10.   

3.4 Conclusions 

The bulk and surface properties of (Rh2-yCryO3)/GaN photocatalysts were 

investigated using bulk (Raman, UV-vis, and PL) and surface (HS-LEIS and HR-XPS) 

spectroscopic techniques.  The bulk molecular and electronic structure of the GaN 

phase was not affected by the addition of the (Rh2-yCryO3).  The (Rh2-yCryO3) was 

found to decrease the recombination of excited electron/holes in the bulk GaN via 

charge transfer of the excited electrons to the surface promoting the surface 

photocatalytic reaction.  Surface analysis was able to reveal that the composition of 

the bulk GaN dynamically changes from GaN → GaOxNy → GaOx near the surface 

region. The surface composition of the (Rh2-yCryO3)/GaN was revealed for the first 

time showing that Rh
3+

 present on the outermost surface layer was responsible for 

enhanced H2 while the O2 production can possibly be attributed to other surface sites 

(Cr
3+

, GaOx, or at their contact points). 
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Excitation 400 nm 

Catalyst Eg   (eV) Peak Maximum (nm) 

GaN 3.3 725 

(Rh2-yCryO3) /GaN 3.3 710 

 

Table 3.1: Eg values from UV-vis DRS, and peak emission wavelengths from PL 

spectroscopy of the GaN photocatalysts at 400 nm excitation.   
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Element GaN (Rh2-yCryO3)/GaN 

O 1s 19.0% 39.5% 

N 1s 62.0% 41.1% 

Ga 2p 3/2 19.0% 9.5% 

Cr 2p 3/2 0.0% 6.7% 

Rh 3d 0.0% 3.2% 

 

Table 3.2:  HR-XPS surface region atomic composition (~1-3nm) of GaN 

photocatalysts. 
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Figure 3.1: Raman spectra for GaN photocatalysts (532 nm).   
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Figure 3.2:  XPS survey spectra of (a) GaN and (b) supported (Rh2-yCryO3)/GaN 

photocatalysts. 
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Figure 3.3:  HR-XPS spectra of (a) Cr 2p and (b) Rh 3d regions of the supported 

(Rh/Cr2O3)/GaN photocatalyst.  
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Figure 3.4:  HS-LEIS Depth Profile for GaN photocatalyst using He
+
 ion gas. 
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Figure 3.5:  HS-LEIS spectra of untreated and atomic O treated supported (Rh2-

yCryO3)/GaN photocatalyst. 
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Figure 3.6:  HS-LEIS depth profile for the supported (Rh2-yCryO3)/GaN photocatalyst 

using (a) He
+
 ion gas and (b) Ne

+
 ion gas. 
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Figure 3.7:  HS-LEIS Depth Profile of Cr and Rh for supported (Rh2-yCryO3) /GaN 

photocatalyst using Ne
+
 ion gas. 
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Figure 3.8:  PL emissions spectra for GaN photocatalysts (400 nm excitation). 
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Figure 3.9:  PL lifetimes spectra for (a) GaN and (b) (Rh2-yCryO3)/GaN photocatalysts 

at different emissions wavelengths (400 nm excitation). 
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Figure 3.10:  Schematic of (Rh2-yCryO3)/GaN photocatalysts. 
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CHAPTER 4 

Nature of Catalytic Active Surface Sites Present on Bulk 

(Ga1-xZnx)(N1-xOx) Photocatalysts 

 

 

Abstract 

The supported mixed oxide (Rh2-yCryO3)/(Ga1-xZnx)(N1-xOx) and core/shell 

(Rh
0
/Cr2O3)/(Ga1-xZnx)(N1-xOx) photocatalyst, active for splitting of H2O, were 

synthesized, extensively characterized for their bulk and surface properties, and 

examined for water splitting with the objective of developing fundamental structure-

photoactivity relationships.  Raman and UV-vis spectroscopy revealed that the 

molecular and electronic structures, respectively, of the oxynitride (Ga1-xZnx)(N1-xOx) 

support are not perturbed by the deposition of the Rh-Cr NPs.  Photoluminescence 

(PL) spectroscopy, however, showed that the oxynitride (Ga1-xZnx)(N1-xOx) support is 

the source of excited electrons/holes and the Rh-Cr NPs greatly reduce the undesirable 

recombination of photoexcited electron/holes by acting as efficient electron traps as 

well as increase the lifetimes of the excitons.  High Resolution-XPS and High 

Sensitivity-LEIS surface analyses reveal that the surfaces of the Rh-Cr NPs consist of 

Rh
+3

 and Cr
+3

 mixed oxide NPs in spite of the desire to exclusively synthesize metallic 
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Rh
0
 NPs that are encapsulated by Cr2O3 films for the core/shell catalysts.  The 

function of the Rh-Cr-O mixed oxide NPs is to trap the excited electrons and holes to 

harness them for the photocatalytic splitting of water. The Rh
+3

 are the H2 evolution 

sites and Cr
+3

, GaZnOx or their contact points are the possible O2 evolution sites.  The 

presence of some exposed metallic Rh
0
 in the core/shell photocatalyst, however, 

decreases the photocatalytic efficiency relative to the mixed oxide photocatalyst by 

catalyzing the undesirable back reaction between H2 and O2 to form water.  The 

current investigation establishes the fundamental structure-photoactivity relationships 

of these visible light activated photocatalysts.  This is also the first study to employ 

High Sensitivity-Low Energy Ion Scattering to determine the composition of the 

outermost surface layers of photocatalysts that is critical for a complete understanding 

of complex, multicomponent photocatalysts. 

4.1 Introduction 

 Throughout much of the 40 years of research on photocatalytic water splitting, 

efforts have been dedicated towards finding suitable materials that are able to produce 

H2 and O2 at significant quantum efficiency (Q.E.).  The focus has been on 

discovering semiconductor mixed metal oxide materials that are able to efficiently 

produce H2 and O2 with NiO/NaTaO3:La being the most active semiconductor metal 

oxide photocatalyst system under UV irradiation with a Q.E. of 56% [1-4].  This 

achievement demonstrated that it is possible for a photocatalyst system to be more 

efficient than the targeted goal of 30% Q.E. for the start of commercialization of 
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photocatalytic hydrogen production on the industrial scale [3].  The goal, however, is 

for 30% Q.E. under visible light irradiation and not just UV light irradiation for 

semiconductor mixed metal oxide photocatalyst systems.   

The research focus has now shifted towards the design of novel photocatalytic 

materials that are able to photocatalytic split water under visible light irradiation.  The 

design of advanced, robust solar powered photocatalyst systems is the ultimate 

objective in photocatalysis research since the visible region covers a much larger 

portion of the sun’s radiation compared to the narrow UV region [5].  The large band 

gap energies of semiconductor mixed metal oxides hinder their ability to fully utilize 

visible light energy.  Only a few of these semiconductor mixed metal oxides 

(NiO/InTaO4 (Q.E. = 0.7%) [6], RuO2/InTaO4 (Q.E. = 0.4%) [7] and RuO2/YBiWO6 

(Q.E. = 0.2%) [8]) have been found to be able to perform the water splitting reaction 

under visible light excitation with very low quantum efficiencies.   

In order to overcome the low Q.E. of mixed metal oxides, the Domen research 

group investigated the calcination of physically mixed metal oxides under NH3 flow 

that form novel, advanced bulk mixed metal oxynitride materials, (Ga1-xZnx)(N1-xOx)  

and (Zn1+xGe)(N2Ox), that are able to generate electron/hole pairs under visible light 

irradiation for photocatalytic water splitting [1, 9, 10].  Whereas GaN absorbs in the 

UV region (3.3 eV), the mixed (Ga1-xZnx)(N1-xOx)  oxynitride solid solution absorbs in 

the visible region (2.4-2.8 eV with increasing ZnO lowering the band gap) that allows 

for absorption of visible light for electron/hole generation.  The narrowing of the band 

gap is attributed to the presence of p-d repulsion between Zn3d and N2p electrons that 
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increases the valence band maximum allowing for visible light irradiation [11-13].  

Although (Ga1-xZnx)(N1-xOx) generates electron/holes pairs in its bulk phase, it is 

unable to photocatalytically split water at its surface.  Modification of the (Ga1-

xZnx)(N1-xOx) with various transition metal oxides (Ni, Ru, Rh, Ir, and Pt), however, is 

able to activate the photocatalyst system for hydrogen and oxygen production [14].  

The photoactivity was found to be further enhanced (between 2.5 – 860x) when the 

transition metal oxides were co-loaded with Cr2O3.  The co-loaded (Rh-Cr2O3)/(Ga1-

xZnx)(N1-xOx) catalyst is the most active of all the oxynitride photocatalysts under 

visible light water splitting (λ > 400nm) with an optimized apparent Q.E of 5.9% [15-

18]. 

Two different synthesis methods have been developed in the photocatalysis 

literature for the loading of Rh and Cr onto the (Ga1-xZnx)(N1-xOx) substrate.  The first 

synthesis method involves a one-step co-impregnation of Na3RhCl6•2H2O and 

Cr(NO3)3•9H2O  onto the (Ga1-xZnx)(N1-xOx) followed by calcination in air at 623K 

that forms supported Rh2-yCryO3 mixed oxide nanoparticles (NPs) on the bulk (Ga1-

xZnx)(N1-xOx) support.  The supported Rh2-yCryO3 NPs were proposed to be the 

catalytic active site for H2 production and the bulk (Ga1-xZnx)(N1-xOx) support 

providing the active sites for O2 production for this preparation technique [15].  The 

second synthesis method is a two-step process, aqueous Na3RhCl6•2H2O  is initially 

photodeposited onto the bulk (Ga1-xZnx)(N1-xOx) support, dried at 343 K, followed by  

Cr photodeposition from an aqueous K2CrO4 solution and again dried at 343 K.  The 

motivation for this photodeposition synthesis method is to cover up the metallic Rh
0
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NPs with a thin Cr2O3 layer creating a core/shell arrangement to prevent or minimize 

the O2 and H2 back reaction to form H2O that readily takes place with exposed 

metallic Rh
0
 [15].  It was proposed that H2 evolves from the metallic Rh

0
 component 

while the Cr2O3 shell prevents the O2/H2 back reaction to form water and that the bulk 

(Ga1-xZnx)(N1-xOx) provides the active sites for O2 production [17].  These 

photocatalysis models were proposed from application of bulk characterization 

techniques and to fully understand these complex systems requires complementary 

surface characterization information since the catalytic splitting of water takes place at 

the surface of photocatalysts [19, 20].   The lack of surface information about the (Rh-

Cr)/(Ga1-xZnx)(N1-xOx) oxynitride photocatalysts prevents a fundamental 

understanding of the functioning of these novel materials and limits our ability to have 

guiding principles to design advanced visible light activated mixed oxynitride 

photocatalysts.   

The present study utilizes cutting edge surface characterization methods (high-

resolution X-ray photoelectron spectroscopy (HR-XPS) that analyzes ~1-3nm of the 

surface region and high-sensitivity low energy ion scattering (HS-LEIS) that analyzes 

~0.3nm of outermost or topmost surface layer) for the (Rh-Cr)/(Ga1-xZnx)(N1-xOx) 

photocatalyst systems prepared by the different synthesis methods.  The fresh and used 

photocatalysts will be also compared to determine how their surfaces are affected by 

the photocatalytic water splitting environment.   In situ optical spectroscopic 

characterization techniques (Raman, UV-vis, photoluminescence (PL) and time-

resolved picosecond PL-Raman) will also be applied to  provide further insights into 
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the bulk molecular and electronic structures to determine (i) how (Ga1-xZnx)(N1-xOx) 

differs from the bulk Ga2O3 and ZnO precursors, and (ii) how Rh2-yCryO3 NPs affect 

the bulk properties of the (Ga1-xZnx)(N1-xOx) support.  The photocatalytic activity of 

the two synthesis methods will also be determined to help develop fundamental 

structure-photoactivity relationships for these novel, advanced oxynitride 

photocatalysts for water splitting.  

4.2 Experimental 

4.2.1 Catalyst Synthesis  

The (Ga1−xZnx)(N1−xOx) with x=0.12 as measured from energy-dispersive 

(EDX) analysis was synthesized by a nitridation method [13].  A mixture of Ga2O3 

(High Purity Chemicals, 99.9%) and ZnO (Kanto Chemicals, 99%) in a 1:2 molar ratio 

was first well mixed in an agate mortar.  The physical mixture was then calcined at 

1123 K under NH3 flow (250 ml/min) for 15 hours in a custom quartz nitridation 

reactor.  For the co-impregnation synthesis method, the (Ga1−xZnx)(N1−xOx) was mixed 

in an evaporating dish with the aqueous precursors, Cr(NO3)3•9H2O (Wako Pure 

Chemicals, 99.9%) and Na3RhCl6•2H2O (Kanto Chemicals, 97% as Rh), yielding 1 

wt.% Rh and 1.5wt.% Cr [15].  This suspension was then placed over a water bath and 

continuously stirred with a glass rod until complete evaporation.  The powder was 

then collected and calcined in air at 623 K for one hour.  The catalyst obtained from 

the co-impregnation method will be referred to as (Rh2-yCryO3)/(Ga1-xZnx)(N1-xOx), so 

named in the literature.  For the photodeposition synthesis method, the 
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(Ga1−xZnx)(N1−xOx) powder is placed in a Pyrex inner irradiation-type reaction vessel 

connected to a glass closed gas circulation system in an aqueous solution (~370 ml) 

containing Na3RhCl6•2H2O (Kanto Chemicals, 97% as Rh) [17] yielding 1 wt% Rh.  

After the system was evacuated, the reactor was irradiated with a 450 W high-pressure 

Hg lamp with a sodium nitrite aqueous solution as a filter to block ultraviolet light for 

4 hours.  The temperature of the reactant solution was maintained at room temperature 

by flowing cooling water.  The powder was then separated from the solution via 

filtration, washed thoroughly with distilled water and dried overnight in an oven at 

343 K.   This procedure is then repeated where the Rh-deposited (Ga1−xZnx)(N1−xOx) is 

placed in the Pyrex inner irradiation-type reaction vessel in an aqueous K2CrO4 

solution yielding 2.5% Cr.  After irradiation for 4 hours with a 450 W high-pressure 

Hg lamp with a sodium nitrite aqueous solution as a filter, the filtrated powder is 

washed thoroughly with distilled water and dried overnight in an oven at 343 K.  The 

catalyst obtained from the photodeposition method will be referred to as 

(Rh/Cr2O3)/(Ga1-xZnx)(N1-xOx) named so in the literature. 

4.2.2 Raman Spectroscopy 

Raman spectroscopy was utilized to obtain the molecular structure of the fresh 

photocatalysts and was performed on a Lab Ram-HR Raman spectrometer (Horiba-

Jobin Yvon) equipped with visible (442 and 532 nm) laser excitation and utilizing a 

confocal microscope (Olympus BX-30) for focusing the laser on the catalyst sample. 

The 532nm visible laser excitation was generated by Nd:YAG laser (10 mW) and the 

442 visible laser excitation was generated by a He-Cd laser ( ~7 mW) with the 
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scattered photons directed into a single monochromator and focused onto a UV-

sensitive liquid-N2 cooled CCD detector (Horiba-Jobin Yvon CCD-3000V) having a 

spectral resolution of ∼2 cm
-1

 for the given parameters. About 5-10 mg of the catalyst 

was placed into a high temperature in situ cell (Linkam TS-1500) with a quartz 

window and the spectrums were obtained under ambient conditions.  The spectral 

acquisition time employed was 5 scans of 5 seconds/scan for each spectrum.  System 

alignment was verified using a silica reference standard line at 520.7 cm
-1

.   

4.2.3 UV-Vis NIR Diffuse Reflectance Spectroscopy (DRS) 

  Ultra Violet-visible-Near Infrared (UV-vis-NIR) diffuse reflectance 

spectroscopy (DRS) was utilized to obtain the optical edge energy, Eg, values for the 

fresh photocatalysts.  Spectra were obtained using a Varian Cary 5E UV-vis 

spectrophotometer with a diffuse reflectance attachment (Harrick Praying Mantis 

Attachment, DRA-2).  The finely ground powder catalyst samples (~20 mg) were 

loaded into an in situ cell (Harrick, HVC-DR2) and measured in the 200-800 nm 

spectral region with a magnesium oxide reflectance standard used as the baseline.  A 

filter (Varian, 1.5ABS) was employed to minimize the background noise.  A 

magnesium oxide white reflectance standard baseline was collected under ambient 

conditions.  Determination of the Kubelka-Munk function, )( RF , was obtained from 

the UV-vis DRS absorbance and processed with Microsoft Excel software.  The edge 

energy was determined by finding the intercept of the straight line in the low-energy 
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rise of a plot of nhvRF
1

])([ 
, where 5.0n  for the direct allowed transition versus hv

, where hv  is the energy of the incident photon [21-23]. 

4.2.4 High Resolution X-ray Photoelectron (HR-XPS) Spectroscopy 

The HR-XPS spectra of the fresh and used photocatalysts were obtained on a 

Scienta ESCA 300 spectrometer equipped with a 300 mm hemispherical electrostatic 

analyzer and a monochromatic Al Kα X-ray source with energy of 1486.6 eV 

generated from a rotating anode.  This allows for improved chemical selectivity by 

narrowing the spectral peaks of elements and greatly reducing the spectral background 

signal compared to conventional XPS spectrometers.  Each spectrum was calibrated 

using a binding energy (BE) value of 285.0 eV for carbon in the C1s region.  The 

atomic concentration ratios were calculated by correcting the measured peak area 

ratios with relative sensitivity factors employed in the Casa XPS software version 

2.3.15.   

4.2.5 High Sensitivity Low Energy Ion Scattering (HS-LEISS) 

 Spectroscopy 

Analysis of the outermost surface layer of the fresh and used photocatalysts 

was obtained on the Qtac
100

 HS-LEIS Spectrometer (ION-TOF) equipped with a 

highly sensitive double toroïdal analyzer, 3000 times higher sensitivity than 

conventional LEIS spectrometers, which allows for static depth profiling.  The 

photocatalyst samples were first gently cleaned with atomic oxygen to remove surface 

hydrocarbon contamination from the atmosphere prior to being transferred inside the 
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analysis chamber.  The HS-LEIS spectra were taken using both 4000 eV 
4
He

+
 with 

7245 pA current and 3000 eV 
20

Ne
+
 with 2959 pA current as ion sources.  TOF mass 

filters were also utilized for spectra obtained with Ne
+
 as an ion source for reduced 

flux background at low kinetic energies.  For depth profiling, the surface was sputtered 

by Ar
+ 

gas at 500 eV at a sputter yield of 1x10
15

 ions/cm
2
.  Metallic Rh and Cr 

standards were also analyzed for quantifying the elemental composition of the 

photocatalysts.   

4.2.6 Photoluminescence Spectroscopy and Photoluminescent Decay 

Spectrally resolved PL spectra and transient PL lifetime measurements of the 

fresh photocatalysts were conducted using a Ti:sapphire laser (Coherent Mira 900), 

tunable in the 685-1000 nm spectra range, generating 5 ps pulses with a 76 MHz 

repetition rate, pumped with a frequency-doubled Nd:YVO4 laser (Coherent Verdi V-

18). The output of the laser was frequency doubled using an ultrafast harmonic 

generator (Coherent 5-050).  To perform the luminescence measurements, the 

excitation light at 400 nm was directed toward a microscope of a tunable micro-, 

macro-Raman/photoluminescence system (Jobin Yvon Horiba, T6400) and was 

focused using a long distance objective (50x, N/A=0.5) onto a sample to a spot size of 

~ 2 μm.  The photocatalyst sample was placed into a high temperature in situ 

microscopy stage (Linkam, TS-1500) and pretreated as follows: The samples were 

heated at 10 
o
C/min to 673 K in flowing 10% O2/N2 (30 sccm) to remove water, since 

moisture causes quenching of the PL signal [24], and to fully oxidize the samples. 

Upon cooling to room temperature in flowing inert gas (N2, 30 sccm), the 
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photoluminescence decay measurements were made.  To obtain complete PL spectra, 

the spectrometer was set to nanometer mode and the grating was moved several times 

in order to obtain the intensity over a 400 to 800 nm range.  The luminescence light 

was collected through the same objective in backscattering geometry and focused onto 

a slit of the triple-monochromator equipped with a fast gated intensified charge 

coupled device (ICCD) camera collecting in the 350-900 nm range (LaVision, Picostar 

HR12).  The ICCD camera was gated using a sequence of 76 MHz pulses propagating 

with a variable delay relative to the original train of trigger pulses (76 MHz) from a 

photodiode in a Ti:sapphire laser. The minimum gate width was 300 ps and the 

maximum delay was defined by the laser repetition rate (~13.2 ns). The laser energy at 

the sample was maintained at approximately 1.6 mW to prevent photo-degradation of 

the photocatalyst sample.  The grating was set to monitor decay centered at emission 

wavelengths from 500 to 700 nm.  The grating setting used to monitor PL lifetimes 

decay was based on the PL peak maximum from the PL spectra.  Experimental decay 

curves were then fit to a double first-order exponential decay model to account for an 

observed “fast” (t1) and “slow” (t2) components [25, 26]: 
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4.2.7 Photocatalytic Water Splitting  

About 0.1 g of the photocatalyst powder was placed in a top down Pyrex 

reactor cell filled with 100 ml of distilled water.  A magnetic stirrer was also placed in 

the reactor to allow for continuous stirring of the suspension.  The reactor was then 



 

127 

 

attached to a closed-gas circulation system connected to a vacuum pump.  Air in the 

system was removed prior to the reaction so no atmospheric oxygen can be detected in 

the system.  A Xe arc lamp was used to irradiation the sample for the reaction and cut-

off filters were utilized to only allow λ > 400 nm.  A Liebig condenser connected to 

the closed gas circulation system was used to prevent gas phase water from escaping 

the reactor so only H2 and O2 products can be found in the rest of the closed gas 

circulation system.  A cooling water system was also utilized to keep the reactor at 

room temperature.  A gas chromatograph was used to measure H2, O2, and N2 products 

in the system.   After the reaction, the used catalysts were filtered out from the 

suspension to allow for further surface analysis (HR-XPS and HS-LEISS).   

4.3 Results 

4.3.1 Bulk Molecular Structures 

The Raman spectra for the bulk Ga2O3 and ZnO precursors used for the 

synthesis of the (Ga1−xZnx)(N1−xOx) are shown in Figure 1.  The bulk Ga2O3 contains 

Raman bands characteristic of β-Ga2O3 [27, 28]:  bands below 200 cm
-1

 are assignable 

to the translation and libration of GaO4 and Ga2O6 chains,  bands between 300–500 

cm
-1 

 are assigned to Ga2O6 symmetric stretching and bending modes, and higher 

frequency bands between 500–700 cm
-1

 are from GaO4 stretching and bending modes.  

The Raman spectrum of ZnO contains bands from phonon modes indicative of the 

ZnO wurtzite structure [29]: the bands between 100-540 cm
-1

 are dominated by 

acoustic phonon modes, the bands between 540-820 cm
-1

 originate from optical and 
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acoustic phonons modes, and bands between 820-1200 cm
-1

 are from optical phonon 

modes and their overtones.   

The Raman spectra of the synthesized (Ga1−xZnx)(N1−xOx) and (Rh2-

yCryO3)/(Ga1−xZnx)(N1−xOx) are presented in Figure 2.  The (Ga1−xZnx)(N1−xOx) 

contains strong bands below 200 cm
-1

 that can be attributed to the translation and 

libration modes of GaO4 and Ga2O6 chains similar to the for bulk Ga2O3.  The band at 

332 cm
-1

 has been assigned to multiple photon modes of ZnO and can be assigned to a 

phonon mode in the (Ga1−xZnx)(N1−xOx) solid solution while the 637 cm
-1

 is from the 

O-Zn-O local structure in the (Ga1−xZnx)(N1−xOx) solid solution [30].  The Raman 

bands at 412, 556, and 717 cm
-1

 are indicative of GaN optical phonon modes in the 

(Ga1−xZnx)(N1−xOx) solid solution [30, 31].  The Raman spectra suggest that the 

(Ga1−xZnx)(N1−xOx) oxynitride also contains impure phases of Ga2O3, GaN and ZnO.  

The Raman spectrum of (Rh2-yCryO3)/(Ga1−xZnx)(N1−xOx ) does not differ noticeably 

from the Raman spectrum of the bulk (Ga1−xZnx)(N1−xOx) phase.  Crystalline Cr2O3 

characteristic Raman bands at 542 and 603 cm
-1

 [32, 33] are not detected, which may 

be due to overlap with the bulk (Ga1−xZnx)(N1−xOx) vibrations.  The weak and broad 

Rh2O3 Raman band at 550 cm
-1

 [34] is also not detected because of the strong bulk 

(Ga1−xZnx)(N1−xOx) vibrations.  Although Raman spectroscopy does not provide 

information about the supported Rh2-yCryO3 NPs, it does reveal that the bulk molecular 

structure of the (Ga1−xZnx)(N1−xOx) support is not modified by the addition of the Rh2-

yCryO3 NPs. 

4.3.2 Bulk Electronic Structures 
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The UV-vis DRS optical bulk Eg values of the photocatalysts are tabulated in 

Table 1.  The bulk band gap energy values for β-Ga2O3 (4.7 eV or 264 nm absorption 

edge) and ZnO (3.2 eV or 388 nm) are in agreement with previously reported Eg 

values [13, 35].  The bulk band gap energy for the (Ga1−xZnx)(N1−xOx) is 2.6 eV (477 

nm) and falls in the reported range of 2.4-2.8 eV (442 - 517 nm) for visible light active 

(Ga1−xZnx)(N1−xOx) materials [13].  Deposition of Rh2-yCryO3 NPs on the 

(Ga1−xZnx)(N1−xOx) support essential does not perturb the overall band gap energy of 

the composite photocatalyst. 

4.3.3 Atomic Composition of Surface Region (~1-3nm) 

 The atomic composition obtained from the XPS survey spectrum for the bulk 

(Ga1−xZnx)(N1−xOx) is shown in Table 2.  No contaminants were detected in the sample 

and the O concentration was found to be slightly higher (15%) compared to the bulk 

concentration (12%).  The XPS survey spectra of the fresh and used supported (Rh2-

yCryO3)/(Ga1−xZnx)(N1−xOx) photocatalysts are compared in Figure 3.  The surface 

region of the fresh (Rh2-yCryO3)/(Ga1−xZnx)(N1−xOx) consists primarily of Ga, Zn, Cr, 

O, N and Rh with some Na and Cl residual contaminants from the Na3RhCl6•2H2O 

precursor.  Compared to the bulk (Ga1−xZnx)(N1−xOx), the O concentration was found 

to increase while the N and Ga concentration decreased showing the surface region 

became oxidized after the calcination procedure.  After being employed as a 

photocatalyst for the splitting of water, the surface Na contaminant is gone and the 

surface Cl concentration decreased by more than 50% most probably because of their 
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aqueous solubility.  The elemental composition of the surface regions for both 

photocatalysts are compared in Table 3 and indicate an increase of O, but almost the 

same concentrations of Ga, Zn, Cr, O, N and Rh.    This trend suggests that the Na and 

Cl contaminants were occupying some of the O sites in the surface region of the 

photocatalyst.   

The XPS survey spectra (not shown for brevity) for the fresh and used 

supported (Rh/Cr2O3)/(Ga1−xZnx)(N1−xOx) photocatalysts did not exhibit any 

contaminants from the K2CrO4 precursor.  The atomic compositions obtained from the 

XPS survey spectra for the supported (Rh/Cr2O3)/(Ga1−xZnx)(N1−xOx) photocatalysts 

are listed in Table 4.  The used photocatalyst was found to possess slightly less O (5.3 

%), and slightly more N (3.3%) and Ga (2.0%) while the concentration of the other 

elements staying relatively constant in the surface region.  These changes are within 

the margin of error (± 5%) for the XPS spectrometer and, thus, surface composition of 

the supported (Rh/Cr2O3)/(Ga1−xZnx)(N1−xOx) photocatalyst remained relatively 

constant during photocatalytic splitting.  In addition, all the photocatalysts contained 

~1% Rh and ~5% Cr for the supported (Rh2-yCryO3) /(Ga1−xZnx)(N1−xOx) photocatalyst 

while the supported (Rh/Cr2O3)/(Ga1−xZnx)(N1−xOx) photocatalysts contained  ~3.5% 

Cr in the surface region.   

The HR-XPS spectra for Cr 2p and Rh 3d peaks in the surface region were also 

collected in order to determine their oxidation states.  The Cr 2p and Rh 3d transitions 

for the supported (Rh2-yCryO3)/(Ga1−xZnx)(N1−xOx) photocatalysts are presented in 

Figure 4 and reveals the presence of only Cr
3+

 and Rh
3+

 species in the surface region.  
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Neither Cr
6+

 or metallic Rh(0) species were found for these photocatalysts in the 

surface region.  The Cr 2p and Rh 3d peaks for the supported 

(Rh/Cr2O3)/(Ga1−xZnx)(N1−xOx) core/shell photocatalysts are presented in Figure 5.  

The Cr 2p region reveals the existence of only Cr
3+

 without any Cr
6+

 species.  The 

peak in the Rh 3d region shows that Rh
3+

 is the dominant Rh phase on the surface with 

only a small shoulder corresponding to the presence of a trace of metallic Rh(0).   

4.3.4 Atomic Composition of Outermost Surface Layer (~0.3nm)  

The atomic composition of the outermost surface layer (~0.3 nm) and the 

layers beneath the topmost surface layer of the photocatalysts were analyzed by HS-

LEIS spectroscopy depth profiling.  The HS-LEIS spectra for the (Ga1−xZnx)(N1−xOx) 

support using both 
4
He

+
 and 

20
Ne

+
 as ion gas sources are presented in Figures 6A and 

6B.  Resolvable peaks for the N, O and Zn/Ga in the outermost surface layer with the 

4
He

+
 gas ion source are shown in Figure 6A.  The atomic oxygen pretreatment cleaned 

off hydrocarbons deposited on the surface which did not affect the surface 

composition of the other elements and increased signal intensity for the sample.  The 

other photocatalyst samples were also pretreated with atomic oxygen and the surface 

composition of non-carbon elements were likewise not affected. The close atomic 

masses of Zn and Ga did not allow for resolution between these two elements using 

He
+
 and Ne

+
 gas ions as shown in Figure 6B.  Further attempts were made to resolve 

these two elements with the heavier 
40

Ar
+
 gas ions, but resolving the Ga and Zn 

signals was also unsuccessful. 
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The HS-LEIS depth profiles for fresh (Rh2-yCryO3)/(Ga1−xZnx)(N1−xOx) using 

both 
4
He

+
 and 

20
Ne

+
 as ion gas sources are presented in Figures 7A and 7B.  The HS-

LEIS resolvable peaks are for the O, Na, Cl, Cr, Zn/Ga, and Rh in the outermost 

surface layer with the 
4
He

+
 gas ion source are shown in Figure 7A.  The absence of a 

peak for N is possibly due to the slow velocity of the 
4
He

+
 gas ions which makes it 

difficult to obtain good elemental sensitivity for low mass elements like N without the 

use of 
3
He

+
 as gas ion source [36].  The evolution of the HS-LEIS signals for Cl, Na 

and Zn/Ga, normalized against the relatively constant O signal, are shown in Figure 8 

during the dynamic depth profiling.  The Cl and Na contaminants slightly decrease 

with depth profiling reflecting some surface enrichment of Na and Cl.  The Zn/Ga 

signal significantly increases during the depth profiling as expected for the bulk nature 

of the Zn and Ga oxides.  The HS-LEIS signals for Cr and Rh are more easily resolved 

with Ne
+
 gas ions as seen in Figure 7B.  The Rh and Cr signals were calibrated against 

metallic Rh and Cr standards in order to quantify these two elements as shown in 

Figure 9.  The outermost surface layer contains slightly more Rh than Cr, and the Cr 

concentration markedly increase with depth profiling while that of Rh markedly 

decreases.  These concentration profiles reveal that Rh is surface segregated while Cr 

becomes more prevalent with increasing depth.  The ~5 times greater concentration of 

Cr at the end of the depth profile is much higher than the expected ~1.5 times greater 

Cr expected from the catalysts loading.   

The HS-LEIS depth profiles for the used supported (Rh2-

yCryO3)/(Ga1−xZnx)(N1−xOx) photocatalyst are presented in Figure 10.  A very small 
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shoulder for N is visible in the depth profile of Figure 10A indicating that N is being 

exposed on the surface of the supported (Rh2-yCryO3)/(Ga1−xZnx)(N1−xOx) 

photocatalysts during the water splitting reaction.  Traces of the Na and Cl 

contaminants are not detected during HS-LEIS depth profiling, unlike XPS analysis of 

the surface region, which suggests that the trace Cl contaminant is not present on the 

outermost surface layers of this used photocatalyst.  The Rh and Cr depth profiles for 

the used (Rh2-yCryO3)/(Ga1−xZnx)(N1−xOx) photocatalyst in Figure 11 reveal 

comparable amounts of Rh and Cr on the outermost surface and the Cr concentration 

increases while the Rh concentration decreases with depth profiling as found for the 

fresh (Rh2-yCryO3) /(Ga1−xZnx)(N1−xOx) photocatalyst.  The similar depth profile trends 

for the Rh and Cr for the fresh and used supported (Rh2-yCryO3)/(Ga1−xZnx)(N1−xOx) 

photocatalysts suggests a static situation exists during photocatalysis for the supported 

(Rh2-yCryO3) NPs.    

The HS-LEIS depth profiles for the fresh supported 

(Rh/Cr2O3)/(Ga1−xZnx)(N1−xOx) core/shell photocatalyst are presented in Figure 12 and 

show that the outer surface region is void of any contaminants and N.  The Cr and Rh 

depth profiles for the fresh supported (Rh/Cr2O3)/(Ga1−xZnx)(N1−xOx) core/shell 

photocatalyst are shown in Figure 13 and reveal that the outermost layers contain 

about twice as much Rh as Cr.  With increasing depth from the outer surface, the 

concentration of Cr decreases only slightly while that of Rh falls rapidly and becomes 

lower than that of Cr at the end of the sputtering.  The corresponding HS-LEIS depth 

profiles for the used supported (Rh/Cr2O3)/(Ga1−xZnx)(N1−xOx) core/shell 
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photocatalysts are presented in Figure 14 and the main spectral difference with the 

fresh core/shell photocatalyst is the existence of some N  (see Figure 14A).  The 

appearance of N in the outermost layers was also found for the used supported (Rh2-

yCryO3)/(Ga1−xZnx)(N1−xOx) mixed oxide photocatalyst suggests possible  surface 

enrichment during the photocatalytic water splitting reaction.  The HS-LEIS Cr and 

Rh depth profiles for the used supported (Rh/Cr2O3)/(Ga1−xZnx)(N1−xOx) core/shell 

photocatalyst are given in Figure 15 and the trend is similar to that of the fresh 

supported (Rh/Cr2O3)/(Ga1−xZnx)(N1−xOx) core/shell photocatalyst: Rh concentration is 

about twice as great in the outermost layers and rapidly decreases while the Cr 

concentration only slightly decreases with increasing depth.  Also found for the 

supported (Rh2-yCryO3)/(Ga1−xZnx)(N1−xOx) mixed oxide photocatalysts, the Rh and Cr 

depth profile concentrations for the supported (Rh/Cr2O3)/(Ga1−xZnx)(N1−xOx) 

core/shell photocatalysts are not altered by the photocatalytic reaction environment. 

4.3.5 Dynamics of Photoexcited Electrons and Holes 

The photoluminescence (PL) emission spectrum monitors the recombination 

dynamics of excited electrons and holes.  The PL intensity is indicative of the 

population of electron/hole recombination centers (self-trapped electrons, oxygen 

vacancies, defect sites, impurities, reduced metal ions, etc.) in the bulk phase of 

excited photocatalysts with high intensity reflecting a greater number of 

recombination centers [24, 37].  The PL emission spectra of bulk ZnO, Ga2O3 and 

(Ga1−xZnx)(N1−xOx) photocatalysts in response to laser excitation at 400 nm are 

presented in Figure 16 and their peak maxima are listed in Table 1.  The much lower 
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PL emissions intensities for bulk ZnO and Ga2O3 might at first suggest that these 

oxides appear to be more suitable photocatalysts than the (Ga1−xZnx)(N1−xOx) 

oxynitride, but the low PL emissions intensities are actually a consequence of the 400 

nm excitation energy being lower than their optical band gap energy values (388 and 

264 nm).  The optical absorption edge values for bulk ZnO and Ga2O3 are in the UV-

range, thus, the lack of PL emissions is due to the use of visible light irradiation 

causing a decreased population of excited electrons being able to recombine.  The 

addition of the (Rh2-yCryO3) NPs greatly diminishes the PL emissions of the 

(Ga1−xZnx)(N1−xOx) showing that electron/hole recombination is decreased in the 

presence of the supported NPs because of electrons being trapped and unable to 

recombine with holes in the bulk phase to produce emission.   

 The photoluminescence emission decay curves for the bulk ZnO, Ga2O3 and 

oxynitride photocatalysts are plotted in Figure 17.  The PL emission decays for all the 

photocatalysts were modeled with Equation 1 that is based on two different species of 

electrons decaying at different rates and the fit parameters are given in Table 1.  The 

parameters t1 and A1 refer to decay constant and amplitude of the “fast” component of 

electron decay while t2 and A2 refer to the decay constant and amplitude of the “slow” 

component of electron decay.  Comparison of the PL emission decays from the bulk 

ZnO, Ga2O3 and (Ga1−xZnx)(N1−xOx) indicates that both t1 and t2 increase with 

decreasing optical band gap energy, which is indicative of longer lifetimes of photo-

generated electron/hole pairs [38, 39].  Deposition of the (Rh2-yCryO3) NPs on the 
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(Ga1−xZnx)(N1−xOx) support prolongs the lifetime of excited electrons/holes in this 

multicomponent photocatalyst system. 

4.3.6 Photocatalytic Water Splitting 

The evolution of the H2 and O2 products from steady-state photocatalytic water 

splitting was monitored over 7 hours for the supported (Rh2-yCryO3)/ 

(Ga1−xZnx)(N1−xOx) mixed oxide and supported (Rh/Cr2O3)/(Ga1−xZnx)(N1−xOx) 

core/shell photocatalysts and are presented in Figure 18. Both photocatalysts were able 

to produce H2 and O2 at the proper 2:1 stoichiometric ratio.  The production rate (units 

of μmols/ g catalyst/h) for the supported (Rh2-yCryO3)/(Ga1−xZnx)(N1−xOx) mixed oxide 

photocatalyst was 161 for H2 and 79.4 for O2 while the production rate for the 

supported (Rh/Cr2O3)/(Ga1−xZnx)(N1−xOx) core/shell photocatalyst was 71.1 for H2 and 

33.4 for O2.  The BET surface areas of both photocatalyst systems were dominated by 

that of the (Ga1−xZnx)(N1−xOx) oxynitride support at 8 m
2
/g [13], and the surface area 

normalized activities (units of μmols/ m
2
/h)  for the supported (Rh2-

yCryO3)/(Ga1−xZnx)(N1−xOx) mixed oxide photocatalyst are 20.1 H2/9.9 O2  and 8.9 

H2/4.2 O2 for the supported (Rh/Cr2O3)/(Ga1−xZnx)(N1−xOx) core/shell photocatalyst.  

Thus, the supported (Rh2-yCryO3)/(Ga1−xZnx)(N1−xOx) mixed oxide photocatalyst is 

slightly more than 2 times as active as the supported (Rh/Cr2O3)/(Ga1−xZnx)(N1−xOx) 

core/shell photocatalyst.  No formation of N2 was detected and indicates that N3
-
 

oxidation to N2 did not occur at the surface of the oxynitride photocatalysts [13].        

4.4 Discussion 
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4.4.1 Bulk and Electronic Structures of the (Ga1−xZnx)(N1−xOx) Oxynitride 

Support 

The bulk molecular structure of the oxyntride support was confirmed to be the 

(Ga1−xZnx)(N1−xOx) solid solution with Raman spectroscopy (see Figure 2).  The 

corresponding UV-vis spectrum confirms that the (Ga1−xZnx)(N1−xOx) oxynitride phase 

is a solid solution and is not just a physical mixture of Ga2O3, ZnO and GaN because 

of its much lower optical band gap than the starting Ga2O3, ZnO and GaN materials 

for its synthesis.  The presence of small amounts of beta-Ga2O3, ZnO and GaN NPs, 

which presumably reside on the surface of the oxynitride solid solution support, were 

also detected with Raman spectroscopy.  The bulk molecular and electronic structures 

of the (Ga1−xZnx)(N1−xOx) oxynitride support phase were not perturbed by the 

deposition  of the (Rh2-yCryO3) mixed oxide NPs as reflected in the resulting Raman 

and UV-vis spectra (see Figures 2 and Table 1).  Thus, the deposition of the (Rh2-

yCryO3) mixed oxide NPs onto the surface (Ga1−xZnx)(N1−xOx) support had almost no 

measurable effect on the bulk oxynitride phase.    

4.4.2 Atomic Distribution of the Surface Region of Supported 

 (Ga1−xZnx)(N1−xOx) Photocatalysts 

4.4.2.1 Model of the Supported (Rh2-yCryO3)/(Ga1−xZnx)(N1−xOx) Mixed 

 Oxide Photocatalyst 

 Although the surface of the fresh supported (Rh2-yCryO3)/(Ga1−xZnx)(N1−xOx) 

photocatalyst initially was contaminated with Na and Cl from the rhodium precursor, 
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Na and Cl were easily dissolved in the aqueous environment from the outermost 

surface layer (~0.3nm) during photocatalysis.  The Na is also completely absent from 

the surface region (~1-3nm) of the used photocatalyst and the Cl concentration 

diminishes more than 50% from the surface region (Table 2).  LEIS was able to show 

a small peak for N on the (Ga1−xZnx)(N1−xOx) which is not present for the (Rh2-

yCryO3)/(Ga1−xZnx)(N1−xOx).  The surface region for the (Rh2-yCryO3)/ 

(Ga1−xZnx)(N1−xOx) was also found to be enriched with O relative to N (surface ~0.5 

vs. bulk ~ 0.14), which is not too surprising since the deposited (Rh2-yCryO3) NPs do 

not possess any N.  The lack of N on the (Rh2-yCryO3)/(Ga1−xZnx)(N1−xOx) combined 

with the surface enriched O gives evidence for the existence of a GaZnOx thin film on 

the surface of the (Ga1−xZnx)(N1−xOx) which arises due to the calcination treatment in 

air.  The deposited (Rh2-yCryO3) NPs on the oxynitride support exclusively contain 

Cr
3+

 and Rh
3+ 

species both in the fresh and used photocatalysts (see HR-XPS spectra 

in Figure 4).  The Rh
+3

 species is surface enriched and its concentration significantly 

decreases with depth while the Cr
+3

 concentration increases with depth from the 

surface for the fresh and used photocatalysts (see HS-LEIS Figures 9 and 11).  The 

increase in Cr
3+

 concentration with depth profile can be explained by the formation of 

some C2O3 NPs on the surface, dissolved Cr
3+

 in the GaZnOx layer, and increased 

Cr
3+

 concentration in the (Rh2-yCryO3) NPs with depth from the surface.  The 

increased Ga/Zn concentration with depth profiling indicates that Ga and Zn are not 

surface enriched (see HS-LEIS Figures 7 and 10).  The lower XPS ratio of Ga to Zn in 

the surface region, ~5, compared to the bulk, ~7, suggests that Ga is depleted relative 
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to Zn in the surface region of the oxynitride support (see Table 2).  A schematic of the 

structure of the supported (Rh2-yCryO3)/(Ga1−xZnx)(N1−xOx) photocatalyst is depicted in 

Figure 19. 

4.4.2.2 Model of the Supported (Rh/Cr2O3)/(Ga1−xZnx)(N1−xOx)               

 Core/Shell Photocatalyst 

The photodeposition synthesis method yielded a relatively contaminant-free 

photocatalyst whose surface did not contain the Na and Cl from the Rh precursor as 

well as the K from the Cr precursor.  The lack of N on the outermost surface with 

surface enriched O shows that a GaZnOx film covers the surface of the 

(Ga1−xZnx)(N1−xOx).  Surface Cr
3+

 and Rh
3+

 are the dominant chemical states in the 

Rh/Cr2O3 core/shell NPs with only a small amount of metallic Rh
0
 (see HR-XPS 

Figure 5).  The Rh concentration in the outermost surface layer is almost ~2 is much 

as the Cr and much higher than the ~ 1:1 ratio for the supported (Rh2-

yCryO3)/(Ga1−xZnx)(N1−xOx) photocatalyst and its concentration significantly decreases 

with depth profiling (see HS-LEIS Figures 13 and 15).  The most surprising new 

insights about the surface region is that Rh is fully oxidized and surface enriched 

given that the photodeposition synthesis was supposed to encapsulate the metallic Rh
0
 

NPs with a thin Cr2O3 film.   There are two possibilities to explain why the Rh 

concentration is much higher on the outermost surface layer.  The 2:1 Rh:Cr ratio on 

the surface can be attributed to Rh
0
 NPs that where not fully encapsulated by the 

Cr2O3 shell and becomes oxidized forming a Rh
3+

 shell over the Rh
0
 NP.  The second 

possibility is that during the photodeposition synthesis the Rh was able to become 
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oxidized and diffuse through the Cr2O3 layer, presumably related to the Rh2O3 having 

similar structure as Cr2O3 and being the driving force to surface segregate.  These 

surprising findings are in contrast to the supported core/shell model (metallic Rh core 

encapsulated by a Cr2O3 film) previously proposed [17].  The previous investigation 

employed bulk EXAFS/XANES to analyze the Rh and the bulk nature of this 

spectroscopic method indicates that the majority Rh species in the core/shell 

photocatalyst is indeed metallic Rh
0
, but provides no information about the surface 

region [17].  The current surface measurements, however, demonstrate that it is Rh
+3

 

that is surface enriched in the topmost surface layer and surface region of the 

core/shell photocatalyst where the photocatalytic splitting of water takes place.  The 

LEIS shows that the Cr concentration stays constant with depth indicating uniform Cr 

concentration in the Rh-Cr NPs along with the formation of some Cr2O3 NPs. A 

schematic of the supported (Rh/Cr2O3)/(Ga1−xZnx)(N1−xOx) core/shell photocatalyst is 

depicted in Figure 20. 

4.4.3 Generation of Excited Electron/Hole Pairs and Their Lifetimes 

Although the (Ga1−xZnx)(N1−xOx) phase is able to generate excited 

electrons/holes with visible light excitation, it is unable to photocatalytically split 

water at the surface/water interface [13]. The function of the bulk (Ga1−xZnx)(N1−xOx) 

phase, or support,  of the multicomponent photocatalyst system is to generate excited 

electron/holes upon excitation by visible light.  PL spectroscopy is able to measure the 

recombination of electrons/holes in the photocatalyst and the presence of the 

supported (Rh2-yCryO3) particles suppresses the PL signal of the bulk 
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(Ga1−xZnx)(N1−xOx), which indicates that the supported (Rh2-yCryO3) particles prevent 

recombination of electrons and holes.    This suggests that the supported (Rh2-yCryO3) 

mixed oxide particles are efficient electron traps that minimize electron and hole 

recombination and, thus, allow for their consumption at the surface for photocatalytic 

water splitting [24, 40, 41].  Transient PL spectroscopy is able to measure the lifetime 

of the excited electrons/holes from the decay emissions parameters based on the 

“slow” t2 component and where the ratio 
  

     
 is indicative of the relative population 

of these long lived electrons with slow emissions decay [38, 39].  The electron traps 

from the surface (Rh2-yCryO3) were able to prolong the lifetimes of excited 

electrons/holes as shown in Table 1 from the increased lifetimes not only from the 

“slow” t2 component of decay but also for “fast” t1 component.  The relative 

population of long lived excited electrons was also found to be enhanced by the 

surface (Rh2-yCryO3).  PL and transient PL decay spectroscopy demonstrated that the 

surface modified (Rh2-yCryO3) possessed all of the measurable desired properties for 

an efficient photocatalyst system.  The surface (Rh2-yCryO3) decreased the 

recombination of electron/holes in the bulk by transferring then to the surface which 

increased the lifetimes and population of the excited electrons and holes.  This greatly 

increases the probability for the photocatalytic splitting of H2O into H2 and O2 at the 

surface.  HS-LEISS depth profiling revealed that the Cr2O3 species is more 

concentrated than the Rh2O3 near the bulk is seen in Figure 9 so the Cr2O3 may be 

more responsible for these charge transfer effects.     



 

142 

 

4.4.4 Structure-Photoactivity Relationships for Splitting of H2O by 

 (Ga1−xZnx)(N1−xOx) Photocatalysts 

4.4.4.1 Supported (Rh2-yCryO3)/(Ga1−x Znx)(N1−xOx) Mixed Oxide  

 Photocatalyst 

The supported (Rh2-yCryO3)/(Ga1−xZnx)(N1−xOx) photocatalyst is a two 

component photosystem.  The bulk (Ga1−xZnx)(N1−xOx) support phase has a band gap 

of 2.6 eV that allows homogeneous generation of electrons and holes inside this phase 

with visible light activation.  The bulk generated electrons and holes must avoid 

recombination and diffuse to the surface to be able to perform the photocatalytic 

reaction. The supported (Rh2-yCryO3) mixed oxide NPs are the catalytic active sites 

that trap and harness the electrons and holes to perform photocatalytic splitting of 

water to H2 [15].  It was previously shown that although supported Rh2O3/(Ga1−x 

Znx)(N1−xOx) photocatalyst is able to split H2O into H2, it is unable to produce any 

significant O2 [14].  Only when Cr2O3 is added to the supported Rh2O3/(Ga1−x 

Znx)(N1−xOx) photocatalyst is the stoichiometric amount of O2 simultaneously evolved 

[14] . These observations suggest that the function of the Rh
+3

 sites is to generate H2 

while the O2 evolution site can exist at several points: on the Cr
3+

 sites, GaZnOx or at 

their contact points (see Figure 19).  There is not enough evidence to determine which 

the active site is but the surface analysis reveals those are the likely sites for O2 

evolution.  The current HS-LEISS surface analysis reveals that the ideal surface 

composition for the (Rh2-yCryO3) NPs consists of a ~ 1:1 ratio of Rh:Cr on the 
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outermost surface layer for the  supported (Rh2-yCryO3)/(Ga1−xZnx)(N1−xOx) 

photocatalysts.   

     4.4.4.2 Supported (Rh/Cr2O3)/(Ga1−xZnx)(N1−xOx) Core/Shell       

      Photocatalyst 

     The supported (Rh/Cr2O3)/(Ga1−xZnx)(N1−xOx) core/shell photocatalyst is a 

three-component system.  The bulk oxynitride (Ga1−xZnx)(N1−xOx) support phase 

generates the bulk electrons and holes with visible light excitation.  The supported 

metallic Rh NPs trap the electrons arriving at the Rh/(Ga1−xZnx)(N1−xOx) interface.  

The metallic Rh NPs are encapsulated by a film of (Rh2-yCryO3) that requires the 

electrons to diffuse from the metallic Rh NPs to the surface of the (Rh2-yCryO3) mixed 

oxides NPs to participate in the photocatalytic water splitting reaction.  

The supported (Rh/Cr2O3)/(Ga1−xZnx)(N1−xOx) core/shell photocatalyst was 

designed to optimize evolution of H2 [17].  Although metallic Rh is known as a good 

H2 evolution photocatalyst, it also suffers from catalyzing the back reaction between 

H2 and O2 to water [3].  To minimize the back reaction by metallic Rh NPs it was 

proposed to encapsulate the metallic Rh NPS with a Cr2O3 film [17].  The current HS-

LEIS analysis, however, reveals that some of the metallic Rh was able to become 

oxidized during Cr2O3 photodeposition and, surprisingly, to diffuse to the surface of 

the “encapsulating” chromia film (see Figure 12).  This suggests that the supported 

core/shell photocatalyst may actually function similarly to the supported (Rh2-yCryO3) 

mixed oxide NPs where the Rh
+3

 evolves H2 with Cr
3+

, GaZnOx or their contact points 

as the possible active sites for O2 evolution.  Although the metallic Rh component may 
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enhance the trapping of electrons and supply them to the (Rh2-yCryO3) mixed oxide 

film, the presence of some metallic Rh
0
 is also detected in the surface region (see HR-

XPS Figure 5) that catalyzes the undesirable back reaction between H2 and O2 to form 

water.  Consequently, the supported (Rh/Cr2O3)/(Ga1−xZnx)(N1−xOx) core/shell 

photocatalyst is actually only ~50% as efficient as the supported (Rh2-

yCryO3)/(Ga1−xZnx)(N1−xOx) mixed oxide photocatalyst because the desired catalyst 

was not achieved in the photodeposition process [17].  The high 2:1 ratio for Rh:Cr 

found on the outermost surface layer may also be a factor in the decreased activity 

giving evidence for the possibility of exposed metallic Rh
0
 NPs with a thin Rh

3+
 shell 

which were not encapsulated by the (Rh2-yCryO3) mixed oxide film.  The model for the 

photocatalytic process is given in Figure 20. 

4.5 Conclusions 

The bulk and surface properties of supported (Rh2-yCryO3)/(Ga1−xZnx)(N1−xOx) 

mixed oxide and (Rh/Cr2O3)/(Ga1−xZnx)(N1−xOx) core/shell visible light activated 

photocatalysts were investigated with bulk (Raman, UV-vis, and PL) and surface (HS-

LEIS and HR-XPS) spectroscopic techniques.  The bulk molecular and electronic 

structures of the oxynitride (Ga1−xZnx)(N1−xOx) support phase were not affected by the 

addition of the Rh-Cr NPs.  The supported Rh-Cr NPs, however, affected the 

recombination of excited electrons and holes revealing their ability to trap electrons 

and holes and harness them for photocatalytic splitting of water. The Rh2-yCryO3 NPs 

were responsible for evolution of the H2 (Rh
+3

) and several sites are proposed (Cr
+3

, 
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GaZnOx or their contact points) for O2 photocatalytic reaction products.  The presence 

of some metallic Rh
0
 in the supported (Rh/Cr2O3)/(Ga1−xZnx)(N1−xOx) core/shell 

photocatalysts is responsible for its lower water splitting efficiency because the 

metallic Rh
0
 catalyzes the undesirable backward reaction of H2 and O2 to water.  This 

study establishes for the first time the fundamental structure-photoactivity 

relationships for the novel visible light active supported (Rh-Cr)/(Ga1−xZnx)(N1−xOx) 

photocatalysts.    
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Excitation 400 nm y=A1*exp(-t/t1)+A2*exp(-t/t2)+y0 

Catalyst Eg   

(eV) 

Peak 

Maximu

m (nm) 

t1 

(ps) 

fast 

A1 fast t2 

(ps) 

slow 

A2 

slow 

A1/ 

(A1+

A2) 

A2/ 

(A1+A2) 

Ga2O3 4.7 713 4 131417 2404 1 0.99 9.40E-06 

ZnO 3.2 637 789 29 6818 8 0.79 0.21 

(Ga1−xZnx)(

N1−xOx ) 

2.6 657 941 179 7421 57 0.76 0.24 

(Rh2-yCryO3) 

/(Ga1−xZnx)(

N1−xOx ). 

2.5 725 1003 26 8002 15 0.64 0.36 

 

 

Table 4.1: Eg values, peak emission wavelengths, and decay fit parameters of the 

catalysts at 400 nm excitation.  The decay parameters displayed are those found in the 

PL spectra taken in the emission range of the peak value. 
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Table 4.2:  XPS surface region atomic composition (~1-3nm) of (Ga1−xZnx)(N1−xOx). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Element

O 1s 15.9%

N 1s 60.2%

Ga 2p 3/2 22.2%

Zn 2p 3/2 1.7%
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Table 4.3:  XPS surface region atomic composition (~1-3nm) of fresh and used (Rh2-

yCryO3) /(Ga1−xZnx)(N1−xOx) mixed oxide photocatalysts. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Element Fresh Used

O 1s 23.5% 31.1%

N 1s 50.2% 48.6%

Ga 2p 3/2 10.9% 10.6%

Zn 2p 3/2 2.4% 1.9%

Cr 2p 3/2 5.2% 5.1%

Rh 3d 0.8% 1.1%

Cl 2p 3.5% 1.5%

Na 1s 3.4% 0.0%
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Table 4.4:  HR-XPS surface region atomic composition (~1-3nm) of fresh and used 

(Rh/Cr2O3)/(Ga1−xZnx)(N1−xOx) core/shell photocatalysts. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Element Fresh Used

O 1s 31.7% 26.4%

N 1s 50.8% 54.1%

Ga 2p 3/2 10.9% 12.9%

Zn 2p 3/2 2.1% 1.7%

Cr 2p 3/2 3.4% 3.7%

Rh 3d 1.1% 1.2%

Cl 2p 0.0% 0.0%

Na 1s 0.0% 0.0%

K 2s 0.0% 0.0%
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Figure 4.1:  Raman Spectra of β-Ga2O3 and ZnO precursors (532 nm) under ambient 

conditions. 
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Figure 4.2:  Raman Spectra of (Ga1-xZnx)(N1-xOx) and (Rh2-yCryO3) 

/(Ga1−xZnx)(N1−xOx) (432 nm) under ambient conditions. 
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Figure 4.3:  XPS Survey spectra of (a) fresh and (b) used (Rh2-yCryO3) 

/(Ga1−xZnx)(N1−xOx) photocatalysts. 
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Figure 4.4:  HR-XPS spectra of Cr 2p and Rh 3d regions of (a) fresh and (b) used 

supported (Rh2-yCryO3)/(Ga1−xZnx)(N1−xOx) mixed oxide photocatalysts. 
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Figure 4.5:  HR-XPS spectra of Cr 2p and Rh 3d regions of (a) fresh and (b) used 

(Rh/Cr2O3)/(Ga1−xZnx)(N1−xOx) photocatalysts. 
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Figure 4.6:  HS-LEIS spectra for (Ga1−xZnx)(N1−xOx) photocatalyst using (a) He
+
 ion 

gas and (b) Ne
+
 ion gas. 
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Figure 4.7:  HS-LEIS Depth Profile for the fresh (Rh2-yCryO3) /(Ga1−xZnx)(N1−xOx) 

photocatalyst using (a) He
+
 ion gas and (b) Ne

+
 ion gas. 
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 Figure 4.8:  HS-LEIS depth profile intensity ratios of elements/oxygen for the fresh 

(Rh2-yCryO3) /(Ga1−xZnx)(N1−xOx) photocatalyst using He
+
 ion gas. 
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 Figure 4.9:  HS-LEIS Depth Profile of Cr and Rh for the fresh (Rh2-yCryO3) 

/(Ga1−xZnx)(N1−xOx) photocatalyst using Ne
+
 ion gas. 
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Figure 4.10:  HS-LEIS Depth Profile for the used supported (Rh2-yCryO3) 

/(Ga1−xZnx)(N1−xOx) photocatalyst using (a) He
+
 ion gas and (b) Ne

+
 ion gas. 
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Figure 4.11:  HS-LEIS Depth Profile of Cr and Rh for used supported (Rh2-yCryO3) 

/(Ga1−xZnx)(N1−xOx) photocatalyst using Ne
+
 ion gas. 
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Figure 4.12:  HS-LEIS Depth Profile for the fresh supported (Rh/Cr2O3) 

/(Ga1−xZnx)(N1−xOx) core/shell photocatalyst using (a) He
+
 ion gas and (b) Ne

+
 ion gas. 
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Figure 4.13:  HS-LEIS Depth Profiles of Cr and Rh for the fresh supported 

(Rh/Cr2O3)/(Ga1−xZnx)(N1−xOx) core/shell photocatalyst using Ne
+
 ion gas. 
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Figure 4.14:  HS-LEIS Depth Profile for the used supported (Rh/Cr2O3) 

/(Ga1−xZnx)(N1−xOx) core/shell photocatalyst using (a) He
+
 ion gas and (b) Ne

+
 ion gas. 
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 Figure 4.15:  HS-LEIS Depth Profiles for Cr and Rh for the used supported 

(Rh/Cr2O3)/(Ga1−xZnx)(N1−xOx) core/shell photocatalyst using Ne
+
 ion gas. 
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Figure 4.16: PL spectra of bulk β-Ga2O3, ZnO and oxynitride catalysts at 400 nm 

excitation.   
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Figure 4.17: PL decay curves for the photocatalysts.  
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Figure 4.18: Comparison of Photocatalytic Water Splitting Activity (λ > 400 nm).   
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Figure 4.19:  Schematic Model of Rh-Cr NPs for Co-Impregnation Synthesis Method.   
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Figure 4.20:  Schematic Model of Rh-Cr NPs for Photodeposition Synthesis Method.   
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CHAPTER 5 

Investigating the Surface Nature of TaON Photocatalysts 

 

 

Abstract 

Bulk TaON and supported RuO2/TaON photocatalysts used in Z-scheme 

photocatalytic water splitting were synthesized and characterized for their bulk and 

surface characteristics.  The bulk properties of these photocatalysts were determined 

with Raman and UV-vis spectroscopy and show that the molecular and electronic 

structures, respectively, of the TaON support are not perturbed by the deposition of the 

RuO2.  For the first time, the surface properties of these photocatalysts were 

determined using High Resolution-XPS (HR-XPS) and High Sensitivity-Low Energy 

Ion Scattering (HS-LEIS) spectroscopy.  The High Sensitivity-LEIS and HR-XPS 

surface measurements reveal that the outermost surface layers of TaON are present as 

a TaOx thin film and that the deposited RuO2 is present as dissolved Ru
+4

 cations in 

the tantalum oxide layers.  These new structural insights of the surface region of 

supported RuO2/TaON photocatalysts demonstrate that the photoactive catalytic sites 

for O2 evolution are dissolved Ru
+4

 cations in the tantalum oxide thin film and not 

RuO2 nanoparticles as previously proposed for this photocatalytic system. 
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5.1 Introduction 

In recent years, the use of oxynitride materials for photocatalytic water 

splitting has garnered much attention due to their response to visible light irradiation 

[1].  Bulk oxynitride materials with d
0
 electronic configuration: LaTiO2N [2], 

CaNbO2N [3], CaTaO2N [4], SrTaO2N [4], BaTaO2N [4], TaON [5-7], Y2Ta2O5N2 [8] 

and TiNxOyFz [9] have been found to be able to evolve H2 and O2 in the presence of 

sacrificial reagents under visible light irradiation.  Unlike bulk oxynitride materials 

with d
10

 electronic configuration, (Ga1-xZnx)(N1-xOx) [10-14] and (Zn1+xGe)(N2Ox) 

[15], the bulk oxynitrides with d
0
 electronic configuration cannot photocatalytically 

split pure water into H2 and O2 without sacrificial reagents.  The main interest in 

studying the d
0
 bulk oxynitrides is in their use as part of a two component Z-Scheme 

photocatalyst system [16].  Pt/TaON [17], Pt/CaTaO2N [18] and Pt/BaTaO2N [18] 

have been found to work as the H2 evolution component with Pt/WO3 as the O2 

evolution component using IO
3-

/I
-
 as the shuttle redox mediator in a Z-scheme system.  

The most active Z-scheme photocatalyst system (Pt/ZrO2/TaON with Pt/WO3) has an 

optimized quantum yield of 6.3% at λ > 420 nm [19] that is higher than any single 

component photocatalyst system.  There is still much research that can be done to 

improve the photoactivity for Z-scheme systems since this is a more recently 

developed technology. Thus, the study of advanced, novel d
0
 bulk oxynitride materials 

is essential for the future design of more efficient Z-scheme systems.   
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One of the more recently discovered Z-scheme systems involves combining 

supported Pt/ZrO2/TaON with supported RuO2/TaON using IO
3-

/I
-
 as the shuttle redox 

couple [20, 21].  It was proposed that supported Pt/ZrO2/TaON acts as the H2 

evolution photocatalysts while supported RuO2/TaON acts as the O2 evolution 

photocatalyst. Scanning electron microscopy (SEM) images of the supported 

RuO2/TaON photocatalyst showed featureless RuO2 nanoparticles on the TaON 

support and have been attributed to the greatly increased O2 evolution for the system.  

From these observations it was hypothesized that the RuO2 NPs are the catalytic active 

sites for O2 evolution, although surface characterization was not performed to 

substantiate the proposed photocatalysis model. 

 The present study will focus on one half of a Z-scheme photocatalyst system to 

determine the surface nature of the supported RuO2/TaON photocatalyst.  Information 

about the surface region (~1-3nm) and outermost atomic layer (~0.3 nm) of the 

supported RuO2/TaON photocatalyst system will be acquired by characterization with 

high-resolution X-ray photoelectron spectroscopy (HR-XPS) and high-sensitivity low 

energy ion scattering (HS-LEIS) spectroscopy, respectively.  Complementary bulk 

molecular and electronic structural information about the TaON support phase and 

influence of the addition of the deposited RuO2 NPs upon the TaON phase properties 

will be acquired with in situ optical spectroscopic characterization (Raman and UV-

vis, respectively).   

5.2 Experimental 
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5.2.1 Catalyst Synthesis 

The bulk TaON phase was prepared by heating Ta2O5 powder (Rare Metallic, 

99.9%) in a quartz reactor tube under flowing NH3 (100 ml/min) and N2 (1 ml/min) 

gases that were bubbled through water at 1123 K for 10 hrs [7].  The TaON was mixed 

in an evaporating dish with an aqueous solution of the (NH4)2RuCl6 (Aldrich) 

precursor yielding 0.5 wt.% Ru [20].  This suspension was then placed over a water 

bath and continuously stirred with a glass rod until complete evaporation of water.  

The powder was then collected and calcined in air at 623 K for one hour.  

5.2.2 Raman Spectroscopy 

The Raman spectra for the photocatalyst were performed on a Lab Ram-HR 

Raman spectrometer (Horiba-Jobin Yvon) equipped with visible (532 nm) laser 

excitation and utilizing a confocal microscope (Olympus BX-30) for focusing the laser 

on the catalyst sample. The 532nm visible laser excitation was generated by Nd:YAG 

laser (10 mW) with the scattered photons directed into a single monochromator and 

focused onto a UV-sensitive liquid-N2 cooled CCD detector (Horiba-Jobin Yvon 

CCD-3000V) having a spectral resolution of ∼2 cm
-1

 for the given parameters. About 

5-10 mg of the catalyst was placed into a high temperature in situ cell (Linkam TS-

1500) with a quartz window and the spectrums were obtained under ambient 

conditions.  The spectral acquisition time employed was 5 scans of 5 seconds/scan for 

each spectrum.  System calibration was verified using a silica reference standard line 

at 520.7 cm
-1

.   

5.2.3 UV-vis NIR Diffuse Reflectance Spectroscopy (DRS) 
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Ultra Violet-visible-Near Infrared (UV-vis-NIR) diffuse reflectance 

spectroscopy was utilized to obtain the optical edge energy, Eg, values for the 

photocatalysts.  Spectra were obtained using a Varian Cary 5E UV-vis 

spectrophotometer with a diffuse reflectance attachment (Harrick Praying Mantis 

Attachment, DRA-2).  The finely ground powder catalyst samples (~20 mg) were 

loaded into an in situ cell (Harrick, HVC-DR2) and measured in the 200-800 nm 

spectral region with a magnesium oxide reflectance standard used as the baseline.  A 

filter (Varian, 1.5ABS) was employed to minimize the background noise.  A 

magnesium oxide white reflectance standard baseline was collected under ambient 

conditions.  Determination of the Kubelka-Munk function, )( RF , was obtained from 

the UV-vis DRS absorbance and processed with Microsoft Excel software.  The edge 

energy was determined by finding the intercept of the straight line in the low-energy 

rise of a plot of nhvRF
1

])([ 
, where 5.0n  for the direct allowed transition versus hv

, where hv  is the energy of the incident photon [22-24]. 

 5.2.4 High Sensitivity-Low Energy Ion Scattering (HS-LEISS) 

 Spectroscopy 

Analysis of the outermost surface layer of the photocatalysts was obtained on 

the Qtac
100

 HS-LEIS Spectrometer (ION-TOF) equipped with a highly sensitive 

double toroïdal analyzer, 3000 times higher sensitivity than conventional LEIS 

spectrometers, which allows for static depth profiling.  The photocatalyst samples 

were first gently cleaned with atomic oxygen to remove surface hydrocarbon 
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contamination from the atmosphere prior to being transferred inside the analysis 

chamber.  The HS-LEIS spectra were taken using 4000 eV 
4
He

+
 with 10994 pA 

current as an ion source.  For depth profiling, the surface was sputtered by Ar
+ 

gas at 

1000 eV at a sputter yield of 1x10
15

 ions/cm
2

.   

5.2.5 High Resolution X-ray Photoelectron (HR-XPS) Spectroscopy 

The HR-XPS spectra of the photocatalysts were obtained on a Scienta ESCA 

300 spectrometer equipped with a 300 mm hemispherical electrostatic analyzer and a 

monochromatic Al Kα X-ray source with energy of 1486.6 eV generated from a 

rotating anode.  This allows for improved chemical selectivity by narrowing the 

spectral peaks of elements and greatly reducing the spectral background signal 

compared to conventional XPS spectrometers.  Each spectrum was calibrated using a 

binding energy (BE) value of 285.0 eV for carbon in the C1s region.  For depth 

profiling, the surface was sputtered ~30 Å for each cycle with Ar
+
 gas at 1500 eV.     

The atomic concentration ratios were calculated by correcting the measured peak area 

ratios with relative sensitivity factors employed in the Casa XPS software version 

2.3.15.   

5.3 Results and Discussion 

5.3.1 Bulk Characteristics of TaON Photocatalysts 

5.3.1.1 Bulk Molecular Structure 

The Raman spectra for Ta2O5 and the TaON photocatalysts are presented in 

Figure 1.  The Raman spectrum of the bulk Ta2O5 starting material is characteristic of 
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the crystalline Ta2O5(L) phase [25].  The strongest Raman band in the spectrum of the 

Ta2O5(L) phase occurs at 100 cm
-1

 and originates from the bulk lattice photon mode 

along with a second bulk lattice mode at 199 cm
-1

.  The Raman bands at 256 and 338 

cm
-1

 have been assigned to bridging Ta-O-Ta and TaO6 bending modes, respectively.  

The bands at 489, 631, 708 and 848 cm
-1

 are assigned to bridging Ta-O-Ta symmetric 

stretching, Ta-O symmetric stretching, bridging Ta-O-Ta antisymmetric stretching and 

higher order Ta-O symmetric stretching modes, respectively.   

The detailed vibrational assignments for bulk TaON are currently not available 

in the literature.  The Raman band at 259 cm
-1

, however, can be assigned to the 

bridging Ta-O-Ta bending mode.  The Raman bands at 125 and 175 cm
-1

 can also be 

assigned to transverse acoustic and longitudinal acoustic phonon modes of TaNx (0.94 

≤ x ≤ 1.37) [26]. The TaNx also contains a broad optical phonon mode at 550 cm
-1

 

which was not able to be detected for the TaON.  The vibrational spectrum of TaON 

demonstrates that the synthesized TaON phase is not just a physical mixture of the 

Ta2O5 and TaN phases and is an oxynitride material.  The Raman spectrum of bulk 

TaON was not perturbed by the deposition of the Ru precursor and its oxidation to 

RuO2.  The vibrations of crystalline RuO2 (characteristic Raman bands at 528, 646, 

and 716 cm
-1

[27]) are not present in the Raman spectrum of the supported 

RuO2/TaON photocatalyst against the strong bands from the TaON support phase.  

Thus, the bulk molecular structure of the TaON support phase is essentially 

unperturbed by the deposition of RuO2 component.            

5.3.1.2 Bulk Electronic Structure 
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The optical band gap (Eg) values of bulk Ta2O5, TaON and 0.5% Ru/TaON 

were determined with UV-vis DRS are listed in Table 1.  The obtained Eg values are 

in agreement with the values reported in the literature for these bulk phases [28].  The 

deposition of Ru and its oxidation to RuO2 do not have a significant effect on the band 

gap of the bulk TaON photocatalyst.       

5.3.2 Surface Atomic Composition of TaON photocatalysts 

5.3.2.1 Outermost Surface Layer (~0.3 nm) 

The outermost surface layer (~0.3 nm) and layers below the surface of the bulk 

TaON photocatalyst were analyzed with dynamic HS-LEIS employing a He
+
 ion gas 

source after atomic O pretreatment and the results are presented in Figure 2.  The HS-

LEIS depth profile only reveals the presence of O and Ta on the surface with no signal 

for the N.  Although it is difficult to obtain good elemental sensitivity for low mass 

elements like N without the use of 
3
He

+
 as the gas ion source [29], the complete 

absence of N from the outermost surface layers suggests that this region became 

oxidized by exposure to the ambient environment.  The HS-LEIS depth profile reveals 

that the signal for O is strongest on the outermost surface layer and decreases with 

depth while the signal for Ta increases with depth.  The spectra for the TaON before 

atomic O treatment and after are compared in Figure 3.  The treatment was found to 

increase signal intensity but did not affect the surface composition of the TaON 

photocatalyst.  Thus, the outermost surface layers of bulk TaON do not contain any 

detectable N, are enriched in O and depleted in Ta.   
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The HS-LEIS depth profiles for the supported 0.5%RuO2/TaON photocatalysts 

are presented in Figure 4.  Surprisingly, no Ru is detected on the outermost surface 

layers and only the Ta and O signals are detected.  The amount of RuO2 in the 

photocatalyst is approximately an order of magnitude above the HS-LEIS detection 

limit (500 ppm).  Furthermore, deposition of the Ru on the TaON support should lead 

to its greater concentration on the outermost surface.  The lack of a HS-LEIS Ru 

signal suggests that most of the Ru species are diffusing into the bulk lattice of the 

TaON support during the calcination step at 623K. 

5.3.2.2 Surface Region (~1-3 nm) 

The XPS survey spectra of the surface region (~1-3 nm) for the TaON 

photocatalysts are presented in Figure 5 and the atomic compositions (calculated from 

the HR-XPS region) are reported in Table 2.  The surface region of the bulk TaON 

photocatalyst consists only of Ta, O, and N with no contaminants detected (e.g., Cl 

from the (NH4)2RuCl6 precursor). The O/N~2, O/Ta > 1 and N/Ta~0.6 atomic ratios 

demonstrate that the surface region is enriched in O and depleted in N, which is in 

agreement with the HS-LEIS findings.  Unlike HS-LEIS, Ru species are able to be 

detected in the surface region with HR-XPS.  The deposition of 0.5% RuO2 on the 

TaON support did not greatly affect the surface region Ta, O and N atomic 

compositions.  The composition of 0.5%RuO2/TaON with depth profiling is also 

compared in Table 2 and indicates increased concentrations of Ta with decreased 

concentrations of O and N.  The concentration of Ru was found to increase with the 

first 2 sputter cycles and the concentration was found to decrease afterwards.  The 
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increasing surface concentrations of Ta and Ru and the decreasing surface 

concentrations on O and N are consistent with the HS-LEIS analysis revealing that O 

is surface enriched and that Ta and Ru are surface depleted and become more 

concentrated below the outermost surface layers.  The initial increase in concentration 

of Ru with depth is consistent with the scenario that Ru has diffused into the 

subsurface lattice of the bulk TaON support.  The decrease in concentration with 

further depth profiling indicates that it not uniformly distributed in the bulk phase and 

Ru is localized beneath the surface layer. 

The HR-XPS spectra of the Ru 3d region for the unsputtered and sputtered 

supported RuO2/TaON samples are compared in Figure 6.  The Ru 3d5/2 binding 

energy indicates that Ru
4+

 cations predominate in the supported RuO2/TaON 

photocatalysts.  The HR-XPS spectra of the Ta 4f region for the unsputtered and 

sputtered supported RuO2/TaON samples are also compared in Figure 7.  The position 

of Ta 4f binding energies on the surface indicate that only Ta
5+

 oxidized species are 

present.  However with depth profiling, the Ta
5+

 4f bands decrease in intensity and a 

shoulder appears at a lower binding energy.  This shift is indicative of reduced Ta and 

is consistent with the presence of greater Ta-N interaction beneath the surface layer 

[30].  The broad nature of the Ta 4f doublet bands suggests that both Ta-O and Ta-N 

interactions are present in the bulk.           

5.3.2.3 Surface Nature of TaON Photocatalysts 

The HS-LEIS analysis showed that Ta and O were the only elements present 

on the outermost surface layer.  The position of the HR-XPS Ta 4f binding energies 
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show that Ta is in an oxidized state on the surface layer and there exist a TaOx outer 

layer for the photocatalyst.  Depth profiling revealed that the chemical state of the Ta 

changes from exclusively TaOx to a combination of TaOx and TaNx which confirms 

that TaOx is surface enriched and that TaON is the bulk state.  The deposited Ru was 

proposed to be concentrated on the surface, however the lack of a Ru signal in the HS-

LEIS spectra shows that is not the case.  HR-XPS confirmed that R1u is not surface 

enriched and it is mostly concentrated below the surface region.  The schematic for the 

surface of the photocatalyst is shown in Figure 8. 

5.3.3 Structure-Photoactivity Relationships 

The new insights indicate the supported RuO2/TaON photocatalyst system is a 

much more complex material than was previously proposed with RuO2 NPs deposited 

on the external surface of the TaON support with the RuO2 NPs the catalytic 

photoactive sites proposed to be responsible for O2 evolution [20].  Rather than RuO2 

NPs being the catalytic photoactive sites for O2 evolution, it appears that the Ru
+4

 sites 

dissolved in the TaON support surface region, which is enriched with O and depleted 

in N, are responsible for O2 evolution.  Higher RuO2 loadings on the TaON support 

were found to significantly decrease the photoactivity and may indeed be related to 

formation of RuO2 NPs that are not photoactive.  The function of the bulk TaON 

support is to supply visible light excited photoelectrons that can be utilized by the 

Ru
+4

 catalytic active sites, in the oxygen rich oxynitride TaON surface region, to 

evolve O2 during photodecomposition of H2O.  The new surface insights are changing 
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our models about how complex semiconductor photocatalysts function and will guide 

the development of advanced photocatalytic materials. 

5.4 Conclusions 

The bulk molecular and electronic structures of the TaON phase are not 

affected by the deposition of RuO2 on the TaON support.   For the first time, the 

natures of the surface region of TaON and supported RuO2/TaON photocatalysts have 

been determined.  The outermost surface layers primarily consist of TaOx phase and is 

depleted in N. The RuO2 component is not present as NPs decorating the TaON 

support as previously concluded, but the Ru
4+

 cations are dissolved in the TaOx outer 

layers and absent from the outermost surface layer.  The new surface insights are 

changing our models about how complex semiconductor photocatalysts function and 

will guide the development of advanced photocatalytic materials.         
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Catalyst Eg (eV) 

Ta2O5 4.1 

TaON 2.8 

0.5%Ru/TaON 2.8 

 

Table 5.1:  Uv-vis DRS Edge Energy Values for Tantalum-based Photocatalysts.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

196 

 

  

TaO

N 

Ru/TaON 

Surface 

Ru/TaON 

30 Å 

Ru/TaON 

60 Å 

Ru/TaON 

90 Å 

Ru/TaON 

120 Å 

Element 

Atom

ic % 

Atomic 

% 

Atomic 

% 

Atomic 

% 

Atomic 

% 

Atomic 

% 

Ta 4f 37.26 35.62 43.77 45.14 45.93 46.92 

O 1s 40.40 41.89 35.57 35.68 36.12 36.36 

N 1s 22.33 21.65 19.73 18.18 17.07 16.07 

Ru 3d 5/2 0.00 0.84 0.93 1.00 0.88 0.65 

 

Table 5.2:  HR-XPS Surface Region Atomic Composition of TaON Photocatalysts.   
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Figure 5.1:  Raman Spectra of Tantalum-based Photocatalysts (532 nm). 
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 Figure 5.2:  HS-LEIS Depth Profile of the Bulk TaON Photocatalyst.   
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Figure 5.3:  HS-LEIS spectra of Bulk TaON Photocatalyst Before and After Atomic 

O Pretreatment.   
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Figure 5.4:  HS-LEIS Depth Profile of the Supported RuO2/TaON Photocatalyst.   
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 Figure 5.5:  XPS Survey Spectra of Bulk TaON.   
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Figure 5.6:  HR-XPS surface analysis of Rh 3d region for supported 

0.5%RuO2/TaON photocatalysts.   
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Figure 5.7:  HR-XPS surface analysis of Ta 4f region for supported 0.5%RuO2/TaON 

photocatalysts.   
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Figure 5.8:  Schematic Model for the Surface Region of the Supported 0.5% 

RuO2/TaON photocatalyst.  
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CHAPTER 6 

Conclusions and Future Studies 

 

 

6.1 Conclusions 

 Much progress has been achieved over the past 40 years in discovering 

advanced materials that are capable of photocatalytic water splitting.  Unfortunately, 

the progress in the fundamental scientific understanding of these advanced 

photocatalytic materials has significantly lagged.  One of the major issues with 

previous studies of the semiconductor photocatalysts has been the focus on utilizing 

bulk characterization techniques and attempting to correlate photocatalyst bulk 

structural properties with the corresponding photoactivity.  Photocatalysis is a process 

that involves both bulk (electron/hole generation), diffusion of the electrons/holes to 

the surface and reaction of H2O with excited electrons and holes at the surface to produce H2 

and O2.  Although bulk characterization techniques  effectively elucidate bulk molecular and 

electronic structures of complex semiconductor photocatalytic systems, the catalytic 

reactions between the electrons/holes and water take place on the outermost surface 

layer and further progress in photocatalysis will come from surface characterization 

studies that will provide new insights.  Only by correlating surface properties with 

photoactivity can realistic photocatalytic models be developed.  The fundamental 
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bulk/surface structure–photoactivity relationships for a few of the more interesting 

photocatalyst systems were investigated in this dissertation and the main conclusions 

for each chapter are summarized below.  

 Chapter 2 

 The most active photocatalyst under UV irradiation (0.2%NiO/NaTaO3:2%La) 

was studied in this chapter to determine the effect of the La2O3 and NiO species on 

photoactivity.  The addition of both La2O3 and NiO did not cause any change in the 

bulk molecular and electronic structure of the NaTaO3.  HR-XPS and HS-LEIS 

spectroscopy revealed that the NiO and La2O3 promoters are surface segregated on the 

bulk NaTaO3 phase.  La2O3 was found to be a surface structural promoter, stabilizing 

the NaTaO3 particles and increases the surface area by a factor ~10.  The specific 

photoactivity was found not to be enhanced by the La2O3.  NiO was found to act as 

efficient electron traps preventing electron/hole recombination in the bulk and helping 

to facilitate surface migration for photocatalysis. This leads to the enhancement of 

photoactivity by a factor of 10
1
-10

2
 in the presence or absence of the La2O3 promoter.  

These new findings brings into question the validity of the previously accepted model 

for the NiO/NaTaO3:La photocatalyst where a synergistic interaction of NiO 

preferentially self-assembling at nanostep structures created by the doped La2O3 was 

responsible for the enhanced photoactivity.   The importance of normalizing 

photocatalytic activity by unit surface area was emphasized as well since the accepted 

practice of normalizing by unit mass is not fundamentally meaningful.   

 Chapter 3  
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The fundamental bulk/surface structure – photoactivity relationship was 

investigated on bulk GaN and supported (Rh2-yCryO3)/GaN photocatalysts.  Raman 

and UV-vis spectroscopy was able to show that the bulk structure of the GaN phase 

was not perturbed by the (Rh2-yCryO3) NPs.  The surface of the GaN phase was found 

to be altered in the surface region: GaN → GaOxNy → GaOx.  The (Rh2-yCryO3) NPs 

were found to consist of Rh
3+

 and Cr
3+

 species both found on the outermost surface 

layer.  The addition of (Rh2-yCryO3) assisted in the transfer of photoexcited electrons 

to the surface promoting the photocatalytic surface reaction.  Thus, it was determined 

that Rh
3+

 is responsible for enhanced H2 and Cr
3+

, GaOx or at their contact points are 

the possible sites for O2 production.     

Chapter 4 

Two different methods for the preparation of Rh-Cr NPs on (Ga1-xZnx)(N1-xOx) 

were compared to determine surface/photoactivity relationships. (Rh2-yCryO3) NPs on 

(Ga1-xZnx)(N1-xOx) were found to consist of Rh
+3

 surface active sites for the generation 

of H2 with Cr
+3

,
 
GaZnOx or at their contact points as the possible surface active sites 

for the generation of O2 similar to (Rh2-yCryO3) NPs on GaN.  Rh
+3

 and Cr
+3

 were also 

found to be the dominant surface species for the (Rh/Cr2O3)/(Ga1−xZnx)(N1−xOx) with 

trace amounts of Rh
0
 on the surface.  The presence of the exposed metallic Rh

0
, which 

catalyzes the back reaction, was found to be responsible for the ~50% less H2/O2 

production for the (Rh/Cr2O3)/(Ga1−xZnx)(N1−xOx).  PL spectroscopy was also able to 

show that the Rh-Cr NPs affected the recombination of electron/holes in the bulk 
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(Ga1−xZnx)(N1−xOx) by increasing the lifetime of excited electrons and the population 

of these long lived electrons so they can be collected at the surface and harnessed for 

photocatalytic water splitting.  These new insights were used to propose new modified 

models for the photocatalyst systems.   

Chapter 5   

The surface nature of bulk TaON and RuO2/TaON photocatalysts was the 

focus of investigation for this chapter.  The bulk molecular and electronic structure 

was found to not be perturbed by the addition of RuO2.  Analysis of the outermost 

surface layer revealed only the presence of TaOx.  Depth profiling with HR-XPS was 

able to show that concentration of Ru
4+

 increased with sputtering showing that most of 

the Ru
4+

 was diffusing into the bulk and were not surface enriched.  The presence of 

the dissolved Ru
4+

 in the bulk was proposed to be responsible for enhanced activity for 

the RuO2/TaON photocatalysts.  A new model was then developed for the 

RuO2/TaON photocatalyst from the surface analysis.   

6.2 Future Studies  

 In the past, the lack of utilizing surface characterization techniques has led to 

proposed photocatalytic models based on bulk structure that has hindered the progress 

in development of fundamental photocatalytic models that can guide the design of 

advanced photocatalytic materials.  The hypothesis of this research proposal is that 

only when bulk and surface characterization techniques are combined can fundamental 

structure-photoactivity relationships be established for complex, multicomponent 
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photocatalysts.  The methodology for determining fundamental structure-photoactivity 

relationships in this dissertation can thus be applied to other photocatalyst systems to 

help in the scientific understanding of how photocatalyst function.  The insights 

gained can then be applied in designing more efficient photocatalyst systems.  For 

example, the conclusions from this study show that the synthesis of 

(Rh/Cr2O3)/(Ga1−xZnx)(N1−xOx)  can be improved by the modification of the GaZnOx 

surface by adding metal oxide dopants/other known metal oxide active sites and by 

exchange Cr2O3 with other transition metal promoters.    

 Critical surface information can be obtained with HS-LEIS and HR-XPS 

characterization that are able to determine the atomic composition and chemical state 

of the surface of the photocatalysts, however the signal from these characterization 

techniques are averaged over a large raster size.  The elements present on the surface 

are able to be quantified but these techniques do not give information on how the 

elements are distributed on the surface.  Additional information about the distribution 

of the various elements in the complex photocatalysts can come from electron 

microscopy with the use of STEM-EELS and STEM-HAADF that is able to provide 

atomic resolution.   

 The main drawback to HS-LEIS and HR-XPS, as well as electron microscopy, 

is that these characterization techniques require the measurements to be performed in 

ultrahigh vacuum and, thus, are unable to operate during photocatalysis with 

condensed water.  The application of in situ ATR-IR and transient ATR-IR 

spectroscopy allows analysis of photocatalysts at the solid/liquid interphase during 
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photocatalysis with condensed water as long as the photocatalyst possesses a high 

surface area (number of surface sites).  ATR-IR spectroscopy can provide information 

about aqueously dissolved and adsorbed reactants and products, adsorbed 

intermediates, byproducts, and spectators.  Such fundamental studies can help to 

determine the most abundant reactive intermediate on the surface and identify the rate-

determining-step for the photocatalytic process.  This will provide the much needed 

surface kinetics of the different bond making and bond breaking chemical steps and 

their sequence under the photocatalytic process.  The low surface area for most 

promising photocatalyst systems, however, will make it quite challenging to obtain 

measurable signals.  If such measurements become successful in the future, then the 

knowledge gained will significantly assist in advancing the scientific foundation for 

the photocatalytic water splitting surface reactions.  Such fundamental information 

about the mechanism for water splitting is severely lacking in the literature and only 

such experiments will help to clarify the photocatalysis process by semiconductor 

materials.   

 Photocatalytic water splitting is still a developing technology and the science 

behind the photocatalytic process is still not fully understood.  A little over 10 years 

ago, photocatalytic water splitting with the use of visible light was still considered to 

be a “dream reaction”.  The advances made in the past decade have demonstrated that 

there are several photocatalyst systems that are capable for photocatalytic water 

splitting using visible light.  The next challenge is to increase the efficiency of these 

visibly activated photocatalyst systems so that the process can become commercially 
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viable.  An efficient photocatalysis process has the potential to help address global 

energy and environmental problems, and be the ultimate source of sustainable green 

energy.  Establishing this fundamental foundation is critical for the rational design of 

future photocatalyst systems.   
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