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Abstract 

Olefin chemistry has a long and significant history in the catalysis literature. The 

polymerization and metathesis reactions were discovered around the same time in the early 

1950s. The polyolefin industry has now grown to a multibillion dollar industry. The three 

main classes of olefin polymerization catalysts are (i) Phillips-type catalysts (CrOx/SiO2); 

(ii) Ziegler-Natta catalysts (transition metal compound with an activator); and (iii) single-

site homogeneous catalysts or supported homogeneous catalysts (i.e. metallocene).  

The Phillips-type heterogeneous supported CrOx/SiO2 catalysts are one of the most 

widely studied catalysts. It was discovered in the early 1950s at Phillips Petroleum 

Company, when J.P. Hogan and R.L. Banks determined that ethylene could be converted 

to high-density polyethylene (HDPE) by supported Cr/SiO2. This catalyst is now 

responsible for over half of the production of HDPE sold globally. The reason for the 

widespread use of the Phillips catalyst lies in its ability to synthesize over 50 different types 

of HDPE and linear low-density polyethylene (LLDPE), without the use of additional 

activators, which simplifies the catalyst preparation and production process. The process 

is also important because HDPE is produced at lower temperatures (65-180 °C) and 

atmospheric pressure.  

A supported CrOx/SiO2 catalyst was synthesized and characterized using time-resolved 

operando and in situ molecular spectroscopy both before and during ethylene 

polymerization reaction conditions to investigate the structure-activity relationships for 

this important industrial catalytic reaction. Metal oxides (AlOx, TiOx, and ZrOx) were used 

as promoter oxides. A combination of spectroscopic techniques (Raman, UV-vis, XAS, 

DRIFTS, and TPSR) during ethylene polymerization allows for the first time to monitor 
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the molecular events taking place during activation of supported CrOx/MOx/SiO2 catalysts 

by ethylene to establish the structure-activity relationships for this reaction. During 

reaction, the initial surface Cr+6Ox sites reduce to Cr+3 sites to form Cr-(CH2)2CH=CH2 and 

Cr-CH=CH2 reaction intermediates, whose activities depend on the promoter oxide (ZrOx 

~ TiOx >> CrOx ~ AlOx). 

Olefin metathesis is also quite significant in industry and was commercialized in the 

late 1960s to produce ethylene and 2-butene from propylene in the Phillips Triolefin 

Process. There is a current global propylene shortage caused by the shift to lighter 

feedstocks derived from shale gas fracking, and due to the complete reversibility of the 

metathesis reaction, the reverse reaction can be used to counteract the propylene shortage. 

Heterogeneous supported MoOx/Al2O3 catalysts are one type of commercial catalyst 

employed, used in industrial processes such as the Shell Higher Olefin Process (SHOP) 

and operate between room temperature and ~200 °C. 

Supported MoOx/Al2O3 catalysts were synthesized and characterized with in situ 

Raman, UV-vis, DRIFTS, and TPSR, both before and during propylene metathesis reaction 

conditions. Three distinct MoOx species on the Al2O3 support were identified: isolated 

surface dioxo (O=)2MoO2, anchored to the basic HO-μ1-AlIV sites (<1 Mo atom/nm2), 

oligomeric surface mono-oxo O=MoO4/5 anchored to more acidic HO-μ1-AlV/VI sites (1-

4.6 Mo atoms/nm2), and crystalline MoO3 nanoparticles also present above monolayer 

coverage (>4.6 Mo atoms/nm2). The surface oligomeric mono-oxo O=MoO4/5 species 

easily activate at mild temperatures 25-200 °C while the isolated surface dioxo (O=)2MoO2 

species require very high temperatures for activation (>400 °C). The crystalline MoO3 

nanoparticles decrease the number of accessible activated surface MoOx sites by their 
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physical blocking. For the first time, the structure-reactivity relationship is established for 

olefin metathesis by supported MoOx/Al2O3 catalysts and demonstrates the significant role 

that the anchoring surface hydroxyl sites on alumina have on the reactivity of surface MoOx 

species. 

 

 

 

 



4 

 

Chapter 1 | Literature Review of Ethylene Polymerization by Supported 

CrOx/SiO2 Catalysts 

Abstract 

This chapter critically reviews the catalysis literature on the ethylene polymerization 

reaction by the supported CrOx/SiO2 catalysts. Despite the extensive research studies that 

have been performed about the supported CrOx/SiO2 catalyst system over the past six 

decades, the same fundamental structural and mechanistic questions are still being debated. 

From this literature review, it appears that ethylene polymerization by supported CrOx/SiO2 

catalysts requires further fundamental understanding. The molecular structures and 

oxidation states of the chromia sites during ethylene polymerization, surface reaction 

intermediates, and reaction mechanism are still heavily debated in the literature. The focus 

on the standard CrOx/SiO2 has hampered progress in the determination of fundamental 

details and the role of the promoter oxides in the promoted CrOx/SiO2 catalysts. 

1.1 Introduction 

In the early 1950s, Hogan and Banks of Phillips Petroleum Company made the 

discovery that ethylene can be converted to polyethylene by a chromium oxide-silica-

alumina catalyst1 that was subsequently commercialized. The Phillips-type catalyst system, 

CrOx supported on an amorphous support, such as silica, is one of three types of catalysts 

currently used for olefin polymerization. The other two types are Ziegler-Natta and single-

site homogeneous catalysts or supported homogeneous catalysts, both of which require an 

activator. The appeal of the Phillips catalyst lies in its many advantages: (i) yielding over 

50 different types of polyethylene, (ii) functioning without activators, and (iii) operating at 

low temperatures and pressures.1-4  
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The original catalyst system has since been fine-tuned and ethylene polymerization by 

silica-supported CrOx catalysts is now responsible for ~40 to 50% of all high-density 

polyethylene produced3. Despite the extensive research studies that have been performed 

about the supported CrOx/SiO2 catalyst system over the past six decades, many of the same 

fundamental structural and mechanistic questions are still being debated1-3,5, although the 

recent application of in situ spectroscopic techniques that directly monitor the surface 

chromia sites on silica in different environments has significantly improved fundamental 

understanding of supported CrOx/SiO2 catalysts. For example, the initial molecular 

structure of the oxidized surface Cr+6Ox site has been proposed to be present as isolated 

surface dioxo CrO4, isolated surface mono-oxo CrO5, and dimeric surface Cr2O7, while the 

chromia oxidation state during ethylene polymerization has been proposed to be reduced 

Cr+2 and Cr+3.4  

To improve the catalytic activity, multiple promoters have been examined over the 

years, most notably TiOx and AlOx, and ZrOx has also been found to exhibit a similar 

effect.3 Other elements such as SnOx and GaOx have also been examined3,6,7, although the 

focus has primarily been on the former three metal oxide promoters. The addition of a few 

percent of oxide promoters alters both the catalyst activity and resulting polyethylene (e.g., 

broadening the molecular weight distribution and enhancing the melt index).3,8-18 

 In contrast with the prolific literature on the standard supported CrOx/SiO2 catalyst, there 

have been few studies of promoted supported CrOx/SiO2 catalysts. Like the standard silica-

supported chromia catalyst, there is debate concerning the structural and mechanistic 

details of promoted CrOx/SiO2 catalysts questions and more work is needed to elucidate 

the fundamental aspects of these catalysts. As may be expected, some debate about the 
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promoted silica-supported chromia catalysts for ethylene polymerization stems from the 

still disputed details of the standard chromia on silica catalyst, so the fundamental questions 

are similar: structure of the catalytic active chromia site (monomer or dimer) and oxidation 

state (Cr+2 or Cr+3).14,15 A considerable amount of disagreement in the promoted catalyst 

literature is derived from the different environmental conditions used to study the catalysts 

(ambient, vacuum, or dehydrated conditions, or activation with CO, H2, or C2H4).  

1.2 The Nature of Surface CrOx Sites on SiO2 in Different Environments 

The supported CrOx on silica catalyst system is prepared by the incipient-wetness 

impregnation method employing a chromia precursor that is soluble in the solvent being 

employed. The impregnated catalyst is initially dried overnight at room temperature in air, 

further dried in air at ~100 °C and then calcined at elevated temperatures (~400-800 °C) in 

an oxidizing environment.3,4  

1.2.1 Supported CrOx/SiO2 under Ambient Conditions 

Upon exposure to ambient air, the oxidized catalyst becomes hydrated by adsorption 

of moisture, which affects the molecular structures of the oxidized surface CrOx species on 

SiO2
19,20. The lack of appreciation that the surface CrOx sites in silica are hydrated under 

ambient conditions and limited application of characterization techniques capable of 

discriminating between multiple chromia states has also led to much confusion about the 

nature of the hydrated surface CrOx sites on silica. Raman spectroscopy, however, readily 

discriminates between different chromia molecular structures since each molecular 

structure gives rise to a unique vibrational spectrum21.4 

 The first application of Raman spectroscopy to the examination of hydrated supported 

CrOx/SiO2 catalysts was reported by Hardcastle and Wachs19. The hydrated surface CrOx 
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phase on silica was found to consist of monomers (CrO4), dimers (Cr2O7), trimers (Cr3O10), 

and tetramers (Cr4O13), with the extent of oligomerization increasing with chromia loading. 

The oligomerization of the surface CrOx sites on SiO2 with increasing chromia loading is 

a consequence of the decreasing pH at point of zero charge (PZC) of the thin aqueous film 

present on the supported CrOx/SiO2 catalyst22.4 

Weckhuysen et al.23 investigated supported chromia catalysts on silica under ambient 

conditions as a function of Cr loading (0.2-8% Cr)23. The UV-vis DRS spectra for the 

lowest Cr loading exhibited two bands dominating at 348 and 240 nm with a shoulder at 

429 nm, and the corresponding Raman spectra contained just one band at 895 cm-1. These 

spectral features indicate hydrated surface dichromate species21,24. As the Cr loading was 

further increased, the UV-vis bands broadened and shifted from 348 to 370 nm, and the 

shoulder at 429 nm became more pronounced. With increasing Cr loading, the Raman 

spectra contained bands at 380, 850, 900, and 960 cm-1 that are representative of hydrated 

trichromate and tetrachromate species21. The XANES spectra of the hydrated catalyst 

exhibited a sharp pre-edge at about 5992 eV, which is a dipole-forbidden transition 

1s → 3d characteristic of 3d metal oxides not possessing an inversion center such as 

tetrahedral coordinated CrO4. The corresponding EXAFS spectra of the hydrated catalyst 

possessed one FT peak at ~1.3 Å with an out-of-phase shift correction. After curve-fitting 

of the EXAFS spectra, the Cr-O distance and coordination number for the first shell were 

determined to be 1.58 Å and 3.7, respectively, which are similar to those of the CrO4 unit 

in the K2CrO4 reference compound (R = 1.62 Å and N = 3.9). The combination of the 

spectroscopic techniques allowed for a full picture of the hydrated chromia species on 

silica. It was determined that the nature of the hydrated surface CrOx species only depends 
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on the pH at the point of zero charge (PZC), which leads to dichromates at low Cr loading 

and trichromates and tetrachromates at high Cr loading. Crystalline Cr2O3 nanoparticles 

also form at higher Cr loading.4 The molecular structures of the hydrated surface CrOx sites 

on SiO2 are schematically shown in Figure 1.1. 
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Figure 1.1. Schematic of molecular structures of “hydrated” CrOx sites on the SiO2 

support: (A) monomer CrO4
2-, (B) dimer Cr2O7

2-, (C) trimer Cr3O10
2-, and (D) tetramer 

Cr4O13
2-.4 
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1.2.2 Supported CrOx/SiO2 in Initial Oxidized Catalyst under Dehydrated 

Conditions 

The hydrated surface CrOx species on SiO2 become dehydrated and change their molecular 

structures upon heating to elevated temperatures19. Early thermogravimetric analysis 

(TGA) by Hogan examined the loss of water by silica upon adsorption of chromia on 

dehydrated SiO2 and led to the conclusion that surface CrOx on silica is mainly present as 

isolated CrO4 sites, although at high temperatures dimeric Cr2O7 sites cannot be excluded25. 

This conclusion was based on the model that only isolated surface CrO4 and dimeric Cr2O7 

sites are present and anchor to the silica support by titrating surface Si-OH hydroxyls. Each 

chromia structure was assumed to consume two surface Si-OH hydroxyls with a ratio of 2 

Si-OH/Cr for the isolated CrO4 and 1 Si-OH/Cr for the dimeric Cr2O7. This model also 

assumes that (i) the supported chromia phase is 100% dispersed (crystalline Cr2O3 

nanoparticles are not present), (ii) the chromia only possesses CrO4 coordination, and (iii) 

the SiO2 surface is not altered by anchoring of the surface chromia species (e.g., siloxane 

Si-O-Si bonds do not participate). Despite the absence of direct spectroscopic evidence 

about the nature of the surface CrOx sites on SiO2, this early publication introduced the 

concept that the surface CrOx sites on SiO2 are only present as isolated CrO4 and dimeric 

O3Cr-O-CrO3 structures25.4 

 Zecchina et al. were the first group to apply in vacuo IR and UV-vis spectroscopy to 

examine the dehydrated supported CrOx/SiO2 catalysts24. The IR spectra exhibited a broad 

band at 925 cm-1 that was assigned to surface dichromate sites on silica. Recent DFT and 

Raman analysis, to be presented below, demonstrate that this IR band is the vibration from 

the bridging Cr-O-Si bond and does not provide any information about the structure of the 
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dehydrated surface CrOx sites on silica. In the silanol stretching region (~3700 cm-1), the 

intensity of the Si-OH band linearly decreased with increasing chromia loading up to ~5% 

Cr, and the silanol concentration did not further decrease with increasing Cr loading. The 

leveling of the consumption of the surface silanols coincides with the formation of 

crystalline α-Cr2O3 nanoparticles. The ratio of surface Cr to Si-OH consumed was 

determined to be ~1, which suggested surface dichromate sites since isolated surface 

chromate sites would be expected to be ~0.5 according to Hogan’s model. The UV-vis 

spectra contained O → Cr+6 ligand-to-metal charge transfer (LMCT) bands below 556 nm 

that were assigned to surface dichromate and isolated surface chromate sites, with relative 

intensities suggesting that the surface dichromate dominates. The broad nature of these 

UV-vis bands at 256 and 351 nm with the shoulder at 385 nm, however, can be assigned 

to both isolated surface chromate and surface dichromate since clear distinction between 

both structures is complicated by their broad and overlapping UV-vis bands as shown in 

Figure 1.2. The band at 461 nm was assigned to dichromates, but this band is also present 

for Cr2O3 nanoparticles. A small d-d band above 556 nm at 714 nm was attributed to 

chromia in an oxidation state lower than Cr+6 and was thought to be from surface Cr+5O4 

sites on silica. This pioneering characterization study, however, could not clearly provide 

spectroscopic identification of the nature of the dehydrated surface CrOx sites on SiO2 since 

the UV-vis bands for the dehydrated supported CrOx/SiO2 catalyst and the CrO4 and Cr2O7 

reference compounds are too broad to allow assignment as shown in Figure 1.2.4 
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Figure 1.2. UV-vis spectra of reference compounds under ambient conditions.4 
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Fubini et al.26 also reported in vacuo UV-vis-NIR spectra of dehydrated supported 

CrOx/SiO2 catalysts and detected LMCT bands at 476, 345, and 238 nm from surface 

Cr+6Ox sites. These bands were very close to those observed by Zecchina et al. apart from 

an additional shoulder at ~385 nm. Comparison with K2CrO4, containing isolated CrO4 

units, and K2Cr2O7, consisting of dimeric Cr2O7 units, suggested that surface dichromate 

sites were the dominant surface chromia sites on silica. This group came to the same 

conclusions as Zecchina et al.4 

In the past two decades, there has been a growing emphasis on investigations with in 

situ characterization techniques that provide direct observation of the dehydrated surface 

CrOx sites on silica. Weckhuysen et al. examined the structure of the dehydrated surface 

CrOx sites on SiO2 as a function of Cr loading with in vacuo XANES/EXAFS, in situ 

Raman, and in situ UV-vis spectroscopy23,27. The XANES pre-edge intensity possessed a 

strong feature at 5992 eV indicative of Cr+6O4 coordination. The corresponding in situ 

EXAFS spectra contained 2 Cr-O distances at 1.53 Å and 2.05 Å with coordination 

numbers of 2.2 and 2.1, respectively. An additional Cr-Cr peak was present at ~3.1 Å with 

a coordination number of ~0.5. Two possible explanations were given. In the first 

interpretation, polychromate species are present with Cr=O at 1.53 Å and bridging Cr-O-Si 

at 2.05 Å. Alternatively, the 1.53 Å distance could be related to surface polychromate sites 

and the 2.05 Å peak is from the presence of Cr+3 oxide species. The Cr-Cr peak at ~3.1 Å 

is also consistent with Cr2O3 nanoparticles. Weckhuysen et al. favored the latter 

interpretation because it was more in line with the corresponding UV-vis spectra that 

detected Cr+3.23 The in situ UV-vis bands for the supported CrOx/SiO2 catalysts gave bands 

at 645, 455, 328, and 247 nm, with a weak shoulder at 370 nm. These UV-vis spectra were 
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deconvoluted into 11 bands27: 3 weak bands (645, 465, and 295 nm) assigned to Cr+3O6, 4 

bands assigned to isolated Cr+6O4 (476, 370, 294, and 268 nm), and 4 bands assigned to 

dimeric Cr+6
2O7 (455, 323, 282, and 246 nm). The intensity ratio of the 370 nm band for 

isolated CrO4 and the 323 nm band for dimeric Cr2O7 was employed to estimate the ratio 

of isolated/dimeric surface chromia species, which was found to be ~0.62 for 0.2% Cr 

loading. In situ Raman spectra of the dehydrated catalysts, unfortunately, could not be 

collected with the 514.5 nm laser due to strong sample fluorescence.4 More recent 

successful Raman analysis of dehydrated supported CrOx/SiO2 catalysts confirmed the 

presence of Cr2O3 nanoparticles at loadings of 4% Cr and greater28. It was concluded that 

under dehydrated conditions and very high Cr loading on silica, surface polychromates and 

Cr2O3 nanoparticles dominate23. The in situ XANES/EXAFS studies by Groppo et al. agree 

with the earlier findings of Weckhuysen et al. and demonstrated that the XANES spectra 

of the dehydrated supported CrOx/SiO2 catalysts matched with that of bulk CrO3, consisting 

of polymeric dioxo CrO4 units that are compatible with both dioxo isolated CrO4 and 

dimeric Cr2O7 structures29. Groppo et al.’s earlier UV-vis spectra of the dehydrated catalyst 

showed three main components (250, 333, and 463 nm) assigned to O → Cr+6 LMCT 

transitions, which were quite similar to those previously reported by others30. Groppo et al. 

pointed out the limitations of applying UV-vis to identify surface chromate species because 

of their very broad and overlapping bands and employed Raman spectroscopy to determine 

the structure of the surface chromia species. In situ Raman spectroscopy with the 442 nm 

laser, as opposed to the 514.5 nm laser previously available, allowed for the first time the 

elimination of sample fluorescence for the supported CrOx/SiO2 catalysts. The Raman 

spectra gave well-resolved bands at 394 (m), 987 (s), and 1014 (m) cm-1 with the 394 and 
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1014 cm-1 bands previously not observed due to strong sample fluorescence with lasers 

using 514 and 532 nm excitation. The band at 987 cm-1 was assigned to the νs(O=Cr=O) 

stretching, the band at 394 cm-1 to δ(O=Cr=O) bending, and the band at 1014 cm-1 to 

νas(O=Cr=O) stretching, as suggested by the DFT calculations of Dines et al.31 Groppo et 

al.30, however, had some concern about the assignment of the 1014 cm-1 band because it 

was stronger than expected and suggested that there may be some heterogeneity of the 

surface sites. The Raman spectra also showed an absence of chromia bands at 200-300 and 

400-700 cm-1 indicating the lack of any surface polymeric chromia species at low Cr 

loadings. Comparison of DFT calculations and Raman spectra revealed that the presence 

of surface Cr+6Ox could also modify the pure silica vibrations and the IR band at 908 cm-1 

band previously reported by Zecchina is related to a Si-O vibration affected by anchoring 

of the surface chromate species to the silica support (e.g., bridging Cr-O-Si bonds). The 

combination of in situ Raman, IR, and UV-vis spectra of the dehydrated supported 

CrOx/SiO2 catalysts at low chromia loadings on silica led Groppo et al. to conclude that 

surface Cr+6Ox on SiO2 is anchored as isolated dioxo surface (O=)2CrO2 species.30  

The more recent in situ UV-vis and Raman studies by Lee and Wachs finally provided 

the fundamental insights about the molecular structures of the dehydrated surface CrOx 

sites on SiO2.
28,28,32,33 The in situ UV–vis absorption bands at ~250, 340, and 460 nm reflect 

the presence of Cr+6Ox species on silica28. The exclusive presence of isolated surface CrOx 

species on silica was demonstrated by the high UV-vis edge energy (Eg) value that is 

consistent with isolated CrOx reference compounds. The corresponding Raman spectrum, 

with 442 nm laser excitation, exhibited bands at 987 (s) and 1014 (m) cm-1, and the 

selective reduction of the 987 cm-1 band by H2 showed that both bands originate from two 
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distinct surface CrOx sites on silica28. Corresponding isotopic 18O-16O exchange studies of 

the surface CrOx species on silica exhibited splitting of the 987 cm-1 band into three bands 

(16O=Cr=16O, 16O=Cr=18O, and 18O=Cr=18O) consistent with the dioxo nature of the 

987 cm-1 band ((O=)2CrO2). The band at 1014 cm-1 was assigned to mono-oxo O=CrO4 

sites by comparison with chromium oxide reference compounds, but also contains a small 

contribution from the νas(O=Cr=O) stretch of the isolated surface dioxo (O=)2CrO2 

species33. These molecular assignments to isolated surface dioxo (O=)2CrO2 and isolated 

mono-oxo O=CrO4 sites on SiO2 were further supported by rigorous DFT calculations that 

also predicted the greater stability of the dioxo CrO4 species over the mono-oxo CrO5 

surface species on SiO2
34. This suggests that the surface dioxo CrO4 species should have a 

higher concentration than the surface mono-oxo CrO5 species on the silica support. The 

confusion surrounding the dehydrated molecular structures of surface CrOx sites on SiO2 

required the application of multiple in situ spectroscopic approaches and techniques 

(Raman, H2 reduction, isotopic 18O-16O exchange, XAS, IR, UV-vis, and DFT calculations) 

for its final resolution. The proposed molecular structures of the dehydrated surface CrOx 

sites on SiO2 are depicted in Figure 1.3.4  

Gierada et al.35 very recently conducted periodic and cluster DFT calculations of 

variously located Cr+4 and Cr+2 oxide species on silica. It was determined through DFT that 

the dimeric Cr+6 species are less stable than the monomeric Cr+6 species, and thus, at low 

chromia loadings, monomers are expected to dominate. The correlating in situ UV-vis DRS 

results demonstrated the appearance of three O → Cr+6 charge transfer bands at ~270, 360, 

and 450 nm. From literature, the band at ~450 nm could be assigned to either isolated or 

dimeric species. The authors compared the experimental bands with the calculated UV-vis 
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band maxima of monochromate and dichromate Cr+6 species and found that the 

experimental bands best matched those calculated for the monochromate Cr+6.
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Figure 1.3. Schematic of the proposed molecular structures of the dehydrated isolated 

surface CrOx sites on SiO2 support (A) dioxo ((O=)2CrO2 and (B) mono-oxo O=CrO4. 

  

A B 
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1.2.3 Activated Supported CrOx/SiO2 Catalysts under Reduction Conditions 

In industrial ethylene polymerization processes, the supported CrOx/SiO2 catalysts are 

activated with the ethylene reactant2. This results in an induction period during which the 

surface CrOx catalytic sites are activated by partial reduction to a sub-oxide for ethylene 

polymerization. Hogan found during his early studies that reduction in CO could basically 

eliminate the induction period observed with ethylene, after which activity was 

immediately observed. It became customary in academic studies to initially activate the 

supported CrOx/SiO2 catalyst by reduction with CO and occasionally H2. Additionally, 

pretreating with CO or H2 affects the polyethylene (PE) yields. Pretreatment with CO 

modestly increases the PE yield while pretreatment with H2 can significantly suppress the 

PE yield, and the difference may be related to the presence of moisture produced with the 

latter36. The application of different reducing agents in the literature has caused some 

confusion since the final activated state may depend on the specific reducing agent being 

employed.4 

1.2.3.1 Activation of CrOx with CO 

Reduction with CO is a preferred activation method by academic researchers since it 

does not generate water as a reaction product that may coordinate with the surface CrOx 

sites, and the findings from different groups are listed in Table 1.1. Early studies employed 

CO-TPR to determine how much oxygen was removed from the supported CrOx/SiO2 

catalysts and found that ~2.05-2.15 O/Cr were consumed indicating that the average 

oxidation state was Cr+2.23,27 This agreed with EPR spectra that showed no Cr signal since 

Cr+2 is EPR silent, although it is d4 and paramagnetic in most chemical environments37. 

Chemical probing of the reduced surface sites with CO-IR studies suggested that two 
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surface Cr+2 sites and one surface Cr+3 site may be present after CO reduction24. Other 

studies concluded that even more reduced surface Cr sites may be present23,26,27,38-40. The 

more recent definitive work of Groppo et al. with in situ Cr K-edge XANES/EXAFS 

demonstrated with direct monitoring of the surface chromia species on silica that surface 

Cr+2 sites are present after CO reduction. These studies, however, are somewhat 

complicated by the presence of 40% Cr2O3 nanoparticles in their supported CrOx/SiO2 

catalyst.29,30 The UV-vis band at 833 nm was assigned to Cr+2, but is quite close to the 

UV-vis band of bulk Cr2O3 at 810 nm.4  

Gierada et al.35 recently conducted periodic and cluster DFT calculations of variously 

located Cr+4 and Cr+2 oxide species on silica. DFT calculations of the reduction process 

Cr+6 → Cr+4 → Cr+2 by CO show that while the reduction of Cr+6 to Cr+4 is expected to be 

very exergonic, the thermodynamic driving force of the Cr+4 to Cr+2 reduction step is much 

weaker. The DFT calculations were complemented by experimental in situ UV-vis-NIR 

DRS studies on a 1wt% Cr/SBA-15 catalyst synthesized via incipient wetness 

impregnation of an aqueous Cr (III) nitrate solution. During reduction with dry CO at 

600 °C, UV-vis O → Cr+6 CT bands at ~270, 360, and 455 nm reduced while a broad d-d 

transition band appeared at ~800 nm, indicating that reduction of chromia by CO yields 

only Cr+2. The authors also investigated the possible role that water may have during 

reduction since hydrolysis of the Cr-O-Si bonds is an alternative pathway to reduction.  To 

experimentally investigate, the CrOx/SBA-15 catalyst was subjected to five redox cycles 

under dry conditions (reduction (dry CO)/oxidation (dry air)) at 600 °C. During each 

CO-reduction step, the same d-d transition band appeared at ~810 nm assigned to pseudo-

Oh Cr+2 species. During the re-oxidation steps, the LMCT bands were completely restored, 
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demonstrating that the reduction of the Cr+6 sites by CO is completely reversible. After five 

dry cycles, the catalyst was exposed to five wet cycles (reduction (CO+H2O)/re-oxidation 

(dry air)) at 600 °C. The broad d-d transition band blue-shifted down to ~720 nm, while a 

weak new band appeared at ~460 nm. The repression of the deeper reduction to Cr+2 sites 

as exhibited in the case of the dry CO reduction indicates the adverse effect of water. A 

band did not appear at ~620 nm assigned to α-Cr2O3 particles, indicating that hydrolysis is 

not favorable during CO reduction. The combination of DFT and in situ UV-vis allowed 

for confirmation that reduction by CO leads to primarily Cr+2 sites. 

Most researchers agree that multiple surface Cr+2 sites are present on silica after 

activation with CO at elevated temperatures (see Table 1.1). The molecular structure of the 

Cr+2 site(s) still needs to be addressed and is complicated by possible presence of two 

distinct surface Cr+2 sites from the initial isolated dioxo and mono-oxo surface chromates 

on silica.4 
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Table 1.1. Summary of CO-Activation Studies4  

Group  Year Methods Conclusions 

Przhevalskaya et al.37 1975 in vacuo EPR, UV-vis CO reduction shows Cr+2 

Zecchina et al.24 1975 in vacuo IR (CO), 

UV-vis 

2 types of Cr+2 

1 type of Cr+3 

Fubini et al.26 

 

1980 in vacuo UV-vis Up to 4 types Cr+2 (2 active, 

2 inactive) 

Rebenstorf et al.38-40 

 

~1981

-1991 

in vacuo IR (CO) 3 dinuclear Cr+2 (possibly 4) 

2 dinuclear Cr+3 (only Cr+2 is 

said to be active)  

Gaspar et al.41 2001 in vacuo IR (CO) 3 types of Cr+2  

Weckhuysen et al.23,27 

 

1995 in situ UV-vis, 

XANES/EXAFS, CO-

TPR 

Cr+2
 and Cr+3; Cr+2: Cr+3 

ratio increases with 

decreasing Cr loading 

Groppo et al.29,30 

 

2005 in situ Raman, IR 

(CO), UV-vis, 

XANES/EXAFS 

Cr+2 

Handzlik et al.35 2016 in situ UV-vis DRS Cr+2 and Cr+3 
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1.2.3.2 Activation of CrOx with H2 

Activation studies involving H2 are relatively rare and none of the studies applied 

spectroscopic methods to directly monitor the nature of the reduced surface CrOx sites on 

silica. All the reported H2 activation studies employed H2-TPR, with or without TGA, to 

investigate the reduction features of the supported CrOx sites on silica. Hogan found with 

TGA that oxygen consumption from the supported CrOx/SiO2 was greater with CO than 

H2
25. This was also confirmed by the final colors of the activated CrOx/SiO2 catalysts that 

showed a gray-green color with H2 reduction and a blue color with CO reduction that are 

characteristic of Cr+3 and Cr+2, respectively. Gaspar et al. also applied H2-TPR 

spectroscopy to investigate the reduction of supported CrOx/SiO2 catalysts41. The H2-TPR 

reduction peak(s) were found to depend on the Cr loading (~479 °C for 0.5% Cr, ~496 °C 

for ~1% Cr, and ~376 °C and ~470 °C for ~3% Cr). The H2-TPR peaks at the higher 

temperatures were ascribed to reduction of surface Cr+6 → Cr+3, and the peak at 376 °C for 

the higher Cr loading was assigned to reduction of large Cr+6O3 particles → Cr+3 that 

formed because the number of hydroxyls was not sufficient to stabilize all the chromium 

on the silica surface. The CrO3 particles, however, would have thermally decomposed to 

Cr2O3 particles during the 500 °C calcination and would not be present. Although UV-vis 

spectra were collected before H2-TPR, the broad nature of the UV-vis bands prevented 

clear structural assignments of the surface chromia species on silica as already discussed 

above. After H2-TPR, all the reduced supported CrOx/SiO2 catalysts possessed UV-vis 

bands at 272, 355, 467, and 610 nm that were assigned to Cr+3. In agreement with Hogan, 

the final oxidation state resulting from H2 reduction was concluded to be Cr+3.25 
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Very recent studies by Gierada et al.35 combining DFT and in situ UV-vis DRS 

demonstrated that reduction by H2 may result in a combination of Cr+3 and Cr+2. DFT 

calculations showed that the thermodynamics of the two-step reduction scheme 

Cr+6 → Cr+4 → Cr+2 by H2 versus CO were compared and found to be more 

thermodynamically favorable for H2. In situ UV-vis during H2-reduction at 600 °C 

determined that the O → Cr+6 CT bands at ~270, 360, and 455 nm for isolated Cr+6 species 

reduced while a broad band at ~780 nm appeared. The latter band was assigned to a 

superposition of characteristic d-d transition bands of pseudo-Td Cr+2 and pseudo-Oh 

Cr+3/Cr+2. The authors also investigated the possible role that water may have during 

reduction since hydrolysis of Cr-O-Si bonds with the H2O that forms during the first 

reduction step is an alternative phenomenon to full reduction. This would cause the Cr 

species to lose its anchoring to the silica surface, forming various reduced chromia species, 

such as clusters of Cr2O3. To experimentally investigate, the CrOx/SBA-15 catalyst was 

subjected to five redox cycles under dry conditions (reduction (dry H2)/oxidation (dry air)) 

at 600 °C. During each H2-reduction step, the same d-d transition band appeared at 

~780 nm. During the re-oxidation steps, the LMCT bands only partially re-oxidized, 

demonstrating that the reduction of the Cr+6 sites is not completely reversible, contrary to 

re-oxidation after CO reduction. After the five dry cycles, the catalyst was exposed to five 

wet cycles (reduction (H2+H2O)/re-oxidation (dry air)) at 600 °C. The broad d-d transition 

band blue-shifted down to ~620 nm, while new bands appeared at ~290 and 460 nm, which 

were assigned to a combination of pseudo-Oh Cr+3 and α-Cr2O3 particles. The re-oxidation 

step after each the wet reduction step confirmed the irreversibility of the chromia reduction 

and the hindering effect of the presence of water since the LMCT bands were partially re-
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oxidized to an even lesser degree than during the dry cycles. Using a combination of 

theoretical and experimental techniques, these studies showed the possibility of two surface 

phenomena occurring during H2 reduction: reduction to Cr+3/Cr+2 or hydrolysis of the 

Cr-O-Si bonds to create α-Cr2O3 particles. 

1.2.3.3 Activation of CrOx with C2H4 

Activation studies with C2H4 are also limited because of complications associated with 

the presence of multiple hydrocarbons and possibly the H2O reaction product that can 

interact with the surface CrOx sites on silica25. A recent detailed in situ XANES/EXAFS 

study by Groppo et al.30 monitored ethylene activation of supported CrOx/SiO2 catalysts 

and found that the catalyst exhibits features different than the CO-activated catalyst, which 

exhibits an oxidation state of Cr+2. The C2H4-reduced CrOx/SiO2 catalyst yields a XANES 

spectrum with a higher intensity of the white line, reflecting an increased average Cr 

coordination, and the Cr+2 fingerprint is not present, which suggests that all surface isolated 

CrOx sites are involved. Additionally, as seen in the corresponding EXAFS, these surface 

sites are not Cr+2 dimers because there is no signal for Cr-Cr in the second coordination 

shell. The fraction of surface Cr sites interacting with ethylene has previously been 

proposed to vary from 10 to 55% depending on the probe method8,42,43, but these claims 

were based on indirect measurements and are not supported by this new direct XAS 

measurement indicating that all the dispersed Cr sites are involved30. The difference in the 

states of the surface CrOx sites on silica upon CO reduction and C2H4 reduction were 

further demonstrated by adsorbing ethylene on a catalyst that had been pre-reduced with 

CO. Adsorption of ethylene on the Cr+2 sites increased the white line intensity (slight 

increase in coordination of Cr+2) and completely removed the Cr+2 finger print in the 
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pre-edge region. These results clearly demonstrate that the surface Cr+2 sites formed with 

CO reduction are not involved in ethylene polymerization reaction at room temperature 

(and low ethylene pressure) and that all the reduced surface Cr+2 sites are oxidized upon 

exposure to ethylene. This work nicely demonstrates that reduction in different 

environments leads to different activated surface CrOx states on SiO2, and that it is 

important not to confuse results from one reducing agent with another.4  

Very recent results44,45 have provided new insights into the coordination sphere of the 

reduced CrOx sites.  

Potter et al.44 used TGA, differential scanning calorimetry (DSC), and MS to monitor 

the adsorption, reaction and desorption of ethylene at 200 °C for 1 and 3wt% Cr/SiO2 

catalysts synthesized via incipient wetness impregnation of CrO3. TGA and DSC of 

ethylene pulses (6 pulses of 60% C2H4/Ar for 1 min) over the 3% Cr/SiO2 catalyst showed 

mass changes in a step shape, indicating the occurrence of an irreversible adsorption, 

passing through a maximum. The corresponding mass spectra taken indicated the evolution 

of m/z = 41, then m/z = 56, 55, and 42, then m/z = 43, 50, 51, 53, and 54 during each pulse. 

Weak MS signals were also observed at m/z = 49, 69, 52, and 57. The amounts of the MS 

signals corresponded to the size of the mass change, the largest occurring during the second 

pulse of ethylene. The products observed with the MS were attributed to dimerization and 

trimerization products, although there was a lack of oxygenated products detected by the 

MS. During reaction with olefins, the high heat of reaction (~300-465 kJ/mol during the 

first ethylene pulse) indicated a redox reaction. The redox products were then studied by 

TPD under Ar and monitored with an online MS. In all cases, two CO2 (m/z = 44) evolution 

peaks were seen at ~260-285 °C and 390-435 °C corresponding to ~40% and ~60% of the 
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mass loss, respectively. HCHO (reported as a major oxidation product in the 

literature2,3,46,47) and ethylene oxide were not detected and excluded as major products of 

oxidation during ethylene polymerization. Simultaneous to the low and high temperature 

evolution of CO2, H2 (m/z = 2) and CH4 (m/z = 15) were also detected as respective co-

products, which correspond to the decomposition of surface formate and surface acetate, 

respectively. The relatively high temperatures of the oxidation products (>250 °C) as 

compared to industrial ethylene polymerization conditions (85-110 °C) suggest that the 

oxygenates may remain attached to the Cr sites.44 

In a more recent study inspired by those of Potter et al., Barzan et al.45 employed a 

combination of operando techniques (operando Cr K-edge XANES-MS, UV-vis-NIR 

DRS-MS, and FT-IR-MS) to determine the exact oxygenated ligands present in the 

coordination sphere. Operando XANES-MS demonstrated the reduction of chromates with 

a decrease in the intense XANES pre-edge at ~5994 eV characteristic of pseudo-Td 

chromates into two weak bands at ~5990 and ~5993 eV, a progressive shift down of the 

edge from ~6007 to ~6002 eV, and an increase in the white line intensity at ~6011 eV. 

Operando UV-vis-NIR DRS-MS corroborated the chromate reduction. The band at 

~465 nm assigned to the O → Cr LMCT decreased while bands for d-d transitions assigned 

to reduced chromia species appeared at ~599 nm and ~1053 nm with a shoulder at ~667 nm 

simultaneously. After an induction period, bands also appeared at ~2273-2469 nm that 

were assigned to the combination of ν(CH2) and δ(CH2) vibrational modes of polyethylene 

that showed the occurrence of ethylene polymerization. The authors assigned the reduced 

chromates to pseudo-Oh Cr+2
 sites primarily based on their own previous results in which 
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the bands resulting from reduction of Cr/SiO2 by cyclohexene were assigned to primarily 

Cr+2, although these conclusions were not corroborated by any other work.48 

 It was concluded that during the reduction step Cr+6 sites are converted to both Cr+2 

sites in interaction with oxygenated byproducts, thought to be primarily methylformate, 

and a reduced spectator chromia species. Then, ethylene polymerization begins on Cr+2 

sites in the presence of un-reduced Cr+6 sites that are slowly reduced in successive time.  

Although this study used multiple operando-MS methods, no MS traces were 

presented, which would have been able to track the gaseous intermediates, providing more 

direct evidence and corroborating the authors’ claims. Additionally, in other recent 

work35,49, the band at ~599 nm overlaps with bands that were assigned to Cr+3 49 or a mixture 

of Cr+2 and Cr+3.35 XANES simulations were used to verify the assignment of the reduced 

chromate to only Cr+2; however, using XANES, even simulations, may be problematic 

since this is a technique that is an average of all the sites present. 

1.2.3.4 Activation of Well-Defined Catalysts with C2H4 

Recent studies by Copéret et al. have examined the polymerization activities of well-

defined model catalysts, dinuclear Cr+2 and Cr+3 model compounds and mononuclear Cr+3 

model compounds, anchored on SiO2.
50,51 The grafted dinuclear model (≡SiO)4Cr+2

2 and 

(≡SiO)6Cr+3
2 compounds were characterized by in situ IR, Cr K-edge XAS, and EPR 

spectroscopy before and after ethylene polymerization. The IR spectrum of (≡SiO)4Cr+2
2 

only contained new silanol vibrations and no C-H stretches before exposure to ethylene. 

X-ray crystallographic analysis of a molecular model closely related to (≡SiO)6Cr2 

revealed two five-coordinate Cr+3 centers (distorted trigonal bipyramidal and square-

pyramidal geometry). The IR spectrum of (≡SiO)6Cr+3
2 after exposure to ethylene 
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possessed C-H stretches and a white film formed on the pellet indicating polyethylene 

formation. The XANES spectrum of (≡SiO)4Cr+2
2 did not undergo any changes during the 

synthesis procedure. The initial ethylene polymerization activity of (≡SiO)6Cr+3
2 was an 

order of magnitude higher than (≡SiO)4Cr+2
2 suggesting that Cr+3 is the catalytic active site 

for this reaction. The EPR spectrum of (≡SiO)4Cr+2
2 taken before exposure to ethylene 

showed a weak signal for Cr+3, suggesting that the minor amount of Cr+3 is most probably 

responsible for the polymerization activity50. Similar high initial polyethylene 

polymerization activity was also found for the mononuclear (≡SiO)3Cr+3 model compound 

consistent with the role of Cr+3 sites for ethylene polymerization42. Furthermore, the same 

initial ethylene polymerization rate was also obtained with a traditional CO-activated 

supported CrOx/SiO2 catalyst consistent with the role of surface Cr+3 sites for ethylene 

polymerization52. These new findings further support the role of Cr+3 sites on silica as the 

active sites, but may not necessarily be identical to the traditional catalyst.4 

1.3 Structure-Activity Relationships for Supported CrOx/SiO2 Catalysts 

Developing fundamental structure–activity relationships requires knowing the 

molecular structure of the catalytic active site(s). This is rather complicated for traditional 

supported CrOx/SiO2 catalysts since it is likely that the initial dioxo (O=)2CrO2 sites cause 

formation of multiple activated chromia sites. The reported studies to date have assumed 

that only one surface activated CrOx site is present on SiO2 and only focused on the average 

oxidation state, which appears to primarily be surface Cr+3 during ethylene polymerization 

from the above review of activation of supported CrOx sites by ethylene. Therefore, the 

establishment of fundamental molecular structure-activity relationships for ethylene 
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polymerization on each surface chromia site present in supported CrOx/SiO2 catalysts still 

awaits resolution with future studies.4  

1.4 Proposed Reaction Mechanisms 

The development of modern spectroscopy methods for catalysis research has allowed 

for studies in the past decade to examine the initiation, propagation, and termination 

mechanisms of ethylene polymerization50-59 Despite these new studies, researchers have 

yet to come to a consensus concerning the structure(s) of the initial active sites and the 

ethylene polymerization initiation mechanism as indicated by the summary of the findings 

in Table 1.2 below.50-57,59-61 Most literature research studies begin the ethylene 

polymerization reaction with a catalyst that contains the Cr+2 oxidation state because the 

supported CrOx/SiO2 catalysts have been activated by reduction with CO at elevated 

temperatures.53-57,59 This activation procedure, however, eliminates the induction period 

and is atypical for the industrial reaction conditions that employ the ethylene reactant as 

the reducing agent.3,10 Furthermore, the CO activation also results in a lower Cr oxidation 

state than when activated with ethylene that forms Cr+3 sites. Thus, it is important to be 

conscious of the specific activation procedure employed in any given study since the 

initiation mechanisms appear to be dependent on the activation procedure.4,62 

Multiple reaction intermediates have been proposed for ethylene polymerization for 

CO-reduced supported chromia/silica catalysts and are summarized in Table 1.2: vinyl Cr-

hydride formed by C-H activation of ethylene63, carbene Cr=CH2 created by breaking the 

C=C bond of ethylene63, Cr-vinyl produced by C-H activation of ethylene over an O-H 

bond in the catalyst to make a Cr-C bond50-52,60,61, Cr=CH-CH3 Cr-alkylidene42,64-66, and 

Cr-metallacycles formed from the addition or two or three ethylene molecules52-57. Only a 
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limited number of studies investigated the structure(s) and oxidation state(s) of the surface 

Cr sites of supported chromia/silica catalysts activated with CO at elevated temperatures. 

The oxidation state of the Cr after CO activation at 350 °C was found to be Cr+2 from in 

situ UV-vis, XANES, and HF-EPR spectroscopy59. It was concluded that the Cr+2 site 

reacts with ethylene to form an organo-Cr+3 intermediate, but the molecular structure of 

the organo-Cr+3 complex was not discussed. It was also proposed from computational 

modeling and EXAFS67 analysis that two surface Cr+2Ox structures (x = 3 with trigonal 

pyramidal coordination and x = 4 square pyramidal coordination) are formed with the 

former more dominant and active than the latter. Model organometallic catalysts have also 

been investigated in an effort to elucidate the initiation mechanism.50-52,60,61 Using a variety 

of spectroscopy techniques (IR, UV-vis, EPR, XAS) as well as DFT, it was concluded that 

the formation of the first Cr-C bond occurs via the heterolytic C-H activation of ethylene 

on a surface Cr-O bond. Poisoning with CO revealed that two different surface Cr+3 sites 

were present. The model catalysts were prepared by grafting Cr+3 onto silica that was 

partially dehydroxylated at 700 °C and an impregnated CrOx/SiO2 catalyst that was 

activated with CO was also investigated for comparison, and they were found to give rise 

to the same IR bands at 3692 and 3643 cm-1 assigned to silanols interacting with the 

polymer, and at 3605 cm-1 which was due to the C-H overtone of the PE chain.62  

In recent DFT studies, Gierada et al.68 determined the feasibility of proposed initiation 

species and mechanisms in the literature and proposed some new initiation mechanisms 

under more realistic conditions of 100 °C. Cr+2, Cr+3, Cr+3-OH, and Cr+5 oxide species were 

considered as possible active site precursors. Coordination of the first and second ethylene 

molecules to the bare Cr+2 species is thermodynamically preferred, although the binding of 
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the second ethylene molecule is less exergonic than that of the first. Concerning the 

possible initiation mechanisms beginning with Cr+2 oxide, one feasible mechanism is the 

oxachromacycle ring expansion over Cr+2, in which ethylene molecules keep inserting into 

a Cr-O bond, creating progressively bigger rings, since there is a relatively low activation 

barrier (140 kJ/mol) and propagation steps are faster and more kinetically preferred than 

termination pathways. Another possible pathway is the formation of either Cr+3/SiO2 or 

Cr+3-CH=CH2/SiO2 from Cr+2/SiO2 and surface defect sites, ≡Si-O•, near the Cr+2
 site. 

Silica is known to contain defects, particularly after high temperature treatment, and it has 

been shown that using a higher calcination temperature (which causes dihydroxylation and 

thus more defects) has higher activity for ethylene polymerization.28,68-74 There are two 

possible pathways involving surface defects: addition of a nearby surface ≡Si-O• defect to 

a Cr+2 site, resulting in a Cr+3 site and nearby ≡Si• defect or hydrogen transfer reaction 

from π-bonded ethylene to ≡Si-O•, forming a Cr+3-CH=CH2 site and a new silanol that 

would interact with the chromia.68 Addition of a first ethylene molecule to a bare Cr+3 site 

is less favorable than that to a Cr+2 site, and coordination of a second ethylene molecule is 

predicted to be endergonic. Of the initiation mechanisms already proposed in the literature, 

for Cr+3 oxide sites, oxachromacycle ring expansion seems to be the most plausible. This 

mechanism was examined with Cr+3 since it was the best option for Cr+2 sites. Although a 

viable pathway since it has a moderate overall Gibbs energy of 149 kJ/mol, the 

oxachromacycle ring expansion mechanism is more preferred over Cr+2 sites, having an 

overall Gibbs energy of 140 kJ/mol. Additionally, the mechanism becomes more favorable 

for more strained Cr+3 sites. In this publication, Gierada et al. also expand on a newer 

mechanism involving Cr+3-OH/SiO2 sites that was originally proposed in an earlier 
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publication62 and will be discussed in a later chapter. In these DFT studies, pathways for 

ethylene polymerization over Cr+5 oxide species were theoretically examined for the first 

time. The first ethylene molecule inserts into the oxo ligand and creates a radical species 

which then reacts via terminal C atoms with the silanolate oxygen to form a 

dioxachromacyclopentane complex. Upon coordination of a second ethylene molecule, 

proton transfer from the ethylene ligand occurs and forms a Cr+3-CH=CH2 site and surface 

-OCH2CH2OH ligand. The overall activation barrier is 139 kJ/mol. Further ethylene 

coordination results in a Cr+3 butenyl complex. Further propagation can occur through 

insertion of ethylene molecules into the Cr-C bond, if the oxygenate ligand de-coordinates 

and leaves a vacant site. With a predicted overall Gibbs energy of 147 kJ/mol, this 

mechanism is slower than that starting from a Cr+3-OH site. These very comprehensive 

DFT studies nicely demonstrated the likelihood of the various reaction mechanisms 

proposed in literature by determining pathways for the overall reaction (initiation, 

propagation, and termination), even presenting a newer and viable model. 
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Table 1.2. Summary of the proposed active sites and surface reaction intermediates 

reported in literature for catalysts activated with CO except for studies reported in 

references50-52 that employed model organometallic compounds.62 

Research 

Group 

Experimental 

Conditions 

Band 

Positions 
Assignments Active Sites 

Zielinski 

etal.63 

 

In vacuo IR 

1446 cm-1 
δ(=CH2) of adsorbed 

ethylene 
Carbene 

Cr=CH2 

or 

Cr vinyl 

hydride H-Cr-

HC=CH2 

1472 cm-1 

δ(-CH2-) of PE + 

δ(=CH2) of adsorbed 

ethylene 

2850, 2920 

cm-1 
νs(CH2), νas(CH2) 

Zecchina et 

al.42,65 

 

 

In vacuo IR 

3700 cm-1 

Silica hydroxy groups 

weakly interacting 

with polymer chains Alkylidene 

Cr=CH-CH3 2750 cm-1 Methylene 

2855, 2926 

cm-1 
Bulk PE 

Szymura et 

al.64 

 

In vacuo IR 

2997, 1548, 

1448 cm-1 

νs(CH2), ν(C=C), 

δ(CH2) of ethylene π-

adsorbed on Cr+2 sites 
Alkylidene 

Cr=CH-CH3 
3016 cm-1 ν(CH) of =CH- 

2855, 2927 

cm-1 
νs(CH2), νas(CH2) 

2960 cm-1 methyl CH3 

Zecchina et 

al.53-57 

 

In situ IR 

~100K – RT  

3004, 3084, 

3104 cm-1 

Cr+2…(C2H4)n π-

bonded complexes 

Metallacycle 

(ring 

structure) 

2750 cm-1 

ethylene molecules 

interacting with the 

silanol groups 

3650 cm-1 
Perturbed silanol 

groups 

2861, 2893, 

2915, 2931, 

2965 cm-1 

“anomalous bands" 

(metallacycle 

structure) 

2850, 2920 

cm-1 
νs(CH2), νas(CH2) 
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Copéret et 

al.50-52,60,61 

 

In situ IR 

70 °C 

3692, 3643, 

3605 cm-1 

Silanols 

interacting with 

PE; silanols 

interacting with 

adjacent Cr+3 

sites to form Si-

(µ-OH)-Cr 

Cr-vinyl formed by 

C-H activation over 

O-H band 

Scott et al.67 

 

In situ EXAFS Curve Fitting of Spectra Trigonal pyramidal 

and four-coordinate 

square pyramidal 
Computational 

modeling 
NA 

Scott et al.59 

 

In situ UV-vis 

C2H4 80 °C 

463 and 

676 nm 
Cr+3 

organo-Cr+3 

In situ EPR 

C2H4 80 °C 
g = ~2 T Cr+3 

In situ 

XANES 

C2H4 80 °C 

Cr+3  Cr+3 

Handzlik et 

al.68 

 

DFT studies 

Oxachromacycle over 

Cr+2  

or 

Cr+3 or Cr+3-vinyl 

formed from Cr+2 and 

silica surface defect 

or  

Cr+3-vinyl formed 

from Cr+3-OH 
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1.5 Promoted CrOx/SiO2 Catalysts for Ethylene Polymerization 

Many of the early studies on the promoted silica-supported chromia catalysts were 

conducted at Phillips Petroleum, and focused mostly on the reducibility or activation of the 

catalysts by H2 consumption.75,76 The reduction profiles were used to interpret 

corresponding variations in the yield of ethylene, and it was found that incorporating 

alumina into the silica- support chromia catalysts decreased the reduction rate compared to 

the standard catalyst.75,76 Assumptions, however, were made about the structure of the 

catalytic active chromia sites and reaction mechanisms since the catalyst surface could not 

be directly observed.  

Subsequent studies with co-precipitated TiO2-promoted CrO3/SiO2 catalyst, employed 

IR spectroscopy with NO as a chemical probe.14-16 In these experiments, the catalyst was 

pretreated with CO and C2H4 and subsequently exposed to NO. The adsorbed NO IR bands 

were assigned to a combination of both monochromate and dichromate Cr+2 and Cr+3 sites, 

but there was no direct evidence for the chromia oxidation state and structure. Furthermore, 

the measurements were performed in vacuo that can change the surface structure and 

oxidation state.  

Other studies applied H2-TPR, UV-vis, and secondary ion mass spectrometry (SIMS) 

to study titanium-modified silica-supported chromia catalysts.77,78 These studies attempted 

to assign the nature of the catalytic active chromia sites, but the experimental conditions of 

these studies were far removed from ethylene polymerization reaction conditions and the 

findings are, thus, ambiguous.  

An initial density functional theory (DFT) study focusing on the effects of surface 

doping by titania on the structure and stability of the chromia species suggested that the 
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charge transfer process between Ti and Cr may explain the increase in reactivity of the Ti-

promoted catalyst.79 Models of the dioxo bridging chromia species were created containing 

zero, one, or two bridging Cr-O-Ti bonds. The bond distances (1.60 Å) and the bond angles 

(109°) were unchanged with respect to the nature of the support, while the Bader charges 

were 2.39e (no Cr-O-Ti), 2.41e (1 Cr-O-Ti), and 2.39e (2 Cr-O-Ti), respectively. The 

non-monotonic increase in the Bader charge was attributed to the asymmetric structure in 

the model with only one Cr-O-Ti bond. This structure would lead to a much higher charge 

on the Cr site, indicating an increase in the electron deficiency, which would aid reduction 

of the chromia sites and result in a shorter induction period. Vibrational frequency 

calculations indicated a blue shift when there is a Cr-O-Ti bond.  

Later studies combined theoretical studies using DFT with high-resolution x-ray 

photoelectron spectroscopy (HR XPS) and 1H magic-angle-spin solid-state nuclear 

magnetic resonance (1H MAS solid-state NMR) to study promoted catalysts.80,81 In two 

sets of experiments, Ti-80 and Al81-modified supported CrOx/SiO2 catalysts were studied 

in an effort to explain the shorter induction period and higher polymerization activity. 

Unfortunately, these experimental measurements were also far removed from ethylene 

polymerization conditions. DFT calculations suggested that the promotional effect of 

modification with titanium stems primarily from the increased electron-deficiency as 

observed with XPS.80 For the Al-promoted supported CrOx/SiO2 catalyst, the opposite 

effect was found with the XPS binding energy decreasing with Al loading. This suggests 

that there was no increase in electron-deficiency, as seen with the Ti-modified catalyst. 

This would not explain, however, the increase in ethylene polymerization activity, and 

additionally, the XPS measurements were conducted in vacuo.81 
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Recently, new types of catalysts have been developed to try to achieve a fundamental 

understanding of the promotional effects of adding TiOx to the catalyst. The Zecchina 

group demonstrated the potential of using H2-reduced TiO2 to convert ethylene to HDPE 

without an activator. UV-vis and IR spectroscopy showed the appearance of a very broad 

absorption over the entire visible, NIR, and MIR regions attributed to shallow-trap defect 

sites. It was thus concluded that the active site is a Ti4-n defect site located in the band gap. 

The idea of the H2-reduced catalyst was derived from the TiClx-based heterogeneous 

Ziegler-Natta catalyst for ethylene polymerization in which the active sites are reduced Ti 

sites in interaction with an aluminum-alkyl activator; however, the H2-reduced TiO2 

catalyst creates polyethylene without the use of an activator, like the traditional CrOx/SiO2 

catalysts. The Weckhuysen group developed a triethylaluminum(TEAl)-modified 

Cr/Ti/SiO2 catalyst made using a commercially available Cr/SiO2 pre-catalyst.49,82 The 

pre-catalyst was surface titanated creating an outer shell then contacted with 

triethylealuminum (TEAl) co-catalyst in heptanes to create the ethylene oligomerization 

sites. A combination of spectroscopic methods was used (DRIFTS, EPR, UV-vis-NIR 

DRS, STXM, SEM-EDX, and GPC-IR) to directly monitoring the catalyst and demonstrate 

that there are two distinct active regions that produce two different polymers. It was 

determined that the Ti-scarce active sites inside the core caused branching of the 

polyethylene chain, while the Ti-rich active sites located in the shell are responsible for 

more linear types of polyethylene.  

The limitation of many of the above studies is that they were not performed on 

dehydrated initially oxidized catalysts, activated catalysts or during the ethylene 
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polymerization reaction. Furthermore, in most cases only indirect information was 

provided about the catalytic active chromia sites (e.g., NO chemisorption, 1H NMR, or H2-

TPR).  

Very recent and comprehensive DFT studies concerning chromia sites on an Al-

modified silica support predicted that the surface modification can influence both geometry 

and relative stabilities of the chromia sites.83 The Al-modified silica support was created 

by substituting one or two Al sites for Si atoms in the amorphous support structure near the 

Cr center, with either one or two Cr-O-Al bridges, respectively. Additionally, possible 

locations were considered for the additional proton that compensates the framework charge 

and Si-(OH)-Al Brönsted acid sites. Results for just one Cr-O-Al bridge resembled those 

of the standard CrOx/SiO2 catalyst since the geometries of the dioxo and mono-oxo were 

still determined to be pseudo-tetrahedral and square pyramidal, respectively. The dioxo site 

was found to be more thermodynamically preferred than the mono-oxo site, as for the 

standard catalyst. Although at high temperatures and under low water vapor pressure, 

formation of the mono-oxo site is preferable with direct transformation, other dehydration 

reactions resulted in the formation of the most stable dioxo species that is even more 

preferred than the mono-oxo. With two Cr-O-Al bridges near the Cr center, the most stable 

sites contain two Brönsted acid sites near each Cr center, and this allows for even deeper 

dehydration than for either the case of zero or one Cr-O-Al bridge. This further dehydration 

causes the mono-oxo sites to be 3-fold bonded to the support and exhibit pseudo-tetrahedral 

geometry, like the dioxo species, rather than the previously seen square pyramidal 

geometry. The alteration in geometry allows the mono-oxo site to have increased stability 
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relative to the dioxo site, in contrast to the other cases of zero or one Al site near the Cr 

center, in which the dioxo site is more thermodynamically preferred. 

Thus, the structure of the catalytic active chromia sites, surface reaction intermediates 

and of the silica-supported chromia catalysts promoted with TiOx, ZrOx, or AlOx are 

needed to allow for the development of a molecular level model of ethylene polymerization 

by oxide promoted silica-supported chromia catalysts. 

1.6 Summary and Conclusions 

The nature of the surface CrOx sites strongly depends on the environment to which the 

supported CrOx/SiO2 catalysts are exposed. Under ambient conditions, hydrated surface 

chromia species are present (CrO4, Cr2O7, Cr3O10, and Cr4O13), and the extent of 

oligomerization increases with decreasing surface pH values at point of zero charge. Under 

dehydrated and oxidizing conditions, the surface chromia sites are present as isolated 

surface dioxo (O=)2CrO2 on silica. Crystalline Cr2O3 nanoparticles are also present above 

the maximum dispersion limit, which depends on the Cr precursor, solvent, and surface 

properties of the SiO2 support. Many of the early studies applied UV-vis spectroscopy to 

determine the nature of the surface CrOx sites on silica, but the broad and overlapping 

UV-vis bands prevented clear cut structural assignments. The supported CrOx/SiO2 

catalysts are activated for ethylene polymerization by exposure to reducing environments. 

Activation with CO leads to Cr+2 sites, but activation with H2 and C2H4 results in Cr+3 sites.  

Less is known concerning the fundamental details of the Ti-, Zr-, and Al-promoted 

CrOx/SiO2 catalysts since most studies in the literature have focused on the standard 

CrOx/SiO2 catalyst. Most publications concerning the promoted catalysts did not study the 

promoted CrOx/SiO2 catalysts under relevant ethylene polymerization reaction conditions, 
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reducing first with H2 or CO or applying indirect methods such as NO chemisorption. The 

role of promoters for ethylene polymerization needs to be examined using a combination 

of modern in situ spectroscopy techniques that can directly probe the catalyst structure 

during relevant reaction conditions.  

1.7 Thesis Outline – Ethylene Polymerization 

The above literature review indicates the need for elucidation of fundamental details of 

ethylene polymerization by heterogeneous supported CrOx/SiO2 catalysts. This will be 

achieved by combining multiple in situ spectroscopic techniques capable of directly 

characterizing the catalyst under relevant ethylene polymerization conditions. The chapters 

pertaining to ethylene polymerization are outlined below. 

Chapter 2: Catalyst Synthesis and Experimental Techniques 

Details of the experimental techniques and procedures will be provided in this chapter.  

Chapter 3: Ethylene Polymerization by Supported CrOx/SiO2 Catalysts: Active Sites, 

Surface Intermediates, and Structure-Activity Relationships 

The standard CrOx/SiO2 catalyst will be characterized before and during ethylene 

polymerization reaction conditions. Using time-resolved in situ Raman spectroscopy, 

TPSR-MS, operando DRIFTS, and in situ UV-vis DRS, the molecular structure, electronic 

transitions, and surface intermediates will be elucidated to allow development of the 

structure-activity relationships of the supported CrOx/SiO2 catalyst. 

Chapter 4: Operando Ethylene Polymerization by Supported CrOx/SiO2 Catalysts: Role 

of Promoters 

Multilayered CrOx/SiO2 catalysts will be synthesized and characterized. The silica 

support will first be impregnated with promoter metal oxides (AlOx, TiOx, and ZrOx), and 
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the resulting modified support, subsequently impregnated with CrOx. Following the 

methods used in Chapter 3 (operando DRIFTS, in situ Raman spectroscopy, TPSR-MS, 

and in situ UV-vis DRS), the role of promoters will be determined. 
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Chapter 2 | Catalyst Synthesis and Experimental Techniques 

2.1 Introduction 

This chapter will describe all relevant experimental procedures used in the content of 

this dissertation. There will be no experimental details present in subsequent chapters. 

2.2 Catalyst Synthesis and Experimental Techniques for Ethylene Polymerization  

2.2.1 Synthesis of Supported CrOx/SiO2 Catalysts  

The silica support material used was amorphous SiO2 (Cabot, Cab-O-Sil fumed silica 

EH-5, S.A. = 332 m2/g). Following previous methods1, the Cab-O-Sil was found to be more 

easily handled by an initial water pretreatment without changing material properties. The 

highly dispersed silica-supported metal oxide catalyst was prepared under ambient 

conditions via the incipient wetness impregnation method of an aqueous solution of the 

chromium (III) nitrate precursor (Cr(NO3)39H2O, Alfa Aesar, 98.5 %). The samples were 

then dried overnight. In a programmable furnace (Thermolyne, Model 48000), the samples 

were dried in a second step in air by holding the samples at 120 °C for 2 h, and the final 

step was calcination of the catalyst by ramping the temperature at 1 °C/min under flowing 

air (Airgas, Zero grade) to 500 °C and holding for 6 h. The final synthesized catalyst was 

then denoted as 3% CrOx/SiO2.  

2.2.2 Synthesis of Supported CrOx/MOx/SiO2 Catalysts (M = Al, Ti, Zr) 

The dispersed silica-supported metal oxide catalysts were prepared via a 2-step 

incipient wetness impregnation method. The silica support material used was amorphous 

SiO2 (Cabot, Cab-O-Sil fumed silica EH-5, S.A. = 332 m2/g). Using previous methods1, 

the Cab-O-Sil was found to be more easily handled using an initial water pretreatment 

process that did not change material properties of the silica. In the first step after the initial 
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water pretreatment, the SiO2 surface was modified by dispersing 5wt% of the metal oxide 

promoters using non-aqueous (toluene C6H5CH3, Alfa Aesar, HPLC grade) solutions 

corresponding to the precursors aluminum sec-butoxide (Al[O(CH3)CHC2H5]3, Alfa 

Aesar, 95%), titanium (IV) isopropoxide (Ti[OCH(CH3)2]4, Sigma-Aldrich), or zirconium 

(IV) n-propoxide (Zr[O(CH2)2CH3]4, Alfa Aesar, 70%). The non-aqueous IWI preparations 

were performed inside a glovebox (Vacuum Atmospheres, Omni-Laboratory VAC 

101965) under a nitrogen atmosphere and kept inside overnight after impregnation. The 

samples were then transferred to a programmable furnace (Thermolyne, Model 48000), in 

which the samples were first dried in a second step in flowing nitrogen (Airgas, UHP) at 

120 °C for 5 h, and then finally calcined by ramping the temperature at 1 °C/min under 

flowing nitrogen to 500 °C and holding for 6 h. The second impregnation step was of the 

modified SiO2 supports with dispersion of 3wt% CrO3 using methods as outlined above. 

The final synthesized catalysts were denoted as 3% CrOx/5% MOx/SiO2 (M = Al, Ti, or 

Zr). 

2.2.3 In situ X-ray Absorption Spectroscopy (XAS): X-ray Absorption Near-Edge 

Spectroscopy (XANES) and Extended X-ray Absorption Fine Structure 

(EXAFS) 

Cr K-edge XAS experiments were carried out at Brookhaven National Lab at the X19A 

beamline. The catalyst was first pressed into a thin pellet, and then loaded into a Nashner-

Adler cell to allow for in situ treatment of the catalyst. The protocol for obtaining in situ 

XAS spectra was as follows: (1) under flowing 20% O2/He (Airgas, certified, 20.00% 

O2/He balance, 25 mL/min), initially heat the sample to 500 °C, hold for ~30 min, and cool 

to 100 °C, (2) switch the gas flow to He (Airgas, UHP, 25 mL/min). The dehydrated 
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spectrum was obtained at 100 °C under flowing He. Data processing and analysis were 

performed using the Athena software package.2 

2.2.4 In situ Raman Spectroscopy 

In situ Raman spectra of the dehydrated catalysts were obtained at Oak Ridge National 

Laboratory. The catalyst was loaded into an environmental cell to allow for in situ 

treatment. The protocol for obtaining in situ Raman spectra was as follows: (1) under 

flowing 5% O2/He, initially heat the sample to 500 °C, hold for ~1 h, and cool to 100 °C. 

The in situ Raman spectra were obtained using a moving stage to constantly move the 

sample to minimize laser-induced reduction. The dehydrated spectra were obtained at 100 

°C under flowing 5% O2/He with a 442 nm wavelength laser at 20% laser power.  

In situ Raman spectra of the silica-supported catalyst during ethylene polymerization 

were taken using a high-resolution, dispersive Raman spectrometer system (Horiba-Jobin 

Yvon LabRam HR), which is equipped with three lasers (532, 442, and 325 nm). The laser 

employed in these studies was the visible laser at 442 nm (blue), generated by a He–Cd 

laser (Kimmon, model IK5751I-G; 441.6 nm; output power of 110 mW). The laser was 

focused on the samples using a confocal microscope equipped with a 50x long working 

distance objective (Olympus BX-30-LWD) for the visible laser. A 900 grooves/nm grating 

(Horiba-Jobin Yvon 51093140HR) was used to optimize the LabRam HR spectrometer for 

obtaining the best spectral resolution (~1 cm-1).  The laser was calibrated before 

experiments, using a silicon standard with its peak at 520.7 cm-1. The Raman spectra were 
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collected with a 200 µm size hole. Raman vibrations from the SiO2 support were used as 

internal standards to normalize signal intensities of the spectra.  

The gas flow rates were monitored using mass flow controllers (Brooks, Model 5850E). 

For each experiment, catalyst sample was loaded as loose powder (~20 mg) into an in situ 

environmental cell (Harrick, HVC-DR2 with a CaF2 window). The protocol for obtaining 

the in situ Raman spectra was as follows: (1) under flowing 10% O2/Ar (Airgas, certified, 

9.926% O2/Ar balance, 25 mL/min), initially heat the sample at 10 °C/ min from room 

temperature to 500 °C, hold for 1 h, and cool to 100 °C at a rate of 10 °C/min, (2) switch 

the gas flow to Ar (or He for the CrOx/MOx/SiO2 catalysts) (Airgas, UHP, 25 mL/min) for 

~20 min, and (3) introduce 1% C2H4/Ar (Praxair, certified, 1.00% C2H4/Ar balance, 25 

mL/min) for ~3 h. 

2.2.5 C2H4-Temperature Programmed Surface Reaction (TPSR)  

The temperature programmed surface reaction (TPSR) experiment was performed with 

an AMI-200 equipped with a Dycor ProLine Process Mass Spectrometer (MS).  

The gas flow rates were monitored using mass flow controllers as indicated above. The 

catalyst sample was loaded as loose powder (~20 mg) into a U-shaped reactor packed with 

quartz wool. The protocol for obtaining the C2H4-TPSR data was as follows: (1) under 

flowing 10% O2/Ar (Airgas, certified, 9.926 %O2/Ar balance, 25 mL/min), initially heat 

the catalyst bed to 500 °C at 10 °C/min, hold for 1 h, and cool to 100 °C, (2) switch the gas 

flow to Ar (or He for the CrOx/MOx/SiO2 catalysts) (Airgas, UHP, 25 mL/min) for ~30 

min, (3) introduce 1% C2H4/Ar (Praxair, certified 1.00% C2H4/Ar balance, 25 mL/min) and 
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ramp the temperature to 800 °C at 10 °C/min. An online mass spectrometer (AMI 200) 

turned on before the C2H4 flow was started and was used to monitor gaseous products. 

2.2.6 In situ Ultra Violet-Visible (UV-vis) Diffuse Reflectance Spectroscopy (DRS) 

In situ UV-vis spectra of the standard supported CrOx/SiO2 catalyst were obtained with 

a Varian Cary 5E UV-vis-NIR spectrophotometer employing the integration sphere diffuse 

reflectance attachment (Harrick Praying Mantis Attachment, DRA-2).  

The in situ UV-vis spectra of the promoted CrOx/MOx/SiO2 catalysts were obtained 

using an Agilent Cary Series 5000 UV-vis-NIR spectrophotometer employing the 

integration sphere diffuse reflectance attachment (Harrick Praying Mantis Attachment, 

DRA-2). The flow rates were monitored with mass flow controllers as indicated above. 

The catalyst was loaded as a loose powder (~20 mg) into an in situ environmental cell 

(Harrick, HVC-DR2 with a CaF2 window). Each spectrum was taken from 200 to 1500 nm. 

MgO was used as a standard for background absorbance, and the edge energies (Eg) were 

calculated using a Microsoft Excel Macro spreadsheet. 

For each experiment, the catalyst sample was loaded as loose powder (~20 mg) into an 

in situ environmental cell (Harrick, HVC-DR2 with a CaF2 window). The experimental 

protocol was the same as that used during the in situ Raman experiments. Each spectrum 

was taken for ~10 min from 200 to 800 nm. UV-vis spectra of the promoted supported 

CrOx/MOx/SiO2 catalysts were obtained with an Agilent Cary Series 5000 UV-vis-NIR 

spectrophotometer. Each spectrum was taken for ~1-2 min from 200-1500 nm. MgO was 
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used as a standard for background absorbance, and the edge energies (Eg) were calculated 

using a Microsoft Excel Macro spreadsheet.  

2.2.7 In situ and Operando Diffuse Reflectance Infrared Spectroscopy (DRIFTS) 

In situ DRIFT spectra of the supported chromia catalysts were obtained using a Thermo 

Scientific Nicolet 8700 spectrometer equipped with a Harrick Praying Mantis attachment 

(Model DRA-2). IR vibrations from the bulk of the SiO2 support were used as an internal 

standard to normalize signal intensities of the IR spectra.  

The gas flow rates were monitored using mass flow controllers as indicated above. For 

each experiment, catalyst sample was loaded as loose powder (~20 mg) into an in situ 

environmental cell as indicated above. The experimental protocol was the same as that used 

during the in situ Raman experiments. Spectra were collected using an MCT detector 

(cooled with liquid N2) with a resolution of ~4 cm-1 and an accumulation of 72 scans (total 

of ~1 min per spectrum) in the range of 650-4000 cm-1.  

2.2.8 Computational Models and Methods 

Cluster models of Cr+3 surface species have been developed based on the β-cristobalite 

structure3,4, often used to represent amorphous silica4-10. They contain 9 or 7 Si atoms and 

are larger or comparable to other proposed models of the supported CrOx/SiO2 catalyst, 

that have been applied in theoretical studies of the ethylene polymerization mechanism11-

17. The dangling bonds have been saturated with hydrogen atoms replacing the removed Si 

atoms. The structures have been fully relaxed to allow for the amorphous nature of the 

support. The geometry optimization has been performed using the PBE0 functional18 

combined with the def2-SVP basis set19. To confirm the potential energy minimum for 

each intermediate or the transition state, and to compute Gibbs energy corrections, the 
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harmonic vibrational frequencies have been calculated. The transition state structures have 

been additionally verified by the IRC analysis20,21. Single point energy calculations have 

been performed for each optimized structure using the PBE0 functional and the def2-

TZVPP basis set19. The reaction pathways are discussed in terms of Gibbs energies 

estimated by adding the Gibbs energy corrections and DFT-D3(BJ) dispersion 

corrections22,23 to the PBE0/def2-TZVPP single point energies. Spin unrestricted 

calculations for the Cr+3 species have been performed. In each case, the verified ground 

state is quartet. All calculations have been done with the Gaussian 09 package24. For the 

graphic presentation of the models, the GaussView 5.0 program25 has been used. 

2.3 Catalyst Synthesis and Experimental Techniques for Olefin Metathesis 

2.3.1 Synthesis of Supported MoOx/Al2O3 Catalysts 

A series of supported MoOx/Al2O3 catalysts (1-25wt% MoO3) were prepared via 

incipient-wetness impregnation of an aqueous solution of ammonium molybdate (para) 

tetrahydrate ((NH4)6Mo7O24•4H2O, Alfa Aesar, 99%, Lot No. 10120802) onto two 

different Al2O3 supports (Harshaw, AI-4126E 1/8”, BET S.A. = 180 m2/g and Sasol, 

Catalox Lot No. C2939, BET S.A. = 218 m2/g). The Harshaw Al2O3 (hereon referred to as 

H-Al2O3) supported MoOx catalysts were used for the in situ Raman studies because of its 

lower fluorescence that allowed for better quality Raman spectra. The in situ UV-vis DRS, 

DRIFTS, and TPSR studies were performed with the Sasol Catalox Al2O3 (hereon referred 

to as S-Al2O3) since only a limited quantity of the H-Al2O3 support was available.  

Prior to impregnation, the alumina supports were calcined at 500°C for 16 h under 

flowing air. The impregnation step was performed under ambient conditions, and the 

mixtures were stirred for ~30 min to maximize MoOx dispersion. Using a programmable 
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furnace (Thermolyne, Model 48000), the samples were further dried at 120°C for 2 h, then 

calcined by ramping the temperature at 1°C/min under flowing air (Airgas, Dry) to 500°C 

and holding for 4 h. The final synthesized catalysts are denoted as x% MoOx/H- or S-Al2O3, 

where x is the weight percent of MoO3 impregnated on the alumina supports. The 18 and 

20% MoOx/H-Al2O3 catalysts and 13, 18, and 20% MoOx/S-Al2O3 catalysts were 

impregnated with the molybdena in two separate impregnation steps. 

2.3.2 In situ UV-vis DRS 

The in situ UV-vis spectra were obtained using an Agilent Cary Series 5000 UV-vis-

NIR spectrophotometer employing the integration sphere diffuse reflectance attachment 

(Harrick Praying Mantis Attachment, DRA-2). The flow rates were monitored with mass 

flow controllers as indicated above. The catalyst was loaded as a loose powder (~20 mg) 

into an in situ environmental cell (Harrick, HVC-DR2 with a CaF2 window). Each 

spectrum was taken from 200 to 800 nm. MgO was used as a standard for background 

absorbance, and the edge energies (Eg) were calculated using a Microsoft Excel Macro 

spreadsheet. The protocol for obtaining the in situ UV-vis DRS spectra was as follows: (1) 

under flowing 10% O2/Ar (Praxair, certified 10.00% O2/balance Ar, 30 mL/min), initially 

heat the sample at 10 °C/min from room temperature to 500 °C and hold for 1 h, (2) switch 

the gas flow was to Ar (Airgas, certified UHP, 30 mL/min) and cool at 10 °C/min to 30°C, 

(3) introduce 5% C3H6/Ar (Praxair, certified 5.00%, 30 mL/min) for 1 h, (4) flush with 
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UHP Ar for 1 h and heat to 200 °C at 10°C/min, and (5) flow 5% C3H6/Ar at 200 °C for 1 

h (30 mL/min). 

2.3.3 In situ Raman Spectroscopy 

The in situ Raman spectra of the alumina-supported MoOx catalysts were taken using 

a high-resolution, dispersive Raman spectrometer system (Horiba-Jobin Yvon LabRam 

High Resolution (HR)), equipped with three lasers (532, 442, and 325 nm). The laser 

employed in these studies was the visible laser at 442 nm (blue), generated by a He-Cd 

laser (Kimmon, model IK5751I-G; 441.6 nm; output power of 110 mW). The laser was 

focused on the catalysts using a confocal microscope equipped with an objective lens with 

50x long working distance (Olympus BX-30-LWD). A 900 grooves/nm grating (Horiba-

Jobin Yvon 51093140HR) was used to optimize the LabRam HR spectrometer for 

obtaining the best spectral resolution (~1 cm-1). The laser was calibrated before 

experiments, using a silicon standard with its peak at 520.7 cm-1. The Raman spectra were 

collected with a 200 µm size hole.  

The gas flow rates were monitored using mass flow controllers (Brooks, Model 5850E). 

For each experiment, the catalyst was loaded as a loose powder (~20 mg) into an in situ 

environmental cell (Harrick, HVC-DR2 with a CaF2 window). The protocol for obtaining 

the in situ Raman spectra was as follows: (1) under flowing 10% O2/Ar (Praxair, certified 

10.00% O2/balance Ar, 30 mL/min), initially heat the sample at 10°C/min from room 

temperature to 500°C and hold for 1 h, (2) switch the gas flow was to Ar (Airgas, certified 

UHP, 30 mL/min) and cool at 10 °C/min to 30 °C, (3) introduce 5% C3H6/Ar (Praxair, 
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certified 5.00%, 30 mL/min) for 1 h, (4) flush with UHP Ar for 1 h and heat to 200 °C at 

10 °C/min, and (5) flow 5% C3H6/Ar at 200 °C for 1 h (30 mL/min). 

2.3.4 In situ DRIFTS 

In situ DRIFTS spectra were obtained using a Thermo Scientific Nicolet 8700 

spectrometer equipped with a Harrick Praying Mantis attachment (model DRA-2). The 

flow rates were monitored with mass flow controllers as indicated above. IR vibrations 

from the bulk Sasol Catalox Al2O3 support were used as an internal standard to normalize 

signal intensities of the IR spectra. Spectra were collected using an MCT detector (cooled 

with liquid N2) with a resolution of 4 cm-1 and an accumulation of 96 scans (total of ~1 

min per spectrum) in the range of 650-4000 cm-1. 

2.3.4.1 Dehydration Pretreatment 

The experimental protocol was as follows: (1) under flowing 10% O2/Ar (Praxair, 

certified 10.2% O2/balance Ar, 30 mL/min), initially heat the sample at 10 °C/min from 

room temperature to 500 °C and hold for 1 h, and switch the gas flow to Ar (Airgas, UHP, 

30 mL/min) and cool at 10 °C/min to 30 °C or 120 °C.    

2.3.4.2 Adsorption of C4H8 and Titration with C2H4  

After the initial dehydration treatment as outlined above, the experimental protocol was 

as follows: (2) adsorb 1% C4H8/Ar (Praxair, certified 1.00% C2H4/balance Ar, 30 mL/min) 

for 60 min at 120 °C, (3) flush with Ar for 45 min (Airgas, UHP, 30 mL/min), (4) switch 

to 1% C2H4/Ar (Praxair, certified, 1.00% C2H4/balance Ar, 30 mL/min) for 45 min at 
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120 °C, and (5) ramp the temperature at 10 °C/min to 510 °C under flowing ethylene (30 

mL/min).  

2.3.4.3 Adsorption and TP of C3H6  

After the initial dehydration treatment as outlined above, the experimental protocol was 

as follows: (2) adsorb 1% C3H6/He (Praxair, certified, 1.00% C3H6/balance He, 30 

mL/min) for 45 min at 120 °C, (3) flush with Ar for 45 min (Airgas, UHP, 30 mL/min), 

(4) switch to 1% C2H4/Ar (Praxair, certified, 1.00% C2H4/balance Ar, 30 mL/min) for 45 

min at 120 °C, and (5) ramp the temperature at 10 °C/min to 510 °C under flowing ethylene 

(30 mL/min).  

2.3.4.4 Adsorption of C3D6 and Titration with C3H6  

After the initial dehydration as outlined above, the experimental protocol was as 

follows: (3) adsorb 10% C3D6/Ar (C/D/N Isotopes, certified, >98% C3D6) (30 mL/min) for 

30 min at 120 °C, (4) switch to 1% C3H6/He (Praxair, certified, 1.00% C3H6/balance He, 

30 mL/min) for 45 min at 120 °C, and (5) ramp the temperature at 10 °C/min to 510 °C 

under flowing propylene (30 mL/min). 

2.3.4.5 Adsorption of C3H8O and TP with C3H6 

After the initial dehydration procedure as outlined above, the experimental procedure 

was as follows: (3) adsorb C3H8O/Ar (30 mL/min) for 30 min at 30 °C, and (4) switch to 

1% C3H6/He (Praxair, certified, 1.00% C3H6/balance He, 30 mL/min) and ramp the 

temperature at 10 °C/min to 510 °C under flowing propylene. 

2.3.4.6 Adsorption of C3H6O and TP with C3H6 

After the initial dehydration procedure as outlined above, the experimental procedure 

was as follows: (3) adsorb C3H6O/Ar (30 mL/min) for 30 min at 30 °C, and (4) switch to 
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1% C3H6/He (Praxair, certified, 1.00% C3H6/balance He, 30 mL/min) and ramp the 

temperature at 10 °C/min to 510 °C under flowing propylene. 

2.3.5 Temperature-Programmed Surface Reaction (TPSR) 

TPSR results were obtained with an Altamira Instruments system (AMI-200) equipped 

with an online quadrupole mass spectrometer (MS) (Dycor Dymaxion DME200MS). Flow 

rates were monitored with mass flow controllers (Brooks, Model 5850E). 

For each experiment, the catalyst was loaded as loose powder (~200 mg) into a U-

shaped reactor and packed with quartz wool. The MS m/z values that were used for 

detection of the reactants and products are: propylene (m/z 42), ethylene (m/z 27), butene 

(m/z 56), water (m/z 18), methane (m/z 16), carbon monoxide (m/z 28), oxygen (m/z 32), 

carbon dioxide (m/z 44), formaldehyde (m/z 30), acetaldehyde (m/z 43), and acetone (m/z 

58). The cracking pattern of propylene gives rise to ethylene (m/z 27), formaldehyde (m/z 

30), carbon monoxide (m/z 28), and acetaldehyde (m/z 43), so these were subtracted from 

the MS signals obtained during TPSR. 

2.3.5.1 Dehydration Pretreatment 

The experimental protocol was as follows: (1) under flowing 10% O2/Ar (Praxair, 

certified 10.3% O2/balance Ar, 30 mL/min), heat the sample at 10 °C/min from room 

temperature to 500 °C and hold for 1 h, and (2) switch the gas flow to Ar (Airgas, UHP, 

30 mL/min) and cool to 35 °C. 

2.3.5.2 C3H6-TPSR 

After the initial dehydration outlined above, the experimental protocol was as follows: 

(3) hold the temperature at 35 °C in flowing Ar for 30 min and turn on the MS to allow it 

to stabilize, (4) adsorb propylene at 35 °C for 45 min (Praxair, certified 5.00% 
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C3H6/balance Ar, 30 mL/min), and (5) ramp the temperature at 10 °C/min under flowing 

propylene (30 mL/min) to 600 °C.  
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Chapter 3 | Operando Molecular Spectroscopy During Ethylene Polymerization 

by Supported CrOx/SiO2 Catalysts: Active Sites, Surface Intermediates, and 

Structure-Activity Relationships 

Abstract 

Time-resolved operando molecular spectroscopy was applied during ethylene 

polymerization by supported CrOx/SiO2 catalysts to investigate the structure-activity 

relationships for this important industrial catalytic reaction. A combination of 

spectroscopic techniques (Raman, UV-vis, XAS, DRIFTS, and TPSR) during ethylene 

polymerization allows for the first time to monitor the molecular events taking place during 

activation of supported CrOx/SiO2 catalysts by ethylene and establishment of the structure-

activity relationships for this reaction. Based on complementary DFT computational 

studies, a new initiation mechanism for ethylene polymerization is proposed. During 

reaction, the initial surface Cr+6Ox sites reduce to Cr+3 sites to form Cr-(CH2)2CH=CH2 and 

Cr-CH=CH2 reaction intermediates with the latter representing the catalytic active site. 

3.1 Introduction 

Ethylene polymerization by silica-supported CrOx catalysts is now responsible for ~40 

to 50% of all high-density polyethylene produced1. Despite the extensive research studies 

that have been performed about the supported CrOx/SiO2 catalyst system over the past six 

decades, many of the same fundamental structural and mechanistic questions are still being 

debated.1-4 There has been extensive debate on studies about the initial chromia structures 

in the initial dehydrated catalyst, particularly due to interpretations of UV-vis results.  

The aim of the present study is to elucidate the roles of the initial surface chromia sites 

on silica for the ethylene polymerization reaction through application of in situ and 
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operando molecular spectroscopy before and during the initial stages of ethylene 

polymerization by supported CrOx/SiO2 catalysts. Using a combination of spectroscopic 

techniques (Raman, UV-vis, XAS, DRIFTS, and TPSR) during ethylene polymerization 

allows for the first time to monitor the molecular events taking place during activation of 

supported CrOx/SiO2 catalysts by ethylene and establishment of the structure-activity 

relationships for this reaction. Based on complementary DFT computational studies, a new 

initiation mechanism for ethylene polymerization is proposed.5 

3.2 Results 

3.2.1 In situ XANES/EXAFS of the Oxidized Supported CrOx/SiO2 Catalyst 

The normalized in situ XANES of the reference compounds CrO3 (consisting of poorly 

ordered polymeric Cr+6O4 units due to its low temperature synthesis), Cr2O3 (containing 

linked Cr+3O6 units in the bulk lattice), and dehydrated supported 3% CrOx/SiO2 catalyst 

are presented in Figure 3.1. The XANES spectrum for Cr2O3 does not give rise to a pre-

edge feature because this transition is not allowed for structures with inverse symmetry 

such as CrO6. In contrast, the XANES spectrum of CrO3 exhibits a strong pre-edge feature 

(~5994 eV) because it is composed of Cr+6O4 site that do not possess inverse symmetry.6,7 

The similar leading edge energy from ~6000 to 6010 eV for the supported 3% CrOx/SiO2 

catalyst and CrO3, Cr+6 reference, indicates that the surface CrOx sites are present as Cr+6. 

The strong pre-edge feature at ~5994 eV in the XANES spectrum of the dehydrated 3% 

CrOx/SiO2 catalyst shows that CrO4 coordinated sites are dominant in this catalyst. The 

slightly stronger XANES pre-edge for the supported 3% CrOx/SiO2 catalyst than CrO3 

reflects the greater symmetry of the Cr+6O4 sites in the catalyst. The corresponding in situ 

k2-weighted, phase-uncorrected Fourier Transform (FT) EXAFS provides information 
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about the radial distribution of the atoms surrounding Cr and is presented in Figure S 3.1. 

The phase-uncorrected EXAFS of the dehydrated catalyst shows a strong peak at ~1.2 Å 

from Cr=O and a weak peak at ~1.8 Å from longer Cr-O. The absence of a peak at ~3 Å 

for Cr-Cr 6,7 is consistent with the presence of isolated chromia sites on the silica support.5 
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Figure 3.1. In situ normalized XANES of the dehydrated supported 3% CrOx/SiO2 catalyst. 

The XANES spectrum of the dehydrated catalyst was taken at 100 °C in flowing He (solid 

black), and the reference compounds CrO3 (Cr+6) (dashed purple) and Cr2O3 (Cr+3) (dotted 

green) were collected under ambient conditions.5 
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3.2.2 In situ Raman Spectroscopy of the Initial Oxidized Catalyst 

The in situ dehydrated spectrum of the initial oxidized supported CrOx/SiO2 catalyst is 

shown in Figure 3.2. Strong symmetric and asymmetric stretching vibrations of the surface 

dioxo νs((O=)2CrO2) site are present at ~992 and ~1015 cm-1, respectively.8-11 The band at 

~1015 cm-1 has been previously assigned to the νs(O=CrO4) of an isolated mono-oxo site 

in a distorted square pyramidal coordination8,9. More recent results have shown that the 

“mono-oxo” site is most likely a combination of laser-induced reduction and the weak 

asymmetric stretching mode of the isolated dioxo site. The strong 442 nm laser is known 

to burn and cause laser-induced reduction of the catalytic surface sites5, even with the 

employment of a laser filter to only use a small percentage of the laser power. In the recent 

results (see Figure S 3.2), a moving stage was used to constantly move the sample during 

spectrum acquisition, thereby avoiding the laser staying focused on one spot. Even so, and 

in oxidizing conditions, the band at ~1015 cm-1 grew over time. These results demonstrate 

that the band at ~1015 cm-1 is an experimental artifact that primarily appears due to laser-

induced reduction, although there is a small contribution from the νas((O=)2CrO2).  

The corresponding bending mode δ(O=Cr=O) appears at ~398 cm-1.8,11 The absence of 

Raman bands in the ~200-300 cm-1 region demonstrates that bridging Cr-O-Cr bonds are 

not present, and indicates that the surface CrOx sites are isolated on the silica support.8 The 

in situ Raman spectrum also indicates the lack of crystalline Cr2O3 NPs present in the initial 

oxidized catalyst since there is no band observed at ~550 cm-1.5,8
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Figure 3.2. In situ Raman spectrum of the initial oxidized supported 3% CrOx/SiO2 catalyst 

taken in flowing 5% O2/He at 100 °C. The spectrum was taken with a 442 nm wavelength 

laser (20% laser power) and a moving stage.  
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3.2.3 In situ Raman Spectroscopy During Ethylene Polymerization 

The time-resolved in situ Raman spectra of the supported CrOx/SiO2 catalyst during 

ethylene polymerization are reported in Figure 3.3. The spectrum of the dehydrated silica 

support was subtracted from each Raman spectrum to emphasize observation of the 

chromia sites. During ethylene polymerization, the intensity of the Raman band for the 

dioxo sites (~986 cm-1) diminishes over time. This demonstrates that the dioxo surface 

chromia sites are either reducing by or interacting with the gas-phase ethylene.5
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Figure 3.3. Time-resolved in situ Raman spectra of supported 3% CrOx/SiO2 catalyst taken 

in flowing 1% C2H4/Ar at T = 100 °C. Spectra were taken with a 442 nm wavelength laser.5 
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3.2.4 In situ UV-vis DRS During Ethylene Polymerization 

The time-resolved in situ UV-vis spectra of the supported 3% CrOx/SiO2 catalyst are 

presented in Figure 3.4. Multiple ligand-to-metal charge transfer (LMCT) bands are present 

at ~250, ~340, and ~460 nm (see Figure 3.4 A) that are characteristic of surface Cr+6Ox 

sites on silica12. The surface CrOx Eg value is ~2.4 eV, corresponding to isolated surface 

chromia sites8. The intensity of the Cr+6Ox LMCT bands is minimally decreased under 

these reaction conditions suggesting minimal reduction (see Figure S 3.3). The difference 

curves in Figure 3.4 B were obtained by subtracting the UV-vis spectrum of the initial 

dehydrated catalyst from each UV-vis spectrum taken during ethylene polymerization and 

allowed for improved observation of the weak d–d transition bands at 425 and 587 nm that 

have been assigned to pseudo-octahedral Cr+3O6 sites12. A UV-vis d-d band from surface 

Cr+5 sites is not apparent, but a small amount may be also present under the broad d–d band 

from the surface Cr+3 site at 587 nm.5 
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Figure 3.4. Time-resolved in situ UV-vis spectra of the supported 3% CrOx/SiO2 catalyst 

in flowing 1% C2H4/Ar at 100 °C highlighting the LMCT region (A) and magnified to 

show the d-d transition bands (B).5 
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3.2.5 C2H4-TPSR  

C2H4-TPSR spectroscopy was performed to determine the reduced states formed from 

the initial surface dioxo CrOx sites as shown in Figure 3.5. The formation of CO2 during 

C2H4-TPSR demonstrates that ethylene is reducing the initial surface Cr+6 sites to lower 

chromia oxidation states via the removal of oxygen. CO2 was the only oxidation product 

detected, and H2O was not detected since the line from the reactor to the MS was not heated 

and caused condensation. The two CO2 peaks at ~280 °C and ~410 °C represent the two-

step reduction of the chromia sites of Cr+6 → Cr+4 and Cr+4 → Cr+3, respectively. The ratio 

of CO2(280 °C)/CO2(410 °C) is approximately 1.7 and indicates that ~63% of the sites are 

in a Cr+4 oxidation state while ~37 % of the reduced sites are in a Cr+3 oxidation state. This 

demonstrates that not all the surface chromia sites reduce to the same oxidation state. The 

CO2/C2H4-TPSR spectrum also allows for calculation of the ethylene reduction kinetics of 

the two surface chromia sites. Application of the Redhead equation13 yields the first-order 

kinetic constants of k6/4 = 92 s-1 and k4/3 = 0.48 s-1 for the activation of the dioxo and mono-

oxo sites, respectively. The ratio of k6/4/k2/3 is ~400 indicating that the reduction by 

ethylene of the surface chromia sites from Cr+6 to Cr+4 is significantly easier than the 

reduction of the Cr+4 sites to Cr+3 sites.5 
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Figure 3.5. The CO2/C2H4-TPSR spectrum of the supported 3% CrOx/SiO2. The 

temperature was ramped from 100 to 800 °C with a heating rate of 10 °C/min in flowing 

1% C2H4/Ar.5 
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3.2.6 In situ and Operando DRIFTS During Ethylene Polymerization 

The time-resolved in situ IR spectra during ethylene polymerization are presented in 

Figure 3.6. The IR difference spectra were obtained by subtracting the IR spectrum of the 

initial dehydrated catalyst from each IR spectrum taken during ethylene polymerization, 

after normalizing against the SiO2 vibration at 1350 cm-1. The entire range (650-4000 cm-1) 

is presented in Figure 3.6 A, and the zoomed region (2700-3200 cm-1) is given in Figure 

3.6 B. Positive IR bands represent bands being formed while negative IR bands represent 

bands being consumed. Gas phase ethylene gives rise to bands at ~950, ~1450, ~1900, and 

2950–3200 cm-1 in Figure 3.614. The band at 3745 cm-1 for isolated silanols15-19 decreases 

with reaction time, and the bands at 3700 and 3400 cm-1 increase with reaction time because 

the isolated silanols interact with the PE chain18,20. In the bending region, the increasing IR 

bands at ~805 and 985 cm-1 are assigned to δ(=CH2) modes of PE20,21. The band at 

1574 cm-1 also increases with reaction time and is assigned to νas(C=C) of the PE chain20,21. 

The 906 cm-1 band from bridging Cr-O-Si decreases in intensity with time reflecting the 

interaction of the surface intermediates and PE with this bond.5  

The area in Figure 3.6 labeled as ‘‘Zoomed Region’’ is replotted in Figure 3.6 B to 

allow better observation of the relevant IR bands. This region contains significant IR bands 

that increase with reaction time and are assigned to the surface intermediates, PE product, 

and gas phase ethylene vibrations (2950-3200 cm-1)14. The band at 2898 cm-1 is assigned 

to the νs(-CH2-CH2) vibration of the bulk PE chain since it is expected to vibrate in the 

2850-3000 cm-1 range, and the band at 2865 cm-1 is assigned to νs(Cr-CH2-) of the PE 

forming close to the Cr site; it would be expected to vibrate with lower energy than the 

bulk PE since it is closer to the Cr center 20,21. The bulk PE bands in the literature are seen 
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at ~2850 cm-1 for νs(-CH2-CH2) and ~2920 cm-1 for νas(-CH2-CH2). The ~Δ50 cm-1 red 

shift previously reported could be related to the higher temperature used for the current 

measurements (room temperature vs. 100 °C) that are more aligned with industrial reaction 

conditions (85-150 °C)1,3,4. An Ar flush was performed at the end of the experiment to 

detect any additional bands that may have been obscured by the gas-phase ethylene 

reactant. After the Ar flush, two new IR bands are also present at 2973 cm-1 from the mas 

(-CH2-CH2) of the bulk PE chain, which is ~70 cm-1 higher than the νs(-CH2-CH2) of the 

bulk PE, a typical difference in wavenumber between asymmetric and symmetric 

vibrations, and a second band at 2960 cm-1 that is assigned to the ν(C-H) of the vinyl 

reaction intermediate Cr+3-CH=CH2
20,21. In general, the C-H stretch vibrations for a vinyl 

group fall in the range of 2980-3110 cm-1, and specifically for σ-bonded olefinic metal 

compounds, the CH2 and CH stretches fall in the 2900-3100 cm-1 range. In the case of a 

vinyl active reaction intermediate bonded to the Cr metal center, this vibration would shift 

to lower wavenumbers because of the bond to the metal center and the reduced symmetry 

of the coordinated ethylene molecule.5 



84 

 

 
Figure 3.6. In situ DRIFT spectra of supported 3% CrOx/SiO2 in flowing 1% C2H4/Ar at 

100 °C as a function of time with an Ar flush after 3 h. (A) Difference curves of the entire 

spectrum (650-4000 cm-1) and (B) Difference curves magnified to show the growing 

surface species and polyethylene product (2700-3200 cm-1).5  
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3.2.7 Kinetics of Formation of PE Product and Surface Cr+3 Sites 

The evolution of the IR bands for formation of PE product, surface 

Cr+3-(CH2)2CH=CH2, and surface Cr+3-CH=CH2 sites during the ethylene polymerization 

reaction is plotted as a function of reaction time in Figure 3.7. The initial positive slope for 

IR band of the formation of the surface Cr+3-(CH2)2CH=CH2 reveals that this is one of the 

initial reaction intermediates during ethylene polymerization by surface CrOx on silica. At 

slightly longer times, the IR band for the surface Cr+3-(CH2)2CH=CH2 reaction 

intermediates appears to saturate. The formation of the PE product, however, initially 

exhibits a slope of zero indicating that it is a secondary product during ethylene 

polymerization by supported CrOx/SiO2 and is formed by reaction of ethylene with surface 

reaction intermediates. At longer reaction times (>20 min), the slope for PE formation 

linearly increases and is greater than the decreasing slope for formation of the surface 

Cr+3-(CH2)2CH=CH2 reaction intermediates. The continued modest increase in the IR band 

area for the surface Cr+3-(CH2)2CH=CH2 intermediates even at ~180 min suggests that not 

all the surface chromia sites have been activated at this time under these experimental 

conditions. The IR band area for the surface Cr+3-CH=CH2 intermediate at 2960 cm-1 could 

not be directly monitored because of overlap with the IR bands of gas phase ethylene. The 

gas phase contribution of ethylene, however, could be determined by subtracting the IR 

spectrum collected after ~178 min in flowing Ar with the spectrum collected at ~178 min 

in flowing ethylene. This difference was then subtracted from the time-resolved spectra at 

~2960 cm-1. The resulting plot for the intensity of surface Cr+3-CH=CH2 intermediates 

seems to track the evolution of the PE reaction product.5  
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The evolution of the UV-vis bands of the two distinct surface Cr+3 sites as a function 

of reaction time of ethylene polymerization by the supported CrOx/SiO2 catalyst is 

presented in Figure 3.8. Both UV-vis Cr+3 bands initially increase linearly with reaction 

time and their lines go through the origin suggesting that they are initial reaction 

intermediates during ethylene polymerization. At longer reaction times (>20 min), the 

slope of the band at ~587 nm remains constant while the slope of the band at ~425 nm band 

decreases and appears to approach saturation. Comparison of evolution of the UV-vis and 

IR bands suggests that the UV-vis bands at ~425 and ~587 nm follow the time dependent 

trends observed for the IR bands for the surface Cr+3-(CH2)2CH=CH2 and Cr+3-CH=CH2 

reaction intermediates, respectively (see Figure 3.9). The non-zero slopes of both UV-vis 

Cr+3 bands at ~170 min indicates that not all the surface chromia sites have been activated 

at this initial stage of the ethylene polymerization reaction under the current reaction 

conditions.5 
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Figure 3.7. Evolution of DRIFTS bands from PE product, surface Cr+3-CH=CH2, and 

surface Cr+3-(CH2)2CH=CH2 as a function of reaction time.5  
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Figure 3.8. The production of UV-vis detectable surface Cr+3 sites as a function of ethylene 

polymerization reaction time by supported CrOx/SiO2 catalysts at 100 °C (1% C2H4/Ar).5 
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Figure 3.9. Comparison of the evolution of UV-vis and DRIFTS bands. (A) Cr+3 587 nm 

band area with Cr+3-CH=CH2 2960 cm-1 intensity and bulk PE 2898 cm-1 and (B) Cr+3 425 

nm area with 2865 cm-1 Cr+3-(CH2)2CH=CH2 area.5  
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3.2.8 Density Functional Theory (DFT) 

Two proposed models of surface Cr+3 oxide sites are shown in Figure 3.10. Proposed 

models of isolated surface Cr+3 oxide sites: (A) (≡SiO)2Cr+3-OH and (B) (≡SiO)3Cr+3. The 

surface (≡SiO)3Cr+3 site (B) was recently postulated in the literature22-24; however, the 

existence of hydroxylated surface (≡SiO)2Cr+3-OH sites (A) cannot be excluded. We have 

calculated initiation mechanisms for ethylene polymerization, considering both potential 

surface Cr+3 sites on silica as the precursors of the active site complexes. The Gibbs energy 

profile at T = 73 K for the initiation mechanism for surface site A is presented in Figure 

3.11. The coordination of an ethylene molecule to chromium, resulting in π-complex A1, 

is predicted to be an equilibrium process (ΔG and 0 kJ mol-1), allowing both A and A1 

structures to exist on the surface of the reduced catalyst in the presence of gaseous ethylene. 

After A1 formation, the subsequent hydrogen transfer from the p-coordinated ethylene to 

the hydroxyl group can take place. It directly leads to the vinyl Cr+3-CH=CH2 active site 

(A2), which is experimentally confirmed in this work. This elementary step is endergonic 

(61 kJ mol-1) and proceeds with a rather high predicted activation barrier (ΔG = 135 kJ 

mol-1), but recently calculated activation Gibbs energies for other initiation mechanisms of 

ethylene polymerization are comparable22-24. Desorption of the by-product water molecule 

is calculated to be a moderately endergonic process (46 kJ mol-1) under water vapor 

pressure of 1 atm (Figure 3.11). Under more dehydrated conditions, expected during the 

catalytic process, the desorption step will be less endergonic, for instance 32 and 10 kJ mol-

1 for water vapor pressures of 0.01 and 10-5 atm, respectively. Thus, the water molecule 

can easily desorb to leave a bare surface (≡SiO)2Cr+3-CH=CH2 site (A3) for ethylene 

adsorption during the propagation stage. The initiation mechanism for surface (≡SiO)3Cr+3 
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site (B) as the precursor of the active site (Figure 3.12) is different than that calculated for 

the surface site A. The coordination of ethylene leading to the π-complex B1 is predicted 

to be a slightly more exergonic process (-4 kJ mol-1) than the A → A1 step (Figure 3.11), 

but it can still be regarded as an equilibrium step. The subsequent ethylene insertion into 

the Cr-O σ-bond, resulting in an oxachromacycle site B2, is endergonic (78 kJ mol-1) and 

proceeds with an activation barrier of 111 kJ mol-1. The Cr-O distance is only moderately 

increased during the formation of B2, from 1.77 to 2.06 Å, indicating that the threefold 

coordination of the chromium atom to the surface is still preserved. The coordination of 

another ethylene molecule to B2 is an endergonic step (47 kJ mol-1), therefore the complex 

B3 is thermodynamically unstable. Instead of considering the insertion of ethylene into the 

oxachromacycle, like Peters et al.24 did in the case of surface Cr+2 sites, we propose another 

activation mechanism, in which the active site having a vinyl substituent is formed (B4) by 

the subsequent hydrogen transfer from π-bounded ethylene to the oxachromacycle moiety. 

The formation of surface ethoxy group during this transformation effectively prevents 

proton transfer to the growing chain and the termination step is avoided. On the other hand, 

the overall predicted activation Gibbs energy for this initiation route is very high (198 kJ 

mol-1) suggesting that such mechanism is rather unlikely.5 
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Figure 3.10. Proposed models of isolated surface Cr+3 oxide sites: A (≡SiO)2Cr+3-OH and 

B (≡SiO)3Cr.5 
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Figure 3.11. The Gibbs energy profile (kJ mol-1) at T = 373 K for the initiation stage of 

ethylene polymerization over surface (≡SiO)2Cr+3-OH site (A).5 
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Figure 3.12. The Gibbs energy profile (kJ mol-1) at T = 373 K for the initiation stage of 

ethylene polymerization over surface (≡SiO)3Cr+3 site (B).5 
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3.3 Discussion 

3.3.1 Initial Surface CrOx Sites on SiO2 

The initial surface CrOx sites on the SiO2 support are fully oxidized as indicated by Cr+6 

UV-vis bands at 252, 342, and 460 nm12 and XANES leading edge energy (see Figure 3.1). 

The isolated nature of the initial surface Cr+6Ox sites is demonstrated by in situ Raman 

(absence of ~230 cm-1 band for bridging Cr-O-Cr bands)8 and UV-vis (high Eg value of 

~2.4 eV). There is no experimental evidence supporting the presence of dimeric surface 

Cr2Ox sites. There is only one distinct isolated surface CrOx site on silica in the initial 

oxidized catalyst: dioxo νs((O=)2CrO2) (Raman band at ~986 cm-1). More recent results 

have shown that the “mono-oxo” site is most likely a combination of laser-induced 

reduction and the weak asymmetric stretching mode of the isolated dioxo site. The band at 

~1015 cm-1 arises due to reduction by laser and is an experimental artifact. Most studies in 

the literature determined the presence of one distinct surface CrOx sites for the initial 

oxidized supported CrOx/SiO2 catalyst.2,18,24-32 The band at ~1015 cm-1 only appears when 

a 442 nm laser is used and has been previously assigned both to the νs(O=CrO4) of an 

isolated mono-oxo site8,9 and to the νas((O=)2CrO2) vibration for the isolated dioxo site11. 

DFT studies support both assignments10. The presence of dimeric Cr2Ox sites on SiO2 was 

first proposed by Hogan based on titration of silica surface hydroxyls25. The Cr/OH 

stoichiometry, however, was assumed to be 1:2 for isolated dioxo (O=)2Cr(-O-Si)2 sites 

and 1:1 for dimeric dioxo Si-O-Cr(=O)2-O-(O=)2Cr-O-Si sites. The titration calculations 

assume a molecular structure and anchoring stoichiometry without direct evidence of the 

actual molecular structures and anchoring sites. Thus, titration cannot provide proof of a 

dimeric surface Cr2Ox site on silica.5  
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3.3.2 Catalyst Activation 

The surface Cr+6Ox dioxo site is activated by reduction with ethylene in the present 

study. The in situ UV-vis spectroscopic measurements indicate that only a small number 

of surface Cr+6Ox sites become reduced (see Figure 3.4) while the in situ Raman spectra 

suggest extensive reduction of the surface Cr+6Ox sites (see Figure 3.3). The reason for this 

discrepancy is that the laser is heating the catalyst during the Raman analysis thereby 

inducing the reduction of the surface chromia sites by ethylene as well as the appearance 

of the ~1015 cm-1 artifact band. Consequently, the actual extent of reduction of the surface 

chromia sites is better reflected by the UV-vis spectra that do not stimulate the reduction 

of the surface chromia sites. Nevertheless, the Raman results, as well as the C2H4-TPSR 

spectra (see Figure 3.5), indicate that the dioxo surface CrO4 sites reduce readily during 

ethylene polymerization. The extent of reduction under the present experimental conditions 

(1% C2H4/Ar and 100 °C) is minimal since the UV-vis Cr+6 band is barely reduced and 

indicates that the reaction conditions are representative of the initiation stage of the 

ethylene polymerization reaction. The reduction during ethylene polymerization at 100 °C 

yields two distinct pseudo-octahedral surface Cr+3 sites exhibiting UV-vis at bands at 425 

and 587 nm (see Figure 3.4). The different time-resolved evolution trajectories of the two 

bands confirms that they arise from two independent Cr+3 sites (see Figure 3.8). These two 

reduced Cr+3 sites derive from the surface dioxo CrO4 sites during ethylene polymerization. 

Supported CrOx/SiO2 catalysts activated with CO, and then exposed to ethylene exhibit 

UV-vis bands at 463 and 676 nm, which are different than those found in the present study 

with ethylene activation (425 and 587 nm). This suggests that the activated chromia sites 

may not be the same when initially activated with CO or C2H4
27. Many studies in the 
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literature have used methods that are not molecular in nature (e.g., XANES, EXAFS, XPS, 

etc.); however, methods such as these only yield a signal that is an ensemble average of 

multiple sites if more than one site is present, and cannot provide molecular level 

information. Consequently, surface CrOx molecular structures on silica derived from such 

ensemble averaging spectroscopic techniques are suspect since more than one surface 

chromia site is always present.5 

Formaldehyde (HCHO) has been proposed to be the major oxygenated product during 

catalyst activation of supported CrOx/SiO2 catalysts with ethylene and thought to be 

responsible for the slow catalyst activation because it acts as a poison that bonds to the 

activated chromia sites and blocks ethylene coordination1,3,33,34. The current measurements, 

however, did not detect HCHO as an initial reaction product and only combustion of 

ethylene was initially observed. Hydrolysis of the bridging Cr-O-Si bonds has been 

proposed to be responsible for the agglomeration of surface chromia on silica to form 

crystalline Cr2O3 NPs during ethylene polymerization, but direct evidence was not 

provided1,35,36. The present in situ and operando spectroscopy measurements during 

ethylene polymerization demonstrate that the bridging Cr-O-Si bond is indeed perturbed 

by the reaction environment (see Figure 3.6), but this does not lead to formation of Cr2O3 

NPs that would give a strong Raman band at ~550 cm-1 (see Figure 3.3).5 

3.3.3 Surface Reaction Intermediates and Initiation Mechanism 

Many initiation mechanisms have been proposed for ethylene polymerization by 

supported CrOx/SiO2 catalysts. Most of the studies did not even have IR bands for the 

proposed reaction intermediates, and this has led to much speculation and ambiguity in the 

literature. The current operando IR spectroscopy measurements reveal that both surface 
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Cr-(CH2)2CH=CH2 and Cr-CH=CH2 reaction intermediates are present during the 

initiation stage of the ethylene polymerization reaction (see Figure 3.7 and Figure 3.9) with 

the concentration of the former saturating, and the concentration of the latter linearly 

increasing with reaction time. The surface Cr-vinyl hydride (H-Cr-CH=CH2) and 

Cr-carbene (Cr=CH2) reaction intermediates28 were proposed from in vacuo IR studies of 

a CO-reduced catalyst, but the IR bands for these intermediates were not observed, with 

only the bands for the PE product and adsorbed ethylene detected. The proposed initiation 

mechanism assumed that ethylene dissociation is the first step. It was proposed that surface 

Cr=CH2 carbene is the most likely reaction intermediate since it was detected earlier with 

adsorption of propylene and 1-hexene. This study, however, does not provide any direct 

evidence for any reaction intermediates and was performed under vacuum. A surface Cr-

alkylidene (Cr=CH-CH3) reaction intermediate30,31 has also been proposed from in vacuo 

IR studies of a CO-activated catalyst. In this case, a few bands were seen for the 

intermediate in addition to the bands for the PE product. An IR band at 3700 cm-1 was 

detected from the weak interaction of silica hydroxyl groups with polymer chains, and a 

second band was present at 2750 cm-1 that was assigned to methylene. Like the study 

proposing the Cr-vinyl hydride or Cr-carbene structures, this study was performed under 

vacuum. Furthermore, the IR band at 2750 cm-1 overlaps with many other possible 

structures and typically two bands are seen for a methyl group. The surface metallacycle 

reaction intermediate was previously proposed from in situ IR studies of a CO-reduced 

CrOx/SiO2
15-18,26. When the temperature was increased from ~100 K to room temperature, 

bands for polyethylene were seen. Right before PE is detected, IR bands are observed at 

2915 and 2893 cm-1, and at short polymerization times, bands were present at 2931, 2861, 
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and 2965 cm-1. These five ‘‘anomalous’’ IR bands are overshadowed by the growing 

polyethylene bands at increasing times, and disappear when the cell is evacuated. This 

reversible phenomenon led the authors to conclude it is more likely that the reaction 

intermediate is cyclic rather than containing a methyl group (the ethylene molecules would 

not need to transfer H making it more easily reversible)15-18,26. Two of the IR bands were 

also observed at 2865 and 2960 cm-1 in the present study during ethylene polymerization 

and after flushing with Ar, indicating that they are both from strongly bound surface 

reaction intermediates. In the present study, the band at 2865 cm-1 is assigned to the 

νs(Cr-CH2-) of the surface Cr+3-(CH2)2CH=CH2 or the PE forming close to the Cr metal 

center, while the band at 2960 cm-1 is assigned to the ν(C–H) of the surface Cr+3-CH=CH2 

vinyl reaction intermediate. An organo-Cr+3 reaction intermediate has also been proposed27 

based on previous EXAFS analysis and computational modeling32. In vacuo IR of CO 

adsorption on the CO-reduced catalyst showed the possibility of two Cr+2 structures. Using 

EXAFS analysis and computational modeling, it was also proposed that these two surface 

Cr+2 structures are likely three-coordinated with trigonal pyramidal coordination and four-

coordinated with square pyramidal coordination, with the former more dominant and active 

than the latter. Given the EXAFS is an ensemble averaging spectroscopy, it is not possible 

to deconvolute and curve fit a system simultaneously containing two sites. In the study of 

the redox processes of ethylene polymerization, a general organo-Cr+3 site was proposed 

as the active site, but the primary focus was on the oxidation state. Based on the earlier 

study, it was concluded that the two structures are likely for the CO-reduced catalyst. 

Concerning the structure of the active site proposed, it was only said that it would be in a 

higher coordination since the UV-vis bands shifted to lower wavelengths. Although these 
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studies included discussion of the catalyst structure, only the structure of the CO-reduced 

Cr+2 catalyst was discussed at length, and it was remarked that this structure is affected by 

the bonding with CO. Of the different initiation mechanisms proposed in literature, the IR 

spectra presented in the current study provide direct evidence for a surface Cr+3-CH=CH2 

vinyl reaction intermediate during ethylene polymerization by the supported CrOx/SiO2 

catalyst. Additional insights about formation of the surface Cr-vinyl reaction intermediate 

come from the DFT calculations.5 

3.3.4 DFT 

In the recent proposals of mechanisms for ethylene polymerization, based on 

computational studies22-24,37, there are two main obstacles. The first one is the high 

activation barrier for formation of the active sites. The second one is that the termination 

reaction can be more preferred then the propagation steps, so shorter oligomers of ethylene 

would be expected instead of the polyethylene product. Copéret et al.22,23 and Peters et al.24 

recently studied initiation mechanisms, in which monoalkylchromium(+2) or (+3) sites are 

formed by the proton transfer from ethylene to the surface Si-O-Cr bridging oxygen, 

resulting in a surface Si(OH)Cr-vinyl site. They found that the initiation occurs with a high 

activation barrier, in contrast to the propagation reaction. The termination step, however, 

can compete with the propagation step or can even be more kinetically preferred because 

the proton transfer from Si(OH)Cr-alkyl site to the growing chain can occur more easily 

than the insertion of another ethylene molecule into the Cr-alkyl σ-bond24,38. Based on the 

presently proposed mechanism (Figure 3.11), the predicted overall Gibbs energy barrier 

for the initiation reaction (135 kJ mol-1) is reasonable and it is in a similar range as the 

barriers calculated for the formation of surface Si(OH)Cr+2-vinyl site24 and 
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Si(OH)Cr+3-vinyl site22-24. It should be noted, however, that different models and 

computational methodologies were used in those works. After slow initiation, according to 

the proposed mechanism (Figure 3.11), further chain growing reaction is expected to easily 

occur via the standard Cossee-type mechanism, i.e., insertion of ethylene into the Cr-Cr 

bond24. What is worth noting, the advantage of our new proposal of the initiation 

mechanism (Figure 3.11) is that the too fast termination reaction is no longer a drawback. 

After water desorption, there is no reactive hydrogen near the active Cr site, hence, the 

premature termination step will not take place and the formation of oligomers, instead of 

the polyethylene product, should not be facilitated.5 

Gierada et al. later expanded on the preliminary results involving the initiation 

mechanism proposed in Figure 3.11 for a Cr+3-OH/SiO2, including propagation and 

termination mechanisms as well39. For this mechanism, a Cr+3-CH=CH2 vinyl site would 

be formed through hydrogen transfer from ethylene to the hydroxy ligand, forming a 

coordinated water molecule in the process. Once the water molecule is released, there is a 

vacancy, allowing coordination of other ethylene monomers. The water that desorbed can 

either hydrate another surface Cr+3 site to make Cr+3-OH/SiO2 site, which would increase 

the number of hydroxylated sites, so the initial water amount would be low. Otherwise, if 

the water vapor pressure is too high, the catalyst may deactivate due to the hydrolysis of 

Cr-O-Si bonds, which has been shown experimentally40. Assuming low water vapor 

pressure, the most likely propagation mechanism occurs via insertion of ethylene 

molecules into the Cr-C bond. The first insertion of an ethylene molecule into the 

Cr+3-CH=CH2 initiation site occurs with a low activation barrier of 34 kJ/mol, the product 

of which can coordinate another ethylene molecule with an activation barrier of 78 kJ/mol 
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and undergo further propagation to a Cr+3 hexenyl complex. Alternative to the propagation 

step, the termination reactions were proposed to occur through either β-H transfer from the 

ethylene monomer to the butenyl ligand (ΔG = 118 kJ/mol) or β-H elimination giving a 

Cr+3 hydride intermediate with a butadiene ligand (ΔG = 117 kJ/mol). Both termination 

pathways were less favorable compared to propagation.39 

3.3.5 Structure-Activity Relationships 

Prior to ethylene polymerization, the oxidized supported CrOx/SiO2 catalyst consists of 

one distinct isolated surface chromia site: dioxo CrO4. The dioxo surface CrO4 site is 

activated by ethylene by reducing to two surface Cr+3 sites: Cr-CH=CH2 and Cr-

(CH2)2CH=CH2 reaction intermediates. The time-resolved evolution of the surface Cr+3-

CH=CH2 reaction intermediate appears to track the formation of the PE product, which 

implicates it as the active reaction intermediate. The time-resolved evolution of the surface 

Cr+3-(CH2)2CH=CH2 reaction intermediate seems to saturate in the early stages of the 

ethylene polymerization reaction possibly implicating it as a spectator species.5 

3.4 Conclusions 

This is the first study to monitor the evolution of the supported CrOx/SiO2 catalyst 

during activation with ethylene and the ethylene polymerization reaction. The initial 

oxidized supported CrOx/SiO2 catalyst consists of one distinct and isolated surface chromia 

species in a Cr+6 oxidation state – the tetrahedrally-coordinated dioxo (O=)2CrO2 site. The 

reduction step of Cr+6 → Cr+4 is ~400 times easier than the reduction from Cr+4 → Cr+3. 

Two distinct surface Cr+3 reaction intermediates were detected upon activation: 

Cr+3-(CH2)2CH=CH2 (PE oligomers forming nearer to the metal center) and Cr+3-CH=CH2. 

The concentration of the surface Cr+3-(CH2)2CH=CH2 structure saturates in the early stages 
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of ethylene polymerization and may represent a spectator intermediate. The evolution of 

the surface Cr+3-CH=CH2 reaction intermediate tracks the formation of the PE product after 

the early induction period, which implicates it as the active reaction intermediate during 

ethylene polymerization by supported CrOx/SiO2 catalysts. The computational results 

indicate the possibility of formation of Cr+3 active sites on SiO2 for ethylene polymerization 

and agree with the experimental findings presented in this work.5 

Acknowledgements 

A. Chakrabarti and I.E. Wachs would like to acknowledge Professor A.I. Frenkel and 

Y. Li (Department of Physics, Yeshiva University) for assistance with the XAS collection 

and analysis. They would also like to acknowledge Dr. Christopher Keturakis for the use 

of his XAS data of the reference compounds. The computational research was supported 

in part by PL-Grid Infrastructure. Other computing resources from Academic Computer 

Centre CYFRONET AGH (grants MNiSW/IBM_BC_HS21/PK/003/2013 and 

MNiSW/IBM_BC_HS21/PK/037/2014) are acknowledged. A. Chakrabarti and I.E. Wachs 

also gratefully acknowledge Dr. Anatoly Frenkel and Dr. Si Luo and Dr. Zili Wu (Center 

for Nanophase Materials Science, Oak Ridge National Laboratory) for collection of the 

Raman spectra using a moving stage at Oak Ridge National Laboratory. 



104 

 

Chapter 3 References  

1. McDaniel, M. P. A Review of the Phillips Supported Chromium Catalyst and Its 

Commercial Use for Ethylene Polymerization. Advances in Catalysis 2010, 53, 123-

606.  

2. Hogan, J. P. Catalysis of the Phillips Petroleum Company Polyethylene Process. In 

Applied Industrial Catalysis; Leach, B. E., Ed.; Academic Press, Inc.: New York, 

1983; Vol. 1, pp 149-176.  

3. Groppo, E.; Lamberti, C.; Bordiga, S.; Spoto, G.; Zecchina, Z. The Structure of Active 

Centers and the Ethylene Polymerization Mechanism on the Cr/SiO2 Catalyst: A 

Frontier for the Characterization Methods. Chem. Rev. 2005, 105, 115-183.  

4. Hogan, J. P.; Banks, R. L. Polymers and Production Thereof. 2825721. March 4, 1958.  

5. Chakrabarti, A.; Gierada, M.; Handzlik, J.; Wachs, I. E. Operando Molecular 

Spectroscopy During Ethylene Polymerization by Supported CrOx/SiO2 Catalysts: 

Active Sites, Reaction Intermediates, and Structure-Activity Relationship. Top. Catal. 

2016, 59, 725-739.  

6. Weckhuysen, B. M.; Schoonheydt, R. A.; Jehng, J. M.; Wachs, I. E.; Cho, S. J.; Ryoo, 

R.; Kljlstra, S.; Poels, E. Combined DRS-RS-EXAFS-XANES-TPR Study of 

Supported Chromium Catalysts. J. Chem. Soc. Far. Trans. 1995, 91, 3245-3253.  

7. Groppo, E.; Prestipino, C.; Cesano, F.; Bonino, F.; Bordiga, S.; Lamberti, C.; Thune, P. 

C.; Niemantsverdriet, J. W.; Zecchina, A. In situ, Cr K-edge XAS study on the Phillips 

catalyst: activation and ethylene polymerization. J. Catal. 2005, 230, 98-108.  



105 

 

8. Lee, E. L.; Wachs, I. E. In Situ Spectroscopic Investigation of the Molecular and 

Electronic Structures of SiO2 Supported Surface Metal Oxides. J. Phys. Chem. C 2007, 

111, 14410-14425.  

9. Lee, E. L.; Wachs, I. E. J. Phys. Chem. C 2008, 112, 6487-6498.  

10. Handzlik, J.; Grybos, R.; Tielens, F. Structure of Monomeric Chromium(VI) Oxide 

Species Supported on Silica: Periodic and Cluster DFT Studies. J. Phys. Chem. C 

2013, 117, 8138-8149.  

11. Groppo, E.; Damin, A.; Bonino, F.; Zecchina, A.; Bordiga, S.; Lamberti, C. New 

Strategies in the Raman Study of the Cr/SiO2 Phillips Catalyst: Observation of 

Molecular Adducts on Cr(II) Sites. Chem. Mater. 2005, 17, 2019-2027.  

12. Weckhuysen, B. M.; Wachs, I. E.; Schoonheydt, R. A. Surface Chemistry and 

Spectroscopy of Chromium in Inorganic Oxides. Chem. Commun. 1996, 96, 3327-

3349.  

13. Redhead, P. A. Thermal Desorption of Gases. Vacuum 1962, 12, 203-211.  

14. National Institute of Standards and Technology NIST Chemistry WebBook. 

http://webbook.nist.gov/chemistry/.  

15. Groppo, E.; Lamberti, C.; Bordiga, S.; Spoto, G.; Damin, A.; Zecchina, A. FTIR 

Investigation of the H2, N2, and C2H4 Molecular Complexes Formed on the Cr(II) Sites 

in the Phillips Catalyst: a Preliminary Step in the understanding of a Complex System. 

J. Phys. Chem. B 2005, 109, 15024-15031.  

16. Groppo, E.; Lamberti, C.; Bordiga, S.; Spoto, G.; Zecchina, A. In situ FTIR 

spectroscopy of key intermediates in the first stages of ethylene polymerizaton on the 



106 

 

Cr/SiO2 Phillips catalyst: Solving the puzzle of the initiation mechanism? J. Catal. 

2006, 240, 172-181.  

17. Groppo, E.; Estephane, J.; Lamberti, C.; Spoto, G.; Zecchina, A. Ethylene, propylene 

and ethylene oxide in situ polymerization on the Cr(II)/SiO2 system: A temperature- 

and pressure-dependent investigation. Catal. Today 2007, 126, 228-234.  

18. Barzan, C.; Groppo, E.; Quadrelli, E. A.; Monteil, V.; Bordiga, S. Ethylene 

polymerization on a SiH4-modified Phillips catalyst: detection of in situ produced a-

olefins by operando FT-IR spectroscopy. Phys. Chem. Chem. Phys. 2012, 14, 2239-

2245.  

19. Vuurman, M.; Wachs, I. E.; Stufkens, D. J.; Oskam, A. Characterization of chromium 

oxide supported on Al2O3, ZrO2, TiO2, and SiO2 under dehydrated conditions. J. Mol. 

Catal. 1993, 80, 209-227.  

20. Davydov, A. Molecular Spectroscopy of Oxide Catalyst Surfaces; John Wiley & Sons 

Ltd.: West Sussex, England, 2003.  

21. Socrates, G. Infrared and Raman Characteristic Group Frequencies: Tables and 

Charts; John Wiley & Sons Ltd: West Sussex, England, 2001.  

22. Delley, M. F.; Nunez-Zarur, F.; Conley, M. P.; Comas-Vives, A.; Siddiqi, G.; Norsic, 

S.; Monteil, V.; Safonova, O. V.; Coperet, C. Proton transfers are key elementary steps 

in ethylene polymerization on isolated chromium(III) silicates. PNAS 2014, 111, 

11624-11629.  

23. Conley, M. P.; Delley, M. F.; Núñez-Zarur, F.; Comas-Vives, A.; Copéret, C. Inorg. 

Chem. 2015, 54, 5065-5078.  



107 

 

24. Fong, A.; Yuan, Y.; Ivry, S. L.; Scott, S. L.; Peters, B. Computational Kinetic 

Discrimination of Ethylene Polymerization Mechanisms for the Phillips (Cr/SiO2) 

Catalyst. ACS Catal. 2015, 5, 3360-3374.  

25. Hogan, J. P. Ethylene Polymerization Catalysis over Chromium Oxide. J. Polym. Sci. 

, Part A: Polym. Chem. 1970, 8, 2637-2652.  

26. Bordiga, S.; Bertarione, S.; Damin, A.; Prestipino, C.; Spoto, G.; Lamberti, C.; 

Zecchina, A. On the first stages of the ethylene polymerization on Cr2+/SiO2 Phillips 

catalyst: time and temperature resolved IR studies. J. Mol. Catal. A: Chem. 2003, 204-

205, 527-534.  

27. Brown, C.; Krzystek, J.; Achey, R.; Lita, A.; Fu, R.; Meulenberg, R. W.; Polinski, M.; 

Peek, N.; Wang, Y.; van de Burgt, L. J.; Profeta, J., S.; Stiegman, A. E.; Scott, S. L. 

Mechanism of Initiation in the Phillips Ethylene Polymerization Catalyst: Redox 

Processes Leading to the Active Site. ACS Catal. 2015, 5, 5574-5583.  

28. Zielinski, P.; Dalla Lana, I. G. An FTIR Spectroscopic View of the Initiation of 

Ethylene Polymerization on Cr/SiO2 Catalyst. J. Catal. 1992, 137, 368-376.  

29. Kantcheva, M.; Dalla Lana, I. G.; Szymura, J. A. FTIR Spectroscopic Investigation of 

the Initiation of Ethylene Polymerization on Cr/Silica. J. Catal. 1995, 154, 329-334.  

30. Ghiotti, G.; Garrone, E.; Zecchina, A. IR Investigation of Polymerization Centres of 

the Phillips Catalyst. J. Mol. Catal. 1988, 46, 61-77.  

31. Ghiotti, G.; Garrone, E.; Coluccia, S.; Morterra, C.; Zecchina, A. Evidence for 

Alkylidenic Configuration of Polymethylene Chains on the Phillips Catalyst. J. C. S. 

Chem. Comm. 1979, 1032-1033.  



108 

 

32. Zhong, L.; Lee, M. Y.; Liu, Z.; Wanglee, Y. J.; Liu, B.; Scott, S. L. Spectroscopic and 

structural characterization of Cr(II)/SiO2 active site precursors in model Phillips 

polymerization catalysts. J. Catal. 2012, 293, 1-12.  

33. Baker, L. M.; Carrick, W. L. Oxidation of Olefins by Supported Chromium Oxide. J. 

Org. Chem. 1968, 33, 616-618.  

34. Liu, B.; Nakatani, H.; Terano, M. New aspects of the induction period of ethene 

polymerization using Phillips CrOx/SiO2 catalyst probed by XPS, TPD and EPMA. J. 

Mol. Catal. A: Chem. 2002, 184, 387-398.  

35. McDaniel, M. P.; Collins, K. S.; Benham, E. A.; Cymbaluk, T. H. The activation of 

Phillips Cr/silica catalysts V. Stability of Cr(VI). Appl. Catal. A: Gen. 2008, 335, 252-

261.  

36. McDaniel, M. P.; Collins, K. S.; Benham, E. A.; Cymbaluk, T. H. The activation of 

Phillips Cr/silica catalysts VI. Influence of hold time. Appl. Catal. A: Gen. 2008, 335, 

180-186.  

37. Zhong, L.; Liu, Z.; Cheng, R.; Tang, S.; Qiu, P.; He, X.; Terano, M.; Liu, B. 

ChemCatChem 2012, 4, 872-881.  

38. Peters, B.; Scott, S. L.; Fong, A.; Wang, Y.; Stiegman, A. E. PNAS 2015, 112, E4160-

E4161.  

39. Gierada, M.; Handzlik, J. Active sites formation and their transformations during 

ethylene polymerization by the Phillips CrOx/SiO2 catalyst. J. Catal. 2017, 352, 314-

328.  

40. Gierada, M.; Michorczyk, P.; Tielens, F.; Handzlik, J. Reduction of chromia-silica 

catalysts: A molecular picture. J. Catal. 2016, 340, 122-135.  



109 

 

 

 

 

 

 

 

Chapter 3 Supporting Information



110 

 

 

Figure S 3.1. In situ k2-weighted, phase uncorrected Fourier Transform (FT) EXAFS 

spectrum of the dehydrated supported 3% CrOx/SiO2 catalyst taken at 100 °C in flowing 

He. The absence of a peak at ~3.1 Å for Cr-Cr distance is consistent with the presence of 

isolated chromia sites on the silica support. 
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Figure S 3.2. In situ Raman spectra of the supported 3% CrOx/SiO2 catalyst taken in 

flowing 5% O2/He at 100°C. Spectra were taken using a 442 nm wavelength laser (20% 

laser power) and a moving stage. 
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Figure S 3.3. Time-resolved in situ UV-vis difference spectra showing reduction of the 

Cr+6 LMCT bands (consumed bands) of the supported 3% CrOx/SiO2 in flowing 1% 

C2H4/Ar at 100 °C.  
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Chapter 4  | Operando Ethylene Polymerization by Supported CrOx/SiO2 

Catalysts: Role of Promoters 

Abstract 

Time-resolved operando molecular spectroscopy was applied during ethylene 

polymerization by supported and promoted CrOx/MOx/SiO2 catalysts to investigate the role 

of promoter oxides (AlOx, TiOx, ZrOx). A combination of spectroscopic techniques 

(Raman, UV-vis, XAS, DRIFTS, and TPSR) during ethylene polymerization allows for 

the first time to monitor the molecular events taking place during activation of supported 

CrOx/MOx/SiO2 catalysts by ethylene and establishment of the role of promoters for this 

reaction. During reaction, the initial surface Cr+6Ox sites reduce to Cr+3 sites (AlOx and 

ZrOx) or Cr+3 and Cr+2 (TiOx) to form Cr-CH=CH2 (AlOx and ZrOx) or Cr-CH=CH2 and 

Cr-(CH2)2CH=CH2 (TiOx) reaction intermediates. While AlOx was determined to not 

promote the ethylene polymerization reaction, the role of the ZrOx promoter oxide is to 

have a higher TOF and the role of the TiOx promoter oxide is to create a higher number of 

active sites.  

4.1 Introduction 

In an effort to improve the catalytic activity, multiple promoters have been examined 

over the years, most notably TiOx and AlOx, and ZrOx has also been found to exhibit a 

similar effect.1 As demonstrated in the literature review, the limitation of many of the 

studies is that they were not performed on dehydrated initially oxidized catalysts, activated 

catalysts or during the ethylene polymerization reaction. Furthermore, in most cases only 

indirect information was provided about the catalytic active chromia sites (e.g., NO 

chemisorption, 1H NMR, or H2-TPR).  
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Here, a modern approach has been applied using a combination of techniques that can 

directly monitor the catalytic active chromia sites (before, during ethylene activation, and 

during ethylene polymerization), surface reaction intermediates and polyethylene products 

to study silica-supported chromia catalysts promoted with TiOx, ZrOx, or AlOx, and this 

has allowed for development of a molecular level model of ethylene polymerization by 

oxide promoted silica-supported chromia catalysts. 

4.2 Results 

4.2.1 In Situ Raman Spectroscopy of Oxidized Supported CrOx/MOx/SiO2 Catalysts 

The normalized silica-subtracted in situ dehydrated Raman spectra of the supported 

CrOx/MOx/SiO2 catalysts are presented in Figure 4.1. The spectrum of the silica support 

was subtracted from each spectrum of the catalyst during reaction to highlight the changing 

chromia surface structures. The symmetric and asymmetric vibrations for the surface dioxo 

νs((O=)2CrO2) site are observed at ~992 cm-1 and ~1015 cm-1, respectively.2 Some of the 

~1015 cm-1 band is due to an experimental artifact caused from laser-induced reduction of 

the surface dioxo site (see Figure S 4.1). This effect is greater for the promoted catalysts as 

compared to the standard CrOx/SiO2 catalyst since the addition of promoter oxides has been 

shown to decrease the stability of the surface chromia sites.3 Surface modification causes 

the appearance of broad bands at ~860-900 cm-1 assigned to the νs(Cr-O-M) bridging bond 

vibrations4, which demonstrates the preferential bonding of the chromia to the dispersed 

promoter metal rather than the inert SiO2 surface. The presence of the Cr-O-M bridging 

bonds does not exclude the possibility of Cr-O-Si bonds also being present, suggesting the 

presence of at least two different sites present on these promoted catalysts.3,5 The 

corresponding bending mode for CrOx δ(O=Cr=O) appears at ~400 cm-1.  
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The absence of Raman bands in the ~200-300 cm-1 region demonstrates that bridging 

Cr-O-Cr bonds are not present, indicating that the surface CrOx sites are isolated on the 

silica support.4,6,7 Additionally, the absence of a band at ~550 cm-1 for Cr2O3 crystalline 

nanoparticles (NPs) indicates that the initial oxidized catalysts consist only of dispersed 

CrOx surface sites.  
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Figure 4.1. In situ Raman spectra of the initial oxidized supported CrOx/MOx/SiO2 

catalysts (3% CrOx/SiO2, 3% CrOx/5% TiOx/SiO2, 3% CrOx/5% ZrOx/SiO2, and 3% 

CrOx/5% AlOx/SiO2) taken in flowing 5% O2/He at 100 °C. The spectra were taken with a 

442 nm wavelength laser (20% laser power) and a moving stage.  
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4.2.2 In situ Raman Spectroscopy During Ethylene Polymerization 

Figure S 4.2 reports the in situ Raman spectra taken during ethylene polymerization of 

the supported CrOx/MOx/SiO2 catalysts. Figure 4.2 presents the in situ Raman spectra taken 

in flowing He after ethylene polymerization of the Zr- and Al-promoted catalysts. To 

minimize laser heating, a D2 filter (1% laser power) was used during spectra collection in 

flowing 1% C2H4/Ar. The spectrum of the dehydrated silica support was subtracted from 

each Raman spectrum to emphasize observation of the chromia sites. During the ~3 h of 

ethylene polymerization, the intensities of the Raman bands from the surface dioxo CrO4 

site (~992 cm-1) decreases. This indicates that the dioxo surface chromia sites are easily 

activated at 100°C with ethylene. After the reaction, the spectra in Figure 4.2 suggest that 

the dioxo CrO4 sites (Raman bands at ~977-980 cm-1) were perturbed both by ethylene at 

100 °C and the strong laser, since the band at ~1015 cm-1 remains and is stronger than 

before reaction. The bands at ~860-900 cm-1 for the bridging Cr-O-M sites are unperturbed, 

indicating that they do not participate in the ethylene polymerization reaction. These in situ 

Raman spectroscopy results also demonstrate that adding the promoter oxides increases the 

ease of ethylene reduction and decreases the stability of the CrOx sites since the bands for 

the dioxo site and bending mode vibration decrease more quickly compared to the standard 

3% CrOx/SiO2 catalyst previously studied.3,7 
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Figure 4.2. In situ Raman spectra taken after ~3h of ethylene polymerization conditions in 

flowing He at 100 °C. Spectra were taken with a 442 nm laser without a filter. 
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4.2.3 In situ UV-vis DRS During Ethylene Polymerization 

The in situ dehydrated UV-vis DRS results of the initial oxidized CrOx/MOx/SiO2 

catalysts are presented in Figure 4.3. In the fully oxidized states, the in situ dehydrated UV-

vis spectra of the Al- and Zr-promoted catalysts exhibit three bands at ~255, ~356-360, and 

~460 nm characteristic of the O → Cr+6 ligand-to-metal charge transfer (LMCT).7-10 The 

in situ dehydrated UV-vis spectrum (100 °C, UHP He) of the 5% TiOx/SiO2 support has a 

single absorbance at ~246 nm assigned to the O → Ti+4 LMCT10, while the spectra of the 

5% ZrOx/SiO2 and 5% AlOx/SiO2 supports do not contain any UV-vis absorbances. Thus, 

the spectrum of the 5% TiOx/SiO2 was subtracted from the spectra of the Ti-promoted 

catalyst to emphasize the UV-vis absorbance bands deriving from the CrOx sites on silica. 

Before subtraction, the Ti-promoted catalyst exhibits three LMCT bands at ~255, ~350, 

and ~460 nm, while after subtraction of the in situ dehydrated UV-vis spectrum of the 

support, the bands are at ~270, ~350, and ~460 nm. Since the subtraction highlights the 

absorbance bands due to the CrOx, the bands at ~270, ~350, and ~460 nm were assigned 

to the O → Cr+6 LMCT. The location of the first LMCT band shifts due to the overlap of 

the O → Ti+4 and O → Cr+6 LMCT.7-10 The surface CrOx edge energy (Eg) values of the 

CrOx/MOx/SiO2 catalysts vary between ~2.4-2.5 eV (see Table 4.1), corresponding to 

isolated surface chromia sites.4,6,7,9 

Compared to the standard CrOx/SiO2 catalyst, the position of the second LMCT band 

(~350-356 nm) is red-shifted, while the positions of the bands at ~255 and ~460 nm do not 

shift. The shift occurs because of the replacement of the Si atom by the less electronegative 

Zr, Ti, and Al atoms. The decreased electronegativity pulls the electron cloud closer to the 

O atom nearest to the Cr atom to occupy its energy levels, thereby narrowing the O → Cr+6 
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LMCT energy gap and decreasing the energy required for the CT to occur.10 Only the 

second LMCT band shifts (~350-356 nm), suggesting that it may arise from the ligands. It 

would be expected that the band would shift to increasingly lower energies with decreasing 

electronegativity of the substituted atom. However, this relation is not seen in these studies, 

but this may just be due to the broad nature of UV-vis DRS bands.  
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Figure 4.3. Time-resolved in situ dehydrated UV-vis spectra taken in flowing UHP He at 

T=100 °C of promoted and supported CrOx/SiO2 catalysts before the ethylene 

polymerization reaction (3% CrOx/5% AlOx/SiO2, 3% CrOx/5% TiOx/SiO2 with 5% 

TiOx/SiO2 subtracted, and 3% CrOx/5% ZrOx/SiO2).  
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Figure 4.4 reports the time-resolved difference spectra of the in situ UV-vis DRS 

spectra taken during ethylene polymerization of the supported CrOx/MOx/SiO2 catalysts. 

The difference curves were obtained by subtracting the UV-vis spectrum of the 

corresponding initial dehydrated catalyst from each UV-vis spectrum taken during ethylene 

polymerization, allowing for better observation of the d-d transition bands. The spectra are 

displayed with units of absorbance because the Kubelka-Munk transformation emphasizes 

the LMCT bands, and the d-d transitions are most visible using absorbance. During the 

~3 h of ethylene polymerization, the intensities of the LMCT bands decrease while 

multiple d-d transition bands appear ranging from ~428-441 nm and ~576-720 nm 

depending on the promoter metal oxide (see Table 4.1) and increase monotonically in 

intensity with time. The Zr-promoted catalyst exhibits a single increasing absorbance band 

at ~576 nm, while the Al-promoted catalyst exhibits two increasing absorbance bands at 

~428 and ~618 nm. These three bands are assigned to Cr+3
Oh d-d transitions.7-9 The band 

maximum for Cr+2
Oh would be expected at ~800 nm, and the absorbance for Cr+2

Th would 

be expected at ~1000 nm.8,11,12 

Both the Zr- and Al-promoted catalysts also exhibit isosbestic points at ~500 nm. 

Isosbestic points most usually appear in reactions with two absorbing species, such as Cr+6 

and Cr+3,13 and this suggests that there are no Cr+2 sites present on the catalyst. However, 

the Ti-promoted catalyst exhibits one increasing absorbance band at ~441 nm assigned to 

a Cr+3
Oh d-d transition, and another absorbance band at ~720 nm. The band at ~720 nm has 

been assigned to a combination of Cr+2
Oh and Cr+3

Oh.
8,11,12 The UV-vis spectra during 

ethylene polymerization of the Ti-promoted catalyst lacks the clean isosbestic point seen 



123 

 

with the Zr- and Al-promoted catalysts, which would be more expected to occur with a 

higher number of different species present on the surface of the catalyst.13  

The band at ~720 nm observed in these studies has also been assigned to a combination 

of Cr+2 and Cr+3 in other recent studies.12 To determine the relative amount of Cr+3
Oh and 

Cr+2
Oh, the UV-vis band at ~720 nm was deconvoluted. Only the spectra taken during the 

first two hours could be deconvoluted (see Figure 4.5) since the results for the last hour 

failed. 
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Figure 4.4. Time-resolved in situ UV-vis absorbance difference spectra of catalysts: (A) 

3% CrOx/5% AlOx/SiO2, (B) 3% CrOx/5% TiOx/SiO2, and (C) 3% CrOx/5% ZrOx/SiO2 

during ethylene polymerization at 100 °C. 
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Figure 4.5. Evolution of areas of bands at ~686 nm and ~783 nm resulting from 

deconvolution of ~720 nm UV-vis band observed during ethylene polymerization of 3% 

CrOx/5% TiOx/SiO2. 
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During the first ~2 h of ethylene polymerization, the band at ~720 nm could be 

deconvoluted into two bands, which were observed to blue-shift as time progressed. In the 

first ~20 min, the lower wavelength deconvoluted peak (Peak I) shifted from ~686-667 nm, 

while the higher wavelength deconvoluted peak (Peak II) shifted from ~783-765 nm. By 

the end of ~2 h, Peak I maximum is at ~645 nm, while the Peak II maximum is at ~757 

nm. The location of Peak I is characteristic of Cr+3
Oh, while the location of Peak II is closer 

to the characteristic absorbance of Cr+2
Oh. There is thus a combination of Cr+2

Oh and Cr+3
Oh 

present on the surface of the Ti-promoted catalyst, and the presence of more than two 

surface species (Cr+6, Cr+3
Oh, and Cr+2

Th) explains the lack of an isosbestic point in the 

difference curves of the Ti-promoted catalyst. Additionally, the blue-shifting to lower 

wavelength of the bands, particularly of Peak II, indicates that the Cr+2
Oh sites are re-

oxidizing to Cr+3
Oh.  

The UV-vis spectra during ethylene polymerization of the Zr- and Al-promoted 

catalysts were also deconvoluted into two bands. For the Zr-promoted catalyst, the location 

of Peak IZr in the first ~20 min shifted from ~671-565 nm, while the position of Peak IIZr 

shifted from ~765-694 nm, and at the end of ~2 h, the positions were ~555 and ~666 nm, 

respectively. In the case of the Al-promoted catalyst, Peak IAl shifted from ~594-566 nm, 

while Peak IIAl shifted from ~723-675 nm, and at the end of ~2 h, the positions were ~568 

and ~674 nm, respectively. However, these band positions are characteristic of the Cr+3 

Cr2O3 reference standard9, indicating that these catalysts do not have any Cr+2 surface sites.  
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Table 4.1. Summary of in situ UV-vis Studies During Ethylene Polymerization  

MOx Eg (eV) CT band 

location (nm) 

d-d transition band location (nm) 

Noneb 2.4 252, 342, 460  425, 587 

ZrOx  2.5 255, 356, 460 576 

TiOx 2.4 255, 348, 460 441, 720 (686, 783) 

AlOx 2.4 255, 354, 460 428, 618 
b The standard un-promoted 3% CrOx/SiO2 catalyst has been previously studied.7 
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4.2.4 C2H4-TPSR of Supported CrOx/MOx/SiO2 Catalysts 

The CO2/C2H4-TPSR results of the supported CrOx/MOx/SiO2 catalysts are presented 

in Figure 4.6. The only gaseous product detected was CO2, the formation of which 

demonstrates that ethylene is reducing the initial Cr+6 surface sites to lower chromia 

oxidation states. The two CO2 peaks at ~286-308 °C and ~428-494 °C represent a two-step 

reduction process for the chromia sites. For all the catalysts, the first reduction step is 

Cr+6 → Cr+4. The in situ UV-vis results (see Figure 4.4 and Figure 4.5) suggest that the 

second step differs depending on the promoter oxide. For the Zr- and Al-promoted 

catalysts, the reduction step is Cr+4 → Cr+3, but for the Ti-promoted catalyst, the co-

existence of surface Cr+2 with Cr+2 suggests that Tp2 is due to Cr+4 → Cr+2/+3.  

Table 4.2 compares the C2H4-TPSR results and presents the results of calculation of 

the ethylene reduction kinetics. From deconvolution of the TPSR results, it appears that 

the Cr+6/+4:Cr+4/+3/+2 ratio is only very slightly perturbed. From the ratio of 

CO2(Tp1)/CO2(Tp2), ~60-65% of the reduced sites are present as Cr+4 and ~35-40% are in 

a Cr+3 or Cr+2 state. Calculation of the reduction kinetics by applying the Redhead equation 

with first-order kinetics14 shows that the ratios of k6/4/k4/3/2 are high (see Table 4.2) and 

suggests that reduction of Cr+6 → Cr+4 with ethylene is substantially more facile than the 

reduction of Cr+4 → Cr+3/+2.  
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Figure 4.6. The CO2/C2H4-TPSR spectrum of the supported CrOx/MOx/SiO2 catalysts (A) 

3% CrOx/5% AlOx/SiO2, (B) 3% CrOx/5% TiOx/SiO2, (C) 3% CrOx/5% ZrOx/SiO2. The 

temperature was ramped from 100 to 800 °C with a heating rate of 10 °C/min in flowing 

1% C2H4/Ar. The reactor outlet was connected to an online MS to monitor the gaseous 

products.  
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Table 4.2. Summary of TPSR Spectroscopy Studies 

MOx Tp1 (°C) Tp2 (°C) Ratioa k6/4 (s-1)c k4/3 or 2 (s-1)c, d k6/4/k4/3 or 2
c, d 

Noneb 280 410 1.7 6.1x10-10 2.5x10-15 2x105 

ZrOx 300 494 1.8 9x10-11 1x10-17 7x106 

TiOx 280 410 1.5 6.1x10-10 2.5x10-15 2x105 

AlOx 290 475 1.8 6.1x10-10 5x10-18 1x108 
aThe ratios of the reduction peaks were calculated by baseline correction and deconvolution 

with Gaussian peak fitting of the CO2 spectrum. 
b The standard 3% CrOx/SiO2 catalyst has been previously studied in Reference 7. 
c The krds constants were calculated using the Redhead equation for first-order kinetics at a 

reference temperature of 100 °C.14 
d The 3% CrOx/5% TiOx/SiO2 catalyst reduces to Cr+3

 and Cr+2  

 

 



131 

 

4.2.5 In situ and Operando DRIFTS During Ethylene Polymerization 

The time-resolved in situ DRIFTS spectra taken of the supported CrOx/MOx/SiO2 

catalysts during ethylene polymerization are shown in Figure S 4.3. DRIFTS difference 

spectra were used to emphasize the surface intermediates and products that appear (positive 

DRIFTS bands) or are consumed (negative DRIFTS bands) during the reaction. The 

difference spectra were obtained by subtracting the IR spectrum of the initial dehydrated 

catalyst from each IR spectrum taken during ethylene polymerization, after normalization 

using the SiO2 support vibration at ~1350 cm-1. The DRIFTS spectra of the supported 

CrOx/MOx/SiO2 catalysts are similar to those of the standard CrOx/SiO2 catalyst. Gas phase 

ethylene gives rise to bands at ~950, ~1440, ~1900, and ~2950-3200 cm-1, and the gas 

phase CO2 vibration is at ~2350 cm-1 in Figure S 4.3.7,15 The band at ~3745 cm-1, well-

known and characteristic of isolated silanol groups,7,16-20 decreases with reaction time since 

the isolated silanols interact with the polyethylene chains forming.10 The bands at ~3400-

3548 cm-1 and ~3700 cm-1 increase and broaden with reaction time due to the silanols 

interacting with the active site via hydrogen bonding and the PE chain, respectively.7,19,21  

In the bending region, the DRIFTS bands at ~805 and ~985 cm-1 arise due to the 

δ(=CH2) modes of the PE chain, while the band at ~1574-1600 cm-1 for the νas(C=C) of the 

PE chain increases with reaction time.7,21,22 The band at ~906 cm-1 is assigned to the Cr-O-

Si bridging bond and decreases with reaction time, indicating its interaction with the 

surface intermediates and PE chain.7 The appearance of the Cr-O-Si bond also 

demonstrates that both Cr-O-M-O-Si bands (see Figure 4.1) and Cr-O-Si bonds are present 

in the supported CrOx/MOx/SiO2 catalysts.  
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The areas in Figure S 4.3 labeled as “Zoomed Region” are replotted in Figure 4.7 to 

allow for closer observation of the significant DRIFTS bands that increase with reaction 

time and are assigned to surface intermediates, PE product, and gas phase ethylene 

vibrations (~2950-3200 cm-1).7,15 The bands at ~2895, 2889, and 2906 cm-1 are assigned to 

the νs(-CH2-CH2) vibration of the bulk PE chain since they would be expected between 

2850 and 3000 cm-1. The band at ~2840 cm-1 seen for the Ti-promoted catalyst in Figure 

4.7 B is similar to the band observed in the case of the standard CrOx/SiO2 catalyst at 

~2865 cm-1 and assigned to Cr+3-(CH2)2CH=CH2. However, in the case of the Ti-promoted 

catalyst, its formation does not begin until ~45 min into the reaction. In one study of 

ethylene polymerization at 95 °C with a Cr/silica-titania catalyst, the reaction was stopped 

various times to collect samples of PE produced over different lengths of time.1 It was 

determined that early samples yielded PE with lower molecular weight than that of the 

standard CrOx/SiO2 catalyst that is known to produce only high-density PE. At later times, 

the PE samples had a higher molecular weight, and the average molecular weight increased 

over time. This suggested that, compared to the standard CrOx/SiO2 catalyst that is known 

to produce only high molecular weight PE, the addition of titania caused the development 

of new sites responsible for the lower molecular weight polymer. It also suggested that 

these Ti-associated sites are more active since the lower molecular weight polymer was 

seen earlier in the polymerization reaction. Thus, this band is assigned to the νs(Cr-CH2) of 

the Cr+3-(CH2)2CH=CH2 site of the PE forming with higher molecular weight at the Cr-O-

Si sites not associated with Ti. The slight red shift of ~25 cm-1 from 2865 cm-1 of the 

standard CrOx/SiO2 catalyst7 may be due interaction with the nearby Ti-associated 

sites.10,21,22  
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To detect any additional bands that may have been obscured by the gas phase ethylene 

reactant, UHP Ar was flushed for ~45 min. Like the standard catalyst, after the Ar flush, 

new IR bands are observed for the Zr- and Ti-promoted catalysts at ~2978 and 2968 cm-1, 

respectively, for νas(-CH2-CH2) of the bulk PE chain. This is ~80 cm-1 higher than the 

corresponding νs(-CH2-CH2) of the bulk PE and is a typical difference between the 

symmetric and asymmetric band vibrations.7,21 A second band is also observed after the Ar 

flush for all three promoted catalysts at ~2939-2960 cm-1 assigned to the ν(C-H) of the 

Cr+3-CH=CH2 vinyl reaction intermediate.7,21,22 For the Zr- and Ti-promoted catalysts, the 

bands for the Cr+3-CH=CH2 vinyl reaction intermediate shift to lower wavenumbers, 

presumably due to the increased reduced mass of the functional groups,10,21 and indicate 

that these sites are forming on the Cr-O-Zr and Cr-O-Ti bridging bonds, respectively. 

However, the band does not shift for the Al-promoted catalyst, suggesting that the key 

vinyl Cr+3-CH=CH2 intermediate could be forming on the Cr-O-Si bonds, as for the 

standard CrOx/SiO2 catalyst. 
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Figure 4.7. Time-resolved in situ DRIFT spectra of the C-H region for the supported 

promoted CrOx/SiO2 catalysts (A) 3% CrOx/5% AlOx/SiO2, (B) 3% CrOx/5% TiOx/SiO2, 

(C) 3% CrOx/5% ZrOx/SiO2 during ethylene polymerization at 100 °C with an Ar flush 

after ~3 h. 
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4.2.6 Kinetics 

Plots of the evolution of the IR bands for the formation of PE product, surface Cr+3-

(CH2)2CH=CH2, and Cr+3-CH=CH2 sites during ethylene polymerization are in Figure 4.8. 

Formation of the Cr+3-(CH2)2CH=CH2 reaction intermediate was only observed with the 

Ti-promoted catalyst. Previously, in ethylene polymerization by the standard CrOx/SiO2 

catalyst, an initial positive slope was observed in the progression of the 

Cr+3-(CH2)2CH=CH2 reaction intermediate that indicated it is an initial reaction 

intermediate.7 However, the Cr+3-(CH2)2CH=CH2 reaction intermediate in the experiment 

with the Ti-promoted catalyst does not form until after ~45 min (Figure 4.8 A). This 

indicates that the Cr+3-(CH2)2CH=CH2 intermediate is a secondary reaction intermediate 

for ethylene polymerization by CrOx/TiOx/SiO2, which is expected since this reaction 

intermediate is associated with the Cr-O-Si sites, and not the Cr-O-Ti bridging bonds.1 The 

formation of the Cr+3-(CH2)2CH=CH2 reaction intermediate appears to saturate after 

~2.5 h. For both the Zr- and Ti-promoted catalysts, the evolution of the bulk PE band 

exhibits an initial positive slope, in contrast to the initial zero slope observed with the 

standard catalyst,7 demonstrating it is the primary product formed during ethylene 

polymerization by CrOx/ZrOx/SiO2 and CrOx/TiOx/SiO2, and not related to the formation 

of the Cr+3-(CH2)2CH=CH2 reaction intermediates. The variance between these catalysts 

and the standard catalyst also indicates that ZrOx and TiOx are promoting the ethylene 

polymerization reaction, since formation of the PE product starts more quickly. However, 

formation of the bulk PE in the case of the Al-promoted catalyst does not appear to begin 

until after ~30 min into the ethylene polymerization reaction, suggesting that it does not 

promote the ethylene polymerization reaction.  
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At times greater than ~20 min, the slopes of the bulk PE evolution for the Zr- and Ti-

promoted catalysts become more linear, while that of the Al-promoted appears to begin to 

increase exponentially after ~2 h. The IR band area for the surface Cr+3-CH=CH2 reaction 

intermediate at ~2939-2960 cm-1 could not be monitored directly due to the overlap of them 

with the IR bands of gas phase ethylene. However, following a method used previously for 

the standard CrOx/SiO2 catalyst,7 the gas phase ethylene contribution could be determined 

and subtracted to find the amount of the Cr+3-CH=CH2 intermediate. The resulting plot of 

the intensity of the surface Cr+3-CH=CH2 seems to track the evolution of the PE product 

for both the Zr- and Ti-promoted catalysts. On the other hand, for the Al-promoted catalyst, 

the evolutions of the bulk PE band and Cr+3-CH=CH2 reaction intermediate do not appear 

to track each other for more than ~2 h, which suggests there may be another reaction 

intermediate contributing to the formation of the PE that is not detectable in these 

experiments. The evolutions of the Cr+3-(CH2)2CH=CH2 reaction intermediate and bulk PE 

for the Ti-promoted catalyst also track each other. The continued increase in amount of 

bulk PE and Cr+3-CH=CH2 reaction intermediate even at ~180 min indicates that not all 

the surface chromia site have been activated. 

The UV-vis band evolution plots as a function of reaction time of ethylene 

polymerization are in Figure 4.9. The progressions of both reduced surface chromia sites 

on the surface of the Ti-promoted catalyst initially exhibit positive slopes, and it appears 

that at times earlier than ~20 min, the area of the combination Cr+3+Cr+2 band at ~720 nm 

is greater than that of the Cr+3 band at ~441 nm, suggesting that these sites are first reduced 

to Cr+2, then re-oxidize to Cr+3. The slopes of the evolution of both these bands go through 

the plot origin, indicating that they are both initial reaction intermediates during ethylene 
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polymerization by the Ti-promoted catalyst, and that they likely originate from two 

different sites. The evolutions of the UV-vis band of the Cr+3 surface chromia sites in the 

Zr-promoted (576 nm) and Al-promoted (428 and 618 nm) exhibit an initial lag since the 

slopes are close to zero. The production of Cr+3
 sites appears to increase after ~10 min for 

the Zr-promoted catalyst, but does not grow for the Al-promoted catalyst until after ~20-

30 min. At reaction times longer than ~20 min, the areas of these bands are more closely 

aligned, and the slopes decrease but remain linear, indicating the continued catalyst 

reduction since not all the surface chromia sites have been activated since this is an early 

stage of ethylene polymerization under the current reaction conditions. 
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Figure 4.8. Evolution of IR bands from PE product and surface intermediates during 

ethylene polymerization at 100 °C. (A) evolution of IR bands from bulk PE and surface 

Cr+3-CH=CH2 growing on 3% CrOx/5% AlOx/SiO2; (B) evolution of IR bands from PE 

product, surface Cr+3-(CH2)2CH=CH2, and surface Cr+3-CH=CH2 growing on 

3% CrOx/5% TiOx/SiO2; and (C) evolution of IR bands from bulk PE and surface 

Cr+3-CH=CH2 growing on 3% CrOx/5% ZrOx/SiO2.  



139 

 

 
Figure 4.9. Evolution of UV-vis bands from reduced CrOx sites at 100 °C. (A) evolution 

of UV-vis bands at 618 nm and 428 nm for Cr+3 for 3% CrOx/5% AlOx/SiO2; (B) evolution 

of UV-vis bands at 720 nm (Cr+3 + Cr+2) and 441 nm (Cr+3) for 3% CrOx/5% TiOx/SiO2; 

(C) evolution of UV-vis band at 576 nm for Cr+3 for 3% CrOx/5% ZrOx/SiO2. 
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Figure 4.10. Evolution of IR and UV-vis bands from surface intermediates and reduced 

CrOx sites, respectively, at 100 °C. (A) 3% CrOx/5% AlOx/SiO2; 

(B) 3% CrOx/5% TiOx/SiO2; (C) 3% CrOx/5% ZrOx/SiO2; (D) deconvolution of ~720 nm 

Cr+3+Cr+2 combination band during reduction of 3% CrOx/5% TiOx/SiO2.  

 

 



141 

 

Comparisons of the evolution of the UV-vis and DRIFTS bands are plotted in Figure 

4.10 to follow the time-dependent trends. For the Zr-promoted catalyst, the UV-vis band 

at 576 nm tracks the progression of the DRIFTS band at 2956 cm-1 for the Cr+3-CH=CH2 

reaction intermediate (see Figure 4.10). The plots for the Ti-promoted catalyst demonstrate 

that the UV-vis bands at 720 nm and 441 nm track the trends of the Cr+3-CH=CH2 and the 

Cr+3-(CH2)2CH=CH2 reaction intermediates, respectively (see Figure 4.10). It is difficult 

to determine whether the polymerization is occurring on the Cr+2 sites as well since there 

is always a co-existence of Cr+3 and Cr+2 sites, and evolutions of both the deconvoluted 

Cr+3 band at ~686 nm and mixed Cr+2+Cr+3 band at ~783 nm track the progression of the 

bulk PE produced by the Ti-promoted catalyst (see Figure 4.10). However, the 

deconvoluted peak location progressions tending towards typical Cr+3 locations as 

discussed earlier and the increasing amount of PE suggest that the surface sites most likely 

re-oxidize to Cr+3 before creating polyethylene. Thus, the lower molecular weight polymer 

is produced on the vinyl Cr+3-CH=CH2 sites located on the Ti-associated sites (Cr-O-Ti 

bridging bonds). These are formed by reduction of Cr+6
Th → Cr+2

Th before re-oxidization 

to Cr+3
Oh. The Ti-promoted catalyst also produces the higher molecular weight polymer 

made by the standard catalyst. The higher molecular weight polymer is produced with the 

Cr+3-(CH2)2CH=CH2 reaction intermediate located on the sites without Ti (Cr-O-Si bond). 

The comparison plots of the Al-promoted catalyst suggest that both the UV-vis bands at 

618 and 428 nm track the evolution of the bulk PE, although neither of them appears to 

follow the time-dependent progression of the Cr+3-CH=CH2 past the first two hours (see 

Figure 4.10).  
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By directly comparing the amount of PE produced by each catalyst (Figure 4.11), it 

becomes obvious that the Zr- and Ti-promoted catalysts are the most active, while the Al-

promoted catalyst is only as active as, if not less active than, the standard catalyst.  By also 

comparing the number of active UV-vis sites produced by each catalyst (Al – 618 nm; 

Ti – 441, 720 nm; Zr – 576 nm), it becomes apparent that both the Zr- and Ti-promoted 

catalysts are creating more active sites. 

Although the PE production shows the Zr- and Ti-promoted catalysts to be about equal, 

the comparison of the number of sites in Figure 4.11 demonstrates that the Zr-promoted 

catalyst produces fewer sites than the Ti-promoted catalyst, suggesting that the activity is 

affected by more than just the number of sites. The turnover frequency (TOF) of these 

catalysts was calculated using  Equation 4.1. 

𝑻𝑶𝑭 (𝒔 −𝟏) =  
𝒅𝑷𝑬/𝒅𝒕

𝑵𝑺
 

 Equation 4.1 

Values for dPE/dt were found using the slope of the best fit line through PE formation and 

NS is the number of sites, as determined by the integrations of the active UV-vis bands. 

Comparison of the initial TOF values across all the catalysts (see Table 4.3) allows for 

observing that the sites in the Zr-promoted sites are the most catalytically active for 

ethylene polymerization, as evidenced by the relatively high TOF values, and the TOF 

decreases in the order ZrOx > TiOx > SiO2~AlOx. Over time, the TOF values decrease due 

to mass transfer limitations occurring because of the increasing amounts of PE. Thus, using 

ZrOx as a promoter allows creation of higher activity sites.  
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Figure 4.11. Comparison of PE and active Cr+3 sites produced from all CrOx/MOx/SiO2 

catalysts. (A) total PE produced; (B) initial UV-vis active sites produced. 
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Table 4.3. TOF Values Calculated from IR and UV-vis Areas at 6 min 

Catalyst dPE/dt TOF (s-1) Relative TOF 

CrOx/SiO2 3.5 x 10-6 6.6 x 10-6 1 

CrOx/AlOx/SiO2 << 1 x 10-6 << 1 x 10-6 << 1 x 10-6x 

CrOx/TiOx/SiO2 1.5 x 10-4 1.2 x 10-4 18x 

CrOx/ZrOx/SiO2 1.2 x 10-4 5.1 x 10-5 77x 
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4.3 Discussion 

4.3.1 Initial Surface CrOx Sites on MOx/SiO2 

The initial surface CrOx sites on the promoted MOx/SiO2 supports are fully oxidized 

since there are Cr+6 UV-vis bands at 255, 348-356, and 460 nm (see Figure 4.3).7-10 In situ 

Raman (absence of ~230 cm-1 band for bridging Cr-O-Cr bonds) and UV-vis (high Eg 

values of ~2.4-2.5 eV). No experimental evidence is present to support the presence of 

dimeric surface Cr2Ox sites as proposed in literature.1 

One distinct isolated surface CrOx sites on silica exist in the initial oxidized catalyst: 

dioxo νs((O=)2CrO2) (Raman bands at ~992 and 1015 cm-1).2,6 The surface CrOx sites 

preferentially bond to the Cr-O-M bridging bonds (Raman bands at ~860-900 cm-1).4 

4.3.2 Catalyst Activation 

In the present study, the surface Cr+6Ox sites are activated by reduction with ethylene. 

Reduction during ethylene polymerization at 100 °C yields different reduced active sites 

depending upon the metal oxide promoter in the catalyst. While reduction of the standard 

CrOx/SiO2 catalyst yielded two surface Cr+3
Oh sites,7 reduction of the Zr-promoted catalyst 

yields just one type of surface Cr+3
Oh site, since only one increasing d-d transition band is 

observed at ~576 nm (see Figure 4.4). On the other hand, reduction of the Al-promoted 

catalyst is more similar to the standard catalyst, yielding two distinct pseudo-octahedral 

surface Cr+3 surface sites assigned from two UV-vis bands at ~428 and ~618 nm. The 

extent of reduction is highest for the Ti-promoted catalyst since there are two bands at ~441 

and ~720 nm, for one Cr+3
Oh surface site and a mixture of Cr+3

Oh and Cr+2
Oh surface sites, 

respectively, suggesting a possible presence of three distinct surface sites. Contact of an 

industrially-made Cr/SiO2 catalyst with a TEAl co-catalyst resulted in the appearance of d-
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d transition bands of Cr+3
Oh at ~625 nm and Cr+2

Oh at ~1000 nm, which were still present 

after contacting with ethylene. These band maxima are different than those observed in the 

present study with direct ethylene contact, demonstrating that the types of activated 

chromia sites are not necessarily the same when the activation procedures are altered.10  

The Raman and C2H4-TPSR results indicate that the surface CrO4 sites are easily 

reduced in the first step (Cr+6 → Cr+4) during ethylene polymerization. The TPSR results 

indicate that the reduction kinetics do not change significantly with promoter oxide since 

the ratios of k6/4/k4/3/2 only vary ~1.5-1.8 compared to ~1.7 for the initial oxidized standard 

catalyst.7 The easier reduction of Cr+6 to Cr+4 is corroborated by DFT results12 that showed 

this step was thermodynamically favorable. 

The UV-vis results, however, indicate a greater extent of reduction for the promoted 

catalysts as compared to the standard catalyst, as demonstrated by the decreasing negative 

Cr+6 LMCT bands. The presence of Cr+2 sites (see Figure 4.4 and Figure 4.5) in the 

Ti-promoted catalyst indicate that TiOx promotion causes a greater extent of reduction.  

It has been argued that the addition of titania creates new sites that are more easily 

reducible and thereby increase the catalytic activity.1 DFT studies5 have suggested that an 

increase in electron deficiency facilitates reduction of the surface chromia sites and results 

in a shorter induction period. Shifts in the peak temperatures for TPSR relate to the relative 

reactivity of the sites, so the peak temperatures of more reducible catalysts would be 

expected to shift to lower temperatures; however for the first reduction step, the peak 

temperatures are relatively constant (see Figure 4.6 and Table 4.2). The second reduction 

step is relatively easier for the Ti-promoted catalyst compared to the Zr- and Al-promoted 

catalysts, since Tp2’s for the latter occurred at relatively higher temperatures (see Figure 
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4.6 and Table 4.2). The peak temperatures only change slightly from those observed for 

the standard CrOx/SiO2 catalyst, shifting only slightly higher for the most active Zr-

promoted catalyst, and not at all for the Ti-promoted catalyst, although it is much more 

active than the standard CrOx/SiO2 catalyst, suggesting that there is another reason for the 

increased activity observed with the TiOx and ZrOx promoter oxides. These studies indicate 

that for the Ti-promoted catalyst, only the extent of reduction is greater, since Cr+3 and Cr+2 

reduced sites co-exist on the catalyst surface during ethylene polymerization (see Figure 

4.4 and Figure 4.5).  

Similar to the standard CrOx/SiO2 catalyst, it has been proposed that formaldehyde 

(HCHO) is the major oxygenated product in the activation of the CrOx/SiO2 catalysts.1 

However, HCHO was not detected in these measurements as an initial reaction product, in 

agreement with recent studies23,24, and only combustion of ethylene was observed. More 

recently, however, oxygenated products were proposed to remain in the coordination 

sphere.24,25 In agreement with these studies, Potter et al.24 did not detect oxygenates during 

activation of a supported 1% Cr/SiO2 catalyst. However, their calculated heats of reaction 

were high, indicating a redox process, suggesting that the oxygenates remained in the 

coordination sphere. To determine the nature of the surface oxygenates, the products were 

thermally decomposed (TPD-MS) and monitored. In addition to combustion products 

(water and carbon dioxide), ethylene/carbon monoxide (m/z = 28), hydrogen (m/z = 2), 

alkyl fragments (m/z = 15), and fragments of unsaturated hydrocarbons (m/z = 26, 27, and 

41) were observed. Ethylene oxide (m/z = 29) and HCHO (m/z 29, 30, and 28) were not 

observed.24 In these studies, m/z = 26 and 15 were not monitored, and the other MS traces 

(m/z = 41 and 2) were not observed, most likely due to the different experimental 
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conditions. Potter et al. first activated the CrOx sites with ethylene, and then heated in Ar,24 

but in these studies, the catalyst was heated in ethylene since focus was on activation of 

the CrOx sites. 

4.3.3 Surface Reaction Intermediates and Initiation Mechanism 

From the literature review of the studies concerning the promoted CrOx/SiO2 catalysts, 

it was apparent that most of the studies did not use in situ methods to study the catalyst 

surface, and many of the techniques used were not molecular spectroscopy (i.e. XPS or 

XAS).1,26-35 As indicated in previous work,7,9 characterization methods such as XAS or 

XPS which are not molecular in nature yield signals that are the average of multiple sites.7,9 

The studies in the literature also mostly focused on demonstrating how the modifications 

by promoters can alter activation time, activity, or polyethylene product, rather than 

determining how the surface of the catalyst changes from the addition of promoters and 

promotion mechanisms. 

The current operando DRIFTS measurements show that the key surface intermediates 

present during the initiation stage of ethylene polymerization with the promoted 

CrOx/MOx/SiO2 catalysts are similar to those of the standard CrOx/SiO2 catalyst. The Zr-

promoted catalyst only contains one active surface intermediate – Cr+3-CH=CH2 site 

formed on Cr-O-Zr bridging bonds that continues to increase after ~3h, while the Ti-

promoted catalyst contains two active surface sites – surface Cr+3-CH=CH2 site formed on 

Cr-O-Ti bridging bonds, which continues to grow at the end of ~3h, and the surface Cr+3-

(CH2)2CH=CH2 site formed on the Cr-O-Si bonds, which appears to saturate. Although 

recent studies of a CrOx/TiO2 catalyst demonstrated that the active sites are Ti4-n defect 

sites located in the band gap evidenced by a broad, featureless UV-vis absorbance 



149 

 

throughout the visible, NIR, and MIR regions,36 in this case, the UV-vis spectra of the 

5% TiOx/SiO2 support during ethylene polymerization does not undergo any changes, 

indicating that the silica support stabilizes the surface promoter titania and defect sites are 

not a factor.  

The DRIFT spectra also exhibited bands at ~3400-3548 cm-1 from the interaction of 

the Si-OH groups and the active site through hydrogen bonding.7,19,21 The size of the shift 

of the band relative to the standard catalyst may be dependent on the nature of the OH 

group.21 Lee et al.37 studied the surface chemistry and reactivity of several multilayered 

catalysts and determined that the selectivity pattern of bulk zirconia, titania, and alumina 

materials during CH3OH-TPSR minimally changed when anchored on silica, and thus the 

intrinsic redox (HCHO), basic (CO2), and acidic (DME) properties of each metal oxide is 

retained, except for TiOx, which becomes mostly redox rather than acidic. When CrOx was 

added, the selectivity during methanol TPSR reflected a much higher redox property, 

although a certain amount of basic and acidic property was still retained, which may 

explain the shift. The amount of DME, reflecting the acidic character of the catalyst, 

produced in the multilayer catalysts decreased in the order SiO2 ~ ZrOx/SiO2 > TiOx/SiO2 

> AlOx/SiO2.
37 The upward shift of the ~3400-3548 cm-1 also follows the trend SiO2 ~ 

ZrOx/SiO2 > TiOx/SiO2 > AlOx/SiO2, indicating that the shift of this interaction band is 

derived from the acidic nature of the supports. This is also related to the amount of ethylene 

adsorption on the catalyst surface, so the Al-promoted catalyst would be expected to adsorb 

the least amount of ethylene, possibly explaining the low activity of the Al-promoted 

catalyst. 
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The similarity of the surface reaction intermediates and reduced chromia sites for the 

Zr- and Al-promoted CrOx catalysts as compared to the standard CrOx/SiO2 catalyst 

suggests that the initiation reaction mechanism is also similar for these catalysts, in which 

the precursor site Cr+3-OH transforms to Cr+3-CH=CH2 active site after ethylene 

interaction. This reaction mechanism has been proven to be a plausible pathway in recent 

DFT studies, with reasonable activation barriers, and the propagation steps being more 

kinetically favored than the termination pathways.7,38 However, the addition of TiOx allows 

for deeper reduction to Cr+2
 sites that then re-oxidize to Cr+3 sites (see Figure 4.4 and Figure 

4.5), indicating that the CrOx sites are activated slightly differently in this case, although 

the similarity of the surface reaction intermediates still indicates that the active vinyl site 

forms after the Cr+2 sites are re-oxidized to Cr+3 sites.  

4.3.4 Structure-Activity Relationships and Role of Promoters 

The initial oxidized supported CrOx/MOx/SiO2 catalysts consist of one distinct isolated 

surface chromia site: dioxo (O=)2CrO2. The surface dioxo CrO4 sites are activated during 

ethylene polymerization to three different reduced surface sites, depending on the promoter 

oxide. Modifying the silica surface with ZrOx and AlOx causes formation of one 

Cr+3-CH=CH2, while promotion with TiOx causes formation of two surface Cr+3 sites, 

Cr+3-CH=CH2 and Cr+3-(CH2)2CH=CH2. While the time-resolved evolution of the surface 

Cr+3-CH=CH2 reaction intermediate track the formation of the PE product for the Zr-

promoted catalyst, the vinyl reaction intermediate only tracks the PE product formation for 

~2h in the Al-promoted catalyst. Both reduced sites on the surface of the Ti-promoted 

catalyst track the bulk PE formation, although the Cr+3-(CH2)2CH=CH2 reaction 

intermediate does not form until ~45 min and saturates at the end of the ~3h, similarly to 
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the standard CrOx/SiO2 catalyst7, suggesting it is anchored to the Cr-O-Si bridging bond 

and forms the higher molecular weight polymer, while the Cr+3-CH=CH2 site is anchored 

to the Ti-associated Cr-O-Ti-O-Si sites and responsible for the lower molecular weight 

polymer.  

The Cr-O-Al bonds in the Al-promoted catalyst does not allow ethylene polymerization 

to take place on them, since the polymerization activity is even lower than that of 

CrOx/SiO2, and only the surface Cr+3-CH=CH2 site (un-shifted in position compared to 

standard CrOx/SiO2) is observed, which seems to form on the Cr-O-Si bonds, exhibiting 

very modest growth and appearing to saturate after just ~2h. As remarked in the 

introduction, according to recent DFT studies3, formation of the mono-oxo site is 

thermodynamically preferred when there are two Cr-O-Al bridges and two Brönsted acid 

sites near each Cr center, which allows for deeper dehydration and modification from the 

usual square pyramidal geometry to pseudo-tetrahedral coordination that is more stable. 

These structural changes may explain the lack of activity for ethylene polymerization that 

is observed with the Al-promoted catalyst, and show that AlOx is an inhibitor rather than a 

promoter. It may be that the continuing PE production observed after saturation of the Cr+3-

CH=CH2 site is due to a surface reaction intermediate perhaps deriving from the pseudo-

tetrahedral mono-oxo site which would be more symmetric, and therefore unlikely to be 

detected using operando DRIFTS, due to the selection rules. 

The higher TOF exhibited by the Zr-promoted sites does not explain the higher activity 

observed in the Ti-promoted catalyst. Calculating the surface coverage of the metal 

promoter atoms demonstrates that the Ti-promoted catalyst exhibits the highest surface 

coverage by the Ti metal promoter atoms at ~1.1 atoms/nm2, followed by the Al-promoted 
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catalyst (~0.9 Al atoms/nm2), and finally the Zr-promoted catalyst (~0.7 Zr atoms/nm2). 

With higher surface coverage by the metal promoter atom, the number of active sites would 

increase. Although the Ti-promoted catalyst has fewer overall active surface sites than the 

Zr-promoted catalyst, in the first ~20 min of ethylene time-on-stream, the Ti-promoted 

catalyst has a higher number of active sites (see Table 4.3).  The higher activity of the vinyl 

sites in the cases of the Zr- and Ti-promoted catalysts compared to the standard catalyst 

(see Figure 4.11 and Table 4.3) also implies that they are a new kind of active site, in 

agreement with previous studies,1 anchored to the Cr-O-M bonds. The increased activity 

of the Ti-promoted catalyst is due to both the ability of deeper reduction of the new sites, 

as evidenced by the combination band for Cr+3 and Cr+2, and the slight increase in the 

number of active sites (both surface intermediates detected in DRIFTS are active).  

4.4 Conclusions 

The initial oxidized catalysts contain one distinct and isolated surface chromia species 

in Cr+6 oxidation state: the dioxo (O=)2CrO2 in tetrahedral coordination. However, the 

Al-promoted catalyst may also contain tetrahedral mono-oxo, which may explain its lower 

relative TOF. The dioxo CrO4 site is easily activated with ethylene, and reduction kinetics 

indicate the first reduction step of Cr+6 → Cr+4 (~60-65%) is more facile than the second 

Cr+4 → Cr+3/+2 (~35-40%), in agreement with recent DFT studies.12 Various distinct surface 

reaction intermediates were found after activation: promotion with TiOx yielded both the 

Cr+3-(CH2)2CH=CH2 anchored to the Cr-O-Si bonds (responsible for higher molecular 

weight polymer) and the Cr+3-CH=CH2 site anchored to the Cr-O-Ti-O-Si bonds 

(responsible for the lower molecular weight polymer), while with ZrOx only the 

Cr+3-CH=CH2 site anchored to Cr-O-Zr bonds results, and promotion with AlOx yields one 
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Cr+3-CH=CH2 site that is not very active since it saturates after ~2h. The progressions of 

the reaction intermediates on the surfaces of the Zr- and Ti-promoted catalysts track the 

evolution of the bulk PE produced, implying they are active reaction intermediates. The 

promotion mechanisms differ depending on the promoter metal. While TiOx promotes the 

creation of a higher number of active sites, ZrOx exhibits a higher initial TOF. Addition of 

AlOx inhibits ethylene polymerization. 
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Figure S 4.1. In situ Raman spectra of the initial oxidized supported CrOx/MOx/SiO2 

catalysts in flowing 5% O2/He at 100 °C. The spectra were taken with a 442 nm wavelength 

laser (20% laser power) and a moving stage. (A) 3% CrOx/5% AlOx/SiO2 (8 scans x 4min); 

(B) 3% CrOx/5% TiOx/SiO2 (10 scans x 3 min); (C) 3% CrOx/5% ZrOx/SiO2 (15 scans x 4 

min). 
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Figure S 4.2. Time-resolved in situ Raman spectra of the supported promoted 

CrOx/MOx/SiO2 catalysts taken in flowing 1% C2H4/Ar at 100 °C. The spectra were taken 

with a 442 nm wavelength laser (D2 filter, 1% power). (A) 3% CrOx/5% AlOx/SiO2; (B) 

3% CrOx/5% TiOx/SiO2; (C) 3% CrOx/5% ZrOx/SiO2. 
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Figure S 4.3. Time-resolved in situ DRIFT spectra of the C-H region for the supported 

promoted CrOx/SiO2 catalysts (A) 3% CrOx/5% AlOx/SiO2, (B) 3% CrOx/5% TiOx/SiO2, 

(C) 3% CrOx/5% ZrOx/SiO2 during ethylene polymerization at 100 °C with an Ar flush 

after ~3 h. 
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Figure S 4.4. Relative number of active sites produced by supported CrOx/SiO2 catalysts 

for ethylene polymerization. The active sites were taken from the areas of the UV-vis 

bands. 
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Chapter 5 | Literature Review of Olefin Metathesis by Supported MoOx/Al2O3 

Catalysts 

Abstract 

The literature of olefin metathesis by heterogeneous supported MoOx/Al2O3 catalysts 

is reviewed. The current global shortage of propylene has increased the interest in on-

purpose propylene production by olefin metathesis. This literature review demonstrates 

that although there have been numerous studies conducted on olefin metathesis by 

MoOx/Al2O3 catalysts, little progress has been made in the elucidation of the fundamental 

details of the catalyst, including the molecular structures and oxidation states of the 

catalytic active sites, surface reaction intermediates, reaction mechanism, and role of 

promoters. Thus far, there have only been a few applications of in situ and operando 

spectroscopy techniques, and using a combination of these modern techniques in 

systematic studies will greatly improve fundamental understanding of olefin metathesis by 

supported MoOx/Al2O3 catalysts. 

5.1 Introduction 

Olefin metathesis is the cleavage and reformation of olefinic double bonds.1 Olefin 

metathesis by molybdena catalysts was originally discovered by Banks and Bailey at 

Phillips Petroleum using heterogeneous alumina-supported molybdenum catalysts to 

transform two molecules of propylene into one ethylene and one butene molecule, and first 

commercialized in 1966 and dubbed the Phillips Triolefin Process.2 The reversibility of the 

olefin metathesis reaction also allows for propylene to be produced from ethylene and 

butene, now known as olefins conversion technology (OCT).1,3 Heterogeneous supported 

MoOx/Al2O3 catalysts are used in the Shell Higher Olefin Process (SHOP), which was 
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established in 1968.3-5 The SHOP process is used to produce linear higher olefins from 

ethylene and consists of three main stages – oligomerization (homogeneous nickel-

phosphine catalyst in a polar solvent), isomerization (solid potassium metal catalyst), and 

olefin metathesis (alumina-supported molybdate catalyst) – to convert ethylene into linear 

higher olefins.3 The current high global demand for propylene and higher olefins is 

projected to significantly increase in the future, indicating the continued importance of 

olefin metathesis.6-8 

5.2 Structure of the MoOx/Al2O3 Catalysts in the Initial Oxidized Catalyst 

The molecular structure of molybdenum oxide in initial oxidized supported 

MoOx/Al2O3 catalysts has been established in recent years using in situ Raman9-12, 

UV-vis9,12, XAS spectroscopy10-12, and DFT calculations13-15. At low surface coverage 

(< ~1 Mo atoms/nm2), only isolated surface dioxo (O=)2MoO2 species are present on 

oxidized, dehydrated supported MoOx/Al2O3 catalysts. At intermediate surface coverage 

(~1-4.5 Mo atoms/nm2), both isolated dioxo (O=)2MoO2 and oligomeric mono-oxo 

O=MoO4 surface species co-exist on the alumina support. Above monolayer surface 

coverage (>4.6 Mo atoms/nm2), crystalline MoO3 nanoparticles (NPs) form since there are 

no remaining exposed Al-OH sites to which the MoOx species can anchor on the support.9 

Periodic DFT calculations of MoOx sites on alumina have provided some insights into 

the more stable oxidized MoOx and activated species.13 It was concluded that under strictly 

dehydrating conditions, a square pyramidal mono-oxo site is dominant on the most exposed 

alumina (110) surface, but that 4- and 5-coordinated dioxo sites are most likely present on 

the minor alumina (100) surface. The presence of 3-fold bonded mono-oxo sites (especially 

on the (100) surface), however, cannot be excluded. Periodic DFT calculations of dimeric 
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Mo(VI) sites on the (100) and (110) surfaces of alumina14 predicted that the most stable 

dimeric species on the (100) plane are mixed dioxo-mono-oxo (dimer possessing one dioxo 

fragment and one mono-oxo fragment) or double mono-oxo structures that are 3-, 4-, or at 

most 5-fold bonded to the surface, and the Mo in these exhibits mostly MoO4 coordination. 

When the energetic stabilities of the monomeric species were compared to those of the 

dimeric structures on the alumina (100) surface, it was determined that the dimeric 

structures were always more stable than their monomeric analogues and, therefore, Mo 

oligomer chains are expected to exist on the alumina (100) surface. On the alumina (110) 

surface, however, the most stable dimeric structures are double-mono-oxo that are 6- or 5-

fold bonded to the surface, and these are most frequently in distorted square pyramidal 

geometry, although distorted MoO6 or distorted MoO4 may also be present. The 

monomeric structures are more stable than the dimeric structures on the alumina (110) 

plane. Thus, even at high Mo oxide surface coverage, the monomeric Mo species are still 

present on the alumina (110) surface and will co-exist with the oligomeric molybdate 

species. 

The absence of reported in situ characterization studies that directly probe activated 

supported MoOx/Al2O3 catalysts during olefin metathesis has hampered the establishment 

of the fundamental details of this important heterogeneous catalyst system and comparison 

of experimental data with findings from DFT calculations. 

5.3 Anchoring Al-OH Sites of the MoOx Sites 

In situ IR studies of supported MoOx/Al2O3 catalysts synthesized from decomposition 

of Mo(CO)6 on Al2O3
16 and of reaction of MoO2(acac)2 with alumina17 found a preferential 

consumption of the surface hydroxyl IR band at 3740 cm-1 (tentatively assigned to more 
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basic hydroxyls and subsequently assigned to the basic HO-μ1-AlIV surface hydroxyls by 

Digne and Sautet via DFT studies)18,19. 

5.4 Nature of the Activated Supported MoOx/Al2O3 Catalysts  

In contrast to the detailed molecular information about oxidized, dehydrated supported 

MoOx/Al2O3 catalysts from in situ characterization studies, little is known concerning the 

structures of the activated MoOx surface sites during olefin metathesis.  

5.4.1 Activation with Olefins 

In the earliest characterization studies, activated MoOx surface sites on Al2O3 were 

exposed to propylene metathesis reaction conditions and subsequently exposed to ambient 

conditions and examined with ex situ XPS and EPR spectroscopy20,21. These studies 

detected both Mo+6
 and Mo+4 oxidation states, and it was suggested that other Mo oxidation 

states are not active for olefin metathesis. From ex situ solid-state 27Al NMR of mesoporous 

Al2O3-supported MoOx catalysts22, it was proposed that surface MoOx sites anchored to 

AlO6 sites are the most active sites. However, these ex situ spectroscopic studies are 

irrelevant since the catalysts were exposed to O2 and moisture that compromised the 

molybdena oxidation states and structures present during olefin metathesis.  

5.4.2 Activation with CO or H2 

Reduction with CO suggested that the surface MoOx sites anchored at basic surface 

hydroxyls are not active and do not reduce at 500 °C, although surface MoOx sites anchored 

at non-basic surface hydroxyls are active and do reduce to Mo+4
 sites.23-28 

Gruenert et al.20,21 examined alumina-supported molybdena catalysts for propylene 

metathesis activity by initial activation  with H2 or thermal treatment in Ar and employed 

XPS to determine the resulting Mo oxidation states.21 The resulting H2-activated catalysts 
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were subsequently examined for propylene metathesis at 200 °C using a conventional flow 

reactor, and it was concluded that the surface molybdena sites derived from Mo+4 or Mo+6 

sites are active for metathesis. Other studies by Klimov et al.29 investigated the oxidation 

states of conventional supported MoOx/Al2O3 catalysts by first activating the catalysts with 

CO or H2 at 500 °C, testing the propylene metathesis activity at room temperature, and 

subsequently pulsing oxygen to determine the oxidation state by oxygen consumption. The 

estimated Mo oxidation state was found to decrease with increasing Mo loading (1.4% 

Mo/Al2O3 (Mo+5), 3.3% Mo/Al2O3 (Mo+4), and 6.2% Mo/Al2O3 (Mo+2)). These findings, 

however, are clouded by the presence of surface Mo=CH2 and Mo=CHCH3 reaction 

intermediates after the metathesis reaction that may contribute to O2 consumption and yield 

results suggesting deep reduction of the surface MoOx sites (e.g., Mo+2). 

5.4.3 Density Functional Theory (DFT) Studies 

DFT calculations of the active sites (Mo-methylidene structures variously located on 

the (100) and (110) surfaces of alumina)23,30 determined that the relative stabilities of the 

surface MoOx sites on Al2O3 depend on temperature and water vapor pressure, and that the 

location of the MoOx active site on the alumina surface influences the reactivity towards 

ethylene addition. The studies also predicted that Mo sites on the alumina (110) surface are 

more stable than the analogous structures on the alumina (100) surface.  

On the alumina (100) surface23, it was determined that if the Mo-methylidene replaces 

two basic OH groups anchored to AlO6 sites, ethylene addition is endothermic with a 

relatively high activation energy. However, if there is replacement of only one basic OH, 

and the Mo is also directly bonded to a bridging oxygen of the alumina surface, the site is 

less stable, the electron density of the active site moiety decreases, and the geometry is 
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more suitable for alkene addition. Similar findings were determined from cluster studies 

comparing the reactivity of monomeric and dimeric Mo-methylidene structures on the 

(100) and (110) surfaces.31 These cluster studies also showed that both the MoOx 

monomers and dimers can be active sites. Although the activation energies for ethylene 

addition were close for both types of sites, the activation energy was found to be more 

facile for the dimeric sites (more exothermic). The DFT studies also concluded that the 

monomeric sites are less likely to be the active sites, since they are more likely to 

undesirably transform the active trigonal bipyramidal molybdacyclobutane complex into a 

more stable square pyramidal molybdacyclobutane structure. The exact activation 

pathways of the surface MoOx active sites on Al2O3 were not discussed in these DFT 

studies. 

5.5 Surface Reaction Intermediates During Olefin Metathesis 

Not much is known concerning the surface reaction intermediates during olefin 

metathesis. Early in situ studies16 concluded that propylene becomes π-bonded to oxidized 

and CO-reduced catalyst surface of the MoOx/Al2O3 catalysts. An IR band at 1600 cm-1 

was seen and assigned to the C=C bond of the π-bond, which was red-shifted from the band 

seen at 1645 cm-1
 when propylene is adsorbed on pure Al2O3. It was, thus, concluded that 

the adsorption of propylene is reversible, and that this π-bonded complex could be a 

reaction intermediate during propylene metathesis. These early studies did not consider 

that propylene directly adsorbs on the Al2O3 support and no attempt was made to 

distinguish between propylene bonded to Mo sites and Al sites.  

From DFT studies30, it has been suggested also that Mo-cyclobutane intermediates 

anchored to AlO6 cause the high reactivity. However, cyclic intermediates are usually less 
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stable surface species.12 To conclusively determine the surface intermediates and 

discriminate between active and spectator surface reaction intermediates, transient 

experiments are needed.12 

5.6 Number of Catalytic Active Sites 

Studies in the literature concerning the number of catalytic active sites for olefin 

metathesis have reported that as little as 1%, but also as high as 15%, of the surface MoOx 

sites are involved in the metathesis reaction.32,33 Early studies using Mo(CO)6/Al2O3 at 

53 °C34 concluded that only 1% of the surface MoOx sites are active in the metathesis 

reaction. However, using NO poisoning experiments, other studies32 concluded for a Co-

-promoted MoOx/Al2O3 catalyst that at room temperature, 15% of the surface MoOx sites 

were active. Yet another group33 concluded that only 1% of the MoOx sites are active at 

50 °C, but that promoting with Sn allowed 4.5% of the MoOx sites to be active at 50 °C.  

These discrepancies are due to inconsistencies in catalyst preparation and a range of 

surface MoOx coverages. Additionally, as seen in recent work with supported ReOx/Al2O3 

catalysts for olefin metathesis35-37, the activation temperature and olefin partial pressure 

can have a significant effect on the number of activated surface MoOx sites. 

5.7 Surface Kinetics and Reaction Mechanism 

The studies in literature found that the supported MoOx/Al2O3 showed the highest 

activity at about monolayer coverage.38,39 Thus, it was assumed that the active surface 

MoOx sites that are most likely either isolated or oligomeric, and not MoO3 or Al2(MoO4)3 

nanoparticles, since at above monolayer coverage both of the latter tend to form. However, 

the structures of the active sites and the structure-activity/selectivity relationship of these 

isolated and oligomeric sites are still unknown. 
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Isotope exchange studies proposed that the initiation mechanism for the olefin 

metathesis of long chain olefins by supported MoOx/Al2O3 catalysts proceeds via surface 

π-allyl species.40 This suggests that a C-H bond could be involved. However, transient 

isotope studies are needed to provide additional details about the active reaction 

intermediates and spectator species. 

5.8 Promoters 

The standard MoOx/Al2O3 catalysts have often been modified with a promoter. The 

specific roles of these promoters have not yet been elucidated, although surface 

modification by SiO2 
39,41-43, MCl4 (M = Si or Ge)44, CoO32, and (CH3)4Sn33 are claimed to 

increase the number of active sites. The promotion mechanisms, however, are still not 

understood.  

It has been claimed that olefin metathesis activity is improved by using mixed 

SiO2-Al2O3
12,39,41-43,45-49 or zeolite12,50-52 supports. Debecker et al.39,41-43,45,46 proposed that 

using alternative catalyst synthesis methods improved catalytic activity of propylene 

metathesis as compared to that of standard SiO2-Al2O3 supported MoOx catalysts prepared 

via the traditional incipient wetness impregnation. Methods included nonhydrolytic sol-gel 

route in a non-aqueous medium42, thermal spreading39, flame pyrolysis43, and one-pot 

aerosol synthesis. It was claimed that the superior activity of the alternatively prepared 

catalysts was due to higher MoOx dispersion that lowered the amount of inactive MoO3 

crystalline nanoparticles formed, as well as the presence of more monomeric MoOx sites. 

In studies of the catalysts synthesized via flame pyrolysis, an inverse relationship between 

the metathesis activity and number of Mo-O-Mo bonds was claimed to exist, and thus, the 

monomeric species were proposed to be the active sites.12,43 In studies of a one-pot aerosol 
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synthesis of MoOx-SiO2-Al2O3 from an aqueous solution of tetraethyl orthosilicate and 

ethanol with block copolymer (Brij58), AlCl3, 12MoO3H3PO4•xH2O, or MoCl5
12,45,46, the 

catalysts displayed higher activity compared to traditionally synthesized catalysts, and 

NMR detected no Al2(MoO4)3 or MoO3 crystals.  

Ex situ EPR was used to detect surface Mo+5 possessing MoO5 or MoO6 coordination 

after exposure to propylene metathesis conditions and subsequent evacuation at room 

temperature and 200 °C.47 However, EPR does not detect other Mo oxidation states, such 

as Mo+4, and no other methods were used to detect active oxidation states. Complementary 

ex situ L3-XANES of fresh and spent catalysts suggested that the active surface MoOx 

consist of poorly formed oligomeric species containing some partially reduced Mo cations. 

The use of ex situ techniques means that the measurements are performed after reaction on 

samples that are evacuated and exposed to moisture in the ambient atmosphere, making 

them irrelevant. Furthermore, these spectroscopic findings are dominated by just one Mo 

oxidation state. For instance, Mo+5 is dominant in EPR, while XANES is dominated by 

Mo+6 sites since only a minority of MoOx sites are expected to be reduced. Thus, there is a 

need for spectroscopic techniques that can directly characterize the catalyst during olefin 

metathesis. 

In other studies of the metathesis of ethylene and butene to propylene, it was proposed 

that SiO2-Al2O3 supported molybdena catalysts exhibited higher activity in olefin 

metathesis due to Brönsted acidity, with the most efficient catalysts containing moderate 

MoOx loadings.12,48-52 Side reactions such as cracking and isomerization were attributed to 

excessive Brönsted acidity.50-52 Li et al.50-52 proposed the existence of an interfacial 

interaction between MoOx sites and the Hβ zeolite, and the addition of Al2O3 to the support 



174 

 

may stabilize the zeolite support. 27Al MAS NMR in initial studies50 showed that the Hβ 

zeolite dealuminated, forming crystalline Al2(MoO4)3 (corroborated by XRD 

measurements). The amount of silanols and Brönsted acid sites decreased with increasing 

Mo coverage, according to corresponding 29Si and 1H MAS NMR, and the catalytic activity 

of ethylene and butene metathesis decreased. In later studies51,52, the catalytic activity 

improved with the addition of Al2O3 to the Hβ zeolite (optimal catalyst 4-6 wt% MoOx/70 

wt% Hβ-30 wt% Al2O3). Hyperpolarized 129Xe NMR, HR TEM, and SEM results 

demonstrated that the Mo species disperse in the Al2O3 rather than in the zeolites. It was 

thus proposed that the addition of Al2O3 to Hβ zeolite supports helps maintain the zeolitic 

structure, and therefore the presence of Brönsted acid sites, since dealumination of the 

framework and appearance of Al2(MoO4)3 crystals did not occur.50-52  

Hahn et al.48,49 also proposed that Brönsted acidity increases the catalytic activity of 

supported MoOx catalysts for the metathesis of ethylene and butene to propylene. They 

suggested that tetrahedral MoOx species possessing Brönsted acid character are only 

created on supports with Brönsted acidity, while polymeric Brönsted acidic octahedral 

MoOx sites can be created on supports without any Brönsted acid character. In situ UV-vis 

and ambient Raman spectroscopy results were correlated and detected isolated MoO4 and 

polymeric MoO6 sites. It was proposed that increasing the Brönsted acidity of these sites 

is the cause of the higher metathesis activity.48 However, it has been proven unequivocally 

that there are issues with comparing ambient and in situ, since the surface structures vary 

significantly depending on the moisture content.9,12 In another study, it was reported that 

the side reactions (self-metathesis of butene and 2 to 1 butene isomerization) are more 

favorable for isolated species, while metathesis is preferred over polymeric species.12,49 
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These conclusions were in contradiction with earlier studies by Li et al. showing that higher 

Brönsted acidity increased the amount of side reactions.12,50-52 Thus, it is clear that more 

systematic in situ studies are necessary to determine the promotion mechanisms for the 

SiO2-Al2O3 and zeolite surfaces.  

5.9 Patents 

The prolific patent literature demonstrates the recent increased importance of the olefin 

metathesis reaction to industry.4,5,12,53-87  

Mostly γ-Al2O3 support is used, although mesoporous alumina53,76 and silica-

alumina79,88 supports have also been claimed to be effective. The catalysts have also been 

treated with various promoters, such as halides71, B2O3
76, CoO80; alkyl-Sn81; and alkyl-

Pb72,81. The patent literature indicates interest in metathesis of smaller olefins53,60-

65,67,71,80,82-85 as well as higher olefins such as used in the SHOP process3-5,55,68-70,74,75,77-

79,87.12 

5.10 Summary and Conclusions 

The literature review of olefin metathesis by supported MoOx/Al2O3 catalysts 

demonstrates that despite the significant industrial applications, there is still a lack of 

fundamental understanding in the literature of this catalyst technology. The absence of 

molecular level information of heterogeneous supported molybdena catalysts during 

catalyst activation and the olefin metathesis reaction has hindered the fundamental 

progress. Systematic in situ and operando molecular spectroscopy studies would greatly 

improve the fundamental understanding of the heterogeneous alumina supported 

molybdena catalysts for olefin metathesis, providing a foundation for the rational design 

of improved catalysts for this catalytic reaction system.  
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The objective of this research is to determine the molecular/electronic structure-

catalytic activity/selectivity relationships for heterogeneous supported molybdena-based 

olefin metathesis catalysts by combining modern methods of time-resolved in situ and 

operando molecular/electronic spectroscopic techniques both during catalyst activation 

and under reaction conditions. The resulting experimental findings will be combined with 

theory to develop a fundamental structure-activity model with predictive capabilities, and 

the resulting model will guide the rational design of improved olefin metathesis catalysts. 

5.11 Thesis Outline – Olefin Metathesis 

The above literature review indicates the need for elucidation of fundamental details 

for olefin metathesis by heterogeneous supported MoOx/Al2O3 catalysts to achieve 

understanding of structure-reactivity/selectivity relationships. This will be achieved by 

combining multiple in situ spectroscopic techniques capable of directly characterizing the 

catalyst under relevant olefin metathesis conditions. The chapters pertaining to olefin 

metathesis are outlined below. 

Chapter 6: Molecular Structure-Reactivity Relationships for Olefin Metathesis by 

Supported MoOx/Al2O3 Catalysts  

A series of synthesized MoOx/Al2O3 will be characterized before and during olefin 

metathesis reaction conditions. The molecular structure, electronic transitions, and 

catalytic reactivity will be determined using in situ Raman spectroscopy, in situ UV-vis 
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DRS, in situ DRIFTS, and TPSR-MS. This will allow for development of the molecular 

structure-reactivity relationships of MoOx/Al2O3 catalysts for olefin metathesis.  

Chapter 7: Activation Mechanism and Surface Intermediates for Olefin Metathesis by 

Supported MoOx/Al2O3 Catalysts 

The activation mechanism and surface intermediates for the supported MoOx/Al2O3 

catalysts during olefin metathesis will be examined. A variety of experiments will be 

presented, primarily using in situ DRIFTS to detect the surface intermediates during 

reaction. Results from C4H8-C2H4 titration, C3H6 adsorption-TP, C3H8O adsorption-C3H6 

TP, C3H6O adsorption-C3H6 TP, and C3D6-C3H6 isotope exchange studies will be 

correlated. 

Chapter 8: Conclusions 

The important conclusions of the research presented in this dissertation will be 

summarized. Future work for both ethylene polymerization and olefin metathesis will be 

discussed. A general perspective on the similarities between these two industrial reactions 

will be given. 
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Chapter 6 | Molecular Structure-Reactivity Relationships for Olefin Metathesis 

by Supported MoOx/Al2O3 Catalysts 

 

Abstract 

Supported MoOx/Al2O3 catalysts were synthesized by incipient-wetness impregnation 

of aqueous ammonium heptamolybdate, dried at room temperature and 110 °C, and finally 

calcined at 500 °C in air. The catalysts were spectroscopically characterized with in situ 

Raman, UV-vis, DRIFTS, and TPSR, both after calcination and during propylene 

metathesis reaction conditions. Three distinct MoOx species on the Al2O3 support were 

identified: isolated surface dioxo (O=)2MoO2, anchored to the basic HO-μ1-AlIV sites (<1 

Mo atom/nm2), oligomeric surface mono-oxo O=MoO4/5 anchored to more acidic HO-μ1-

AlV/VI sites (1-4.6 Mo atoms/nm2), and crystalline MoO3 nanoparticles also present above 

monolayer coverage (>4.6 Mo atoms/nm2). During propylene metathesis, activation 

proceeds by removal of oxo Mo=O bonds and insertion of =CH2 and =CHCH3 alkyls, 

which maintain the surface MoOx species in the Mo+6 oxidation state. The surface 

oligomeric mono-oxo O=MoO4/5 species easily activate at mild temperatures 25-200 °C 

while the isolated surface dioxo (O=)2MoO2 species require very high temperatures for 

activation (>400 °C). The crystalline MoO3 nanoparticles decrease the number of 

accessible activated surface MoOx sites by their physical blocking. This study establishes 

the structure-reactivity relationship for olefin metathesis by supported MoOx/Al2O3 
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catalysts and demonstrates the significant role that the anchoring surface hydroxyl sites on 

alumina have on the reactivity of surface MoOx species. 

6.1 Introduction 

Olefin metathesis is a cleavage and reformation of double bonds in olefins 1. The 

reaction was originally discovered by Banks and Bailey at Phillips Petroleum using 

heterogeneous alumina-supported molybdenum catalysts to transform two molecules of 

propylene into one ethylene and one butene molecule, and first commercialized in 1966 

and dubbed the Phillips Triolefin Process.2 The reversibility of the olefin metathesis 

reaction also allows for propylene to be produced from ethylene and butene, now known 

as olefins conversion technology (OCT).1,3 Heterogeneous supported MoOx/Al2O3 

catalysts are find use in the Shell Higher Olefin Process (SHOP), which was established in 

1968. The SHOP process is used to produce linear higher olefins from ethylene and consists 

of three main stages – oligomerization (homogeneous nickel-phosphine catalyst in a polar 

solvent), isomerization (solid potassium metal catalyst), and olefin metathesis (alumina-

supported molybdate catalyst) – to convert ethylene into linear higher olefins.3 The current 

high global demand for propylene and higher olefins is projected to significantly increase 

in the future, indicating the continued importance of olefin metathesis.4-6 

The molecular structure of molybdenum oxide in initial oxidized supported 

MoOx/Al2O3 catalysts has been established in recent years using in situ Raman7-10, UV-

vis7,10, XAS spectroscopy8-10, and DFT calculations11-13. At low surface coverage (< ~1 Mo 

atoms/nm2), only isolated surface dioxo (O=)2MoO2 species are present on oxidized, 

dehydrated supported MoOx/Al2O3 catalysts. At intermediate surface coverage (~1-4.5 Mo 

atoms/nm2), both isolated dioxo (O=)2MoO2 and oligomeric mono-oxo O=MoO4 surface 
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species coexist on the alumina support. Above monolayer surface coverage (>4.6 Mo 

atoms/nm2), crystalline MoO3 nanoparticles (NPs) form since there are no remaining 

exposed Al-OH sites to which the MoOx species can anchor to the support.7  

In contrast to the detailed molecular information about oxidized, dehydrated supported 

MoOx/Al2O3 catalysts from in situ characterization studies, little is known concerning the 

structures of the activated MoOx surface sites during olefin metathesis. The earliest 

characterization studies of activated MoOx surface sites on Al2O3 had been exposed to 

propylene metathesis reaction conditions and subsequently exposed to ambient conditions 

and examined with ex situ XPS and EPR spectroscopy14,15. These studies detected both 

Mo+6
 and Mo+4 oxidation states, and it was suggested that other Mo oxidation states are not 

active for olefin metathesis. From ex situ solid-state 27Al NMR of mesoporous Al2O3-

supported MoOx catalysts16, it was proposed that surface MoOx sites anchored to AlO6 sites 

are the most active sites. However, these ex situ spectroscopic studies are not relevant since 

the catalysts were exposed to O2 and moisture that compromised the molybdena oxidation 

states and structures present during olefin metathesis. 

Periodic DFT calculations of MoOx sites on alumina have provided some insights into 

the more stable oxidized MoOx and activated species11. It was concluded that under strictly 

dehydrating conditions, a square pyramidal mono-oxo site is dominant on the most exposed 

alumina (110) surface, but that 4- and 5-coordinated dioxo sites are most likely present on 

the minor alumina (100) surface. The presence of 3-fold bonded mono-oxo sites (especially 

on the (100) surface), however, cannot be excluded. Periodic DFT calculations of dimeric 

Mo(VI) sites on the (100) and (110) surfaces of alumina12 predicted that the most stable 

dimeric species on the (100) plane are mixed dioxo-mono-oxo (dimer possessing one dioxo 
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fragment and one mono-oxo fragment) or double mono-oxo structures that are 3-, 4-, or at 

most 5-fold bonded to the surface, and the Mo in these exhibits mostly MoO4 coordination. 

When the energetic stabilities of the monomeric species were compared to the dimeric 

structures on the alumina (100) surface were compared, it was determined that the dimeric 

structures were always more stable than their monomeric analogues and, therefore, Mo 

oligomer chains are expected to exist on the alumina (100) surface. On the alumina (110) 

surface, however, the most stable dimeric structures are double-mono-oxo that are 6- or 5-

fold bonded to the surface, and these are most frequently in distorted square pyramidal 

geometry, although distorted MoO6 or distorted MoO4 may also be present. The 

monomeric structures are more stable than the dimeric structures on the alumina (110) 

plane. Thus, even at high Mo oxide surface coverage, the monomeric Mo species are still 

present on the alumina (110) surface and will co-exist with the oligomeric molybdate 

species. 

DFT calculations of the active sites (Mo-methylidene structures variously located on 

the (100) and (110) surfaces of alumina)17,18 determined that the relative stabilities of the 

surface MoOx sites on Al2O3 depend on temperature and water vapor pressure, and that the 

location of the MoOx active site on the alumina surface influences the reactivity towards 

ethylene addition. The studies also predicted that Mo sites on the alumina (110) surface are 

more stable than the analogous structures on the alumina (100) surface. On the alumina 

(100) surface18, it was determined that if the Mo-methylidene replaces two basic OH 

groups anchored to AlO6 sites, ethylene addition is endothermic with a relatively high 

activation energy. However, if there is replacement of only one basic OH, and the Mo is 

also directly bonded to a bridging oxygen of the alumina surface, the site is less stable, the 



192 

 

electron density of the active site moiety decreases, and the geometry is more suitable for 

alkene addition. Similar findings were determined from cluster studies comparing the 

reactivity of monomeric and dimeric Mo-methylidene structures on the (100) and (110) 

surfaces19. These cluster studies also showed that both the MoOx monomers and dimers 

can be active sites. Although the activation energies for ethylene addition were close for 

both types of sites, the activation energy was found to be more facile for the dimeric sites 

(more exothermic). The DFT studies also concluded that the monomeric sites are less likely 

to be the active sites, since they are more likely to undesirably transform the active trigonal 

bipyramidal molybdacyclobutane complex into a more stable square pyramidal 

molybdacyclobutane structure. The formation process of the surface MoOx active sites on 

Al2O3 was not discussed in these DFT studies. 

The absence of reported in situ characterization studies that directly probe activated 

supported MoOx/Al2O3 catalysts during olefin metathesis has hampered the establishment 

of the fundamental details of this important heterogeneous catalyst system and comparison 

of experimental data with findings from DFT calculations. The objective of the current 

studies is to apply in situ characterization studies (Raman, IR, UV-vis, and TPSR) during 

olefin metathesis to establish the molecular/electronic structure-reactivity relationships for 

olefin metathesis by heterogeneous supported MoOx/Al2O3 catalysts. Such new 
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fundamental insights should be able to guide the rational design of improved supported 

MoOx/Al2O3 catalysts for olefin metathesis. 

6.2 Results 

6.2.1 Structure of the Initial Oxidized Supported MoOx/Al2O3 Catalysts 

6.2.1.1 In situ UV-vis DRS 

The UV-vis spectra of several bulk molybdate reference compounds are presented in 

Figure S 6.1. The MgMoO4 compound consists of only isolated MoO4 units and its UV-vis 

spectrum exhibits only one strong ligand-to-metal charge transfer (LMCT) absorption band 

at ~250 nm with a corresponding high UV-vis energy (Eg) value of 4.5 eV as previously 

found for other bulk molybdates with isolated MoO4/MoO6 units7. The (NH4)2Mo2O7 

compound is made up of a chain of alternating MoO4/MoO6 units and its UV-vis spectrum 

possesses two LMCT absorption bands at ~250 nm (m) and ~320 nm (s) with an Eg value 

of 3.5 eV. The lower UV-vis Eg value and the stronger LMCT absorption band at ~320 nm 

are characteristic of oligomeric molybdates7. The UV-vis spectrum of crystalline MoO3, 

which consists of infinite sheets of highly distorted MoO6 units, also contains two LMCT 

absorption bands at ~250 nm (m) and ~320 nm (s) and an Eg value of 3.5 eV that reflect 

the presence of oligomeric molybdates. 

The in situ UV-vis spectra of the series of oxidized supported MoOx/S-Al2O3 catalysts 

under dehydrated conditions are presented in Figure 6.1. The UV-vis spectrum of the Sasol 

Catalox Al2O3 support exhibits a very small absorbance in the charge transfer region and 

this background feature was subtracted from the dehydrated spectra. The in situ UV-vis 

spectra of the dehydrated alumina-supported molybdena catalysts exhibit two LMCT bands 

at ~245 nm (s) and ~280-320 nm (m). The stronger LMCT band at ~245 nm indicates the 
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presence of a significant fraction of isolated surface molybdates and the weaker LMCT 

band at ~280-320 nm reflects the presence of a significant fraction of oligomeric surface 

molybdates.  
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Figure 6.1. In situ UV-vis DRS spectra of the dehydrated supported MoOx/S-Al2O3 

catalysts. The spectrum of the dehydrated S-Al2O3 support taken at 30 °C under flowing 

UHP Ar (200-800 nm) was subtracted from the spectra of the dehydrated catalysts.  
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The UV-vis Eg reflects the degree of oligomerization of molybdates and decreases as 

the number of bridging Mo-O-Mo bonds increases7. The UV-vis Eg values of the reference 

bulk molybdate compounds vs. number of bridging Mo-O-Mo bonds are plotted in Figure 

6.2 with the Eg values generally decreasing with increasing number of bridging Mo-O-Mo 

bonds7. The measured in situ UV-vis Eg values for the oxidized, dehydrated supported 

MoOx/Al2O3 catalysts are plotted vs. the corresponding estimated number of bridging Mo-

O-Mo bonds7 in Figure 6.2. The UV-vis Eg values of the supported MoOx phase 

monotonically decrease from 4.0 to 3.2 eV with increasing molybdate loading reflecting 

an increasing fraction of bridging Mo-O-Mo bonds associated with surface MoOx 

oligomers. The number of bridging Mo-O-Mo bonds for the supported MoOx phase was 

determined from the Eg vs. Mo-O-Mo relationship previously developed7. The supported 

1% MoOx/Al2O3 (0.2 Mo atoms/nm2) catalysts exhibits an Eg value of ~4.0 eV that reflects 

a high concentration of isolated MoOx structures and the absorption band at ~280-320 nm 

also reflects the presence of oligomeric MoOx sites. The Eg value slightly decreases to ~3.9 

eV for the supported 3-6% MoOx/Al2O3 (0.7-1.4 Mo atoms/nm2) catalysts and to ~3.8 eV 

for the supported 9% MoOx/Al2O3 (2.1 Mo atoms/nm2) catalyst, indicating slight increases 

in the concentration of oligomeric MoOx structures. For supported 13% MoOx/Al2O3 (3.0 

Mo atoms/nm2), the Eg value decreases to ~3.5 eV, indicating increasing concentration of 

oligomeric molybdate structures. For the supported 18-25% MoOx/Al2O3 (4.1-5.8 Mo 

atoms/nm2) catalysts, the Eg values further decrease to ~3.2-3.3 eV, reflecting increasing 

concentrations of oligomeric MoOx structures. In summary, the fraction of oligomeric 

molybdates increases with molybdena loading on the alumina support.  
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Figure 6.2. In situ UV-vis DRS Eg values of reference bulk molybdate compounds (black 

filled-in shapes) and dehydrated supported MoOx/S-Al2O3 catalysts (open red squares). 

The percent represents the weight percent of the molybdena loading on the alumina 

support. The Eg values were calculated from the UV-vis spectra with the spectrum of the 

dehydrated Sasol alumina subtracted. 
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6.2.1.2 In situ Raman Spectroscopy 

The in situ Raman spectra of the supported MoOx/H-Al2O3 catalysts under dehydrated 

conditions are presented in Figure 6.3. The H-Al2O3 support does not give rise to any 

Raman bands. The Raman spectrum of the dehydrated supported 3% MoOx/H-Al2O3 (0.7 

Mo atoms/nm2) catalyst exhibits weak bands at ~993, νs((O=)2MoO2, ~970, 

νas((O=)2MoO2, and ~840 cm-1, νs(Mo-O-Al), of isolated surface dioxo sites7,11,13. The 

corresponding band at ~344 cm-1 from the associated δ(MoO4) bending vibration, however, 

is not readily apparent because of its weak signal. A vibrational band from oligomeric 

molybdena surface species detected with UV-vis is not apparent in the Raman spectrum, 

most likely because of its weaker Raman scattering. For the supported 6% MoOx/H-Al2O3 

(1.4 Mo atoms/nm2) catalyst, the Mo=O vibration shifts slightly to ~1006 cm-1, reflecting 

oligomerization of some surface MoOx species, as detected by UV-vis. Weak vibrations 

also appear at ~580 cm-1 for the bridging νs(Mo-O-Mo). In the bending region, a weak 

vibration appears at ~344 cm-1 assigned to δ(MoO4) of surface MoOx sites. For the 

supported 9-13% MoOx/H-Al2O3 (2.1-3.0 Mo atoms/nm2) catalysts, the Mo=O vibration 

at ~1006 cm-1 increases in intensity compared to the supported 6% MoOx/H-Al2O3 catalyst 

due to formation of more oligomeric surface mono-oxo (O=MoO4/5)n sites7. The bands 

from bridging νas(Mo-O-Mo) and νs(Mo-O-Mo) bonds increase and a new band appears at 

~205 cm-1 assigned to δ(Mo-O-Mo) vibrations, reflecting the increasing number of 

oligomeric surface MoOx sites. In the bending region, the band at ~344 cm-1 that has been 

assigned to δ(MoO4) of surface MoOx sites increases7. Further increasing the MoOx loading 

to supported 18% MoOx/H-Al2O3 (4.1 Mo atoms/nm2), which approaches monolayer 

coverage of 4.6 Mo atoms/nm2, increases the intensities of the oligomeric mono-oxo bands. 
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For the supported 20-25% MoOx/H-Al2O3 (4.6-5.8 Mo atoms/nm2) catalysts, which 

correspond to about monolayer coverage and above monolayer coverage, crystalline MoO3 

NPs are also present and reflected by its characteristic strong bands at ~996, ~820, ~665, 

and ~200-400 cm-1.7 In summary, isolated dioxo surface sites predominate at low coverage 

(<1 Mo atoms/nm2), both isolated dioxo and oligomeric mono-oxo O=MoO4/5 sites co-

exist at higher coverage (>1-4.5 Mo atoms/nm2), and both surface MoOx sites and 

crystalline MoO3 are present above monolayer coverage. The current observations agree 

with previous experimental findings7,8 and theoretical calculations11,13. 
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Figure 6.3. In situ Raman spectra of dehydrated supported MoOx/H-Al2O3 catalysts as a 

function of molybdena loading in the (A) 700-1100 cm-1 and (B) 150-700 cm-1 regions. 

Spectra were collected at 30 °C under flowing UHP Ar using a 442 nm laser without a 

filter. For the spectrum of the supported 3% MoOx/H-Al2O3 catalyst, the intensity was 

multiplied by 3x to enhance the spectrum since the bands are weak compared to the other 

spectra with higher molybdena loadings.   
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6.2.1.3 In situ DRIFTS 

6.2.1.3.1 Overtone Region 

The overtone region from the in situ DRIFTS of the dehydrated supported MoOx/S-

Al2O3 catalysts is depicted in Figure 6.4. Strong absorption of the IR radiation by the Al2O3 

support obscures the primary Mo=O vibrations in the fundamental frequency region 

(~1000 cm-1 and below). The spectra were normalized using the S-Al2O3 support DRIFTS 

band at ~1041 cm-1, and the spectrum of the dehydrated S-Al2O3 support was subtracted to 

highlight the MoOx vibrations. The supported 3% MoOx/S-Al2O3 catalyst possesses a very 

weak overtone band that appears to be centered at ~1975 cm-1. The overtone band shifts 

slightly to higher wavenumbers as the MoOx loading is increased to 6% MoOx/S-Al2O3. 

For higher MoOx loading, a well-resolved overtone band is present at ~1988 cm-1 and 

assigned to the overtone vibration from the surface mono-oxo O=MoO4/5 oligomeric 

structures.20,21 The blue shift of the overtone band from the MoOx species is indicative of 

the increasing number of oligomeric mono-oxo sites with molybdena loading. 
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Figure 6.4. In situ DRIFT spectra of the overtone region from the supported MoOx/S-

Al2O3 catalysts under dehydrated conditions at 120 °C. The spectrum of the dehydrated 

Sasol alumina support was subtracted from the DRIFT spectra of the dehydrated MoOx/S-

Al2O3 catalysts. 
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6.2.1.3.2 Surface Hydroxyl Groups 

The in situ DRIFTS of the alumina surface hydroxyl region for the dehydrated 

supported MoOx/S-Al2O3 catalysts are shown in Figure 6.5. Previous experimental and 

theoretical studies have demonstrated that the surface hydroxyls can be used to determine 

which alumina surface hydroxyl sites anchor the surface MoOx structures22-25, and the 

various alumina surface hydroxyl types and vibrational positions reported in the literature 

can be found in Ref.22. At low surface coverage of MoOx (3% MoOx/S-Al2O3, 0.7 Mo 

atoms/nm2), the HO-µ1 bands (µ1-AlIV at 3787 cm-1 on the (110) facet, µ1-AlVI at 3764 cm-1 

on the (100) facet, and µ1-AlV at 3743 cm-1 and 3720 cm-1 on the (110) facet) are mostly 

consumed reflecting anchoring of MoOx at these sites. There is also some consumption of 

the HO-µ3 sites (µ3-AlVI at 3670 cm-1 on the (100) facet) of the alumina support. As the 

molybdena loading is increased to intermediate coverage (9-18% MoOx/S-Al2O3, 2.1-4.1 

Mo atoms/nm2), the Al2O3 µ1 and µ3 surface hydroxyls are completely consumed by 

anchoring of the surface molybdena. For the 18% MoOx/S-Al2O3, there is also 

consumption of the IR band at 3694 cm-1 from Al2O3 µ2-AlV surface hydroxyls located on 

the (110) facet. At the highest loadings of 20-25% MoOx/Al2O3 (4.6-5.8 Mo atoms/nm2), 

the Al2O3 µ2-AlV surface hydroxyls are completely consumed. The in situ DRIFTS of the 

Al2O3 surface hydroxyl region, thus, reveals that the surface MoOx species anchor at 

distinct surface Al-OH sites. At low surface MoOx coverage (<1 Mo atom/nm2), the 

predominant isolated surface (O=)2MoO2 sites anchor to more basic Al2O3 HO-µ1-AlIV 

hydroxyls, and at higher surface molybdena loading (>1-4.5 W atoms/nm2), the oligomeric 

surface O=MoO4/5 species anchor to more acidic Al2O3 HO-µ1/3-AlV/VI hydroxyls.  
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Figure 6.5. In situ DRIFT spectra of the surface hydroxyl region from the supported 

MoOx/S-Al2O3 catalysts under dehydrated conditions at 120 °C. 
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6.2.2 Structure of Supported MoOx/Al2O3 Catalysts During Olefin Metathesis 

6.2.2.1 In situ UV-vis Spectroscopy 

The in situ UV-vis spectra taken during propylene metathesis are presented in Figure 

6.6. Difference curves were taken to highlight the changes in the catalyst during the 

reaction with the reference spectrum being that of the corresponding dehydrated catalyst.  

At low molybdena loadings (3% MoOx/S-Al2O3, 0.7 Mo atoms/nm2), there are negative 

Mo+6 LMCT bands (~240 and ~280 nm) that modestly decrease over the one hour at 30°C 

during propylene metathesis. There are no d-d transition bands from reduced MoOx sites 

present, and the decrease in the LMCT bands is not visible unless difference curves are 

taken, suggesting that there is only a minor perturbation caused by propylene 

chemisorption. When the temperature is increased to 200 °C under Ar, the LMCT bands 

further decrease without the detection of d-d transitions from reduced surface MoOx sites. 

During propylene metathesis at 200 °C, the absorbance of the LMCT bands increases, and 

there are still no d-d transition bands present, suggesting that the sites are not being 

appreciably reduced, but are only slightly perturbed by the adsorbed propylene. The 

positive bands at ~250 ~ 350 nm are artifacts of the subtraction since there is negligible 

change in intensity as compared to the negative bands. Furthermore, the catalyst surface 

did not darken in color during exposure to propylene suggesting that at low surface 

molybdena coverages (<1 Mo atom/nm2), in which the isolated (O=)2MoO2 sites dominate, 

there is just minor perturbation of the surface molybdena species in the presence of 

propylene.  

At higher molybdena loadings (20% MoOx/S-Al2O3, 4.6 Mo atoms/nm2) where 

oligomeric surface MoOx sites are more plentiful, the catalyst quickly darkened in color at 
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30 °C upon exposure to propylene reflecting either reduction of the surface MoOx sites 

and/or the presence of significant surface organic intermediates. The corresponding in situ 

UV-vis spectrum in Figure 6.6 B exhibits only a small d-d transition band maximum at 

~460 nm, similar to Mo+4 in bulk MoO2 (see Figure S 6.1)26, that grows with time-on-

stream and absence of changes in the LMCT region. The UV-vis Mo+4 absorbance band at 

460 nm further increases upon increasing the temperature to 200°C in flowing Ar indicating 

that some surface intermediates become activated at the higher temperature. The UV-vis 

absorbance band of Mo+4 at 460 nm, however, only mildly increases during propylene 

metathesis at 200 °C suggesting that the number of reduced Mo+4 sites has reached a 

maximum. The presence of the UV-vis Mo+4
 d-d transition band demonstrates that the 

catalysts containing higher amounts of oligomeric surface MoOx sites during propylene 

metathesis at 200 °C can possess some reduced sites. The lack of the extensive decrease in 

the UV-vis Mo+6 LMCT band during propylene metathesis at 200 °C, however, 

demonstrates that the concentration of surface Mo+4 sites is very low and surface Mo+6 sites 

are the dominant molybdena oxidation state during propylene metathesis. 
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Figure 6.6. In situ UV-vis absorbance difference spectra of catalysts: (A) 3% MoOx/S-

Al2O3 (0.7 Mo atoms/nm2) and (B) 20% MoOx/S-Al2O3 (4.6 Mo atoms/nm2) monolayer 

coverage during propylene metathesis. 
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6.2.2.2 In situ Raman Spectroscopy 

The in situ Raman spectra during propylene metathesis reaction conditions at low and 

about monolayer surface coverage are presented in Figure 6.7. At low molybdena coverage 

(3% MoOx/H-Al2O3, 0.7 Mo atoms/nm2), the Raman bands for the isolated dioxo site at 

~970 and ~993 cm-1 are minimally perturbed by exposure to the propylene metathesis 

reaction (30 °C and 200 °C) indicating that the isolated dioxo sites are not being activated 

for olefin metathesis. For the supported 18% MoOx/H-Al2O3 catalyst (4.1 Mo atoms/nm2), 

the Raman band at ~1006 cm-1 of the surface oligomeric mono-oxo O=MoO4/5 sites 

decreases during the propylene metathesis reaction. The weak bands at ~205 cm-1 and 

~377 cm-1 from the bending modes of Mo-O-Mo and MoO5, respectively, and the band at 

~580 cm-1 for the symmetric stretch of the Mo-O-Mo bonds decrease during the propylene 

metathesis reaction as well (see Figure S 6.2). After flushing the catalyst with UHP Ar for 

60 min, there is still a band maximum at ~1006 cm-1, indicating that not all the oligomeric 

surface MoOx sites have reacted during propylene metathesis at 30 °C. At the end of the 

propylene metathesis reaction at 200 °C, the ~1006 cm-1 band observed after reaction at 

30°C is now a broader band at ~993 ~ 996 cm-1, indicating that the oligomeric sites are 

now fully activated at the higher temperature of 200 °C. Additionally, the presence of band 

maxima at ~240, ~285, ~336, ~665, ~820, and ~990-996 cm-1 demonstrates that crystalline 

NPs are not activated during propylene metathesis, and that the isolated dioxo sites may 

still also be present on the catalyst surface (see Figure S 6.3). 
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Figure 6.7. In situ Raman spectra of catalysts: (A) 3% MoOx/H-Al2O3 (0.7 Mo atoms/nm2) 

and (B) 18% MoOx/H-Al2O3 (4.1 Mo atoms/nm2) during propylene metathesis in the 

700-1100 cm-1 vibrational region. A D0.6 (*D1) filter was employed to minimize surface 

heating and induced reduction by the laser. In some cases, the spectral bands were weaker 

because of the darkened sample, so the signal intensity was multiplied so that the bands 

could be seen more clearly. 
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The in situ Raman spectra in the hydrocarbon region (1200-1800 cm-1) of the supported 

3% MoOx/H-Al2O3 and 18% MoOx/H-Al2O3 catalysts during propylene metathesis are 

presented in Figure 8. For the supported 3% MoOx/Al2O3 catalyst, Raman bands from 

surface hydrocarbon species are absent at both 30 °C and 200 °C. This indicates that surface 

hydrocarbons do not adsorb on the alumina support sites, and that the surface dioxo MoO4 

sites are not able to adsorb and activate propylene for the metathesis reaction. For the 

supported 18% MoOx/Al2O3 catalyst, however, Raman bands from surface hydrocarbon 

species (~1365 and ~1560 ~ 1600 cm-1, assigned to the characteristic D (disordered) and 

G (graphite) peaks of sp2-bonded carbon, respectively)27,28 immediately appeared and 

increased in intensity with propylene metathesis time on-stream. The D peak represents the 

disorder in the graphitic structure, and the broad nature of the G peak is related to the degree 

of disorder and/or inhomogeneity. The G peak also red shifts to lower wavenumbers with 

propylene time-on-stream suggesting that as the reaction progresses, a more ordered sp2-

bonded carbon species forms.27,28  
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Figure 6.8. In situ Raman spectra of supported catalysts during propylene metathesis in 

the carbon/hydrocarbon vibrational region (1200-1800 cm-1): (A) 3% MoOx/H-Al2O3 (0.7 

Mo atoms/nm2) and (B) 18% MoOx/H-Al2O3 (4.1 Mo atoms/nm2) during propylene 

metathesis. A D0.6 (*D1) filter was employed to minimize surface heating and induced 

reduction by the laser.  
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6.2.2.3 C3H6-TPSR 

The C4H8/C3H6-TPSR spectra are presented in Figure 6.9. The formation of oxygenated 

reaction products (Figure S 6.6) (acetaldehyde (CH3CHO), acetone (CH3COCH3), 

formaldehyde (HCHO), CO, CO2, and H2O) occurs during activation of the MoOx sites on 

alumina. For supported 3% MoOx/Al2O3 (0.7 Mo atoms/nm2), there is only one peak 

temperature (Tp) for butene formation at ~544 °C and only a small amount of oxygenated 

products is formed below 400 °C (Figure S 6.6). As molybdena loading is increased from 

6-18% MoOx/Al2O3 (1.4-3.0 Mo atoms/nm2), the Tp values for butene formation 

progressively shift to lower temperatures from 544 to 74 °C indicating the presence of 

MoOx sites that are much more reactive for metathesis. This is also consistent with the 

much lower temperatures of ~200 °C for the appearance of oxygenated products (Figure S 

6.4) for high loaded molybdena catalysts. The presence of crystalline MoO3 NPs for the 

supported 20-25% MoOx/Al2O3 catalysts (4.6-5.8 Mo atoms/nm2) results in less production 

of butene revealing the detrimental influence of crystalline MoO3 NPs on the accessibility 

of olefins to the surface MoOx sites for propylene metathesis. All the supported 

MoOx/Al2O3 catalysts exhibit a butene production peak at ~500 °C, representative of 

reaction from the isolated surface dioxo MoO4 species that are always present on the 

supported MoOx/Al2O3 catalysts. 

The corresponding C2H4/C3H6-TPSR spectra are shown in Figure 6.10 and 

qualitatively follow the same trend as for butene production, but usually with different Tp 

values suggesting that both ethylene and butene are not produced by the same rate-

determining-step. For the supported 3-13% MoOx/S-Al2O3 catalysts, C2H4 was formed at 

two temperature ranges (Tp~50 °C and ~300-450 °C), with the lower Tp constant and the 
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higher Tp decreasing with molybdena loading. Although for the supported 3% MoOx/S-

Al2O3 catalyst the high temperature Tp value was the same for ethylene and butene 

formation, at higher molybdena loadings the Tp values for butene formation were lower 

than the corresponding high temperature Tp values for ethylene formation. Further 

increasing the molybdena loading on alumina decreases the amount of ethylene formed by 

blocking propylene access to the active sites. In addition, the low temperature reaction 

pathway is not observed at these high molybdena loadings.   
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Figure 6.9. The C4H8/C3H6-TPSR spectra from the supported MoOx/S-Al2O3 catalysts as 

a function of MoOx loading. The butene product was monitored with the mass spectrometer 

m/z=56 ratio. 
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Figure 6.10. The C2H4/C3H6-TPSR spectra from the supported MoOx/S-Al2O3 catalysts: 

(A) 3-13% MoOx/S-Al2O3 and (B) 18-25% MoOx/S-Al2O3. The ethylene product was 

monitored with the mass spectrometer m/z=27 ratio. The MS m/z=27 signal was corrected 

for contributions from cracking of the C3H6 and C4H8 molecules in the MS. 
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6.3 Discussion 

6.3.1 Initial Molecular Structures and Anchoring Sites of the Dehydrated  

The initial oxidized, dehydrated surface MoOx sites on Al2O3 are present as Mo+6Ox 

and consist of both isolated dioxo (O=)2MoO2 sites and oligomeric mono-oxo O=MoO4/5 

sites as shown by in situ UV-vis (Figure 6.1) and Raman (Figure 6.3) spectroscopy, and 

summarized in Table 6.1. 
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Table 6.1: Summary of Al2O3-Supported Surface MoOx Sites and 

Butene/Propylene–TPSR Tp Values 

wt% Mo (Mo/nm2) Type of Surface MoOx Sites Tp (°C) 

3 (0.7) Isolated 
  

544 

6 (1.4) Isolated 
 

237 544 

9 (2.1) Isolated + oligomeric 70 204 535 

13 (3.0) Isolated + oligomeric 112 
 

500 

18 (4.1) Isolated + oligomeric 83 
 

450 

20 (4.6) Isolated + oligomeric + NPs 74 
 

450 

25 (5.8) Isolated + oligomeric + NPs 74 
 

450 
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At low surface MoOx coverage (<1 Mo atoms/nm2), the isolated dioxo (O=)2MoO2 sites 

predominate. At higher surface MoOx coverage (1-4.6 Mo atoms/nm2), both the isolated 

dioxo MoO4 and oligomeric O=MoO4/5 species co-exist, with the latter primarily increasing 

with surface molybdena coverage. Above monolayer coverage (>4.6 Mo atoms/nm2), 

crystalline MoO3 nanoparticles are also present on top of the surface MoOx monolayer on 

Al2O3 as shown by in situ Raman spectroscopy (Figure 6.3). The various dehydrated 

supported MoOx structures on Al2O3 are shown in Scheme 6.1. 
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Scheme 6.1. Molecular structures of dehydrated isolated surface (O=)2MoO2 sites, 

oligomeric surface O=MoO4 sites, and crystalline MoO3 nanoparticles on the Al2O3 

support. 
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The molecular structures of the alumina-supported MoOx sites depicted in Scheme 6.1 

are in agreement with the structures proposed from previous characterization studies of 

dehydrated supported MoOx/Al2O3 catalysts: in situ XANES8,9, in situ Raman8,9, in situ 

UV-vis7, and XPS14.  

The surface MoOx sites preferentially anchor to the alumina support at more basic HO-

μ1-AlIV surface hydroxyls at low surface molybdena coverage and to some of the more 

acidic HO-μ1/3-AlV/VI surface hydroxyls. At high surface molybdena coverage, all the 

alumina HO-μ1-AlIV surface hydroxyls are titrated by the isolated surface MoO4 species 

and most of the alumina HO-μ1/3-AlV/VI surface hydroxyls are titrated by the oligomeric 

surface MoO5/6 species. The crystalline MoO3 NPs are not anchored to the Al2O3 support 

and reside on top of the surface MoOx monolayer and interact via weak van der Waals 

forces with the monolayer.  

Previous in situ IR studies of supported MoOx/Al2O3 catalysts synthesized from 

decomposition of Mo(CO)6 on Al2O3 
23 and of reaction of MoO2(acac)2 with alumina29 also 

found a preferential consumption of the surface hydroxyl IR band at 3740 cm-1 (tentatively 

assigned to more basic hydroxyls and subsequently assigned to the basic HO-μ1-AlIV 

surface hydroxyls by Digne and Sautet via DFT studies24,25).  

6.3.2 Catalyst Structure During Olefin Metathesis 

The surface Mo+6Ox sites on Al2O3 need to be activated by propylene during the 

propylene metathesis reaction conditions (~25-200 °C). Activation involves removal of an 

oxygen atom from the Mo=O oxo bond30 as shown by initial formation of oxygenates 

(Figure S 6.6). While the oligomeric surface MoOx sites readily form oxygenates at lower 

temperatures (~25-200 °C), the isolated surface MoOx sites only form oxygenates at higher 
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temperatures (>400 °C). The oxidation state of the surface MoOx sites during propylene 

metathesis is dominated by Mo+6 (Figure 6.6) because the initial Mo=O oxo bond is 

replaced by Mo=CH2 and Mo=CHCH3 alkyls that oxidize the surface Mo species back to 

the +6 oxidation state (as shown in Scheme 6.2). The trace of reduced surface Mo+4 sites 

may just be from the minor unselective reduction reactions that produce H2O, CO, and CO2 

(Figure 6.6). 
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Scheme 6.2. Representation of the activated supported MoOx/Al2O3 catalyst. 
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The structure and oxidation state(s) of activated surface MoOx sites on Al2O3 during 

olefin metathesis have previously been addressed by a few studies, but the catalysts were 

activated with H2 or CO rather than olefins.14,15,31 In two separate studies, Gruenert et 

al.14,15 examined the alumina-supported molybdena catalysts (0.5-13% MoOx/Al2O3 

prepared via impregnation of a solution of MoO3 in NH4OH (pH ≈ 8)) for propylene 

metathesis activity by initial activation of Al2O3-supported MoOx with H2 or thermal 

treatment in Ar and employed XPS to determine the resulting Mo oxidation states15. The 

resulting H2-activated catalysts were subsequently examined for propylene metathesis at 

200 °C using a conventional flow reactor. It was concluded that the surface molybdena 

sites derived from Mo+4 or Mo+6 sites are active for metathesis, while the surface 

molybdena sites derived from Mo+5, Mo+2, and Mo0
 sites are inactive for metathesis. This 

indicates that the initial Mo+6 and Mo+4 sites can transform to catalytic active sites during 

propylene metathesis and that the initial Mo+5, Mo+2, and Mo0
 sites are unable to transform 

to activated sites during propylene metathesis. The lack of metathesis activity for the initial 

Mo+5, Mo+2, and Mo0
 sites suggests that propylene cannot reduce or oxidize these oxidation 

states to an active Mo state. The nature of the activated site(s) during propylene metathesis, 

however, cannot be determined from such indirect measurements since the surface MoOx 

oxidation states are dynamic and depend on the metathesis reaction conditions. Despite the 

limitations of this earlier study, these results qualitatively agree with the current in situ 

spectroscopic findings during propylene metathesis that the surface Mo sites on alumina 
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are primarily present as Mo+6 sites with a minor amount of Mo+4 sites during propylene 

metathesis.14,15  

Klimov et al.31 investigated the oxidation states of conventional supported MoOx/Al2O3 

catalysts (prepared via incipient-wetness impregnation of aqueous ammonium 

heptamolybdate) by first activating the catalysts with CO or H2 at 500 °C, testing the 

propylene metathesis activity at room temperature, and subsequently pulsing oxygen to 

determine the oxidation state by oxygen consumption. The estimated Mo oxidation state 

was found to decrease with increasing Mo loading (1.4% Mo/Al2O3 (Mo+5), 3.3% 

Mo/Al2O3 (Mo+4), and 6.2% Mo/Al2O3 (Mo+2)). These findings, however, are clouded by 

the presence of surface Mo=CH2 and Mo=CHCH3 reaction intermediates after the 

metathesis reaction that may contribute to O2 consumption and yield results suggesting 

deep reduction of the surface MoOx sites (e.g., Mo+2). In the present investigation, Mo+2 

sites were not detected during propylene metathesis reaction conditions with in situ 

UV-vis.32 

6.3.3 Structure-Reactivity Relationships 

Prior to propylene metathesis, the dehydrated, oxidized supported MoOx/Al2O3 

catalysts consist of both isolated surface dioxo MoO4 sites anchored to the alumina support 

at more basic μ1-AlIV surface hydroxyls, and surface oligomeric mono-oxo MoO5/6 sites 

anchored to the alumina support at more acidic μ1/3-AlV/VI surface hydroxyls, with the 

oligomers predominant at medium and high coverage. The isolated surface MoO4 sites 

anchored to the more basic OH sites on alumina are not activated during normal propylene 

metathesis reaction temperatures (~100 °C) and require very high temperature for 

activation by propylene, >400 °C (Figure 6.7, Figure 6.10, and Figure S 6.6). The surface 
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oligomeric MoO5/6 sites anchored to the more acidic OH sites on alumina are activated at 

mild temperatures (~50-150 °C) reflecting the more facile conditions required for their 

activation by propylene (Figure 6.7-Figure 6.10 and Figure S 6.6). Additionally, crystalline 

MoO3 NPs residing on the surface MoOx monolayer block access of propylene to the 

surface MoOx sites, which decreases the number of participating surface MoOx active sites 

(Figure 6.9). The blocking of sites is demonstrated by the decrease in butene formation 

with the same Tp value, which reflects fewer activated sites with the same surface kinetics. 

The nature of the surface MoOx species (isolated or oligomeric) is dependent on the 

specific anchoring alumina surface hydroxyls (more basic or more acidic, respectively). 

Previous DFT calculations have examined the reactivity of surface Mo-alkylidene 

surface reaction intermediates on alumina17-19,33, but did not examine the activation of the 

initial surface molybdenum oxide sites on alumina during olefin metathesis. The DFT 

studies concluded that the activity and stability of the surface Mo-alkylidenes depend on 

their anchoring location on the alumina support. In the three most reactive Mo-methylidene 

sites, the Mo was anchored to the more acidic hydroxyl sites: either two HO-µ1-AlV sites, 

one HO-µ1-AlVI and one HO-µ3-AlVI sites, or two HO-µ3-AlVI sites. The Mo anchored to 

the basic HO-µ1-AlIV sites was predicted to be less active. These studies have also proposed 

that isolated surface Mo-alkylidene sites are less likely to be the active sites since such sites 

tended to transform the active trigonal bipyramidal molybdacyclobutane complex into a 

more stable and less reactive square pyramidal molybdacyclobutane structure. This 

theoretical prediction agrees with the current finding that isolated surface MoOx anchored 

at basic HO-µ1-AlIV sites are difficult to activate for propylene metathesis and that 

oligomeric surface MoOx anchored at more acidic HO-µ1-AlV and HO-µ1-AlVI surface 
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hydroxyls are easily activated for propylene metathesis. Although the initial oligomeric 

surface MoO5/6 species become the active sites, it is their anchoring to the more acidic 

alumina hydroxyls rather than their oligomeric structure that controls their activation. The 

DFT calculations proposed that the active surface Mo-alkylidene sites are pseudo-MoO4 

coordinated, but the current findings reveal that the activated surface Mo sites are derived 

from oligomeric pseudo-MoO5/6 sites and not from isolated pseudo-MoO4 sites.   

Similar observations were made for activation of surface ReO4 sites on Al2O3 during 

propylene metathesis22 with surface ReO4 sites on more basic alumina hydroxyls unable to 

become activated while surface ReO4 sites on more acidic hydroxyls readily activated. 

Furthermore, both surface ReO4 sites on alumina are isolated, again emphasizing the 

important role of the anchoring alumina surface hydroxyls in controlling the activation 

process. 

6.4 Conclusions 

The initial dehydrated, oxidized supported MoOx/Al2O3 catalysts primarily consist of 

isolated dioxo MoO4 surface sites at low coverage (<1 Mo atoms/nm2), oligomeric mono-

oxo MoO5/6 surface species at intermediate coverage (1-4.6 Mo atoms/nm2), and also 

crystalline MoO3 nanoparticles above monolayer coverage (>4.6 Mo atoms.nm2). The 

isolated MoO4 surface species are quite stable and do not activate at mild propylene 

metathesis reaction conditions (~25-200 °C). The oligomeric MoO5/6 surface species, 

however, readily activate during propylene metathesis at ~25-200 °C. Activation of the 

surface MoOx species for propylene metathesis is strongly dependent on their anchoring 

surface hydroxyl sites on the Al2O3 support. The difficult to activate isolated surface dioxo 

MoO4 species anchor at the more basic HO-μ1-AlIV surface hydroxyls while the readily 
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activated oligomeric surface mono-oxo MoO5/6 species anchor at the more acidic HO-μ1/3-

AlV/VI surface hydroxyls. The crystalline MoO3 nanoparticles are not active for propylene 

metathesis and their presence decreases the accessibility of propylene to the activated 

surface MoOx species for metathesis. The catalytic active sites for propylene metathesis 

are the initial oligomeric mono-oxo MoO5/6 surface species on the alumina support. The 

initial oligomeric mono-oxo MoO5/6 surface species activate by removal of an oxo Mo=O 

and formation of Mo=CH2 and Mo=CHCH3 surface alkyls, thus, retaining the Mo+6 

oxidation state. The present investigation experimentally establishes, for the first time, the 

structure-reactivity relationship for propylene metathesis by supported MoOx/Al2O3 

catalysts.  
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Figure S 6.1. UV-vis spectra of bulk molybdate reference compounds collected under 

ambient conditions (200-800 nm). 
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Figure S 6.2. In situ Raman spectra of catalysts during propylene: (A) 3% MoOx/H-Al2O3 

(0.7 Mo atoms/nm2) and (B) 18% MoOx/H-Al2O3 (4.6 Mo atoms/nm2) (150-700 cm-1). A 

D0.6 filter was employed to minimize surface heating and induced reduction by the laser. 

In some cases, the Raman spectral bands are either too weak because of the darkened 

sample or too strong because of the presence of MoO3 NPs, so the signal intensity was 

adjusted to allow better observation of the bands. 
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Figure S 6.3. In situ Raman spectra of the supported 25%MoOx/H-Al2O3 catalyst (5.8 Mo 

atoms/nm2) in the (A) 700-1100 cm-1 and (B) 150-700 cm-1 regions. A D0.6 filter was 

employed to minimize surface heating and induced reduction by the laser. In some cases, 

the Raman spectral bands were either too weak because of the darkened sample or too 

strong because of the presence of MoO3 NPs, so the signal intensity was adjusted to allow 

better observation of the bands. 
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The Raman spectrum of the Harshaw alumina support does not yield any Raman 

vibrations. An internal standard was used to allow for normalization of the signal intensities 

of the spectra by physically mixing pure TiO2 (anatase phase) with the catalysts following 

a previous procedure (S1). Approximately 0.5wt% of titanium (IV) oxide (TiO2 anatase, 

~45-55 m2/g, Aldrich Chemical Company, Inc., 99.9%) was physically mixed with the 

already-prepared supported MoOx/H-Al2O3 catalysts by grinding together for ~10 min to 

create the MoOx/H-Al2O3+TiO2. The TiO2 band at ~636 cm-1 exhibited in the H-

Al2O3+TiO2 support was used to normalize all the Raman spectra. The normalized in situ 

Raman spectra are presented in Figure S 4. The strong TiO2 bands in the 150-700 cm-1 

region prevented observation of the bridging Mo-O-Mo stretching vibration at ~580 cm-1 

and corresponding bending mode at ~205 cm-1. 
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Figure S 6.4. Normalized in situ Raman spectra of dehydrated supported MoOx/H-

Al2O3+TiO2 catalysts: (A) 150-700 cm-1 and (B) 700-1100 cm-1.  
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Figure S 6.5. Normalized in situ Raman spectra of supported MoOx/H-Al2O3+TiO2 

catalysts during propylene metathesis (700-1100 cm-1 region): (A) low surface MoOx 

coverage (3%MoOx/H-Al2O3+TiO2; 0.7 Mo atoms/nm2) and (B) high surface MoOx 

coverage (18%MoOx/H-Al2O3+TiO2; 4.1 Mo atoms/nm2). A D0.6 filter was employed to 

minimize surface heating and induced reduction by the laser. In some cases, the Raman 

spectral bands were either too weak because of the darkened sample so the signal intensity 

was adjusted to allow better observation of the bands. 
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Figure S 6.6. Oxygenated products formed during C3H6-TPSR from supported molybdena 

catalysts: (A) 3% MoOx/S-Al2O3 (0.7 Mo atoms/nm2) and (B) 18% MoOx/Al2O3 (4.1 Mo 

atoms/nm2). The oxygenated products were monitored with an online MS connected to the 

reactor outlet. 
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Chapter 7 | Activation Mechanism and Surface Intermediates for Olefin 

Metathesis by Supported MoOx/Al2O3 Catalysts 

Abstract 

The activation mechanism of supported MoOx/Al2O3 catalysts and surface 

intermediates are established using in situ DRIFTS during olefin metathesis reaction 

conditions with previously synthesized high molybdena content supported catalysts 

(20-25% MoOx/Al2O3). Activation of the surface MoOx sites includes protonation of the 

propylene reactant isopropoxide surface species which then oxidize to coordinated acetone 

via reduction of the surface MoOx sites. The acetone desorbs from the catalyst surface, 

leaving a vacancy for the next propylene molecule to coordinate via oxidative addition and 

re-oxidize the surface sites back to Mo+6. Thus, activation proceeds via removal of oxo 

Mo=O bonds and insertion of =CH2 and =CHCH3 alkyls and maintain the surface MoOx 

species in the Mo+6 oxidation state. This study establishes the active surface intermediates 

and activation mechanism of the surface MoOx sites. 

7.1 Introduction 

Little is known concerning the surface reaction intermediates during olefin metathesis 

and activation mechanism of the surface MoOx sites. Some early in situ studies1 concluded 

that propylene becomes π-bonded to oxidized and CO-reduced catalyst surface of the 

MoOx/Al2O3 catalysts. An IR band at 1600 cm-1 was detected and assigned to the C=C bond 

of the π-bond, which was red-shifted from the band seen at 1645 cm-1
 when propylene is 

adsorbed on pure Al2O3. The adsorption of propylene was therefore concluded to be 

reversible, and this π-bonded complex was proposed to be a reaction intermediate during 

propylene metathesis. However, direct adsorption of propylene on the Al2O3 support was 
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not considered and attempts were not made to distinguish between propylene bonded to 

Mo sites and Al sites.1  

From DFT studies2, it has been suggested also that Mo-cyclobutane intermediates 

anchored to AlO6 cause the high reactivity. However, cyclic intermediates are usually less 

stable surface species3, and theoretical studies have not investigated the activation of the 

surface MoOx sites during olefin metathesis. 

This chapter presents in situ DRIFTS studies to determine the surface intermediates 

and activation mechanism of the surface MoOx sites in olefin metathesis reaction 

conditions. 

7.2 Results 

7.2.1 C4H8-C2H4 Titration 

Figure 7.1 presents the in situ DRIFT spectra taken during the C4H8-C2H4 titration of 

the 20% MoOx/Al2O3 catalyst, which corresponds to approximately monolayer coverage 

of MoOx, ensuring none of the detected IR bands correspond to species adsorbed directly 

on the alumina surface. 

After normalizing the IR spectra against the Al2O3 vibration at ~1041 cm-1, the 

difference spectra were obtained by subtracting the IR spectrum of the initial dehydrated 

catalyst from each IR spectrum taken during the titration experiment. Figure 7.1 A presents 

the 1200-1900 cm-1 range, while Figure 7.1 B presents the hydrocarbon region of 2800-

3200 cm-1. During butene adsorption at 120 °C, bands arise at 2864, 2923, and 3035 cm-1 

characteristic of gas phase butene4, which are removed during the subsequent Ar flush for 

45 min. Several other bands that appeared during butene adsorption persisted through the 

Ar flush, indicating that they are related to strongly bound intermediates and may 
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participate in the olefin metathesis reaction. In Figure 7.1, bands are observed at 1390 and 

1460 for the δs(CH3) and δs(CH2) deformation modes and 2880, 2939, and 2980 assigned 

to the corresponding stretching modes νs(CH3), νas(CH2), and νas(CH3), respectively.5-7 

These bands characterize the surface intermediates Mo=CH2 and Mo=CHCH3.
8,9 A strong 

band is also observed at ~1680 cm-1 with a shoulder at ~1650 cm-1, assigned to the ν(C=C) 

of an adsorbed butene π-complex.6 The ~1680 cm-1 band is slightly red-shifted to lower 

wavenumbers from the characteristic ν(C=O) stretching region, suggesting that there may 

be formation of a surface intermediate containing a carbonyl group. During ethylene 

titration at a constant temperature of 120 °C after the argon flush, little to no change is 

observed in the bands. However, as the temperature is ramped from 120 °C under flowing 

ethylene, the bands at ~1650 and ~1680 cm-1 decrease, while a broad band at ~1555 cm-1 

appears beginning at ~210 °C. In the bending region, the bands at 1390 and 1460 cm-1 for 

δs(CH3) and δs(CH2), respectively, decrease, while a band at ~1465 cm-1 increases starting 

at ~210 °C. The appearance of the bands at 1465 and 1555 cm-1 coincide with the 

disappearances of the bands at 1680 cm-1 for ν(C=O) and 1390 and 1460 cm-1 for δ(CH3) 

and shift of the 2939 cm-1 band to 2935 cm-1, suggesting these phenomena are due to the 

decomposition of a carboxylate, allowing assignment of the former bands to the νs(COO-) 

and νas(COO-), respectively.10,11  

In situ DRIFTS of propylene adsorption and temperature programming revealed similar 

IR bands to those of the C4H8-C2H4 titration (see Figure S 7.1). Gas-phase propylene gives 

rise to bands at 1339, 1384, and 1466 cm-1 in the bending region and 2920, 2943, 2953, 

3082, and 3103 cm-1 in the CH stretching region4, which are removed during the subsequent 

45 min Ar flush. After the Ar flush, bands at 1375 cm-1 and 2877, 2929, and 2985 cm-1 are 
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still present for the deformation mode δs(CH3) and stretching modes νs(CH3), νas(CH2), and 

νas(CH2), respectively.5-7 These bands are for strongly bound intermediates are related to 

the Mo=CH2 and Mo=CHCH3 surface intermediates8,9 and agree with the bands observed 

after butene adsorption with subsequent Ar flushing. During subsequent propylene TP, the 

bands at 1653 and 1687 cm-1 for the ν(C=C) and ν(C=O) vibrations, respectively, and 1375 

cm-1 for δs(CH3) decrease, while broader bands appear at ~1470 and 1570 cm-1 resulting 

from decomposition of a carboxylate10,11, as for butene-ethylene titration. The similarity in 

the bands observed in the forward (propylene adsorption and TP) and reverse (butene-

ethylene titration) directions of the olefin metathesis reaction demonstrate that the 

activation mechanism of the surface MoOx sites on Al2O3 does not depend on the specific 

reactant olefins. 

In recent studies, a band for ν(C=O) was detected during propylene metathesis over 

supported MoOx/SBA-15 catalysts.9 It was proposed that adsorption of propylene causes 

formation of isopropoxide species that then oxidize and form acetone.9  

To determine the origin of the ν(C=O) bond for supported MoOx/Al2O3 catalysts, the 

in situ IR bands resulting from acetone and iso-propanol adsorption and subsequent 

temperature programming with propylene were determined (see Figure S 7.2 and Figure S 

7.3, respectively).  

Figure S 7.2 presents the in situ DRIFTS of acetone adsorption and subsequent 

temperature programming in flowing propylene. After 30 min of acetone adsorption at 30 

°C, the characteristic bands for acetone are detected. Gas-phase acetone exhibits bands at 

~1210-1230, 1720, 1736, 2923, 2970, 3008, and 3030 cm-1.4 Bands are also present at 

~1365 and 1425 cm-1 for the deformation modes δ(CH3).
5,9 With the introduction of 
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propylene at 30 °C, the gas-phase acetone bands in the ~1210-1750 cm-1 decrease since 

there is no more flow of acetone (see Figure S 7.2 A), although there is little change in the 

hydrocarbon stretching region (2800-3200 cm-1) since in this region, the gas-phase 

propylene bands overlap with those of gas-phase acetone (see Figure S 7.2 B).4 As the 

temperature is increased to 60 °C (above the boiling point of acetone) under flowing 

propylene, the bands for the acetone decrease because the acetone is evaporating from the 

catalyst.12 The presence of a carbonyl-containing surface species is evidenced by the band 

at 1700 cm-1 that red-shifts to ~1680 cm-1 as the temperature continues increases, showing 

that the carbonyl group is anchoring to the catalyst surface. When the temperature is further 

increased to 210 °C in flowing propylene, the band at ~1683 decreases and broad bands 

are detected at ~1465 and 1570 cm-1 assigned to νs(COO-) and νas(COO-), respectively, 

arising from decomposition of a carboxylate group.10,11 The latter three bands (~1683, 

1465, and 1570 cm-1) agree with those detected during C4H8-C2H4 titration (see Figure 7.1), 

propylene adsorption-TP (see Figure S 7.1), and iso-propanol adsorption with subsequent 

propylene TP (see Figure S 7.3). The shifting of the ν(C=O) band and formation of the 

νs(COO-) and νas(COO-) bands mirror the events taking place in olefin metathesis 

conditions (see Figure 7.1 and Figure S 7.1) as well as those during iso-propanol adsorption 

and propylene temperature programming (see Figure S 7.3), demonstrating that acetone is 

formed during activation of the surface MoOx sites.  

Figure S 7.3 presents the in situ DRIFT spectra from adsorption of iso-propanol at 30 

°C and subsequent temperature ramping under flowing propylene. After 30 min of iso-

propanol adsorption at 30 °C, characteristic bands in the bending region are visible at 

~1275 cm-1 for ν(C-O), 1338 cm-1 for in-plane δ(OH), and 1376, 1390, and 1465 cm-1 for 
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δ(CH3) assigned to isopropoxide species9, while in the hydrocarbon stretching region, 

bands arise from the corresponding stretching mode ν(CH3) at ~2885, 2935, and 

2980 cm-1.5,9. When the reactant gas flow is switched to propylene and the temperature is 

increased, the bands for the isopropoxide species decrease, and when the temperature 

reaches 120 °C, a band appears at ~1700 cm-1 for the ν(C=O) of a carbonyl-containing 

species. As the temperature is increased to 180 °C under the propylene flow, the carbonyl 

band increases and red-shifts to ~1683 cm-1, indicating that this surface species is binding 

to the surface of the MoOx/Al2O3 catalyst. As the temperature is further increased to 210 °C 

in flowing propylene, the band at ~1683 decreases and broad bands are detected at ~1465 

and 1555 cm-1 assigned to νs(COO-) and νas(COO-), respectively, arising from 

decomposition of the carboxylate.10,11 The latter three bands (~1683, 1465, and 1555 cm-1) 

match with those detected during C4H8-C2H4 titration (see Figure 7.1), propylene 

adsorption-TP (see Figure S 7.1), and acetone adsorption with subsequent C3H6-TP (see 

Figure S 7.2), demonstrating that isopropoxide species oxidize to acetone during activation 

of the surface MoOx sites.  
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Figure 7.1. In situ DRIFT spectra during C4H8-C2H4 titration at 120 °C and subsequent 

temperature programming at 10 °C/min under flowing ethylene of the supported 20% 

MoOx/Al2O3 catalyst. (A) 1200-1900 cm-1 and (B) 2800-3200 cm-1.  
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7.2.2 C3D6-C3H6 Isotope Exchange 

Figure 7.2 presents the in situ DRIFT spectra taken during C3D6-C3H6 isotope exchange 

of the supported 20% MoOx/Al2O3 catalyst, which corresponds to approximately 

monolayer coverage of MoOx, ensuring none of the detected IR bands correspond to 

species adsorbed directly on the alumina surface. After C3D6 adsorption at 120 °C, the 

hydrocarbon region exhibits three bands attributed to stretching modes νs(CD3) and 

νas(CD3) stretching modes at ~2070 and 2229 cm-1, respectively, for the Mo=CDCD3 

surface intermediates, and ~2137 cm-1 for νas(CD2) of the Mo=CD2 surface intermediates.8,9 

The ν(C=C) and ν(C=O) vibrations that arose during C4H8-C2H4 titration and propylene 

adsorption-TP are also detected in these results at ~1580 cm-1 and ~1683 cm-1, respectively 

(see Figure S 7.4), and broad band arises at ~2600 cm-1 assigned to ν(OD) of a D-labeled 

hydroxyl group. The former bands are associated with the D-labeled Mo=CD2 and 

Mo=CDCD3 surface intermediates8,9 and would be expected to be red-shifted to lower 

wavenumbers compared to the bands for the H-labeled surface intermediate due to the mass 

effect of deuterium vs. hydrogen.6,13,14 When the C3D6 flow is switched to C3H6, the CD3 

bands immediately begin to decrease, while bands arise at ~2877 and 2985 cm-1 for νs(CH3) 

and νas(CH3) of the Mo=CHCH3 surface intermediates, respectively, and 2929 cm-1 for 

νas(CH2) of the Mo=CH2 intermediates.5,7-9,13,14 The band for ν(OD) also decreases and 

shifts to ~3500 cm-1 for ν(OH) arising from hydrogen bonding6 and indicates the 

involvement of hydroxyl groups in the activation of surface MoOx sites. During C3H6-TP, 

the bands associated with D-labeled surface intermediates continue to decrease, while the 

H-labeled species bands continue to increase. The formation of the H-labeled surface 

species and increase in the CH2 and CH3 bands evidence the isotope exchange and 
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occurrence of the metathesis reaction via Mo=CD2 and Mo=CDCD3 surface intermediates. 

The Mo=CD2 intermediate has been previously detected in C2D4 studies of MoOx/SBA-159 

and MoOx/SiO2
8. At ~200 °C, broad bands appear at ~1450 and 1550 cm-1, similar to those 

seen during all of the above results (see Figure 7.1, Figure S 7.1, and Figure S 7.2), assigned 

to νs(COO-) and νas(COO-), respectively. The isotopic shifts and ratios of the vibrational 

bands are presented in Table 7.1. The calculated ν(H)/ν(D) ratios agree well with those 

calculated in adsorption studies of NH3 and ND3 on anatase phase TiO2 for 

ν(NH3)/ν(ND3).13,14 All the ratios are about equal (~1.3) and confirm the above band 

assignments.  
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Figure 7.2. In situ DRIFT spectra during C3D6-C3H6 isotope exchange at 120 °C and 

subsequent temperature programming at 10 °C/min under flowing propylene of the 

supported 20% MoOx/Al2O3 catalyst. 
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Table 7.1. Observed Isotopic Shifts 

Band Assignment ν(H) (cm-1) ν(D) (cm-1) ν(H)/ν(D) 

OH/OD 3500 2600 1.346 

CH3/CD3 (symmetric) 2877 2070 1.339 

CH2/CD2 (asymmetric) 2929 2137 1.371 

CH3/CD3 (asymmetric) 2985 2229 1.390 
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7.3 Discussion 

7.3.1 Activation Mechanism 

The above results allow for proposing an activation mechanism for the MoOx surface 

sites. The propylene reactant is protonated by the acidic hydroxyl site to form surface 

isopropoxide. In situ DRIFTS of the dehydrated supported MoOx/Al2O3 catalysts revealed 

that at high MoOx loadings (e.g., 20% MoOx/Al2O3), the molybdena species anchor to the 

more acidic HO-µ1/3-AlV/VI sites. It was demonstrated that these sites are responsible for 

olefin metathesis. The isopropoxide oxidizes to acetone using oxygen from the surface 

MoOx sites, which explains the Mo+6
 → Mo+4 reduction step. The results of Chapter 6 

demonstrated with in situ Raman spectroscopy and UV-vis DRS during propylene 

metathesis that the surface Mo+6Ox species lose oxygen and reduce to Mo+4Ox sites. 

Formation of acetone is evidenced by the appearance of the ν(C=O) stretching vibration at 

1680 cm-1, which matches the ν(C=O) vibration detected during acetone adsorption and 

subsequent C3H6-TP (see Figure S 7.2), as well as during iso-propanol adsorption and 

C3H6-TP (see Figure S 7.3). Acetone adsorption demonstrated that the ν(C=O) for gas-

phase acetone is at ~1700 cm-1 which then red-shifts when it coordinates to the MoOx 

surface sites. The acetone later desorbs from the surface, allowing for more propylene 

molecules to coordinate. C3H6-TPSR-MS in Chapter 6 revealed the formation of several 

surface oxygenates during activation of the MoOx/Al2O3 catalysts, including CH3CHO and 

acetone, the former being the most abundant oxygenate at low temperatures and forming 

first. The coordination of another propylene molecule is via oxidative addition and causes 

the Mo metal center to go through a re-oxidation step Mo+4 → Mo+6. This forms the Mo-

carbene active site.   
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Oxidation of propylene to acetone via isopropoxy intermediates has been shown to take 

place in other instances as well, such as with mixed Co3O4-MoO3
15, SnO2-MoO3

15, 

MoOx/Al2O3
10,11, and MoOx/SBA-159.  

This activation mechanism for surface MoOx sites has previously been proposed for 

supported MoOx/SBA-15 catalysts9 and MoOx/Al2O3 catalysts10,11. Amakawa et al.9 

conducted in situ IR studies and detected the formation of methyl groups during propylene 

adsorption at 100 °C and subsequent evacuation. Bands for ν(C=C) were not detected, 

leading the authors to conclude that there are no strongly bound species with C=C bonds. 

The peaks were attributed to isopropoxy species adsorbed on a metal oxide surface, which 

was confirmed by adsorption of iso-propanol and acetone. The Mo+6-alkylidene species 

were proposed to be generated by protonation of propylene driven by surface Brönsted acid 

sites, oxidation of isopropoxide to acetone, and oxidative addition of propylene to create 

the Mo+6-alkylidene species. Ammonia adsorption detected both Lewis and Brönsted acid 

sites, although the structure of the hydroxyl sites and molybdena anchoring sites were not 

discussed. Acetone was proposed to be formed, and its desorption was assumed in the 

proposed mechanism; however, there was no direct evidence of the acetone leaving the 

catalyst surface.9  

The current IR studies are in slight disagreement with the above conclusions. In situ 

DRIFTS during propylene adsorption and C4H8-C2H4 titration did detect ν(C=C) bands at 

~1600 cm-1 that persist the Ar flush (see Figure 7.1 and Figure S 7.1), which suggests they 

are related to strongly bound surface intermediates. This is likely due to the higher 

adsorption temperature of 120 °C instead of 100 °C, which reduces the amount of water on 

the catalyst surface, a known poison for olefin metathesis.3 Additionally, activation of 
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surface MoOx supported on silica-type surfaces is more difficult than activation of surface 

MoOx supported on alumina, and higher activation temperatures are necessary.3 Acetone 

was a detected oxygenate during previous C3H6-TPSR-MS results, demonstrating that the 

acetone de-coordinates during activation of the surface MoOx sites.   

Davydov et al.10,11 used in situ IR spectroscopy to elucidate the mechanism of acetone 

formation and role of Brönsted acid sites in propylene oxidation over supported 

MoOx/Al2O3 catalysts since acetone is the main product of partial oxidation. Propylene 

adsorption of a 25% MoOx/Al2O3 catalyst indicated the formation of an isopropylate 

complex with the appearance of IR bands at 1090 cm-1 ν(C-O), 1380 cm-1 δ(CH), 1465 cm-1 

δ(CH), 2885 cm-1 ν(CH), 2940 cm-1 ν(CH), and 2980 cm-1 ν(CH). The complex was 

assumed to have formed due to the transfer of a mobile proton from the catalyst to the 

propylene molecule, which then stabilizes on the catalyst surface. Iso-propyl alcohol was 

adsorbed on the catalyst and corroborated the assignment, since the IR bands were similar. 

When the temperature was increased under propylene, the bands for the isopropylate 

complex decreased in intensity, while acetone appeared (ν(C=O) at 1680 cm-1 and ν(C-C) 

at 1250 cm-1). As the temperature is further increased to 400 °C, destructive oxidation of a 

carboxylate group is attributed to the appearance of bands at 1480 and 1570 cm-1 assigned 

to νs(COO-) and νas(COO-), respectively. Thus, it was concluded that acetone formation on 

MoOx/Al2O3 catalysts require strong Brönsted acid sites to protonate the propylene to form 

isopropylate complexes that are further oxidized to acetone.10,11 

The results here agree well with the conclusions from Davydov et al. Propylene 

adsorption on 25% MoOx/Al2O3 (see Figure S 7.1) and adsorption of iso-propanol on 20% 

MoOx/Al2O3 (see Figure S 7.3) resulted in similar spectral bands to those detected by 



255 

 

Davydov et al. and confirms that propylene is protonated by a proton from the acid 

hydroxyl site to form surface isopropoxide.10,11  
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Scheme 7.1. Proposed activation mechanism for oligomeric MoOx surface species 

anchored to acidic OH-µ1/3-AlV/VI sites.  
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7.3.2 Surface Reaction Intermediates 

C4H8-C2H4 titration results indicate the appearance of CH2 and CH3 surface species, 

suggesting that the metathesis reaction proceeds via Mo=CH2 and Mo=CHCH3 surface 

intermediates (see Figure 7.1). The participation of these surface intermediates is 

corroborated by C3D6-C3H6 isotope exchange (see Figure 7.2 and Figure S 7.4).  

Carbene intermediates have been previously proposed in the literature, primarily for 

experimental studies of silica-based supported MoOx catalysts8,9, but have also been 

proposed for MoOx/Al2O3
10,11, although the reaction conditions were not always 

industrially-relevant to olefin metathesis conditions (e.g., photo- or CO-reduced).  

An adsorbed propylene complex has been proposed based on in situ IR studies.1 It was 

concluded that propylene becomes π-bonded to oxidized and CO-reduced catalyst surface 

of the MoOx/Al2O3 catalysts as evidenced by the appearance of an IR band at 1600 cm-1 

which is red-shifted from the propylene adsorbed on pure Al2O3 at 1645 cm-1,1 and thus 

concluded to be irreversibly adsorbed, and the active surface intermediate was concluded 

to be a π-bonded propylene complex, although direct adsorption of propylene on the Al2O3 

support was not considered and attempts were not made to distinguish between propylene 

bonded to Mo sites and Al sites. Furthermore, studies were not undertaken to determine if 

the π-bonded propylene complex transforms to other complexes during olefin metathesis 

conditions. The current studies also detect IR bands for ν(C=C), although they are at 

~1650 cm-1. The use of catalysts that are either approximately at or above monolayer 

coverage (monolayer ≈ 20% MoOx/Al2O3
3,16,17) demonstrates that any IR bands detected 

in these studies are related to adsorption on the surface MoOx sites. The shift in the ν(C=C) 
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band may be due to different reaction conditions (photo-reduction in CO at room 

temperature vs. olefin at 120 °C).1 

In DFT studies, Handzlik et al.2 concluded that the most likely active sites are Mo-

cyclobutane anchored to AlO6 sites. The IR bands observed in the current studies agree 

well with those in other studies concluding Mo-carbene species to be the active site. It is 

possible that Mo-cyclobutane species are formed after coordination of more reactant 

molecules to the Mo-carbene intermediate; however, Mo-cyclobutane species are known 

to be rather unstable3 and have not been experimentally confirmed for heterogeneous 

catalysts. Furthermore, only monomeric active sites were discussed in the DFT studies, 

although the structure-activity study of Chapter 6 determined that the oligomeric sites are 

quite important for olefin metathesis by supported MoOx/Al2O3 catalysts. More detailed 

DFT studies of the activation mechanism of the surface MoOx sites are needed to 

corroborate the experimental evidence. 

7.4 Conclusions 

Overall, the initial oligomeric mono-oxo MoO5/6 surface species activate by removal 

of the oxo Mo=O bond and formation of Mo=CH2 and Mo=CHCH3 surface alkyls which 

retains the Mo+6 oxidation state. The activation mechanism for the surface MoOx sites 

consists first of protonation of the reactant to form surface isopropoxide species. 

Isopropoxide oxidizes to acetone that is coordinated to the catalyst surface. This oxidation 

step causes reduction of the surface MoOx sites (Mo+6 → Mo+4). Acetone is removed from 

the surface, allowing coordination of another propylene molecule by oxidative addition. 

This step re-oxidizes the molybdena sites back to Mo+6. The active surface intermediates 

were determined to be =CH2 and =CHCH3 alkyl surface species. This study establishes the 
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activation mechanism of the supported MoOx/Al2O3 catalysts and surface intermediates 

during industrially relevant olefin metathesis conditions.  
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Figure S 7.1. In situ DRIFT spectra during propylene adsorption at 120 °C, Ar flush at 120 

°C, and subsequent temperature programming at 10 °C under flowing propylene of the 

supported 25% MoOx/Al2O3 catalyst. (A) 1250-1900 cm-1 and (B) 2800-3200 cm-1. 
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Figure S 7.2. In situ DRIFT spectra of acetone adsorption at 30 °C and subsequent 

temperature programming at 10 °C/min under flowing of the supported 20% MoOx/Al2O3 

catalyst. (A) 1050-1900 cm-1 and (B) 2800-3200 cm-1. 
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Figure S 7.3. In situ DRIFT spectra during iso-propanol adsorption at 30 °C and 

subsequent temperature programming at 10 °C/min under flowing propylene of the 

supported 20% MoOx/Al2O3 catalyst. (A) 1250-1800 cm-1 and (B) 2800-3200 cm-1. 

 



267 

 

 
Figure S 7.4. In situ DRIFT spectra during C3D6-C3H6 isotope exchange at 120 °C and 

subsequent temperature programming at 10 °C/min under flowing propylene of the 

supported 20% MoOx/Al2O3 catalyst (1350-2000 cm-1). 
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Chapter 8 | Conclusions and Future Work 

8.1 Ethylene Polymerization by Supported CrOx/SiO2 Catalysts 

8.1.1 Summary and Conclusions 

Critical review of the ethylene polymerization literature indicated that the nature of the 

surface CrOx sites strongly depends on the environment to which the supported CrOx/SiO2 

catalysts are exposed. Ambient conditions cause hydration of the surface CrOx species. 

Several chromia species exist – CrO4, Cr2O7, Cr3O10, and Cr4O13 – and the extent of 

oligomerization increases with decreasing surface pH values at the point of zero charge. 

When the catalysts are dehydrated, only surface dioxo (O=)2CrO2 species are present on 

the surface of the silica support. Above the maximum dispersion limit, which depends on 

the Cr precursor, solvent, and surface properties of the SiO2 support, crystalline Cr2O3 

nanoparticles are present. Various reducing environments have been used to activate the 

supported CrOx/SiO2 catalysts. While activation with CO leads to Cr+2, H2 and C2H4 

activation reduce the Cr+6 sites to Cr+3 sites. The literature review indicated the necessity 

for development of the active sites, surface intermediates, and structure-activity 

relationships for ethylene polymerization by the supported CrOx/SiO2 catalysts. 

In situ and operando spectroscopy during activation with ethylene and ethylene 

polymerization was implemented to monitor the evolution of the supported CrOx/SiO2 

catalyst. In situ Raman spectroscopy revealed the presence of one distinct, isolated surface 

chromia species, the tetrahedrally-coordinated dioxo (O=)2Cr+6O2 site. C2H4- TPSR-MS 

demonstrated a two-step reduction process, Cr+6
 → Cr+4 → Cr+3, the former step being 

more facile than the latter. Upon activation with ethylene, in situ UV-vis and operando 

DRIFTS detected two distinct surface Cr+3 surface reaction intermediates: Cr+3-
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(CH2)2CH=CH2 (PE oligomers forming nearer to the metal center) and Cr+3-CH=CH2 

(vinyl center). Tracking the evolution of the surface intermediates demonstrated that while 

the concentration of the surface Cr+3-(CH2)2CH=CH2 structure saturates early in the 

ethylene polymerization reaction and may represent a spectator intermediate, evolution of 

the surface Cr+3-CH=CH2 surface species tracks the formation of the PE product, 

suggesting it to be the active reaction intermediate during ethylene polymerization by 

supported CrOx/SiO2 catalysts. Computational results indicate the possibility of the 

formation of Cr+3 active sites. 

In situ and operando spectroscopy of the promoted CrOx/MOx/SiO2 (M = Al, Ti, Zr) 

catalysts revealed the role of the promoter oxides in ethylene polymerization. The structure 

of the initial oxidized catalyst was analogous to that of the standard CrOx/SiO2 catalyst. 

Only the isolated dioxo (O=)2CrO2 surface chromia species is present in the Cr+6 oxidation 

state in tetrahedral coordination. In situ Raman spectroscopy showed that the CrOx 

preferentially anchors to the promoter metal sites (M-O-Si), creating Cr-O-M-O-Si 

bridging bonds. The initial oxidized dioxo species are easily activated with ethylene. C2H4-

TPSR-MS indicated a two-step reduction process for all the catalysts. All catalysts 

exhibited the same first reduction step (Cr+6 → Cr+4). However, while the Zr- and Al-

promoted catalysts reduce to Cr+3 in the second step, the Ti-promoted catalyst reduced to 

a combination of Cr+2 and Cr+3. The reduced sites were confirmed with in situ UV-vis 

spectroscopy during ethylene polymerization since deconvolution of the spectra for the Ti-

promoted catalyst revealed the presence of a Cr+2 band. Operando DRIFTS revealed 

various distinct surface reaction intermediates that depended on the promoter oxide. 

Promotion with TiOx yielded both Cr+3-(CH2)2CH=CH2 anchored to Cr-O-Si bonds 
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responsible for higher molecular weight polymer) and Cr+3-CH=CH2 sites anchored to the 

Cr-O-Ti-O-Si bonds responsible for the lower molecular weight polyethylene. Promotion 

by ZrOx or AlOx yields just one reactive intermediate (Cr+3-CH=CH2). Tracking the 

evolution of the surface reaction intermediates detected for the Zr- and Ti-promoted 

catalysts reveals that they correlate with the bulk PE production and the UV-vis Cr+3
 sites, 

implying that these catalysts only produce active reaction intermediates. On the other hand, 

tracking the evolution of the Al-promoted catalyst revealed early saturation, and suggests 

that AlOx is not a promoter for ethylene polymerization. TOF calculations revealed that the 

ZrOx promotes by possessing the highest initial TOF value, while TiOx promotes the 

creation of multiple active sites and deeper reduction, which slightly increases the initial 

TOF compared to the standard catalyst.  

8.1.2 Future Work  

Over the last several decades, ethylene polymerization has been a significant industrial 

reaction, and new uses for polyethylene are continuously developed. Promoted CrOx/SiO2 

catalysts are already used in industry in the production of different types of polyethylene.  

The type of polyethylene produced by each catalyst was not characterized in these 

studies. In situ 13C MAS NMR spectroscopy would be able to characterize the type of 

polyethylene in even very small amounts during ethylene polymerization. Coupling this 

technique with the in situ and operando techniques would allow for determining the type 

and amount of polyethylene produced. Although the role of the promoters has been 

determined here, the complete reaction pathways have not yet been examined. Further 

computational studies are needed to determine the exact mechanism of ethylene 

polymerization by supported and promoted CrOx/MOx/SiO2 catalysts. Recent studies in the 
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literature have suggested that the oxidation products remain in the coordination sphere. In 

situ DRIFTS and TPSR-MS during which the catalysts are exposed to HCHO/DCDO, 

HCCOOH, and CH3COOH ethylene could provide more information about oxidation 

products formed during activation with ethylene and ethylene polymerization besides the 

CO2 and H2O observed in these studies.  

Chromium is a hazardous and carcinogenic substance. The use of chromium has 

already been restricted in Europe for several years. These dangers mean that alternatives 

to chromium are needed and suggest a new path of research. This new knowledge of the 

structure-activity relationships for the supported CrOx/SiO2 catalysts presented here will 

allow for both the development of new materials for ethylene polymerization and the 

rational design and development of highly active catalysts tuned to the synthesis of the 

desired type of polyethylene.  

8.2 Olefin Metathesis by Supported MoOx/Al2O3 Catalysts 

8.2.1 Summary and Conclusions 

Review of the literature for olefin metathesis by heterogeneous supported MoOx/Al2O3 

catalysts determined that there is a lack of fundamental understanding primarily due to the 

absence of in situ and operando molecular spectroscopy studies. 

In situ spectroscopy was used to develop the structure-reactivity of the heterogeneous 

supported MoOx/Al2O3 catalysts. In the initial oxidized catalyst, several structures co-exist 

on the surface, dependent on the MoOx surface coverage. The catalysts primarily consist 

of isolated dioxo MoO4 surface sites at low coverage (<1 Mo atoms/nm2), oligomeric 

mono-oxo MoO5/6 surface species at intermediate coverage (1-4.6 Mo atoms/nm2), and also 

crystalline MoO3 nanoparticles above monolayer coverage (>4.6 Mo atoms/nm2. The 
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isolated MoO4 surface species anchored to basic alumina hydroxyls are quite stable and do 

not activate at mild propylene metathesis reaction conditions (~25-200 °C). However, the 

oligomeric MoO5/6 surface species anchored to more acidic alumina hydroxyls easily 

activate during propylene metathesis at 25-200 °C. This demonstrates that the activation of 

the surface MoOx species for propylene metathesis is strongly dependent on the anchoring 

surface hydroxyl site on the Al2O3 support. Crystalline MoO3 nanoparticles are inactive for 

propylene metathesis, and their presence decreases the accessibility of propylene to the 

activated surface MoOx species for metathesis. The catalytic active sites for propylene 

metathesis were established to the initial oligomeric mono-oxo MoO5/6 surface species on 

the alumina support. The initial oligomeric mono-oxo MoO5/6 surface species activate by 

removal of an oxo Mo=O and formation of Mo=CH2 and Mo=CHCH3 surface alkyls, thus, 

retaining the Mo+6 oxidation state. 

In situ DRIFTS established the activation mechanism of the surface MoOx sites for 

olefin metathesis. Overall, initial oligomeric mono-oxo MoO5/6 surface species anchored 

to the acidic hydroxyl sites activate via removal of the oxo Mo=O bond and formation of 

Mo=CH2 and Mo=CHCH3 surface alkyls which retains the Mo+6 oxidation state. The 

activation mechanism proceeds first by protonation to form surface isopropoxide which 

oxidizes to acetone coordinated to the catalyst surface. The oxidation step causes reduction 

of the surface MoOx from Mo+6 to Mo+4 via removal of oxygen from the Mo=O oxo bond. 

The acetone then de-coordinates from the catalyst surface and allows coordination of 

another propylene molecule via oxidative addition, re-oxidizing the molybdena sites back 

to Mo+6. The active surface intermediates were determined to be =CH2 and =CHCH3 alkyl 

surface species. Further study is needed to determine if the activation mechanism for the 
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reverse direction (metathesis of ethylene and butene) is the same as that for propylene 

metathesis.  

8.2.2 Future Work  

There is a current global shortage of propylene, and the demand is expected to increase 

in the future. Olefin metathesis is one of the fastest-growing applications for on-purpose 

propylene production, which makes it a very industrially-relevant and significant reaction. 

Although the structure-reactivity, activation mechanism, and surface intermediates of the 

surface MoOx sites for olefin metathesis have been elucidated, the literature review of 

heterogeneous MoOx/Al2O3 catalysts for olefin metathesis revealed many more areas of 

improvement. Knowing the structure-reactivity relationships, the next step is to synthesize 

single-site catalysts. Recent studies of the supported ReOx/Al2O3 catalysts for olefin 

metathesis nicely demonstrated that the basic alumina hydroxyls can be blocked by using 

an acidic metal oxide, such as TaOx, leaving only active surface ReO4 sites. This concept 

can be analogously applied to the MoOx/Al2O3 catalysts to block the inactive isolated 

surface dioxo MoO4 sites.  

The single-site catalysts will allow the systematic determination of the number of active 

sites, surface kinetics, and reaction mechanism, which all still need to be determined to 

optimize olefin metathesis by supported MoOx/Al2O3 catalysts (i.e. determination of 

optimal activation temperature and olefin partial pressure). The number of catalytic active 

sites has been proposed to be between 1-15%, and the discrepancies are due to 

inconsistencies in catalyst preparation and MoOx coverage. Activation temperature and 

olefin partial pressure have been shown to affect the number of activated surface sites in 

recent studies of olefin metathesis by supported ReOx/Al2O3 catalysts. Systematic study 
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with in situ and operando spectroscopy of consistently prepared catalysts using different 

activation temperatures and olefin partial pressures could finally determine the number of 

catalytic active sites and demonstrate the optimum activation temperature and olefin partial 

pressure.  

The use of promoters or mixed silica-alumina supports has been suggested to improve 

the catalytic activity by increasing the number of sites, but the role of the promoters is still 

unknown. Elucidating the fundamental details of these promoted catalysts and the role of 

the promoters would allow for the rational design of improved catalysts for olefin 

metathesis.   

The heterogeneous supported MoOx/Al2O3 catalysts are widely used in industrial 

process, such as the Shell Higher Olefin Process, in which longer-chain olefins are 

produced (C11-C14). Extending these studies to longer-chain olefins will bridge the gap 

between this fundamental research and industrial application of the supported MoOx/Al2O3 

catalysts for olefin metathesis. 

8.3 General Perspectives 

Ethylene polymerization by supported CrOx/SiO2 catalysts and olefin metathesis by 

supported MoOx/Al2O3 catalysts have been in existence since the 1950s-1960s and even 

today, are significant industrial reactions. Although extensively studied, the fundamental 

details of these two catalyst systems were mostly unknown. Despite the differences in the 

reactions, literature reviews of each catalyst system revealed that similar decades-old 

questions are debated, such as the structure of the activated catalysts, the surface 

intermediates, structure-activity relationships, and role of promoters. In both cases, the 

progress in the elucidation of the fundamental details has been hampered by an absence of 
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in situ and operando spectroscopic techniques that are capable of directly characterizing 

the catalyst surface during industrially-relevant reaction conditions. For both cases, a 

combination of in situ and operando spectroscopy techniques allowed for the determination 

of the structure of the activated catalyst and the surface intermediates that guided the 

development of structure-activity relationships. These structure-activity relationships will 

be able to guide the rational design of supported CrOx/SiO2 catalysts for ethylene 

polymerization and supported MoOx/Al2O3 catalysts for olefin metathesis. 
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