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drift velocity obtained from first moment of PDF given by Eq. 4.5 with 

sandm
2
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estimated using Eq. 4.5 neglecting the kinematic friction term (i.e. L = and brown 

dashed line depicts drift velocity obtained from first moment of PDF given by Eq. 4.5 

without the static friction term (i.e.  = 0). ..................................................................... 118 

Figure 4.21: The PDF of the dimensionless displacement of a smooth glass prism on a 

rough glass support with an applied bias of 0.29 mN and a Gaussian noise of power 0.04 

m
2
/s

3
. The blue triangle (Δ) represents experimental data, whereas the solid line is the fit 

to that data with an asymmetric double sigmoidal function. Pink squares (□) and green 

circles (○) depict the PDFs obtained from Langevin dynamics simulation using Eq. 4.1 

and 4.2 respectively. ....................................................................................................... 120 

Figure 4.22: (a) Plot of Vdrift/sin () as a function of amplitude of sine wave of 100 Hz for 

a glass prism on a rough glass support. (b) Plot of displacement (which needs to be 

traversed before stopping) as a function of time for a glass prism on a horizontal rough 

glass support when the former is knocked at an edge. Three tracks nicely fall on a single 

curve having exponential relaxation. .............................................................................. 121 

Figure 4.23: Typical traces of the acceleration pulses (inset) and their power spectra taken 

at two different bandwidths corresponding to K =0.16 m
2
/s

3
. ........................................ 122 

Figure 4.24: Power Spectra of displacements of glass prism on rough glass support at two 

different values of K [0.04 m
2
/s

3
 (a) and 1.2 m

2
/s

3
 (b)] taken at the total bandwidth of 1 

kHz. ................................................................................................................................. 124 
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Figure 4.25: Power spectrum of the stochastic displacement of a PDMS grafted prism on 

a PDMS grafted silicon wafer with K=0.1 m
2
/s

3
. Total bandwidth is 1 kHz. ................. 124 

Figure 4.26: Energy dissipation rate due to static friction as a function of power of the 

noise estimated from experimental observations and from trajectories using Eq. 4.10. The 

applied bias is 0.29 mN. It should be borne in mind that these velocities are approximate 

values, which are estimated from the displacements over a timescale of 0.001 sec....... 126 

Figure 4.27: Work fluctuation plots for two cases. (a) bias is 0.29 mN (b) bias is 0.58 

mN. All the plots are for 0.2 s at three different powers as shown in the inset of the 

figures. From the slopes of these plots, the values of *
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m
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; 44 s for K=68 m
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3
and 33 s for K=1.21 m
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3
; 180 

s for K=68 m
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/s
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and 99 s for K=1.21 m
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. .............................................................. 127 

Figure 4.28: At short time scale, the prism exhibit anomalous diffusive behavior at a bias 

of 0.57 mN (K= 0.04 m
2
/s

3
 ) as is the case with a lower bias reported in FIG 12 in the text.
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Figure 5.1: (a) A steel ball of diameter 4 mm rolls on a fibrillated rubber surface at an 

inclination of 1
o
. When the moment of the gravitational plus the stochastic force about 

the point of contact is greater than the torque due to adhesion, the ball rolls on the 

surface. (b) A speck of dust moves along the perimeter of the ball by an amount (1.23 

mm), which is almost same as the lateral displacement of the ball indicating that the ball 

undergoes a net rolling instead of sliding at the macroscopic scale. This experiment was 

performed at a noise strength of 0.06 m
2
/s

3
. Inset of fig. (a) shows microscopic image 

(top view) of the fibrillated PDMS surface. .................................................................... 144 

Figure 5.2: Drift velocity increases with the power of the noise. The profile is slightly 

sigmoidal at low values of K. The filled blue circles are the experimental data. The 

dashed line represents the velocity obtained using Eq. (5.14).  In order to construct this 

plot, particular values of    and L had to be used. The value of m/s
2
) was 

obtained by fitting the drift velocity with 
2/K  at the very low values of K, L (0.1 s) 

was approximated from the saturated value of the drift velocity. Solid line represents the 

velocity obtained using an empirical equation 4.1

1)/tanh( KKV Ld  . The open squares 

and triangles represent the data obtained using the three state and two state models of 

friction (see below). ........................................................................................................ 147 

Figure 5.3: Summary of the fluctuations of the displacements of a steel ball rolling on a 

fibrillated PDMS at a bias of 0.04 mN corresponding to the time segments of 0.001s, 

0.005s, 0.01s, and 0.05s respectively. Low K and high K correspond to 0.06 m
2
/s

3
 (upper 
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panel) and 1.7 m
2
/s

3
 (lower panel) respectively. The pdfs are fitted as )~exp(~

m
xcP  , 

with the values of m embedded inside the figs. For a symmetric pdf, only one value of m 

is given. For an asymmetric pdf, two values of m are given, one for the left and the other 

for the right side of the pdf. ............................................................................................ 150 

Figure 5.4: Simulated pdfs of displacement for a time segment of 0.01s as obtained from 

the numerical integration of the Langevin equation using a non-linear friction law:
n

VVf ~)( . The pdfs are fitted as )~exp(~
m

xcP  , with the values of m embedded inside 

the figs. ............................................................................................................................ 151 

Figure 5.5: (a) The drift velocity as a function of the strength of the noise for an 

asymmetric periodic bias (open red square) and a fixed bias (filled blue circle). The 

amplitude of the asymmetric vibration (Eq. 11) is 94 m/s
2
 and its frequency is 100 Hz. (b) 

The trajectories of the ball with and without the noise, but with the asymmetric vibration 

are shown. ....................................................................................................................... 154 

Figure 5.6: A toy model of rolling friction versus velocity. ........................................... 157 

Figure 5.7: The pdfs of the displacement fluctuation at different values of as obtained 

from experiments (filled blue circle) and from simulations (open pink circle) using the 

two state model of friction, in which the friction is described as

Loo VVVVf /)/exp()(  . The values of o, Vo and L are set as 0.9m/s
2
, 0.028m/s 

and 0.13s respectively. .................................................................................................... 158 

Figure 5.8: The pdfs of the displacement fluctuation at different values of  as obtained 

from experiments (filled blue circle) and from simulations (open pink circle) using the 

three state friction model (Eq. (5.12)). ............................................................................ 159 

Figure 5.9: (a) Figure shows a parabolic growth of the distance travelled by a ball on an 

inclined (10
o
) surface with time. The falling accelerations are summarized in fig. (b). . 163 

Figure 5.10: The autocorrelation of the noise file (a) as generated from the computer and 

that (b) obtained from the output of the oscillator as measured with an accelerometer. The 

Gaussian noise as generated from the waveform editor, (t), was used to solve the 

Langevin equation of the oscillator: )(/ 2 txxx o    . Here, x is the displacement of 
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4
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frequency of vibration. The autocorrelation of the simulated noise of the acceleration is 
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Figure 5.11: Probability distribution function of the noise obtained from accelerometer at 

a given value of K (0.06 m
2
/s

3
). The pdf is also fitted with a Gaussian function as 

indicated by the solid line. The inset shows the plot of ln(-ln(P/Po)) versus  /ln , the 

slope of which is ~2. ....................................................................................................... 166 

Figure 5.12: The drift velocity is calculated using Eq. 5.1 without the kinematic term 

using the noise output file of an accelerometer attached to an oscillator. Various values of 

are usedmaster plot is obtained by plotting all the drift velocity data against 2/ K .

......................................................................................................................................... 167 

Figure 6.1: (a) Illustration of the driven diffusive experiment with a steel ball on a 

fibrillated rubber surface, microscopic image of which is shown in the inset. (b) 

Illustration of a barrier crossing experiment. In either case, the ball remains stationary if 

the angle of inclination () is less than some critical angle (c). However, with an external 

vibration imposed parallel to the support, the ball rolls down as in fig. (a) or crosses over 

the barrier as in fig. (b). .................................................................................................. 177 

Figure 6.2: Video microscopic images of the contact area of a steel ball rolling on a 

fibrillated rubber surface in the absence of noise. Here the support is slowly inclined till 

the sphere just begins to roll. The fibrillar (dark spots) contacts are inside the dashed 

octagon. As the sphere rolls, the fibrils ahead of the contact make new contact with it, 

while those in the rear are detached.  The dissipation of energy due to the relaxation of 

the fibrils gives rise to an adhesive hysteresis. ............................................................... 178 

Figure 6.3: The measured drift velocity 
)( dV

is divided by the bias )(  that yields the 

response time 
)/( dV

. The response time is plotted as a function of the strength (K) of a 

Gaussian vibration 

surface of a fibrillated silicone rubber. The data for the steel ball are from reference  [29], 

whereas those for the water drop are from the current study. ......................................... 182 

Figure 6.4: Examples of the trajectories of a steel sphere rolling on a flat fibrillar PDMS 

substrate tilted at an angle of 1
o
 from the horizontal plane under the influence of Gaussian 

white noise at a very low (a) and a very high (b) noise strength. ................................... 189 

Figure 6.5: (a) Drift velocity (Vd) of a steel sphere on a fibrillar PDMS substrate shows 

logarithmic dependency on 1/K at low power regime at different applied biases (red open 

diamond (◊,  0.078mN), black open triangle (Δ, 0.067mN), filled blue circle (●, 

0.056mN), open pink square (□, 0.044mN), filled green diamond (♦, 0.033mN),  open 

blue circle (○, 0.022 mN ). Each velocity is measured from the average of 10 to 20 tracks, 



xxi 

 

each lasting for 180s duration.  (b) Master curve showing nice collapse of the data of 

fig.(a)  when 1/K is normalized by multiplying it with a factor of 
2)/1( c . ............. 190 

Figure 6.6: Probability distribution functions (pdfs) of displacements corresponding to 

four different observation windows illustrate that the mean value of the pdf drifts with 

time, while its width broadens. These data correspond to steel ball on a flat fibrillar 

PDMS substrate tilted by an angle of 1
o
 and a noise strength of 0.1 m

2
/s

3
. Data of this 

kind are used to construct fig. (7). .................................................................................. 192 

Figure 6.7: The drift of the steel ball on a flat fibrillar PDMS substrate tilted by 1
o
 from 

horizontal plane is estimated from the evolution of the mean value (a) of the displacement 

pdf, whereas the diffusivity is obtained from the evolution of the variance (b) of the 

displacement fluctuation.  The different symbols indicate the values of K at which the 

data were taken. Note that the variance is plotted as a function of  dV/
  which is the 

ratio of the observation time ( ) to response time  (
/dV

).  The horizontal scale shows 

that the range of the observation time far exceeds the response time. Both the mean and 

root mean square of the displacements exceed the spacing (50 m) of the fibrils as well.  

Similar symbols in figures (a) and (b) correspond to the same K. ................................. 193 

Figure 6.8: (a) The diffusivity of the sphere increases non-linearly with the strength of the 

noise (D ~ K
1.8±0.2

, correlation coefficient ~ 0.97
 
) (b) D/increases almost linearly with 

K. The pink squares correspond to the effective temperatures obtained from the 

integration of the data shown in fig. 9(a). The data are not well-behaved at K > 0.1 m
2
/s

3
. 

All the barrier crossing experiments at the low K regime were carried out for K < 0.1 

m
2
/s

3
. As the error bars of diffusivities are of the same size or smaller than the circles, 

they are not shown on the graphs. ................................................................................... 194 

Figure 6.9: (a) An integrated work fluctuation plot for a sphere rolling on a fibrillated 

PDMS surface.  (P-/P+) decreases monotonically with the mean work W at each noise 

strength, K. All the data could be fitted with an exponential or a slightly stretched 

function and integrated. (b) The effective temperatures obtained from the integration of 

the data shown in fig. 9(a) are compared with the ratio D/ obtained from fig.(8). ....... 196 

Figure 6.10: (a) A typical distribution of waiting times of the ball before it crosses from 

one potential valley to the next. Mean waiting time (tw), as estimated from such a 

distribution, is used to calculate the barrier crossing frequency (tw (b) VHAE type 

plots obtained with a barrier height of 75 m at different angles of inclination. As the 

angle of inclination increases, the barrier height decreases leading to a diminished slope 

of the VHAE line. The inset shows that the slopes (m
2
/s

3
) of these lines as a function of 

the bias ( , m/s
2
) . .......................................................................................................... 198 
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Figure 6.11: VHAE type plots obtained with a barrier height of 25 m at different angles 

of inclination. The inset shows the slopes (m
2
/s

3
) of these lines as a function of the bias (

 , (m/s
2
. ....................................................................................................................... 200 

Figure 6.12: (a) VHAE plots simulated with a linear friction model i.e. Eq. (10) with =0 

m/s
2
 and  L=0.01s. Barrier height of 25 m and periodicity  of 1 mm is used for 

simulation at different angles of inclination shown inside the figure. The slopes (m
2
/s

3
)  

of these lines are plotted as a function of   (m/s
2
) in the inset of the fig. 12(a). (b)  

Similar plot as in (a) except that a non-linear friction model was used, i.e. Eq. (10) with 

=0.8 m/s
2
 and  L=0.1s. While all the data were obtained with a surface having a 

sinusoidal profile, identical values of Teff were also obtained (not shown here) with a 

surface having Gaussian humps separated at same periodic intervals as  ................... 201 

Figure 6.13: Comparison of the D/  and the mK* values as obtained from the barrier 

crossing simulations with a non-linear friction model. ................................................... 202 

Figure 6.14: (a)  Comparison of the VHAE plots obtained for a sphere and a drop of 

water with a barrier height of 25 m. The data for the sphere are same as those 

summarized in fig.(11). (b) An 8l sessile drop exhibits shape fluctuation when it is 

excited with a Gaussian noise. Various harmonics of the shape fluctuation are shown in 

this power spectrum that was obtained by averaging several power spectra and de-noising 

it with a wavelet transform in order to reduce the background noise. ............................ 204 

Figure 6.15: (a) Excess kurtosis () is plotted against dimensionless time ( DVd /2 ) for 

some representative cases. (b)Teff  as a function of D/ for different systems. Black 

diamond ( ♦) represents the sliding (2
o
 inclination) of a glass cube on glass surface 

excited by Gaussian noise, red square (□) depicts same system excited by stretched 

exponential noise, blue open circle (○) corresponds to rolling sphere on fibrillated PDMS 

surface subjected to Gaussian noise (all the data are from the current work, except one 

from a previously published work  [29]), green triangle (Δ) represents water drop on 

wettability gradient surface and filled black circle (●) depicts water drop on thermal 

gradient surface. .............................................................................................................. 210 

Figure 7.1: (a) Schematic of a sphere in contact with a flat substrate. A negative load (P) 

is applied on the sphere of radius R and contact modulus of E*. (b) Total energy of the 

system at fixed loads but at different values of the contact radius calculated with the 

following parameters. R= 100 m, E*= 1MPa, W=0.04 J/m2. For this combination of 

material parameters, the critical load Pc is -19 N.  In the absence of the load, the system 

has one minimum. However, as the load is increased, a maximum and a minimum appear 

in the energy potential. At a critical negative load, the energy barrier disappears. ........ 217 



xxiii 

 

Figure 7.2: (a) Logarithm of the frequency of rupture of a sphere from a flat surface 

varies linearly with 1/K  at a given load. These calculations were performed with the 

following parameters:  R= 100 m, E*= 1MPa, W=0.04 J/m
2
, m=4.2 g and L=0.01 s. 

(b) collapse of the rupture kinetic data results when ln(  is plotted against  (1-

P/Pc)
1.45

/K.  Similar symbols in figures (a) and (b) correspond to the same load. ......... 223 

Figure 7.3: (a) 3D Profile of the fibrillar rubber substrate measured with  a noncontact 

optical 3D profilometer (ZeGage with ZeMaps V.1.11, from Zemetrics, Inc.). (b) The 

profile of the end of a fibril showing that it is slightly curved. The spikes are artifacts 

arising from the fact that the profilometer failed to follow the edges of the fibrils ( c) 

Schematic of a rigid sphere (a small steel ball of 4 mm diameter and 0.26 gm mass) on an 

inclined substrate of a silicone rubber (0.6 mm thick with a modulus of 2.2 MPa), from 

which square fibrils of the same material are projected outwards on a diagonal square 

lattice at a spacing of 50 μm. In the absence of any noise, the sphere rolls at an angle of 

about 2.5
o
.  However, with an angle less than 2.5

o
,  the sphere rolls with a velocity that 

increases with both the noise strength and the bias. (d) At each bias, ln(V) varies linearly 

with 1/K . The symbols are as follows. red open diamond (◊,  0.078mN), black open 

triangle (Δ, 0.067mN), filled blue circle (●, 0.056mN), open pink square (□, 0.044mN), 

filled green diamond (♦, 0.033mN),  open blue circle (○, 0.022 mN). Some of these data 

were originally reported in reference [45]. However, in this study, we extended the 

dynamic range of the noise strength by going to even smaller values of K. ................... 226 

Figure 7.4: Schematic illustrations of the pining and de-pinning events of the fibrils in 

contact with a rigid sphere. ............................................................................................. 227 

Figure 7.5: (a) Collapse of the rolling velocity data of Figure 7.3. Curve I plots )ln(V

against KFF c /)/1( 2 and curve II plots )/ln( FVFc against   KFF c //1
5.1

 .  (b) 

Collapse of the same data when ln(V) is plotted against   ])/1[(/1 2.1

1 cFFK   with 1  

=  108 s
3
/m

2
 and Fc= 0.1mN. Similar symbols in figures (a) and (b) correspond to the 

same load. ....................................................................................................................... 228 

Figure 7.6: Arrhenius plots of the frequency of detachment of multiple fibrils from a 

surface with a JKR contact. The parameters of these calculations are same as those of 

Figure 7.2, except that two different values of W (0.04 J/m
2
: open symbols; 0.01 J/m

2
 

filled symbols) were used. The data collapse in one master line when the normalized 

frequency ln (mWL) is plotted against      ]/1[/1/2
5.1

1 cLb PPKmU 

where 1 =Ub with the value of  as 48 pJ s
3
/m

2
. ..................................................... 232 

Figure 7.7: (a) The fluctuation of the radius (a) of contact about a mean value (ae) is 

obtained from the simulations based on Eq. 7.21.  The contact falls apart eventually 

(indicated by the arrows). From the mean value of the watiting times, a rupture frequency 
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was estimated. (b) Summary of the rupture kinetics data using Langevin dynamics 

simulations (Eq. 7.21). These calculations were made using the following parameters:  

R= 100 m, E*= 1MPa, W=0.04 J/m2, m=4.2 g with a friction term of Eq. (7.21) i.e. 

(mE*/4o
2
T ) set as 12 ns.m. ........................................................................................ 236 

Figure 7.8: (a) Typical trajectories of a sphere moving over a sinusoidal potential in the 

presence of a bias and an external noise. From the mean value of the waiting times, a 

barrier crossing  frequency was estimated. (b) Comparison of rolling kinetics data as 

obtained from Langevin simulation (Eq. 7.22) (open symbols) and Kramers’ formalism 

(Eq. 7.7) (filled symbols).  is the reduced bias. The value of n is 1.4 for the Kramers’ 

calculations and 1.5 for the rolling using Langevin dynamics. For the Kramers’ 

calculations, the parameters are same as those of Figure 7.2, while for the Langevin 

dynamics simulations, the following parameters were used: = 50 m, L=0.001 s, h= 

1.6 m, Ub = 0.06 pJ. ..................................................................................................... 237 

Figure 8.1: (a) Trajectories of water drops on a 100 inclined fibrillar PDMS substrate. A 

5 l drop does not move on such a surface even after several minutes. A 10 l drop 

moves very slowly for about 100s, above which it accelerates and sprints off the 

substrate. For even a larger drop size (i.e. 20 l), the drop starts accelerating with 

negligible pause time. These types of dynamics can be predicted by equations 8.1 and 8.2 

with the following sets of parameters (n=0.24 and Vc=0.02m/s for all the drops and, 

L=0.5,0.8 and 1.3s, 1=2.5, 1.6 and 1.0m/s
2
, 2=0.16, 0.1 and 0.07m/s

2
,  for 5, 10 and 20 

l drops respectively). The solid and dotted line represent experimental and simulated 

(using Eq. 8.1 and 8.2) trajectories respectively.  (b) These plots show that a 10 l drop 

sprint off a 10
0
 inclined surface, when it is excited with a random mechanical vibration. 

The speed increases with the intensity of the noise. The results for two different noise 

strengths (0.02 m
2
/s

3
 and 0.03 m

2
/s

3
) are shown. ........................................................... 248 

Figure 8.2: (a) Microscopic images showing the de-pinning sequences of the contact line 

of a drop from a fibrillar surface. The upper and lower panels correspond to fibrillar 

spacings of 50m and 95m respectively. The contact line is significantly rougher on the 

surface with larger spacing between the fibrils. (b) Typical trace of the height fluctuation 

of a 10 l drop of water on a surface with 50 m spacing (referenced to the height in the 

quiescent state). This trace depicts that there is no fluctuation of the drop when it is in the 

quiescent state; however, considerable fluctuations are generated as the drop sprints off 

the surface. The power spectrum (inset) shows the resonance modes of the drop. (c) 

Height fluctuation of a 20l water droplet on a 10
0
 inclined PDMS with two different 

fibrillar spacings. The drop moving on a surface with larger fibrillar spacing shows larger 

fluctuation. By contrast, no fluctuation is observed when the drop moves on a featureless 

surface (a silicon wafer that was hydrophobed by silanization). .................................... 251 
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Figure 8.3: (a) Sample trajectories of liquid drops of water and the solutions of glycerin 

and water on a 10
0
 inclined PDMS substrate that had the fibrillar spacing of 50 m.  In 

these trajectories, the initial pause periods are not shown. The compositions of the 

solutions in terms of the percentage of glycerin in water are stamped inside the figure (b) 

Drift velocities as measured from the displacement-time trajectories at long time limit are 

shown in terms of the kinematic viscosity of the glycerin water solutions. (c) Video 

micrographs of a 10 l drop of water and glycerol slowly moving on a fibrillar PDMS 

surface of 50 m spacing, inclined by an angle of 10
0
. Advancing and receding contact 

angles are 160
0
 and 139

0
 for water and 162

0
 and 139

0
 for glycerin respectively. .......... 254 

Figure 8.4: (a) Schematic of the experiment used to study barrier crossing dynamics with 

drops of various compostions of water and glycerin. (b) Sample trajectories of  10l  

drops of water and glycerin crossing over several barriers are shown (c) Video-

microscopic images of a water drop at different stages of barrier crossing (the barrier top 

is indicated by the arrow): a) before crossing, b) at the top of the barrier and c) after 

crossing the barrier. These stages are also indicated in the sample trajectory. ............... 259 

Figure 8.5: (a) Arrhenius plot summarizing the results of the barrier crossing 

experiments, in which the logarithm of the barrier crossing frequency a 10 l drop is 

plotted against the reciprocal noise strength for various compositions of glycerin-water 

solutions (0% corresponds to water and 100 % corresponds to glycerin). (b) collapse plots 

of the barrier crossing experiments, in which ln(KQ
7/3

/2
) versus (/KQ

5/3
). ........ 260 

Figure 8.6: (a) Power spectra of height fluctuation of a 10 l liquid drop at Gaussian 

noise strength of 0.17m
2
/s

3
 at the top of the barrier. The weight percent of the glycerin is 

indicated inside the figures.  (b) Comparisons of the power spectra of height fluctuation 

of a drop of water and glycerin at the trough and the valley of the potential wells. The Y-

axis is shifted arbitrarily for the clarity of representation. .............................................. 261 

Figure 8.7: (a) Effect of the noise strength on the resonance fluctuation of the drops of 

water and glycerin. (b) The probability distribution functions of the contact diameter 

fluctuations for a water, glycerin and its solution. The pdf is Gaussian for glycerin, but 

non-Gaussian for water and the solution of water and glycerin. .................................... 261 

Figure 8.8: Schematic of a drop moving on a surface at a subcritical angle (2
0
) in the 

presence of an exernal noise.  (b) Sample trajectories of 10l size  drops of water (0%) 

and glycerin (100%) in the presence of the Gaussian noise of strength 0.17m
2
/s

3
 at 2

0
 

inclination. ...................................................................................................................... 263 

Figure 8.9: (a) Arrhenius plot summarizing the results of the subcritical dynamics with 

noise, in which the logarithm of the drift velocity of a 10 l drop is plotted against the 
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reciprocal noise strength for various compostions of glycerin-water solutions (0% 
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Abstract 

 

There are enumerable examples of natural processes which fall in the class of non-

equilibrium stochastic dynamics. In the literature it is prescribed that such a process can 

be described completely using transition probability that satisfy the Fokker Planck 

equation. The analytical solutions of transition probability density function are difficult to 

obtain and are available for linear systems along with few first order nonlinear systems. 

We studied such nonlinear stochastic systems and tried to identify the important 

parameters associated with the dynamics and energy dissipative mechanism using 

statistical tools. 

We present experimental study of macroscopic systems driven away far from 

equilibrium with an applied bias and external mechanical noise. This includes sliding of 

small solid object, gliding of a liquid drop or a rolling of a rigid sphere. We demonstrated 

that the displacement statistics are non-Gaussian at short observation time, but they tend 

towards a Gaussian behavior at long time scale. We also found that, the drift velocity 

increases sub-linearly, but the diffusivity increases super-linearly with the strength of the 

noise. These observations reflect that the underlying non-linear friction controls the 

stochastic dynamics in each of these cases. We established a new statistical approach to 

determine the underlying friction law and identified the operating range of linear and 

nonlinear friction regime. 
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In all these experiments source of the noise and the origin of the energy dissipation 

mechanism (i.e. friction) are decoupled. Naturaly question arises whether the stochastic 

dynamics of these athermal systems are amenable to Einstein’s Fluctuation dissipation 

theorem which is valid strictly for a closed thermodynamic system. We addressed these 

issues by comparing Einstein’s ratio of Diffusivity and mobility which are measurable 

quantities in our experimental systems.  

As all our experimental systems exhibit substantial negative fluctuations of 

displacement that diminishes with observation time scale, we used another approach of 

integrated fluctuation theorem to identify athermal temperature of the system by 

characterizing a persistence time of negative fluctuations in terms of the measurable 

quantity.  

Specific experiments have also been designed to study the crossing of a small object 

over a physical barrier assisted by an external noise and a bias force. These results mimic 

the classical Arrhenius behavior from which another effective temperature may be 

deduced. All these studies confer that the nonlinear system does not possess any unique 

temperature. 

Detachment of a solid sphere as well as a liquid drop from a structured rubber 

surface during subcritical motion in presence of external noise was examined in the light 

of Arrhenius’ activated rate equation. Drift velocity of small drops of water-glycerin 

solution behaves nonlinearly with viscosity which is reminiscence of Kramers’ turn over 
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theory of activated rate. In a designed experiment of barrier crossing of liquid drops we 

satisfactorily verified the Kramers’ formalism of activated rate at the low friction limit. 
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1. CHAPTER ONE: Introduction 

 

1.1 Introduction 

The prime theme of this dissertation is to study friction or hysteresis at the interface 

of two moving bodies which are in a noisy environment. The motivation for this work is 

to understand seemingly mundane but profoundly interesting rich phenomena like 

flowing of cereals from a packet to the milk bowl, trickling down of raindrops on window 

pane, sorting of fruits in packaging industries, rolling of tiers on a rough street etc. Not 

only these macroscopic phenomena but also microscopic realm of colloidal particles or 

molecular transport within cells etc. has enough ingredients to kindle this work. 

Recently there is a boom in development of microfluidic devices and MEMs in 

context of the need of the fast world. These two generic areas find its application in 

various different fields such as medical science, reaction engineering, computational and 

information technologies, robotic engineering and so on. Study of the interaction at the 

interface of the two bodies become essential in controlling the motion of micro droplets 

in a microfluidic devise or particle manipulation on a surface. This interaction is nothing 

but friction (or hysteresis in the context of liquid –solid interface) which is the reason of 

energy loss for a thermodynamically open system, and at the same time is an 

indispensable component of the motion of an object  [1]. One way to manipulate the 

friction is modification of the interacting surfaces. As it is associated with the change in 

properties of the mother surfaces, this path may not be suitable for some specific 
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requirements where surface properties are of prime interest. Hence we seek a path to 

overcome or attenuate the effect of friction. Imposing an external noise to the system 

allows one to control the effect of friction. In this thesis we will study this effect and 

address some critical questions such as - How an external noise affects the dynamics of 

an object while friction is operating at the interface of the moving bodies? What will 

happen if the underlying friction is linear or nonlinear in nature? 

Friction at static or dynamic solid-solid interface is one of the oldest but still fuzzy 

areas of physical science. One of the main reasons of this obscurity of friction is its 

nonlinear nature with various parameters like velocity, stochastic and/or deterministic 

applied force etc. In this work we tried to analyze friction and its nonlinear behavior from 

a different angle using statistical tools and set a unique approach to study non-linear 

systems. Most of the practical scenario associated with motion of particles or liquid drops 

are non-equilibrium systems which are driven away far from equilibrium by an applied 

biased force. Hence it is of utmost importance to understand the difference between 

equilibrium and non-equilibrium systems. 

Equilibrium thermodynamics is a well-investigated and firmly established subject, 

at least in the context of a system which is in thermal equilibrium with its 

surroundings  [2]. The equilibrium systems possess certain characteristics, which are not 

pertinent to non-equilibrium systems. Most stable and preferred state of an equilibrium 

system is governed by the global minimization of free energy. Irrespective of the initial 

state of the system, it eventually reaches this state. System driven away far from 
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equilibrium with an external force field cannot be described by this kind of simple energy 

minimization principle. Understanding of non-equilibrium system is of considerable 

interest in recent years although not fully perceived yet. In this line some important work 

is  done by Evan, Cohen and Morriss  [3]. They pointed out the apparent violation of 

second law of thermodynamics in non-equilibrium steady state systems and came up with 

a relation between the probability of entropy production and entropy consumption known 

as fluctuation theorem.  

Although there exists a plethora of experimental studies [4–7] in the literature 

related to above mentioned non equilibrium dynamics, some areas call for more 

exploration specifically the athermal stochastic system where the source of the random 

noise and the origin of the energy dissipation mechanism are decoupled. In this 

dissertation, we study some simple experimental athermal systems, which fall in the 

realm of the non-equilibrium thermodynamics. 

  

Let’s first describe two situations which reveal the main contrasts between 

equilibrium and non-equilibrium systems. Consider a system, boundary of which 

encompasses a beaker filled with water having constant temperature T, same as the 

surrounding. Now if we put an ink drop in the water, the ink particles due to random 

collisions with the surrounding water molecules will exhibit Brownian motion and 

diffuse in the water. After some time the ink particles will be uniformly distributed 

throughout the water bath. The system is now in dynamic equilibrium state. During the 

random motion of the ink particles, they experience viscous drag force which reflects in 
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their mobility. Einstein in his classical paper on Brownian motion  [8] derived the 

connection among the diffusivity (D), mobility () and temperature (T) of the bath which 

is known as famous fluctuation dissipation relation (Eq. 1.1): 

 
 

 
     1.1 

Where kB is the Boltzmann constant. This relation is proposed for a thermodynamically 

closed system which is in thermal equilibrium. The kinetic energy of the ink particles 

dissipates, due to viscous friction at the particle water interface, as a form of thermal 

energy inside the water bath itself. This thermal energy in turn drives the water molecules 

which bombards on the ink particles to set them in Brownian motion. 

 

Figure 1.1: (left) Equilibrium thermal system – ink drop in water after a long time and 

(right) non-equilibrium athermal system – vertically vibrated sand filled beaker . 

 

As a second situation let’s consider an athermal system: a beaker, full of sand 

particles or tiny hard spheres, placed on a platform which is vibrated vertically up and 

down. This set up is similar in spirit of that reported in reference  [9]. The system is in 
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non-equilibrium state in a sense that there is wide distribution of measurable variables 

such as local velocities of the particles, packing density etc. In this case energy dissipates, 

due to Coulombic friction at solid–solid interface. This dissipated energy is irrecoverable. 

Unlike the thermal system described above, here kinetic energy associated with each sand 

particle is too small to keep it in agitated form, hence continuous supply of energy as 

external vibration is mandatory. The analysis of such a system becomes more challenging 

because of two reasons. First, the nonlinear nature of the Coulombic friction in 

comparison to linear viscous friction makes the situation complex. Secondly, presence of 

too many particles makes it difficult to characterize the system precisely unless some 

sophisticated approach is adopted and that yet to be developed. Such a system which is 

far from equilibrium does not obey the conventional fluctuation dissipation theorem 

described in Eq.1.1. 

 Now question arises can we characterize stochastic dynamics of non-equilibrium, 

athermal system with some intensive parameters (like temperature) which relates 

fluctuations and response function similar to the fluctuation dissipation relation for 

equilibrium thermal systems? Some studies pointed out that from the relation between 

diffusivity and the response to an external force one can define ‘effective temperature’ in 

some cases of non-equilibrium dissipative system. This effective temperature can be used 

to characterize various properties of the systems  [10–16]. But what will happen if the 

underlying energy dissipative mechanism (friction) is linear or nonlinear? Exploring 

different frictional regime can anyone control the dynamics of such a system?  
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We introduced simple model experimental systems to address these issues and 

which at the same time allow us to study the energy dissipative phenomena at solid-solid 

interface (i.e. friction) as well as at solid-liquid interface (i.e. hysteresis), which is of 

immense practical interest.  

1.2 Objective 

 There are enumerable straight forward examples in our everyday life which 

deserves a close attention to feel nonlinear dynamic systems. Sticking and running of a 

water drop on a window pane or on a wind shield of a car is governed by nonlinear 

dynamics. Flow of particle through open channels or pipes, sorting of particle based on 

its specific surface and body properties, separation of a particle from adhered surface, 

steer an object in specific direction etc. can be manipulated with better knowledge of the 

underlying nonlinear dynamics. Study of tribology is very important in various 

engineering applications such as high precision servo control, robotics, pneumatic 

devices, breaks for cars, traction of tier etc. to name a few. 

 The frictional study might be relevant to understand many biological transport 

processes that occur within the cell. A recent experiment [17] shows when a colloid 

particle diffuse along a linear phospholipid bilayer microtubule, the diffusion process is 

very fast but the distribution of the displacement is exponential rather than Gaussian. In 

general the Gaussian distribution is expected for a random walker. Authors attributed this 

transport process as an activated diffusion similar to that observed in glassy systems. In 

this thesis we addressed the origin of such exponential distribution of displacement, 
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which is frequently encountered in many natural dynamic processes, as a result of the 

nonlinear frictional dissipation at the interface of the two moving bodies. 

The objective of this research is to explore the realm of nonlinear dynamics and 

friction, specifically to: 

a. Introduce a simple model system and develop a new approach to study non-

equilibrium steady state processes. 

b. Study the effect of Coulombic friction and nonlinear kinematic friction on the 

dynamics of an object that is excited externally. 

c. Identify a fluctuation dissipation like relationship for an athermal system. 

d. Establish new approach to identify the underlying friction law. 

e. Whether the dynamic behavior of a solid object or a liquid drop can be described 

by a class of activated rate process. 

A brief introduction on the notion of some statistical tools used in this research is 

described in chapter 2. We introduced a simple phenomenological model to describe the 

main features of the friction in chapter 3. In chapter 4 we addressed the characteristics of 

the nonlinear friction and effect of external bias force on diffusivity. In this chapter we 

also pointed out the effect of the surface characteristics on the dynamic response. A new 

experimental methodology is described in chapter 5 to identify the underlying nonlinear 

friction. In chapter 6 we discussed the mechanical activation of a rolling rigid sphere in 

adhesive contact with a fibrillar PDMS in presence of external perturbation. Theoretical 

exploration of this process is described in chapter 7. The noise activated dynamics of a 
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liquid droplet on the fibrillar rubber surface and effect of viscosity on this process along 

with the report of some interesting findings about critical and subcritical dynamics were 

discussed in chapter 8. We summarized in chapter 9 with suggestions for future works. 
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2. CHAPTER TWO: Background 

2.1 Introduction 

Classical thermodynamics deals with the macroscopic properties (temperature, 

pressure, volume, energy, entropy etc.) of an equilibrium system and their relationship. 

These macroscopic properties are determined by the behavior of the ensemble of large 

number of microscopic particles. Advancement of the molecular theory of matter calls for 

a new approach to study the nature of these microscopic particles. At this microscopic 

level the fluctuations of the dynamic properties of molecules become essential to explain 

various macroscopic properties. Statistical mechanics is the theory with which one can 

study the behavior of the natural and spontaneous fluctuations [1]. Fluctuations of the 

molecules of matter encode the energetic states of the system and statistical mechanics is 

the deciphering tool. In this thesis we will use this tool to study the dynamic behavior of a 

macroscopic object and in this journey, we will try to extract the information about the 

nature of dissipative mechanism, i.e. friction. Response of a system to random input 

variables is a stochastic process. Specifically we will consider few mechanical systems 

where the input will be a bias force along with a random forcing function and the output 

will be either velocity or displacement which are stochastic in nature. The fluctuation of 

displacement or velocity encodes the dissipative nature of the dynamic system, whether it 

is linear or nonlinear. We will systematically address these issues in this thesis. In this 

chapter we will discuss some definitions of the statistical terms and their characteristics 

which will be useful to understand the discussions in subsequent chapters. 
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 The study of random process is started mainly in the field of Brownian motion. 

Before that, in 1738 Swiss physicist Bernoulli first pointed out that thermodynamic 

parameters like pressure, temperature etc. is the result of stochastic motion of gas 

molecules and the collisions among themselves or with the enclosing walls. Later in 1958 

Maxwell first gave the mathematical description of the molecular velocities through a 

distribution called Maxwell distribution. Boltzmann enriched this field of study and 

proposed the fundamental relationship between the entropy and the number of 

microstates of a system. 

2.2 Markov Process 

A Markov process is defined as a stochastic process which is ‘memory-less’ in 

nature, i.e. the next state of the system depends only on the present state, and independent 

of all the previous states it experienced before the current state. Ships in a turbulent sea, 

erratic motion of kite in the sky, moving vehicle, motion of colloidal particle in thermal 

fluid etc. are the example of a Markov process. Let us focus our discussion on the motion 

of colloid particles in the fluid. 

 The Brownian motion of a colloid particle in a fluid inseminate from the random 

bombardments of the surrounding fluid molecules on the colloid particle. Hence the 

velocity of the colloid particle randomly varies in magnitude and directions. At a certain 

instance t if the particle has velocity V, the particle will collide with more fluid molecules 

in the front than in the rear. Any change in the velocity at the next small time window dt 

will solely depend on the velocity V and will be independent of any earlier history of the 
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particle. Thus the velocity of the colloid particle is an example of the Markov process. 

Not only the velocity the position of the particle also a Markov process, as the probability 

distribution of the next displacement jump does not depends on the earlier history. But 

there is a caveat in the above description of the Brownian motion. The Brownian motion 

is a Markov process if the observation time scale is larger than the velocity 

autocorrelation time. As by the definition, the Markov process should have zero 

autocorrelation time. In reality the Brownian particle possess finite autocorrelation time. 

A large instantaneous velocity does not damp out in zero time, hence its effect still 

persists in the next few observations unless the observation time scale is large enough so 

that it appears that there is no correlation between two observations. Such a process is 

called approximate Markov process. 

 Before going to deeper in the Markov process, its attributes and application we 

first need to have some essence of probability theory. 

2.3 Probability theory 

Probability is the chance of occurrence of an event in repeated trial experiments in 

identical condition. The definition of probability is empirical in a sense that it is based 

upon the observations. Let’s assume in an experiment we are interested to have a specific 

outcome X=xi and Ni number of times it happened among the total N number of trials, 

where N is very large. Hence the probability of having X=xi is defined as: P(X=xi) = Ni /N 

or shortly P(xi) = Ni /N. Probability has no unit. By definition the probability has 

following basic properties: 
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 (  )     

∑ (  )

 

   
2.1 

Here xi is a discrete stochastic variable. For a continuous stochastic variable xi we 

estimate the chance of its occurrence within a small window dx and the probability is 

defined as: 

P(xo < xi < xo+dx)=P(xi)dx 

Here P(xi) is the probability density function having unit of (dx 
-1

). 

The notion of probability is closely resemble to the ensemble rather than a single entity. 

The ensemble is the consolidation of stochastic variables from different samples having 

different time histories. For example colloidal particles in a Newtonian fluid will serve as 

an ensemble representing the Gaussian probability distribution of velocity. Average 

behavior of the ensemble of the colloidal particles can be described by the probability 

distribution. Complete description of a stochastic process involves characterizing the 

distribution of the stochastic variables associated with the process. For this purpose it is 

essential to identify the characteristic function or moment generating function.  

2.3.1 Characteristic function 

The characteristic function of a stochastic variable X is defined as: 

  ( )  〈    〉  ∫      ( )
 

   2.2 

Here I is the range of the variable X consisting of real numbers. 
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Conversely, if the characteristic function G(k) of a distribution is known, the distribution 

P(x) can be obtained by taking the Fourier transform of the characteristic function G(k). 

i.e. 

  ( )  
 

  
∫  ( )       

 

  

 2.3 

 

Important properties of characteristic function are: 

  ( )          | ( )|    2.4 

The Taylor expansion in k of this characteristic function gives the moments of the 

distribution function P(x). i.e. if j is the j
th

 moment of P(x), then the relation between the 

characteristic function and j is: 

  ( )  ∑
(  ) 

  
  

 

   

 2.5 

Note that these moments are ‘moments about zero’, not the central moment (or moment 

about mean). There is difference between these two, for example ‘1
st
 moment about zero’ 

gives the mean, but 1
st
 central moment (or 1

st
 moment about mean) is always zero. Unless 

otherwise stated we use the term ‘moment’ to refer ‘moment about zero’ in this section of 

the thesis. Another quantity cumulants (mj, j
th

 cumulant) can be generated from the 

characteristic function. These cumulants can be used to calculate the central moments of 

a distribution. The relationship between cumulants and the moments are as follows: 
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2.6 

 

We will show later that why these cumulants are essential to analyze the shape 

and characteristics of a probability density function of stochastic variables. For example 

let us consider Gaussian distribution, which is very important in the context of this thesis. 

  ( )  
 

 √  
 

 
(   ) 

    2.7 

 

The characteristic function of the Gaussian distribution according to Eq. 2.2 will be: 

 

 ( )  
 

 √  
∫     
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 ( )        
    

  

 ( )        
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2.8 

Comparing this result with Eq. 2.5 reveals that 

 

     

         

2.9 
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This states that first moment of the Gaussian distribution is the mean  and second 

cumulant is the variance  2
 of the distribution. First and second cumulants give the rough 

idea about the peak position and the width of a distribution. Indication about the shape of 

a distribution is given by ‘skewness’ and ‘kurtosis’ which are associated with higher 

order cumulants. 

2.3.2 Skewness (S )  

Skewness (S) is the measure of asymmetry of a distribution. A distribution is said to be 

symmetrical if the frequencies are symmetrically distributed about the mean, i.e. when 

the values of the random variables equidistance from the mean have same frequencies. 

Skewness of the distribution is given by : 

   
  

  
   

 2.10 

Here m3 and m2 are the 3
rd

 and 2
nd

 cumulants. 

 

Figure 2.1: Schematic depicting Skewness (S) of a distribution. 

For a symmetric distribution, S=0, otherwise it is positive or negative value depending on 

whether it is skewed towards the values larger or smaller than the mean respectively. 
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2.3.3 Kurtosis () 

Kurtosis ( ) is the measure of ‘peakedness’ of the distribution. A distribution 

having sharper peak is called ‘Leptokurtic’ and that having relatively flat top is called 

‘Platykurtic’. A normal distribution is called ‘Mesokurtic’. For Mesokurtic distribution 

the kurtosis  =3, for Leptokurtic and Platykurtic distribution the values of  is greater 

and smaller than 3 respectively.  

 

Figure 2.2: Schematic depicting Kurtosis ( ) of Leptokurtic (), Mesokurtic () 

and Platykurtic () distribution. 

 

The value ofis estimated as: 

   
  

  
  2.11 

 

Here m4 and m2 are the 4
th

 and 2
nd

 cumulants respectively. Sometimes the peakedness is 

reported as excess kurtosis, which is defined as 3 = (-3). 
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2.4 Gaussian noise 

Gaussian noise is ubiquitous in many natural sources. Brownian motion of the 

colloid particle, thermal fluctuation of atoms in a conductor can be described by the 

Gaussian distribution. Gaussian distribution has finite mean and variance. In this thesis 

we will mainly focus on the dynamics of an object influenced by a bias force and external 

white noise. Unless otherwise stated, in most of the part we are going to use Gaussian 

noise as an external white noise. In our experiments external Gaussian noise is fed to the 

system as time dependent random acceleration pulse ( (t)) having constant temporal 

pulse width (c) of 40s. The acceleration is measured with accelerometer (PCB 

Peizotronics, Model No: 353B17) and the information is analyzed using an oscilloscope 

(Tektronix, Model No. TDS 3012B) after passing through a signal conditioner (PCB 

Peizotronics, Model No: 482). A typical distribution of the acceleration is shown in 

Figure 2.3. 

 

Figure 2.3:Input noise (t) (acceleration, m/s
2
) distribution, fitted with Gaussian 

distribution. Inset shows the plot of   [   (    )] vs   | | with slope 2. 
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Gaussian distribution of the input acceleration is given by  

  ( )     
 

  

   2.12 

Here Po is the normalization constant. As the input noise is unbiased, the mean of 

the distribution is zero but having a finite standard deviation .  Eq. 2.12 can be 

rearranged as: 

   [   (
 

  
)]     |

 

 
| 2.13 

When ln[-ln(P/Po)] is plotted against ln  , the slope of the line should be 2 for a 

Gaussian distribution. This is shown in the inset of the Figure 2.3. 

A true white noise should have pulses which are delta correlated. Hence the 

autocorrelation time should tend to zero and the noise will have flat power spectra over 

the entire range of the frequency. In reality the scenario is quite different due to 

experimental limitations, for example algorithm used to generate the random numbers, 

the recoiling effect of the oscillator etc. Hence our experimental input noise has following 

properties: 

 

〈 (  ) (  )〉                  |     |     

〈 (  ) (  )〉                 |     |     

2.14 
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Here  be the root mean square acceleration. For convenience, we introduce a symbol K, 

which is the power of noise and is defined as c

2 (m
2
/s

3
).  

A sample Gaussian noise trace and its power spectra are shown in Figure 2.4.  With a 

total bandwidth (-fmax to + fmax, fmax being the maximum frequency) of 25 kHz, the 

spectrum is quite flat up to ~10 kHz, after which it tends to fall. 

 

Figure 2.4: A typical trace of the acceleration pulses (inset) corresponding to strength K 

=0.16 m
2
/s

3
. Corresponding power spectrum taken at a bandwidth of 25kHz. 

 

Using 10 kHz as the corner frequency ‘f ’ (Figure 2.4), a time constant c, as estimated 

from 1/(2f), is about 16 s. However this time scale corresponds to a slightly tainted 

white noise. More correct time constant should be about 30 s (assuming corner 

frequency of ~5kHz) as the spectrum corresponding to this time scale represents almost 

perfectly flat spectrum. 



Background 

 
 

24 

 

2.5 Fokker Planck Equation 

When a particle is immersed in a Newtonian fluid the particle will experience a 

friction force given by Stokes law:         , where  is the viscosity of the fluid, a is 

the radius of the particle and v is the velocity. Hence equation of motion for the particle is 

given by  

 
  

  
 

 

  
   2.15 

 

Where L is the relaxation time (=1/6a). The above description is valid when the 

particle is large enough so that the random bombardment by the surrounding fluid 

molecules on the particle average out and hence the thermal fluctuation of the particle is 

negligible compare to the viscous friction force. For a small particle, P. Langevin [2] 

suggested an additional term that accounts for stochastic thermal fluctuations. 

 
  

  
 

 

  
  ( ) 2.16 

This stochastic description cannot give the estimation of some useful parameters like drift 

or diffusion analytically. These parameters can be obtained from Fokker Planck equation, 

which is the equation of motion of the distribution function of a stochastic variable. In 

presence of an additional bias force  ̅ the Fokker Planck equation corresponding to Eq. 

2.16 is given by: 
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   (     )

  
  

 (  )

  
 

 (  ̅  
  
  

)

  
 

 

 

   

   
 

2.17 

 

The derivation of Eq. 2.17 is well explained in the literature [3,4]. For spatially 

homogenous system, the steady state solution of Eq. 2.17 is given by 

  ( )     
( 

  

   
 

   ̅
 

)
 2.18 

 

Once this distribution is obtained one can estimate the drift velocity using the following 

equation: 

        
∫   ( )  

 

  

∫  ( )  
 

  

 2.19 

 

Eq. 2.16, 2.17 and 2.18 corresponds to a system having linear energy dissipation. Now let 

us discuss a generalized version where a nonlinear system is considered. 

 
  

  
  ( )   ( ) 2.20 

 

Here f (V ) is a nonlinear function of velocity. The corresponding Fokker Planck equation 

is given by  
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  ( )

  
 

 [ ( ) ( )]

  
 

 

 

   ( )

   
 2.21 

 

For the stationary distribution (i.e. at long time limit, t →∞) above Eq. reduced to 

 
 [ ( ) ( )]

  
 

 

 

   ( )

   
   2.22 

 

The only solution that satisfies Eq. 2.22 reads as [5], 

  ( )        [ 
  ( )

 
] 2.23 

Here Po is the normalization constant and  ( )  ∫ ( )  .  

Dynamics of a solid particle moving on a solid surface can be described by the 

equation 2.20  [6–8], where f (V) will represent frictional dissipative term which may be a 

linear combination of viscous (V/L) and Coulombic friction ( (V)) which make the 

overall system nonlinear. Here represents the magnitude of the Coulombic friction and 

 (V) is the signum function of V with  (0) = 0. Hence f (V) will read as: 

   ( )  
 

  
   ( ) 2.24 

 

Then according to Eq. 2.23 the steady state velocity distribution will be given by, 
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  ( )       [ 
  

   
 

  | |

 
] 2.25 

Using this distribution and Eq. 2.19 one can calculate the drift velocity of the particle. 

The above example of solid motion on a solid surface is well discussed by de Gennes [8]. 

According to him in presence of a bias force  ̅ , drift velocity can be estimated as, 

 

       ∫ {〈 (  )〉   ̅   〈 ( (  ))〉}
 

  

   { 
    

  
}     

         [ ̅   〈 〉] 

                  〈 〉 
       

 
 

2.26 

 

Using these scaling laws, drift velocity is given by [9], 

        
 ̅  

  
    

 

 2.27 

 

If Δ=0, i.e. in the absence of Coulombic friction the drift velocity is given by  ̅   which 

depends on viscous relaxation time    and independent of the strength of external noise. 

This derivation of drift velocity is approximate one and based on the scaling laws 

proposed by de Gennes. 

Another elegantly simple alternate route to obtain the physical parameters 

associated to the nonlinear stochastic system is suggested by Caughey  [5], in which he 
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prescribed a method called effective linearization of the nonlinear system. This 

method [10] later adopted by Crandall et al [11] and others  [12] to model the sliding of 

building foundation in response to earthquake. Let’s first extensively describe the 

dynamics of non-linear system using modified Langevin equation: 

 
  

  
 

 

  
   ( )   ( ) 2.28 

 

The corresponding linear system will be given in terms of an effective relaxation time    

and an additional reminder term  ( ). 

 
  

  
 

 

  
  ( )   ( ) 2.29 

 

Here the root mean square deficiency  ( ) is given by: 

    
 

  
  

 

  
   ( )  2.30 

 

The success of equivalent linearization technique lies on the minimization of the average 

value of    with respect to effective relaxation time   
 , which leads to the following 

equation: 
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  〈 ( ) 〉

〈  〉
 2.31 

The average quantities 〈 〉 in Eq. 2.31 can be obtained from the stationary velocity 

distribution described by Eq. 2.25. For a dry friction dominated situation Eq. 2.31 reads 

as 

 
 

  
  

 

  
  

  

 
 2.32 

 

We have already seen for a linear system under the influence of a small bias force  ̅, drift 

velocity is given by  ̅  . Now for a system with combination of Coulombic friction and 

the linear viscous friction the drift velocity will be read as  ̅  . Where    is given by Eq. 

2.32. which gives the identical relationship (Eq. 2.27) as obtained from the approximate 

scaling analysis of de Gennes. 

In a similar way, analogy to the case of linear kinematic friction, the diffusivity reads as: 

   
    

 
 

    
 

 (      ) 
 2.33 

 

At low power, when K<<    , diffusivity is dominated by Coulombic friction and D → 

     , which is predicted by de Gennes  [8].   
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2.6 Conclusion 

The subject of nonlinear stochastic dynamics intrigued physicists for long time. 

MacDonald [13] was first to study the Brownian movement with nonlinear relaxation and 

later Caughey and Dienes  [5] used Fokker Planck equation corresponding to Eq. 2.28 to 

obtain the transition probability density. From the velocity correlations, obtained from the 

solution of Fokker Planck equation, they estimated diffusivity of the object when the 

motion is dictated by the dry friction and found that the diffusivity(       )  is 

stronger function of the strength of the noise than the situation which is governed by the 

linear friction (   ). Later de Gennes, without knowing the work of Caughey and 

Dienes, reached the identical results through an approximate scaling analysis. 

 While studying the nonlinear friction in granular gas, Kawarada and 

Hayakawa  [6] identified the exponential velocity distribution. This observation also 

made by Caughey and Dienes earlier  [5]. Recently another approach of path integral 

route is taken by Baule et. al  [14,15] to obtain the analytical expression of transition 

probability where nonlinear friction is dominating. While others mostly considered the 

velocity as the stochastic variable, Menzel and Goldenfeld  [16] dealt with the 

distribution of displacement fluctuation. In this line a recent experimental investigation is 

also performed by Wang et al.  [17] where the displacement of a colloid particle along a 

bilayer membrane tube is studied. 

Our experimental studies with a small solid sliding block on a glass surface or a 

rolling rigid sphere on a rubber surface in presence of external vibration or bias force 
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relates many of these theoretical and experimental studies. We also addressed the 

characteristics of pinning depinning transition of a rigid sphere as well as liquid droplet 

on a structured rubber surface vibrated with external noise of low power.  
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3. CHAPTER THREE: Role of Coulombic Friction on 

the Dynamics of Solid Object1 

 

3.1 Introduction 

Friction is inevitable part of our life. Sometimes it makes nuisance (as a reason of 

wear, heat up the parts and failure of machines, inefficient energy utilization in unit 

operations etc.), sometimes it is essentially useful (for example in walking or driving a 

car, to hold an object with hands etc). Till date the friction is not fully understood. 

Different models of friction mechanism are offered depending on the velocity 

dependency. Friction at near zero velocity is recognized by the name of Coulomb/dry 

friction. First atomistic and simple view on this matter was proposed by Prandtl and 

Tomlinson, where the stick-slip instability was responsible for Coulomb friction [1,2]. 

For the last few decades the effect of Coulombic friction was studied on the damping of 

harmonic oscillator [3–6]. Recently in an experimental study Simbach and Priest 

identified the difference between Columbic dry friction and kinematic friction  [7]. In 

their study they observed the nature of dampening of the amplitude of a swinging 

pendulum. Usually if such a system is controlled by linear kinetic friction, the amplitude 

of oscillation should decay exponentially with time. What they found is that the 

                                                 
1
 This work has been published as: P. S. Goohpattader, S. Mettu and M. K. Chaudhury; Experimental 

investigation of the drift and diffusion of small objects on a surface subjected to a bias and an external 

white noise: roles of coulombic friction and hysteresis.Langmuir 25, 9969 (2009).  

http://www.researchgate.net/researcher/16013853_S_Mettu
http://www.researchgate.net/researcher/8918459_M_K_Chaudhury
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amplitude decays much faster and linearly with time as Coulombs friction dampens the 

oscillation. 

The problem of Coulomb dampening of the motion of an object in presence of 

white noise was theoretically analyzed by Caughey and Dienes  [8]. They dealt with the 

Fokker Planck equation involving Coulombic friction and Caughey [9] proposed the 

method of equivalent linearization technique to estimate certain useful parameters of the 

stochastic system. In the last decade Kawarada, Hayakawa and de Gennes studied 

Coulombic friction as the energy dissipation mechanism  at the interface of two relatively 

moving solids  [10–12]. When a solid prism is placed on another solid support, vibrated 

with external white noise, the prism undergoes a stochastic motion with a net drift and 

specific diffusivity. This mean drift velocity and diffusivity is different than that expected 

from a liner kinematic friction case.  Such a nonlinear system was extensively studied by 

de Gennes [12],who proposed certain scaling laws of the diffusivity in terms of the 

magnitude of the Columbic friction and the strength of the imposed external noise.  

According to de Gennes (see also Hayakawa [10] as well as Kawarada and 

Hayakawa [11]), the dynamics of the object on a surface subjected to an external 

vibration ( )(t ) and a bias ( )   is described by the modified Langevin equation [12,13]: 

 
  

  
 

 

  
  ̅   ( )   ( )  3.1 

Here, V is the velocity of the particle, L  (=m/ ) is the Langevin relaxation time, where 

m is the mass of the particle and  is the kinematic friction coefficient,    is the applied 
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acceleration (external force divided by the mass of the particle).   t  is the time 

dependent acceleration that the object experiences from the white noise source. Ideally, 

this acceleration is delta correlated and has a zero mean value. If the magnitude of the 

static friction force is smaller than  )( t  , the object moves, otherwise it remains 

stuck to the surface.  V  is the signum function of velocity with   00  ,  is a 

measure of the Columbic friction (force/mass).  The noise (t) that has the following 

properties:   

 

〈 (  ) (  )〉                  |     |     

〈 (  ) (  )〉                 |     |     

3.2 

                  

where  be the root mean square acceleration and c  be the duration of the pulse. For 

convenience we introduce a symbol K, which is the power of noise and is equal to c

2 ; 

K/2 is also the diffusivity in the velocity space.             

  The  solution of the corresponding Klein-Kramers  [14] form of the spatially 

homogeneous  Fokker-Planck equation of the Langevin equation 3.1 is given by 

  
 

 

  ( )

  
  

| |

 
 ( )  

  ( )

  
   ̅ ( ) 3.3 

 

Here, P(V) is the steady state probability density function [10,11,13,15] of the velocity 

which can be obtained by integrating equation 3.3. 
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  ( )       ( 
  

   
 

 | | 

 
 

   ̅

 
) 3.4 

Where, oP  is normalization constant. According to equation 3.4, when 0 , the 

velocity distribution is Gaussian about the mean L , i.e. it resembles the situation of a 

simple dragged Brownian particle with a diffusivity of 2/2

LK .  However, when 0 , 

the velocity pdf has also an exponential component. Similar prediction was made by 

Mauger [13] where he pointed out the non-Lipschitz continuous nature at velocity V=0.  

Let us consider the case for 0  and   and set the kinematic friction to zero. In this 

case, De Gennes showed that the object exhibits a diffusive motion with a value of 

diffusivity as 
43 /~ K , which is strongly sensitive to the power of the noise in contrast 

to the simple kinematic situation, where diffusivity is 2/2

LK .  Furthermore, when the 

object is agitated with a white noise vibration, it drifts with a velocity ~ 2/K , which is 

also uniquely different from the case of pure kinematic friction for which the drift 

velocity at any value of K is just L .  Thus, while the ratio of diffusivity and mobility is 

2/LK  for the case with kinematic friction that for the dry friction is  2/~ K . As in 

this case, the energy is being delivered by external work, which is different from a typical 

thermal system, no fluctuation dissipation relation is expected. An effective temperature 

can still be defined as  D/ 
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3.2 Experiment 

Our experimental set up is based on the inertial tribometer demonstrated by 

Baumberger et. al.  [16,17]. They placed a solid object as a slider on a track, which is 

subjected to an external periodic oscillation and the response of the slider was recorded 

using a displacement gauge. This set up enabled them to study the micro-slip and 

corresponding dissipation at the solid solid interface. We adopted the similar set-up with 

little modification. 

 We place a solid glass block (~2g) with dimension of ~ 12mm x 12mm x 6mm on 

a grit blasted glass slide (Fisherbrand) as a support. Grit blasting of the glass support 

using alumina particle was needed to incorporate micron level roughening on the glass 

surface which was necessary for the uniform sliding of the glass block over it. Otherwise 

the block adheres to the glass support so strongly that very high excitation is needed to 

dislodge it from the surface. The glass block and the rough support was pre cleaned by 

sequential sonication in acetone and water for half an hour each and was dried with 

blowing dry Nitrogen gas. 

 Experimental set up is illustrated in Figure 3.1. The roughened glass substrate 

was firmly attached to an aluminum platform and fixed on the stem of a mechanical 

oscillator (Pasco Scientific, Model No: SF-9324). The angle of inclination of the glass 

support was controlled by a precise Goniometer (CVI Melles Griot, Model No: 07 GON 

006).White noise that was generated using Matlab
®
 program was fed through the sound 

card of the computer to the oscillator via a power amplifier (Sherwood, Model No: RX-
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4105). The whole set-up was placed on a vibration isolation table (Micro-g, TMC) to 

eliminate the effect of ground vibration. The acceleration of the supporting aluminum 

plate was estimated with a calibrated accelerometer (PCB Peizotronics, Model No: 

353B17) driven by Signal Conditioner (PCB Peizotronics, Model No: 482) and connected 

to an oscilloscope (Tektronix, Model No. TDS 3012B). The drift velocities of the glass 

prism were measured on the inclined plate with a low speed (30fps) normal Sony camera 

(DCR-HC85 NTSC) and the stochastic motion of the prisms were monitored with a high 

speed (1000fps) Redlake Motion-Pro video camera at different powers of noise. The data 

obtained with the high speed camera were subjected to an analysis using ‘Midas2.0 

Xcitex’ software to obtain the instantaneous position as a function of time by tracking the 

edge of the prism. When the position of the prism is plotted against time with the data 

obtained from a low speed camera, excellent straight line is obtained over a distance of 

40 mm with good reproducibility, which signifies that the property of the surface is 

somewhat uniform over a significant length for meaningful measurements of velocity and 

other properties.  

 

Figure 3.1: Schematic of the experimental set up. 
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There are few limitations in this experimental technique. First of all, we restricted 

our high speed video recording to the 1000fps to obtain a longer record length. This 

temporal resolution is not sufficient to capture finer details of the object motion. Spatial 

resolution is also restricted to the 0.1m with a tracking error of  ±5m. Another 

experimental limitation is random rotation of the glass prism about its vertical axis while 

it drifted down over the inclined support in presence of the external noise. We discarded 

the tracks having significant amount of this types of rotational motion for the simplicity 

of the analysis. 

 

Figure 3.2: A solid object or a liquid drop drifts downward on a vibrating inclined 

substrate by overcoming the forces of Columbic friction or hysteresis. The probability 

distribution functions   tP  of the Gaussian and a truncated Cauchy noises that were 

used to vibrate the substrate are also shown.   represents the width of the truncated 

Cauchy distribution,  t  are the random acceleration pulses.   
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One advantage of this experimental set up is choice of the noise. Being an external white 

noise, it could be Gaussian or Levy noise with specific  index. The true Levy noise has 

infinite energy that is not realistic in nature. Hence we experimented with both Gaussian 

and truncated Levy noise. Truncated Levy noise has finite power with fat tails and 

observed in many natural phenomena  [18–20] and is applied in directed transport 

processes  [21–24] or as an optimal search engine [25,26].We use a truncated Levy noise 

with =1(Cauchy) of finite power as an external energy input to the glass slider that 

experiences Columbic static friction in addition to the kinematic friction during motion. 

With a truncated Levy noise, finite variance exists in both velocity and real spaces. Thus 

it appears that we may be able to use the same probability conservation equations 3.3 and 

3.4 as is the case with the Gaussian noise. We expect that all the transport properties 

measured in terms of drift and diffusion would be identical to those obtained with a 

Gaussian noise, which we indeed find experimentally. In view of the above mentioned 

indistinguishabilities of the Gaussian and the truncated Levy noises, it may be asked why 

should we consider using the Levy noise in the first place. We will show later that the 

truncated Levy noise, although behaving like a Gaussian noise, offers certain advantages 

by improving the statistics in the low probability regions of the distributions due to its fat 

tails.  
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3.3 Results and discussion 

3.3.1 Drift and diffusivity of solid object 

At a small inclination of the support, glass prism does not slide spontaneously. A 

static Columbic friction of the magnitude  cosmgs  operates at the interface of the 

prism and the glass support. Here s  is the static friction coefficient, m is the mass of the 

prism, g is the gravitational acceleration and   is the angle of inclination of the plate. 

The glass prism will slide over the support if the applied gravitational pulling force 

mgsinexceeds the static friction force csmg  cos . Here c is the critical angle above 

which this criterion is met. At a smaller angle, i.e. s 1tan , the prism can be 

considered to be at a stuck state. If there was no static friction and the object would 

experience only linear kinematic friction, just like a colloidal particle in a fluid, the glass 

prism would always be in moving state and its drift velocity could have been estimated as 

 ̅  , where  ̅        and        with   being the kinematic friction coefficient. 

However, with the application of a white noise, the prism exhibits stochastic forward and 

backward motion along with the net drift toward the applied bias even at an angle much 

smaller than the critical angle. Still there is intermittent sticking and running phases with 

the time window of sticking phase decreases with increasing noise strength, hence net 

drift velocity increases with noise. A point to be noted that if the imposed noise was truly 

white noise, there would always be a powerful impulse within any short duration of time 

that would dislodge the object. In a real situation, there is no external noise which can be 

perfectly white, and thus within a short duration of time, the object may not be dislodged. 
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The object remains in stuck state on the surface, till an impulse of sufficient strength 

arrives to rescue it from that state [12]. 

 

Figure 3.3: Stochastic motion of prism on solid substrate subjected to truncated Cauchy 

noise of power 0.053 m
2
/s

3
.  

The solid prism moves stochastically with an average downward drift is shown in 

Figure 3.3. Both the drift velocities and diffusivities were measured by varying the power 

of the noise. With the definition of the velocity probability distribution described by 

equation 3.4, the average drift velocity of the prism can be obtained from the following 

equation: 

        
∫   ( )  

  

  

∫  ( )  
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Figure 3.4: (Left) Drift velocities (Vdrift) of a glass prism on a slightly roughened glass 

support at three different inclinations (angles are shown in the figure) and various powers 

(K) of the noise. (Right) Drift velocities (Vdrift) are divided by sin  where   is angle of 

inclination. Open symbols correspond to Gaussian noise and closed symbols correspond 

to truncated Cauchy noise. All the data roughly fall close to a single master curve. 

 

Figure 3.4 summarizes the drift velocities of the solid prism as a function of the power of 

Gaussian white noise K at three different angles of the inclination of the plate. As 

expected, driftV increases both with K and  . These data could be analyzed with equations 

3.4 and 3.5, with  sing  . From this analysis, the average values of   and L  are 

estimated to be 3.84 m/s
2
 and 0.067 s respectively. These values of   and L  were used 

for the numerical simulations of the drift velocity and diffusivity to be discussed below. 

The velocities obtained with truncated Cauchy noises of various powers are also given in 

these figures for comparison. Indeed the velocities obtained with both types of white 

noises are indistinguishable. 
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An approximate equation that can describe the drift velocity as a function of 

K,, and L , has been reported in reference   [15] :  

        
 ̅  

  
    

 

 3.6 

 

All the drift velocity data can also be fitted with equation 3.6 quite well with slightly 

different numerical values of   (3.6 m/s
2
)  and  L  ( 0.03s ).   

The diffusivities were estimated from the stochastic motion of the prism on the 2
o
 

inclined surface subjected to Cauchy noise of different powers as well as to Gaussian 

noise at power 0.09m
2
/s

3
. Displacement fluctuation or jump length (x) data for a various 

time segments ( ) as obtained from several tracks were combined from which a 

probability distribution for displacement was constructed. The mean 〈  〉 and variance 

   〈  
 〉  〈  〉

  was estimated from the probability distribution of the displacement 

fluctuation. The variance increases linearly with  as expected of a simple diffusive 

process (Figure 3.5), the slope of which gives the estimation of the diffusivity according 

to the following relation:       . For this analysis to be valid,   needs to be 

sufficiently large in order to ensure that a steady state is reached. In the steady state 

regime, the variance of the displacement is linear with time.   
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Figure 3.5: Plot of the variance 
22

 xx   of the displacement of the prism subjected to 

truncated Cauchy noise of different powers. The diffusivity, which is calculated from the 

slope of linear plots, increases with the power of the noise. Here data are shown for three 

powers only. We have performed these measurements for a total of five different powers. 

 

At this point, we would like to justify the use of truncated Cauchy noise over 

Gaussian noise in our statistical experiments involving the estimation of diffusivity, and 

displacement fluctuation analysis. As illustrated in Figure 3.6, the experimentally 

observed pdf’s of the displacement for both the Gaussian and truncated Cauchy noises 

almost super-impose onto each other except for the low )( xP region where the statistics 

become somewhat poorer for the Gaussian distribution compared to the truncated Cauchy 

distribution. 



Coulombic friction 

 
 

46 

 

 

Figure 3.6: Log-Linear plot of the probability distributions of the displacement )( x of 

the prism subjected to Gaussian and truncated Cauchy noises. The data for each noise 

was obtained from about 132 steady state tracks, each lasting for about 2.5 seconds. In 

the lower part of the distributions, the statistics for the Cauchy noise is much better than 

that of a Gaussian noise, where considerable scatter is observed. The experiment is 

carried out at a power (K) of 0.09
32 / sm .  The displacement distributions are for 

sec09.0 . 

 

This difference may inseminate from the heavy tail distribution of the Cauchy 

noise, which is especially useful for the analysis of the displacement fluctuation to be 

discussed later. Thus these two properties of a truncated Cauchy noise that produce drift 

and diffusion exactly same as that of a Gaussian noise, and that it improves the statistics 

in the region of low probability region are quite ideal for us. The features resulting from a 

real Levy distribution cannot be reproduced in our system, as its power diverges.  
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3.3.2 Numerical simulation 

 We numerically integrated the Langevin equation 3.1 using the generalized integration 

method for stochastic differential equation as prescribed by Gillespie [27]. Displacement 

( x ) of prism as a function of time ( t ) was obtained from the instantaneous velocity given 

by the solution of equation3.1.  We used  sing  which is the bias force acting on the 

prism, with   set to 2
o
 as in the experiments.  We used the acceleration data,  t , 

obtained directly from the accelerometer as input acceleration for the numerical analysis. 

The external acceleration  t  acting on the prism has either Gaussian or truncated 

Cauchy probability distributions with a mean that almost approaches zero (~0.4% of the 

rms value). The non-exact zero mean results from the fact that very large numbers of 

acceleration are averaged coupled with the fact that the numbers are rounded off during 

the digitizing process.  However, this small numerical error does not contribute 

appreciably in estimating the values of diffusivities, although it can lead to some error in 

estimating the drift velocities at very low bias. Here we focus our attention on the 

estimation of diffusivity. As the high-speed video recording in experiments is done at an 

interval (dt) of 1ms, data from the accelerometer is obtained at the same interval. These 

acceleration data are then scaled in order to match the power of noise (0.004 to 0.16 

32 sec/m ) used in the experiments with two additional values estimated at powers of 0.3 

and 0.5 
32 sec/m . The Langevin equation is then integrated with an integration time step 

of dt =1ms, which is equal to the video recording interval in experiments. The 

simulations are carried out for 50 tracks with an integration time of 10sec for each track. 
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The values of   and   used in the simulation are 3.84 m/s
2
 and 0.067 s respectively, 

which were obtained from the analysis of the data shown in Figure 3.4.  Since the 

Columbic friction  V  always acts in the direction opposite to the motion of the prism, 

it is set as   VVV /  in the simulations. When the net acceleration (  t  ) acting 

on the prism is less than the threshold acceleration )(  required to set the prism into 

motion, the prism gets stuck to the plate, hence the velocity of prism is set to zero. The 

displacement data for a given time interval   obtained from several tracks are combined 

to obtain a probability distribution for displacement as is done for the experimental 

analysis of the displacement data. The diffusivity was estimated from the slope of the plot 

   versus . 

 Analytical theory and stochastic Langevin simulations for a prism on a solid 

substrate both show that the diffusivity varies linearly with K in the absence of dry 

friction (Figure 3.7). Nature of the noise, whether it is Gaussian or the truncated Cauchy 

noise do not make any significant difference to the results of the simulation.  However, 

when 0 , the simulated diffusivity is much lower than that for 0   and it varies as 

74.1K  (Figure 3.7). The observed exponent of K is certainly larger than 1 which is for 

purely kinematic friction case, but it is smaller than the value of 3 as expected for a pure 

dry friction [12]. This disagreement is expected as we have the situation which is 

governed by combination of both dry friction and kinematic friction.  

            Numerical solution also predicts that the diffusivities vary by four orders of 

magnitude (10
-9

m
2
/s   to 10

-5 
m

2
/s) with the variation of the power from 0.004 m

2
/s

3 
to 0.5 
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m
2
/s

3
 which is slightly higher than that obtained from the experimental results (Figure 

3.7). These values are much lower than the values obtained with 0 . Except for the 

datum obtained with the lowest power (0.004 m
2
/s

3
), the experimental diffusivity 

increases with K with an exponent of 1.61. This exponent is also close to that (1.74) 

obtained from the simulations with the Columbic friction. When the power reaches to a 

value as low as 0.004 m
2
/s

3
, the dynamics of the prism slows down dramatically. It is 

possible that at such low power, other effects such as heterogeneities, both static and 

dynamic, may start to play additional roles over that of the average effect of Columbic 

and kinematic friction.  Another possibility of this suppressed diffusivity at low noise 

strength may be due to the domination of the Coulombic friction over the kinematic 

friction at this low noise regime. 

The prime finding of this work is that the external noise induced diffusivity of one 

solid on another is significantly dominated by Columbic friction. This diffusivity is at 

least couple of orders of magnitude lower than that controlled by kinematic friction. A 

Langevin equation with an additional Columbic dry friction term enables us to analyze 

the situation of both the diffusivity and the drift velocity rather satisfactorily. The drift 

velocity is predicted to increase sub-linearly with the power of the noise, which is in 

agreement with the experimental observations. The experimental diffusivity values are 

also close to the simulated values with dry friction. While the experimental diffusivity 

increases with the power of the noise as 61.1K , the simulations predict 74.1K . 
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Figure 3.7: Log-Log plot of diffusivity as a function of power of noise. The scaling law 

established from experiments (blue triangles) is 61.1~ KD  whereas the numerical 

simulation (pink squares) predicts 74.1~ KD . Diffusivity values obtained by numerical 

simulation in the absence of dry friction ( 0 ) are also shown (red filled circles) which 

agree well with theoretically predicted values (blue solid line) for kinematic friction only. 

The experimental diffusivity (open circle) of prism subjected to Gaussian noise of power 

0.09 m
2
/s

3
 is close to the value obtained using Cauchy noise at the same power. 

 

Although these exponents do not represent a large discrepancy, there are 

differences in the numerical values of the simulated and measured diffusivities. We 

should be aware of some potential pitfalls related to the simulations and experiments.  

1.  The simulations are coarse-grained, in which the data collection and the video 

recordings were done at the interval of 1 ms. Some of the finer details of the stochastic 

dynamics may be lost in these simulations.   

2. Equation 3.1 may be an oversimplification to account for the Columbic friction 

because heterogeneity and metastable states may be involved in real situation.  
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3. Heslot et al [28] studied the effect of Columbic friction on the dynamics of an object in 

which they have taken into account the state and rate dependent Columbic friction laws. 

Our current friction law is, on the other hand, is extremely simple. Columbic friction 

signifies elastic energy dissipation during the contact and breaking of junctions. When 

the slider receives an external impulse of a short duration, it should accelerate or 

decelerate with concomitant energy dissipation in bursts. At high speeds, turbulent micro-

slip may occur at the interface leading to high energy dissipation. These details are not 

taken into account in our studies as we employ only a constant value of the Columbic 

friction,  .  

3.3.3 Displacement PDF in presence of Coulombic friction 

Mauger already pointed out theoretically that the non-Lipschitz continuity of the 

Coulombic friction results the non-Gaussian distribution of the velocity distribution [13]. 

For a process governed by kinematic friction, the distribution function is itself Gaussian. 

However, in the granular media, a non-Gaussian distribution [29–36] of the velocity pdf 

has been linked to the energy loss due to inelastic collisions. There are other cases to 

consider in which a threshold force of a different nature may act on a particle. An 

example of which involves biological cells partially adhering to a solid surface, in which 

case the random motion [37] of the cells exhibits a stick-slip process. Another example is 

the condensation and growth of liquid drops on a surface that may be prone to a random 

motion due to various fluctuations, but its motion is inhibited by wetting hysteresis [38]. 

In another study of the random motion of liquid droplet [15] revealed that the critical 

force due to hysteresis significantly reduces the mobility of the drops.  



Coulombic friction 

 
 

52 

 

 

Figure 3.8: (Left) Probability distribution of normalized displacement 

  


 xpxxx /~   of prism at time intervals: 0.05s (□), 0.09s (◊), 0.13s (Δ) and 0.16s 

(ο) with a Gaussian noise (power 0.09 m
2
/s

3
), but in presence of a Columbic friction. The 

blue and pink colors indicate experimental data and simulation results respectively. 

(Right) Normalized displacement distribution with a Cauchy noise (power 0.09 m
2
/s

3
) for 

time intervals: 0.07s (□), 0.09s (◊), 0.16s (Δ) and 0.20s (ο).  The blue and pink colors 

indicate experimental data and simulation results respectively.  In order to generate such 

fluctuation plots data obtained from about 132 steady state tracks, each lasting for about 

2.5 seconds, were combined. 

 

The pdf of the displacement fluctuation of the solid prism is predominantly exponential 

except being Gaussian towards the central region for both the Gaussian and truncated 

Cauchy noise. The normalized plots of experimental and simulated displacement pdfs are 

shown in Figure 3.8. Irrespective of the previously mentioned limitations of the 

simulations, the predictions of equation 3.1 are reasonably good, at least to a first order of 

approximation. The general shapes of the displacement distributions, and its asymmetry 

in some cases, are reproduced rather well. Simulations also show that the distribution is 

mainly exponential for 0 , but it becomes Gaussian when 0 (Figure 3.9). Thus the 

phenomenon resulting from Columbic friction ( 0 ) is clearly encoded in the 
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experimental displacement distribution function as expected according to theoretical 

prediction of the velocity distribution function (Eq.3.4), as velocity V=dx/dt. In a recent 

paper Jarzynski [39] already mentioned that the distribution functions encode various 

types of physical processes. For example, it could encode the free energy changes in a 

dynamic process. Several recent experiments  [40,41] used this idea to estimate 

equilibrium free energy change of biological processes from the dissipative work 

measurements. 

 

Figure 3.9: Log-Linear plot of the probability distribution of displacement )( x  obtained 

using numerical simulation of modified Langevin equation (Eq. 1). The simulation is 

carried out at a power (K) of 0.09 
32 / sm  with parameters 2/84.3 sm  and 

sec067.0L  which are obtained by fitting drift velocities data to equation 3.5. The 

distribution is clearly exponential. The inset shows the simulated probability distribution 

of displacement obtained by setting 0 . The displacement distribution fits well with 

Gaussian distribution as shown by blue thick solid line.  The displacement distribution 

shown here for sec09.0 . 
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Since the displacement distribution is found to have a finite variance that is linear with 

time, we expect that the displacement pdf to be Gaussian for the case with pure kinematic 

friction: 

  (  )     
 

(     ) 

(   )  
3.7 

where all the terms have their usual meanings.  A work fluctuation like equation [42–46] 

is easily anticipated from equation 3.7 if we define the work as  xW  . However, this 

could be a bit misleading in our case since work is being performed by both noise and 

gravity. The above Gaussian distribution is valid for 0  when the relaxation time is 

the characteristic Langevin relaxation time and the ratio of the diffusivity to mobility














m

Vdrift
 is: 

 
 

 
 

    

 
 3.8 

Experimental (Figure 3.10) ratio of /D  is found to increase slightly sub-linearly 

with K as 
8.0K with relaxation time scales  (0.0002s to 0.0004s) that is much smaller than 

any of the relaxation times of the system, either of the dry friction (
22/  K ~ 0.003 

s) or of the kinematic friction ~ 0.067 s. It is not surprising in the first place as Eq. 3.8 is 

applicable for a system controlled by purely kinematic friction. We expect that 

distribution function as shown in equation 3.7  needs to  be  multiplied by an appropriate 

exponential function in order to obtain a result as close as possible to the real 
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(experimental) distributions. However, a proper theoretical treatment must also take into 

account the asymmetric distribution that is observed experimentally. Some of this 

asymmetry definitely arises from the biased step length towards the applied force, 

although a significant source of the asymmetry may also come from the fact that the 

noise is not a true white noise, but colored with appreciable correlation that couples non-

linearly with the dry friction. We have some numerical results to support the above 

points, which we will address in detail in next chapters. 

 

Figure 3.10: /D  obtained for a prism subjected to truncated Cauchy noise as a 

function of power of noise (K). 

 

With increasing  , the exponential displacement distribution, which is the 

signature of a dry friction, eventually evolves into a Gaussian distribution, prominently in 

the central region. The degree of “peakedness” of a distribution is generally measured by 

Kurtosis (β), which is defined by the ratio of the fourth central moment of a distribution 
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and fourth power of standard deviation. For highly peaked distribution (e.g. exponential 

distribution), β is greater than 3(Leptokurtic distribution) and equals to 3 for Gaussian 

distribution. Estimation of β for different time intervals reveals that with time it 

approaches towards 3 starting from a high value (Figure 3.11). In the present situation, 

although the distribution is more like Gaussian at large time scale, the underlying effect 

of the dry friction is still there which is evident from the asymmetric exponential nature 

of the tail region of the distribution. Similar observation is reported recently which is 

related to the study of the displacement distribution of a colloidal bead adhered and 

diffusing on lipid tubes  [47]. The exponential displacement distribution at the short time 

limit is observed in their system due to the presence of Coulomb like friction as a 

disguise of adhesion force between the colloidal particle and the lipid microtubule. 

 

Figure 3.11: Kurtosis (  ) of displacement distribution as a function of time for the prism 

subjected to a truncated Cauchy noise of power 0.09 m
2
/s

3
.  
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3.3.4 Displacement fluctuation theorem 

Although we considered that the experimental distribution function is represented 

approximately with a Gaussian function but with the values of the diffusivities and 

mobilities resulting from such do not satisfy the fluctuation relation 2// LmKD    

(Figure 3.10).  We calculate the probabilities of observing positive and negative 

displacement fluctuations from equation 3.7 and rearrange the results as follows:   

 
 (   )

 (   )
  

(
 ̅  

(   )
)
 3.9 

For the dry friction, as the value of /D  is much smaller than that expected of a 

kinematic friction, the probability of a negative displacement fluctuation is more strongly 

suppressed than the case with the pure kinematic friction. We study the displacement 

fluctuation in terms of a scaled variable pxxx /  . As defined above, px  is the 

displacement value at the peak of the distribution function, whereas the mean 

displacement is mx .  Equation 3.9 can be rearranged as  

 (
  

    
)   

 (   ̅)

 (   ̅)
   ̅ 3.10 

Figure 13 shows that the fluctuation pdf of the scaled displacement obtained for 

the solid prism becomes stiffer either with the increase of time or with the increase of the 

power as expected from equation 3.10. All the probability data can be normalized by 

multiplying the function 
)(

)(
ln





xP

xP




with pmxxD / . We plot this normalized function (
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)(  x ), i.e. the left side of equation 3.10 as a function x either taking the data from the 

measurements done at various time segments for a constant power or at different powers 

corresponding to a fixed time segment. In both cases, we obtain results that superficially 

agree with the conventional fluctuation theorems of different varieties (Figure 3.13)  [42–

46].   

 

Figure 3.12: (Left) Some representative probability distributions of the normalized 

displacement  pxxx /   of solid prism subjected to Cauchy noise (power 0.09 m
2
/s

3
), 

at different time intervals. (Right) Some representative probability distribution of 

normalized displacement of prism at different powers of Cauchy noise for a particular 

time interval ( s09.0 ). In order to obtain these distributions, data obtained from about 

50 to 130 tracks were combined in order to generate good statistics. The total number of 

tracks is based upon the duration of each track so that a total of about 300 seconds of data 

are obtained. 
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Figure 3.13: (Left) Fluctuation plot of normalized displacement  pxxx /   of the solid 

prism subjected to Cauchy noise (power 0.09 m
2
/s

3
) at different time intervals. (Right) 

Fluctuation plot of normalized displacement of prism at different powers of Cauchy noise 

for a particular time interval  s09.0 . Here )(  x is defined as

   )(/)(ln/  xPxPxxD pm  . 

 

3.3.5 Energy dissipation rate 

In order to seek a relationship between /D  and the rate of energy dissipation ( q ), 

which directly measures the power experienced by the slider we attempted to make a 

rough estimate of the power dissipation. Let’s examine the integrated form of the 

Langevin equation:  
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Kinetic energy                Gravitational work      Vibrational work              Heat 

3.11 

 

The term on the left side of equation 3.11 is the change of the kinetic energy in going 

from one state to another, the average value of which is zero. The first term on the right 
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side of the equation is the work done by the external force, the second term is the work 

done by the external noise, whereas the third term in the above equation is the net energy 

dissipation. This term has two components: its first component is the heat generated (and 

dissipated) by the kinematic friction, whereas its second component is the energy 

dissipation due to Columbic friction.  In order to make an approximate estimate of the 

total energy dissipation, we consider their averages values as : 

  ̇  〈(
  ( )

 
  | ( )|)〉 3.12 

It is easy to show that  q   is related to the power of noise as K/2.  This can be 

demonstrated by neglecting the kinematic friction term of equation 3.12 and calculating 

)(tV  using equation 3.5. One thus finds, )(tV = 2/K , from which we get 2/Kq  .  

Equation 3.12 then becomes: 

 
 

 
  ̇   3.13 

where  d    is a characteristic time for energy dissipation.  

As mentioned earlier that we lost some of the finer details of the displacement 

fluctuations and hence the estimation of velocities is coarse grained due to the limitation 

of the temporal resolution of the video camera (1000fps). Some of the stochastic 

processes occur at a faster rate than what our experimental set-up can capture. Thus, this 

does not allow us to get an handle on the transients, or the fast acceleration/deceleration 

phases, which could be behind some of the interesting physics of fluctuations. In any 
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event, the ratio /D  is found to increase with q  (Figure 3.14) roughly linearly. The 

positive intercept of the regression line on the q  axis suggests that a minimum power is 

needed before the prism starts sliding on the surface. At a power lower than the threshold, 

there is, of course, neither any energy dissipation nor any mobility of the slider. In this 

low power region, there may underlie additional interesting physics akin to jamming or 

glassy dynamics that may be worth pursuing in future.  

 

Figure 3.14: /D  varies approximately linearly with the rate of energy dissipation ( q ). 

 

Characterization of systems that is driven away from equilibrium by an external 

force is traditionally done in the contexts of the fluctuations theorems [48–53], which 

deal with the entropy production in time reversible systems. These theorems consider a 

finite probability of the decrease of entropy in certain trajectories of a dynamic process 

and states that the ratio of the probabilities of positive and negative entropy production 

rates varies exponentially with the rate of positive entropy generation. Various attempts 
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have been made to examine the validity of non-equilibrium fluctuation theorems 

experimentally and via numerical simulations.  At the microscopic level, an elegant and 

popular experiment [54–56] is to trap a colloid particle in an optical tweezers and move it 

with pre-determined controls of parameters. What is observed is that the colloid particle 

moves along the direction of motion of the trap most of the time: these are the entropy 

generating trajectories. Occasionally the particle exhibits reverse trajectories signifying 

entropy consumption.  The probability distributions of these entropy generating and 

entropy consuming events have been found to exhibit a fluctuation type relationship. 

Other experiments that successfully verified GC theorem involve mechanical 

oscillators [57], stochastic motion of a pendulum [57] immersed in a liquid resulting from 

the thermal noise and measurements of the energy fluctuation [58] due to flow of current 

in electric circuits.  

Aumatre et al [59,60] verified the GC like fluctuation theorem numerically by 

studying the power injection in a shell model of turbulence, granular gas and a Burridge-

Knopo spring-block model. More recently, Majumdar and Sood [61] observed that the 

non-equilibrium fluctuation relation holds for sheared micellar gel in a jammed state. 

Feitosa and Menon [62] found experimentally that the power flux fluctuation in a 

granular gas is generally in accord with the GC theorem as well. The energetic scaling 

needed to fit the power fluctuation data with the GC theorem prompted these authors to 

define an effective temperature of the system.  Several authors [59,61–68] however 

cautioned about the applicability of the conventional fluctuation relations to macroscopic 

systems in strict thermodynamic sense as these systems do not exhibit micro-reversibility. 
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However, a fluctuation like relation may still work [60,63,64] in certain cases in the 

probabilistic sense of a “large deviation theorem”.  

           As with the granular gases, there is no microscopic reversibility in our case either. 

Secondly, the energy is delivered to the slider in terms of work and not in terms of a 

thermal energy. Hence, we cannot strictly analyze any of our results with the 

conventional entropy fluctuations theorems in any straight-forward way. We feel that 

even converting the displacement to work is problematic as work is being done by both 

the noise and gravity. Even if the displacement is negative (i.e. slider moves upward), it 

is not convincing that a negative work is performed in the process --powerful fluctuations 

push the object upward once in a while. This point can be clarified further by taking into 

consideration an experiment published [68] a few years ago by our group in collaboration 

with L. Mahadevan. A hydrogel rod was placed perpendicularly to an asymmetric cut of a 

support and the latter was vibrated with a periodic vibration. The asymmetry in the 

friction rectified the vibration induced force and led to the motion of the hydrogel. More 

recently, Buguin et al [69] performed an experiment (similar to that reported in  

ref  [70]),  in which a coin moved on a  substrate vibrated with an asymmetric waveform. 

In both the above experiments, where work is being done by the external vibration, 

velocity increased linearly with the amplitude of vibration. However, in both the 

experiments (Figures 4 and 2 in references  [68] and  [69] respectively), a threshold 

amplitude is observed below which no motion takes place. This threshold force is 

indicative of the presence of a Columbic friction at the interface. Now, it should also be 

possible to induce the motion of the hydrogel on the surface having asymmetric friction 
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with a white noise vibration with a zero mean. As there is no bias, the only work done on 

the hydrogel rod would be of the form:  



t

t

dttVtm )()( , where V(t) is the fluctuating 

velocity. If the acceleration pulse and the velocity response are highly correlated, then the 

above work is mostly positive, as found by Farago [63], even though the velocity and 

displacement fluctuate between the negative and positive values. On the other hand, there 

will be negative fluctuation of the above work if the acceleration pulse and velocity are 

somewhat uncorrelated. In any event, in the context of the current experiment, the work 

done by vibration, 



t

t

dttVtm )()(  has to be added to that done by the gravity, 





t

t

dttVmg )(sin   in order obtain the total work done on the slider. This total work may 

turn out to be mainly a positive quantity with very few negative fluctuations.  

             Gaussian distribution would always follow the fluctuation relation of the type 

shown in equation 3.9. For example, Seitaridou et al [71] recently found that the 

diffusion flux of colloids in small systems exhibit a Gaussian fluctuation, which is 

consistent with a conventional fluctuation theorem. Whether or not such a compliance 

with the conventional fluctuation theorems has a deeper physical significance for systems 

driven out of equilibrium with external noise needs further studies. At present, we 

hesitate to attaching specific thermodynamic significance to the measured displacement 

fluctuations other than recognizing that it is a kind of measure of the gravitational 

potential energy fluctuation.  However, all the terms pertaining to works performed by 



Coulombic friction 

 
 

65 

 

the noise as well as the gravitational field and the energy dissipations by all the frictional 

terms need to be sorted out more clearly experimentally as well as theoretically.  

3.4 Conclusion 

1. A solid block stick to a surface and would not move till the external force is larger than 

the Columbic friction. The objects would, however, move on the substrate if they are 

vibrated with a white noise. The drift velocity can be accounted for with a Langevin 

equation with Columbic friction within the framework of Klein-Kramers equation.  

2. In addition to studying the drift velocity, we can also study the fluctuations of the 

displacements related to these systems. It has been found that the probability distributions 

of displacements in all cases are non-Gaussian, which is adequately supported by the 

numerical simulation of the Langevin equation including Columbic friction. The 

simulations also confirm that the exponential distribution of the displacement arises due 

to the presence of a threshold force (Columbic friction) that needs to be overcome to 

initiate motion.  

3. The ratio of the diffusivity to mobility varies sub-linearly with the power of noise. 

However, the characteristic time scale observed from this analysis is much smaller than 

any of the characteristic time scales of the system.  

4. A final and important comment is about the asymmetry of the displacement 

distributions of either the block or the drop in the presence of a Columbic friction or 

hysteresis. When the object is vibrated with a white noise with 0 , the probability 
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distribution is symmetrical. However, the distribution becomes asymmetric when 0  

and this asymmetry increases with  as well as with the power of the noise. Thus, the 

asymmetric distribution could be another signature (in addition to the predominance of 

the exponential distributions) of a non-equilibrium system where a threshold force such 

as a Columbic friction (for solids) or a hysteresis (for drop) is operative at the interface.  
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4. CHAPTER FOUR: Diffusive Motion with Non-

linear Friction2 

 

4.1 Introduction 

An unperturbed sand pile that can withstand the shear force to some extent can be 

identified as property of a solid. However when tapped, the pile flows and forms a layer 

of sands to minimize the gravitational potential energy. When the sands were buried 

under the pile the bulk sand particles deformed slightly and can withstand the shear force 

and behave like solids but when tapped the particle vibrates and loosen up the confined 

state and starts flowing like liquid. Many experimental and numerical studies on the 

rheology of granular media is well known in literature [1–4]. These studies reveal 

similarity with the phase transition behavior of a matter with temperature, although the 

temperature in the above mentioned systems is identified as the athermal noise. In the 

present work we are going to investigate the dynamics of an energy dissipative athermal 

system where white noise is injected externally in presence of bias force. We have 

identified a phase transition like behavior for such a system and studied the nonlinear 

nature of the system specific energy dissipation. There are plenty of examples of 

nonlinear dissipative systems such as DNA electrophoresis [5] in a gel, the diffusion of a 

colloidal particle in contact with a soft microtubule [6] etc. In the first case, the mobility 

                                                 
2
 This work has been published as: P. S. Goohpattader and M. K. Chaudhury; Diffusive motion with 

nonlinear friction: apparently Brownian. J. Chem. Phys. 133, 024702 (2010). 

http://www.researchgate.net/researcher/16013854_P_S_Goohpattader
http://www.researchgate.net/researcher/8918459_M_K_Chaudhury
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of the DNA is significantly reduced. In the latter case, role of non-linearity is apparent in 

the non-Gaussian distribution of displacements having exponential tails. Non-Gaussian 

displacements have also been reported for the case of palladium adatoms diffusing on 

tungsten. [7,8]. All these studies are in the class of thermal system. 

The signature of non-linearity and thus the non-Gaussian distributions of 

displacement or energy fluctuations are also evident in various  athermal systems that 

include granular flow, [9–14] hydrodynamic turbulence [15–19], evolution of 

climate [20], dusty plasma [21], and the driven motion of a liquid drop or a solid object 

on a surface [22–27]. While, some of the results can be explained on the basis of a joint 

probability distribution function (PDF) of the forcing and response functions [19,28]  as 

in the power input distribution, or within the framework of superstatistics [29,30] as in 

the velocity distribution in turbulence,  there are also perceived physical mechanisms 

behind some of these non-Gaussian PDFs. Examples of latter cases include the inelastic 

collision [31] and the Coulombic slip [32] between particles in granular gases.  

Based on the previous works of de Gennes [33] as well as that of Kawarada and 

Hayakawa [32], it has been shown recently that a non-Gaussian PDF ensues naturally 

when the resistance to motion of an object is non-linear. The non-linearity may arise from 

a Coulombic dry friction [27] for the solid-solid case, from wetting hysteresis [22,23,27] 

for a liquid-solid case or (possibly) from an adhesion hysteresis related to the rolling 

motion of a particle on a soft substrate [6]. These non-linear resistances have one 

common unique feature that no motion may occur when the noise pulse is smaller than 
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the threshold resistance, while motion occurs when a large pulse rescues the object from 

the stuck state at a later stage. Mauger [34] specifically argued that it is the non-Lipschitz 

continuity of a resistive term in the Langevin equation that gives rise to an exponential 

distribution of velocity of a particle.  

In this work we modified the surface chemically as well as physically to control 

friction and studied its effect systematically to see how it modifies a stochastic dynamics.  

By extending some of our previous studies [27], here we investigate how the stochastic 

behavior of a small solid object on a solid support is influenced by a non-linear friction 

when it is subjected to a Gaussian white noise and an external bias. The long term 

objective of this research is to implement such surface modification technologies as self-

assembled monolayers, and chemi-adsorbed polymers in order to control the specific and 

non-specific interactions at surfaces and study their effects on friction and diffusive 

dynamics. The objective of the current study is to establish the methodology as well as 

the phenomenology underlying this approach primarily with the contact of two solid 

surfaces. In one case, a smooth glass prism slides against a roughened glass support. In 

another case, a thin (~3.7 nm) polydimethyl siloxane (PDMS) grafted smooth glass prism 

slides against a PDMS grafted silicon wafer. In the first case, the non-linearity comes 

from dry friction, whereas in the latter case it comes from the non-linear kinematic 

friction. In order to focus our discussion, let us consider a modified version of the 

Langevin equation as discussed by de Gennes [33] as well as by Kawarada and 

Hayakawa [32]. 
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  ( )   ̅   ( ) 4.1 

Here, V is the velocity and   is the external force per unit mass,  
L

  is the Langevin 

relaxation time (mass (m) /kinematic friction coefficient (),   is a non-linear resistive 

force divided by the mass of the object and  t  is the time dependent acceleration that 

the object experiences from external vibration. It should be mentioned here that Daniel et 

al. [24] proposed a coupled set of equations similar to Eq. 4.1 in order to formulate the 

motion of a liquid drop on a surface by vibration, in which wetting hysteresis provides 

the non-linear resistance.  When the kinetic friction itself is non-linear [21], the Langevin 

equation assumes the following form: 

 
  

  
 

 | | 

 
 ( )   ̅   ( ) 4.2 

Here 
n

VA is the nonlinear friction force, with the exponent n being less than 

unity. In general,  t  can be periodic (symmetric or asymmetric) or stochastic. Let us 

consider the stochastic case here, for which the power (also called noise strength) 

associated with the noise is K. In Eq. 4.1 if the magnitude of   is smaller than  )( t  , 

the object moves, otherwise it remains stuck to the surface. For this reason, it is suitable 

to multiply   with a signum function  V  which is positive when V > 0 and negative 

when V < 0 with   00  .  In Eq. 4.2 we do not have to consider a specific value of 

friction to make a demarcation between locked and running phase of the object motion. 

In the stochastic setting, the non-linear friction makes the dynamics of an object governed 



Nonlinear friction 

 
 

75 

 

by Eq. 4.1 or Eq. 4.2 quite different from that of a conventional Brownian particle. For 

the dry friction case, according to de Gennes [33], the object exhibits a diffusive motion 

even in the absence of the kinematic friction, where the variance of the displacement 

increases linearly with time, but with a diffusivity ( 43 /~ K ) that depends more strongly 

on the power of the noise than that (~ K ) of a normal Brownian particle.  Furthermore, 

the object drifts with a velocity ~
2/K  that is uniquely different from that of a free 

Brownian particle, where the drift velocity is simply a product of the bias  and the 

Langevin relaxation time L .  We will show later that the non-linear kinematic friction, as 

shown in Eq. 4.2,  also leads to some unusual behavior that are similar to the case of dry 

friction. This nonlinear kinematic friction also produce exponential velocity distribution 

similar to that observed in granular gases due to dry friction [32].  

There are certain dissimilarities between this athermal system with those of a 

thermal system [35]. In a thermal system, the noise and the friction are coupled to each 

other, unlike the case of an external noise. However, the provision of delivering the noise 

externally in our mechanical system allows us to decouple the origin of the noise 

(external) and the resistance to motion (i.e. dry and/or kinematic friction) at the solid–

solid interface.  The basic notion of FDR (Fluctuation Dissipation Relation) is that the 

frictional constant obtained from the ratio of the available vibration energy to the 

resulting diffusivity is same as that obtained from the ratio of the applied force to the 

resulting drift velocity and is valid strictly for a closed thermal system. As we inject the 

noise externally, this is an open thermodynamic system, which should not follow FDR. 
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Nevertheless, we seek for such a relationship to define temperature of an athermal 

system. 

We used an inertial tribometer, which was first used to investigate the nature of dry 

friction by Baumberger et al. [36] They placed a small solid object on a solid support, 

which was subjected to a biased oscillatory force of varying amplitude. The similar idea 

of inertial tribometer was also used by Sanchez et al. [3], to study the spreading dynamics 

of a cylindrical granular drop on a surface, excited by a periodic vibration. Our approach 

to study the motion of the solid object on a solid support is similar to those of the above 

authors, except that the excitation is done with a white noise rather than a periodic 

vibration.  

We study two model systems. In one case, a smooth glass prism slides against a 

rough glass support. In the second case, a polymer (polydimethylsiloxane or PDMS) 

grafted smooth glass prism slides against a PDMS grafted silicon wafer. In the first 

system, which has been studied more extensively, we are able to identify three distinct 

interfacial regimes: a solid like, a fluid like and a transition region characterized by a 

stick-slip motion of the object. Although Eq. 4.1 describes the behavior of this system in 

a general way, a potentially  important new finding about this kind of motion is that the 

stochastic velocities are poorly correlated thus leading to a much lower diffusivity than 

that predicted by de Gennes [33] for a similar system. The second system is studied here 

for the main purpose of showing that the non-Gaussian displacement fluctuation can also 

arise when the kinematic friction itself is non-linear.  
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4.2 Background 

When a prism is placed on a tilted support, it experiences two types of external 

forces: one is the driving force ( sinmg ) for motion and another is the static friction 

force (  cosmgs ) acting parallel to the surface but opposite to the direction of motion. 

Here m is the mass of the prism, s is the static friction co-efficient, g is the gravitational 

acceleration, and   is the angle of inclination of the support. The glass prism slides on 

the inclined surface when the gravitational force is larger than the static friction force, 

otherwise it remains stuck. In presence of the external noise the scenario changes. The 

prism is rescued from this stuck state when the strength of a noise pulse is high enough 

that the noise and bias force together (m(t) + sinmg ) is larger than the static friction 

force  cosmgs . We use Eq. 4.1 in which   is to be identified with sing  and 

 cosgs . For a spatially homogeneous and steady state system the Klein-

Kramers’ [22,37,38]
 
form of the Fokker-Planck equation corresponding to equation 

4.1and 4.2 can be written as: 

 

 
 

 

  

  
  

| |

 
  

  

  
  ̅  (            ) 4.3 

 
 

 

  

  
 

   

 

| |

 
   ̅  (                             ) 4.4 

 



Nonlinear friction 

 
 

78 

 

The solutions of the equations 4.3 and 4.4 yield the PDF of velocity fluctuation (P(V)) as 

follows:   
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Here, 
'

oP  and 
"

oP  are normalization constants. From equation 4.5, it is evident that the 

velocity distribution has a Gaussian component due to kinematic friction term 
  

   
 and an 

exponential component due to Coulombic dry friction term 
 | | 

 
 , whereas from equation 

4.6 we expect a stretched Gaussian distribution. Equations 4.5 and 4.6 are useful in the 

sense that both the drift velocity and the variance of velocity distribution can be estimated 

by calculating the first and second moments of velocity distribution provided that the 

values of  L  and   (for Eq. 4.5) as well as n and A (for Eq. 4.6)  are at our disposal. 

Conversely, the experimental drift velocities obtained at different values of  and the 

power of the noise K can be used to estimate these parameters. We used the second 

method to estimate L   and   as well as n and A, which were then used for further 

analysis and simulations.  
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4.3 Experiment 

A solid glass prism (~1.67 g), having dimension of ~11 mm × 11 mm × 6 mm, was 

placed on a glass plate. The experimental set up is illustrated in Figure 4.1. As with our 

previous studies [27], some roughening of the support was necessary to induce easy and 

uniform sliding of the glass prism over it. Very smooth surfaces adhere to each other so 

strongly that a very high level of vibration is needed to dislodge it. We avoided such high 

adhesion situations by roughening the surface, as our objective is to study the stochastic 

dynamics of the motion from a very low to a high power. While the main work of this 

paper focuses on the above described system, we also present some results of a study 

where a polydimethyl siloxane (PDMS) grafted smooth glass prism slides against a 

PDMS grafted polished silicon wafer (Figure 4.2). In the latter case, as the PDMS 

reduces the surface energy of the smooth surfaces considerably, the surfaces do not stick 

to each other strongly. Thus diffusive experiments could be performed without 

roughening the surfaces.   

4.3.1 Preparation of glass surfaces 

A glass slide (Fisherbrand)(~ 9 g) having dimension of 75 mm × 50 mm × 1 mm 

was grit blasted with alumina particles (~45 m) at a pressure of 90 psi for 45 s in an air 

fluidized bed.  The grit blasted glass surface was blown with a jet of dry nitrogen gas 

followed by washing with copious amount of Millipore water.  
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Figure 4.1: Schematic of the experimental set up. 

 

The roughened glass plate and a glass prism were sonicated first in de-ionized water and 

then in acetone for 30 min each. They were sonicated again in de-ionized water for 

30min. After rinsing the plate and the prism with de-ionized water, they were dried with 

nitrogen gas. Both the glass surfaces were completely wettable by de-ionized water in the 

contact angle measurements, which ensures that they are free of gross organic 

contaminations. No debris was also evident in optical microscopic examinations. The 

roughened glass surface was examined using a laser optical profilometer (STIL 

micromeasure, CHR 150-N) at different spots on the surface, each having a scanning area 

of 500 m × 500 m, with a scanning step size of 2.5 m. The root mean square value of 

the surface height fluctuation was about ~16 m, which varied slightly (within 1 m) 

from spot to spot. The rectangular glass prism was prepared by cutting a borosilicate 

glass plate (ACE Glass, USA) using a fine glass grinder. The root mean square roughness 
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of the glass prism was about 4 nm over an area of 100 μm
2
 measured using an atomic 

force microscope (AFM, Digital Instruments, USA).  

4.3.2 Preparation of polymer grafted Si wafer and glass prism 

We used a method similar to that published in reference  [39] with a slight 

modification in order to graft PDMS chains on the glass prism and the silicon wafer. 

Pieces (75 mm × 30 mm × 0.6 mm) of silicon wafer (Silicon Quest International) and a 

glass prism of weight 1.7 g and dimensions of 11 mm × 11 mm × 6 mm were first cleaned 

in piranha solution (a mixture of concentrated Sulfuric acid and 30% Hydrogen peroxide 

in 4:1 volume ratio) for 30 min.  After rinsing the samples with copious amounts of 

deionized water (Millipore) and drying with nitrogen gas, they were further cleaned with 

oxygen plasma. The roughness of the silicon and the glass prism were 0.4 nm and 4 nm 

respectively as evidenced from the AFM measurements.  The samples were immersed in 

trimethylsiloxy-terminated poly-dimethylsiloxane (PDMS) (Gelest Inc., product code: 

DMS-T22, MW ~ 9430) in a cleaned glass petri dish. The petri dish was covered and 

kept in an oven at 100
o
 C for 24 hrs. The samples were then cooled to room temperature 

and dipped in 99.9% pure toluene (ACS grade) for 10 min. Both the samples were rinsed 

with copious amounts of flowing toluene, after which they were dried with nitrogen gas. 

Using spectroscopic ellipsometry (J. A. Woollan Co., Inc. VB-400 Vase Ellipsometer) 

the thickness of the PDMS grafted onto silicon wafer was estimated to be ~3.7 nm. 

Because of the poor contrast of the reflectivity of the glass prism and the PDMS, it was 

not possible to make reliable estimate of the thickness of the grafted PDMS layer on this 

surface. However, as the methodologies used to graft PDMS were identical in both cases, 
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the thickness of PDMS on the glass surface should be similar to that on the silicon wafer. 

The advancing and the receding contact angles of water on both the surfaces were ~ 110
o
 

and 103
o
 respectively, suggesting that their surface energetic properties were the same.  

 

Figure 4.2: Two test systems are shown: (a) a smooth glass prism on a rough glass 

support and (b) a PDMS grafted smooth glass prism on a PDMS grafted silicon wafer. 

 

In a previous paper [40] we reported the thickness of the grafted PDMS chains on 

surfaces where one end of polymer reacted with the surface. With the data presented in 

that report, the thickness of the grafted layer of PDMS on silicon was about 8.7 nm for a 

PDMS of molecular weight comparable to that studied here. Here, both end of the chain 

can react with the surface; consequently, the thickness of the grafted layer is close to half 

of that found previously.  

The roughened glass plate or the PDMS grafted silicon wafer were firmly 

attached to a metal (aluminum) platform that was mounted on a mechanical oscillator 
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(Pasco Scientific, Model No: SF-9324) (Figure 4.1and Figure 4.2). Gaussian white noise 

was generated with a waveform generator (Agilent, model 33120A) and fed to the 

oscillator via a power amplifier (Sherwood, Model No: RX-4105). By controlling the 

amplification of the power amplifier, noises of different powers were generated while 

keeping the pulse width constant at ~ 40 µs. The acceleration of the supporting aluminum 

plate was estimated with a calibrated accelerometer (PCB Peizotronics, Model No: 

353B17) driven by a Signal Conditioner (PCB Peizotronics, Model No: 482) and 

connected to an oscilloscope (Tektronix, Model No. TDS 3012B). The PDFs of these 

accelerations are Gaussian (Figure 4.3) and their power spectrums are flat up to a total 

bandwidth of 10 kHz.   

 

Figure 4.3: Probability distribution functions of Gaussian white noise obtained from 

accelerometer at three different powers (K) as indicated inside the figure. The solid lines 

represent Gaussian fit through the data. 
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The entire set-up was placed on a vibration isolation table in order to eliminate the effect 

of ground vibration. The drifted and the stochastic motion of the glass prism were 

captured with a high speed (1000 fps) Redlake Motion-Pro video camera, which was later 

analyzed using ‘Midas 2.0 Xcitex’ software to obtain the position of the prism relative to 

a fixed reference on the vibrating plate as a function of time.  All measurements were 

done under ambient conditions, at a temperature of 23
o 
C and relative humidity of 40%.  

The sliding experiments with the prism on the roughened glass were carried out at 

eleven different powers of the noise ranging from 0.0003 m
2
/s

3
 to 1.83 m

2
/s

3
 and five 

different biases by varying the angle of inclinations with a sensitive goniometer (CVI 

Melles Griot, Model No: 07 GON 006) from 1
o
 to 10

o
 that correspond to forces ranging 

from 0.29 mN to 2.8 mN. For the case with PDMS grafted glass on a PDMS grafted 

silicon wafer, the drift velocities were measured at eight different powers. However, the 

detailed examination of the displacement fluctuations were carried out at one power 

(K=0.1 m
2
/s

3
) and one bias (0.29 mN). 

We estimated the experimental error induced background noise in order to ensure 

that our data are far above it. In order to accomplish this task, the prism was fastened to 

the supporting plate with an adhesive tape, and then the plate was subjected to white 

noise vibrations of different powers. The position of the fixed prism with respect to a 

fixed reference point was again analyzed using the software mentioned above. This 

tracking allowed us to estimate the background noise that arose due to the errors of the 

measurement. We will show later (Fig. 13) that this background noise leads to a false 
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diffusivity, which is nonetheless much smaller than the lowest diffusivity used in our 

analysis.  

4.4 Results and discussion 

4.4.1 Stochastic motion of the prism on a rough surface 

The stochastic motions of the prism on the solid support at two different powers 

of the noise are shown in Figure 4.4, where it is evident that the prism exhibits a stick-

slip like motion at a very low power, but a dispersive fluid-like motion at a high power.   

 

Figure 4.4: The trajectory of the stochastic motion of a glass prism on a glass substrate 

under the influence of applied bias (0.29 mN) and Gaussian white noise of power 0.0005 

m
2
/s

3
 is shown.

 
A typical trajectory at same bias but at a high power (0.68 m

2
/s

3
) is 

presented in the inset. Stick-slip motion at the low power and smooth motion at the high 

power are evident. 
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Two types of analyses have been performed with these data. First is the estimation 

of the drift velocity from the net displacement as a function of time, and second is the 

estimation of the diffusivity from the stochastic fluctuations of the displacement. 

 

4.4.2 Drift velocity and the mobility 

             On the roughened glass substrate, the displacement data were taken over several 

tracks on different parts of the surface, each for certain duration of time. The prism 

showed an occasional tendency to rotate as it drifted on the surface, especially at higher 

powers and biases. Those tracks that did not exhibit any rotation were used for data 

analysis 

 

Figure 4.5: Probability distribution functions of the displacement of a glass prism on a 

rough glass support for K= 0.16 m
2
/s

3
 and mNm 29.0 at different time intervals 

shown inside figure.  
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. At lower powers, although about 10 to 12 tracks were sufficient for the estimation of the 

drift velocity and the diffusivity, 25 tracks were used for the data analysis. However, for 

the higher powers, larger numbers of tracks (~50) were used owing to shorter duration of 

time (~2 s) for each track. 

A typical evolution of a displacement distribution function is shown in Figure 4.5 

in linear scales. The general pattern here is much like the case of the propagation of a 

Gaussian distribution as shown in Eq.4.7.  

  (  )     
 

(          )
 

    4.7 

 

When plotted in the log-linear scales, as we will see later, these PDFs exhibit non-

Gaussian (exponential or stretched Gaussian) tails in many situations, although the 

central part of the distribution is nearly Gaussian at longer time scales.  Equation 4.7 

suggests that the peak of the PDF moves with a velocity
driftV , and its variance broadens 

with , both of which apply in our case. We estimate the drift velocity and the diffusivity 

from the gradients of the displacement and variance with respect to time respectively. 

With appropriate substitutions, Eq. 4.7 can also be converted to Eq. 4.8, which represents 

the fluctuation of gravitational work (gravitational potential energy).  
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 (   )
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Here   xmW  is the work performed by gravity, which fluctuates with x  
and 

 mVdrift /  is the mobility. According to Eq. 4.8, if W  is non-dimensionalized by 

dividing it with D/, we obtain a work fluctuation relation for this system driven with an 

external force and excited by an external noise. This equation states that the ratio of the 

probabilities of finding the positive and negative values of a particular value of work is 

equal to the exponential of the positive value. As D/ is equal to kBT in a thermal system 

according to Einstein equation, it is interesting to check if a similar equation can be 

obtained by replacing kBT with an equivalent energy scale mK */2 in the current 

athermal system.  

 

Figure 4.6: Log-log plot of the drift velocities (Vdrift) of a glass prism on a glass plate as a 

function of the power (K) of the Gaussian noise and different applied biases indicated 

inside figure.  
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For the prism on the roughened glass support, Vdrift increases sub- linearly with K 

(Figure 4.6), while at a given value of K, the velocity increases linearly with the bias. 

When the drift velocities are normalized by dividing it with m  to obtain a generalized 

mobility as a function of K, all the mobilities do indeed cluster nicely around a single 

master curve (Fig. 7). These data are consistent with our previous report [27], although 

the previous studies were conducted with a smaller variation of bias and smaller range of 

K.  

 

Figure 4.7: Log-log plot of the mobility as a function of power of the noise (K) at 

different biases. The solid line represents the mobility that is estimated by calculating 

Vdrift from the first moment of PDF given by Eq. 4.5 and dividing it by the bias. For the 

bias 0.29 mN, the data corresponding to the stick slip motion of the prism are also 

included in this plot. 

 

The master curve of the generalized mobility can be analyzed in conjunction with the 

drift velocity estimated from the first moment of the PDFs shown in equations 4.5and 4.6 

as a function of  and K and subsequently normalizing it by dividing it with applied bias 
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m (Figure 4.7). For the prism on the roughened glass the values of  and L  needed to 

obtain the best agreement between the experimental data and the theoretical estimates are 

4.5 m/s
2
 and 0.06 s respectively. 

 

4.4.3 Numerical simulations of the motion of the prism 

Having established the values of  and L  in the previous section, we simulated 

the stochastic motion of the prism at two different powers using the modified Langevin 

Eq. 4.1.  t  values as obtained from the accelerometer were used as input acceleration 

for the numerical simulations. Since the dry friction force  V  always acts in the 

direction opposite to the motion of the prism, it is set as  VV /  in the simulations. 

When the net acceleration   t   acting on the prism is less than , the velocity of the 

prism is set to zero. Equation 4.1 is integrated with an integration time step of  t =0.001 

s, which is same as the resolution time of the high speed camera used to track the 

stochastic motion.  
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Figure 4.8: Line I, representing the stick-slip motion, is the simulated trajectory of a glass 

prism on a glass support vibrated with the Gaussian noise of power 0.0005 m
2
/s

3
 and 

applied bias 0.29 mN when a periodic pinning potential is considered. Line II depicts the 

simulation without the sinusoidal potential at same condition. The line in the inset is the 

simulated trajectory with the sinusoidal potential at a higher power (0.01 m
2
/s

3
) but at 

same applied bias (0.29 mN). 

Line II in Fig. 8 shows the trajectory of the prism that is obtained from the 

numerical solution of Eq. 4.1 at a low power (0.0005 m
2
/s

3
), in which no stick slip motion 

is predicted. Stick-slip motion usually is an indicator of the existence of metastable 

energy states on a surface, which is not explicit in a uniform dry friction used in our 

simulation. We thus carried out a simulation of Eq. 4.1 by incorporating an additional 

sinusoidal term [38]  LxH /2sin   
that represents a pinning potential. Here L 

represents the length scale and H denotes the amplitude of perturbation. We surmise that 

  represents a background value of the static friction, whereas the perturbation term 

represents defects distributed at a larger length scale. Although the above description of 

friction is somewhat speculative, it provides an approximate way of describing the effect 
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of pinning defects on the motion of the prism.  While the simulation is carried out with 

somewhat arbitrary values of H and L as 0.3 m/s
2
 and 17 µm respectively, we note that 

the chosen value of L is close to the lowest jump length of the stepwise motion of the 

prism as reported in Figure 4.8. Simulations do indeed predict a stick-slip motion of the 

solid for the low power (0.0005 m
2
/s

3
) when the pinning potential is considered (line I in 

Figure 4.8). But at a high power, a fluid like motion is observed even in presence of the 

same sinusoidal potential (inset of Figure 4.8). Here, one important point should be 

noticed. As we have used the same noise input file for both the trajectories, with or 

without the pinning potential, we can keep record of the nature of the impulses. From Fig. 

8, it is evident that whenever a pulse of large acceleration arrives from the noise field, the 

solid exhibits a big jump. The solid does not remain trapped on the surface unless there is 

a pinning potential.  

4.4.4 Displacement fluctuation 

Figure 4.9 summarizes the fluctuations of the displacements of the prism on the solid 

surface corresponding to a low bias (0.29 mN) and a low power (0.04 m
2
/s

3
) but at 

different time intervals ; and corresponding to the same power as above and a fixed 

value of  (0.08 s) but for three biases: 0.29 mN , 1.43 mN and 2.84 mN. Evidently, all 

these probability distributions are non-Gaussian and distinctly asymmetric with the 

degree of asymmetry increasing with   as well as with the bias. In order to estimate the 

degree of asymmetry, we estimated the ‘skewness’ (S) of the displacement PDFs, which 

is defined as the ratio of the third central moment of a distribution to the cube of the 

standard deviation of that distribution. For symmetric distribution, skewness is close to 
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zero, whereas positive and negative skewness portray right sided or left sided asymmetry 

respectively.  

 

Figure 4.9: Probability distribution function of displacement fluctuation of the glass 

prism on a glass substrate subjected to Gaussian white noise of power 0.04 m
2
/s

3
: Fig. (a) 

corresponds to a bias of 0.29 mN and different time intervals  : 0.005 s (∆), 0.05 s (□), 

0.20 s (◊), 0.40 s (○) ; Fig. (b) corresponds to   = 0.08 s but for different biases: 0.29 

mN(∆), 1.43 mN (□), 2.84 mN (●). In Fig. (a),  skewness value increases with   from 

0.001 (for  =0.005 s) to 0.33(for  =0.40 s) and the kurtosis decreases from 3.5 (
=0.005 s) to 3.1 ( =0.40 s). In Fig. (b) skewness increases with bias from 0.23 ( 0.29 

mN) to 1.12 ( 2.84 mN). The kurtosis also increases with bias from 3.4 ( 0.29 mN) to 4.5 ( 

2.84 mN). 

 

In order to quantify the ‘peakedness’ of a distribution, we estimated its kurtosis 

(β), which is defined as the ratio of the fourth central moment of a distribution to the 

square of the variance. For Gaussian distribution, is close to 3 whereas this value 

increases with the peakedness of a distribution reaching a value of 6 for an exponential 

PDF.   
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Figure 4.10: Experimental (a) and simulated (b) probability distributions of 

dimensionless displacement fluctuations     xpxxx /~   of a glass prism moving 

on a glass plate under the influence of Gaussian noise of power 0.04 m
2
/s

3
 at different 

applied biases as indicated at top right corner. Here xp corresponds to the displacement 

with peak probability density and  x  is the standard deviation of the displacement 

distribution. The time interval   used for this plot is 0.08 s. The solid lines are obtained 

by fitting the experimental data with asymmetric double sigmoidal functions, the centers 

of which are bell-shaped, but have exponential tails. (c) and (d) represent PDFs of 

dimensionless displacement at the time intervals of 0.08 s (□) and 0.35 s (○)at different 

powers: 0.01 m
2
/s

3
 (c) and 1.21 m

2
/s

3
 (d). The filled and open symbols indicate the 

experimental and simulation results respectively. The applied bias in all cases is 0.29 mN. 

It should be emphasized here that these simulated PDFs are not in exact numerical 

agreements with the experimental results when plotted in terms of the absolute values of

x . The variance of the simulated PDF is considerably higher than that obtained 

experimentally. However, when plotted in the dimensionless form, it reproduces the 

general features of the experimental distributions. 

 

In Figure 4.10, we re-plot two representative PDFs with the data taken from 

Figure 4.9 in non-dimensional forms, which are compared with those obtained from the 
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numerical integration of Eq. 4.1. The simulations do indeed reproduce the non-Gaussian 

features of the displacement distributions along with the asymmetry, although the degrees 

of asymmetry observed in the experiments (S = 0.23 for m = 0.29 mN; S = 1.12 for m

= 2.84 mN) are somewhat larger than those found in the simulations (S = 0.10 for m = 

0.29 mN; S = 0.68  for m = 2.84 mN). 

By contrast, the non-Gaussian nature of the displacement PDFs observed in 

experiments (= 3.4 for m = 0.29 mN;  = 4.5 for m = 2.84 mN) compare well with 

those obtained from simulations (= 4.0 for m = 0.29 mN;  = 4.6 for m = 2.84 mN). 

The displacement PDFs (Figure 4.10) obtained at a lower power (K=0.01 m
2
/s

3
) as well 

as at a higher power (K=1.21 m
2
/s

3
), however, paint a somewhat different story. Here, the 

PDFs obtained from the experimental data show that they are quite symmetric (S ~ 0) and 

Gaussian ( ~ 3.0). The simulations suggest that the PDF should be Gaussian at the low 

power (K = 0.01 m
2
/s

3
,  = 3.1) as found in the experiments; but it has strong exponential 

tails at a higher power (K = 1.21 m
2
/s

3
, = 5.3), which disagrees with the experimental 

observations. On the other hand, negligible values of the skewness (S ~ 0) obtained from 

simulations at both low and high powers suggest that the displacement distributions 

should be quite symmetric, which is consistent with the experimental observations. 

Figure 4.11 summarizes the experimentally obtained PDFs of the displacement 

fluctuation as a function of the power of the noise, along with the value of the kurtosis 

stamped inside each figure. The distribution is clearly Gaussian at a low power (as 

discussed above), but becomes non-Gaussian and asymmetric as the power increases. It 
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becomes Gaussian and symmetric again at a very high power. It seems that the effect of 

static friction is overcome at a very high power of the noise, which may indicate a subtle 

level of continuous transition occurring at the interface with increasing K. The Gaussian 

distribution at the very low power results from the insufficiency of the number of high 

acceleration pulses, i.e. the statistics is poor. This subject will be taken up again in the 

discussion section. 

 

Figure 4.11: PDFs of the dimensionless displacement     xpxxx /~   of a solid 

prism on a solid surface subjected to Gaussian noise of different powers (indicated in the 

top left corner). The applied bias is 0.29 mN. The value of the kurtosis () is stamped 

inside each PDF. Skewness values of the PDFs are 0.07, 0.27, 0.05, 0 and 0 for the 

powers 0.01 m
2
/s

3
, 0.04 m

2
/s

3
, 0.16 m

2
/s

3
, 0.43 m

2
/s

3
 and 1.21 m

2
/s

3
 respectively. 

 

At this juncture we would like to mention that a recent model on the slip 

avalanches [41] shows that local failure stress (‘pinning stress’) has to be overcome for a 

slip to occur. Depending on the weakening of the threshold failure stress, a continuous 

phase transition from brittle to ductile and hardening can occur. This may be somewhat 

related to our observations here.  
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4.4.5 Diffusivity: the effect of the noise strength and bias 

The experimental data of the stochastic displacement ( x ) of the prism as a 

function of time, as obtained from several tracks were combined in order to obtain the 

PDF of x  for K ranging from 0.0005 m
2
/s

3
 to 1.83 m

2
/s

3
 and m  ranging from 0.29 mN 

to 2.8 mN. These PDFs allowed the estimation of the diffusivities from the plot of the 

variance of the displacement 









222
 xxx  versus  , using the well-known 

expression:     ddD x 2/2 . Here we examine the time evolution of the variance of 

the displacement distribution corresponding to m = 0.29 mN and K = 0.04 m
2
/s

3
.  

 

Figure 4.12: Variance of the displacement of the glass prism as a function of time (○). 

Applied bias is 0.29 mN and the power of the Gaussian noise is 0.04 m
2
/s

3
. Lower inset is 

the enlarged view of the variance at short time region showing anomalous diffusivity, 

with even a negative diffusivity (~ -7000 μm
2
/s ) in the range of  ~ 0.021s to 0.025s.  
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The variance of the displacement fluctuation first increases sharply (Figure 4.12) 

followed by a decrease at s02.0~ ; it then increases linearly with time. Clearly, the 

prism exhibits an anomalous dispersion at short times. This kind of anomalous diffusive 

behavior at short times is reproducible and has been observed with other biases as well. 

The diffusivity that we report in this paper is obtained from the slope of the linear portion 

of the variance of the displacement as a function of    at a longer time scale. 

  

Figure 4.13: Log-log plot of the experimental diffusivity (□) of the glass prism as a 

function of the power of the noise (K) corresponding to the applied bias of 0.29 mN. Line 

I corresponds to the background noise (shown in right inset) and considered as zero 

diffusivity (marked in bracket). Stick –slip type motion is observed at the powers of 

0.0005 m
2
/s

3
 to about 0.002 m

2
/s

3
 whereas no stick-slip motion is evident for powers 

ranging from 0.01 m
2
/s

3
 to 1.8 m

2
/s

3
. 

 

The data summarized in Figure 4.13 show that there are three distinct transport 

behaviors of the prism.  The apparent diffusivity at the lowest power (0.0003 m
2
/s

3
) is 

already submerged into background noise of the system. Furthermore, at this power of 

the noise, no net drift of the solid object is observed.  This is like a solid phase. A phase 
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transition like behavior coupled with a stick slip motion of the object is observed (Figure 

4.13) as the power is increased from 0.0003 m
2
/s

3
 to 0.0005 m

2
/s

3
. The residence time in 

stick (solid like) phase decreases with the power of the noise. The frequent occurrences 

of the slip motion eventually merge into the fluid like random motion at higher powers (K 

> 0.01 m
2
/s

3
).   

The diffusivity of the prism in the fluid-like state varies with K with an exponent 

of 1.6, which deviates from that (3.0) predicted by de Gennes [33].
 
This is not surprising 

at first because de Gennes assumed that only dry friction operates at the interface. 

However, we suspect that another cause of this difference arises from poor correlations of 

displacements, which will be discussed below.  

4.4.6 Estimation of Diffusivity 

The diffusivity governed by purely kinematic friction ( 2/2

LKD  ) is in the range of 

10
7m

2
/s to 10

9m
2
/s for K ranging from 0.01 m

2
/s

3
 to 1.8 m

2
/s

3
 which is obviously much 

larger than the experimental values (~10
2m

2
/s to 10

6m
2
/s for same range of K) (Figure 

4.13).  By ignoring the kinematic friction, de Gennes [33] derived an equation for 

diffusivity for the dry friction case as follows: 

   
 

 
∬    

   

(     ) 
   [  (     ) ]

 

 

 4.9 

where,  p=/2K. 
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Diffusivities estimated using Eq. 4.9 varies with K with an exponent of 3. Furthermore its 

values are in the range of 10
3
 m

2
/s to 10

10 m
2
/s for the range of K as above, which are 

still larger than those measured experimentally. 

.   

 

Figure 4.14: Log-log plot of diffusivity D estimated for different powers of the noise (K) 

and biases: 0.29 mN(◊), 0.57 mN (□), 1.43 mN (∆), 2.28 mN (○), 2.84 mN (♦). Here the 

data corresponding to the stick slip motion of Fig. 13 for the applied bias 0.29 mN are not 

included.   

 

Experimental diffusivity data are summarized in (Figure 4.14). Clearly, our 

experimental data are not totally consistent with the predictions based on the simple 

model of de Gennes [33]. Our hypothesis is that the cause for the measured diffusivities 

being so much smaller than the predicted values is that the correlation time of the 

stochastic velocities is much smaller than either the Langevin or the dry friction times (

L  or  ).  Indeed, using the relationship between the diffusivity and the variance of the 
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velocity estimated  from the second moment of Eq. 4.5, at the bias of 0.29 mN, the 

estimated correlation time  )2/(* 2 Dv   is in the range of ~ 37s to 56 s, which is 

significantly smaller than either the timescale of kinematic friction 
L (0.06 s) or that of 

the dry friction 2/~  K (0.5 ms to 89 ms for K ranging from 0.01 m
2
/s

3 
to 1.8 m

2
/s

3
).  

Furthermore we notice that the power spectrum of the fluctuations of the displacements at 

most powers are rather flat at the time scale of the data recording (0.001 s << 
L  or 

 ).  

Based on the above scenarios, we envisage an extreme situation where the velocities are 

delta correlated, i.e.    (  ) (  )     (  -  ), and examine how the diffusivities 

estimated from this approach compare with those found experimentally.  Here, the time 

integral of the above velocity correlation function yields the diffusivity in real space, just 

as the integral of the correlation function of stochastic acceleration yields the diffusivity 

in velocity space. Within this model, the velocity vectors (Eq. 4.5or Eq. 4.6) are given by 

the base state solution of a probability diffusion equation (Eq. 4.3or Eq.4.4),
 
but they are 

propagated completely randomly producing a stochastic trajectory. 

In order to make the estimation of diffusivity, we first define a characteristic 

displacement (jump length) obtained from the following substitution: cxV / , x  being 

the jump length and c  is a characteristic time scale that we take to be the pulse width of 

the Gaussian noise.  We estimate the diffusivity from the trajectories simulated from this 

jump length distributions from Eq. 4.10 using the method described below. 
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Equation 4.10 is a modified version of Eq. 4.5, in which the velocity is replaced 

with cx /   . We generate a large matrix of jump length vectors ( x ) using Eq. 4.10 and 

randomly select them to construct stochastic paths over a longer time (2 s) duration. From 

these stochastic paths, we calculate the jump lengths for a larger time scale (0.001 s) 

(which also happens to coincide with the resolution time of the camera used in actual 

experiments).   

 

Figure 4.15: (a) Comparison between the experimental and the estimated drift velocities 

(Vdrift (exp) and Vdrift (cal)) as obtained from the trajectories created from the propagation 

of the steady state jump lengths by stitching them randomly. (b) Log-log plot of the 

diffusivity as a function of power of the noise. (□) represents the experimental results 

(ignoring the stick-slip phases of Figure 4.13), whereas the solid line represents the 

diffusivities estimated from the trajectories created by stitching the randomized jump 

length as mentioned above. The dashed and dotted lines represent the estimated 

diffusivities after switching off the dry friction and the kinematic friction terms of Eq. 

(10) respectively. 
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The jump lengths corresponding to 0.001 s are then randomly selected to 

construct stochastic trajectories of much longer duration (~ 50 s). From these simulated 

trajectories, the PDF of displacement was constructed for various values of  and the 

estimation of diffusivity was carried out in the usual way. Diffusivities were estimated for 

three different cases:  first by setting , second by ignoring the kinematic friction and 

third by considering both the kinematic and static friction. 

These simulations, as summarized in Figure 4.15, show that the diffusivities, in 

the absence of the dry friction, are higher than the experimental values and it varies 

almost linearly with K as is the case with the correlated kinematic diffusion. The 

diffusivities for the case of pure dry friction and those for simultaneous actions of both 

types of frictions have comparable values. They vary with K with an exponent ~1.8, 

which is also close to the experimental result (1.6).  We also estimated the drift velocities 

as well as the energy dissipation from the constructed trajectories when both the 

kinematic and static frictions operate. These values are also similar to those obtained 

from the experimental observations (Figure 4.15).  

4.4.7 Stochastic behavior of the PDMS grafted surfaces 

              For the PDMS grafted prism on a PDMS grafted silicon wafer, it was somewhat 

difficult to make measurements at various angles of inclinations as the prism slips easily 

on its own at angles greater than 1
o
. Furthermore, here, as the prism has a greater 

tendency to rotate about its axis than an unmodified prism on the roughened glass, care 

had to be taken in order to use only those tracks that did not exhibit any rotation for data 
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analysis. The drift and diffusivity values were estimated at 1
o
 inclination for a given 

power (K = 0.1 m
2
/s

3
) using 45 tracks, each lasting for 4.5 s to 5 s. The fact that the 

PDMS grafted prism slides easily at very small angle of the inclination of the supporting 

plate of a PDMS grafted silicon wafer suggests that the static friction is negligible here. 

On the other hand, the kinematic friction is non-linear as evidenced from the distributions 

of displacements (Figure 4.16).  

 

 

Figure 4.16: Experimental (Δ) and simulated (○) probability distributions of 

dimensionless displacements of a PDMS grafted glass prism moving on a PDMS grafted 

silicon wafer under the influence of a Gaussian noise ( K= 0.1 m
2
/s

3
) and a bias of 0.29 

mN at different time intervals as indicated inside each figure. The simulation is done 

using Eq. (2) with A=0.03 and n=0.4. 
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The displacement PDF is quite non-Gaussian at  = 0.005 s, which is supported by the 

high value of the kurtosis (However, at longer time intervals, the value of  

decreases to ~3.1, indicating that the PDF is more Gaussian. The distributions are 

somewhat skewed as evident from its values: 0.18, 0.26, 0.31, 0.32 for  = 0.005 s, 0.1 s, 

0.2 s and 0.3 s respectively. From a previous publication [42] we know that the PDMS 

grafted surfaces exhibit a linear kinematic friction at very low sliding velocity, but 

progressively become non-linear at high velocity. In the present case, the signature of a 

non-linear kinematic friction is evident in the non-Gaussian PDF of displacement as 

discussed above; it is also confirmed in the sub-linear profile of the mobility (Figure 

4.17) as a function of the power of noise. Drift velocity of the PDMS grafted glass prism 

on the PDMS grafted silicon wafer were measured from the displacement of ~3 cm as a 

function of time using a low speed (30 fps) Sony camera (DCR HC-85 NTSC) at eight 

different powers of Gaussian noise with K ranging from 0.04 m
2
/s

3
 to 1.2 m

2
/s

3
 at a bias 

of 0.29 mN. We attempted to fit the mobilities as a function of K with a velocity 

weakening form of the friction using an exponent of n = 0.4 in (Eq. 4.6). The low K 

regime are not fitted well with such a non-linear function, while the fit is reasonable at 

values of K   0.1, i.e. starting from the value of K used in our experiment. Using this 

non-linear from of kinematic friction, we simulated the PDFs at different values of  

using Eq. 4.2. The results summarized in Fig.16 show good agreements between 

experimental and simulated PDFs. The kurtosis for the simulated PDFs is high at short 

time, i.e.  4.39 for  = 0.005 s. However, the value of  decreases to 3.9, 3.4 and 3.3 

for  = 0.1 s, 0.2 s, and 0.3 s respectively. On the other hand, the simulated PDFs are 
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more symmetric (S= 0.02, 0.11, 0.03 and ~0 for  = 0.005 s, 0.1 s, 0.2 s and 0.3 s 

respectively) than the experimental results. 

 

Figure 4.17: The mobility of PDMS grafted glass prism on a PDMS grafted silicon wafer 

as a function of the power (K) of the Gaussian noises but at a constant bias 0.29 mN. The 

open squares are the experimental data. The solid line represents the mobilities estimated 

by dividing the drift velocity (first moment of the PDF given by Eq. 4.6 with A = 0.03 

and n = 0.4) with the applied bias force ( m ). 

 

From the gradient of variance of the displacement PDF with time, we estimate the 

diffusivity of the PDMS grafted prism on the PDMS grafted silicon wafer as 1.7x10
4
 

m
2
/s. This value is much lower than expected of a simple diffusion controlled by linear 

kinematic friction. Here too, as is the case with the prism on a roughened glass, the power 

spectrum of the displacement at a frequency of 1 kHz is quite flat. We thus estimated the 

diffusivity using the approach described before (section 4.4.6), assuming that the 

stochastic velocities are delta correlated.  The stochastic trajectories were simulated by 

stitching randomly selected jump lengths obtained from velocity distribution given in Eq. 
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4.6 using the substitution   cxV /  as before. The drift velocity (1.2 mm/s) of the 

simulated trajectories is almost same as the experimental value (1.1 mm/s). The 

diffusivity (10
4
 m

2
/s) obtained from these simulated trajectories is also close to the 

experimental value (1.7x10
4
 m

2
/s). The fact that the simulated diffusivity value is 

slightly lower than the experimental value is expected, as in the real situation, the 

correlation time is finite, although it is smaller than  or L. 

  

4.4.8 An Einstein-like Relation 

A driven stochastic system with a thermal noise can be subjected to the analysis 

of the fluctuations of various types of thermodynamic parameters. As we pointed out 

previously (section 4.4.2), a work fluctuation like relationship is easily obtained in our 

system if the work values are non-dimensionalized by dividing it with D/. In thermal 

system, as D/is equal to kBT, it is of interest to find out if a similar equation prevails in 

our case. We thus explore if an Einstein-like relationship, i.e.  1*/2  KVD drift
, can be 

obtained for this athermal system. However, as the characteristic timescale 
* is not 

known a priori, we resort to another approach.  
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Figure 4.18: A plot of  
2
v  against /driftKV  at different biases: 0.29 mN (◊), 0.57 mN 

(□), 1.43 mN (∆), 2.28 mN (○), 2.84 mN (♦). 

 

While the diffusivity is estimated from the temporal integration of the velocity correlation 

function (VCF), it scales with the variance of velocity (
2
v ) as *2~  vD

 
 since the VCF 

usually decays exponentially with time for both the kinematic and static friction [33]. We 

thus test if 1/2 driftv KV  with  being a numerical constant. When the variance of the 

velocity, which is estimated from the second moment of P (V) using Eq. 4.5, is plotted 

against /driftKV  with the data collected at different biases and K (Fig. 18), they cluster 

nicely around a straight line with its slope approaching unity. This suggests that 

1/2 driftv KV , which is a kind of manifestation of the Einstein-like relation for this 

system. 
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4.5 Discussions 

4.5.1 Diffusive motion of the prism and the phase transition like 

behavior 

  The prism exhibits different types of drift and diffusive responses to external 

vibration. At a very low value of K, the prism does not drift. However, as K increases, it 

drifts with velocities increasing with the power of the noise and the imposed bias. Overall 

linear response of the sliding dynamics confirms our previous observations [27] and is 

consistent with other studies published in the literature [43–45]. The strong dependence 

of the drift velocity on the power of the noise is a departure from the standard driven 

Brownian system, where Vdrift is simply a product of  and L . Previously [27], we 

presented an approximate expression for the drift velocity of an object on a surface, 

where both the dry and kinematic frictions operate:
 
 

        
 ̅  

        
 4.11 

Equation 4.11 indeed predicts that Vdrift increases sub-linearly with K. In the 

absence of the dry friction, i.e. 0 , the drift velocity is exactly same as that of 

Einstein’s value ( L ). In the presence of a finite , Vdrift  increases with K and 

approaches the Einstein’s value only in the limit of K . Equation 4.11 also predicts 

that Vdrift should increase linearly with the bias  . All these predictions are consistent 

with the experimental observations. The sub linear increase of Vdrift with respect to K is 

not only observed when dry friction operates, but also with a velocity weakening friction 
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as is the case with the surfaces grafted with PDMS chains. For the case of a strong dry 

friction, i.e. when 
2L>>K, 2/ KVdrift

. This illustrates an interesting situation, 

namely that a linear relation prevails between the drift velocity and the driving force in a 

stochastic situation even when no kinematic friction may be operating at the interface. At 

the lowest power (0.0003 m
2
/s

3
), we do not detect any diffusive motion of the prism as 

any fluctuation exhibited by the prism merges with the background noise. At an 

intermediate level of the injected power, the glass prism exhibits a net drift but 

accompanied with intermittent stick-slip modes. Literature is abounding with the 

observation of stick slip motion in various systems of interests to tribologists and wetting 

specialists. The subject of tribology is beautifully summarized in a recent paper [46].  

Stick-slip motion is evident in the relaxation of the contact line of a liquid drop [23], in 

the dynamics of granular particles [47], migration of cells [48,49]
,
  on a surface, frictional 

sliding between lubricated and unlubricated surfaces [50,51] as well as in 

earthquakes [52]. Many of these instabilities are due to the competition between elastic 

restoring force and friction coupled with shear weakening of the interface [47,53]. An 

interesting new picture of stick-slip motion has recently been provided [54], in which Eq. 

4.1 is solved without any applied bias within the path integral framework of Onsager and 

Machlup. The authors found two kinds of solutions referred to as direct and indirect 

paths. The direct optimal path is characterized by continuous velocity and acceleration of 

the slider corresponding to the slip phase. The indirect optimal path corresponds to the 

sticking of the object to the surface for some finite time. These indirect paths have been 

interpreted by the authors as leading to a stick-slip motion. Our approach to explaining 
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the stick-slip motion is rather classical. By modifying Eq.4.1 with a periodic perturbation 

to the background friction, we find that the slider can get trapped to the potential well till 

a strong acceleration takes it to another potential well, leading to a stick-slip motion. 

When trapped in a potential well, the slider may still undergo a restricted diffusive 

motion without a net drift [55], capturing which is beyond our current experimental 

capability.   

At this juncture, we would like to point out that the way the static friction is 

idealized in Eq. 4.1 may not be quite correct, as there are indications [56,57] that some 

small scale motion may exist when the external bias is smaller than m. We have seen 

that a non-linear power law friction may be adequate in describing the drift velocity and 

the displacement PDFs. However, the situation may also be described by replacing the 

dry friction term with a different form of non-linear friction as follows:  

 
  

  
 

 

  
      (  )   ̅   ( ) 4.12 

Equation 4.12 with a high value of indeed reproduces all the drift velocity data as Eq. 

4.1.  It also reproduces the exponential tails of the displacement PDFs.   

 

4.5.2 Gaussian and non-Gaussian PDF of displacement fluctuations 

One new, and potentially important, observation in this work is that the 

displacement PDF is Gaussian at a low power, but it exhibits pronounced exponential 

tails at higher powers. The Gaussian distribution at a very low power results from the 
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lack of sufficient high energy pulses, thus leading to poor statistics. As the power of the 

noise increases, statistics is improved and the displacement PDF starts exhibiting 

asymmetry with exponential tails. The kurtosis of the PDF is above the value of 3, 

expected for a non-Gaussian distribution, for K ranging from 0.04 m
2
/s

3
 to 0.43 m

2
/s

3
, but 

it becomes Gaussian again at K = 1.21 m
2
/s

3
.  This transition from a non-Gaussian to a 

Gaussian PDF might indicate a transition from a state governed by dry friction to a state 

governed by a linear kinematic friction, although the displacement correlation remains 

poor as is evident in the very low diffusivity. 

A non-Gaussian PDF of displacement is also evident for the case of a PDMS 

grafted prism sliding against a PDMS grafted silicon wafer, where a velocity weakening 

non-linear friction seems to operate. However, in this case, the distribution is strongly 

non-Gaussian only at a short time scale (i.e. 0.005 s), but it becomes more Gaussian at a 

longer time scale. The general features of the experimental observations are borne out 

reasonably well with Langevin dynamics simulation with a non-linear kinematic friction.  

            We anticipate that a non-Gaussian velocity distribution may also be observed for 

a colloid particle undergoing a Brownian motion in weak adhesive contact with a soft 

substrate. As the particle moves, it forms new bonds in the advancing edge, but breaks 

bonds at the trailing edge resulting in hysteresis of adhesion.  The Fokker-Planck 

equation for the motion of the colloidal particle may be of the form: 

 
  

  
    

|  |

  

  

  
  

   

   
 4.13 
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Here,   is a measure of adhesion hysteresis. The stationary solution of the displacement 

is exponential. The stochastic path of the colloidal particle for a given duration   is also 

expected to be exponential with a suppressed diffusivity. These considerations may be 

relevant to the results reported by Wang et al. [6].
 

4.5.3 Einstein-like Relation 

We now turn our discussion to the Einstein-like relation that we observed in our 

system, which have similarities to some of the previous studies. D’Anna et al. [44] 

conducted an experiment, in which a torsional pendulum was immersed in a granular 

medium, which was fluidized by strong agitation with a white noise. Meanwhile, a 

sinusoidal torque was imposed on the pendulum itself. These measurements allowed an 

estimation of the granular viscosity, which decreased with the strength of the noise with 

an effective temperature that also scaled linearly with the power of the noise.  

A different study [45] focused on the behavior of a single object that is a small 

ball placed on a smooth screen while exposing it to an upward flow of gas. The 

turbulence produced due to the flow of the gas about the ball created a random upward 

and downward motion of the ball, which was consistent with the Langevin dynamics with 

the random force and a frequency dependent drag satisfying a FDR.  

Our study is somewhat comparable to that of Ojha et al. [45] in the sense that the 

system can be characterized by a single “effective temperature”.  Our studies conducted 

with drift velocities and diffusivities estimated at different values of K and   comply 

with an Einstein-like relation, where we find 1/2 driftv KV , implying 
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2// * KmD  . Here *  is a characteristic velocity correlation timescale. One 

intriguing observation is that the diffusivity increases with bias at a given value of K 

implying that fluctuation increases with force. This type of result may be expected in the 

case of a thermally activated diffusion, where diffusivity could take the form,  D = DE exp 

[(f-Ea) / kB T]. Here DE is the Einstein’s diffusivity (KL
2
/2),  f  is the bias which reduces 

the activation energy Ea  and  is a length scale separating the potential minima. If we 

develop a parallel argument to explain our current result, the molecular activation states 

would plausibly be related to the metastable states on the surface due to defects with the 

thermal energy replaced by mK*/2. The prediction of such an equation is qualitatively 

consistent with our observation in that the diffusivity increases with both K and bias. This 

equation also predicts that all the diffusivity data would converge to DE at high value of 

K as seen in our experiments. In fact, at a value of K~8 m
2
/s

3
, all the diffusivity data seem 

to merge, which also gives an estimate of DE ~ 2 x10
7
 m

2
/s at this value of K.  The 

possibility of the diffusivity being an activated process where the metastable states 

provide the energy barrier and the mechanical noise provide the excitation is an 

interesting prospect. However, more studies would be needed to find out if a Kramer like 

transition may occur in such systems.   

We finalize this discussion section by re-iterating the fact that not only the 

magnitude of the experimental diffusivities are considerably smaller than that predicted 

by de Gennes [33], the power law exponent (1.6) of the D-K relationship also differs 

from the prediction (3) of de Gennes. Typical methods to construct diffusive trajectory is 
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to establish the base state of the velocity distribution function, as is given in equations 

4.5or 4.6 and then to propagate the base state solution temporally either using an Onsager 

Machlup or a Fokker-Plank approach. What is striking in the current situation is that no 

special method is needed to propagate the base state vectors in time since the velocities 

are almost delta correlated. The method provides estimation of diffusivities that are close 

to the experimental values not only for the case of a sliding prism on a rough surface, but 

also for a PDMS grafted prism sliding on a PDMS grafted silicon wafer. The method 

works because the correlation time of stochastic velocities is very small compared to L  

and 
 .  With the above caveats, it is still intriguing that an Einstein- like relationship is 

obtained. These considerations may be of importance in other athermal systems, such as 

granular gas, where the noise correlation time and frictional time scales may be 

comparable in some cases. 

4.6 Conclusions 

By studying the drift and the diffusive behavior of a small solid object on a solid 

substrate as a function of the strengths of the bias and the noise, we arrive at the 

following conclusions: 

1. When a non-linear friction operates at the interface, the displacement distributions are 

non-Gaussian and asymmetric, with the asymmetry increasing with the bias.  

2. Distinct solid-like, a fluid-like and transition regions are identified.  
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3. An Einstein-like manifestation of fluctuation dissipation relationship is obtained in 

spite of the evidence that the stochastic velocities may be poorly correlated.   

4.7 Appendix 

4.7.1 Surface Properties of Roughened Glass Surface: 

The roughness of a grit blasted glass surface was estimated using an optical 

profilometer (STIL micromeasure, CHR 150-N). Because of poor reflectivity of the glass 

surface, it was coated with a thin layer (~12 nm) of Au-Pd (~85%-15% weight percent) 

using a sputter coater (Polaron SEM coating unit E 5100, Pressure ~0.03 Torr in Argon 

atmosphere). Seven profilometric measurements were conducted at different spots on the 

surface with a step size of 2.5m and scanning area of 500m x 500m including one 

of 1 mm x 1 mm area. Using “3D Mountains Map”, a data post processing software, the 

root mean square (rms) value of the height (in Z-axis) fluctuation was found to be ~ 16 

m with a slight variation (~1m) of its value from spot to spot. The rms value of the 

height fluctuation of the control (un-roughened) surface was ~0.4 m which is close to 

the resolution range of the profilometer. From the power spectrum of the height 

fluctuation along the X-axis, a correlation length of the roughness was estimated as 

~8m.   

 From the density of the asperities (~1300 asperities/mm
2
) on the rough surface, 

we estimate that about 1.6 x 10
5
 asperities are available to make contact with the glass 

prism during sliding measurements. Although only a fraction of those asperities should 
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actually be in contact, enough numbers of contacts are probably made and its fluctuation 

is probably small so that sliding behavior of prism is rather uniform, when observed at a 

large scale. In Figure 4.19, the position of the glass prism is plotted with time during a 

sliding experiment, which yielded an excellent straight line over the length of ~35 mm 

with negligible fluctuation of velocity. This suggests that there is no gross variation of 

surface properties. When measurements are done at different spots on the surface, highly 

reproducible velocities (1.2 ± 0.04) mm/s are also obtained.  However, some fluctuation 

of the contact of asperities at the microscopic level cannot be ignored. This point was also 

discussed by Buguin et al [58].  

 

Figure 4.19: Displacement of a glass prism on roughened glass support subjected to a 

Gaussian noise of 0.1 m
2
/s

3
 under the applied bias of 0.57 mN. 

One question that arises is whether there are wears occurring on the smooth glass 

prism during sliding. Regular optical microscopy did not reveal any such features. Hence, 

the prism was subjected to Atomic Force Microscopy (Digital Instrument, USA). These 

studies conducted over a scanning area of 100 m
2
 on different spots show that the prism 
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is fairly smooth (root mean square roughness ~ 4 nm). Very rarely, a scratch line of width 

~1m and depth ~7 nm could be observed. However, these seem to be the native features 

of the surface, and not the wear marks, as they were also observed on a prism that were 

not subjected to sliding against the rough surface. The area occupied by the scratch marks 

is however highly negligible in comparison to the total surface area under investigation.  

4.7.2 Drift Velocity and Diffusivity of Prism on the Rough Surface: 

Comments on Equation 1 in the Text 

In this section, we discuss as to what extent Eq. 4.1 may be valid in describing the motion 

of the glass prism on the roughened glass surface.   

 

Figure 4.20: Drift velocity as a function of power of the Gaussian noise at an applied bias 

of 1.43 mN is shown. The open squares are experimental data. The blue line represents 

drift velocity obtained from first moment of PDF given by Eq. 4.5 with 

sandm
2
/s3 whereas the pink solid line depicts drift velocity estimated 

using Eq. 4.6 using A = 0.02 and n = 0.2. The pink dotted line depicts drift velocity 

estimated using Eq. 4.5 neglecting the kinematic friction term (i.e. L = and brown 

dashed line depicts drift velocity obtained from first moment of PDF given by Eq. 4.5 

without the static friction term (i.e.  = 0). 
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At the onset of this discussion, we point out that we have also examined if a highly non-

linear friction of the type described in Eq. 4.2 is adequate in describing the observed 

behavior.  We consider the following possibilities: the friction is given only by the 

kinematic term V/Lby the dry friction (V)combination of the above two terms and a 

non-linear friction  ~
n

VV )( . Using the appropriate forms of equations 4.5 and 4.6 we 

first estimate the drift velocities of the prism. 

The data summarized in Figure 4.20 show that the drift velocity is independent of 

the power of the noise if the friction is purely kinematic. On the other hand, if only dry 

friction operates, the drift velocity increases linearly with power (K). Neither of these 

predictions is consistent with our experimental observations.  When both the dry and 

kinematic frictions are taken into account, or when a non-linear friction (~
n

VV )( with n 

= 0.2) is assumed to operates at the interface, the sub-linear velocity profile, as observed 

in experiments, are reproduced. Now the question is, which of these two forms is the 

better representative of the situation? 

In an effort to discriminate between the two cases, we also solved the full 

Langevin equations (4.1 and 4.2) to obtain the PDFs of the displacement distribution for a 

given value of K and .  The results summarized in Figure 4.21 show that both the models 

predict non-Gaussian behaviors, which are non-discriminatory. We thus resort to a 

different strategy.  Equation (1) predicts that in the absence of noise, the object would not 

move till a force of sufficient magnitude is applied. This is consistent with our 

experimental observation. When the prism is placed on the rough surface and the latter is 
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gently tilted, the prism does not move till a critical angle of ~ 17
o
 is reached, beyond 

which the prism slides on the surface.  This is, however, in contrast to the case of the 

PDMS grafted prism on the PDMS grafted silicon wafer, where the prism start to slide at 

an angle above 1
o
. 

 

Figure 4.21: The PDF of the dimensionless displacement of a smooth glass prism on a 

rough glass support with an applied bias of 0.29 mN and a Gaussian noise of power 0.04 

m
2
/s

3
. The blue triangle (Δ) represents experimental data, whereas the solid line is the fit 

to that data with an asymmetric double sigmoidal function. Pink squares (□) and green 

circles (○) depict the PDFs obtained from Langevin dynamics simulation using Eq. 4.1 

and 4.2 respectively.  

 

Existence of this critical angle for the glass on glass suggests that there is a significant 

static friction, which was also ascertained in a different experiment, in which the prism 

was placed on a tilted (4
o
) rough plate, which was subjected to sinusoidal accelerations 

(100 Hz) of various amplitudes. The prism does not move up to an acceleration of ~3 

m/s
2
 beyond which the velocity of the prism increased linearly with the imposed 

acceleration (Fig. S4) .  The above experiments suggest that the prism has to overcome a 
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threshold force before it moves on the surface.  Next we investigated if the velocity 

relaxes exponentially when the prism moves above the threshold force. In order to 

achieve this goal, we followed a previous suggestion of de Gennes. [33] After placing the 

prism on a horizontal rough surface, it was knocked at one edge. The prism moved over a 

distance of about 4 cm and then stopped. The decay is exponential with a time constant of 

about 0.08 s. At this juncture, we would also like to mention that the measurements of the 

drift velocity with the sinusoidal vibrations as carried out with two different surfaces 

superimpose onto each other. The displacement relaxations were also carried out on 

different tracks on two different surfaces over a length of 4 cm. The data of three such 

tracks are shown in Figure 4.22 indicate that they are highly reproducible.  

 

Figure 4.22: (a) Plot of Vdrift/sin () as a function of amplitude of sine wave of 100 Hz for 

a glass prism on a rough glass support. (b) Plot of displacement (which needs to be 

traversed before stopping) as a function of time for a glass prism on a horizontal rough 

glass support when the former is knocked at an edge. Three tracks nicely fall on a single 

curve having exponential relaxation. 
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The above experimental results are only indicative of the presence of static and kinematic 

friction. In the real experiment, the prism is sheared against the asperities with high 

stochastic forces lasting for a very short period of time. To the best of our knowledge, the 

behavior of friction under these conditions is quite unknown. We take the fitting of the 

experimental drift velocities at seven different powers and at five different biases using 

Eq. (5) with only two adjustable parameters as evidence that Eq. 4.1 is a good, although a 

minimal, model in our system. It also reproduces the exponential tails of certain 

displacement distributions quite satisfactorily and provides the base state PDF of the 

velocities. However, there is always the scope in improving this model, which is the 

subject of ongoing research in our laboratory.   

4.7.3 Power Spectrum of the Noise 

      Traces of a typical noise and its power spectra are shown in figure S5 at two different 

sampling frequencies.  With a total bandwidth (-fmax to + fmax, fmax being the maximum 

frequency) of 10 kHz, the spectrum is quite flat (figure S5, left). 

 

Figure 4.23: Typical traces of the acceleration pulses (inset) and their power spectra taken 

at two different bandwidths corresponding to K =0.16 m
2
/s

3
. 
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 Thus the noise can be considered to be a white for an actual bandwidth (0 to fmax) of 5 

kHz, which corresponds to the specification of the oscillator by the manufacturer [59]. 

We also checked what the spectrum is like when a total bandwidth of 25 kHz is used. 

Here, we see that above about 5 kHz, the spectrum tends to drift upward indicating a 

slight blue shift. After about ~10 kHz, a downward drift is observed indicating a 

Brownian shift. Using 10 kHz as the corner frequency (Figure 4.23, right), a time constant 

c, as estimated from 1/(2f), is about 16 s. However this time scale corresponds to a 

slightly tainted white noise. More correct time constant should be about 30 s (Figure 

4.23, left) as the spectrum corresponding to this time scale represents an untainted white 

noise. The important point to convey here is that the above time scale is much smaller 

than the Langevin (0.06 s) or the dry friction time scale  ~ 2/K (500 s to 0.1 s for K 

ranging from 0.01 m
2
/s

3
 to 2 m

2
/s

3
).  Another issue that deserves comment here is the 

possible reduction of the bandwidth of the oscillator due to its coupling with the support. 

We found that a lightweight support (mass = 40 g) made of aluminum did not reduce the 

bandwidth of the oscillator appreciably from its nominal value of 5 kHz.  

4.7.4 Power Spectrum of Displacement 

             As mentioned in the text, the displacements of the prism were recorded at a 

time resolution of 0.001 s. The power spectra of these displacements at a sampling 

frequency of 1 kHz are quite flat at low powers (Figure 4.24 and Figure 4.25). At high 

powers (for a smooth prism on rough support), somewhat correlated signal becomes 

apparent at the higher frequency range. From the corner frequency of this power 
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spectrum, a relaxation time of ~ 1 ms is estimated, although its actual value is probably 

smaller than a 1 ms, considering the fact that the slope of the power spectrum is about 

1.4. In any case, even this relaxation time is considerably smaller than either the 

Langevin time scale (0.06 s) or the dry friction time scale  ~ 2/K (0.06 s).   

 

Figure 4.24: Power Spectra of displacements of glass prism on rough glass support at two 

different values of K [0.04 m
2
/s

3
 (a) and 1.2 m

2
/s

3
 (b)] taken at the total bandwidth of 1 

kHz. 

 

Figure 4.25: Power spectrum of the stochastic displacement of a PDMS grafted prism on 

a PDMS grafted silicon wafer with K=0.1 m
2
/s

3
. Total bandwidth is 1 kHz. 
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4.7.5 Rate of Work Done by Friction 

In order to further validate the method used in section 4.4.6 to estimate diffusivity and 

drift velocity using the assumption that the velocities are delta correlated, we estimate the 

energy dissipation using the computed trajectories and compare these with those found 

from experiments. Neglecting the work done by the external noise, the average rate of 

work performed on the prism (per unit mass) is composed of the following terms: LdriftV /2

, V  and driftV . The term LdriftV /2  is due to kinematic friction, the second term is due 

to dry friction and the third term is due to external force. As the rates of work done due to 

kinematic friction and applied bias are negligible in comparison to that due to dry 

friction, we only compare the values of V  obtained from experimental data and that 

calculated from simulated trajectories. Figure 4.26 shows that these values do not differ 

to a significant degree, thus providing further support to the methodology described in 

section 4.4.6.   
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Figure 4.26: Energy dissipation rate due to static friction as a function of power of the 

noise estimated from experimental observations and from trajectories using Eq. 4.10. The 

applied bias is 0.29 mN. It should be borne in mind that these velocities are approximate 

values, which are estimated from the displacements over a timescale of 0.001 sec. 

 

 

4.7.6 Relaxation Time from Work Fluctuation 

If the Einstein relation D/=mK*/2 holds for the diffusive drift of the prism, then 

Eq. (8) can be written in the following form:

     

  

 
 (   )

 (   )
    [

   

    
] 4.14 
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Figure 4.27: Work fluctuation plots for two cases. (a) bias is 0.29 mN (b) bias is 0.58 

mN. All the plots are for 0.2 s at three different powers as shown in the inset of the 

figures. From the slopes of these plots, the values of *
 are estimated as 93 s for K=0.04 

m
2
/s

3
; 44 s for K=68 m

2
/s

3
and 33 s for K=1.21 m

2
/s

3 
at the bias of 0.29 mN. At a 

higher bias of 0.58 mN, the values of *
 are estimated as 150 s for K=0.04 m

2
/s

3
; 180 

s for K=68 m
2
/s

3 
and 99 s for K=1.21 m

2
/s

3
.  

 

According to Eq. 4.14, a plot of  
)(

)(
ln





WP

WP





 

versus W  should be a straight line, the 

slope of which provides an estimate of the relaxation time * . This is in the same spirit 

as that of a previous publication of Feitosa and Menon  [60], although that work was 

concerned with the power fluctuation in a granular gas. 

Figure 4.27 shows such plots at different values of K for two different biases. The 

relaxation time 
* is estimated to be in the range of 33 s to 93 s for a bias of 0.29 mN, 

which are comparable to the values estimated in section 4.4.6.  Unfortunately, similar 
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correlations could not be constructed at higher biases, as the statistics of occurrence of 

negative fluctuation of displacement becomes very poor. 

4.7.7 Diffusive Behavior at Short Time Scale 

 

Figure 4.28: At short time scale, the prism exhibit anomalous diffusive behavior at a bias 

of 0.57 mN (K= 0.04 m
2
/s

3
 ) as is the case with a lower bias reported in FIG 12 in the text. 
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5. CHAPTER FIVE: Stochastic Rolling of a Rigid Sphere 

in Contact with Soft Rubber3 

 

5.1 Introduction 

We have recently been interested in studying [1–3] the role of non-linear friction in the 

stochastic motion of a small solid object or a liquid drop on a solid support in the 

presence of an external noise and a bias. Here, the system size is selected to be large 

enough to be decoupled from the internal noise, but small enough to respond to an 

external perturbation in a measurable way. In these cases, the drift velocity increases 

somewhat sub-linearly, but the diffusivity increases super-linearly [1] with the strength of 

the noise. The displacement fluctuation exhibits a non-Gaussian behavior at a short time 

scale, but a Gaussian behavior at a longer time scale. Non-Gaussian systems response has 

also been reported in the past in the context with granular flow  [4–8], hydrodynamic 

turbulence [9–11], dusty plasma  [12], Rayleigh-Bernard convection  [13], and self-

propelling particles  [14]. Explanations for some of these observations have been offered 

on the basis of a joint probability distribution of the forcing and response functions  [11] 

as in the power input distribution, within the framework of superstatistics  [15,16]
 
as in 

the velocity distribution in turbulence, and inelastic collisions of granular particles  [17].  

The results of our stochastic sliding experiments  [1–3] can be fairly understood within 

                                                 
3
 This work has been published as: P. S. Goohpattader, S. Mettu and M. K. Chaudhury; Stochastic rolling 

of a rigid sphere in weak adhesive contact with a soft substrate. Eur. Phys. J. E, 34, 120 (2011). 

http://www.researchgate.net/researcher/16013854_P_S_Goohpattader
http://www.researchgate.net/researcher/8918459_M_K_Chaudhury
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the framework of a Langevin dynamics where the friction has a non-linear component, as 

was first pointed out by Caughey and Dienes  [18].  Being inspired by these previous 

studies, here we explore how rolling of a sphere is affected by a non-linear friction and a 

random noise. Additional inspirations for these studies were derived from a recent 

experiment  [19], in which non-Gaussian displacement statistics was observed with a 

colloidal particle undergoing Brownian motion in contact with a soft substrate.  

Specifically, we studied the dynamics of a small sphere rolling on a fibrillated 

rubber  [20] surface in the presence of a random mechanical noise.  A fibrillar surface 

mimics the features of well decorated asperities with which to study the physics of 

pinning-depinning transition  [21] and bioinspired
 
adhesion  [20]. The analysis of the 

stochastic rolling data required us to conjecture a complex non-linear model of friction 

with the non-linearity decreasing with the strength of the noise. Additional experiments 

were designed to interrogate this complexity by submitting the ball to a deterministic 

asymmetric vibration and a stochastic noise.  

The dynamics of the motion of  a line that is pinned randomly by defects  [22] is 

supercritical in  the sense that no motion is observed when the applied force is less than a 

threshold value, above which the velocity (V) usually grows non-linearly with the applied 

field. The extended relationship between the force and velocity can, however, be quite 

complex. For example, in the peeling of a soft rubbery adhesive from a substrate  [23] it 

is known that the adhesion force first increases with velocity. After reaching a peak 

value, the force decreases only to rise again at even higher velocities.  The friction of a 
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soft rubber  [24–27] on a solid substrate also exhibits a complex velocity-force 

relationship  [28,29] that is somewhat similar to that of the peeling of a viscoelastic 

adhesive from a surface.  

Obtaining adequate expressions for velocity dependent friction or crack 

propagation is not only important for the macro-scale descriptions of these phenomena, 

they are also critical to the development of appropriate molecular and/or mesoscopic 

level models of adhesion and friction. During the course of this work, we also explored 

whether it is possible to obtain an insight into how friction or adhesion depends over a 

wide range of velocity by subjecting a system to random forces of various magnitudes, 

and examining its stochastic behaviors. The picture of friction that emerged from such a 

study could serve as a guideline for future experiments with which to explore the 

dependence of rolling friction on wide range of state variables.   

5.2 Theoretical background 

The stochastic motion of an object on a surface in the presence of a Coulombic 

friction  [30] exhibits certain unique characteristics that are different from the dynamics 

originating from a linear kinematic friction. For example, while the steady state velocity 

distribution is Gaussian (mesokurtic) with a linear kinematic friction, it can be super 

Gaussian (leptokurtic) with a Coulombic or a non-linear friction.  Furthermore, the self-

diffusivity with a Coulombic friction depends more strongly on the strength of the noise 

than is the case with the linear kinematic friction  [1]. The problem of Coulombic friction 

in a stochastic setting was first tackled by Caughey’s group  [18,31]
 
at Caltech about fifty 



Rolling  friction 

 
 

136 

 

years ago, within the framework of a Fokker-Planck equation. Several other studies 

followed the lead of Caughey  [32–34] in the context of the random motion of sliding 

buildings in response to earthquake. More recently, the problem of stochastic motion 

involving Coulombic friction has been enlivened by de Gennes  [35] as well as by 

Kawarada and Hayakawa  [36] that also received rigorous treatments of path 

integral  [32,37]  and Fokker-Planck  [38,39] formalisms in the past and recent times. 

Major progress has recently been made by Menzel and Goldenfeld  [39], who focused on 

the displacement statistics associated with the random motion governed by Coulombic 

friction using a Fokker-Planck equation, which was previously addressed using a pulse 

train excitation approach  [40] or a numerical integration of the Langevin equation  [1–3]. 

When both a Coulombic and a viscous friction are at work, Menzel and Goldenfeld  [39] 

demonstrated clearly that the displacement statistics at different time scales are not self-

similar – it is exponential at short time scale and Gaussian at a longer time scale, which is 

consistent with the recent experimental observations  [1–3,19]. In spite of the non-

Gaussian fluctuation, the variance of the distribution grows linearly  [1,2] at the large 

time limit. Similar observations were also made by Wang et al  [19] in an unusual 

Brownian motion of a colloidal particle in contact with a microtubule. When a bias is 

imposed  [1,2], the object drifts with a velocity that increases sub-linearly with the 

strength of the noise, but linearly with the applied bias. This linear growth of 

displacement variance with time with a non-Gaussian statistics is not intuitive, but it is 

observed within the numerical solution of a Langevin  [1–3] and/or a Fokker-Planck  [39] 

equation.   
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In order to focus our discussion, let us consider a modified Langevin 

equation  [1–3,18,41]: 

 
  

  
 

 

  
  ( )   ̅   ( ) 5.1 

Here, V is the velocity of the particle,    is the external force divided by the mass of the 

object, L is the Langevin relaxation time , and  t  is the time dependent acceleration of 

the white noise, the power (or the noise strength) associated with which is K.  The second 

term on the left of this equation is due to the linear kinematic friction and the third term is 

due to the Coulombic friction.   is the magnitude of the dry friction expressed in terms 

of the static friction force divided by the mass of the object.  If  is smaller than   t 

, the object moves. On the other hand, if  )(t   < , the object remains stuck to the 

surface, unless its momentum gained from the previous impulse is significantly 

large  [35]. It will set into motion again if another strong acceleration pulse )(t  rescues it 

from the stuck state. As the non-linear dry (or Coulombic) friction exhibits a jump 

discontinuity at V=0, it is convenient to multiply   with a signum function  V  which 

is positive when V > 0 and negative when V < 0 with   00  .  Within the above 

formalism, there is no operational difference between dry friction (solid on solid), wetting 

hysteresis (liquid drop on solid), or adhesion hysteresis  [42] as it appears in rolling 

motion.  

           Caughey and Dienes  [18] considered Eq. 5.1 (without the bias and the kinematic 

friction terms, i.e. 0  and L ) and its corresponding Fokker Planck equation in 
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order to obtain an expression for the transition probability density in the velocity space. 

Their results showed that normal diffusive like motion prevails even when the dynamics 

is governed by the non-linear friction but the diffusivity (D 43 /~ K ) varies more 

strongly with the power of the noise than the case with a linear kinematic friction ( KD ~

). Another important finding of Caughey et al  [18] is that the transition probability 

density at the stationary state is exponential with velocity.  

            Although our recent interests to study the role of non-linear friction in stochastic 

motion stem from its relevance to the problems of soft matter physics, the early interests 

in this subject arose from its importance in studying the sliding of the building 

foundations in response to earthquake.  In this arena, following the lead of Caughey and 

Dienes  [18] , Ahmadi  [33] and Crandall et al  [34] presented some approximate, but 

useful results. Below, we briefly review and extend certain predictions of the above 

authors, which would be important in interpreting the results of the experiments 

performed by us.    

The non-linear nature of Eq. 5.1 makes it cumbersome to treat it analytically. As 

far as average values are concerned, one way to tackle the problem is to consider a 

classical linear version  [18,43] of this equation and estimate the equivalent of the 

Langevin relaxation time. Following Caughey  [18,43] and Crandall et al  [34], we 

express Eq. 5.1 (without the bias) in the form shown in Eq. 5.2 with the addition of a 

remainder term   as in Eq. 5.3.  
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   ( ) 5.2 

   
 

  
  

 

  
  ( )  5.3 

The criterion for equivalent linearization is to minimize the average value of    with 

respect to   
 , which leads to the following equation: 

 
 

  
  

 

  
 

 〈 ( ) 〉

〈  〉
 5.4 

Calculation of the averages shown in Eq. 5.4 requires an expression for the stationary 

probability density of velocity, which can be obtained by setting the diffusive flux in the 

velocity space to zero:  

 
 

 

  

  
  

| |

 
  

  

  
   5.5 

The stationary velocity distribution (P(V)) is  

  ( )       ( 
  

   
 

 | | 

 
) 5.6 

 

The averages in Eq. 5.4 can now be carried out with the velocity distribution function 

given in Eq. 5.6.  The analysis can be simplified if the exponential term (due to 

Coulombic friction) of Eq. 5.6  dominates over the kinematic term, which is often the 

case. One thus obtains: 
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 5.7 

Equation 5.7 defines the equivalent relaxation time in terms of the Coulombic and a 

linear kinematic friction. When a small external bias is imposed, an expression for the 

drift velocity  [1,2,35,41] can be obtained from the linear response theory, i.e. *
LdriftV  .  

We thus have, 

    
 ̅  

        
 5.8 

Equation 5.8 applies with an ideal white noise. However, any noise generated 

mechanically has a finite bandwidth and has certain amount of correlations. Thus, for a 

quantitative discussion of the nature of the drift and diffusion caused by an external 

noise, the value of K should be properly calibrated.  

In a typical experiment of stochastic rolling or sliding, one can perform two types 

of measurements. With a random noise and a bias, the ball rocks forward and backward 

randomly but with a net drift. At a given bias, one can record the motion of the ball over 

a large distance for a given duration of time and estimate the drift velocity. Alternately, 

one can record the stochastic motion of the ball with a high speed camera to study the 

trajectory over certain duration of time. The spatial segments of the trajectories 

corresponding to a given time segment can then be used to obtain probability distribution 

function (pdf) of the displacement fluctuation. Such a pdf has a given peak and a 

dispersion of displacements. By plotting the position of the peak as a function of time 
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segments, a drift velocity can be estimated. Furthermore, from the slope of the variance 

of the displacement versus time, one can obtain the diffusivity. When only a linear 

friction operates, the drift velocity should simply be a product of the bias     and the 

Langevin relaxation time (L). On the other hand, when only the dry friction operates, the 

drift velocity is given by 2/K .  With the presence of both the kinematic and a dry 

friction, the drift velocity starts  [1,2,41] from a very low value and progressively 

saturates to L  sub-linearly. These predictions are consistent with our previously 

reported sliding experiments  [1,2], but not, exactly, with a steel ball rolling on a fibrillar 

PDMS substrate. Here the drift velocity increases in a sigmoidal fashion with the strength 

of the noise. Understanding this discrepancy is the central objective of this paper.  

          At this point we should mention that a non-linear evolution of the drift velocity 

with K can also be observed with a non-linear friction of the type: ( n
V~ ). Here, the 

Langevin equation is: 

 
  

  
 

 | | 

 
 ( )   ( ) 5.9 

The stationary probability distribution function  [1,2] for the velocity is given by the 

following equation: 

  ( )    
    ( 

  | |   

 (   ) 
) 5.10 
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Equation 5.10 suggests that the velocity pdf is exponential if the friction is Coulombic 

(i.e. n=0). It is Gaussian for a linear kinematic friction with n=1. A super (leptokurtic) or 

a sub (platykurtic) Gaussian pdf results for n<1 and n>1 respectively. 

Using the method of the equivalent linearization, it is easy to show that the 

characteristic relaxation time () scales as n
n

K 


1
1

, whereas 2V  scales as nK 1
2

 yielding 

drift velocity and diffusivity  [44] 
 
growing with K as n

n

K 


1
1

 and n
n

K 


1
3

 respectively. The 

exact reproduction of the values of diffusivity that would match the experimental 

results  [1] is not, however, an easy task although the experimentally observed exponent 

of K is satisfactorily explained. The main difficulty lies in the lack of adequate 

knowledge of the correlation of the velocity and displacement fluctuations, the origin of 

which remains somewhat elusive in systems governed by non-linear friction with the 

possibility of trapped states. With the aid of random trajectories from a given solution of 

a non-linear Langevin equation, and subsequently destroying the correlation, it is possible 

to show that different evolution paths of the variance leads to different diffusivities. The 

values of the drift velocities, however, remain rather robust.  The best we can do at 

present is to make qualitative assessments of the nature of friction that contributes to the 

shape of a displacement pdf and then use this insight to predict drift velocities. By 

focusing on the small time behavior of displacement fluctuations we gain insights into the 

nature of frictional dynamics in the small velocity region, whereas the larger time 

behavior of displacement fluctuation provides information of such a dynamics 

contributed by the large velocities underlying an atypical Brownian motion.  
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5.3 Experimental section 

Vibration used sliding motion of objects on a surface has a long history  [45] that has 

been studied systematically by Bohringer et al  [46]. This method was first used by 

Baumberger et al  [47], and later by others  [1,2,48], to study the sliding friction of 

solid/solid interfaces. Here, we use the method to study rolling friction by placing a steel 

ball on an inclined rubber substrate.  When the substrate is only slightly inclined (< 3
o
) 

from the horizontal, no motion of the ball is observed as the force needed to break the 

adhesive junction is greater than that can be provided by gravity. This is similar to the 

Coulombic friction preventing the sliding of a solid object, or the wetting hysteresis 

preventing the rolling of a liquid drop, on a surface. The ball, however, rolls at an 

inclination less than the threshold value if it is subjected to an external vibration.  When 

the vibration pulses are random, the motion of the ball resembles that of a drifted 

rotational Brownian motion. We measured both the drift velocity as well as studied the 

displacement fluctuation of the ball submitted to a random Gaussian noise. Typical 

experiment is to place a small steel ball (4 mm diameter) on a fibrillated PDMS film that 

is inclined by only 1
o
 and subject the latter to a random vibration (fig. 1). Although most 

of our experiments were conducted with a Gaussian random noise, some of the 

experiments were performed with an asymmetric vibration with or without the noise. The 

substrate was attached to an aluminum platform connected to the stem of a mechanical 

oscillator (Pasco Scientific, Model SF-9324). Gaussian white noise was generated with a 

waveform generator (Agilent, model 33120A) and fed to the oscillator via a power 

amplifier (Sherwood, Model No: RX-4105). The ball was placed on the plate sufficiently 
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farther from the oscillator so that there was no interference from the magnetic field of the 

transducer. Although a glass ball behaved similar to that of the steel ball, the former was 

more suitable for these experiments because of its roundness and weight. By controlling 

the amplification of the power amplifier, noises of different powers were generated while 

keeping the pulse width constant at 40 µs. The acceleration of the supporting aluminum 

plate was estimated with a calibrated accelerometer (PCB Peizotronics, Model No: 

353B17) driven by a Signal Conditioner (PCB Peizotronics, Model No: 482) and 

connected to an oscilloscope (Tektronix, Model No. TDS 3012B). The pdfs of these 

accelerations are Gaussian (see section 5.6) and their power spectra are flat  [1] up to a 

total bandwidth of ~10kHz. 

  

Figure 5.1: (a) A steel ball of diameter 4 mm rolls on a fibrillated rubber surface at an 

inclination of 1
o
. When the moment of the gravitational plus the stochastic force about 

the point of contact is greater than the torque due to adhesion, the ball rolls on the 

surface. (b) A speck of dust moves along the perimeter of the ball by an amount (1.23 

mm), which is almost same as the lateral displacement of the ball indicating that the ball 

undergoes a net rolling instead of sliding at the macroscopic scale. This experiment was 

performed at a noise strength of 0.06 m
2
/s

3
. Inset of fig. (a) shows microscopic image 

(top view) of the fibrillated PDMS surface.  
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The entire setup was placed on a vibration isolation table (Micro-g, TMC) to eliminate 

the effect of ground vibration. The motion of the ball was recorded with a high speed 

camera (Redlake, MotionPro, Model 2000) operating at 1000 frames/sec.  Motion 

analysis software MIDAS was used to track the dynamics of the steel ball.  

Micro-fibrillated PDMS (Dow Corning Sylgard 184) surfaces were used as a 

substrate for the rolling experiment. The preparation of such surfaces is reported in detail 

elsewhere [20]. Briefly, the oligomeric component of the Sylgard 184 kit was thoroughly 

mixed with the crosslinker in a 10:1 ratio by weight followed by degassing it in vacuum 

for 2hrs. The degassed mixture was then cast onto lithographically etched silicon master. 

These master wafers were silanized for easy removal of cured fibrillated PDMS sample. 

The cast PDMS was then cured at 80
o
C for 2hrs. The crosslinked PDMS was cooled in 

dry ice (-78.5
o
C) for an hour followed by its removal from silicon master wafers 

manually. The PDMS surface thus prepared has square fibrils of 10μm size with a center 

to center distance of the adjacent fibrils of 50 μm. The height of the fibrils was 25μm.  

The steel ball used in our experiment was a bearing quality aircraft grade E52100 

steel obtained from Mcmaster corporation (http://www.mcmaster.com/#chrome-steel-

balls/=cph9ai ). The diameter of the ball was 4 mm with a tolerance of m5.2 . The 

balls were cleaned by sonicating it in acetone and then drying in nitrogen. The root mean 

square roughness of the surface of the steel ball was ~ 35 nm as obtained from atomic 

force microscopy (Veeco nanoscopeV, Digital Instruments, Metrology Group) over a 

scanning area of 400 m
2
. The rolling experiments were carried out at 19 different 

http://www.mcmaster.com/#chrome-steel-balls/=cph9ai
http://www.mcmaster.com/#chrome-steel-balls/=cph9ai
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strengths (or powers) of the noise ranging from 0.02 m
2
/s

3
 to 2.7 m

2
/s

3
 at a bias of 0.04 

mN. The angle of inclination was controlled with a precise goniometer (CVI Melles 

Griot, Model No: 07 GON 006).  

 

5.4 Results 

5.4.1 Stochastic motion of the steel ball 

When the substrate is vibrated with a Gaussian noise, the steel ball undergoes backward 

and forward stochastic rolling motions with a net drift along the inclined plane. In order 

to ensure that the ball indeed rolls on the surface, we examined few video clips carefully 

with a small speck of dust on the surface of the ball (Figure 5.1b). At a low intensity of 

noise (0.06 m
2
/s

3
), the speck moved on the surface by the same distance as the ball’s 

lateral displacement. At the high intensity of noise (1.7 m
2
/s

3
), the movement of the speck 

on the surface of the ball was 3% to 10% lower than its lateral displacement. These 

measurements ensured that ball undergoes a net rolling motion on the substrate on the 

average, even though some sliding may occur at a stochastic time scale. The 

displacement of the ball is linear with time, suggesting that it is controlled by viscous like 

friction. Prandtl  [49,50] pointed out almost 100 years ago that the frictional response of a 

system changes from Coulombic to kinematic in the presence of a thermal noise. So, we 

must clarify what we mean by the role of the viscous like friction. These points can be 

further elucidated by examining the details of how the drift velocity varies with the 

strength of the noise and how the displacement fluctuation grows with time.   
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5.4.1.1 Drift velocity and the strength of noise 

The steel ball rolled on a straight path without exhibiting any significant sidewise drift. 

Using a low magnification camera, the drift velocities were obtained from the 

displacement of the ball for a given duration of time using several tracks for each noise 

strength.  The stochastic displacement of the ball was also examined in detail with a high 

speed camera. At a low power (0.06 m
2
/s

3
), each track lasted for about 6s. This track was 

divided into different time segments (0.001s to 1s) using all possible starting and ending 

times.  

Figure 5.2: Drift velocity increases with the power of the noise. The profile is slightly 

sigmoidal at low values of K. The filled blue circles are the experimental data. The 

dashed line represents the velocity obtained using Eq. (5.14).  In order to construct this 

plot, particular values of    and L had to be used. The value of m/s
2
) was 

obtained by fitting the drift velocity with 
2/K  at the very low values of K, L (0.1 s) 

was approximated from the saturated value of the drift velocity. Solid line represents the 

velocity obtained using an empirical equation 4.1

1)/tanh( KKV Ld  . The open squares 

and triangles represent the data obtained using the three state and two state models of 

friction (see below). 
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By combining data obtained from all the tracks, the displacement pdfs were constructed 

for different durations of time. Each pdf exhibits a certain peak and a variance. The drift 

velocity obtained from the time dependent shift of the mean is same as what is measured 

with a low resolution camera. In order to examine the behavior of the displacement pdfs 

at a high power (1.7 m
2
/s

3
) a larger number (200) of tracks was used.  

The drift velocity of the steel ball increases (Figure 5.2) with the strength of the 

noise (K) and tends to saturate at high K. This observation is similar to our earlier 

observations with a noise induced sliding of a small solid object or a small water drop on 

a surface  [1,2]. However, unlike the previous observations, the Vd -K curve here has a 

knee at low K thus exhibiting a slight sigmoidal behavior. All the data can be fitted fairly 

with an empirical equation of the type: 4.1
1)/tanh( KKV Ld   using a value of K1 as 0.7 

m
2
/s

3
. The unique Vd vs K relationship clearly suggests that a non-linear friction is 

operative underlying the rolling motion. There is no definite time scale to the problem 

except at very high K, where the saturation of the velocity implies a Langevin time scale 

of ~ 0.1s. A fit (Eq. 5.8) of the Vd-K curve by keeping with the fact that that the velocity 

goes as at very low values of K and it approaches L at high values of K, exhibit the 

sublinear evolution of drift velocity as shown in fig. 2. Although this fit does not 

reproduce the sigmoidal behavior seen experimentally, it is consistent with the fact that 

the drift velocity is controlled by a non-linear friction at low noise strength but by a linear 

viscous friction at high noise strength. In order to glean further insights into this complex 

friction dynamics, let us now examine the evolution of the displacement fluctuation of the 

steel ball obtained at a low and a high strength of the noise.  
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5.4.2 The nature of non-linear rolling friction as gleaned from the 

displacement fluctuations 

Figure 3 summarizes the fluctuations of the displacements of the steel ball on the 

fibrillated PDMS substrate corresponding to a low bias (0.04 mN) at two different noise 

strengths.  It should be borne in mind that these displacement pdfs bear the signatures of 

velocity dependent friction. The displacement pdf for K=0.06 m
2
/s

3
 at =0.001s (Figure 

5.3) is much sharper than that would be expected of a Gaussian behavior. This supports 

the picture that a friction resembling dry friction operates near the zero velocity region. 

The pdf for =0.01s is, superficially, Gaussian thus suggesting that a viscous friction 

operates at higher velocity. The pdf corresponding to =0.05 s also appears to be 

Gaussian, but it is somewhat asymmetric.  

More detailed information regarding the natures of these pdfs can be surmised by 

considering the velocity distribution as given in Eq. 5.10. As a consequence of a super (n 

< 1) or a sub (n > 1) Gaussian velocity distribution, the displacement fluctuation at short 

time limit should also follow a function of the type,
















 

m

p
xxc

o
PP /)(exp , where 

 is the width of the pdf and xp is the displacement corresponding to the peak of such a 

distribution.  
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Figure 5.3: Summary of the fluctuations of the displacements of a steel ball rolling on a 

fibrillated PDMS at a bias of 0.04 mN corresponding to the time segments of 0.001s, 

0.005s, 0.01s, and 0.05s respectively. Low K and high K correspond to 0.06 m
2
/s

3
 (upper 

panel) and 1.7 m
2
/s

3
 (lower panel) respectively. The pdfs are fitted as )~exp(~

m
xcP  , 

with the values of m embedded inside the figs. For a symmetric pdf, only one value of m 

is given. For an asymmetric pdf, two values of m are given, one for the left and the other 

for the right side of the pdf. 

 

With a power law type friction, it is, however, not easy to define the stationary state as 

the time to reach that state depends on the strength of the noise. Thus, the stochastic 

behavior of the displacement needs to be gleaned from a solution of the Langevin 

equation. Numerical integration of Eq. 5.13a was carried out using a generalized 

integration method for stochastic differential equations as outlined by Gillespie [50]. 

Stochastic acceleration of the vibrating plate as measured using an accelerometer were 

used as the input, (t), in the same sequence as they were generated experimentally to 

ensure that the noise correlation is identical in the experiment and the simulation. While 

the simulated drift velocity as well as the variance of the displacement did not depend on 
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the integration time step (20s–80s), all the simulations were carried out with an 

integration step of 20s. Eq. 5.9 with a bias of 0.04mN was integrated numerically with 

the value of n as 0.2, 0.5 and 1.0 respectively for a value of K=0.06m
2
/s

3
. The value of A 

was so chosen that the average velocity obtained from simulations consisting of 100 

tracks, each being 6s long, matches the experimental value (0.67 mm/s). The pdfs of 

displacements constructed from such stochastic trajectories are shown in fig. 4 for a time 

scale of 0.01s.  These data were also analyzed by plotting ln(-ln(P/Po)) vs /)(ln pxx  . 

The slopes of these plots are about 1.2, 1.5 and 2.0, for n=0.2, 0.5 and 1 respectively 

suggesting that the exponent (m) of the displacement pdfs is greater than the velocity 

exponent (n) by unity.  

 

Figure 5.4: Simulated pdfs of displacement for a time segment of 0.01s as obtained from 

the numerical integration of the Langevin equation using a non-linear friction law:
n

VVf ~)( . The pdfs are fitted as )~exp(~
m

xcP  , with the values of m embedded inside 

the figs. 

 

In addition to the small time behavior of a displacement pdf, which provides insights into 

the nature of friction at the low velocity range, we can also examine its longer time 
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behavior in order to gain insights into its large velocity dynamics. This is so, as a large 

velocity fluctuation of low probability inserts a large displacement to the trajectory that 

would be evident at a longer observation timescale. However, a very large timescale 

should be avoided as all the displacements would ultimately be attracted to a Gaussian 

distribution. When the data of fig. 3 are analyzed in the same way as that of Figure 5.4, it 

is found that for small time scale  = 0.001s, the exponent of the displacement pdf is 1.2. 

The pdf becomes Gaussian at a time scale of 0.005s, but sub-Gaussian at a larger time 

scale. Although this pdf is somewhat asymmetric, its average exponent (~2.5) is larger 

than 2 suggesting that the dynamics is governed by a super-linear friction with a velocity 

exponent of about 1.5. The average exponent, however, tends to the value of 2 expected 

of the linear kinematic friction at a large value of .  In contrast to the behaviors observed 

with a low strength noise, the displacement pdfs are nearly Gaussian at all timescales for 

K=1.7 m
2
/s

3
, thus suggesting that the non-linearity of friction virtually disappears at high 

noise strengths.   

 

5.4.3 Evidence gathered from the rolling motion with an asymmetric 

vibration 

Another evidence of the complex non-linear nature of rolling friction can be gleaned 

from an experiment, in which the steel ball is submitted to an asymmetric vibration of the 

type: 
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  ( )    [|    (    )|   ] 5.11 

 

This acceleration has a cusp shape on one side, but smoothly varying on the other. The 

mean value of (t) is zero. When excited with this waveform, the steel ball moves on the 

horizontal surface of the fibrillated PDMS. For any type of motion to occur under a 

periodic forcing, some kind of non-linearity  [51–56] is required in order to break the 

symmetry of the applied force.  Here, the observation of the motion of the steel ball by an 

asymmetric vibration suggests that the friction is non-linear. Next we find out what 

happens when the asymmetric vibration is used in conjunction with a stochastic noise. 

Here, the noise defines the effective temperature of the system, whereas the asymmetric 

vibration interrogates it by subjecting it to a rate. What is observed with a low strength 

noise is that the rolling speed initially increases slightly from that obtained with K=0. 

Beyond a value of K ~ 0.14m
2
/s

3
, the drift velocity decreases (Figure 5.5) with K and 

reaches a very small value of drift velocity ~ 0.1mm/s at high value of K ~ 1.5m
2
/s

3
. This 

experiment points out as well that the effect of non-linear friction decreases with K, and 

the system tends towards a nominally fluidized state.  
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Figure 5.5: (a) The drift velocity as a function of the strength of the noise for an 

asymmetric periodic bias (open red square) and a fixed bias (filled blue circle). The 

amplitude of the asymmetric vibration (Eq. 11) is 94 m/s
2
 and its frequency is 100 Hz. (b) 

The trajectories of the ball with and without the noise, but with the asymmetric vibration 

are shown.   

 

These experiments have interesting similarities to some earlier 

observations  [57,58] where a granular medium was fluidized with a strong vibration.  

 

5.4.4 A toy model of non-linear friction 

In view of the evidences gathered so far, we arrive at this scenario. A Coulombic type 

friction operates in the low velocity region followed by a super-linear (n >1) friction at a 

larger velocity range. Finally, the friction becomes linear kinematic at a much larger 

velocity region. In going from a superlinear to a linear behavior, the friction has to 

overcome a hump that mimics the adhesive peeling behavior  [23] from solid surfaces.  
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There is clear evidence of the effect of the noise strength on the overall state
4
 of the 

system, i.e. the system remains in a fluidized state at all velocities when the noise is 

strong. These are the main findings of this work and any further progress in this research 

should rest on direct experimentation to obtain the friction force f(V,K) that depends on 

effective temperature and rate of the system along with a molecular/mesoscopic level 

understanding of the phenomena. However, a toy model of friction can be constructed 

that is consistent with the essential features of the displacement pdfs as well as the noise 

dependent evolution of the drift velocity. In order to illustrate this point, we numerically 

integrate the Langevin equation (Eq. 5.13a) of the steel ball with a friction law (Eq. 

5.12a) as follows:  
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4
 Here, “state” means whether the system is in a solid-like or a liquid-like state. At any 

given level of noise, friction depends on various variables, leading to the well-known 

“state and rate” law of friction. 
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In Eq. 5.12a, )(1 Vf  and 
LV /  are the non-linear and linear components of the friction 

respectively. The fact that the pdf for =0.001s at the lower power is sharp, but is nearly 

Gaussian at the higher power suggests that the non-linear part of friction progressively 

dies out with increasing K, which is captured by the term )/exp( 1KK . The value of K1 is 

taken to be 0.7 m
2
/s

3
, which is same as that used to fit the drift velocity data using the 

empirical equation: 4.1

1)/tanh( KKV Ld  . The non-linear friction itself has an 

exponential term coupled to the dry friction indicating that its effect decreases with 

velocity, as we have seen in the pdf at the low noise strength. We should point out that an 

exponential form of the velocity weakening Coulombic friction is within the scope of the 

current treatment of solid friction  [59].
 
 The value of m/s

2
) is close to that obtained 

from fitting the drift velocity to 2/03.0 K  in the very low K limit.  The second term of 

the right hand side of Eq. (5.12b) is a super Gaussian with an exponent of 1.5 (Figure 5.6) 

that reflects the broadening of the displacement pdf at the intermediate time scale (Figure 

5.3). The distribution is centered around Vt ~ 0.012 m/s, which is similar to our previous 

observations  [27] of sliding friction of PDMS that exhibits a maximum at a similar 

velocity region.  
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Figure 5.6: A toy model of rolling friction versus velocity. 

 

The third term of Eq. 5.12a represents a simple viscous friction with a Langevin 

relaxation time L, which is obtained from the drift velocity ( ̅  ) in the limit of high K. 

The parameters Vo, A andV were obtained by a numerical fitting procedure, i.e. 

matching the drift velocities at few values of K.  Eq. 5.13a is similar to Eq.5.1 with the 

difference that the acceleration term dV/dt is multiplied by 7/5 which appears as a pre-

factor to the acceleration when the equation of motion is derived from the balance of 

rotational torque and the derivative of angular momentum. )(Vf  is the generalized 

friction force per unit mass, which is multiplied by tanh(V). This hyperbolic function 

with a high value of s/mis a good replacement for the signum function. 

Here,   is 0.04 mN corresponding to the angle of inclination of 1
o
. Numerical solution of 

Eq. 5.13a was carried out using a generalized integration method of Gillespie [50], as 

outlined before.   
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 Before describing the friction model of Eq. 5.12a, we first study a model in which 

a dry friction decreases exponentially with the velocity, i.e. )/exp( oo VV , in 

conjunction with a viscous friction. Although such a model can reproduce the 

experimental drift velocity at different values of K fairly well (Figure 5.2), the spatial 

displacement statistics (Figure 5.7) simulated with this model, however, are visibly sharp, 

with the sharpness persisting for a longer  than that is observed experimentally. 

 

Figure 5.7: The pdfs of the displacement fluctuation at different values of as obtained 

from experiments (filled blue circle) and from simulations (open pink circle) using the 

two state model of friction, in which the friction is described as

Loo VVVVf /)/exp()(  . The values of o, Vo and L are set as 0.9m/s
2
, 0.028m/s 

and 0.13s respectively.  

 

The simulated pdfs of displacement fluctuation obtained using the three state model of 

friction (Eq. 5.12a) are shown in Figure 5.8. The essential features of the pdfs are, in 

general, consistent with the experimental observations. However, there are discrepancies. 

For example, the simulated pdf at 0.001s for the low power noise is not as fat tailed as 

that of the experiment. The exponent of the super Gaussian pdf is about 1 near the peak 

region, but it progressively increases to 1.7 near the tail region in comparison to overall 

exponent of ~ 1.2 obtained experimentally. 
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Figure 5.8: The pdfs of the displacement fluctuation at different values of  as obtained 

from experiments (filled blue circle) and from simulations (open pink circle) using the 

three state friction model (Eq. (5.12)). 

 

Nevertheless, the sharpness of the pdf disappears faster with , and the transition to a 

smoother pdf occurs at a much shorter time scale than that predicted by the two state 

model of friction (Figure 5.7). The simulated pdfs at the higher power of the noise are in 

better agreement with those obtained experimentally. Using the same friction model (Eq. 

5.12), we also estimated the drift velocities by integrating Eq. (5.13) at various values of 

K, the values of which are in satisfactory agreement with the experimental observations 

(Figure 5.2). 

 

5.5 Concluding remarks 

This exploratory research revealed several interesting phenomenology of non-linear 

rolling friction under a stochastic setting. We summarize below the main points of the 

work and discuss what remains as open questions. The first point is about the Brownian 

32 /06.0 smK 

32 /7.1 smK 
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like drift of the steel ball, which is linear in time in spite of the fact that the underlying 

frictional dynamics is non-linear. In the Einsteinian Brownian motion with a linear 

kinematic friction, it is an established fact that the object drifts linearly with time that 

being independent of the strength of the noise. However, in the current case of a non-

Einsteinian Brownian motion, the drift velocity depends strongly on the strength of the 

noise. The rolling motion is controlled by a Coulomb like friction at low K, but by a 

viscous like friction at high K suggesting, furthermore, a possible fluidization of the 

interface with noise. The pattern of the displacement pdfs suggests that a higher order 

non-linearity operates at an intermediate velocity, while a linear friction operates at even 

a higher velocity with the non-linearity weakening with K.  

An evidence of a complex friction law comes from the observation of the drifted 

motion of the ball when it is subjected to an asymmetric vibration. What is pertinent to 

the point regarding the state dependent friction is that the drift velocity due to asymmetric 

vibration decreases significantly with the strength of the noise, which is contrary to what 

happens with a fixed bias. Taken together, the above evidences suggest that friction 

depends not only on the rate (V), but also on the state (K) as well.  

In terms of developing a microscopic model of friction, we need to consider 

several factors. The first one being the rates at which interfacial bonds are formed and 

broken. It is also important to consider the roles of certain characteristic time scales of the 

fibrils, one of which comes from the ratio of the fibrillar spacing  [26,60] to the rolling 

speed and the other relates to the resonant frequency (~100 kHz) of the fibrils. The 
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advantage of the current model system is that these parameters can be rigorously studied 

by careful design of the fibrillar geometry with which to develop a state and rate  [61,62] 

dependent model of friction at any given value of K.  Although a K and V dependent toy 

model of friction reproduces the essential features of the drift velocity and the evolution 

of the displacement pdf, some of the disagreements of the displacement statistics of the 

simulation and experiment clearly show that our understanding of the rolling friction 

dynamics is incomplete. A direct measurement of the rolling friction, clearly decoupling 

it from microscopic sliding, spanning several decades of velocity and acceleration is very 

much needed in order to make further progress in this research. Modification of a 

recently proposed  [25] apparatus may be adequate for such a study. The value of the 

current work, however, is that it could guide the designs of such experiments and set the 

stage for studying friction using the tools of statistical mechanics. If methods are 

developed to measure the statistics of the velocity fluctuations, then these data, in 

conjunction with the displacement statistics, could be used for analyzing frictional 

dynamics more directly than that can be achieved with displacement statistics.  

In the Langevin model, we tacitly assumed that the friction term has no memory. 

However, with the simultaneous presence of the elastic (due to fibrils) and viscous 

response of the system, friction may be viscoelastic. The elastic response of the fibrils, 

along with the non-linear friction dynamics may also exhibit spatio-temporal 

oscillations  [23,63,64] in the rolling motion.  
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            The experiments presented in this paper complement the previous reports where a 

non-classical Brownian motion was anticipated  [18,35,36] and observed  [1–3] with a 

small object undergoing a Coulombic slip on a surface under a stochastic forcing. It is 

clear that an adhesion hysteresis arising from a pinning-depinning dynamics at the 

interface can also give rise to a threshold force that is akin to the Coulombic dry friction. 

Wang et al  [19] recently observed a non-Gaussian displacement fluctuation with a 

colloidal particle undergoing a Brownian motion in weak adhesive contact with a soft 

microtubule. As the particle moves, it is possible that new bonds are formed at the 

advancing edge, whereas older bonds are broken at the trailing edge resulting in a 

hysteresis of adhesion. Based on what we report here, it is not implausible that such type 

of adhesion hysteresis could give rise to a non-Gaussian displacement statistics of the 

colloidal particle as was observed by Wang et al  [19]. A possibility of this type has also 

been pointed out recently by Menzel and Goldenfeld  [39]. What is also interesting in the 

displacement statistics observed by Wang et al   [19]  is that a transition from a non-

Gaussian to a Gaussian pdf occurs rather abruptly, as is also observed in our current 

experiments. Similar issues may also be important in understanding the hindered 

diffusion of a soft colloid near a surface  [65]. 
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5.6 Appendix 

5.6.1 Rolling of the steel ball on the fibrillated rubber without noise 

The ball starts rolling on the fibrillated rubber at an angle of about 3
o
. A video 

microscopic image of the motion of the ball shows that it accelerates as it rolls down. The 

fact that the data can be fitted with a simple equation of accelerating motion of the type S 

= Vi t + 0.5 at
2
 (Vi being the initial velocity and a is the falling acceleration) suggests that 

there is virtually no kinematic friction acting on the ball. Only resistance here is a 

Coulombic type dry friction. If this is the case, the acceleration should simply be 

mgsinExperiments carried out at different angle of inclination show that beyond a 

threshold angle (c), the acceleration increases (Figure 5.9) with the angle of inclination 

as, a~(sin-sinc)
2/3

. This sub linear 

 

Figure 5.9: (a) Figure shows a parabolic growth of the distance travelled by a ball on an 

inclined (10
o
) surface with time. The falling accelerations are summarized in fig. (b). 
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growth of acceleration with the angle of inclination suggests that the dry friction 

resistance () increases with the applied force as well.  In the past, it has been proposed 

[1, 2] that the dynamics of the motion of  a line that is pinned randomly by defects 

exhibits a supercritical behavior in  the sense that no motion is observed when the applied 

force (F) is less than a threshold value (Fc), above which the velocity (V) grows as V~ (F-

Fc)

.   is the velocity exponent, the value of which lies in the range of 0.6 to 0.8. We are 

not aware of any analysis suggesting the strengthening of dry friction with force. 

 

5.6.2 Characteristics of the noise 

The approximate Eq. 5.8 was derived on the condition that the noise is strictly white and 

Gaussian. 

 

Figure 5.10: The autocorrelation of the noise file (a) as generated from the computer and 

that (b) obtained from the output of the oscillator as measured with an accelerometer. The 

Gaussian noise as generated from the waveform editor, (t), was used to solve the 

Langevin equation of the oscillator: )(/ 2 txxx o    . Here, x is the displacement of 

the oscillator,  (250 s) is its relaxation time and  (~1.5x10
4
 s

-1
) is its fundamental 

frequency of vibration. The autocorrelation of the simulated noise of the acceleration is 

shown in fig.  
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This is not exactly the case for the type of noise that we generate experimentally. In our 

case, the Gaussian white noise is generated with a waveform generator that feeds pulses 

of random heights, but of a finite width (40 s) to an oscillator.The output of these pulses 

is used to vibrate the stage on which the rolling experiment is performed. Since a 

mechanical oscillator has a tendency to spring back after each excitation, the 

autocorrelation of the output noise exhibits a negative peak (Figure 5.10b), which is also 

consistent with the Autocorrelation Function (ACF) of the noise generated numerically 

using the properties of the oscillator (Figure 5.10c). The noise pulses, however, are 

Gaussian with a probability density of  2)/(5.0exp  oPP  , as evidenced from the slope 

(~2) of the plot of ln(-ln(P/P0))  versus  /ln (Figure 5.11). Because the noise is 

somewhat correlated, Eq. (8), which is derived on the basis of the classical Fokker Planck 

equation, needs to be corrected. This correction is carried out as follows. By numerically 

integrating the Langevin equation (Eq. 5.1) with the omission of the kinematic friction 

term and using the sequence of the noise pulses obtained directly from the accelerometer, 

several trajectories are generated. The strength of the noise as used in these experiments 

is nominally defined as the product of the mean square acceleration and the pulse width 

(c), i.e. ctK  )(2 . 
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Figure 5.11: Probability distribution function of the noise obtained from accelerometer at 

a given value of K (0.06 m
2
/s

3
). The pdf is also fitted with a Gaussian function as 

indicated by the solid line. The inset shows the plot of ln(-ln(P/Po)) versus  /ln , the 

slope of which is ~2. 

 

However, the value of this K is re-normalized in order to use it in Eq. 5.8. For a 

given set of and K, 100 trajectories, each lasting for 6 seconds, were used to estimate 

the drift velocity. Although this drift velocity varies (Figure 5.12) linearly as 2/K , its 

slope is found to be 0.03. Thus, Eq.5.8 is modified as: 

    
 ̅  

          
 5.14 
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Figure 5.12: The drift velocity is calculated using Eq. 5.1 without the kinematic term 

using the noise output file of an accelerometer attached to an oscillator. Various values of 

are usedmaster plot is obtained by plotting all the drift velocity data against 2/ K . 
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6. CHAPTER SIX: Athermal Activation5  

 

6.1 Introduction 

This paper is about a form of a Brownian motion that is induced by a mechanical noise to 

a system where the friction arises from the irreversible adhesive contact of two surfaces. 

The specific experiment involves the motion of a small rigid sphere on a soft fibrillated 

rubber substrate with which it can undergo a noise assisted pinning-depinning
 
transition. 

With such a system, we address the question of an effective temperature using the 

Einstein’s ratio of diffusivity and mobility in a driven diffusive condition that agrees with 

what is obtained from a work fluctuation relation. Next we attempt to validate this 

effective temperature by designing a barrier crossing experiment, the dynamics of which 

is controlled by a non-linear friction. The essential conclusion of these studies is that a 

system with a non-linear friction may not have a unique effective temperature.    

A random motion with an interfacial resistance was first discussed about fifty 

years ago by Caughey and Dienes  [1] in the context of sliding structures responding to 

earthquake.  Similar kinds of motion with a weak adhesive contact have been reported 

recently with a colloidal particle on a soft microtubule  [2], and with a small object on a 

solid surface  [3–5].  Frictional dynamics in many of these systems are hysteretic or non-

linear  [6–13], in that they are driven by instabilities  [8,9] .  As Muser  [8] eloquently 

pointed out, the viscous drag friction results from the distribution of collision energy 

                                                 
5
 This work has been published as: P. S. Goohpattader and M. K. Chaudhury; Random motion with 

interfacial contact: driven diffusion vis-a-vis mechanical activation. Eur. Phys. J. E, 35, 67 (2012). 

http://www.researchgate.net/researcher/16013854_P_S_Goohpattader
http://www.researchgate.net/researcher/8918459_M_K_Chaudhury


Athermal activation 

 
 

173 

 

from the central degree of freedom of a Brownian particle to other degrees of freedom of 

the solvent particles. However, even at a vanishingly small velocity of sliding of one 

solid past another, fast motions of certain degrees of freedom result in “stick slip” 

instability that lead to non-linear friction.  These instabilities are observed not only with a 

spring/mass system, but with random noise excitations  [5] as well.  They are also 

observed with the relaxation of the contact line  [4] of a liquid drop on a solid surface. It 

was proposed
 
[14] long ago that a similar Coulomb friction like instability accompanies 

the collapse of the Bloch wall structures and the Barkhausen noise in magnetism as well.   

Recent experiments carried out in our laboratory  [3–5] showed that the sliding of 

a small block and the motion of a liquid drop on a solid support exhibit certain 

comparable characteristics in a stochastic setting. For example, when a small external 

force is applied, no motion occurs. However, in conjunction with an external noise, a 

kinematic friction
 
like property emerges out of the static friction so that a ball moves 

through a granular medium  [14], a slider slides  [3,5] or a drop glides  [5] with an 

uniform drift velocity that increases linearly with the applied force.  The signature of the 

non-linear friction, nonetheless, is evident in that the drift velocity increases non-linearly 

with the strength of the noise [K (m
2
/s

3
)= c, where  is the root mean square 

acceleration (m/s
2
) of the object, and c (s) is the time duration of the pulse], but 

saturating at large values of K
 

 [3–5]. Furthermore, the microscopic displacement 

distributions are super Gaussian
 
 [3–5]

 
at short time limit but, they all evolve towards a 

skewed Gaussian distribution in the long time limit. While the variance of the 

displacement is linear with time, the diffusivity grows super linearly with the strength of 
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the noise. Displacement spikes  [3] (stick-slip type instability) are observed as well. All 

these features contrast the behavior of a linear kinematic friction, where the motion is 

always smooth and the diffusivity grows linearly with K.  In the current paper, we are 

interested to find out as to what extent such a non-linear stochastic dynamics is amenable 

to a standard definition of an effective temperature, e.g. the Einstein’s ratio of diffusivity 

and mobility  [15–17] or that extracted from a typical fluctuation relation  [18]?   

A temperature like intensive property has been long sought after
 
 [19–25] in 

systems driven by active as well as quenched fluctuations.  In dynamic systems, ranging 

from vibrated granular media
 
 [18–23] to earthquake

 
 [24], various definitions of a non-

equilibrium temperature have been proposed.  Several path breaking experiments
 
 [21–

23] were conducted as well,  including a torsional pendulum immersed in a vibrated 

granular medium
 
 [21], fluctuation of  a ball in a turbulent flow

 
 [22], and the  diffusion of 

particles in a shear flow
 
 [23] to name a few. These experiments provided estimates of the 

effective temperature using the familiar concepts of statistical mechanics, such as the 

kinetic energy, the Einstein’s ratio of diffusivity and mobility as well as the density of 

states  [22].  Notably, Abate and Durian
 
 [22] published a paper, in which they reported 

reasonable agreements of the estimates of the “effective temperature” of a granular 

medium obtained using different metrics, mentioned as above.  

Motivated by the encouraging results of the previous studies, we ask how does an 

“effective temperature” obtained from a driven diffusion experiment compare with an 

energy exchange process that we are familiar with. A sub-critical instability, such as a 
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barrier crossing phenomenon, is an example of the latter.  This subject of activated 

dynamics in an athermal system has also been discussed recently in the context of the 

deformation and flow behaviors of glassy systems
 
 [17–25], the relaxation of a sand 

pile
 
 [26], the shear rate dependent stiffening of granular materials  [27] and in slow 

granular flows  [28].  While driven diffusive experiments
 
 [3–5,29] can be performed 

with various systems exhibiting non-linear friction, the systems with which to conduct 

both this as well as a barrier crossing experiment involve the motion of a small rigid 

sphere  [29] on a soft fibrillated rubber substrate. The fibrillar surface mimics the features 

of well-decorated asperities with which a sphere undergoes a pinning-depinning  [30,31] 

transition (fig. (2)). This leads to a threshold force somewhat like the Coulombic sliding 

or wetting hysteresis, which has to be overcome before rolling occurs. We show below 

how this experiment could also be adapted to study the barrier crossing rate with the aid 

of an undulated support.  While the bulk of our research concerns the rolling motion of a 

rigid sphere, we also report results of some barrier crossing experiments involving a 

deformable sphere, i.e. a liquid drop. 

6.2 Non-linear rolling friction    

When a rigid sphere is brought into contact and separated from a fibrillated rubber 

surface [30,31], a significant difference of the adhesion energy is observed signifying that 

the interaction of the contactor with the substrate is hysteretic. Rolling of a sphere on a 

surface accompanies the propagation of two cracks [32–37], one closing at the advancing 

edge and the other opening at the receding edge.  Because of the difference in the 

energies of the opening and closing the cracks, a threshold force or torque is needed to 
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roll a sphere on a substrate.  Using an energy argument (see also section 6.8.1), one can 

show that a torque
 
 [32–37] of the following magnitude must be supplied about the point 

of contact for the incipient rolling: 

   (     ) 
  6.1 

where, Wr and Wa are the receding and advancing works of adhesion or, more accurately, 

the strain energy release rates associated with the opening and closing the cracks and r is 

the width of contact.  In the presence of a very low strength noise, the de-pinning events 

exhibit activated dynamics. In this region, the drift velocity exhibits a logarithmic 

variation with respect to the strength of the bias (see section 6.6.1 for details). However, 

as the noise strength increases, the slip (here, microscopic rolling) events start to occur 

along and opposite to the net drift, leading to a drifted diffusive motion of the object. In 

order to capture this diffusive process, we make use of an ansatz proposed independently 

by Caughey and Dienes  [1] as well as de Gennes  [38], that is the friction has a jump 

discontinuity at zero velocity, but is linear kinematic beyond it. The object moves 

following the standard equation of motion, as long as the strength of a noise pulse is 

greater than the threshold friction. However, the object does not move when the net force 

(noise plus bias) acting on it is less than the threshold, unless its previously gained 

momentum is large enough to carry it through (see references  [1] and  [38] for more 

details). The random motion of the sphere on the fibrillated surface is then expressed by 

the following equation of motion that describes by the balance of all the inertial, 

frictional and external torques: 
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    (     ) 

 
| |

 
 ( ̅   ( ))  6.2 

where, I is the moment of inertia of the sphere about the point of contact,  is the angular 

velocity, R is the radius of the sphere and   is a kinematic friction factor, whereas F and 

F(t) are the fixed and time dependent forces respectively. This equation belongs to the 

same class of equations proposed earlier for the sliding of a solid object
 

references  [1,38], for the motion of a liquid droplet  [39] or for the friction between 

granular particles [40], for which several elegant solutions  [41–44]
 
are now available.   

Such a model of Coulombic dry friction has also been useful  [45] to study the kinetics of 

a granular asymmetric piston within the framework of a Boltzmann-Lorentz equation.  In 

the context of sliding, it is the Coulombic dry friction while for the drop motion it is the 

wetting hysteresis, which are analogous to the adhesion hysteresis as outlined above  

 

Figure 6.1: (a) Illustration of the driven diffusive experiment with a steel ball on a 

fibrillated rubber surface, microscopic image of which is shown in the inset. (b) 

Illustration of a barrier crossing experiment. In either case, the ball remains stationary if 

the angle of inclination () is less than some critical angle (c). However, with an external 

vibration imposed parallel to the support, the ball rolls down as in fig. (a) or crosses over 

the barrier as in fig. (b). 

. The situation of the stochastic rolling of the sphere also belongs to a class of a rotational 

Brownian motion  [46–49]
  

that was studied earlier with a mirror hanging from a 
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pendulum [46,47], a floating micro-needle [50] 
 
and a colloidal sphere [48,49].  However, 

in those instances, only linear friction was considered.  

 

Figure 6.2: Video microscopic images of the contact area of a steel ball rolling on a 

fibrillated rubber surface in the absence of noise. Here the support is slowly inclined till 

the sphere just begins to roll. The fibrillar (dark spots) contacts are inside the dashed 

octagon. As the sphere rolls, the fibrils ahead of the contact make new contact with it, 

while those in the rear are detached.  The dissipation of energy due to the relaxation of 

the fibrils gives rise to an adhesive hysteresis.  

 

A translational version [29] of Eq. 6.2 can be written down as follows: 

 

 

 

  

  
 

 

  
  ( )   ̅   ( ) 

  

  
   

6.3 

here,   mRrWW ar /2  , L  is the Langevin relaxation time, mF /  and 

mtFt /)()(  .  

As has been discussed in the past  [1,29], a useful simplification of Eq. 6.3 is to 

consider an equivalent linear version of this equation with a remainder term   shown in 
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Eq. 6.5. For the purpose of this discussion, we ignore the factor 7/5 of Eq. 6.3, which is 

not important for the scaling argument to follow. 

 
  

  
 

 

  
   ( ) 6.4 

   
 

  
  

 

  
  ( )  6.5 

The criterion for equivalent linearization is to minimize the expected value of    with 

respect to   
 , which leads to the following equation: 

 
 

  
  

 

  
 

 〈 ( ) 〉

〈  〉
 6.6 

The quantities in the angular brackets of Eq. 6.6 can be estimated with the help of a 

probability distribution function of the velocity, i.e. from the Fokker-Plank solution of the 

probability density in the velocity space.  Following the procedures outlined in 

references  [1] and  [29], one obtains: 

 
 

  
  

 

  
 

  

 
 6.7 

Equation 6.7 defines the equivalent relaxation time in terms of the Coulombic and a 

linear kinematic friction. When a small external bias is imposed, an expression for the 

drift velocity can be obtained from the linear response approximation, i.e. *
LdriftV  .  

One thus has, 
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 6.8 

 

The concurrence of a randomized non-linear system to a linear response behavior as 

above has already been demonstrated experimentally by us in the past [3,5].   Using the 

above expression for the effective relaxation time *
L we can express the diffusivity as 

2/2*
LKD   , and an effective temperature (Teff )as the ratio of the diffusivity and mobility 

as  

      
    

 (        )
 6.9 

 

With a non-linear friction of the type: ( n
V~ ), it can be shown [29] that the characteristic 

relaxation time ( *
L ) scales as n

n

K 


1
1

, so that the drift velocity, diffusivity and the effective 

temperature scale with the noise strength as n
n

K 


1
1

, n
n

K 


1
3

 and nK 1
2

respectively. In all these 

cases, the effective temperature approaches a zero value more rapidly with K than is the 

usual case with a linear kinematic friction.  

 

6.3 Brief summary of previous studies     

Recently, we reported
 
 [29] the behavior of a rigid sphere on a solid support intervened by 

an external force and a random Gaussian noise.  One main observation was that the drift 
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velocity (Vd) increases linearly at small K , but it  saturates to a constant value  at a high 

noise strength. These results are shown in fig. (3) by dividing the measured Vd with the 

bias )(  that yields a response time. The evolution of  /dV  as a function of the noise 

strength (K) is consistent with two characteristic time scales to the problem (Eq. 6.7and 

6.8), one being the noise independent Langevin relaxation time Land the other is the 

noise dependent response time K/
2
 as discussed above.  In the short observation time 

scale, and with a weak noise, K/
2
 dominates the drift velocity, which increases linearly 

with K.  However, at large values of K, the dynamics is dominated by the Langevin 

relaxation time. This transition from a non-linear (at low K) to a linear control (at high K) 

of motion was further interrogated
 
 [29] by subjecting the ball to a stochastic noise and an 

asymmetric vibration simultaneously. At low K, the non-linear friction rectifies the 

asymmetric vibration [51], thereby giving rise to a ratchet like motion. However, with the 

preponderance of the linear-friction at high K, the drift velocity nearly vanishes.  A more 

complex scenario of the rolling friction in the intermediate velocity range was also 

considered in the previous paper [29]. In particular, a super-linear velocity dependent 

friction plays a role in the complex evolution of the pdf of the displacement fluctuation 

resulting in a sigmoidal variation of the drift velocity with K.  Specifically, a noise 

strength dependent state and a velocity dependent rate law was needed to explain the 

overall behavior of friction.  
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Figure 6.3: The measured drift velocity )( dV is divided by the bias )(  that yields the 

response time 
)/( dV

. The response time is plotted as a function of the strength (K) of a 

surface of a fibrillated silicone rubber. The data for the steel ball are from reference  [29], 

whereas those for the water drop are from the current study.   

Extending the theoretical discussions of a Brownian motion to account for the 

sliding or rolling dynamics has certain limitations. For example, most of the theoretical 

frameworks of driven diffusion and barrier crossing are developed for an ideal white 

noise in a Markovian setting.  In our experiments, all noises have finite band widths. 

Furthermore, the idea of extracting a temperature from the Einstein’s ratio of diffusivity 

and mobility is sensible for systems controlled by linear friction, which are at or very 

close to the equilibrium. A priori, there is not guarantee that such a notion would apply to 

an athermal dynamics controlled by a non-linear friction. The issue needs to be settled 

experimentally. Our strategy here is to extract a temperature like intensive property from 

a driven diffusive motion of a rigid ball rolling on a surface. The novel aspect of this 

work is the introduction of a barrier crossing experiment from which an effective 

temperature can be extracted using the analogy of the theory of thermal activation. The 
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rest of the paper is organized as follows. The first part of the paper describes the method 

of extracting the effective temperature from the standard method of diffusivity and 

mobility, or, equivalently a work fluctuation relation. Next, we venture into estimating 

the noise strength dependent effective temperature from the experiments of mechanical 

activation in the light of the Van’t Hoff-Arrhenius-Eyring equation.  Some discrepancy is 

observed in the values of the Teff obtained from the two methods. After discussing the 

possible origin of the discrepancy, we make additional conjectures.   

6.4 Experimental method 

6.4.1 Drift and diffusivity 

Rolling experiments were carried out with a small steel ball (4 mm diameter,  0.26 gm 

mass, rms roughness of 35nm) on a fibrillated PDMS support (0.6 mm thick underlayer, 

modulus of 2.2 MPa [32]) that was inclined by about 1
o
 from the horizontal and 

subjecting it to a random vibration (fig. 1(a)). The PDMS surface had square fibrils of 

10μm size that were vertical to the underlayer with a center to center distance of the 

adjacent fibrils of 50 μm on a rhombic (or diagonal square) lattice. The height of the 

fibrils was 25μm. When a sphere rolls on a smooth rubber, the resistance to rolling  [32] 

is amplified by the viscoelastic dissipation in the rubber. This force can be so large that 

very strong vibration is needed to dislodge the ball from the surface. The viscoelastic 

dissipation is considerably minimized on the fibrillated rubber surface owing to the 

diminished area of contact.  The energy dissipation here is primarily due to the elastic 

distortion and the subsequent relaxation of the fibrils. While the adhesion/detachment 
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processes are still hysteretic  [30,31], its magnitude is still low such that the ball can be 

easily dislodged from the surface with a small amount of vibration. In the absence of 

vibration, the steel ball rolls on the fibrillated rubber (Eq. 6.2) when the latter is inclined 

by > 2.5
o
 from the horizontal plane.  This amounts to a threshold rolling torque 

(mgRsin) of 0.22 J.  Balancing this torque with that due to adhesion (Eq. 6.1), the 

hysteresis of adhesion (Wr -Wa) is estimated to be about 0.8 J/m
2
. This value is 

considerably larger than the free energy of adhesion (40 mJ/m
2
) between steel and a 

smooth surface of PDMS obtained using the method of contact mechanics, thus 

suggesting that the elastic hysteresis resulting from the deformation and relaxation 

between the PDMS fibril contributes to the threshold force of rolling  [30,31].  

The following paragraph is quoted from reference  [29] so that the reader can 

follow the experimental details of this work without being compelled to read the previous 

paper. “The solid support was attached to an aluminum platform connected to the stem of 

a mechanical oscillator (Pasco Scientific, Model SF-9324). Gaussian white noise was 

generated with a waveform generator (Agilent, model 33120A) and fed to the oscillator 

via a power amplifier (Sherwood, Model No: RX-4105). In all experiments described 

here, vibration was applied parallel to the support. By controlling the amplification of the 

power amplifier, noises of different powers were generated while keeping the pulse width 

constant at 40µs. The acceleration of the supporting aluminum plate was estimated with a 

calibrated accelerometer (PCB Peizotronics, Model No: 353B17) driven by a Signal 

Conditioner (PCB Peizotronics, Model No: 482) and connected to an oscilloscope 

(Tektronix, Model No. TDS 3012B). The pdfs of these accelerations are Gaussian with 
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flat power spectra up to a total bandwidth of ~10kHz.  The entire setup was placed on a 

vibration isolation table (Micro-g, TMC) to eliminate the effect of ground vibration. The 

motion of the ball was recorded with a high speed camera (Redlake, MotionPro, Model 

2000) operating at 1000 frames/sec.  Motion analysis software MIDAS 2.0 was used to 

track the dynamics of the steel ball”. The strength of noise at a given setting is nominally 

given as K= c, where  is the root mean square value of the accelerations of the 

vibrating stage that were recorded with an accelerometer (see above), and c is the time 

duration ( 40 s) of the pulse.  Even though the pdf of the acceleration pulses is 

Gaussian  [29], there is a certain correlation of the noise pulses generated by a 

mechanical transducer. In a previous publication  [29], we discussed this issue and 

showed that that the above estimate of K needs to be normalized by a constant numerical 

factor in order for the data to be amenable to quantitative analysis. Here we do not invoke 

this numerical factor, as the main parameters of interest are D,  and Teff , which are all 

obtained directly from the driven diffusive and the barrier crossing experiments. 

We perform two types of measurements. With a Gaussian noise and a bias, both 

acting parallel to the support, the object moves forward and backward randomly (except 

at very low noise strengths, when the sphere exhibits a stick-slip behavior with only a 

forward drift) but with a net downward drift  [29]. At a given bias )044.0( mNm  and 

noise range of K > 0.01 m
2
/s

3
, we record the stochastic motion of the object with a high 

speed camera at 1000 fps to study the trajectory over certain duration of time. A total of 

1.8 x 10
5
 elementary displacements obtained from 60 (3s duration) trajectories were 
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collected. From these data, the spatial segments corresponding to a certain observation 

time window are used to obtain the distribution function (pdf) of the displacement 

fluctuation (fig. 6). Such a pdf has a given mean and a dispersion of displacements. By 

plotting the mean value as a function of time segment, a drift velocity is estimated. 

Furthermore, from the slope of the variance of the displacement versus time, we obtain 

the diffusivity. The ratio of this diffusivity to mobility is the first measure of the effective 

temperature. Estimation of the effective temperature from the displacement fluctuation is 

described later in the text.  

 

6.4.2 Barrier crossing  

The barrier crossing experiment (fig.1(b)) was performed with a periodically undulated 

surface that was prepared by simply placing a thin (0.6 mm thick) fibrillar rubber sheet 

over a flat surface decorated with parallel gold wires.  By varying the diameter (25 m to 

75 m) of the wires, barrier height was controlled.  The topography of the surface 

produced this way is not exactly sinusoidal as the part of  rubber in between the two 

wires makes a flat contact with the underneath surface. The overall shape is more like 

Gaussian humps with its height adjusted by the diameter of the wire, which are separated 

periodically from each other. Numerical simulation, however, shows that this difference 

of the undulation, be it sinusoidal or periodically separated Gaussian humps, has no effect 

in the estimation of the effective temperature.  The ball was placed in one of the valleys 

and then the substrate was subjected to a random noise of a given strength. The time 
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needed for the ball to cross one of the barriers was noted with a stopwatch, or using a 

video camera. 35 such measurements were made at each power, from which the average 

escape frequency was estimated. With the substrate inclined at a given angle, average 

escape time was estimated at several different noise strengths with which the Van’t Hoff-

Arrhenius-Eyring (VHAE) plot was constructed. The number of jumps used in these 

experiments was optimized on the basis of simulation results so that no significant error 

is introduced in the averaging process.  

 

6.5 Simulations 

In order to estimate the drift velocity and the diffusivity at a given external bias and a 

noise strength, numerical solution of Eq.6.3 was carried out using a generalized 

integration method for stochastic differential equations
 
 [52] (see also reference  [29] for 

additional details). Stochastic accelerations of the vibrating plate as measured using an 

accelerometer were used as the input, (t), in the same sequence as they were generated 

experimentally to ensure that the noise correlation is identical in the experiment and the 

simulation. While the simulated drift velocity as well as the variance of the displacement 

did not depend on the integration time step (20s–80s), all the simulations were carried 

out with an integration step of 20s.  

Another set of simulations was carried out to estimate the barrier crossing 

probability.  When the height of the barrier is much smaller than the spacing of the wires, 
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as is the current case, the Langevin dynamics for the motion of the ball can be described 

by Eq. 6.10.  
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6.10 

 

Equation  6.10  was integrated by varying the strength of the noise. The trajectories thus 

obtained had certain numbers of discrete jumps of the ball from one potential minimum 

to the next. By dividing the total time of simulation with the numbers of jumps, the 

average escape frequency was estimated.  

 
As discussed in the previous section, the topography of the experimental surface 

is not sinusoidal; it rather resembles Gaussian humps separated by regular intervals. We 

simulated this situation as well using a Langevin dynamics by assuming the energy 

potential around each hump to be   2
/exp xgh   and replacing the fourth term of Eq. 

6.10 with a periodic modulation of     22 /exp/2  xghx  .   
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6.6 Results and discussion 

6.6.1 Stick-slip behavior at low noise strengths 

The stochastic rolling of the steel sphere on a slightly inclined fibrillated rubber exhibits 

two types of behaviors. At a noise strengths K > 0.01 m
2
/s

3
, the balls rolls forward as well 

as backward, but with a net downward drift. At a very low noise strengths (K< 

0.01m
2
/s

3
), on the other hand, the trajectories bear the signatures of stick-slip (more 

accurately, stick-roll) motion with a drift occurring only along the direction of the bias.  

 

Figure 6.4: Examples of the trajectories of a steel sphere rolling on a flat fibrillar PDMS 

substrate tilted at an angle of 1
o
 from the horizontal plane under the influence of Gaussian 

white noise at a very low (a) and a very high (b) noise strength.  
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Figure 6.5: (a) Drift velocity (Vd) of a steel sphere on a fibrillar PDMS substrate shows 

logarithmic dependency on 1/K at low power regime at different applied biases (red open 

diamond (◊,  0.078mN), black open triangle (Δ, 0.067mN), filled blue circle (●, 

0.056mN), open pink square (□, 0.044mN), filled green diamond (♦, 0.033mN),  open 

blue circle (○, 0.022 mN ). Each velocity is measured from the average of 10 to 20 tracks, 

each lasting for 180s duration.  (b) Master curve showing nice collapse of the data of 

fig.(a)  when 1/K is normalized by multiplying it with a factor of 
2)/1( c . 

 

Postponing the detailed analysis of such type of stick-slip data (i.e. the distributions of the 

stick time and the avalanche size) for the future, here we adopt a conservative approach, 

in which we measure the average drift velocity obtained from the displacement of the 

steel ball over a certain duration of time by varying the noise strength and the bias. Based 

on the observation that the drift velocity varies rather rapidly than either with the 

variation of K or  , we examined whether these data would be amenable to the analysis 

of an activated rate theory. It is apparent in fig. (5) that the drift velocities do, indeed, 

conform to a Van’t Hoff-Arrhenius-Eyring form in the sense that the ln(Vd) varies fairly 

linearly with 1/K. This observation and the fact that the slope of the ln(Vd) - 1/K plot 

decreases with the applied bias suggests that the de-pinning process of the sphere from 



Athermal activation 

 
 

191 

 

the fibrillated rubber is noise and force activated, along the lines of reasoning provided 

by several authors  [6,53,54] in the past in other related contexts. In particular, it has 

certain semblance to the noise induced de-pinning of interfacial asperities during the 

sliding of a solid on another near the threshold, for which Caroli and Nozieres  [54] 

proposed a logarithmic relationship between the sliding velocity and the friction 

coefficient, which can be written in terms of the variables defined in this paper as:  

  KVV co //1~)/ln(
2/3

 . Here, V is the sliding velocity and Vo is the velocity at which 

the applied bias reaches the threshold value  ( c ). Being inspired by this work, we 

explored what a comparable scaling would be for the current situation of rolling, which 

too is a depinning process (albeit the action here is concentrated near the contact 

perimeter). The data collected at different biases cluster satisfactorily around a master 

curve, provided that the horizontal axis (1/K) is multiplied with  2/1 c . The curvature 

of the collapsed plot, however, indicates that the underlying kinetics departs from a 

simple Arrhenius behavior.   

 

6.6.2 Diffusive behavior at high noise strengths: effective temperature 

from drift and diffusivity 

At higher noise strengths (K > 0.01 m
2
/s

3
) the sphere rolls both along and opposite to the 

bias, leading to a driven diffusive motion.  The resulting displacement pdfs (probability 

distribution function) could be fitted with a stretched Gaussian function [29], i.e. 
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Figure 6.6: Probability distribution functions (pdfs) of displacements corresponding to 

four different observation windows illustrate that the mean value of the pdf drifts with 

time, while its width broadens. These data correspond to steel ball on a flat fibrillar 

PDMS substrate tilted by an angle of 1
o
 and a noise strength of 0.1 m

2
/s

3
. Data of this 

kind are used to construct fig. (7).  

 

Here xp is the position of the peak,  is the width of the distribution and Po is a constant. 

Although these values of m change with the observation time, the mean and the variance 

of the distribution increase almost linearly with time at each noise strength (fig. (7)).  
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Figure 6.7: The drift of the steel ball on a flat fibrillar PDMS substrate tilted by 1
o
 from 

horizontal plane is estimated from the evolution of the mean value (a) of the displacement 

pdf, whereas the diffusivity is obtained from the evolution of the variance (b) of the 

displacement fluctuation.  The different symbols indicate the values of K at which the 

data were taken. Note that the variance is plotted as a function of  dV/
  which is the 

ratio of the observation time ( ) to response time  (
/dV

).  The horizontal scale shows 

that the range of the observation time far exceeds the response time. Both the mean and 

root mean square of the displacements exceed the spacing (50 m) of the fibrils as well.  

Similar symbols in figures (a) and (b) correspond to the same K. 

 

The first moment of the displacement pdf yields the mean position x  of the ball (fig. 

7(a)), the evolution of which gives the drift velocity (Vd), whereas the growth of its 

variance (fig. 7(b)) yields the diffusivity.  It is well-known that the determination of 

diffusivity from the evolution of variance suffers from poor statistics in the long time 

limit. Our experience with the types of system studied here and those reported in 

references  [3] and  [5] is that the variance versus time data can be fitted with a second 

order polynomial, the quadratic component of which is minor and, usually, decreases 

with improved statistics. We thus estimate the values of the diffusivity from the linear fit 
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of the variance vs time plots. Figure 8(a) shows that the diffusivity D increases super-

linearly with K even within a small range of the noise strength (0.01m
2
/s

3
< K < 0.13 

m
2
/s

3
) that is distinctly different from the classical behavior of D ~ K. We limited our 

investigation to this small range where the ratio of the diffusivity to mobility increases 

nearly linearly with K (Fig. 8(b)).   

 

Figure 6.8: (a) The diffusivity of the sphere increases non-linearly with the strength of the 

noise (D ~ K
1.8±0.2

, correlation coefficient ~ 0.97
 
) (b) D/increases almost linearly with 

K. The pink squares correspond to the effective temperatures obtained from the 

integration of the data shown in fig. 9(a). The data are not well-behaved at K > 0.1 m
2
/s

3
. 

All the barrier crossing experiments at the low K regime were carried out for K < 0.1 

m
2
/s

3
. As the error bars of diffusivities are of the same size or smaller than the circles, 

they are not shown on the graphs. 

 

This range was also used for the barrier crossing experiment (see below) where a large 

change in barrier crossing frequency is observed with a small change in K, similar to that 

of chemical kinetics. At this point, it should be pointed out that the net displacements of 

the ball in the above measurements of drift and diffusivity are much larger than fibrillar 
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spacing (50 m), thus ensuring that they are above the elementary activation steps. They 

are also larger than the dynamic length scale ( /
2

dV ), thus ensuring that the transients 

are not accounted for in these analysis. The ratio of diffusivity to mobility is an estimate 

of the effective temperature, which was validated against another measurement that we 

accomplished with the help of a work fluctuations relation as discussed in the next 

section.  

 

6.6.3 Persistence of negative fluctuation and effective temperature 

The probability distribution of the displacements at a low noise strength exhibits 

substantial amount of negative fluctuations [29] that persists over certain observation 

time window. It is, therefore, tempting to analyze the data in the light of a conventional 

fluctuation theorem and extract an effective temperature  [18] from such a plot. 

Unfortunately, an attempt to construct such a plot suffers from the malady that the pdfs 

are significantly asymmetric. Since the analysis of the displacement data in a typical 

fluctuation relation is carried out with the left wing of the distribution, the information 

contained in the right wing of any asymmetric distribution is ignored. It, perhaps, makes 

more sense to analyze the data using the integrated probabilities  [55] of the positive and 

negative displacements (P+ and P-).    

     (    )  ∫  (
 

  

  )             6.11 
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here,   xmw  is the fluctuating work corresponding to a random displacement  x . 

With the drift velocity measured at a given strength of the noise, the mean work 

performed on the sphere over time  is  dVmW  . Figure (9(a)) shows that the 

ratio P- /P+ decreases monotonically with W . Since, there are no other variables in such 

a plot, the integral value of  P- /P+ should be an intensive property of this driven diffusive 

system.   

Figure 6.9: (a) An integrated work fluctuation plot for a sphere rolling on a fibrillated 

PDMS surface.  (P-/P+) decreases monotonically with the mean work W at each noise 

strength, K. All the data could be fitted with an exponential or a slightly stretched 

function and integrated. (b) The effective temperatures obtained from the integration of 

the data shown in fig. 9(a) are compared with the ratio D/ obtained from fig.(8).   

 

When the displacement distribution is Gaussian and symmetric, the value of P-/P+ can be 

easily computed [56],
 
and it can be shown that this value is only 10% higher than the 
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ratio D/.  Figure (9(b)) shows that the temperature like intensive parameters (shown as 

Teff) obtained from the integrated fluctuations and those obtained from the Einstein’s ratio 

of diffusivity and mobility cluster very closely around the theoretical line expected for 

the linear friction.  While such a result would be quite generic for the case with a linear 

friction and with a Gaussian noise, it was not anticipated a priori for a non-linear system 

(see also Appendix section 6.8.2).  It is also gratifying to note that an estimate of the time 

of persistence of negative displacement fluctuation in a driven diffusive system can be 

obtained from this integration as:  
deffp VmT  / .  

6.6.4 Effective temperature of the rolling ball   

Figure (8(b)) shows that Teff, as estimated either from the integration of P-/P+  or from  

the ratio of the diffusivity and mobility,  increases almost linearly, even though the 

diffusivity increases non-linearly with K. This analysis yield the value of D/  to be  (84 ± 

3) K, where the former is given in terms of nJ and the latter in terms of m
2
/s

3
 . As the 

total kinetic energy of the rolling ball with a drift is about 40% higher than that of the 

linear kinetic energy, the effective temperature of the ball undergoing stochastic rotation 

should be about (118 ± 4) K nJ .  

At this juncture, we bring up an important issue regarding the temperature (T) of a 

non-equilibrium system as was pointed out by Speck and Seifert  [57].  These authors 

showed that the diffusivity (D) of the particle in a non-equilibrium driven diffusive state 

is always larger than Tby a certain amount.  The subject has recently been re-iterated by 

Chaudhuri and Chaudhuri  [58], who calculated the values of D and Tusing a flashing 
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ratchet model and reported that the ratio D/T departs from the equilibrium value of unity 

as a function of the asymmetry of the ratchet. Although it is premature to adapt these 

analyses to our system governed by a non-linear friction, we are led to suspect that D/ 

could be an over-estimated value of the temperature in the absence of the bias. This 

parameter should now be treated as an apparent temperature that must be compared with 

a value obtained from a more direct measurement (see below).  

6.6.5 Barrier crossing and Van’t Hoff-Arrhenius-Eyring equation 

As described in the experimental section, the barrier crossing experiment (fig. 1(b)) was 

performed with a steel ball on a periodically undulated rubber substrate, in which the 

amplitude of the undulation was varied from 25 m to 75 m. 

 

Figure 6.10: (a) A typical distribution of waiting times of the ball before it crosses from 

one potential valley to the next. Mean waiting time (tw), as estimated from such a 

distribution, is used to calculate the barrier crossing frequency (tw (b) VHAE type 

plots obtained with a barrier height of 75 m at different angles of inclination. As the 

angle of inclination increases, the barrier height decreases leading to a diminished slope 

of the VHAE line. The inset shows that the slopes (m
2
/s

3
) of these lines as a function of 

the bias ( , m/s
2
) . 
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At relatively larger barrier heights (i.e. 50 m and 75 m),  high noise strengths (1 m
2
/s

3
 

to 4 m
2
/s

3
) were required to initiate barrier crossing as compared to the low noise 

strengths (0.01 m
2
/s

3
 to 0.1 m

2
/s

3
) required for a barrier height of 25 m. We have 

already noted that the friction becomes linear for K > 1 m
2
/s

3
, where the frequency of 

barrier crossing increases with the noise strength as well as the tilt angle of the substrate 

that reduces the energy barrier.  

At any given noise strength, the ball persisted in a potential well for certain amount of 

time before transiting to the next. The corresponding waiting time has a certain 

probability distribution (fig. (10)), the first moment of which yields the mean waiting 

time (tw). The transit time to cross the barrier is very much shorter than tw.  The frequency 

of the barrier crossing () is thus given as the reciprocal value of this mean waiting time.  

The escape rate follows the rudimentary form of a force activated  [59–62] Eyring’s 

equation (Van’t Hoff-Arrhenius-Eyring or VHAE form) as follows: 

      
 

(    ̅ )
    6.12 

here,   is the rate of escape,  is an activation length and * is a time scale that converts 

the noise strength to an effective temperature as mK*. The experimentally measured 

escape frequencies conform well to Eq. 6.12, i.e. the plots of ln() vs 1/K  are linear. 

Furthermore, the slopes of these lines vary linearly with  (fig. 10(b)) from which mK  

is estimated to be (4.3±0.1) K nJ , which is remarkably same with the experiments 

performed with the 50 m and 75 m height barriers.  An estimation of the effective 
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temperature using the method of displacement fluctuation, however, could not be 

conveniently performed at high K, where the ball exhibits rather fast dynamics. These 

analyses could, however, be performed comfortably at a low noise strength.   

 

6.6.6 Barrier crossing with non-linear friction  

 

Figure 6.11: VHAE type plots obtained with a barrier height of 25 m at different angles 

of inclination. The inset shows the slopes (m
2
/s

3
) of these lines as a function of the bias (

 , (m/s
2
.   

 

The results of the barrier crossing experiment at a barrier height of 25 m are 

summarized in fig. (11). The logarithm of the barrier crossing rate is still linear with 1/K, 

even though these low- K dynamics are controlled by a non-linear friction. We already 

got the hint that this could be so, as the ratio D/ varies almost linearly with K.  From the 

slopes of the ln() - 1/K plots (fig. (11)) an effective temperature is estimated to be Teff  
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=(210±6) K nJ.  This value is nearly 78% higher than that obtained from the driven 

diffusive experiments.  In order to shed more light on this discrepancy, we simulated 

barrier crossing experiments by integrating Eq. 6.10 first with a linear friction model and 

then with a non-linear friction model assuming certain values of  and L  [29].  

 

Figure 6.12: (a) VHAE plots simulated with a linear friction model i.e. Eq. (10) with =0 

m/s
2
 and  L=0.01s. Barrier height of 25 m and periodicity  of 1 mm is used for 

simulation at different angles of inclination shown inside the figure. The slopes (m
2
/s

3
)  

of these lines are plotted as a function of   (m/s
2
) in the inset of the fig. 12(a). (b)  

Similar plot as in (a) except that a non-linear friction model was used, i.e. Eq. (10) with 

=0.8 m/s
2
 and  L=0.1s. While all the data were obtained with a surface having a 

sinusoidal profile, identical values of Teff were also obtained (not shown here) with a 

surface having Gaussian humps separated at same periodic intervals as 

 

The barrier crossing simulations performed with a linear friction model (i.e. =0) is 

consistent with Eq. 6.12 in that the plots of ln() vs 1/K  are linear at all angles of 

inclinations.  Simulations of diffusivity and mobility yielded the value of D/ to be 

(96.0±0.2) K nJ. By correcting for the rotational motion, the effective temperature is 



Athermal activation 

 
 

202 

 

estimated to be about (134.4±0.3) K nJ, which is slightly smaller than that (173±4 K nJ) 

obtained from the barrier crossing simulation. Simulations with the combination of a 

linear and a non-linear friction show that the drift velocity increases linearly, but the 

diffusivity increases super-linearly with K leading to D/ ~ K
1.50±0.01

. Barrier crossing 

frequencies (fig. 12(b)) obey Eq. 6.12 in that the plots of ln() vs 1/K  are linear at all 

angles of inclination.  Consequently, the corresponding effective temperature is linear 

with K, i.e.  Teff = (77±1) K nJ , which differs from what is observed with the ratio of 

diffusivity and mobility (i.e. Teff ~ K
1.50±0.01

) (fig. (13)). We thus conclude that the two 

methods do not yield the same effective temperature.  

 

Figure 6.13: Comparison of the D/  and the mK* values as obtained from the barrier 

crossing simulations with a non-linear friction model.   

 

While the simulation reproduces the general experimental features that the 

diffusivity is super-linear and the drift velocity is linear with the noise strength, it has not 
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been able to reproduce the fact that D/ is linear with K.  Clearly, a much more detailed 

state and rate dependent model of rolling friction would be needed in order to make better 

comparison between the simulation and the experiment. Nevertheless, both the 

experiment and the simulation thus far suggest that the effective temperature of a non-

linear system does not have a unique value. As already pointed out, there are two 

response times (L and K/2
)
 
to a non-linear dynamics. The effective temperature may 

then be determined by any of those values or by their average (Eq. 6.9) depending upon 

the experiment used to interrogate it.  It is plausible that the diffusivity is biased by the 

slower part of the dynamics, the response time of which is dominated by K/2
, whereas 

the barrier crossing is dominated by the higher end of the velocity distribution that is 

dominated by L.  In other words, the ball could be hotter at the transition time scale than 

the overall diffusive time scale.  

Another interesting part of the story is that the effective temperature (21.0±0.6 nJ) 

at K ~ 0.1 m
2
/s

3
 is found to be considerably higher than that (4.3±0.1 nJ) at a value of K~ 

1 m
2
/s

3
. This surprising result suggests that only a small part of the externally supplied 

energy is transmitted to the ball at high noise strength. This would be possible if the ball 

spends a considerable time in a levitated state, i.e. detached from the rubber support. This 

picture is, in fact, supported by the video microscopic observations. No detachment of the 

ball, however, occurs with a low strength of the vibration. The ability of the ball to cross 

a larger barrier at a higher K with a reasonable rate, in spite of a reduced Teff , can be 

ascribed to a reduced friction, thus to the enhancement of the pre-exponential factor of 
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the VHAE equation. This transition from an attached to a partially levitated (i.e. 

detached) state also appears to be a reason of the solid-like to a fluid-like transition of the 

drift velocity (fig. (3)) that is observed in going from a low to a high strength of the 

vibration.  

 

 

6.6.7 Barrier crossing experiment with water drops   

We conclude this section by reporting a barrier crossing experiment with a soft 

deformable sphere, such as a drop of water, which, in the same spirit of the above section, 

exhibits a slowing down of barrier crossing rate due to a difference in o.  

 

Figure 6.14: (a)  Comparison of the VHAE plots obtained for a sphere and a drop of 

water with a barrier height of 25 m. The data for the sphere are same as those 

summarized in fig.(11). (b) An 8l sessile drop exhibits shape fluctuation when it is 

excited with a Gaussian noise. Various harmonics of the shape fluctuation are shown in 

this power spectrum that was obtained by averaging several power spectra and de-noising 

it with a wavelet transform in order to reduce the background noise. 
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The origin of the non-linear friction here is the wetting hysteresis  [5] that gives rise to a 

sub-linear growth of the mobility of the drop as a function of the strength of the noise 

(fig. (3)). The results of the experiments performed with small droplets (8 l) of water on 

an undulated rubber surface (barrier height of 25 m) are summarized in fig. (14). While 

the slopes of the VHAE plots with a water drop are nearly parallel to those of a rigid 

sphere - meaning that the effective temperatures normalized by the masses of the 

respective objects are the same in both cases, the pre-exponential factor (o) for the water 

drop is nearly half of that of the steel sphere. 

As the pre-exponential factor is inversely proportional to the frictional relaxation 

frequency  [63] in the Smoluchowski limit, one may say that the velocity relaxation rate 

of a water drop is greater than that of the steel ball.  This trend is consistent with the fact 

that the slope of the mobility versus K of the water drop (fig. (3)) on a flat surface is 

nearly half of that of the steel sphere. By the same token, one would expect that the 

effective temperature of the water drop to be smaller than the rolling steel ball, which is, 

however, not the case. The dynamics of a liquid drop is richer than that of a steel ball in 

that it undergoes a noise induced excitations of numerous spherical harmonics  [64] 

(fig.14(b)). Further experiments with liquids drops of different surface tension and 

viscosity could shed more light on whether the internal dynamics related to these noise 

induced oscillations could contribute to the effective temperature of the drop in the 

barrier crossing experiments.  
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6.7 Concluding  remarks 

We presented here a report on the rotational coupled with a translational behavior of a 

small sphere on a surface that is driven by external fields and randomized by external 

noises. The results are encouraging in that an intensive temperature like parameter could 

be estimated from the Einstein’s ratio of diffusivity and mobility, which is consistent with 

that obtained from the decay of the negative displacement fluctuation. With such a model 

system, it was also possible to design a novel barrier crossing experiment, thus allowing 

measurements of the escape frequency of the sphere in terms of the tilt angle of the 

substrate and the barrier height.  The overall behavior is consistent with the Van’t Hoff-

Arrhenius-Eyring form of the escape rate in its rudimentary form. The results with a 

small barrier height could be analyzed in detail as the dynamics was slow enough to be 

followed carefully. This region is also interesting owing to the fact that the dynamics is 

controlled by a non-linear friction. The dynamics of the ball on the flat PDMS at K 

<0.01m
2
/s

3
 is a sub-critical barrier crossing process. At higher noise strengths (i.e. K > 

0.01 m
2
/s

3
), the slip (more accurately, the microscopic rolling) events occur both along as 

well as opposite to the bias that results in a driven diffusive motion. The drift velocity 

here grows almost linearly with K (i.e. 
2/~ KVd  , see also ref. 29)  which is in 

surprisingly good agreement with the predictions based on a simple model of threshold 

friction by Caughey and Dienes  [1] as well as de Gennes  [38].  While an effective 

temperature could be estimated from the barrier crossing experiments (an activated 

process at the scale of undulation), a discrepancy, nonetheless, has been observed 

between this estimate and that obtained from D/ in the low K region. It is plausible that 
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these two experiments may be probing different regions of the velocity statistics of a non-

linear system that exhibits two different response times. What essentially transpires is 

that we are dealing with a two level activation process, in which each requires a specific 

temperature to describe it. We expect that much more can be learned on this issue by 

performing barrier crossing experiments with a fat tailed (e.g. a stretched exponential) 

noise that could accentuate any difference of the type mentioned as above. With 

additional efforts, it should be possible to visualize the de-pinning process itself and to 

follow the avalanches resulting from the co-operative detachments of the fibrils from the 

surface. It would also be desirable to improve the experimental technique so that the 

distribution of the stick phases as well as the sizes of the avalanches at the low noise and 

high strengths can be carried out in detail, as these features could shed more light on the 

origin of the non-linear friction itself.   

 

6.8 Appendix  

6.8.1 (Adapted from Greenwood et al. [32]) 

The origin of the non-linear friction in Eq. 6.1 can be understood rigorously in a 2d 

system, with a cylinder rolling on a rubber slab in which the contact is smooth and 

rectangular. According to the theory of contact mechanics  [32–34] the stress distribution 

underneath the cylinder is: 
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Here, b is the half-width of contact band, R is the radius of the roller, P is the applied 

load, d is the shift of the midpoint of the contact band from the point beneath the roller 

center,  and E* is the contact modulus. According to the Griffith-Irwin theory of fracture 

mechanics, the stress has a square root singularity near the contact edges. The 

corresponding stress intensity factors are ( bx  ): 
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Using the relationship between the strain energy release rate, the stress intensity factor 

and the contact modulus 
 EN /G , we have 
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Subtraction of the values of G  at the receding and advancing edges gives  

 [ |    |  ]  
 

 

  

  
 (     

 ) 6.16 

 

The rolling torque Q  is obtained from the integration of the stress distribution as: 
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Combining Eq. 6.16 and 6.17, we have the essential result:  

     [ |    |  ] 6.18 

Although Eq. 6.18 is derived here using the method of contact mechanics for a smooth 

contact,  it can also be derived entirely using an energy argument  [32–37]. This energy 

argument is also applicable for the sphere on the fibrillated surface either for a circular or 

for a symmetric polygonal contact. If we equate the strain energy release rate with the 

work of adhesion in making and breaking the contact, we can write down an equivalent 

expression for the rolling torque of a sphere on a flat surface as: 

   [     ] 
  6.19 

where r is the width of contact.  

 

6.8.2 Effective temperature for different non-linear systems 

The effective temperature obtained from the integral of P-/P+ with W has also been 

tested against the ratio of the diffusivity and mobility for several other non-linear 

systems. One of those involves the sliding of a small glass cube on a slightly inclined (2
o
) 

glass plate in the presence of a Gaussian  [3]  or a non-Gaussian noise  [5].  The second 

and the third cases involve the motion of a small water drop on a smooth silicon wafer 
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induced either by a chemical  [5] or a thermal gradient  [65] of surface energy in the 

presence of a Gaussian noise. With the measured diffusivity and the drift velocity as 

discussed in the text, we define a non-dimensional observation time for each system as 

Vd
2/D. The first observation we make is that the kurtosis of the distribution is not 

constant with respect to the time of observation (fig. (15a)). Although a Leptokurtic 

distribution is observed at short observation time, the excess Kurtosis plateaus out to a 

constant value in all cases. 

 

Figure 6.15: (a) Excess kurtosis () is plotted against dimensionless time ( DVd /2 ) for 

some representative cases. (b)Teff  as a function of D/ for different systems. Black 

diamond ( ♦) represents the sliding (2
o
 inclination) of a glass cube on glass surface 

excited by Gaussian noise, red square (□) depicts same system excited by stretched 

exponential noise, blue open circle (○) corresponds to rolling sphere on fibrillated PDMS 

surface subjected to Gaussian noise (all the data are from the current work, except one 

from a previously published work  [29]), green triangle (Δ) represents water drop on 

wettability gradient surface and filled black circle (●) depicts water drop on thermal 

gradient surface.  
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While different evolutions are observed with different systems, the effective temperature 

obtained from the integrated fluctuation is in good agreement (fig. (15b)) with the 

Einstein’s ratio of diffusivity and mobility in all these cases that include (rather 

surprisingly) the sliding induced by a highly stretched exponential noise [

  3.0
/exp  oPP ].  These results provide additional support to that discussed in the 

text, namely that the integration of the P-/P+ with respect to W is a temperature like 

intrinsic property, i.e. it is equal to D/.   
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7. CHAPTER SEVEN: Noise Activated Dissociation of 

Soft Elastic Contacts6 

 

7.1 Introduction 

Morphological and/or elastic heterogeneities can play important roles in improving the 

toughness of an adhesive interface  [1–3] . Built upon the path breaking ideas of 

Thomson et al  [4,5] and Kendall [6], it is now well appreciated that such heterogeneities 

are capable of trapping a crack locally and intermittently. Every time a crack is de-pinned 

from such a trapped state, some energy is dissipated; thus the overall fracture toughness 

is enhanced. Examples of defect enhanced fracture toughness are plenty in natural and 

laboratory settings, which have been reviewed  [1,3] recently. The main emphasis of the 

conventional treatments has, however, been on the ballistic separation of surfaces from a 

pinned state. What has not been much appreciated is that these joints, like all systems in 

nature, are subjected to various types of noises originating from thermal, environmental, 

and mechanical processes. It is therefore imperative to develop an understanding of how 

two surfaces separate from a pinned state in the presence of a noise. The subject of this 

paper is to illustrate this situation with a specific example of the rolling of a rigid sphere 

on a surface, where it is initially pinned by deformable elastic fibrils but is de-pinned 

when it is subjected to a low strength mechanical noise.  We discuss the kinetics of such a 

                                                 
6
 This work has been published as: M. K. Chaudhury and P. S. Goohpattader; Noise activated dissociation 

of soft elastic contacts. Eur. Phys. J. E, 35, 131 (2012). 

http://www.researchgate.net/researcher/8918459_M_K_Chaudhury
http://www.researchgate.net/researcher/16013854_P_S_Goohpattader
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phenomenon after providing the required backgrounds on how a pinning potential 

develops from the completion of elastic and surface forces in a soft elastic system.  

Beginning with the pioneering works of Johnson, Kendall and Roberts and 

others  [7–18] it is now well-established that the interfacial forces can deform a soft 

elastic object when it comes into contact with another rigid material.  Several 

studies [15–18] have also pointed out that the adhesive forces can be so significant that a 

soft object jumps into contact with another material when they are in close proximity 

following which one or both of them may deform elastically.  

 

Figure 7.1: (a) Schematic of a sphere in contact with a flat substrate. A negative load (P) 

is applied on the sphere of radius R and contact modulus of E*. (b) Total energy of the 

system at fixed loads but at different values of the contact radius calculated with the 

following parameters. R= 100 m, E*= 1MPa, W=0.04 J/m2. For this combination of 

material parameters, the critical load Pc is -19 N.  In the absence of the load, the system 

has one minimum. However, as the load is increased, a maximum and a minimum appear 

in the energy potential. At a critical negative load, the energy barrier disappears. 
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The simplest illustrative case [7,8,10] is the deformation of a sphere is shown 

schematically in Figure 7.1. For the purpose of illustration, we consider that a negative 

load (P < 0) is applied onto the sphere. The total energy of the system  [7,8,10] is the 

summation of the potential, elastic and adhesion energies: 

  (   )  
    

    
 

  

    
 

   

  
      7.1 

 

Here, E* is the contact modulus, P is the applied load, R is the radius of the sphere, W is 

the work of adhesion and a is the radius of the contact area. When P = 0, the energy U (a, 

P) exhibits a minimum with a depth of   
3/2*

3/43/5

10

6

E

RW
Ub




 that can be easily deduced by 

setting the first derivative of the total energy of the system (Eq. 7.1) to zero. The system 

is unconditionally stable at this stage. However, with a negative load, the energy 

landscape changes substantially as shown in Figure 7.1. A local minimum still exists as 

long as the load is smaller than a critical value, but now an unstable equilibrium state 

appears in the energy landscape. There is a difference of energy between the unstable and 

the stable equilibrium states that disappears only at a critical load thus leading to a 

ballistic separation of the sphere from the substrate. What we emphasize in this paper is 

that the sphere can explore various states of the energy landscape (Figure 7.1) diffusively 

in the presence of a noise. When the unstable equilibrium state is crossed, the contact 

falls apart. Like any chemical kinetics, the frequency of this rupture should follow a 

Van’t Hoff-Arrhenius-Eyring [19] type rate law, which is generic to the force induced 
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dissociation of molecular bonds as witnessed in various types of thermally activated 

processes such as plastic flow  [19,20], friction  [20–29], wetting dynamics  [30], sub-

critical fracture [31] and the dissociation kinetics of single molecules  [32,33], to name a 

few.  

We approach the current problem within the framework of a Smoluchowski-

Kramers equation  [34,35], in which two physical parameters are important. The first is 

the barrier height and second is the frequency at which attempts are made to cross the 

barrier. Several studies [19–33] have pointed out that an external force reduces the height 

of any pre-existing energy barrier. To the best of our knowledge, Garg  [36] was the first 

to point out that it is not only the barrier height, but also the pre-exponential frequency 

factor that changes with the applied load. Afterwards several studies [37–41] used the 

force modulated frequency and the barrier energy terms in the Kramers equation to 

simulate the dissociation kinetics of polymer chains with a linear loading rate in the style 

of Evans and Ritchie  [33], as well as Schallamach  [23]. The findings of the later 

studies  [38–41] agree with Garg  [36] in that the applied force ( f ) modifies the energy 

barrier as ~ (1-f/fc)
 1.5

, where fc is the critical force of detachment. Recently, such a 

scaling has been verified in molecular dynamics simulations as well   [28,42]. The 

finding of Lacks et al [42] is particularly interesting in that they showed that it is not only 

the energy barrier, but also the free energy barrier that follows the scaling of ~(1-f/fc)
 1.5

.  

In the light of these previous studies, we write the overall frequency of rupture of a soft 

sphere from a solid substrate (assuming a linear friction) as follows:  
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   [
  

  
  ( )  ( )]    [ 

   ( )

    
] 7.2 

 

Equation 7.2 is the celebrated Kramers’ equation in the strong friction limit, where L is 

the Langevin relaxation time, 1(P) and 2(P) are the frequencies corresponding to the 

curvature of the energy potential near its maximum and minimum values, U(P) is the 

barrier height, m is the mass of the sphere. K (m
2
/s

3
) is the strength of a Gaussian white 

noise, which is defined as c,   (m/s
2
) being the root mean square acceleration of the 

noise, and c (s) is its pulse width. The term mKL /2 of Eq. 7.2 is the surrogate for the 

kinetic energy (kBT) of a thermal system. The random noise can be thermal in micron 

scale systems or it can be environmental in macroscopic systems. In a controlled 

experiment at the laboratory setting, the noise can also be generated with a waveform 

generator and fed to an oscillator. An accelerometer can be used to estimate the 

acceleration pulses from which  can be estimated. Details of these procedures can be 

found in our previous publications  [43,44].  
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7.2 Noise induced detachment of the JKR like contact 

7.2.1 Spherical contact 

The energy barrier and the spring constant needed to estimate the frequency of transition 

can be obtained from a Taylor series expansion of Eq. 7.1 about a critical point ai as 

follows:  
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3 

Setting the first term of the right hand side of equation 7.3 to zero, one obtains the 

classical JKR [3] equation ( Eq. 7.4) that gives two critical values of the contact radius 

(ai) - one at the unstable (a1) and the other at the stable (a2) position of the energy 

landscape.  
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Or, equivalently: 
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The curvatures of the potential (second term of Eq. 7.3) around these two (stable and 

unstable) equilibrium points yield the spring constants that can be expressed as:  

    
 ( )  |(

    
 

  
 

  

    
 )| 7.6 

 

Now collecting all the terms, the frequency of separation of the sphere from the surface in 

the presence of a negative load P and a noise of strength K can be expressed in terms of 

the following form of the Kramers equation:  
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7.7 

 

Note that the term work of adhesion (W) is implicit in equation 7.7, which has been 

eliminated by combining equations 7.1 and 7.4 in order to obtain a compact form of the 

exponent. 
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Figure 7.2: (a) Logarithm of the frequency of rupture of a sphere from a flat surface 

varies linearly with 1/K  at a given load. These calculations were performed with the 

following parameters:  R= 100 m, E*= 1MPa, W=0.04 J/m
2
, m=4.2 g and L=0.01 s. 

(b) collapse of the rupture kinetic data results when ln(  is plotted against  (1-

P/Pc)
1.45

/K.  Similar symbols in figures (a) and (b) correspond to the same load. 

  

With the reasonable values of the material and geometric properties of a soft elastic 

contact, Eq.7.7 was solved numerically. The results, as summarized in Figure 7.2, show 

that the logarithm of the rupture frequency is linear with the reciprocal of the noise 

strength at a fixed value of the applied load that is typical of a Van’t Hoff-Arrhenius-

Eyring type kinetics. The data obtained at various values of the applied load can also be 

summarized (Figure 7.2b) using Eq. 7.8:  

        [ 
   (      )

    

    
] 7.8 
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Where     
(   )       

        is the depth of the potential well in the absence of the load, 

which we identified earlier in the text.  The exponent (1.45) of the reduced bias (1-P/Pc) 

is close to that (1.5) of Garg’s expression  [36] and can be verified (approximately) as 

well by integrating the following form of the rupture dynamics (see Appendix) with a 

noise term (t) as follows: 
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7.9 

 

While the above analysis has been carried out with a circular contact of a spherical 

object, similar analysis can also be performed with other types of contacts as well.  For 

example, with a flat circular contact [8,45] with a deformable substrate, the total energy 

is of the following form: 

    
  

    
      7.10 

Where a is the radius of contact.  For this particular geometry, the barrier energy is: 
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)] 7.11 

Numerical evaluation of Eq. 7.11 leads to a barrier height as
22 )/1(~)( cPPWaPU  . 

On the other hand, the energy of the contact of a cone [46,47] of semi angle   2/   is:  
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7.12 

 

Here, the depth of the potential scales as 
2*3 / EW .  Numerical analysis of Eq. 7.12  

shows that the force dependent barrier height is of the form: 

4.12*3 )/1)(/(~)( cPPEWPU  .  

 From the above discussions, it is clear that the energy barriers are strong functions 

of the geometry of the contacting object. While for the sphere and the flat, the energy 

barrier scales as 3/2*3/43/5 / ERW  and Wa
2
 respectively, it scales as 

2*3 / EW  for the 

conical contact that lacks a clear geometric length scale. By contrast, the exponent of the 

reduced bias is close to 2 for the flat contact, whereas it is close to 1.5 for both the 

spherical and conical contacts. We now explore how the insights gained from these 

discussions could be useful to understand certain features of the noise induced micro-

fibrillar detachments as we witnessed in our previous studies  [43,44]. 

7.3 Rolling of a rigid sphere on a fibrillated rubber 

Recently, we studied the behavior of the rolling of a small rigid sphere on a low modulus 

flat rubber that was decorated with the microfibrils of the same material using a 

lithographic method  [48,49].  A rigid sphere is pinned on such a surface via adhesion to 
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the fibrils. 

 

Figure 7.3: (a) 3D Profile of the fibrillar rubber substrate measured with  a noncontact 

optical 3D profilometer (ZeGage with ZeMaps V.1.11, from Zemetrics, Inc.). (b) The 

profile of the end of a fibril showing that it is slightly curved. The spikes are artifacts 

arising from the fact that the profilometer failed to follow the edges of the fibrils ( c) 

Schematic of a rigid sphere (a small steel ball of 4 mm diameter and 0.26 gm mass) on an 

inclined substrate of a silicone rubber (0.6 mm thick with a modulus of 2.2 MPa), from 

which square fibrils of the same material are projected outwards on a diagonal square 

lattice at a spacing of 50 μm. In the absence of any noise, the sphere rolls at an angle of 

about 2.5
o
.  However, with an angle less than 2.5

o
,  the sphere rolls with a velocity that 

increases with both the noise strength and the bias. (d) At each bias, ln(V) varies linearly 

with 1/K . The symbols are as follows. red open diamond (◊,  0.078mN), black open 

triangle (Δ, 0.067mN), filled blue circle (●, 0.056mN), open pink square (□, 0.044mN), 

filled green diamond (♦, 0.033mN),  open blue circle (○, 0.022 mN). Some of these data 

were originally reported in reference [45]. However, in this study, we extended the 

dynamic range of the noise strength by going to even smaller values of K.  

When the substrate is inclined above a critical angle (c ~ 2.5
o
), the sphere rolls by de-

pinning from the fibrils in the receding edge, but making fresh contact with them at the 

advancing edge.  
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Figure 7.4: Schematic illustrations of the pining and de-pinning events of the fibrils in 

contact with a rigid sphere. 

 

The ball can also roll sub-critically, i.e. at an angle of inclination  < c, provided that it 

is subjected to an external vibration. In previous publications  [43,44], we reported this 

type of stochastic rolling behavior of a steel ball on a fibrillated rubber substrate, when 

the later was vibrated parallel to its base with a Gaussian noise. As discussed in 

references  [44] and  [50], the torque applied on the ball by the external force about its 

point of contact with the surface is balanced by the torque due to adhesion. The contact 

mechanical force due to adhesion is compressive at the advancing edge of contact, but is 

tensile at its receding edge. From a balance of the two torques, it can be shown that the 

collective tension caused by all the fibrils, each experiencing a force of magnitude P, is 

proportional to the  applied bias F (= mgsin). 

The basic observation [44] was that the ball exhibits a stick-roll motion at very 

low noise strength with the net drift always occurring along the direction of the bias. The 

rolling velocity of the sphere on the fibrillated rubber could indeed be described by an 

Arrhenius equation in the sense that ln(V) is fairly linear with 1/K over a substantial 

dynamic range of the velocity (Figure 7.3d).  
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 In order to analyze this type of rolling dynamics data in the light of the discussion 

of section 2, we first need to multiply the fibrillar detachment frequency with a length 

scale in order to obtain the scale of a velocity. This is, however, not a simple proposition 

as this length scale itself would depend on how effectively the detached sphere is 

damped. If the damping is weak, the sphere would roll over several fibrillar spacings 

before being arrested by another set of fibrils. 

 

Figure 7.5: (a) Collapse of the rolling velocity data of Figure 7.3. Curve I plots )ln(V

against KFF c /)/1( 2 and curve II plots )/ln( FVFc against   KFF c //1
5.1

 .  (b) 

Collapse of the same data when ln(V) is plotted against   ])/1[(/1 2.1

1 cFFK   with 1  

=  108 s
3
/m

2
 and Fc= 0.1mN. Similar symbols in figures (a) and (b) correspond to the 

same load.  

 

 With an overdamped system, the sphere could move by only one spacing length 

() before it is pinned again. If we employ the latter scenario, the rolling velocity (V=) 

would depend on F and K in the same way as does the rupture frequency. Thus, V is 

given by: 
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Where F is the applied bias. At this juncture, it would be prudent to point out that this 

form with n=1.5 is also consistent with the ball rolling (see Appendix) on a sinusoidal 

potential that is, perhaps, the simplest functional (or coarse grained) generalization of the 

rolling behavior accompanied by the pinning/depinning kinetics, excepting that the 

fibrillar detachments could lead to an avalanche (discussed in section 4) whereas rolling 

on a sinusoidal potential does not. Various types of detachment modes are plausible as 

shown schematically in Figure 7.4. If the termini of the fibrils are truly flat ended, we 

expect that ln(V) to be proportional to KFF c /)/1( 2 . When treated this way, the data 

do indeed cluster around a single curve, as was observed by us in a previous 

publication  [44]. The bothersome feature here is that the overall rupture kinetics is non-

Arrhenius, which is inconsistent with the observation that the rupture data exhibit an 

Arrhenius behavior over a significant range of the noise strength (K) at each applied bias. 

The direct observation of the fibril terminus using an optical profilometer (Figure 7.3b) 

shows that it is, in fact, rounded with a radius of curvature ~ 40 m. Thus it is more 

reasonable to try to collapse the data by plotting ln(V) against KFF c /)/1( 5.1 .  When 

attempted this way, good collapse of data (plot II of Figure 7.5a) is obtained only when 

the drift velocity is divided by the bias. Although the curvature of the collapsed plot now 

is reduced from that of plot I, the overall rupture kinetics is still non-Arrhenius.   
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There is however another angle from which to look at these data. Figure 7.3 

reveals that all the lnV vs 1/K lines needed to fit the experimental data at all the biases, 

when extrapolated, tend to meet at a point farther to the left quadrant of the plot. A 

simple way to collapse the data would, therefore, be to first shift the 1/K axis to the right 

by a certain amount and then use this shifted values of 1/K to fit the data with an 

Arrhenius equation. Figure 7.5b shows that this method works remarkably well.  The idea 

of shifting the 1/K axis is equivalent to a generalized rupture kinetics of the form 

 












 


L

cb
o

mK

FFKU
VV




2.1

/1)(2
exp~/ . There are two issues related to this fit. The 

first of which is that the observed exponent (1.2) of )/1( cFF  is somewhat smaller than 

that (1.4 to 1.5) obtained from the simulations and secondly, the barrier energy needs to 

be modified by an additional entropy like term: K In the context of a particle escaping 

from a potential well, Lin et al  [41] suggested that an exponent of ~ 1 ensues when the 

applied force is much smaller than a critical force, which is clearly not the case in our 

current experiments.  We believe that our results are influenced by other modes of 

separation of the fibrils, including peeling (Figure 7.4) that being in a state of 

undifferentiated equilibrium [8] requires no activation. Postponing a detailed statistical 

analysis of this kind of mixed mode micro-rupture dynamics for future, we focus here on 

the other important issue related to the shift of the 1/K axis that was required to collapse 

the experimental data.  
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7.4 Sequential rupture of fibrils 

The basic premise here is that the fibrils do not detach all at once. When one fibril 

detaches from the surface, the load gets distributed to the remaining undetached fibrils 

thus enhancing the rupture rates of any of the remaining fibrils. The process continues till 

the load on the remaining fibrils are such that all of them detach ballistically, thus causing 

an avalanche. Within this scenario, the rupture kinetics may be described by the 

following equation: 

 
  

  
    (   ) 7.14 

 

Where  = (t) is the fraction of the total numbers of fibrils that is in contact with the 

rigid sphere at any time t.   For a spherical contact,  P,  can be expressed as (see Eq. 

7.8): 
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] 7.15 

 

The total time to rupture can be estimated by integrating equation 7.14 as follows: 
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  (   )

 

    

 7.16 
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Figure 7.6: Arrhenius plots of the frequency of detachment of multiple fibrils from a 

surface with a JKR contact. The parameters of these calculations are same as those of 

Figure 7.2, except that two different values of W (0.04 J/m
2
: open symbols; 0.01 J/m

2
 

filled symbols) were used. The data collapse in one master line when the normalized 

frequency ln (mWL) is plotted against      ]/1[/1/2
5.1

1 cLb PPKmU 

where 1 =Ub with the value of  as 48 pJ s
3
/m

2
. 
 

 

By calculating the rupture frequencies (1/T) using Eq. 7.14 to 7.16 for two different 

values of W, we attempted to collapse all the data as follows.  First, the rupture frequency 

was normalized as LWm  / , where  mW L /   is the characteristic escape frequency of 

mass m fluctuating in the JKR potential (compare equations 7.2, 7.6and 7.8). Next, we 

modulated KPP c /)/1( 5.1  with Lb mKU /2  so that the data obtained with different 

values of W can be collapsed on to a single curve. With these normalizations, Figure 7.6 

shows that  
LWm  /ln  

 

is indeed linear with   Lcb mKPPU //12
5.1

  provided that the 

horizontal axis is shifted by a constant amount. This analysis thus leads to an equation of 
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the type shown below that provides partial justification for the shift of the 1/K axis of the 

experimental data as was done in Figure 7.5b.   
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 (     )(  
 
  

)   
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7.5 Discussions and final remarks 

The main point of this paper is that the contact formed by the adhesive interaction of a 

soft deformable object with a rigid substrate can be broken sub-critically in the presence 

of a noise.  This idea of the noise induced dissociation of a soft elastic contact has been 

useful in understanding some recently reported experimental results  [44] of the pinning-

de-pinning induced rolling of a rigid sphere on a soft fibrillar substrate. Although, there is 

a slight discrepancy in the exponent (1.2) of the reduced bias needed to fit the 

experimental data and that (1.4 – 1.5) expected of the detachment of a spherical contact, 

the discrepancy is not large. The kinetic analysis provided a new insight in that an 

“entropy” like term contributes to the energy barrier.  Further studies are, however, 

required in analyzing the mixed mode ruptures of multi-fibrillar contacts in which load is 

shared by certain  modes that are activated and others (i.e. peeling) that are not. Careful 

experiments with single fibrillar contacts with various other geometries are expected to 

provide further insights in these types of contact separation problems. The studies 

presented here could also be useful in understanding the pinning-depinning dynamics in 

various other types of bio-inspired adhesives and composites as well as understanding the 



Noise activated dissociation 

 
 

234 

 

(thermal) noise induced detachments of cells, macromolecules and soft colloids [51] from 

surfaces. Study of a noise induced separation of contact of soft materials may also be 

useful in obtaining the depth of the energy potential which may contrast and complement 

the conventional fracture mechanics methods of obtaining the strain energy release rates. 

We believe that noise induced detachments of soft adhesive contact may also find 

interesting applications in recently emerging transfer printing technologies  [47].  

 

7.6 Appendix 

7.6.1 Langevin dynamics simulations of the splitting of soft contact 

The purpose of this section is to try to recover the result that the energy barrier to rupture 

a sphere from a rigid flat plate scales with the reduced bias as (1-P/Pc)
1.5

 using a 

Langevin dynamics simulation. In order to accomplish this objective, our first step is to 

write down the Lagrangian (L), in terms of the mass (m), elastic displacement () and the 

energy of the system as  

   
 

 
  ̇   ( ) 7.18 
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U(a) is the thermodynamic potential energy, which is given by Eq.7.1.  Now, solving the 

Lagrangian equation (Eq. 7.18), we obtain the crack growth equation with a frictional 

dissipation as in Eq. 7.20.  

 
 

  
(
  

  ̇
)  

  

  
 

  

  ̇
 7.20 

 

Where  is the energy dissipation function 

dt

dA
G  , where G  *2

0 /~ EaT   
is the energy 

release rate in the linear friction regime  [52] and A=a
2
. Here, T is the relaxation time of 

the adhering polymer chains, o is the cohesive stress , and E* is the contact modulus. 

Now solving Eq. 7.20 and adding a noise term (t), we have the Eq. 7.9 of the text:   
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7.21 

 

Although a more exact form of the friction is non-linear with the crack velocity  [52], the 

linear friction model as used above is useful for capturing essential physics of the rupture 

dynamics that can be compared with a Kramers’ model. In the current simulation, we 

treat the term *2 /4 ET o  of equation 7.21 as an empirical parameter.  A computer 

generated  [43] Gaussian random noise was used to integrate Eq. 7.21 using a fixed load 
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condition. Logarithm of the rupture rate at each load was linear with 1/K. All the rupture 

data can be collapsed (Figure 7.7) by plotting ln( against the reduced bias as (1-

P/Pc)
1.38

/K.  Note that that the exponent of the reduced bias is slightly smaller than 1.5.  

 

Figure 7.7: (a) The fluctuation of the radius (a) of contact about a mean value (ae) is 

obtained from the simulations based on Eq. 7.21.  The contact falls apart eventually 

(indicated by the arrows). From the mean value of the watiting times, a rupture frequency 

was estimated. (b) Summary of the rupture kinetics data using Langevin dynamics 

simulations (Eq. 7.21). These calculations were made using the following parameters:  

R= 100 m, E*= 1MPa, W=0.04 J/m2, m=4.2 g with a friction term of Eq. (7.21) i.e. 

(mE*/4o
2
T ) set as 12 ns.m. 

 

7.6.2 Motion over a periodic potential  

Motion of a particle over a periodic potential was used by Prandtl  [20] to study the 

nature of friction. This model is also generic to study the motion of particle in a tilted 

potential  [53]. Here, we consider a translational form of the stochastic rolling equation of 

motion of the sphere on a periodic potential of wavelength  : 
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Here, F (=mgsin) is the force acting through the center of gravity of the sphere parallel 

to the substrate. The force P acting on each fibril is proportional to F through a geometric 

factor.  

  

Figure 7.8: (a) Typical trajectories of a sphere moving over a sinusoidal potential in the 

presence of a bias and an external noise. From the mean value of the waiting times, a 

barrier crossing  frequency was estimated. (b) Comparison of rolling kinetics data as 

obtained from Langevin simulation (Eq. 7.22) (open symbols) and Kramers’ formalism 

(Eq. 7.7) (filled symbols).  is the reduced bias. The value of n is 1.4 for the Kramers’ 

calculations and 1.5 for the rolling using Langevin dynamics. For the Kramers’ 

calculations, the parameters are same as those of Figure 7.2, while for the Langevin 

dynamics simulations, the following parameters were used: = 50 m, L=0.001 s, h= 

1.6 m, Ub = 0.06 pJ. 
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Using a computer generated Gaussian random noise, Eq. 7.22 and 7.23 were integrated 

with a fixed value of the reduced bias:  1-F/Fc. From the trajectories generated at each 

noise strength, the drift velocity was estimated directly. Logarithm of this drift velocity is 

linear with 1/K at each value of  Now, the data collected at different values of K and  

were normalized by plotting ln(VV against the reduced bias as 2Ub
1.5

/K.  This result 

was compared with the prediction of the fibril detachment model using Kramers theory in 

which ln(VV was plotted against 2Ub
1.4

/K with the value of Ub as 
3/2*

3/43/5

3.13
E

RW
. 

Figure 7.8 shows that the both set of data collapse on to a single curve thus demonstrating 

the rolling on a potential well is functionally equivalent to that accompanied with the 

detachment of fibrils.  
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8. CHAPTER EIGHT: Activated Drops7 

 

8.1 Introduction 

While many macroscopic transport processes are described satisfactorily within the 

scope of continuum hydrodynamics, there are a broad range of phenomena that call for an 

intermediate level description of continuum mechanics and activated rate theories.  Such 

is the case with the dynamics of wetting  [1–5] or the broader classes of stick-slip 

instabilities and avalanches  [6–10] as found in disturbed granular packing and plastic 

flow of amorphous solids.  An intriguing recent finding in this field of research is what is 

known as self-generated noise that can affect the flow behavior of disordered 

systems [11,12]. In wetting dynamics, we have already reported  [13] how the 

coalescence of condensing droplets leads to a self-generated noise, in which the 

coalescing droplets undergo a random motion on a surface due to the internal gradient of 

Laplace pressure. If there is an external field, such as a gradient of wettability or 

temperature, the condensed drops drift towards a prescribed direction with its rate 

controlled by the difference between the temperatures of the steam and the substrate.  

Such types of self-generated noise field can supply so much energy to the drops that they 

completely overcome the surface pinning forces, which can be used for efficient removal 

of drops in various engineered systems such as micro-heat transfer and heat pipe 

technologies [13,14]. The purpose of this paper is to report a new type of self-generated 

                                                 
7
 This work has been published as: M. K. Chaudhury and P. S. Goohpattader; Activated drops: self-excited 

oscillation, critical speeding and noisy transport. Submitted to Eur. Phys. J. E, 36,15 (2013). 

http://www.researchgate.net/researcher/8918459_M_K_Chaudhury
http://www.researchgate.net/researcher/16013854_P_S_Goohpattader
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noise that is brought about by the depinning of a liquid drop from a fibrillar 

superhydrophobic surface in the presence of a small external force. The noise generated 

from such events can even give rise to a self-excited structural oscillation of the drop. 

This is an intriguing observation that deserves detailed study with respect to 

understanding the relaxation behavior of the three phase contact line as well as for further 

exposition of various models  [1–5,15] that underpin the view that the motion of contact 

line on a surface is facilitated by thermal fluctuation.  

Beginning with the original idea of Dettre and Johnson  [16] that the air between the 

asperities of a rough surface cannot be displaced by water when its roughness exceeds a 

critical value, there has been an explosion of research  [17–27] surrounding a class of 

surface that are categorically called as  “superhydrophobic”. A timely review of the 

subject can be found in  [28]. The term “fakir state” is coined by Mahadevan  [29] to 

indicate the state of a liquid drop that is virtually suspended on the posts or pillars of a 

structured substrate, as would a legendary “fakir” support himself on a bed of nail. There 

always is a globally minimum free energy state for such a drop to assume. However, the 

metastable energy barriers  [16,30,31] due to defects arrest a drop farther from such a 

state.  Dettre and Johnson  [32] suggested that the angle that a drop can display on such a 

surface depends on the depth of the metastable states as well as the vibrational state of a 

drop. While certain equations  [33,34] can be used to predict the contact angle 

corresponding to a globally minimum state on a non-ideal surface, Good  [35,36]  pointed 

out that an additional term representing the energy barrier of the metastable state (that is 

related to the contortional energy of the contact line) must be taken into account to 
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predict the maximum advancing and receding angles of a drop. Joanny and de 

Gennes  [37] as well as Pomeau and Vannimenus  [38] showed that the elastic property of 

the contact line in conjunction with its non-linear interaction with a defect give rise to a 

bistable state that is the root cause of hysteresis. Later, these methodologies have been 

further extended  [39,40] to study the critical wetting dynamics slightly above a threshold 

force in terms of the quenched disorder, fluctuation of local spreading coefficient and the 

stiffness of the contact line. In many ways, the state of the affair of a drop interacting 

with the morphological or energetic heterogeneities is similar to that of molecules 

interacting with a substrate through a corrugated molecular potential. Just as the thermal 

fluctuation can activate the motion of the molecules near the contact line on a smooth 

surface  [1], a random external vibration  [5] can activate the motion of the pinned 

contact line on a non-ideal surface.  

 

The subject of our story begins with a curious observation that a small (5-20 l) droplet 

of water, glycerin or their mixture displays an unusually complex dynamics on a micro-

pillared surface. Very small (~ 5 l) droplets do not move, whereas a slightly larger (10 

l) droplet exhibits the interesting critical dynamics in that it does not move for quite 

some time,  but then suddenly, it runs away from the pinned location with a substantial 

speed. As can be expected, the larger drops sprint away rather freely on such a surface 

without much ado.  Understanding the behaviors of the small droplets constitute the 

central theme of this research. It became rather clear from the outset of this investigation 

that the conventional hydrodynamics, in itself, may be incapable of providing adequate 
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description of such a complex dynamics and that it calls for an intervention of statistical 

mechanics, especially within the scope of an activated rate theory. Once this line of 

reasoning developed further, it became natural to inquire how such a dynamics would 

depend on the viscosity of the liquid as well as the temperature. Since it is impractical to 

vary the thermodynamic temperature of a liquid drop without affecting its physical 

properties, we resorted to using a mechanical noise. The energy scale of a mechanical 

noise is such that the activated depinning dynamics of the contact line could be studied 

by varying its intensity in a systematic way. What was revealed to us is that the dynamics 

of a drop of water, or up to a 50% solution of water and glycerol, falls within the scope of 

the low friction limit of the Kramers’  [41,42] barrier crossing rate, in which o increases 

with solvent friction. This scenario gained additional support from a barrier crossing 

experiment in which the drops were forced to cross a barrier at different noise intensities.  

 

8.2 Experimental section 

8.2.1 Materials  

The liquid used for the experiments was either deionized water or various solutions of 

water and glycerin (Fisher Chemical, CAS 56-81-5, 100%). The viscosities of these 

liquids, measured with Ubbelohde viscometer (Cannon Instrument company) under 

ambient condition (25
0
C and 48% relative humidity)  were 1, 1.6, 3.4, 5.3, 9.4, 18.6, 47, 

168, 468 and 1040 mPa-s )%1( , for pure water and 20, 40, 50, 60, 70, 80, 90, 95 and 

100 weight percent of glycerin in water respectively. The viscosities of these liquids 
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agreed with the literature values [43], except for the nominally pure glycerin, for which 

the measured viscosity was slight less than the literature value (1260mPa-s) suggesting 

that it absorbed a small amount of water soon after the highly hygroscopic glycerin was 

exposed to the atmosphere. The surface tensions of these liquids that were used for the 

drop dynamics studies were 71.9, 70.8, 69.7, 68.6, 68.0 and 64.4 mN/m )%1.0(   for 

pure water and 20, 40, 50, 60 and the nominally 100 weight percent of glycerin 

respectively as obtained from a Wilhelmy plate method. All these values are also in good 

agreement with those reported in literature.  

The principal test surfaces were micro-fibrillated PDMS rubber (Sylgard 184, Dow 

Corning), which were prepared using the methods described in several recent 

publications  [44–46]. Two types of silicone rubbers with a base thickness of 0.6mm had 

square fibrils (10m width and 25m height) on a square diagonal lattice, which were 

separated by 50 m and 95 m respectively (fig. 2) respectively. Another surface was 

hydrophobized silicon wafer (Silicon Quest International), which were silanized by 

reacting them with the vapor decyltrichlorosilane (CH3-(CH2)9-SiCl3, Gelest Inc.) 

following the methods described previously  [5]. The silanized silicon wafers were 

hydrophobic with advancing and receding contact angles of 107
0 

and 97
0
 respectively.  

8.2.2 Methods 

Fibrillated PDMS rubber surface was placed on a clean glass slide, which was then fixed 

to an aluminum stage as described previously [47]. The stage itself was attached to the 

stem of a mechanical oscillator (Pasco Scientific, model no. SF-9324) having the 
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provision of tilt and three dimensional translation with the help of a precise goniometer 

(CVI Melles Griot, Model No: 07 GON 006) and a XYZ translator (CVI Melles Griot, 

Model No: 07TXS224, 07TEZ204). Water drops of volumes ranging from 5l to 20l 

were placed on the test substrates and their motions were recorded with either a low 

speed (30 fps) Sony camera (DCR HC-85 NTSC) to obtain the displacement versus time 

trajectories (fig. 1) or with a high speed (500-2000fps) camera (Redlake motion Pro) for 

detailed examination of motion with the help of a ‘Midas 2.0 XCITEX’ motion tracking 

software. In some experiments, 10l liquid drops of different viscosities were placed on a 

slightly inclined (2
0
) fibrillar PDMS surface. While these drops did not move 

spontaneously at such an inclination, they crept steadily when they were excited with low 

intensity random mechanical noises applied parallel to the substrate. In another 

experiment, a small physical defect was induced in the rubber, by placing a thin wire 

underneath the substrate. A liquid drop usually does not move over such a defect, unless 

it is excited by an external noise.  The details of the apparatus and the measurement 

methods can be found in the recent publications [44–46,48,49]. However, certain 

essential details of these measurements will be given when appropriate in the text to 

follow.  
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8.3 Results and Discussion: 

8.3.1 Critical dynamics of liquid drops on a fibrillar surface: 

When a small water drop (10 l) is placed on a fibrillated PDMS surface, it does not 

move till the surface is tilted to or above 10
o
. At this critical inclination, the drop exhibits 

very slow motion for a substantial period of time, following which, it suddenly 

accelerates and subsequently reaches a steady velocity (Figure 8.1a).  

 

Figure 8.1: (a) Trajectories of water drops on a 100 inclined fibrillar PDMS substrate. A 

5 l drop does not move on such a surface even after several minutes. A 10 l drop 

moves very slowly for about 100s, above which it accelerates and sprints off the 

substrate. For even a larger drop size (i.e. 20 l), the drop starts accelerating with 

negligible pause time. These types of dynamics can be predicted by equations 8.1 and 8.2 

with the following sets of parameters (n=0.24 and Vc=0.02m/s for all the drops and, 

L=0.5,0.8 and 1.3s, 1=2.5, 1.6 and 1.0m/s
2
, 2=0.16, 0.1 and 0.07m/s

2
,  for 5, 10 and 20 

l drops respectively). The solid and dotted line represent experimental and simulated 

(using Eq. 8.1 and 8.2) trajectories respectively.  (b) These plots show that a 10 l drop 

sprint off a 10
0
 inclined surface, when it is excited with a random mechanical vibration. 

The speed increases with the intensity of the noise. The results for two different noise 

strengths (0.02 m
2
/s

3
 and 0.03 m

2
/s

3
) are shown. 
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In a recent manuscript, Pomeau and Le Berre  [50] discussed the possibility of a critical 

speeding-up dynamics in the sliding motion of a solid block on a solid support by 

invoking a state and rate dependent law of friction. A functionally equivalent model in 

our system is to consider two types of pinning forces acting on the liquid drop.  One of 

these forces (Δ1) is independent of velocity, while the other (Δ2) depends on a contact 

time dependent interaction between the liquid and the substrate. The latter force may 

arise from surface reconstructions in which some hydrophilic groups diffuse to the 

surface after it senses a nearby polar environment  [51]. Once bloomed to the surface, 

these groups can interact with the drop via by specific hydrogen bonding forces that via 

spatial disorder can pin the drop. As the drop starts rolling, the specific bonds are broken 

at the trailing edge (depinning), while new bonds are formed at the advancing edge. The 

residence time (r) of the drop, which is the ratio of the width (w) of the drop to its 

velocity (V(t)), determines how many bonds are formed and thus the strength of the 

interaction. As long as the time of contact is larger than a critical time scale c (= w/Vc, 

Vc being a critical velocity), there is enough time for interfacial reconstruction to occur 

and thus the drop experiences the pinning resistance. However when the residence time is 

smaller than c, the functional groups do not have enough time to diffuse to the surface 

and the drop is not obligated to submit itself to a pinning force. These ideas may be 

captured in two semi-empirical equations of motion (equations 8.1and 8.2) of the drop -- 

one applies when V(t)<Vc (pinning by chemical interaction) whereas the other applies 

when   V(t) >Vc (no pinning by chemical interaction). 
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Where n is an exponent that determines how quickly the chemical interaction term 

vanishes as the critical velocity is approached, L is the Langevin relaxation time and 

 sing  is the gravitational bias acting on the drop.  

Numerical solution of Eq. 8.1and 8.2 with certain adjustable values of Vc, Δ1, Δ2, 

L and n reproduces the critical dynamic behavior of the drop observed experimentally; it 

also predicts correctly the fact that the sticking period of the drop is reduced as the size of 

the drop (thus its inertia) is increased (Figure 8.1a). This is so as both Δ1 and Δ2 increase 

linearly with the width of the contact, but decrease with the volume (V), i.e.  

3/2

21 V~,  whereas the Langevin relaxation time (the ratio of the mass to kinematic 

friction coefficient ) increases with the volume (V) of the drop as 3/2V~L .  Even 

though this trend is predicted correctly, there is a significant variation in the time required 

for the critical speed up to occur for any drop. This stochastic nature of the transition of 

the drop from a slow to a fast regime suggests that it is governed by noise of some sort. 

What is the source of this noise? We show below that this noise is self-generated and it 

comes from the co-operative de-pinning of the contact line from the tips of the fibrils.   
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Figure 8.2: (a) Microscopic images showing the de-pinning sequences of the contact line 

of a drop from a fibrillar surface. The upper and lower panels correspond to fibrillar 

spacings of 50m and 95m respectively. The contact line is significantly rougher on the 

surface with larger spacing between the fibrils. (b) Typical trace of the height fluctuation 

of a 10 l drop of water on a surface with 50 m spacing (referenced to the height in the 

quiescent state). This trace depicts that there is no fluctuation of the drop when it is in the 

quiescent state; however, considerable fluctuations are generated as the drop sprints off 

the surface. The power spectrum (inset) shows the resonance modes of the drop. (c) 

Height fluctuation of a 20l water droplet on a 10
0
 inclined PDMS with two different 

fibrillar spacings. The drop moving on a surface with larger fibrillar spacing shows larger 

fluctuation. By contrast, no fluctuation is observed when the drop moves on a featureless 

surface (a silicon wafer that was hydrophobed by silanization).   

 

Indeed, detailed microscopic observations reveal that the contact line undergoes a series 

of depinning, roughening and avalanche events even when the drop appears to be 

quiescent to the naked eye (Figure 8.2a).  The disturbances generated in the drop by these 
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events are dissipated when its frequency of occurrence is small. However, when the de-

pinning events occur at a rapid rate, the resulting noise coalesces and leads to a structural 

oscillation of the drop (Figure 8.2b). Various resonance modes of the drops are evident in 

the power spectra of their height fluctuations, the background of which displays a 1/f 
1.6

 

noise.  Large structural oscillations are observed with larger size drops (20 l), the 

intensity of which depends on the spacing between the fibrils. Even though there is some 

of vibration introduced to such a drop as it is released from the needle used to deliver it to 

the substrate (appendix: Figure 8.10), this oscillation is magnified when the drop sprints 

on the surface with larger fibrillar spacing. On the other hand it is, at least, sustained on 

the surface with the smaller spacing. None of this oscillation is evident on a featureless 

hydrophobic surface within the limitation of our experimental technique (Figure 8.2c). 

An obligatory control study shows that the resonance peaks that are observed with a 

liquid drop are absent with a rigid glass sphere rolling on such a fibrillar surface 

(appendix: Figure 8.11). The above results are, therefore, novel examples of a self-

generated noise that leads to a structural oscillation of the drop. Since a shape fluctuation 

itself can mitigate the pinning effects, it may be a significant contributing factor to the 

critical speeding dynamics as discussed above.  There are many dynamically complex 

systems  [52] that exhibit abrupt transition from one state to another. One topic of current 

research is how can a catastrophe be forewarned  [52] by studying the fluctuations and 

the correlations of certain system level properties. In what we presented here, the growth 

of the flickering noise due to depinning could be such an indicator, with which the 

subject of the critical dynamics can be studied in detail.  That the noise could play a role 
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in such type of dynamics is further revealed in a simple experiment where a drop was 

exposed to a small intensity external vibration. Here, the stick phase disappears 

completely and the drop accelerates no sooner than the noise is applied (Figure 8.1b). 

When the same type of noise is applied to the drop on a sub-critically inclined substrate, 

it moves steadily without any acceleration.  We report below the results of an 

investigation on how such a sub-critically inclined drop responds to external noise, and 

how its motion is promoted or retarded by the liquid viscosity.  

8.3.2 Effect of viscosity on critical drift velocity:  

The critical speeding dynamics with water drops as discussed above was also observed 

with various solutions of water and glycerol. These solutions were selected because their 

surface tensions do not differ to a great extent from each other and that they all exhibit 

similar type of wettability on the fibrillar surface. The facile parts of the dynamics of 

these liquids (Figure 8.3) displays the unusual feature that the velocity of a drop first 

increases with viscosity, reaches a maximum and then it decreases. One may attempt to 

capture the physics of this unusual phenomenon by assuming that these drops undergo a 

sliding to rolling type transition with viscosity by borrowing a concept proposed by 

Mahadevan and Pomeau  [53]. Although, such an insight may be valuable in partial 

understanding of results of our experiments, we note that the drop velocity neither 

increases, nor decreases, monotonically with viscosity, i.e. the observed maximum is not 

easily explained within the scenario of a sliding to rolling transition alone. Furthermore, 

microscopic examination reveals that all these drops undergo very similar pinning-

depinning behaviors, roughening and sudden relaxations of the contact line as they move 
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on. Stepwise relaxation of a contact line has also been reported recently on structured 

hydrophobic surfaces  [54]. 

 

Figure 8.3: (a) Sample trajectories of liquid drops of water and the solutions of glycerin 

and water on a 10
0
 inclined PDMS substrate that had the fibrillar spacing of 50 m.  In 

these trajectories, the initial pause periods are not shown. The compositions of the 

solutions in terms of the percentage of glycerin in water are stamped inside the figure (b) 

Drift velocities as measured from the displacement-time trajectories at long time limit are 

shown in terms of the kinematic viscosity of the glycerin water solutions. (c) Video 

micrographs of a 10 l drop of water and glycerol slowly moving on a fibrillar PDMS 

surface of 50 m spacing, inclined by an angle of 10
0
. Advancing and receding contact 

angles are 160
0
 and 139

0
 for water and 162

0
 and 139

0
 for glycerin respectively. 

 

A recent study  [55], in fact, showed that the dynamics of the droplet motion can be 

satisfactorily explained using a molecular kinetic model of thermal activation in the light 

of what was proposed four decades ago by Blake and Haynes  [1] and Cherry and 

Holmes  [2]. If indeed such type of drop dynamics could be viewed as an activated 
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process, then we are poised to ask how it fits the well-known theory of barrier crossing 

that was expounded by Kramers  [41].  

In a typical barrier crossing problem, Kramers  [41,42] considered two limits. The 

first limit corresponds to that of strong friction, in which the dynamics is controlled by 

spatial diffusion.  The other limit is that of weak friction, in which diffusion occurs in the 

action coordinate. The analysis led to the prediction that the rate of a kinetic process first 

increases with friction; after reaching a maximum value, the rate decreases with friction. 

Various physico-chemical processes, such as isomerization kinetics of trans-

stilbene  [56], protein folding  [57], and positron annihilation  [58] rate have now 

provided strong support in favor of what is known as Kramers Turnover rate. In view of 

the significant similarity between the solvent viscosity dependent drop velocity and the 

above described turnover kinetics, it is tempting to consider the implications of Kramers 

formalism in the context of what we observed with the drops.  

 

8.3.3 Sub critical drifted motion of liquid drop as an activated process: 

Kramers’ reaction rate (r) is given as follows:  

        (       ) 8.3 
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Here, r is the rate of reaction, Eb is the activation energy and kBT is the energy of the 

thermal fluctuation.  In the high friction limit, the pre-exponential factor (ro) is 

independent of temperature, but it is inversely proportional to the friction coefficient ().   

On the other hand, in the low friction limit, the pre-exponential factor increases with 

friction but decreases with temperature, i.e.   ./~ Tkr Bo   

Equation 8.3 applies strictly to a thermodynamically closed system ruled by a fluctuation 

dissipation theorem (FDR), where its thermal state is uniquely defined by temperature.  

For a complete realization of the scope of Kramers framework to our problem, it would 

be preferable to study how wetting dynamics depends on temperature over a substantial 

range.  The difficulty associated with this approach is that the temperature of a liquid 

drop cannot be the altered without affecting its surface tension and viscosity. One way to 

bypass this difficulty would be to design an experiment in which the excitation is 

performed by an external noise of a given intensity that does not affect the physical 

properties of the drops. However, as the system is now thermodynamically open, there 

can be an interplay between the internal and the external noises. A recent paper  [59] 

analyzed a type of a barrier crossing problem in a thermodynamically open system, in 

which one of the noises is provided externally. These authors showed that the reaction 

rate can still follow the typical Kramers behavior in that it increases with friction in the 

low friction limit, but it decreases in the high friction limit. The authors, however, did not 

report how the reaction rate would vary as a function of the intensity of the external noise 

by keeping the thermodynamic temperature constant, which is, essentially, the situation 

that we are interested in.  
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Our previous studies demonstrated  [10,48] that the noise temperature of a random 

mechanical fluctuation affects the transport and the barrier crossing properties much like 

that of a thermodynamic temperature.  However, as there is no fluctuation-dissipation 

relation with an external noise, the thermal energy term (kBT) of equation 8.3 should be 

replaced with mKL/2 where K is the noise strength and the relaxation time (L) of the 

drop of radius R is taken to be proportional to the ratio of mass and friction co-efficient 

i.e. L ~m/R. The pre-exponential factor ro ~Eb/(LkBT) in the low friction limit  [41] 

should also be re-written in terms of the above form of kBT . Using appropriate 

transformations, a heuristic low friction version of the Kramers transition rate with an 

external noise becomes: 

   [
    

      
]    [ 

    

      
] 8.4 

 

Here c is a numerical constant. Our hypothesis is that the dynamics of a drop on a fibrillar 

surface may be described by the above form of Kramers equation in the low viscosity 

limit. Once the frequency r is estimated, the drift velocity is given as the product of r and 

a length scale (i.e. the fibrillar spacing). Below, we test this hypothesis by designing a 

barrier crossing experiment.
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8.3.4 Barrier crossing of a liquid drop 

We designed an experiment, in which an artificial mechanical barrier (Figure 8.4) was 

created in the form of a slight undulation by simply inserting fine wires beneath the 

fibrillated PDMS sheet. A drop crossed over such a barrier with the assistance of an 

external mechanical noise when the substrate was slightly inclined (2
0
) from the 

horizontal plane.  Previously, such an experiment was performed with a rigid sphere, in 

which the barrier crossing frequency systematically followed the Van’t Hoff-Arrhenius-

Eyring (VHAE) type equation  [48] consistent with an activation energy arising from the 

difference of the gravitational energy between the trough and the valley of a non-linear 

potential profile. The basic experiment with a water drop was same as that with a rigid 

sphere, in that it was placed in one of the valleys of the potential and then the support was 

vibrated with a random mechanical noise till the drop crossed over to the next valley.   

From the typical barrier crossing trajectories of a drop of either water or of 

glycerin, it is evident (Figure 8.4) that the drop waits in valley near the top part of the 

barrier for certain amount of time and then it crosses over to the next valley and the 

process continues. From 40 such observations, the mean waiting time, tw, was estimated 

which gave the barrier crossing frequency as wtr /1 . We have discussed in a previous 

publication  [48] that the number of measurements to be carried out for such barrier 

crossing studies is in the neighborhood of 30 without significantly compromising the 

errors of measurements.  
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Figure 8.4: (a) Schematic of the experiment used to study barrier crossing dynamics with 

drops of various compostions of water and glycerin. (b) Sample trajectories of  10l  

drops of water and glycerin crossing over several barriers are shown (c) Video-

microscopic images of a water drop at different stages of barrier crossing (the barrier top 

is indicated by the arrow): a) before crossing, b) at the top of the barrier and c) after 

crossing the barrier. These stages are also indicated in the sample trajectory. 

 

A plot of  ln (r) versus 1/K is found to be linear only for a drop of glycerin that 

reminisces the behavior observed previously with a rigid sphere (Figure 8.5). By contrast, 

the experiments carried out with water and water/glycerin solutions exhibit a sub-

Arrhenius behavior in similar plots.  These barrier crossing data cluster around a single 

curve (Figure 8.5) when the barrier crossing frequencies are re-plotted as ln(rKV
7/3

/2
) 

versus (/KV
5/3

).  Although the resulting plot is sub-Arrhenius i.e. rKV
7/3

/2 
~ exp[-
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(/KV
5/3

)
0.2

]
 
, it is gratifying to note that an excellent collapse is obtained when the low 

friction limit of a Kramers-like equation is used (see also Appendix: Figure 8.12).     

 

 

Figure 8.5: (a) Arrhenius plot summarizing the results of the barrier crossing 

experiments, in which the logarithm of the barrier crossing frequency a 10 l drop is 

plotted against the reciprocal noise strength for various compositions of glycerin-water 

solutions (0% corresponds to water and 100 % corresponds to glycerin). (b) collapse plots 

of the barrier crossing experiments, in which ln(KQ
7/3

/2
) versus (/KQ

5/3
).    

 

8.3.5 Shape fluctuation: 

There are only limited amount of literature  [60,61] that discusses the origin of a sub-

Arrhenius type kinetics. The root cause of such an anomalous behavior has been 

suspected to be the non-extensivity of a system, i.e. a system where the distribution 

functions do not follow the usual Gaussian statistics.   
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Figure 8.6: (a) Power spectra of height fluctuation of a 10 l liquid drop at Gaussian 

noise strength of 0.17m
2
/s

3
 at the top of the barrier. The weight percent of the glycerin is 

indicated inside the figures.  (b) Comparisons of the power spectra of height fluctuation 

of a drop of water and glycerin at the trough and the valley of the potential wells. The Y-

axis is shifted arbitrarily for the clarity of representation. 

 

Figure 8.7: (a) Effect of the noise strength on the resonance fluctuation of the drops of 

water and glycerin. (b) The probability distribution functions of the contact diameter 

fluctuations for a water, glycerin and its solution. The pdf is Gaussian for glycerin, but 

non-Gaussian for water and the solution of water and glycerin. 

 



Activated drops 

 
 

262 

 

Jiulin  [61] has explicitly considered a power law probability distribution function (i.e. a 

-distribution or a Tsallis distribution in non-extensive thermodynamics) to show that the 

solution of a Klein–Kramers equation leads to a non-Arrhenius barrier crossing kinetics.  

There are certain signatures in the barrier crossing dynamics in our experiments that are 

worth noting. The power spectral density of the fluctuations of the air-liquid interface of 

the drops as recorded with a high speed camera  [62] reveal their various resonance 

modes (Figure 8.6). A drop of water that exhibits a strong sub-Arrhenius kinetics also 

exhibits the most pronounced shape fluctuation in that several of its higher modes are 

excited along with the lower ones. The higher modes are increasingly suppressed in high 

viscosity liquids. For glycerin, only the first mode is apparent. Although a slight blue 

shift (Figure 8.6) of the resonance peak is also observed for the water drop when it is at 

the top of the barrier as compared to that in the valley, the effect is not very pronounced. 

Most importantly, however, the higher modes of all the drops are progressively weakened 

with the noise strength (Figure 8.7). This observation, coupled with the fact that the 

displacement fluctuations of the contact lines of all the liquid drops (except glycerin) are 

non-Gaussian (Figure 8.7) provide enough anecdotal evidence that there is a complex 

interplay between the energy states of the drops, fluctuation of the contact line and the 

noise strength that may be behind the observed non-Arrhenius barrier crossing statistics 

at lower viscosities. We now examine the behavior of a drop on an inclined fibrillar 

surface without any additional barrier that too, presumably, is an activated process.   
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8.3.6 Noise Assisted Drift on an Inclined Substrate 

Thermal noise is incapable of de-pinning a 10 l size liquid drop on  a fibrillar 

surface when it is inclined subcritically (i.e. < 10
0
 ); however, it glides over the surface 

with a constant drift velocity (vd) (Figure 8.8) if enough energy is injected to the system 

through an external noise. With such an arrangement, we measured the drift velocities of 

10l liquid drops on a fibrillated PDMS substrate tilted to a 2
0
 inclination from the 

horizontal plane with systematic variation of noise intensity.   

 

Figure 8.8: Schematic of a drop moving on a surface at a subcritical angle (2
0
) in the 

presence of an exernal noise.  (b) Sample trajectories of 10l size  drops of water (0%) 

and glycerin (100%) in the presence of the Gaussian noise of strength 0.17m
2
/s

3
 at 2

0
 

inclination. 

 

The plots of the logarithm of the drift velocity (lnvd) of a drop of water, glycerin or their 

solution against 1/K remarkably parallel the behavior observed with the barrier crossing 

statistics (Figure 8.9).  Glycerin again exhibits an Arrhenius behavior, whereas sub-

Arrhenius behaviors are observed with water and the low viscosity solutions of water and 

glycerin. When the drift velocity data of water and up to 50 % solutions of water and 
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glycerin are re-plotted in terms of ln(vd KV
7/3

/2
) versus (/KV

5/3
) , they nicely cluster 

around  a single master curve (upper curve of Figure 8.9b) as is the case with the barrier 

crossing data. In fact, if the barrier crossing frequencies are converted to velocity by 

multiplying it with a characteristic a length scale, i.e. the distance between two valleys of 

a potential well, then the both types of plots exhibit very similar patterns (Figure 8.9b).  

 

Figure 8.9: (a) Arrhenius plot summarizing the results of the subcritical dynamics with 

noise, in which the logarithm of the drift velocity of a 10 l drop is plotted against the 

reciprocal noise strength for various compostions of glycerin-water solutions (0% 

corresponds to water and 100 % corresponds to glycerin). (b) The results of the 

subcritical drift dynamics (upper curve) are compared with those of the barrier crossing 

experiments (lower curve) by plotting  ln(vd KV
7/3

/2
) versus  (/KV

5/3
) in both cases. 

 

8.4 Summary and Conclusion 

A drop of water or a solution of glycerin and water displays fascinating behaviors when it 

moves on superhydrophobic surface in a “fakir” state. First of all, such a drop undergoes 

the prototypical pinning/depinning transition on a fibrillar surface in that the segments of 

the contact line that are initially pinned on the fibrils are de-pinned randomly - most 
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likely, being activated by the force and the thermal fluctuation. The role of the partial 

evaporation of the drop in initiating such types of depinning cannot be overruled in view 

of some recent reports that a contact line of an evaporative drop recedes on a structured 

surface in a stepwise manner  [54,63]. A beautifully performed recent experiment  [63] 

took advantage of the evaporation induced de-pinning and a gradient of pillar density to 

induce a directional motion of a drop. In our experiments, the contact line continues to 

roughen till a critical point is reached when it detaches from all the fibrils like an 

avalanche. Part of the energy released from such an avalanche is transmitted to the drop 

in the form of a noise that builds up to the point that it undergoes a structural oscillation. 

Notably, the power spectral density (psd) of the background noise is neither 1/f nor 1/f
2 

; 

but, it is intermediate of the two i.e. psd ~1/f
1.6

.  

Certain previous elegant studies  [64–66] have already demonstrated the roughening 

behavior of contact line on a disordered substrate. However, what is new in the current 

study is that it pinpoints some additional effects resulting from the contact line depinning, 

namely the self-excited noise in the drop. This noise and the overall oscillation of the 

drop may also contribute to drop dynamics, by virtue of which the critical speeding 

exhibits a stochastic behavior. All the features expected of a moving rough contact line, 

i.e. quenched disorder, a threshold force, contact line roughening and a noise, are present 

in this problem. However, the role of dissipation and its relationship to viscosity is found 

to be non-trivial. Specifically, the terminal velocity of the drop increasing with viscosity 

for low concentrations of glycerin/water solutions was not expected a priori. While it is 

tempting to address this behavior in the light of a sliding to rolling transition by 
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extending a proposal of Mahadevan and Pomeau  [53], the direct observations  [67,68] of  

the velocity field, however, have yet to establish a very clear picture of how a drop moves 

on a structured substrate and how it is affected by viscosity. Our own studies revealed a 

complex picture of the contact line de-pinning, which is amenable to a molecular kinetic 

theory. The low friction limit of Kramers’ turnover rate appears to be consistent with 

both the barrier crossing and the drifted motion of a drop on an inclined support. The 

close similarity of these two different experiments, however, suggests that they are 

governed by similar activation energies. We surmise at this point that this agreement may 

be fortuitous.  

Even though a good collapse of data was obtained in the barrier crossing as well as the 

drift experiments, both of the results are remarkably sub-Arrhenius. A departure from the 

conventional exponential kinetics signifies that various distribution functions 

characterizing the dynamics are non-Gaussian which is, partially, evident in the 

fluctuation of the contact diameter of the low viscosity drops. This non-Gaussian 

distribution function coupled with the fact that the higher modes of the shape fluctuation 

of the drops undergoes significant noise strength dependent attenuation could be 

responsible for the observed anomalous kinetics. It is noteworthy that a drop of Glycerin 

is most well behaved in the sense that it displays a Gaussian distribution of contact line 

fluctuation and its higher modes are all attenuated at any noise intensity. This is also the 

drop for which an Arrhenius behavior is observed in both the barrier crossing and the 

drift velocity studies. In the high viscosity limit, we expect the drop dynamics to follow 

the strong friction limit of Kramers equation, i.e.  r ~ (V
2/312/)exp [-cEb/(KV

5/3
)], 
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where   1 and 2 correspond to the frequencies of the valley and the tough of the 

potential well.  While the low viscosity regime of the activated dynamics of a drop has 

been studied in this work with the solutions of water and glycerin, similar studies in the 

high viscosity limit could not be performed at present with such a solution as slight 

evaporation of water changes the viscosity of the solution rather drastically. In future, we 

hope to study the high viscosity regime systematically using the solutions of glycerin and 

ethylene glycol as well as by quenching the resonant modes by increasing its extensional 

viscosity with polymeric additives. These studies are important in order to understand the 

nature of the drop dynamics that is under the influence of thermal as well as the self-

generated noise of the type reported in Figure 8.3b.  
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8.5 Appendix: 

 

Figure 8.10: Fluctuation of the air-water interface of a 20l water drop when it was 

deposited on a horizontal flat PDMS surface of 95m fibrillar spacing (upper panel), 

50m fibrillar spacing (middle panel) and smooth hydrocarbon treated Si wafer 

respectively. As soon as a drop of water is released on a surface via retraction of a needle, 

it starts to oscillate, the amplitude of which decays with time. The amplitude of this 

oscillation after 1s of disposal of the drop on a PDMS surface (50m fibrillar spacing) is 

comparable to that observed with the drop undergoing critical speeding (Figure 8.2c, 

main text) on a similar surface (1s after the release of the drop). However, under a 

comparable condition, the amplitude of this oscillation on a PDMS surface with larger 

fibrillar spacing (95 m) is significantly smaller than that observed with a drop 

undergoing a critical dynamics on a similar surface.  As the measurements of the 

interface fluctuation shown in Figure 8.2c were performed after 1s of the drop disposal, 

we can safely say that the oscillation due to syringe retraction did not contribute 

significantly on a surface with a 95 m fibrillar spacing. Although the argument is 

weaker for a 50 m spaced fibrillar surface, we note that the amplitude of oscillation did 

not decay as the drop sprinted over such a surface, i.e. the initial oscillation is, at least, 

sustained. The amplitude of the interface oscillation decays much faster (within 1.5s) for 

a drop released on a  smooth hydrophobic Si wafer. The air-water interface fluctuation of 

a water drop moving steadily on such a surface (Figure 8.2c) was recorded long time (~ 

40s) after the deposition of the drop as it moved rather slowly (~ 0.06 cm/sec).  
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Figure 8.11: Power spectra of the interface fluctuation of a water drop and a solid glass 

sphere on a fibrillar surface. The upper blue curve depicts the power spectrum of a 10 l 

drop of water trapped before a barrier (see Figure 8.4a) by subjecting it to an external 

noise of strength 0.17m
2
/s

3
. This spectrum is similar to that of Figure 8.6a except that the 

background noise of the spectrum was reduced by adding and averaging the spectra 

obtained from ten different experiments.  The red curve represents the power spectrum of 

the self-excited noise a 10 l water drop undergoing a critical speeding dynamics on an 

inclined (10
o
) fibrillar surface (see Figure 8.2b). The lower black curve represents the 

power spectrum of a rigid glass sphere (2.4mm diameter) as it drifted on a fibrillar 

surface that was inclined by 5
0
 without any external noise. These control experiments 

were performed to show that the resonance modes of a drop excited by a  self-generated 

noise is similar to that obtained with an external noise, whereas no such resonance modes 

are observed with a rigid sphere that cannot undergo a shape fluctuation.  
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Figure 8.12: The barrier crossing data of Figure 8.5a are rescaled according to the high 

friction limit of Kramers’ theory, according to which the barrier crossing frequency is:                                          

r ~ (V
2/312/)exp [-cEb/(KV

5/3
)], instead of that given in Eq. 8.4 of the text.  

However this plot of  ln(r /V
2/3

) versus (KV
5/3

) fails to collapse the barrier crossing 

data on a single master curve, unlike  the low friction limit of Kramers theory (Figure 

8.5b). 
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9.  CHAPTER NINE: Sliding Dynamics as an Activated 

Process 

 

9.1 Introduction 

In chapter six we discussed about the rolling friction at the interface of a rigid steel 

sphere and a structured rubber surface  [1] and the rolling motion of the sphere was 

identified as an activated rate process. Study with liquid, confers that gliding of the 

droplets on a fibrillar PDMS surface is also an activated process having rich 

dynamics  [2]. These studies kindle enough curiosity to know whether sliding dynamics 

of a solid object can also be analyzed in the light of Arrhenius rate equation. 

 When a solid object is placed on another solid substrate, the asperities of the two 

bodies come into intimate contact at the interface, which make the real contact area very 

small compare to the apparently large contacting surface  [3–5]. These asperities are 

randomly distributed on the surfaces. When a force is applied on the object, these 

asperity-asperity contacts resist the motion and create a potential energy barrier. This 

energy barrier needs to be overcome to set the object in motion. Whether the rate of this 

barrier crossing is an activated process when an external weak noise is operative is the 

main theme of this chapter. We experimentally demonstrated that sliding object is indeed 

a noise induced activated process which follows Arrhenius rate equation. 
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9.2 Experimental section 

we study the motion of a small glass prism (~ 1.7g) having dimension of  ~ 11mm 

X 11mm X 6mm on a partially inclined glass substrate in the presence of a Gaussian 

white noise. For very smooth surfaces, the glass prism adheres to the glass support so 

strongly that a very high level of vibration is needed to dislodge it. We deliberately 

avoided this situation by roughening the glass support as we study the motion of the 

prism at very low noise strength ranging from 0.0009 m
2
/s

3
 to 0.0018m

2
/s

3
. 

 

Figure 9.1 Schematic of the experimental set-up. 

 

              The experimental details are as follows.  The glass substrate was firmly attached 

to an aluminum platform which was fixed at the stem of a mechanical oscillator (Pasco 

Scientific, Model No: SF-9324). Gaussian white noise that was generated using a 

function generator (Agilent, model 33120A), was fed to the oscillator via a power 

amplifier (Sherwood, Model No: RX-4105). The whole set-up was placed on a vibration 

isolation table (Micro-g, TMC) to eliminate the effect of ground vibration. The 

acceleration of the supporting aluminum plate was estimated with a calibrated 

accelerometer (PCB Peizotronics, Model No: 353B17) driven by Signal Conditioner 
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(PCB Peizotronics, Model No: 482) and connected to an oscilloscope (Tektronix, Model 

No. TDS 3012B). The drift velocities of the prism were measured on the inclined plate 

with the help of a high resolution (Redlake motion-pro) camera at different powers of 

noise by measuring the displacement of the prism at a given time. Few trials of the prism 

motion, recorded with Sony camera (DCR-HC85 NTSC) and subsequently analyzed with 

an object tracking software (MIDAS 2.0 Xcitex Inc.) enabled us to construct 

displacement versus time plot. The strength of the noise at a given setting is defined as 

K=c, where  is the root mean square acceleration (m/s
2
) and c is the acceleration 

pulse width. The component of gravitational force along the inclined support ( ̅  

       ) was used as the constant biased force which is varied for different experiments 

by controlling the inclination angle ( ) with a precise goniometer (CVI Melles Griot, 

Model No: 07 GON 006). The range of the applied bias (F) used in this study was 

0.15mN to 1.7mN. The critical biased force, Fc (2mN) was estimated from the critical 

angle (7
0
) of inclination, at which the prism just started to move on the surface without 

any external perturbation.  

 

9.3 Results  

9.3.1 Drifted motion of the prism 

A sample trajectory of the prism on 1
0
 inclined support vibrated with Gaussian white 

noise of strength 0.0012m
2
/s

3
 is shown in Figure 9.2. From the figure it appears that there 

is stick slip type of motion of the prism with stick phases of different duration. However  
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Figure 9.2 Sample trajectory of the prism drifted on 1
0
 inclined glass support under the 

influence of Gaussian white noise of strength 0.0012m
2
/s

3
. 

 

the slip displacement, which is of constant magnitude and is close to the image resolution 

(~0.1mm) impels us to being skeptical about the Figure 9.2 as true representation of the 

stick-slip motion. Nevertheless, monotonically increasing trajectory in Figure 9.2 assures 

that there is no perceivable negative fluctuation of the prism motion. 

9.3.2 Drift velocity as an activated rate 

We estimated the drift velocity from the displacement traversed by the glass prism 

at a given time interval ranging from 45min (at the lowest velocity) to 15s (at the highest 

velocity). The experiment was done at five different powers of the noise and seven 

different applied biases. For each set of data 10trial experiments were performed. As the 

prism slides on the surface it has to overcome the potential energy barrier. The drift 
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velocity is the average rate at which the prism overcomes the energy barrier multiplied 

with an average length scale pertinent to the system. 

 

Figure 9.3 (a) ln (V) as a function of 1/K . (b) The collapse of Arrhenius plot (figure a) 

when normalized using reduced power by multiplying 1/K with (1-F/Fc)
2
. The applied 

bias forces F are indicated inside the figure. 

 

The face that the ln(V ) linearly dependent on the inverse of the noise strength (1/K) 

(Figure 9.3 a), immediately suggested that the sliding motion is a noise activated process 

and follows Arrhenius rate equation of the form: 

       (    ) 9.1 

These data cluster around a single straight line when the drift velocities were replotted as 

ln(V ) versus (1-F/Fc)
2
/K (Figure 9.3b). 
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9.4 Discussion and Concluding remark 

An important picture emerges from this study is that the slow dynamics of a solid 

object can be viewed as an activated process. The drift velocity, which is representative 

of the average rate at which the object overcomes energy barriers, is exponentially 

dependent on the inverse of noise strength. An extensive study of sliding friction at very 

low strength of noise is yet to be done. The bias dependency of the effective barrier 

energy was reported earlier by several authors  [6–13]  using molecular dynamic 

simulations as well as with experimental support. Most of these authors suggested the 

energy barrier     (  
 

  
)    whereas we have found slightly different exponent, i.e. 

    (  
 

  
) . Similar dependency of the energy barrier on biased force was observed in 

the rupture kinetics of a rigid sphere from a structured rubber surface, although the 

overall kinetics was non Arrhenius  [1,14]. The studies presented here could be useful in 

micromanipulation of solid particles in weakly perturbed settings. Careful experiments 

with highly sensitive displacement transducer may allow one to observe the stick slip 

events associated with the activated sliding, which will be a subject of our future study. 
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10.  CHAPTER TEN: Splitting of Noise and Bias in 

Orthogonal Direction 

 

10.1  Introduction 

A small water droplet on a glass surface may not move even when the glass 

surface is kept perfectly vertical. This happens due to presence of contact angle hysteresis 

and the drop is stuck in one of the metastable states in the energy landscape of 

surface  [1]. This scenario changes when the glass surface is vibrated and the liquid drop 

gets enough energy to overcome the energy barriers and move on.  

A rain drop is in the similar situation but exhibits a rich dynamics when it drifts 

down on a windowpane. In its journey, the rain drops also fuses with other drops, hence 

grows in size and at the same time its center of mass follows a stochastic path while 

drifted down. Apart from the external noise due to wind, an internal self-excited noise is 

generated due to fusion of these rain drops. This internal noise builds up within the drop 

with time  [2] and coupled with the increasing gravitational bias force, due to increase in 

the fused mass, the drop speeds up and eventually leads to an avalanche.   

In a recent work [3] motion of condensing droplets on an energy gradient surface 

is investigated with the intention of an industrial application- to increase the heat transfer 

coefficient of a heat exchanger. In a conventional heat exchanger, on the hydrophilic 

surface, a thin water film is formed from the condensation of steam. This reduces the heat 
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flux across the heat transfer surface. Daniel et al made use of gradient of wettability to 

drive the condensed droplets toward the more hydrophilic region of the surface and 

inhibit the formation of the water film. During condensation of steam, numerous small 

droplets deposit on the surface. At a low steam flow rate, these droplets move very 

slowly, whereas at high steam flow rate the droplets move very fast. While moving the 

droplets coalesce with each other and random zigzag path is taken by center of mass. 

Here also self-excited noise, generated due to coalescence of droplets, can supply enough 

energy to the drops to overcome the surface pinning forces. 

The basic notion behind all these examples is the direction of the drifted motion 

which is dictated by applied bias is decoupled from the direction of the random noise 

impulses. We introduced a simple model experiment where we orthogonally split the 

noise direction and the applied subcritical bias. Such an experiment performed with a 

steel ball on a fibrillated rubber shows the difference between the spatial fluctuations in 

the orthogonal directions that are parallel and perpendicular to the bias. Thus the 

stochastic dynamics have been split into two orthogonal directions – one reversible and 

the other irreversible. This study shows that application of external noise in any direction 

is sufficient to set free a stuck object in other directions. 

10.2  Experiment 

The experimental set up is similar to that described in our previous work  [4] 

except the inclination angle is in the direction perpendicular to the vibrating stem of the 

oscillator.  We placed a steel sphere (4mm diameter, Mcmaster corporation, steel grade 
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E52100) on a fibrillated PDMS surface that is inclined at an angle of 1
0
 with the 

horizontal plane and perpendicular to the direction of applied external noise.  

Micro-fibrillated PDMS (Dow Corning Sylgard 184) surfaces were used as a 

substrate for the rolling experiment. The preparation of such surfaces is reported in detail 

elsewhere  [5]. Briefly, the oligomeric component of the Sylgard 184 kit was thoroughly 

mixed with the crosslinker in a 10:1 ratio by weight followed by degassing it in vacuum 

for 2hrs. The degassed mixture was then cast onto lithographically etched silicon master. 

These master wafers were silanized for easy removal of cured fibrillated PDMS sample. 

The cast PDMS was then cured at 80
o
C for 2hrs. The crosslinked PDMS was cooled in 

dry ice (-78.5
o
C) for an hour followed by its removal from silicon master wafers 

manually. The PDMS surface thus prepared has square fibrils of 10μm size with a center 

to center distance of the adjacent fibrils of 50 μm. The height of the fibrils was 25μm.  

The substrate was attached to an aluminum platform connected to the stem of a 

mechanical oscillator (Pasco Scientific, Model SF-9324). Gaussian white noise was 

generated with a waveform generator (Agilent, model 33120A) and fed to the oscillator 

via a power amplifier (Sherwood, Model No: RX-4105). By controlling the amplification 

of the power amplifier, noises of different powers were generated while keeping the pulse 

width constant at 40 µs. The acceleration of the supporting aluminum plate was estimated 

with a calibrated accelerometer (PCB Peizotronics, Model No: 353B17) driven by a 

Signal Conditioner (PCB Peizotronics, Model No: 482) and connected to an oscilloscope 

(Tektronix, Model No. TDS 3012B). The entire setup was placed on a vibration isolation 
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table (Micro-g, TMC) to eliminate the effect of ground vibration. The motion of the ball 

was recorded with a high speed camera (Redlake, MotionPro, Model 2000) operating at 

1000 frames/sec.  Motion analysis software Xcitex Midas 2.0 was used to track the 

dynamics of the steel ball.  

 

Figure 10.1: Schematic of the experimental set up. The substrate is inclined in x-direction 

and subjected to Gaussian noise vibration in y-direction. 

 

10.3  Results  

The situation can be explained by splitting the dynamics into two Langevin 

equations orthogonal to each other: Along the direction of bias:          

 
   
  

 
  
 

  (  )     ( )   ̅ 10.1 

Along the direction of vibration:  
     

   

 
   

  
 

  

 
  (  )     ( )   ( ) 10.2 
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Here Vx and Vy are the velocity components in the direction of bias and applied noise 

respectively.  (V) is the unary signum function of the argument V with (0)=0.  is the 

Coulombic friction force per unit mass.  (t) is the instantaneous angle between the 

direction of velocity V and the bias direction.  is the applied bias force per unit mass, 

measured as (g sin ). )(t is the instantaneous acceleration applied to the system as an 

external Gaussian white noise. 

 

Figure 10.2: Displacement trajectories of a rolling sphere on a 1
o
 inclined fibrillated 

PDMS rubber subjected to Gaussian noise excitation when noise is applied to the 

orthogonal direction to the inclination. 

 

 Figure 10.2 reveals that the net drift of the object is in the direction of the bias 

only, although there is no acceleration pulse in the direction of the bias. It may be 

possible that the once the object is dislodged from a stuck state by the acceleration pulse 

in the Y-direction, all the contacts with the underlying surface are broken and hence the 

object is free to move. In this situation subcritical bias force in the X direction along with 
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the component of inertial instantaneous velocity in the biased direction is sufficient to 

drive the object. Careful examination of the displacement pdfs (Figure 10.3), however, 

reveals the presence of some very small amount of negative displacements along the bias, 

which we ascribe to the rare defect induced deflection of the ball on the surface.   

 

Figure 10.3: Displacement PDFs at (a) 0.002s and (b) 0.1s time interval for a rolling 

sphere on a 1
o
 inclined fibrillated PDMS rubber subjected to Gaussian noise excitation 

when noise is applied to the orthogonal direction of the inclination. Y-displacement 

(blue) represents in the direction of the noise and X-displacement (red) corresponds to the 

direction of applied bias. 

 

The asymmetry of the displacement distribution is observed for the bias direction (X-

direction) as expected, which increases with the size of the time window. On the other 

hand no asymmetry is noticed in the PDFs of the displacement in noise direction (Figure 

10.3). 
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Figure 10.4: (a) Mean and (b) variance of the displacement distribution with time. 

 

The mean of the displacement distribution in the direction of the bias increases 

linearly with the width of observation time window  (Figure 10.4), from which the drift 

velocity is estimated as 0.5mm/s. Diffusivity along this direction is 0.0085mm
2
/s as 

estimated using the equation: 2D ~ d2/dwherebeing the variance of the 

distribution. 

 

10.4  Discussions and concluding remark 

The main point of this letter is that an external noise in one direction can imparts 

sufficient energy to a stuck object that it can become mobile and can be steered in any 

preferred direction by application of a subcritical biased force. Our recent work  [6] on 

noise activated dissociation of an adhered object from a surface suggests that in presence 

of external vibration two adhered surface can be detached at much lower pulling force 



Orthogonal noise-bias 

 
 

289 

 

than that required for a vibration free system. The current study reveals that this applied 

noise could be of any other direction than that of the pulling force. 

It may be possible that the object may choose the minimum energy path in the 

energy landscape when vibration is applied orthogonal to that of the bias direction. 

Instead of overcoming the apex of the barrier directly it may explore the lowest barrier 

height in the neighborhood and take the minimum energy path to bypass the energy loss 

associated with the apex-crossing. 

Motion of a colloidal charged particle or DNA through polymer gel matrix in 

response to an applied electric field has been investigated recently [7,8].  It is well known 

that the motion of the particle is hindered due to solid friction, engendered from the 

interaction between particle and the gel matrix. From our previous and present works we 

learned that one can reduce the effect of friction by introducing vibration in the system. 

Thus one can expect enhanced mobility of charged particle or DNA molecule through gel 

matrix when fluctuating voltage is applied in the direction orthogonal to the applied 

electric field and hence the separation process might be very fast. This model study gives 

useful insight which can be applicable to many practical situations. Other than DNA 

separation or mobility of charged particle through gel, this may be used in 

chromatographic separation as well. Vibration effectively increases the “athermal” 

temperature of the system and makes it fluidized in some sense. Hence separation by gel 

electrophoresis should be faster and at low biased voltage if an orthogonal fluctuating 

voltage of zero mean is used. 
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11. CHAPTER ELEVEN: Conclusion and Future Work 

 

11.1  Summary 

Steady state non-equilibrium phenomena have been investigated using a simple 

model system –dynamics of solid or liquid object on solid surface in presence of a bias 

and external noise. We extensively studied the energy dissipative mechanism (i.e. 

friction) at solid-solid interface using statistical tools. The nonlinear nature of the friction 

was identified by interrogating the system with random white noise, without engaging 

any sophisticated apparatus to measure the friction force directly. The main findings of 

this research are discussed in the following.  

 Unlike a Brownian particle in fluid, the solid object requires a threshold force 

known as Coulombic friction force (=m where m=mass and= acceleration) to initiate 

the motion on a solid surface [1,2]. However when a solid object, placed on a vibrating 

solid support, exhibits one dimensional drifted Brownian like motion under the influence 

of an applied bias force much less than that required when the underlying support is 

stationary. This external vibration is one dimensional and applied parallel to the solid 

support. Mobility of a colloid particle in fluid is independent of the thermal noise, 

whereas due to presence of Coulombic friction the mobility of a solid object strongly 

depends on the strength of the noise. The diffusivity of such an object also reduced in 

order of magnitude due to presence of Coulombic friction.   
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Table 11.1:Summary of scaling laws and experimental results for drift and diffusivity. 

 Vdrift Diffusivity 

 L  2/2

LK  

≠ 2/K  
43 /K  

Experiment 8.0K  6.1K  

 

The above table summarizes the scaling law for drift velocity and diffusivity with power 

of the noise in the absence and presence of Coulombic dry friction along with 

experimental results. 

 We also investigated the displacement fluctuation of the solid, using a high speed 

camera, and found that the distribution of the time segmented displacements (jumps) is 

non-Gaussian with a prominent exponential tail in presence of Coulombic dry friction. 

Whereas, the displacement distribution is Gaussian if kinematic linear friction force is 

operative. Another important observation is that the jump length distribution is 

asymmetric with asymmetry increases with bias force when dry Coulombic friction is 

operating, but is symmetric when only linear kinematic friction dictates the motion [3]. 

 Diffusivity, as estimated from the gradient of the variance of the jump distribution 

with respect to the time segment, is very small when the noise strength is very weak and 

the object is practically in sticking phase. With increment of the noise strength the 

diffusivity is increased and the net motion of the solid object comprises of intermittent 

stick and slip phases. The free flowing motion is achieved at very high noise strength 

with undetectable stick phase. This phase transition like behavior of the solid dynamics is 

experimentally demonstrated [3].  



Summary 

 
 

293 

 

 A similar experiment with solid object on a solid surface, in which both the 

contacting surfaces were grafted with a polymer brush exhibits negligible critical 

force [3]. In this case also displacement distribution was significantly non-Gaussian at 

small time limits. This situation was modeled with a non-linear kinematic friction that 

successfully explained the sublinear behavior of the mobility as a function of strength of 

the noise.  

 To study the rolling friction between a soft and a rigid surface we used a steel 

sphere on an inclined fibrillated rubber surface in presence of white noise [4]. The steel 

sphere exhibits stochastic forward and backward motion with net drift in forward 

direction along gravitational bias force. We interrogated the system with noise of 

different strength to estimate drift velocity as well as distribution of displacement 

fluctuation. This investigation sets a new approach to determine frictional behavior using 

simple statistical analysis of response function without engaging any sophisticated 

friction force measurement apparatus. The friction law between rubber and steel surface 

suggests that friction depends on both rate (i.e. velocity) and state (i.e. strength of noise) 

of the system. At very high strength of noise the system is governed by linear kinematic 

friction but at low noise strength the system exhibits friction behavior similar to that 

observed in case of peeling of a soft adhesive  [5,6]. 

 Integrating the displacement distribution in positive and negative regime we 

measured the positive and negative work. The ratio of the probability of negative to 

positive work decreases monotonically with the mean work. Using integrated work 



Summary 

 
 

294 

 

fluctuation theorem we measured the effective temperature of the system. This measure 

of effective temperature was found comparable to D / . We introduced another 

experiment to measure effective temperature of a system when an object has to overcome 

an energy barrier [7]. The barrier crossing frequency was found to agree with the 

Arrhenius rate equation, as power of the noise being the athermal analogue of the 

temperature. The effective temperature estimated from these barrier crossing experiments 

is higher than that derived from work fluctuation theorem or from fluctuation dissipation 

theorem. This indicates that the effective temperature is not unique for system governed 

by nonlinear energy dissipation. The drift velocity of the steel sphere on inclined but flat 

fibrillated PDMS rubber also follows Arrhenius rate equation which suggests that the 

pinning depinning transition during motion of the sphere is also an activated process. To 

understand this system analytical expression was derived based on JKR type adhesion 

between soft spherical contact and a rigid surface in presence of noise. Numerical 

simulation of dynamic Langevin equation strengthened this analysis [8]. 

 We studied the critical and subcritical dynamics of small liquid droplets of 

different viscosities on a superhydrophobic fibrillated rubber surface [9]. At a critical 

inclination the droplets initially move slowly and after a critical velocity is reached the 

drops speed up. Some of the natural vibration modes of the droplets are excited due to 

pinning-depinning transition at the solid liquid contact line which is supported by the fact 

that these excitation is not observed when droplets move on a smooth surface. The 

terminal velocity of the droplets first increases - reaches a maxima and then decreases 

with the increasing viscosity of the liquid. The initial slow dynamic phase vanishes and a 
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picture of steady velocity emerges during subcritical motion of the droplets when the 

support is subjected to an external vibration. The behavior of this subcritical dynamics is 

similar to that of a designed experiment where the drops are impelled to cross over a 

physical barrier in presence of external noise. The barrier crossing frequency as well as 

the drift velocity of the liquid drops is amenable to the low friction regime of the 

Kramers’ formalism within the viscosity range (1 mPa-s to 5.3 mPa-s) of the liquid drops 

studied. 

 

11.2 Future work 

Experiments on various different substrates to understand material dependent 

friction laws were just the beginning of the research in this field. We have studied solid-

solid friction using glass on glass and polymer grafted glass on polymer grafted Si wafer. 

What we found that polymer grafted surface reduced the Coulombic static friction but the 

kinematic friction itself was nonlinear. We already studied the rolling friction between 

soft polymer and rigid steel surface. Overall friction behavior was nonlinear with respect 

to the velocity except at very high strength of the external noise. All these characteristics 

suggest that the friction cannot be fully described by simple phenomenological models.  

We have studied the noise induced detachment of a steel sphere from a fibrillar 

PDMS rubber. The study revealed that the subcritical detachment is a noise activated 

process. The experimental settings involved multi-contact detachment. The single contact 
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detachment experiment with various geometries of the contact will give new insight to 

the problem. 

In chapter 9 we discussed about the sliding friction as an activated process. In that 

experiment we could not verify the stick slip behavior of the slow dynamics of a slider at 

weak external perturbation due to experimental limitation. Use of highly sensitive 

displacement transducer will eliminate this limitation. 
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