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Abstract 

The role played by contact angle hysteresis during the motion of liquid drops on a 

solid surface is studied in this thesis by experiments as well as theory. We carried out 

various experiments in order to achieve this goal. In the first experiment, we 

demonstrated the combined effect of thermal gradient and external periodic vibration on 

liquid drops motion on a solid surface. The liquid drops that are stationary on thermal 

energy gradient surface due to the resistive force arising from contact angle hysteresis 

show drifted motion when subjected to periodic vibration. We showed that the velocity 

amplification of liquid drops agrees with the resonance frequencies predicted by 

Rayleigh’s equation. We predicted detailed contact line motions of liquid drops using 

approximate numerical simulations. We also resolved the velocity dependent slipping of 

contact line observed in experiments by carrying out simulations using recently 

developed non-linear contact angle hysteresis model. We carried out numerical 

simulations of 3-D Navier-Stokes equations in order to understand the detailed 

development of velocity and temperature profile inside the drop. 

In the second experiment, we subjected a liquid drop on an inclined surface to an 

external white noise vibration. Here, we have drawn analogy between a colloidal particle 

undergoing Brownian motion in presence of a bias and the drop. We focused on the effect 

of extra dissipation resulting from threshold contact angle hysteresis force that is not 

present in the classical Brownian motion of colloidal particle. We found that the drift 

velocity of drop is found to be a non-linear function of strength of noise. Using 

experiments and theory we showed that the contact angle hysteresis is not eliminated 

when the drops are moving under the influence of external vibration. We found that 
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the displacement distribution of liquid drop is non-Gaussian due to the non-linearity in 

contact angle hysteresis. We showed that the work done by gravity on the drop does not 

follow conventional fluctuation theorem due to the presence of contact angle hysteresis. 

In the third experiment, the contact line of a liquid drop in non-equilibrium state 

is subjected to external white noise vibration. The overall relaxation behavior of contact 

line of drop is found to be exponential with significant stick-slip motion. The stick-slip 

relaxation behavior is attributed to the presence of metastable equilibrium states in the 

corrugated parabolic free energy of the drop. The displacement distribution of contact 

line of drop is found to be non-Gaussian following exponential distribution. We used 

analogy between a harmonically bound colloidal particle undergoing Brownian motion 

and contact line of liquid drop in order to theoretically analyze the relaxation behavior.  

The relaxation time of contact line being much higher than Langevin relaxation time 

emphasizes that the contact angle hysteresis is not eliminated. Using simulations, we 

showed that the power required to completely eliminate contact angle hysteresis is so 

high that it is not easily achieved in usual laboratory conditions.  

We also studied at role of contact angle hysteresis in symmetry breaking resulting 

in rectification of drop motion when subjected to external asymmetric periodic vibrations 

of zero mean. We carried out systematic drop motion experiments on solid surfaces 

possessing varying amount of contact angle hysteresis. We observed that drops do not 

show drifted motion on low hysteresis surfaces but move with high velocity on 

intermediate hysteresis surfaces. We showed that there needs to be some amount of 

contact angle hysteresis present on the surface to see drifted motion. We developed a 

non-linear contact angle hysteresis model to explain such a counterintuitive observation. 
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We studied the height fluctuations of micro liter water drops when subjected to 

white noise vibration in order to indentify multiple resonance frequencies of drop. The 

power spectrum plots of height fluctuations of water drops show peaks at the 

corresponding resonance frequencies. Experimentally identified resonance frequencies of 

drops on Polystyrene surface and fibrillar PDMS surface agree well with the theoretical 

models available in literature. The contact line of drop is pinned on polystyrene surface 

where as it shows huge slippage on fibrillar PDMS surface. We also measured the power 

spectrum of contact line fluctuations of drops. The lower modes are prominent in the 

power spectrum of contact line whereas higher modes are damped out and weakly 

noticeable. The prominent lower modes in contact line power spectrum are in agreement 

with the modes observed in height fluctuations. We found that the slippage of contact line 

is mode dependent. The lower modes are affected by contact slip more than higher 

modes. This is explained by taking slip and no slip of contact line into account in the 

model.  We also studied the effect of viscosity on resonance power spectra using water-

glycerol mixtures. The heights of resonance peaks are found decrease with viscosity 

where as the width increased. The shift in resonance frequencies is accounted by surface 

tension. The variance of interface fluctuations is found to decrease with increase in 

viscosity. 
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Chapter 1: Introduction 

1.1. Motivation 

 The main goal of research presented in this thesis is to elucidate the role played 

by contact angle hysteresis during the motion of liquid drops on a solid surface.  A brief 

introduction of contact angle hysteresis in the context of stationary drop on a solid 

surface is provided below. Later, we show how this translates into the context of moving 

drops. The equilibrium contact angle )( eθ  of a stationary liquid drop on an ideally smooth 

and homogenous solid substrate is given by Young’s equation1 (Figure 1.1) 

slsvelv γγθγ −=cos                                                                                       (1.1) 

where, lvslsv γγγ ,,  are the interfacial tensions of solid-vapor, solid-liquid, and liquid-

vapor interfaces respectively. However, when the solid substrate is neither ideally smooth 

nor homogenous or has other imperfections, the drop can subtend a range of contact 

angles as opposed to a unique contact angle2-12. This is observed when a sessile drop on a 

solid substrate is inflated by adding more liquid to it (Figure. 1.1). The three phase 

(vapor-liquid-solid) contact line stays pinned to the solid substrate while more liquid is 

added to the drop, resulting in the increase of the contact angle until a critical angle is 

reached. This critical angle is called advancing angle )( Aθ . Further addition of liquid to 

the drop results in movement of contact line maintaining the contact angle constant at 

advancing angle. Similarly, when such a drop is deflated by removing some liquid from 

it, the contact line recedes after another critical angle is reached. This critical angle is 

called receding angle )( Rθ . Here, the contact angle remains constant at receding angle 

With RA θθ > , the difference of the two angles while the contact line of drop recedes. 
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is called the contact angle hysteresis.  
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Figure 1.1 (a) Schematic of a sessile water drop on a solid surface (a) stationary drop (b) 
drop being inflated by pumping more liquid in by a syringe (c) drop being deflated by 
removing liquid out of the drop. The drop shows three distinct angles in three cases 
shown above that are called equilibrium )( eθ , advancing )( Aθ  and receding )( Rθ  angles. 
 

The contact angle hysteresis in the context of moving drops on a solid surface can 

be explained by a simple experiment. If a small water drop is placed on an inclined solid 

surface such as a slightly tilted glass plate, the drop gets stuck to it (Figure 1.2). While 

the gravitational force acting on the drop tries to pull it down, the resistive force due to 

contact angle hysteresis makes the drop stay pinned to the surface. However, if the glass 

surface is slowly tilted more, an asymmetry in the shape of the drop develops. Here, 

contact angle formed by three phase contact line on the bottom side of the drop increases 

whiles the contact angle on the top side of the drop decreases. The drop slides down on 

the surface with a constant velocity when the angle of inclination of the glass plate 

reaches a critical angle. At this critical angle the gravitational force acting on the drop 

)sin( θmg exceeds the resistance due to contact angle hysteresis ))cos(cos( ARlv w θθγ − .  

Here, m  is the mass of the drop, θ  is the tilt angle of the surface to the horizontal and 
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w  is the width of the drop.  The contact angles formed by the drop at the instant where 

the drop just starts sliding down the surface define the contact angle hysteresis in this 

case. The contact angles on bottom and top sides of drop stay at their respective 

advancing )( Aθ  and receding angles )( Rθ  while the drop slides down on the surface. 

Such phenomena can also be observed when water drops get pinned to the windshield of 

a car or to an inclined glass window of a house when it rains. The water drops get stuck 

to the windshield or window due to contact angle hysteresis.  
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Figure 1.2. Schematic of a water drop sticking to windshield of a car due to contact angle 
hysteresis. Gravity tries to pull the drop down where as the hysteresis force resists the 
motion.  

 

Before discussing the fundamental perspective on the origin of contact angle 

hysteresis, we describe the technological challenges encountered due to the presence of 

contact angle hysteresis. Pinning of liquid drops on solid surfaces has many practical 

implications in microfluidic13-15 and heat transfer devices16,17. The drop motion in these 

devices is generally induced by utilizing forces that arise due to surface energy gradient18-

20 or thermal energy gradient16,17,21,22. Among these methods of inducing liquid drops 

motion on surfaces, Marangoni flow induced by thermal energy gradient has been 
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very popular in the development of microfluidic devices16,17,23,24,27. The popularity of 

thermal Marangoni flow is attributed to two factors, the first being, flexibility in 

fabricating the devices with programmable patterns as well as magnitudes of thermal 

gradients. The second being the reversibility of liquid drops motion by simply reversing 

the directions of gradients. As the liquid drop contacts a thermal gradient surface, the 

surface tension of liquid on hotter side of drop is smaller than its other part that contacts 

the cold region. At thermal steady state due to higher tension acting on the molecules of 

liquid on cold side, the molecules on hot side of drop get pulled towards cold side 

resulting in surface flow from hot side to cold side. This surface flow in turn causes a 

bulk flow with thin the drop resulting in liquid drop migration towards the cooler part of 

the surface. There have been many experimental and theoretical studies that have looked 

at thermal Marangoni flow of low surface tension organic liquids16,17,21-30. These organic 

liquids have low contact angles )90( 0<eθ and easily move on solid surfaces due to large 

change in surface tension with small change in temperatures as well as low contact angle 

hysteresis. However, major problem encountered very often in microfluidic devices is 

that drops get pinned to underlying solid surface due to resistance from contact angle 

hysteresis. Such a pinning is observed when dealing with high surface tension liquids 

such as water )90( 0>eθ . Therefore, there is a need to develop a simple technique that 

moves pinned high surface tension liquids. There have been many studies in that 

literature that have looked at the ways to move liquid drops that are pinned on solid 

surfaces31,32,43-45. Among the many techniques developed, applying external vibration to 

drops has been proved very effective. The effect of vibration on pinned liquid drops is 

studied experimentally by several investigators33-52.  It is well established that 
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hysteresis is mitigated by vibration resulting in increasing speed of drop motion. Here we 

used external vibration to move water drops pinned to a thermal energy gradient surface. 

A liquid drop stuck to thermal gradient energy surface due to contact angle hysteresis 

moves rapidly when subjected to periodic vibration. 

From the fundamental point of view, a general conclusion arrived in the literature 

about drops showing contact angle ranging from receding to advancing angle is that 

roughness and other imperfections of a solid substrate modify the ideal parabolic free 

energy of drop to a corrugated profile2-12 (Figure 1.3). As mentioned earlier, if a liquid 

drop is sitting on an ideally smooth and homogenous solid substrate, the contact angle 

formed by the drop would be equal to the Young’s equilibrium contact angle )( eθ . If such 

a drop is deformed by applying some external force, the drop would be in non 

equilibrium state. This is because of the restoring spring force due to the surface tension 

of liquid (spring constant, lvsk πγ2~ ) that tries to bring back the drop to equilibrium 

state. However, if the solid surface is non ideal, the drop gets stuck to any of the 

metastable states of the corrugated parabolic potential (Figure 1.3). In order for the drop 

to escape from metastable state to reach global equilibrium state, some amount of 

vibrational energy has to be supplied to the drop5-7. There have been many theoretical and 

experimental studies in the literature that have looked at contact angle hysteresis in the 

context of equilibrium thermodynamics31-39. Here, the conclusions that have been drawn 

about contact angle hysteresis so far are based on equilibrium measurements such as 

contact angle after the drop has reached steady state. The usual procedure of such 

experiments is to place a drop on a non ideal surface possessing some amount of contact 

angle hysteresis and then subject the drop to external vibration of some form until the 
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contact angle of drop reaches a certain equilibrium value. Then, the equilibrium contact 

angles are used to draw conclusions about contact angle hysteresis. But, it is not clear 

whether contact angle hysteresis plays any important role while the contact line of drop is 

in non equilibrium state. This information is very useful in understanding the motion of a 

drop on a surface assisted by vibrations41-51. Here, when a drop is moving on solid 

surface under the influence of external vibration, it is always in non equilibrium state. 

Hence, it is not justifiable to use equilibrium information to explain non equilibrium 

phenomena and draw definitive conclusions.  

GΔ

Rθ Aθeθ

Metastable 
energy states

Global minimum
energy state

Contact Angle

GΔ

Rθ Aθeθ

Metastable 
energy states

Global minimum
energy state

Contact Angle  

Figure 1.3: Schematic of corrugated free energy )( GΔ  profile of drop showing 
metastable equilibrium states along with global minimum energy state corresponding to 
equilibrium contact angle )( eθ . The arrows at advancing and receding angles indicate that 
the restoring spring force arising from surface tension acts to relax the drop to 
equilibrium. 

 

In order to overcome the short comings of equilibrium methods, we devised novel 

ways of studying contact angle hysteresis using non equilibrium thermodynamics54-64. 

The non equilibrium methods that include information of fluctuations around the 
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equilibrium give much more fruitful understanding of the system than equilibrium 

methods because they provide dynamic information about the system. In order to use 

recently developed principles of non equilibrium thermodynamics, we have drawn 

parallels between a drop undergoing external vibrations and a colloidal particle 

undergoing Brownian motion due to thermal fluctuations in viscous medium. Such a 

comparison has two fold uses, first being, theory of Brownian motion of colloidal particle 

is well developed65-72 which facilitates in the ease of analysis of the current problem. The 

second being, any anomalies observed in the current system would help in elucidating the 

role of a contact angle hysteresis that is not present in the Brownian motion of colloidal 

particle. Another unresolved issue in the context of vibration assisted motion of liquid 

drop on a solid surface is whether the contact angle hysteresis is completely eliminated or 

not while the drop is moving41-49. There have been several reports45-47 in the literature that 

claim without any solid experimental or theoretical proof that when a liquid drop is 

moving on a solid surface under the influence of external vibrations, the contact angle 

hysteresis is totally eliminated. Contrary to this argument, our hypothesis is that contact 

angle hysteresis is not completely eliminated and it plays a crucial role when a liquid 

drop is moving on the solid surface. We also use the analogy between the Brownian 

motion of colloidal particle and liquid drop undergoing Brownian-like motion under the 

influence external white noise vibration to probe this issue. 
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Figure 1.4: Rectification of alternating electrical current to direct current in electrical 
devices using full wave rectifier. 

 

Another important aspect of contact angle hysteresis that is not resolved so far is 

its role in rectification of drops when subjected external periodic vibrations41-49. It is well 

known that resistive force arising due to contact angle hysteresis is responsible for 

pinning of liquid drops on a solid substrate. The liquid drops have to overcome this 

threshold hysteresis force before they start moving on solid surface. Recently, it is shown 

that motion of liquid drops that are pinned on a solid substrate possessing gradients of 

surface energy41,43 or thermal energy51 can be induced by external vibration. A common 

feature in above mentioned methods is that there is an externally applied bias such as 

surface energy gradient and thermal energy gradient acting on the drop. However, there 

have been new techniques developed recently where the rectification of liquid drops43-

50,52,53, or solid object73-77  is achieved even without any external applied bias acting on 

the drop.  Such a rectified motion of liquid drops in the absence of external bias has 

received considerable attention due to its significant implications in the potential 

applications like microfluidics. Before discussing the details of how such a rectification 

can be achieved, we discuss rectification in electrical and physical terms in order to 
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understand it in a simplistic manner. In electrical devices, rectifiers are used to convert 

alternating current (AC) that changes direction of electrical current periodically, to direct 

current (DC) in which electrical current always flows in one direction (Figure 1.4). In 

physical terms, rectification is achieving motion of an object in a preferred direction 

when the object is subjected to some form of periodic driving with zero mean. So the 

rectification analogy can be drawn between electrical current and drop oscillating on a 

surface. When a liquid drop sitting on a smooth solid surface is subjected to external 

symmetric periodic vibrations, the drop oscillates back and forth without showing any net 

motion. However, if the underlying solid surface has asymmetric structure (Figure 1.5), 

oscillations of drop get rectified resulting in drop translating in one direction52,53. Here 

the asymmetric structure amounts to having slope of grooves on the surface not equal in 

both the directions. This kind of ratcheting mechanism has been discussed extensively in 

the literature and it is well understood52,53,78.  
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Figure 1.5: (a) Oscillations of liquid drops on a flat solid substrate (b) asymmetrically 
structured solid substrate. The drop on a flat substrate oscillates back and forth where as 
drop on asymmetrically structured surface shows translation when subjected to 
symmetric periodic vibration.  
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Figure 1.6: (left) A Brownian particle in symmetric parabolic potential fluctuates around 
the minimum of potential due to thermal fluctuations. (Right) When the parabolic 
potential is asymmetric the particle shows fluctuations and translation. 

 

Another simple example of such a ratchet is a microscopic particle that is 

undergoing Brownian motion due to thermal fluctuations in an asymmetric potential 

instead of classical symmetric parabolic potential78-83 (Figure 1.6). In case of particle in 

parabolic potential, position of the particle fluctuates around the minimum of potential 

where as in asymmetric potential the position of the particle fluctuates as well as showing 

a net translation in one preferred direction. Therefore, for any time symmetric system to 

achieve rectification there needs to be a mechanism that breaks the symmetry resulting in 

motion in one direction. Recently, Daniel et al43 have achieved such a rectification of 

liquid drops on a solid surface by subjecting them to asymmetric periodic vibrations of 

zero mean. The asymmetry in periodic vibration is the result of fast acceleration followed 

by slow deceleration with zero mean in one period of vibration (Figure 1.7). For a drop to 

move in presence of an asymmetric vibration of zero mean, some kind of non-linearity is 

needed in order to break periodic symmetry. The drop would simply exhibit an 
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asymmetrical oscillation without net motion in the absence of symmetry breaking 

mechanism. There have been several arguments43-50 in the literature about the origin of 

non-linearity. However, there has been no definitive answer to question of the origin of 

non-linearity required for symmetry breaking in this case. Daniel et al43 have suggested 

that contact angle hysteresis provides the required non-linearity. Similarly, in a related 

theoretical analysis, Fleishman et al74 have also argued that static friction between two 

contacting solids that is analogous to contact angle hysteresis is responsible symmetry 

breaking.  

However, some other mechanisms for symmetry breaking have been presented 

recently in the context of drop oscillated with periodic vibration on inclined surface that 

results in upward motion of drop45-47. These authors have suggested that hysteresis would 

be eliminated with a strong vibration45. They have attributed the rectification of drops to 

non-linear friction force between the drop and substrate. Recently, another interesting 

possibility of asymmetric shape fluctuation46,47 resulting in such an upward motion of 

drops has also been suggested. In wake of such contrasting theories available in the 

literature about the non-linearity that is responsible for symmetry breaking, there is a 

need to analyze the phenomena systematically using experiments and theory.  
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Figure 1.7: Typical profiles of symmetric and asymmetric vibrations. 

 

Another important aspect of drop motion on a solid surface when subjected to 

external vibration is the resonance frequency of drop since it significantly affects the 

velocity. It is well known from the works of Kelvin84, Rayleigh85, Lamb86 and 

Chandrasekhar87 that the drop exhibits multiple resonance modes that depend on mass, and 

surface tension of liquid. The viscosity of liquid also has an effect on resonance frequencies 

which is minor compared the effect of mass and surface tension. The resonant properties of 

liquid drops are crucial to many technological processes such as crystallization88,89, spray 

coating90, inkjet printing91, vibration induced motion of drops on surfaces41-44,92 and 

microscale heat transfer involving drop wise condensation19. Estimation of multiple 

resonance modes of liquid drops would greatly enhance the design of microfluidic devices. 

Also, from the fundamental point of view, oscillating bubbles and drops are useful 



 

 

16

in estimating surface tension of liquids93-95. Hence, we used white noise vibration to 

identify resonance frequencies of liquid drops. 

Here is the outline of thesis. In Chapter 2, we discuss the motion of liquid drops on 

a thermal gradient surface induced by harmonic vibration. We discuss Brownian like 

motion of drop a surface induced by white noise vibration in presence of a bias in Chapter 

3. In Chapter 4, we discuss relaxation dynamics of contact line of liquid drop when 

subjected to external white noise vibration. We discuss motion liquid drops on surface 

induced by asymmetric vibrations in Chapter 5 where as we discuss estimation of 

resonance frequencies of liquid drops when subjected to white noise vibration in Chapter 6. 

We conclude the thesis in Chapter 7 along with providing recommendations for future 

research based on the present thesis. 
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Chapter 2: Motion of liquid drops on a thermal gradient 

surface induced by vibration 
2.1. Introduction: 

The motion of a liquid drop on a solid surface has many practical implications in 

microfluidic devices which are currently being used in applications like drug screening, 

cell cytometry studies and DNA analysis1-5. The liquid drop can be moved on a solid 

substrate by utilizing physical forces that arise due to surface energy gradient6-9, vibration 

of solid surface 10-14 and thermal energy gradient15-27. Among these various methods of 

moving liquid drops on surfaces, Marangoni flow induced by thermal gradients on solid 

substrates has received considerable attention recently. The flexibility in fabricating 

devices with programmable patterns as well as magnitudes of thermal gradients, and the 

reversibility of liquid drops motion by simply reversing the directions of gradients 

resulted in using this technique in many microfluidic devices4,5,14,21-23. As the liquid drop 

contacts a thermal gradient surface, the surface tension of liquid on hotter side of drop is 

smaller than its other part that contacts the cold region. When thermal steady state is 

reached, due to higher tension acting on the molecules of liquid on cold side, the 

molecules on hot side of drop get pulled towards cold side resulting in surface flow from 

hot side to cold side. This surface flow in turn causes a bulk flow within the drop 

resulting in liquid drop migration towards the cooler part of the surface. Thermal or 

concentration gradients at the interface can be observed in many natural phenomenon like 

tears of wine effect, suppression of capillary waves in the wake of ship and dance of 

camphor ball on water surface. The first comprehensive theoretical work on motion of 

drops on a thermal gradient surface was carried out by Brochard15 using lubrication 
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approximation in the limit of low contact angles (θe<<90o). An approximate analytical 

expression for velocity of drops was obtained by equating the mechanical force exerted 

by solid on liquid due to surface tension gradient to contact angle hysteresis force with 

Marangoni contribution included15. It was found that the liquid drop has to be larger than 

a critical size before it moves on a solid surface. This critical size is related to the 

threshold force due to contact angle hysteresis. The authors suggested a force balance of 

the following form: 
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where, where m is a numerical constant related to geometrical configuration, Dc is the 

critical droplet size, dTdS /  is gradient of spreading coefficient, dTd lv /γ  is the gradient 

of surface tension, dxdT /  is the thermal gradient on the surface and ( )arlv θθγ coscos −   

is the hysteresis force per unit length due to the difference in the advancing and receding 

contact angles. The gradient in spreading coefficient results in capillary force on the drop 

that propels it towards higher temperatures regions there by reducing the surface energy. 

However, the Marangoni flow developed due to the surface tension gradient results in the 

motion of the drop towards colder regions15,16. If the Marangoni effect supersedes the 

spreading energy effect, the drop would move from the hotter to the cooler side of the 

drop as observed by Brzoska et al16. The hysteresis force due to the difference in the 

advancing and receding contact angles of the drop on the surface pins the drop resisting 

its motion. Hence the drop sitting on a solid surface with spatial thermal gradient has to 

overcome threshold hysteresis force apart from the viscous force before it sets into 

motion, the direction of which depends on magnitudes of capillary and Marangoni 
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flows.    

Subsequently many theoretical17,18 and experimental studies19-23 have been carried 

out to elucidate thermal Marangoni flow of a drop on a solid surface. Most of the 

theoretical results available in the literature17,18 are obtained by using lubrication theory 

that is applicable only in the limit of low contact angles. Ford and Nadim17 used 

lubrication approximation to estimate velocity and pressure profiles inside a drop that is 

moving under the influence of temperature gradient. They also studied the effect of 

dynamic boundary condition near the contact line that allows for slip at the contact line 

on migration velocity of drop. Smith18 also analyzed thermocapillary migration of a 

liquid drop using lubrication approximation as carried out by Ford and Nadim17, however 

including the effect of contact angle. The relation between contact line speed and 

apparent contact angle of drop is used to show that it affects drop migration velocity 

considerably.  

 In the context of experimental studies on thermocapillary migration of drop, 

Sammarco and Burns19 developed a thermocapillary pumping mechanism to pump nano 

and pico liter volume drops in microfluidic channels. Yarin et al20 looked at droplets 

migration on a thin fiber possessing temperature gradient. Darhuber et al21 carried out 

experiments to demonstrate that very small drops can also be moved on temperature 

gradient surfaces. They studied the effect of the magnitude of temperature gradient as 

well as volume of drop on migration velocity of drops. In subsequent experiments 

Darhuber et al22 have also shown that by combining spatially varying chemical, thermal 

energy gradients liquid drops can be split, turned, moved and mixed on solid surfaces. 

The importance of these operations in healthcare diagnostics is emphasized. Chen 
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et al23 have carried out experiments to analyze the effect of contact angle hysteresis on 

migration velocity of liquid drops on temperature gradient surfaces. Recently, Pratap et 

al24 carried out experiments to determine the effect of drop size, temperature gradient and 

contact angle hysteresis on velocities of drops moving on temperature gradient surfaces. 

They also presented theoretical analysis using spherical cap approximation.  

Recently, Daniel et al7 have reported a new type of surface tension induced flow 

where radial surface tension gradient on hydrophobic surface increases the speed of 

condensing drops by two to three orders of magnitudes of typical Marangoni flows. Low 

speeds of Marangoni flows can be enhanced by application external energy to overcome 

the hysteresis force that suppresses motion. The use of vibration force to overcome 

hysteresis force has also been demonstrated by Daniel and Chaudhury12. The effect of 

vibration on wetting hysteresis has been studied experimentally by several other 

investigators25-29. It is well known that hysteresis, a retentive force that hinders the drop 

motion on solid surface, is overcome by vibration resulting in increase in speed of drop 

motion. Daniel and Chaudhury12 obtained rectification of motion of drop on a surface 

through vibration of the solid surface. A liquid drop, placed on an energy gradient 

surface, which moves at low speeds of 1-2 mm/sec, due to retentive force by hysteresis, 

moves with increased speeds of 5-10 mm/sec when a periodic force is applied to the drop 

through vibration of the solid surface. There was significant enhancement in the velocity 

of drops when the frequency of vibration of surface matches the natural frequency of 

vibration of drops13. This basic observation has been used to demonstrate the potential of 

vibration induced motion of drops on surface for the application in batch microfluidic 

processes14.  
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While considerable amount of work is done on the  motion of low surface tension 

liquid drops with thermal gradient, similar studies do not exist for liquid drops of large 

contact angles (>90o).  When we attempted such an experiment by placing water drops on 

a silanized silicon wafer with a preformed thermal gradient, no drop movement could be 

observed. The lack of motion is due to the pinning of the drop by contact angle 

hysteresis. However, when the stage containing the silicon wafer is vibrated with a 

periodic noise, drops were found to move towards the regions of lower temperature. The 

interesting and useful phenomena of motion of drops on horizontal surface subjected to 

either surface energy gradient or thermal gradient has also motivated us to investigate the 

effect of vibration force combined with thermal gradient on the motion of drop on a 

hydrophobic surface. 

2. 2. Preparation of hydrocarbon monolayer coated silicon wafer 

The solid surface used in the experiments is a silicon wafer coated with self 

assembled mono layer (SAM) of decyltrichlorosilane that is prepared using vapor 

deposition method. Here, we briefly describe the vapor deposition method. The 

hydrocarbon monolayer was prepared by reacting plasma cleaned silicon wafer (Silicon 

Quest International) to the vapor of decyltrichlorosilane (CH3-(CH2)9-SiCl3, Gelest Inc.). 

Before the vapor deposition is carried out, the silicon wafer is thoroughly cleaned as 

described below. The silicon wafer was placed in Piranha solution (20% Hydrogen 

Peroxide and 80% Sulfuric Acid by volume) for 30 min followed by rinsing with copious 

amount of distilled deionized (DI) water. After drying with ultra purified nitrogen gas 

(Praxair Inc.), the silicon wafer was treated with oxygen plasma (model PDC-32G; 

Harrick Plasma) at 0.2Torr for 45s. Before the vapor deposition is carried out, 
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the silane is degassed for two hours in vacuum to remove any trapped air bubbles. The 

plasma treated silicon wafer was immediately transferred to a vapor deposition chamber 

containing decyltrichlorosilane. The vapor deposition of silane onto silicon wafer was 

carried for 1h in vacuum. After deposition, the silicon wafer was baked in oven for 15 

min at 75oC. After cooling the samples to room temperature, it is rinsed with DI water 

followed by drying with ultra purified nitrogen gas (Praxair Inc.). Advancing and 

receding angles on this surface are measured by adding and withdrawing liquid to a water 

drop lying on the surface using a microsyringe in contact. The wetting hysteresis on the 

silicon wafer thus measured was ~ 7o with advancing and receding angles of 109.7±0.6o 

and 102.5±1.6o respectively.  

2. 3. Experimental Setup 

Schematic of the experimental setup is shown in Figure 2. 1(a). A brief 

description of the apparatus used to induce symmetrical sinusoidal vibration of the 

hydrophobic substrate is given here. The silicon wafer is attached firmly to an aluminum 

plate that is connected to the stem of a mechanical oscillator (Pasco Scientific, Model SF-

9324). The symmetric sinusoidal wave generated by a wave form generator (Agilent, 

model 33120A) is fed to the oscillator via a power amplifier (Sherwood Model No: RX-

4105). The entire setup is placed on a vibration isolation table (Micro-g, TMC) to 

eliminate the effect of ground vibration. The motion of drops has been recorded by a low 

speed camera (Sony Model No: DCR-HC65) operating at 30 frames/sec. The test liquid 

used is distilled, deionized water. Linear temperature gradient on hydrophobic substrate 

is maintained by circulating hot water and cold water/ethylene glycol mixture through the 

hollow aluminum plate on which substrate is supported. The hot stream 
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maintained at a constant temperature is fed to the support on one end where as the cold 

stream enters and leaves on the other end. The temperature profile on the substrate, 

measured using a K-type thermocouple, is found to be linear with temperature varying 

from about 69o C to 12o C over a distance of 7cm as shown in Figure 2. 1 (b). 
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Figure 2. 1. (a) Schematic of the experimental setup. The silicon substrate is firmly 
attached to an aluminum plate using plastic clips (not shown in the figure) on which 
linear temperature gradient is maintained by circulation hot (Th) and cold (Tc) streams of 
water/ethylene glycol mixtures. The symmetric harmonic wave generated by frequency 
generator is fed to the aluminum plate through the oscillator via a power amplifier. The 
acceleration is measured by an oscilloscope and the high speed camera used to analyze 
the motion of drops. (b) A typical temperature gradient on the surface of silicon wafer is 
shown.  
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2. 4. Results and Discussion 

 The deionized water drops of volume ranging from 1 to 20μL are deposited on hot 

side of surface using a microsyringe and their motion towards colder side is recorded 

from top view using a video camera.  Position of center of mass of the drop is tracked 

using image analysis software to determine velocity. The effect of thermal energy 

gradient in conjunction with vibration on motion of drop on hydrophobic surface is 

investigated using three different sets of experiments. The first set of experiments 

consisted of studying the motion of drop on the surface having only thermal energy 

gradient with no symmetrical sinusoidal vibration of surface. The second set of 

experiments was carried out on an isothermal hydrophobic surface subjected to 

symmetrical sinusoidal vibration. The third set consisted of studying the combined effect 

thermal energy gradient and symmetrical sinusoidal vibration on the motion of drop. 

 The liquid drops deposited on the substrate having a linear temperature gradient 

(dT/dx~0.78oC/mm) have been observed to remain stationary in the absence of vibration 

of the substrate. As first analyzed by Brochard15 for the case of thermal energy gradient 

driven motion of droplet on a solid surface, the relative magnitude of the forces acting on 

the drop determines the direction of the drop movement. Force due to solid acting on the 

liquid at contact line drives drop towards region of high temperature in order to lower 

surface energy. Marangoni flow generated due to imbalance of surface tension forces 

drives drops towards the region of lower temperature (high surface tension) where as 

hysteresis force pins drops to solid surface there by hindering the drop motion. The 

approximate analytical solution for drop velocity obtained by Brochard15 using 

lubrication approximation gives the estimate of critical droplet size required to 
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overcome the hysteresis force as following 

( )arlv
lv

c dx
dT

dT
d

dT
dSmD θθγ

γ
coscos~

2
3

−⎟
⎠

⎞
⎜
⎝

⎛ +                                                      (2.2) 

where m is a numerical constant related to geometrical configuration, Dc is the critical 

droplet size and S is spreading coefficient.  Neglecting the variation of spreading 

coefficient with temperature (dS/dT~0) and plugging in the parameters from experimental 

conditions ( dTd lv /γ ~0.1818×10-3 N/m0C, dT/dx~0.78oC/mm, ( )arlv θθγ coscos − ~0.008 

N/m) in the above equation gives critical drop size Dc ~90mm. The large critical drop 

size signifies that the drop has to overcome a huge hysteresis force before it sets into 

motion which is in agreement with our experimental results. On the other hand, 

temperature gradient (dT/dx) required for the largest drop (D~7mm) to overcome 

hysteresis estimated using (2.2) is approximately 10oC/mm. It is impractical to maintain 

such a large temperature gradient in reference to heat sensitive microfluidic devices 

where temperature sensitive reactants (DNA analysis) are present. This restriction 

necessitates for an alternate way to overcome hysteresis force.  

Similarly, liquid drops deposited on isothermal substrate subjected to symmetrical 

sinusoidal vibration (amplitude 0.12 mm, frequency 100Hz) have been observed to 

remain stationary in the absence of temperature gradient (dT/dx~0). As observed by 

Daniel and Chaudhury12 for case of vibrating drop on an energy gradient surface, unequal 

body force experienced by drop during forward and backward pulse, due to asymmetry in 

surface energy, results in the rectification of drop motion there by resulting in 

unidirectional motion of drop. Our experiments with vibrating drop on isothermal 

substrate are similar to Daniel and Chaudhury12 except that there is no gradient 
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of any transport property which if present would provide the required rectification for 

unidirectional motion. 

However, the drops deposited on thermal energy gradient surface subjected to 

symmetrical sinusoidal vibration (amplitude 0.12 mm, frequency 100 Hz) have been 

observed to move towards the regions of low temperatures with enhanced velocities. The 

hysteresis force hindering the motion of drops is overcome in the presence of vibration. 

In order to check whether the observed motion is genuine and it is result of vibration 

combined with temperature gradient, we carried out few other experiments. In the first set 

of experiments, we tilted the solid substrate slightly (~3 deg) upwards towards the cold 

side in order to check whether the drops climb upwards. When subjected to vibrations, 

the drops moved uphill. In the second set of experiments, we switched off the cold bath 

supply, while the drop was moving under the influence temperature gradient and 

vibration. As soon as the cold bath is switched off, the temperature on the substrate 

reaches uniform temperature and the liquid drop that was previously moving towards 

cold side does not move showing symmetrical oscillations back and forth without any net 

drift. The drop again moves towards cold side as soon as the cold bath is switched on and 

the temperature gradient on the surface is resumed. We also checked the effect of contact 

time of drop on the surface by subjecting the drops that are equilibrated on surface for 10 

and 180 sec.  Both the drops show drift towards cold side of substrate without any 

appreciable change (~2%) in velocity. We have used 10 sec as the equilibration time for 

the drops before vibration is applied in all the experiments. We have varied the mass of 

liquid drops at given amplitude (0.12 mm) and frequency (100 Hz) of symmetrical 

sinusoidal vibration to see the effect of resonance modes of liquid drops on drift 
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velocities. 
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Figure 2.2. Velocity as a function of non-dimensional frequency for water drops of 
volume ranging from 1 to 20μL. The wetting hysteresis on the silicon wafer was ~ 7o 
with advancing and receding angles of 109.7±0.6o and 102.5±1.6o respectively. The 
dashed line is provided as a guide to the eye. ). Th peak at */ ωω ~0.9 corresponds to the 
natural frequency ( */ ωω ) as predicted by Raleigh’s equation (2.3) for the first mode. 
 
 
2.5. Resonance Modes of Liquid Drops 

                   It is well known that a vibrating spherical liquid drop shows different 

vibration modes as predicted by Rayleigh’s eqaution30-32. The resonance frequencies 

corresponding to such vibration modes can be obtained by equation 2.3 for n = 2(first), 3 

(second), 4(third).   

)2)(1(
3
1

* +−= nnn
πω

ω                                                                      (2.3)  

In order to check whether the velocity amplification corresponds to the resonance 

frequency of the vibrating drop or not, we plotted velocity of drops as a function of 
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ratio of forcing frequency (ω ) to the natural frequency ( mlv /* γω = ) of the drop in 

Figure. 2.2. Here, lvγ  is surface tension of liquid and m is the mass of the drop. When 

deformed from its equilibrium position, the drop readily retracts to equilibrium. Such a 

restoring force is due to the surface tension of liquid. Here the drop acts like linear spring 

with spring constant proportional to the surface tension. For the first mode (n = 2), the 

ratio of forcing frequency to the natural frequency ( */ ωω ) as predicted by Rayleigh’s 

equation30-32 is ~0.9 where as interpolation from Figure 2.2 shows that the velocity shows 

a peak at */ ωω ~0.9.  
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Figure 2.3. Velocity as a function of non-dimensional frequency for water drops of 
volume ranging from 14 to 50μL. These experiments are carried out on different 
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surface coated with the monolayer of decyltrichlorosilane that had slightly different 
amount of hysteresis. The wetting hysteresis on this surface was ~10o with advancing and 
receding angles of 108.9±0.5o and 99.6±1.1o respectively. The dashed line is provided as 
a guide to the eye.  Th peaks observed here approximately correspond to the natural 
frequency ( */ ωω ) as predicted by Raleigh’s equation (2.3) for the second and third 
modes. 
 

We carried out experiments on a different decyltrichlorosilane monolayer coated 

silicon wafer with a slightly different hysteresis. The wetting hysteresis on this surface 

was ~10o with advancing and receding angles of 108.9±0.5o and 99.6±1.1o respectively. 

We plotted drift velocities of drops of volumes ranging from 14 to 50μL obtained on this 

surface as a function of the ratio of forcing frequency to the natural frequency ( */ ωω ) in 

Figure 2.3.  As observed from figure, even though there is significant scatter in the data, 

there are two resonance peaks that approximately correspond to second (n = 3) and third 

(n = 4) Rayleigh modes30-32 as given by equation 2.3 for n=3 ( 78.1~/ *ωω ) and n= 4 

)76.2~/( *ωω respectively. Daniel et al13, Dong and Chaudhury33 have already 

identified such a resonance modes of drops oscillating on a solid substrate when 

subjected to symmetrical sinusoidal vibration. They used a method that is slightly 

different though both essentially point out the same conclusions. 
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Figure 2.4. (Left) Snapshots of a 30 μL drop on a temperature gradient surface vibrating 
at a frequency of 100 Hz. (Right) Schematic defining the coordinates in the analysis of 
drop motion during vibration. The upper diagram shows the static drop profile before the 
substrate moves. In the lower diagram, the undisturbed profile of the drop is shown by 
the dashed gray line, and the new profile and position of the drop during vibration are 
shown by the solid line. x1 indicates the displacement of the substrate during oscillation 
with x being the displacement, or slippage, of the contact line, and x2 is the displacement 
of the center of mass of the drop. 
 

2.6. Effect of Hysteresis  

Here we attempt to understand the above experimental observations using a 

simple model where the drop is approximated as a harmonic oscillator. The schematic of 

a drop vibrating on a solid substrate is shown in Figure 2.4. Previously, Daniel et al14 

analyzed the problem of the horizontal oscillation of a drop on a surface due to 

asymmetric vibration. Daniel et al14 derived Lagragian equation of motion for the drop 

ignoring the dissipation due to contact angle hysteresis. They considered the dissipation 

in the contact line of drop as well as in the bulk of drop. Later Buguin et al34 have 

analyzed the asymmetric vibration of solid or liquid drop taking either threshold static 



 

 

36

friction or contact angle hysteresis into consideration. A modification of the equations of 

motion of the drop presented by Daniel et al14 along with the effect of hysteresis by De 

Gennes35  and Buguin et al34 lead to the following equations of motion for the 

displacement of plate ( 1x ), contact line ( x ) and center of mass of the drop ( 2x ). 

( )
dt

dxx
m
kxxx

dt
d s 2

2
2212

2 1
τ

−−=++                                               (2.4)     

( ) ( )
dt
dx1Vxxx

dt
d

1
212

2

τ
Δσγ −−=++                                               (2.5) 

Here, 1τ  and 2τ  are relaxation times (ratio of mass to friction coefficient) due to the 

relative displacement of the drop with respect to the plate and that due to bulk 

deformation of the drop respectively. m is the mass of the drop and sk  is its spring 

constant, which is related to the its resonance frequency and is proportional to the surface 

tension of liquid. γ  is the ratio of the applied force to mass and Δ  is the hysteresis force 

divided by the mass of the drop. The applied force arises due to the surface tension 

gradient existing on the drop surface.  ( )Vσ  is the signum function of velocity. Usually, 

hysteresis term enters in the equation of motion as a jump discontinuity, Δ)(Vσ  with 

VVV /)( =σ  providing the sign of velocity of the contact line. )(Vσ  takes the values of 

-1, 0, +1 when 0<V , 0=V , 0>V  respectively that ensures that the resistance due to 

contact angle hysteresis always acts against the motion of contact line of drop. 

Rearranging of equation 2.4 and 2.5 and ignoring the inertia of contact line of drop 

results in the following two equations for the center of mass ( 2x ) and contact line ( x ) of 

drop 
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                                                          (2.7)    

Here )(tγ  is the acceleration of the liquid drop due to the sinusoidal vibration of 

the plate.  Ignoring the initial transient due to dissipation in the bulk of the drop, since 

)(tγ  is periodic, the solution of equation 2.6 for the center of mass of drop is also 

periodic. This periodic motion of center of mass combined with bias )(γ  due to 

temperature gradient results in net drift of the contact line of drop towards cold side of 

the surface. However, the resistance due to contact angle hysteresis ( ) )( ΔVσ  impedes this 

motion. 

Taking average of equation 2.7 over a cycle, as was done by de Gennes35 and 

Buguin et al.34, we obtain the drift velocity of contact line as follows* (This analysis is by 

Prof. Chaudhury):  

( ) 11 τστγ Δ−= VVdrift                                                                 (2.8)   
 
when there is no external vibration, ( )Vσ =+1. However, in the presence of vibration, 

( )Vσ <1. We describe the procedure used to calculate the average value σ  using 
Figure 2.5. 
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Figure 2.5.  A schematic illustrating the estimation of σ  for drop vibrating under 
external bias (γ ). 
 

 
The dark solid curve ( )2sin( to πωΓ=Γ ) in Figure 2.5 indicates the acceleration of 

the drop due to the periodic vibration of the center of mass of a drop in the absence of 

any external force. The solid lines above and below the X-axis indicate the hysteresis 

threshold acceleration )( Δ± . When subjected to external vibration, contact line of drop 

gets stuck to the surface if acceleration amplitude of vibration )( 0Γ is less than threshold 

contact angle hysteresis present on the surface.  The contact line shows motion only 

when Δ>Γ0 .  In the absence of any external bias )(γ , the drop shows symmetrical 

oscillations about its stationary position without showing any net drift. However, in 

presence of external bias, the solid curve shifts upward to the dashed curve, thus creating 

an asymmetry above the hysteresis threshold.  Lower part of the curve is reduced by 2Δt 

and the upper curve is expanded by the same amount horizontally. Hence, the signum 

function ( )Vσ  is slightly biased upward. Using simple geometry we find that  

)t2cos(2
dt

d
t o πωωΓπΓ

Δ
γ

=≈                                                          (2.9)    
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However, at Δ=Γ , ( )to πω2sinΓ=Δ , this leads to ( ) 2

2

12
o

tcos
Γ
Δ

−=πω . Substitution of 

this expression in equation 2.9 leads to  

 
22 /12 oo

t
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=Δ
ωπ

γ                                                                 (2.10)                        

The average value of the ( )Vσ  can now be estimated approximately as follows: 
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where t is the amount of time the drop remains pinned on the surface due to hysteresis. 

Substituting the expression of tΔ  from equation 2.10 into equation 2.11 results in 

equation 2.12:  
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Based on a derivation given in Daneil et al14, we have 

m/xk o22o =Γ                                                                               (2.13) 

where, o2x  is the amplitude of the oscillation of the center of mass of the drop. m/k2  is 

related to its resonance frequency o2πω . Substitution of the equations 2.12 and 2.13 in 

equation 2.8 now leads to an expression for the drift velocity of the drop as: 
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where,  
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From equation 2.14, when 0=Δ  velocity of a drop is maximum which is equal to 

1τγ . However, when 0>Δ , the velocity of drop decreases reaching zero when γ>Δ  .  

Here, the drop gets stuck to the surface. The velocity of drop can be increased either by 

increasing the amplitude of vibration (A)  or by oscillating the drop close to the resonance 

frequency of drop that maximizes the oscillation of center of mass (x2o). It can be 

observed from equation 2.15 that when oωω ≈ , center of mass oscillation (x2o) is 

maximized.  This effect of velocity amplification close to the resonance frequencies of 

drop is observed in Figures 2.2 and 2.3. 
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Figure 2.6. Non-dimensional displacement of contact line of a 30μL water drop relative 
to the plate at a vibration frequency of 100 Hz on an isothermal surface. Ao is amplitude 
(0.12 mm) and T is time period (0.01 sec) of oscillation. The acceleration of amplitude of 
the vibration is 47 m/s2. Blue circles represent displacement of contact line relative to the 
plate. Red line represents the displacement of contact line obtained from numerical 
simulation of equation 2.7 without γ . Static wetting hysteresis on the surface is ~10o 
with advancing and receding angles of 108.9±0.5o and 99.6±1.1o respectively.  
Advancing and receding edges were tracked using a high speed camera (Redlake, 
MotionPro, Model 2000) at 2000 frames/sec.  In this case, there is no drift as the contact 
lines exhibit symmetric stick-slip behavior. 
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2.7. Periodic Rectification of Drop 

In order to better understand the periodic rectification resulting from vibration and 

thermal gradient, we have recorded a high speed video (2000 frames/sec) of a 30μL water 

drop on an isothermal and a temperature gradient surface subjected to symmetric 

sinusoidal vibration. We have tracked the detailed contact line motion using image 

analysis software MIDAS. We have also carried out numerical simulations to predict the 

contact line motion observed in the experiments. 

Here we briefly describe the procedure used to predict contact line motion based 

on the theory presented in section 2.6. We tracked the motion of centre of mass of the 

drop from experimental data and fitted it with a sine curve, which is then substituted in 

equation 2.7. The relaxation time ( 1τ = 0.02 sec) and hysteresis threshold acceleration 

( Δ =3.3 m/sec2) that are required in equation 2.7 are approximate values. We used the 

fact that 1τγ=driftV  (0.0018 m/sec) in the absence of hysteresis to eliminate 1τγ  from 

equation 2.7. The term 
dt

dx1 2

2τ
 in equation 2.7 represents dissipation in the bulk of the 

drop due to the motion of centre of mass. The contribution of this dissipation in bulk of 

the drop to motion of contact line is to introduce a phase shift between oscillations of the 

plate and contact line. We needed to use a phase shift of 52 deg to account for the above 

dissipation. Another adjustable parameter in the simulations is the spring constant sk , 

which has been varied till a good match between contact line motion in simulations and 

the experiments is obtained. The spring constant ( sk ) used in the simulations is 2.0 N/m.  

The drift velocity, as calculated from equation 2.7, is then integrated to obtain the 
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displacement of contact line as a function of time. The red solid lines in Figures 2.6 and 

2.7 show the motion of the contact line motion as obtained from the procedure described 

above. For the case of a drop vibrating on an isothermal and temperature gradient 

surfaces respectively, theory predicts (figures 2.6 and 2.7) a stick slip behavior of the 

contact line, which is qualitatively observed in experiments as well.  However, while the 

theory predicts a complete arrest of the contact line in the stick phase, very slow 

movement of the contact line is observed in experiments. In the next section we describe 

how we resolve this issue of complete sticking of contact line observed in the 

simulations. 
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Figure 2.7. The experiment as described in figure 6 is repeated on a thermal energy 
gradient surface with temperature gradient of dT/dx~0.78oC/mm. Blue circles represent 
experimental data for the displacement of contact line relative to the plate.  Red line 
represents the displacement of contact line obtained from numerical simulation of 
equation 2.7 with γ  included. Note that contact line exhibits stick-slip behavior, which is 
evident from the relative displacement of contact line with respect to plate (blue closed 
circles). In this case of drop vibrating on a temperature gradient wafer, a net drift results 
from the asymmetric slipping of contact line. 
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2.8. Simulations with Non-linear Contact Angle Hysteresis Model 

Even though the simulation procedure described in the section above predicts the 

contact line motion of drop well, it also predicts complete sticking of the contact line. 

Such a complete sticking of contact line does not match with the experiments where there 

is some amount of velocity dependent slipping of contact line. We have recently used a 

non-linear contact angle hysteresis model to explain the detailed contact line motions of 

small liquid drops subjected to asymmetric vibration on a horizontal solid surface36. 

Apart from predicting detailed contact line motions of drops of various volumes, we 

could also predict the directions of drops motion accurately. We wanted to check whether 

this new non-linear contact angle hysteresis model explains the contact line motion 

observed in current experiments. In order to predict the contact line motion very 

accurately we replace the discontinuous ( )Vσ  with a continuous non-linear function 

( )Vαtanh . The equation of motions for the center of mass and contact line of the drop 

are modified as below. 
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Here, unlike in the previous section where the spring constant of liquid drop was 

used as a fitting parameter, it is proportional to the surface tension of the liquid, lvγ  given 

by lvsk πγ2= . ( )VαtanhΔ  is the hysteresis force divided by the mass of the drop,  where 
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dtdxV /=   is  the velocity of the contact line. As described earlier, hysteresis term 

Δ)(Vσ  enters in the equation of motion as a jump discontinuity. The difficulty 

associated with such a term is that the signum function is discontinuous at 0=V  which 

results in the discontinuity in force versus velocity relationship. We replaced the signum 

function with a non-linear function ( )Vαtanh  which is widely used in tribology 

literature37 involving Coulombic dry friction that has a jump discontinuity similar to that 

of the wetting hysteresis at V=0. Here, α  is a parameter that signifies how fast the 

resistive force (acceleration) due to contact angle hysteresis reaches the threshold force 

(acceleration, Δ ) as a function of velocity of contact line. In the limit of ∞→α , 

hyperbolic tangent function is a good approximation to signum function.  
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Figure 2.8. Non-dimensional displacement of contact line of a 30μL water drop relative 
to the plate at a vibration frequency of 100Hz on an isothermal surface. Ao is amplitude 
(0.12 mm) and T is time period (0.01 sec) of oscillation. The acceleration of amplitude of 
the vibration is 47 m/s2. Blue circles represent displacement of contact line relative to the 
plate. Red line represents the displacement of contact line obtained from numerical 
simulation of simultaneous equations 2.16 and 2.17 without γ . We carried out numerical 
simulations of equations 2.16 and 2.17 using commercial software Mathematica®.  
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The unknown parameters in the simulations are Δ , 1τ  and  2τ . Below we 

describe the procedure used to estimate approximate values for Δ , 1τ  and  2τ .  Langevin 

relaxation time (the ratio of the mass to kinematic friction coefficient, ζτ /1 M=  ) scales 

with the volume (V) of the drop as 3/2
1 ~ Vτ . We found that 1τ  for a 4μL drop on a 

decyltrichlorosilane monolayer coated silicon wafer with similar hysteresis as the current 

surface to be approximately 0.01 sec36. The scaling law predicts approximate 1τ  for a 

30μL drop to be sec038.0~)4/30(*01.0 3/2 . However, we had to use 0.02sec which 

approximately half of the predicted value. We also found from our previous simulations 

of drops subjected to asymmetric vibration that relaxation time due to dissipation in the 

bulk of the drop )( 2τ  is approximately equal to relaxation time due to dissipation at the 

contact line )( 1τ . So we have used ~2τ 0.018 sec in the simulations. We also found that 

Δ  for a 4μL drop on a decyltrichlorosilane monolayer coated silicon wafer to be 10m/s2. 

The scaling law for contact angle hysteresis is 3/2~ −Δ V . This scaling law predicts 

approximate Δ  for a 30μL drop to be 23/2 /6.2~)4/30(*10 sm− . We had to use 

2/2 sm=Δ  in the simulations to match the contact lines as observed in the experiments. 

We carried out numerical simulations of equations 2.16 and 2.17 in order to obtain 

displacement of contact line (x) of drop and thus the velocity of the drop, which are 

compared with the experimental data. We used commercial software Mathematica® to 

numerically solve the simultaneous differential equations 2.16 and 2.17. The integration 

time step is 200/Tt =Δ  where sec01.0=T  is time period corresponding to frequency 

( Hz100=ω ) of oscillations. The amplitude of acceleration of vibrations is 
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222 /47~4~ smAo ωπΓ . The displacement of contact lines as obtained from the 

simulations are shown in Figure 2.8 and 2.9 for drop moving on an isothermal and 

thermal gradient surface respectively. These simulations carried out using non-linear 

contact angle hysteresis model predicts the details of contact line motions very accurately 

along with predicting the exact drift velocity on thermal gradient surface (Figure 2.9). 

Unlike the simulations in the previous section, the new model predicts the velocity 

dependent contact line slipping accurately. 
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Figure 2.9. The experiment as described in figure 8 is repeated on a thermal energy 
gradient surface with temperature gradient of dT/dx~0.78oC/mm. Blue circles represent 
displacement of contact line relative to the plate. Red line represents the displacement of 
contact line obtained from numerical simulation of simultaneous equations 2.16 and 2.17 
with 2/09.0 sm=γ included. We carried out numerical simulations of equations 2.16 and 
2.17 using commercial software Mathematica®.  
 
 
2.9. Conclusions 

The motion of liquid drops placed on a hydrophobic surface having thermal 

energy gradient subjected to periodic vibration force has been studied to elucidate 
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the combined effect of thermal energy gradient and vibration. The liquid drop placed on a 

thermal energy gradient surface is observed to remain stationary in the absence of 

vibration force. This pinning of liquid drops is attributed to the presence of large 

hysteresis force. The drop requires overcoming the hysteresis force before it sets into 

motion. High temperature gradient required for given size of a drop to overcome 

hysteresis force is highly impractical especially while dealing with temperature sensitive 

reactants in microfluidic devices.  Application of external energy through vibration of 

solid surface shows a promising way of overcoming hysteresis. Liquid drops placed on an 

isothermal surface subjected to symmetrical sinusoidal vibration force are observed to 

remain stationary due to the absence of asymmetry in any of the transport property which 

if present would have resulted in the rectification of drop motion there by resulting in 

unidirectional motion of drop. However, the effect of thermal energy gradient when 

combined with symmetrical sinusoidal vibration force results in the unidirectional motion 

of the drop. The velocity amplification shown by moving liquid drops corresponds to the 

resonance frequencies predicted by Rayleigh’s equation. Using a simple model we could 

explain the velocity amplification when the frequency of oscillations is close to the 

resonance frequency of liquid drops. Approximate numerical simulations predict the 

detailed contact line motions well except that they predict completely sticking of the drop 

that is contrary to the experimental observation. Such a velocity dependent slipping of 

contact line observed in experiments is reproduced by simulations incorporating recently 

developed non-linear contact angle hysteresis model. However, for the detailed 

understanding of the dynamics of the flow phenomena and to analyze the development of 

temperature, velocity and pressure profiles inside the drop we need to resort to 
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numerical simulation of 3-D Navier-Stokes equations. To this end, we have solved the 3-

D Navier-Stokes equations numerically for a small drop of radius 1 mm using the 

commercial Computational Fluid Dynamics (CFD) software code FLUENT by 

simultaneously solving heat and momentum transfer equations inside the drop with and 

without vibration the details of which are described below. 

 

2.10. Computational Fluid Dynamics Simulations using FLUENT 

Most of the theoretical results on thermocapillary migration of drop available in 

the literature are obtained by using lubrication theory that is applicable only in the limit 

of low contact angles. Also, scope of the results obtained using lubrication approximation 

is limited as very little information like drop migration velocity is extracted from it.  

However, for the detailed understanding of the dynamics of the flow phenomena and to 

analyze the development of temperature, velocity and pressure profiles inside the drop we 

need to resort to numerical simulation of 3-D Navier-Stokes equations. The 3-D 

simulation results are also very useful in understanding the dynamic variation in the 

contact angles on both sides of the drop as it migrates towards colder side. The rich 

information obtained using these simulation results will considerably advance the field of 

microfluidics to design, build and operate microfluidic devices with enhanced efficiency. 

Recent paper by Tseng et al38 seems to be the only paper where 3-D numerical 

simulations of Navier-Stokes equations are carried out for a drop sitting on a thermal 

gradient (dT/dx~100oC/mm) solid surface by taking into consideration the heat and 

momentum transfer effects. These authors have also found the drops of contact angle ~ 

50o to move to the region of colder temperature that confirms the analytical 
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prediction of Brochard15. Recently Nguyen and Chen39,40 have looked at the 

thermocapillary migration of liquid drops using finite element analysis.  

The main aim of this numerical study is to obtain an understanding of the 

phenomenon of motion of drops on thermal gradient surface subjected lateral vibration by 

carrying out numerical simulation of 3D Navier-Stokes equations and energy equation. 

Here, we look at how the velocity field develops inside the drop due to thermal gradient 

on the surface. We do not attempt to compare the simulations results with the 

experiments as many details like dynamic contact angle and contact angle hysteresis are 

not taken into account. We only look at the simulations in a qualitative way. 

Development of accurate contact angle hysteresis model that needs to be incorporated 

into FLUENT simulations is left for the future work. 
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Figure 2.10. Schematic geometry for a liquid drop on vibrating hydrophobic surface with 
linear thermal energy gradient on it. 
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2.11. Problem Statement 

Consider a water droplet surrounded by air on a temperature gradient surface that is 

undergoing sinusoidal lateral vibration as shown schematically in Figure 2.10. The 

geometry used in the model is a rectangular brick with dimensions of 5mm×2.5mm×2.5mm 

where a drop of radius 1mm is placed at center of the domain. The use of smaller 

computational domain with Lx/R=5, Ly/R=Lz/R=2.5 where Lx, Ly, and Lz are the 

computational domain lengths in x,y,z directions and R is the radius of drop, is justified by 

the fact that symmetry boundary conditions used on the boundaries in x-direction minimize 

the effect of boundaries on the numerical solution. The computational domain is 

descretized with uniform rectangular mesh of size 50μm × 50μm × 50μm. In a similar study 

of liquid drop vibrating on isothermal solid surface, Dong et al33 arrived at a mesh size of 

40μm × 40μm × 40μm after experimenting with various mesh sizes in decreasing order until 

the simulation results became independent of grid size used. Therefore we also used a mesh 

size comparable to Dong et al33. Bussmann et al41 have also studied the effect of grid 

resolution on the dynamics of a drop spreading on an inclined surface and found that 

solution obtained with 10 computational cells per radius of drop accurately predicts the 

dynamics. We have used 20 computational cells per radius of drop which is sufficient 

enough to give grid independent results. Numerical simulations have been carried out using 

the commercial Computational Fluid Dynamics (CFD) software code FLUENT in which 

the 3-D Navier-Stokes, energy and continuity equations are solved using Volume of Fluid 

(VOF) model42. In VOF model a single momentum and a single energy equation are solved 

throughout the domain and the resulting field variables are shared by two phases. The 

momentum and energy equations are solved along with an extra VOF advection 
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equation; where α, the volume fraction of one of the phases is introduced as an extra 

variable to keep track of whether a given computational cell is at the interface or in one of 

the phases. When α = 1, a given cell is completely filled with one of the phases (i.e. water), 

whereas α = 0 implies that the cell is completely filled with the other phase (air). The cells 

that are present at the interface satisfy the condition that: 0 < α < 1. The 3-D Navier-Stokes, 

energy, continuity, and VOF advection equations used to solve the problem of the 

oscillating drop on temperature gradient surface are shown below:   

               ( ) ( ) ( )[ ] fgp
t

T ++∇+∇⋅∇+−∇=⋅∇+
∂
∂ kvvvvv ρηρρ                      (2.18) 

                ( ) ( ) ( )[ ]TKpEE
t eff ∇⋅∇=+⋅∇+

∂
∂ )ρρ v(                                            (2.19)                                 

               ( ) 0=⋅∇+
∂
∂ vρρ

t
                                                                                   (2.20)                                  

                0=∇⋅+
∂
∂ αα v

t
                                                                                    (2.21)                                 

where ),,( wvu=v and p are velocity vector and pressure. ρ = ρwα+ ρa (1-α) is the density in 

the computational cell, ρw and ρa being the density of water and air, respectively. η = ηwα+ 

ηa (1-α) is the viscosity in the computational cell, where ηw and ηa are the viscosity of 

water and air, respectively. Energy (E) and temperature (T) are mass averaged values in 

VOF model. 
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 where Eq for each phase is based on specific heat and temperature shared by that particular 

phase. k = (0, -1, 0) is a unit vector in the negative y-direction. The continuum surface 
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force (CSF) model developed by Brackbill et al43 has been used to account for the volume 

forces resulting due to the surface tension and curvature of the interface. CSF model is 

implemented by adding a volume force term f on the right side of equation 2.18 which is 

defined as below:  

                              ακγ ∇= lvf                                                                            (2.23) 

where lvγ  is the surface tension and κ  is the curvature of the interface. The curvature at 

the interface is calculated as follows 

                            n⋅∇−=κ ;      
α
α

∇
∇

= n                                                             (2.24) 

Where n is the outward unit normal vector. The volume force f is finite near interface and 

vanishes in the computational cells that are far away from interface. We used implicit 

interpolation with geometric reconstruction scheme for interface tracking. In our model a 

second order upwinding scheme is used for the descretization of convective terms in 

momentum equation and energy equation with a PISO (Pressure Implicit with Splitting of 

Operator) algorithm for pressure-velocity coupling. The time step used for temporal 

descretization was in the order of 10-5sec which is small enough to capture the transient 

behavior of the system. 

2.12. Boundary Conditions 

 The momentum boundary conditions applied on the solid surface at y = 0 are no-

slip and no-penetration with sinusoidal periodic vibration )2(2 tACosU p πωπω= in x- 

direction i.e. the direction of vibration is perpendicular to that of gravity where A, ω are the 

amplitude and frequency of vibration respectively. 
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                            )2(2 tACosUu p πωπω== , 0=v  and 0=w                               (2.25)                 

The thermal boundary condition applied on the solid surface at y = 0 is a linear temperature 

gradient in positive x-direction with a gradient of 0.78o C/mm as follows. 

                             xTxT o 78.0)( −=                                                                       (2.26)                              

The thickness of the solid boundary is taken to be very small and the thermal conductivity 

to be very high to ensure that there is no temperature gradient within the solid boundary 

due to conduction. The wall adhesion boundary condition applied on the solid surface to 

specify the equilibrium contact angle ( eθ ) is to set the normal (  n) ) to the interface at all 

points on the wall as follows44 

                          ee SinCos θθ twall nn n ))) +=                                                                (2.27) 

where  nwall
) and   nt

) are unit vectors normal and tangential to the wall. An equilibrium 

contact angle ( eθ ) of ranging from 45o to 110o is specified on the solid surface using the 

above boundary condition. Temperature dependence of contact angle is neglected since the 

dependence is negligible as elucidated by Newmann45 that the contact angle varies 

approximately by 2o over a range of temperature from 10oC to 50oC.  The surface tension 

of water is specified as a linear function of temperature46 in the model to account for the 

thermal Marangoni flow for the range of T from 283oK to 353oK as follows  

)(Tlvγ = 0.12121−0.0001653Τ                                                                                 (2.28)      
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Figure 2.11. Instantaneous velocity profiles inside a drop sitting on thermal energy 
gradient surface (dT/dx~0.78oC/mm) along with surface temperature profile (oC) obtained 
from CFD simulations (a) and (b) drop with an equilibrium contact angle of 110o at 
t=0.01 and 0.4323 sec respectively. 
 

Figure 2.11 (a) and (b) show instantaneous velocity vectors at center plane of the 

drop and temperature profile on the surface of the drop sitting on a temperature gradient 

surface (dT/dx~0.78oC/mm). Initially (t~0.01 sec), the thermal diffusion is confined to a 

thin layer adjacent to the solid. As the temperature profile on the surface of the drop is 

nearly symmetric about the center line, the surface flow results in two convection cells of 

equal magnitude on the both halves of the drop. Here the left half of the drop has a 

velocity profile with net average velocity in positive x-direction where as the right half of 

the drop has a velocity profile with net average velocity in negative x-direction. There is 

no net motion of the drop in this case as the convection cells negate the flow developed. 

As  time proceeds (t~0.4323 sec), an asymmetry in the surface temperature profile is 
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developed and strengthened thus resulting in higher temperature on the left half and 

lower temperature on the right half of the drop. The convection cells are also asymmetric, 

the consequence of which is that the drop moves towards hotter side. Such a development 

asymmetric convection cell within the drop is in agreement with recent finite element 

simulations carried out by Nguyen and Chen39,40. However, in the simulation as shown in 

Figure 2.11 (a) and (b), drops with contact angles greater than 90o show movement 

towards hotter side where as in the experiments with vibration the drops have moved 

towards colder side. On the other hand, when we performed similar computations for 

drops of contact angles 90o or less, we have found that the drops movement is towards 

the colder region, in agreement with the original prediction of Brochard15 and with the 

CFD simulations of Tseng et al38. The asymmetric temperature profiles and velocity 

profiles inside the drop are shown in Fig. 2.12 (a) and (b) for drops with equilibrium 

contact angles of 90o and 45o respectively. 
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Figure 2.12. Instantaneous velocity profiles inside a drop sitting on thermal energy 
gradient surface (dT/dx~0.78oC/mm) along with surface temperature profile (oC). (a) drop 
with an equilibrium contact angle of 90o at t=0.16502 sec, (b) drop with an equilibrium 
contact angle of 45o at t=0.15634 sec. 
 

As observed from Fig. 2.11 (b), Fig. 2. 12 (a) and (b), the convection cell pattern 

resulting from asymmetry in temperature profile on surface is quite similar in all cases with 

the left convection cell dominating. It is also interesting to note that in case of eθ =110o 

from Fig. 2.11 (b), the velocity profile pattern in the upper half portion of the drop is 

similar to the velocity profile pattern in the whole portion of drops of eθ =90o and 45o. 

However, the velocity profile in the lower half portion of drop with eθ =110o is similar to 

the plug flow velocity profile with opposite direction (towards hotter side). Hence the drops 

with eθ >90o have shown movement towards hotter side in the simulation. Since the 
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drops with eθ >90o have shown movement towards hotter side and drops with eθ ≤90o have 

shown movement towards colder side, there may be a transition region where the direction 

of drop motion changes sign.  
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Figure 2.13. Instantaneous velocity profiles inside a drop sitting on thermal energy 
gradient surface (dT/dx~0.78oC/mm) subjected to vibration (Frequency 100Hz, Amplitude 
1.33mm): (c) drop at maximum swing to the left, (d) drop at middle of the swing, (e) drop 
at maximum swing to the right.  Temperature profiles (oC) on the surface of the drop are 
also shown. 
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In order to elucidate the effect of vibration on motion of drop, we next subjected 

the plate to a sinusoidal vibration with a horizontal velocity of the drop 

being )2(2 tACosUu p πωπω== . The temperature and velocity profiles in a drop 

subjected to vibration are shown in Fig. 2.13 (a), (b) and (c) for three different time steps 

in one cycle of oscillation. While the surface temperature increases faster with vibration, 

the drop was still found to move first towards the colder region and then ultimately 

towards the warmer region. Asymmetric convection of liquid was again evident inside 

the drop with vibration in conjunction with a thermal gradient. After the initial movement 

towards colder side, the drop has shown an asymmetric motion with the movement 

towards hotter side being higher than the movement towards the colder side in each cycle 

of the oscillation. This is contrary to the experimental observation that drops with contact 

angles greater than 90o show movement towards colder side with applied vibration force. 

However, when we performed simulations with drops of eθ ≤90o, the drops have shown 

movement towards colder side when vibration force is applied.  

2.13. Conclusions from CFD Simulations 

The motion of liquid drops placed on a silanized silicon wafer having thermal 

energy gradient subjected to periodic vibration force has been studied by solving 3D 

numerical simulation to elucidate the combined effect of thermal energy gradient and 

vibration. The CFD simulations have also shown the asymmetric motion of the drop on 

thermal energy gradient surface subjected to periodic vibration. However, the direction 

predicted by simulation is in contrary to the experimental observations for eθ >90o which 
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needs to be resolved by taking change of dynamic contact angles during motion of drop 

into account. Here, we looked at the simulations in qualitative way to observe how the 

flow field develops inside the drop. We suggest the future work in conclusions section of 

this thesis. 
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Chapter 3: Brownian Motion of a Liquid Drop with 
Dissipation due to Contact Angle Hysteresis 

 

3.1. Introduction 

 Brownian motion of a colloidal particle in a solvent is a well known 

phenomenon1-8. The colloidal particle shows random motion due to thermal fluctuations 

(Gaussian Noise) while dissipating energy by kinematic friction due to interaction with 

surrounding molecules. This system is studied extensively with well developed theory2-8 

to describe the relation between diffusivity and system parameters such as temperature 

and friction coefficient. Here, the Fluctuation-Dissipation theorem2,3,8 states that the ratio 

of diffusivity to mobility is kBT.  Also, the displacement or velocity distribution of 

colloidal particle is Gaussian due to the linear nature of kinematic friction. Recently, 

Daniel and Chaudhury9 have observed similar random motion of water drops condensing 

on a solid substrate. The solid substrate used in the experiments was a circular silicon 

wafer having surface energy gradient in radial direction. The condensing water drops 

coalesce randomly on the surface and drift away from hydrophobic end of the substrate 

towards hydrophilic end showing drifted Brownian like motion. They observed that when 

rate of condensation was high, drops were moving with high velocities and when rate of 

condensation was low drops were moving slowly. Analogous to thermal fluctuations that 

the colloidal particle experiences, water drops also experience fluctuations from random 

coalescence as well as from thermal fluctuations of contact line. However, in case of 

water drop under going random motion on a surface, apart from the kinematic frictional 

dissipation at the contact line there is also an additional mechanism for energy dissipation 
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due to threshold contact angle hysteresis force. Contact angle hysteresis resulting either 

from physical or chemical heterogeneity on the surface resists the motion of drops on a 

surface. When a drop moves on solid substrate (Figure. 3.1), its front side attempts to 

reach the advancing angle, whereas its rear side tries to achieve receding angle.  This 

leads to a threshold force of the magnitude: )cos(cos arlv w θθγ −  acting on the drop, 

where lvγ  is the surface tension of liquid, w  is width of drop, aθ and rθ  are the 

advancing and receding contact angles respectively. Resistive force due to contact angle 

hysteresis that always acts against the direction of motion of the drop must be overcome 

before the drop moves on the surface. The presence of threshold hysteresis force 

significantly modifies the dynamics of drop motion.  

 

Contact Angle
Hysteresis

)( RA θθ −

AθRθ
Substrate

Liquid drop

Hysteresis Force

Gravity
Contact Angle

Hysteresis
)( RA θθ −

AθRθ
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Liquid drop

Hysteresis Force

Gravity

AθRθ
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Liquid drop

Hysteresis Force

Gravity

 

Figure 3.1. Schematic of a water drop sticking to windshield of a car due to contact angle 
hysteresis. Gravity tries to pull the drop down where as the hysteresis force resists the 
motion.  

 

In the case of a colloidal particle diffusing under the influence of thermal noise, 

velocity autocorrelation function is exponential ( Lt
L eVtVV τ/2)()0( −= ) in which 

2/2
LL KV τ=  where LV  is Langevin velocity, Lτ  is Langevin relaxation time. In 
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this case, one dimensional diffusivity of colloidal particle can be calculated using Green-

Kubo relation8, ∫
∞

=
0

)()0( dttVVD , that gives diffusivity as a function of power of external 

noise as 2/2
LKD τ= . Here, the power of noise (K) is proportional to the temperature of 

the system. Hence, the diffusivity in presence of only kinematic friction scales linearly 

with the strength of the noise (K). Also, the drift velocity of colloidal particle in presence 

of a bias of magnitude γ  is equal to the Stokes-Einstein limit Lτγ  which does not depend 

of the strength of the noise.  

However, presence of contact angle hysteresis significantly modifies the behavior 

of contact line of drop resulting non-exponential velocity correlation. There is also an 

important and fundamental distinction between colloidal particle undergoing Brownian 

motion and water drop undergoing Brownian like motion. The colloidal particle diffuses 

under the influence of thermal noise due to molecular collisions. Here, both of the noise 

acting on colloidal particle and the diffusive behavior of particle are result of the same 

molecular process namely molecular collisions. However, diffusive behavior of a liquid 

drop is dependent on two dissimilar mechanisms. The noise acting on the liquid drop is 

external that has no relation to the molecular process occurring at the interface of the 

liquid-solid contact which is being affected by contact angle hysteresis. This intern 

affects the Stokes-Einstein relation that states that the ratio of diffusivity to mobility is 

equal to kBT. Hence the diffusivity of liquid drop on a solid surface may not follow the 

usual Stokes-Einstein equation. An interesting question that arises at this juncture is 

whether there exists any Fluctuation-Dissipation like relation when the friction and noise 

are decoupled which is the case for liquid drop that is diffusing on solid in presence of 
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external noise. Another interesting question that we ask is how the drift velocity of drop 

depends on the strength of the noise.  

Other important issue in this system is that the presence of threshold resistive 

force due to contact angle hysteresis introduces non-linearity into the system. There have 

been quite a few studies in recent literature10-18 that looked at the behavior of a non-linear 

system subjected to white noise excitation. Caughey and Dienes10,11 studied a similar 

non-linear system subjected to white noise excitation.  Here, they analyzed velocity 

distribution of a Coulombic system where there is a non-linear threshold static friction 

between two contacting solids. They have shown using the solution of Fokker-Planck 

equation that the velocity distribution is non-Gaussian following exponential distribution.  

Unaware of the work of Caughey and Dienes10,11 where kinematic friction is completely 

ignored, de Gennes15, Kawarada and Hayakawa16, Hayakawa17 and Mauger18 studied the 

combined effect Coulombic and kinematic friction on the velocity distribution for the 

case of a solid-solid contact subjected to a white noise vibration. In this case, the 

Coulombic dry friction at the interface gives rise to a non-Gaussian velocity distribution 

leading to a non-classical Brownian like motion. In the case of drop subjected to external 

white noise vibration which is studied here, contact angle hysteresis plays the role of 

Coulombic friction. 

3.2. Theory 

Inspired by the work of Daniel and Chaudhury9, de Gennes15 has developed a 

theory for Brownian like motion of a small objects on a solid substrate subjected to 

Gaussian white noise vibration. When a water drop on a solid substrate is subjected to 

pulses of random accelerations ( )( )tγ  lasting white noise vibration, it experiences 
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over a finite time width cτ . The drop exhibits one dimensional random motion that can be 

described by modified Langevin equation15-17 .  

( ) ( )Δ−+=+ VtV
dt
dV

L

σγγ
τ
1                                                                       (3.1) 

Here, V is the velocity of the drop, Lτ  is the Langevin relaxation time (ratio of the mass 

M of the drop and its hydrodynamic friction coefficientζ ), Δ  is the hysteresis force 

divided by the mass of the drop. ( ) VVV /=σ  is signum function of velocity of contact 

line with ( ) 00 =σ when drop is stationary )0( =V . ( ) 1−=Vσ  when 0<V  and ( ) 1+=Vσ  

when 0>V . Therefore, ( )Vσ  ensures that the resistive force due to contact angle 

hysteresis always acts against the motion of contact line of drop. ( )tγ  is the time 

dependent acceleration that the drop experiences from the white noise source. The 

acceleration ( )tγ  of white noise is ideally delta correlated with zero mean value. 

However, due to finite width and heights of the acceleration pulses in the experiments, 

the following approximation introduced by de Gennes15 is used: 

( ) ( ) 2
21 tt Γγγ =            for  c21 tt τ<−  

( ) ( ) 0tt 21 =γγ               for  c21 tt τ>−                                                       (3.2) 

Here, Γ  is the root mean square acceleration and cτ  is the time duration of a pulse. 

Here, K is the power of noise which is defined as c
2τΓ . Following Chaudhury16 equation 

3.1 can be integrated as follows  

( ) ( )( ){ }
⎭
⎬
⎫

⎩
⎨
⎧ −

−Δ−+= ∫
∞− L

t

drift
tttVtdtV

τ
σγγ 'exp'''                                           (3.3) 
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Carrying out the integration and noting that ( ) 0=′tγ  since the external noise is of zero 

mean results in 

[ ])(VV Ldrift σγτ Δ−=                                                                            (3.4) 

In case of noise free sliding of drop 1)( =Vσ , hence the drift velocity in this case 

is [ ]Δ−= γτ LdriftV . However, in presence of external noise 1)( ≠Vσ . Chaudhury16 

approximated the value of )(Vσ  in presence of noise as 

( )
drift

AdriftA

V

VVV
V

−+ 22

~)(σ                                                                            (3.5) 

Here AV  is velocity amplitude in presence of hysteresis. Using first two terms in binomial 

expansion of 22
driftA VV +  results in 

A

drift

Vc
V

V
1

~)(σ                                                                                                 (3.6) 

Following Chaudhury16, it can be shown that 

Δ
KVA ~                                                                                                            (3.7) 

Omitting numerical constant c1 and substituting equation 3.7 in equation 3.6 results in  

K
V

V driftΔ
~)(σ                                                                                               (3.8) 

Substituting  )(Vσ  from equation 3.8 in equation 3.4 results in  

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ Δ
−=

K
V

V drift
Ldrift

2

γτ                                                                                (3.9) 

Rewriting equation 3.9, the approximate expression for drift velocity of drop is as 
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follows 

K
V

L

L
drift /1 2τ

τγ
Δ+

=                                                                                      (3.10)   

When ,0=Δ LdriftV τγ=  is Stokes-Einstein limit as mentioned earlier independent of the 

power of noise K. On the other hand, in presence of some amount of hysteresis 

( ,0≠Δ and LK τ2Δ<< ), drift velocity is a  nonlinear function of K.   

In order to elucidate the effect of hysteresis force on dynamics of drop motion; we 

studied Brownian like motion of a drop on a solid when it is subjected to an external 

Gaussian white noise by systematically varying the strength of noise (K). 

 

10o

drop
vibrating plate

10o

drop
vibrating plate

 

Figure 3.2. Schematic of experimental set up of a water drop on a tilted (10o) 
hydrophobic surface subjected to a white noise vibration.  
 
3.3. Experiment 

 The schematic of the experiment is shown in Figure 3.2. The substrate is firmly 

attached to aluminum platform (not shown here, for the details of the complete setup 

refer to Figure 2.1(a) in Chapter 2) connected to a mechanical oscillator (Pasco Scientific, 

Model No: SF-9324). The substrate used in the experiments is a silicon wafer coated with 

monolayer of decyltrichlorosilane the preparation of which is described in Chapter 2. 

White noise generated by signal generator (Agilent, Model 33120A) is sent to the 
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oscillator after it is being amplified by a power amplifier (Sherwood, Model No: RX-

4105). A calibrated accelerometer (PCB Peizotronics, Model No: 353B17) driven by 

Signal Conditioner (PCB Peizotronics, Model No: 482) connected to an oscilloscope 

(Tektronix, Model No. TDS 3012B) is used to measure the acceleration of the supporting 

aluminum plate. The acceleration of the plate is found to follow Gaussian distribution as 

shown in Figure 3.3. The whole set-up is placed on a vibration isolation table (Micro-g, 

TMC) to eliminate the effect of ground vibration. We used a constant volume (V=10μL, 

Mass=10-5 kg) of drop in all the experiments. The test liquid used in the experiments is 

water that is de-ionized using Barnstead NanopureII water purifying system. The purified 

water used in the experiments had a resistivity of 18 Ω Ohm-cm and a surface tension of 

72.8 mN/m. The substrate is kept at a tilt angle of 10o to the horizontal shown in Figure 

3.2. When placed on this inclined surface, 10μL drop does not spontaneously slide due to 

resistive force arising from contact angle hysteresis ))cos(cos( arlv w θθγ − ; however 

when external white noise acceleration of sufficient power is applied to the supporting 

plate the drop shows stochastic drifted Brownian like motion. Since the externally 

applied noise is white, there is always a finite probability of having vibration pulses 

whose accelerations are greater than the threshold acceleration ( mw arlv /)cos(cos θθγ − ) 

required to overcome contact angle hysteresis. Here m is the mass of drop. However, 

when it encounters acceleration pulses whose magnitude is less than the threshold 

acceleration, the drop relaxes to stationary state finally coming to a complete stop. The 

drop thus exhibits random motion with net drift in the direction of applied bias 

( αsinmg ) analogous to a colloidal particle moving in a tilted potential. 

In order to verify the effect of the power of vibration on drift velocity, bands of 
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white noise of root mean square acceleration ranging from 12 m/s2 to 250 m/s2 and 

40~cτ sμ  were used. We used a low speed camera operating at 30frames/sec to record 

the drop motion and subsequently measure the drift velocity of drop as function of 

strength of noise.  We also recorded the high time resolution motion of the contact line of 

drop that is moving under the influence of external white noise vibration of power K = 

0.022 m2/s3. Here, we recorded the motion of drop at 2000 frames/sec. First we discuss 

the results of drift velocities obtained as a function of strength of white noise vibration. 

Later we focus on detailed contact line motion along with fluctuations obtained at higher 

time resolution. 
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Figure 3.3. Log-linear plot of output acceleration obtained from accelerometer at a noise 
power of 0.022 m2/s3. Blue Circles represent experimental data and the solid line is a 
Gaussian fit to the data. 
 

3.4. Drift Velocity of Drops  

We plotted the drift velocities of small drop (10-5 kg) water as function of strength 
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of noise in Figure 3. 4. As the power of the noise increases, the drift velocity increases 

non-linearly with K  tending to saturate at large power of noise from as also observed 

from equation 3.10.  Experimental data could be fitted to the equation 3.10 with the 

values of Δ  and Lτ  as 3 m/s2 and 0.01s respectively.  
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Figure 3.4. Drifted motion of small drops of water on a tilted (10o) hydrophobic silicon 
wafer in response to Gaussian white noises of root mean square acceleration ranging 
from 12 m/s2 to 250 m/s2. Circles represent experimental data and the solid line is 
generated using equation 3.10. 
 

3.5. Estimation of Approximate Langevin Relaxation Time of Drop 

Apart from fitting the drift velocity data, we also used another simple experiment 

to estimate the approximate Langevin relaxation time for a 10μL drop on the same 

surface. In this experiment, noise free drift velocity of a 10μL drop sliding on the surface 

is measured at various inclination angles of the substrate to the horizontal. As mentioned 

earlier, noise free sliding velocity of drop is given by [ ]Δ−= γτ LdriftV . Here, the limiting 

velocity of drop is LsV τγ=  where αγ sing= . Here g  is acceleration due to gravity and 
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α  is angle of inclination the substrate to the horizontal. As shown in Figure 3.5, the 

slope of drift velocity versus αsing  gives an approximate value of Langevin relaxation 

time to be 0.005s which is in the same order of 0.01s estimated from drift velocity fitting. 
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Figure 3.5. Velocity of the sliding of a 10μL water drop on a silanized 
(decyltrichlorosilane) silicon wafer as a function of the angle of inclination α. Here, g is 
the gravitational acceleration.  

 

3.6. Effect of Contact Angle Hysteresis on Drift Velocities  

 We also studied the effect of contact angle hysteresis on drift velocities of drop 

subjected to white noise vibration. We carried out the experiments on two different 

silanized silicon wafers having hysteresis of different magnitudes. The magnitude of 

hysteresis can also specified by the critical angle of inclination of the solid substrate at 

which drop starts sliding on its own without applying any external noise. We measured 

the critical angle for these two substrates which are approximately found to be 10o and 

18o. The drift velocities of drops moving on an inclined substrate subjected to white noise 
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vibration are measured as a function of power of noise are shown in Figure 3.6. As 

expected from equation 3.10, drift velocity increases non-linearly as a function of power 

of noise showing a tendency to saturate at higher powers of noise. Also, as expected, the 

drift velocities of drops on the substrate with higher hysteresis are lower compared to 

drift velocities on substrate with lower hysteresis.  The experimental data is fitted with 

solid lines obtained using equation 3.10.  
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Figure 3.6. Drift velocities of a small water drop (10-5 kg) on a hydrophobic (silanized) 
silicon wafer. These measurements were conducted with an inclined (10o) substrate with 
low (a) and high (b) hysteresis surface. The experimental data is fitted with solid lines 
obtained using equation 3.10. 
 

3.7. Effect of External Vibration on Contact Angle Hysteresis 

As discussed in the Chapter 1, it is not clear from the previous experimental 

studies on vibration assisted motion of liquid drop on a solid surface whether the contact 

angle hysteresis is completely eliminated or not while the drop is moving. There have 

been several reports20-22 in the literature that claim that when a liquid drop is moving on a 

solid surface under the influence of external vibrations, the contact angle 
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hysteresis is totally eliminated. Contrary to this argument, our hypothesis is that contact 

angle hysteresis is not completely eliminated and it plays a crucial role when a liquid 

drop is moving on the solid surface. We use the analogy between the Brownian motion of 

colloidal particle and liquid drop undergoing Brownian-like motion under the influence 

external white noise vibration to probe this issue.  

As discussed earlier, the drift velocity of a colloidal particle in presence of a bias 

of magnitude γ  is equal to the Stokes-Einstein limit Lτγ  which does not depend of the 

strength of the noise. Here, in the case of colloidal particle there is only one dissipation 

mechanism that is due to kinematic friction. However, in the case of water drop moving 

on a solid surface, there is an additional dissipation mechanism that is due to threshold 

contact angle hysteresis. As argued by few authors in literature, if contact angle 

hysteresis is completely eliminated during the vibration induced motion of drop, the drift 

velocity of drop should be equal to the Stokes-Einstein limit of Lτγ . However, as 

observed from the drift velocities as function of strength of noise plotted in Figures 3. 4 

and 3. 6, the drift velocity is not constant and it strongly depends on the strength of noise. 

Also, the drift velocity at higher strengths of noise did not saturate to the Stokes-Einstein 

limit of Lτγ  in all the experimental data shown. The trends observed from experimental 

data Figures 3.4 and 3.6 as well as from the prediction of drift velocity from equation 

3.10 indicate that the drift velocity of drop saturates asymptotically to hysteresis free drift 

velocity of Stokes-Einstein limit ( Lτγ ) only in the limit of infinitely high strength of 

noise (K). Such a high strengths of noise may be impractical to generate in the usual 

laboratory conditions. These experimental and theoretical observations clearly prove that 

the contact angle hysteresis is not eliminated when a liquid drop is moving on a 
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solid surface under the influence of external vibration.  

 

3.8. Motion of Drops on an Energy Gradient Surface  

So far we discussed the drift velocities of drops when the external bias applied to 

the drop is due to gravity. We also carried out experiments of drop motion on an energy 

gradient surface subjected to external white noise vibration. As schematically shown in 

Figure 3.7, in this case solid substrate is kept horizontal without any inclination. 

However, the silicon wafer has a gradient of surface energy i.e. the contact angle on the 

surface is position dependent. This surface is prepared by coating silicon wafer with 

gradient of monolayer of decyltrichlorosilane as described below. 

surface energy gradient

Vibrating plate
drop

surface energy gradient

Vibrating plate
drop

 

Figure 3.7. Schematic of experimental set up of a water drop on an energy gradient 
surface (0o inclination) subjected to a white noise vibration. 

 

3.9. Preparation of Energy Gradient Surface 

The solid surface used in the experiments is a silicon wafer coated with gradient 

of self assembled monolayer (SAM) of decyltrichlorosilane (CH3-(CH2)9-SiCl3, Gelest 

Inc.). This surface is prepared using a deposition method used by Daniel and 

Chaudhury23 which is described below. Before deposition is carried out, the silicon wafer 

was thoroughly cleaned as described below. The silicon wafer was placed in Piranha 

solution (20% Hydrogen Peroxide and 80% Sulfuric Acid by volume) for 30 
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minutes followed by rinsing with copious amount of distilled deionized (DI) water. After 

drying with ultra purified nitrogen gas (Praxair Inc.), the silicon wafer was treated with 

oxygen plasma (model PDC-32G; Harrick Plasma) at 0.2Torr for 45s. The oxygen 

plasma cleaned silicon wafers are immediately transferred to a Petri dish where a 

polyester thread soaked in decyltrichlorosilane is stretched rigidly and placed above one 

end of the silicon wafer. The deposition of silane onto silicon wafer takes place for few 

minutes. The silane diffuses and deposits non-uniformly onto the silicon wafer. The end 

of the silicon wafer close to polyester thread has higher concentration of silane where as 

the far end of the silicon wafer has lower concentration of silane.  Such a non-uniform 

deposition results in gradient of surface energy on the surface. The end of silicon wafer 

close to the source of silane has high contact angle. The contact angle decreases towards 

the far end of the silicon wafer. After deposition, the silicon wafer was baked in oven for 

15 minutes at 75oC. After cooling the samples to room temperature, they are rinsed with 

DI water followed by drying with ultra purified nitrogen gas (Praxair Inc.). The surface is 

characterized by measuring the static contact angle of deionized liquid drops at various 

positions on the surface. We plot static contact angles thus obtained as a function of 

displacement from the end that was close to the polyester thread in Figure 3.8 (a). We 

also plot cosine of contact angle in Figure 3.8 (b) as a function of displacement which 

shows that the surface energy gradient is linear. 
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Figure 3.8. Details of contact angle gradient on the surface. (a) Contact angle (θ ) as a 
function of distance (X). (b) θCos  as a function of distance (X).  
 

For a liquid drop on a surface energy gradient substrate the driving acceleration 

for movement is due to change in the free energy of adhesion ( θγ cos1( +−=Δ lvAG ))23  

given by 

)/cos()(1 dxd
m

A
dx

Gd
m

lv θ
γ

γ ≈⎟
⎠
⎞

⎜
⎝
⎛ Δ

−=                                                     (3.11) 

Where A is the base area of the drop and lvγ  is the surface tension of water drop. When a 

water drop of 10-5 kg was deposited on the substrate, it shows a very slow movement. 

However, when a white noise vibration of finite power is applied, the drop drifts down 

the surface with high velocities. Similar to the drops drifting on an inclined substrate, 

drift velocity of drops increases non-linearly as a function of power of noise as shown in 

Figure 3.9.  The solid line shown in the figure is a fit to the equation 3.10 with the values 

of Δ  and Lτ  as 4.8 m/s2 and 0.0076 sec respectively.  
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Figure 3.9. Drift velocities of a small water drop (10-5 kg) on an energy gradient surface 
(0o inclination) for which 188/cos −≈ mdxd θ . The experimental data is fitted with solid 
lines obtained using equation 3.10 with the values of Δ  and Lτ  as 4.8m/s2 and 0.0076s 
respectively.  
 
 
 3.10. Displacement Fluctuation Analysis of Drop on Inclined Surface 

Subjected to White Noise Vibration 

 So far we looked at the drift velocity of drop as a function of strength of 

noise and showed that unlike the case of Brownian motion of colloidal particle where 

drift velocity is independent of strength of noise, the drift velocity of drop is a non-liner 

function of strength of noise due to the presence of contact angle hysteresis. We also 

presented an evidence to show that contact angle hysteresis is not eliminated when the 

drops are moving on a solid surface under the influence of external vibration in usual 

laboratory conditions where low powers are used. In this section we look at the detailed 

contact line motion of drop with high speed video recording. Similar to the colloidal 

particle driven out of equilibrium by thermal fluctuations, the water drop also experiences 
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fluctuating forces due to white noise. Hence it is driven out of its equilibrium by white 

noise as well as by applied bias due to gravity.  As described earlier, the drop exhibits 

one dimensional random motion (Figure 3.10) on the surface behaving like a dragged 

colloidal particle. We recorded the high resolution motion of the contact line of such a 

drop at 2000 frames/sec.  We have examined the fluctuations of contact line of drop at a 

low power (0.022 m2/s3) vibration. Before discussing the experimental results, we focus 

on theoretical basis for studying the detailed contact line motion of drop. In order to 

proceed in this direction we look at the Klein-Kramers form of the Fokker-Planck 

equation15-18,24 corresponding to equation 3.1 for the transition probability density of 

velocity ),( tVP as follows: 

( )
⎥
⎦

⎤
⎢
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∂
∂
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V
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V
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t
tVP

Lτ
                                        (3.12) 

Steady state solution of the above Fokker-Planck equation has an exponential term as 

shown below16.  

⎟
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⎠
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If we replace */τxV =  where sec0005.0* =τ corresponding to time resolution of high 

speed video recording, we get  

⎟⎟
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*
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exp)( 2
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L

o                                             (3.14) 

This steady state solution for the probability distribution of displacement has a 

Gaussian term ( )( )2*2 /exp ττ LKx− , an exponential term ( )( )*/2exp τKx Δ−  and a bias 
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term ( )( )*/2exp τγ Kx . This shows that in the absence of contact angle hysteresis )0( =Δ , 

the displacement distribution is Gaussian with non-zero mean.  However, in presence of 

contact angle hysteresis )0( ≠Δ , displacement distribution is non-Gaussian with non-zero 

mean. Here, the displacement distribution is Gaussian at 0~x , with exponential tails 

at 0>>x . Also, the distribution is asymmetric. We expect that the distribution of 

displacement obtained in the experiments would be asymmetric non-Gaussian with 

exponential tails. Here, we use five experimental realizations each lasting about 1.8 

seconds for this analysis. An example of such an experimental realization is shown in 

Figure 3.10. 
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Figure 3.10.  Displacement of a water drop on a silanized silicon wafer subjected to a 
white noise vibration of power 0.022 m2/s3.  
 

In order to see whether the experimental displacement distribution is Gaussian or 

not, we plot (Figure 3.11) the probability distributions Tx  by non-dimensionalizing it as 

follows: 
TxpT xx σ/)( − , 

Txσ  being the standard deviation of Tx  and px  is the 
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displacement value at the peak of the distribution function, which is not all that different  

from the mean displacement mx .  The distribution is more Gaussian near the center, but 

then it becomes exponential as we move away from the center of the distribution. 

However, for these Gaussian noise induced displacement fluctuations, an asymmetry can 

be observed. 

Here, the evidence that the displacement distribution is asymmetric and non-

Gaussian clearly disproves several reports in the literature which suggest that the 

hysteresis itself may disappear with the vibration of a drop20-22. If this were the case, i.e. 

0=Δ , the displacement distribution would be symmetric and Gaussian. This is clearly 

not the situation in our case as we obtain an asymmetric and non-Gaussian distribution. 

However, this observation opens up a new question as to how the displacement 

fluctuation behaves if the hysteresis truly disappear, which may be the case at a very high 

power of noise.  
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Figure 3.11. Probability distribution of normalized displacement ( )( )
TxpTT xxx σ/~ −= of a 

water drop moving on an inclined surface. The drop is subjected to Gaussian noise of 
power 0.022 m2/s3. The solid symbols are experimental data. Solid black line is a 
Gaussian fit to the data. The displacement distribution at all the time steps shown in the 
figure is asymmetric and non-Gaussian. 
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3.11. Quantifying the non-Gaussianity of Displacement Distributions 

In order to quantitatively show the non-Gaussianity and asymmetry of the 

displacement distributions, we approximated the tails of distribution by a stretched 

exponential function as shown below.  

                                    ( )CxPxP n
ToT +−= ~exp)~(                          (3.15) 

 
Here C is a numerical constant and n is the exponent of stretched exponential fit to the 

tails of the distribution. If the displacement distribution is symmetric and Gaussian, the 

exponent n for the left and right tails of the distribution would be equal to 2. Also, if the 

exponents of right and left arms are not equal to each other, then the distribution is 

asymmetric. We plot the tails of distributions at various ‘T’ values using the following 

expression and calculate n for left and right arms of the distributions. 

                                      ( ) ( ) 1
~ln)/ln(ln CxnPP To +=−                    (3.16) 

 
As observed from Figure 3.12, which shows stretched exponential fits to the 

displacement distribution at various times, the exponents are not equal to 2. This 

observation quantitatively shows that displacements distributions are non-Gaussian. Also, 

except for very short time (T=0.001sec) the exponents of the fits are not the same for 

right and left arms which also quantitatively shows that the displacement distributions are 

asymmetric. These quantitative observations clearly point out the contact angle hysteresis 

is not eliminated when the drops are moving on a surface under the influence of external 

vibration. 
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Figure 3.12. Stretched exponential fits to the right and left arms of experimental 
displacement distributions at various times for a water drop moving on an inclined 
surface subjected to Gaussian noise of power 0.022 m2/s3.  
 
 
3.12. Displacement Fluctuation Analysis of Drop on an Energy Gradient 

Substrate Subjected to White Noise Vibration 

We also analyzed the displacement fluctuation of water drop on the gradient 

surface (Figure 3.7) when subjected to a low power (0.022m2/s3) vibration. We recorded 

the high resolution motion of the contact line of such a drop at 2000 frames/sec.  We 

examined the fluctuations of contact line of drop by studying the stochastic movements 

of drop relative to a plate.  A total of five tracks, each lasting about 3 seconds, were used 

for this analysis.  
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Figure 3.13. (a) Probability distribution of normalized displacement ( )( )
TxpTT xxx σ/~ −=  

of a water drop moving on an energy gradient surface at time intervals: 0.02s (□), 0.05s 
(◊), 0.08s (Δ), 0.12s (ο) and 0.2s (×). The drop is subjected to Gaussian noise of power 
0.022 m2/s3. The blue and pink colors indicate experimental data and simulation results 
respectively. (b) In the absence of hysteresis ( 0=Δ ) from the simulations, the 
distribution is purely Gaussian.  

 

We also attempted to understand how the displacement fluctuations should 

behave by solving equation 3.1 numerically. Numerical integration of the modified 

Langevin equation (equation 3.1) is carried out using a generalized integration method 

for stochastic differential equations as outlined by Gillespie25. The update formula for the 

stochastic output variable (velocity or displacement) consists of rescaling stochastic input 

(acceleration, ( )tγ ) to simulations in order to match strength of noise (K) in simulations to 

strength of noise in experiments. We generated zero mean Gaussian random numbers 

using Matlab® which are then rescaled to match strength of noise ( NttK
N

i
i /)(

1

2Δ= ∑
=

γ ) in 

simulations to the experiment and then used as input accelerations in the simulations. 

Here )(tγ  is the acceleration, tΔ  is the integration time step, N is the number of input 

accelerations used in the simulations. Since the hysteresis force ( )ΔVσ  always acts in the 
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direction opposite to the motion of the contact line, ( )Vσ  is set as VV /  in the 

simulations. When the net acceleration ( )tγγ +  acting on the drop is less than the 

threshold acceleration )/8.4( 2sm=Δ  required to set the contact line into motion, the 

contact line gets stuck, hence the velocity is set to zero. The modified Langevin equation 

is integrated with an integration time step of tΔ =0.0005s which is the resolution time of 

camera.  The simulations are carried out for 50 tracks with a total integration time of 

10sec for each track. The displacement data for a given time interval ‘T’ obtained from 

several tracks are combined to obtain a probability distribution for displacement as is 

done for the experimental analysis of the displacement data. We plot (Figure 3.13) the 

non-dimensional probability distributions of Tx  from experiments as well as from 

numerical simulations. Similar to the drop moving on an inclined surface as discussed in 

previous section, here also the displacement distributions are non-Gaussian and 

asymmetric. We also carried out a simulation by switching off contact angle hysteresis. 

Here Δ  is set as zero. As observed from Figure 3.13 (b) the displacement distribution is 

clearly Gaussian emphasizing the role of contact angle hysteresis in non-Gaussianity. In 

order to quantify the non-Gaussianity and asymmetry we plot the stretched exponential 

fits to the displacement distribution at various times. As observed from Figure 3.14, 

which shows stretched exponential fits to the experimental displacement distributions at 

various times, the exponents are not equal to 2. This observation quantitatively shows 

that displacements distributions are non-Gaussian. 
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Figure 3.14. Stretched exponential fits to the right and left arms of experimental 
displacement distributions at various times for a water drop moving on energy gradient 
surface subjected to Gaussian noise of power 0.022 m2/s3.  
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3.13. Diffusivity Analysis  

      As mentioned earlier, for a colloidal particle undergoing Brownian motion, the 

velocity correlation is exponential; hence the diffusivity scales linearly )2/( 2
LKD τ=  a 

function of power of external noise. However, in presence of threshold contact angle 

hysteresis the velocity correlation for a liquid drop undergoing Brownian like motion is 

not exponential. de Gennes15 derived approximate scaling laws for diffusivity of either a 

solid block or a liquid drop moving on a substrate as a function of strength of noise as 

well as the threshold resistance )(Δ  due to  Coulombic friction  or contact angle 

hysteresis. These scaling laws are derived ignoring kinematic friction altogether. We 

outline scaling laws for diffusivity below. 

ΔΔ Δ
ττ 2

2
2

4
~~ KVD A                                                                    (3.17) 

 
Here AV  is velocity amplitude and 2/~ ΔΔ Kτ  is correlation time for velocities in 

presence of hysteresis. Substituting 2/~ ΔΔ Kτ  into equation 3.17 results in the 

following scaling law for diffusivity. 

                         4

3

4
~

Δ
KD                                                                                     (3.18) 

 
We wanted to check whether the diffusivity of liquid drop matches with this scaling law 

at the power of noise K = 0.022 m2/s3 used in the experiment. In order to calculate the 

diffusivity, we plot the variance of the displacement distribution of drop as a function of 

time as shown in Figure 3.15 for the case of drop moving on an inclined surface under the 

influence of white noise vibration. Here, the motion of liquid drop is diffusive as the 
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variance is linear with time. The diffusivity is half of the slope of variance versus time. 

The experimental diffusivity thus obtained is 1×10-8 m2/s where as the scaling law 

predicts 1.8×10-8 m2/s. Similarly, for liquid drop moving on an energy gradient surface 

experimental diffusivity is 8×10-9 m2/s where as the scaling law predicts diffusivity as 

4×10-9 m2/s. These scaling laws are very crude for the liquid drop as the dissipation due 

to kinematic friction at the contact line is significant compared to the dissipation due to 

threshold contact angle hysteresis. However, it is surprising that the numerical 

simulations that include kinematic friction also predict diffusivity as 4×10-9 m2/s.  

Nevertheless, these scaling laws give approximate theoretical values for diffusivity to 

compare the experimental data with. However, it is very interesting to check how the 

diffusivity scales with the strength of the noise. More experiments at various powers of 

noise are needed to verify this scaling law that is left for future work. 
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Figure 3.15.  Plot of the variance )( 2
xσ  of the displacement of the drop as function of 

time. The diffusivity is calculated from the slope of linear plot.  
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3.14. Work Fluctuation Relation   

      As described earlier, liquid drop shows drifted Brownian like motion when subjected 

to external white noise vibration on the inclined surface as well as on energy gradient 

surface that is kept horizontal. The contact line of the drop shows forward and backward 

motion on the surface due to random accelerations from white noise vibration, however 

showing a net drift on the surface. There are two types of external work being done on 

the drop; the first one is by vibration and second by gravity. The work done by external 

vibration on the drop over a time periods of T  is given by  

                                             ∫
+Tt

t

dttVt )()(γ                                         (3.19) 

 
Here )(tγ  random acceleration of drop due to white noise excitation and )(tV  is the 

velocity of contact line of drop. The work done by gravity on drop is given by  

                                              ( )∑
+=

=

Δ=
Ttt

tt
T

i

i

txMgW αsin*                       (3.20) 

 
Here M is the mass of the drop, g is acceleration due to gravity, α  inclination of 

the surface, ( )txΔ  displacement of drop over time period T. Here, due to the fluctuating 

nature of )(tγ , the velocity ( ))(tV  and displacement ( )( )txΔ  of contact line of drop can 

either have positive or negative values that result in the work done also to have positive 

and negative values. The drop is driven out of equilibrium by external vibration as well as 

by gravity. In the context of systems driven out of equilibrium by external driving, there 

have been few universal non-equilibrium relations proved recently26-32 that are called 

“work fluctuation theorems”. The steady state fluctuation theorem32 states that at steady 

state as ∞→T , the ratio of probability of finding positive work to the negative work is 
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exponential of the work. These work fluctuations have been verified by experimental 

studies as carried out by the dragging33,34 of a fluctuating colloidal bead with an optical 

tweezers, vibrating granular particles35, and the fluctuation of a torsional pendulum 

suspended in a liquid under external forcing36.  In this study we focus on work done by 

gravity on the drop. The estimation of vibrational work involves measuring the accurate 

and simultaneous measurement of acceleration experienced by the drop due to external 

vibration as well as the velocity. Measuring these quantities at the same time is very 

cumbersome. Also, the estimation of velocity is not as accurate as of the estimation of 

displacement required for determining the work done by gravity. So we analyze the work 

fluctuation relations for the external work done by gravity on the drop. 
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Figure 3.16. Probability distribution of normalized work ( )( )
TWTTT WWW σ/~ −= of a 

water drop moving on an inclined surface. The drop is subjected to Gaussian noise of 
power 0.022 m2/s3. The solid symbols are experimental data. Solid lines are asymmetric 
double sigmoid fits to the data. The work distribution at all the time steps shown in the 
figure is asymmetric and non-Gaussian. 

 

Here, we examine the steady state work fluctuation of contact line fluctuations of 

drop by studying the stochastic movements of several small (10-5 kg) drops 
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relative to a plate when subjected to a low power (0.022 m2/s3) vibration.  A total of five 

tracks, each lasting about 1.8 seconds, were used for this analysis. An example of such a 

track is shown in figure 3.10. According to the steady state fluctuation theorem31,  

                                  ( )
( )

TW

TS

TS e
WP

WP
=

−
 as ∞→T                                              (3.21) 

Here )2//(*
LTT MKWW τ=  is the amount of non-dimensional work performed on the drop 

by external bias for a duration T. We plot the normalized work distribution at various T 

values in Figure 3.16. Similar to the displacement distribution as shown Figure 3.11, the 

work distribution is also asymmetric and non-Gaussian. We could fit this data using an 

asymmetric double sigmoid function which has exponential tails. In order to check 

whether the work done by gravity follows conventional steady state fluctuation theorem 

we plot the logarithm of ratio of probabilities of finding positive work to the probability 

of finding the negative work of the same quantity as function of work. As there is an 

extra dissipation due to contact angle hysteresis we expect that conventional work 

fluctuation theorem is not valid in this case. This is due to the fact that the velocity 

correlation is not exponential due to presence of hysteresis. In fact, we observed that the 

data at various times did not collapse and did not follow steady state fluctuation theorem 

when plotted in conventional way of plotting equation 3.6. However, when work values 

are rescaled as )2/*6.0/(*
LTT MKWW τ=  and plotted as below we observe the collapse of 

data as observed in Figure 3.17       
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Such an unconventional work fluctuation theorem emphasizes the importance of role 
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played by hysteresis on drop motion.         
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Figure 3.17. (top) Work fluctuation plot of non-dimensional work 
( ))2//(*

LTT MKWW τ= of a water drop moving on an inclined surface. Here the data 
collapses but does not follow fluctuation theorem (bottom) Work fluctuation plot of 
rescaled non-dimensional work ( ))2/*6.0/(*

LTT MKWW τ=  follows fluctuation theorem. 
The drop is subjected to Gaussian noise of power 0.022 m2/s3. The solid symbols are 
experimental data.  
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3.15. Conclusions   

       We studied the drifted Brownian like motion of a liquid drop on an inclined and on 

an energy gradient surface when subjected to external white noise vibration. Unlike the 

drift velocity of colloidal particle which is independent of strength of the noise, the drift 

velocity of drop is a non-linear function of strength of noise. The non-linearity results 

from threshold contact angle hysteresis force. The drift velocity of drop does not saturate 

to Stokes-Einstein limit indicating that the contact angle hysteresis plays crucial role in 

the contact line motion of drop. This provides solid evidence to our hypothesis that in 

usual laboratory conditions where low powers of noise are used, the contact angle 

hysteresis is not eliminated. The displacement distribution of drop is found to be non-

Gaussian and asymmetric with exponential tails. The observed non-Gaussianity is due to 

the non-linearity resulting from contact angle hysteresis. We quantified the non-

Gaussianity and asymmetry in the displacement distribution by fitting the tails to a 

stretched exponential function. We also studied the detailed contact lime fluctuations of 

drop in order to check whether the work done by gravity on the drop follows 

conventional work fluctuation theorem. We showed that the work distribution does not 

follow conventional fluctuation theorem due to the presence of contact angle hysteresis. 

Unlike the case of a colloidal particle the correlation in the case of drop does not follow 

exponential correlation. Here, the contact line fluctuations of drop follow a different work 

fluctuation relation that is obtained by rescaling the work. 
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Chapter 4: Relaxation Behavior of Contact Line of a Liquid 
Drop on a Solid Substrate Subjected to White Noise Vibration 

 

4.1. Introduction: 

 Wetting of a solid substrate by liquids is encountered in many technological 

processes such as surface coating, printing, waterproofing, cleaning and lubrication1,2,3. 

Wetting also plays a fundamental role in designing and improving the efficiency of micro 

and nanofluidic applications3. It has also been found that wetting acts as a useful 

mechanism in many natural systems such as lotus leaves and all of the plants3. Hence, 

studying wetting and spreading behavior of liquids on solid substrate is of fundamental 

importance1. As described earlier, when a liquid drop contacts an ideally smooth and 

chemically homogenous solid substrate, three phase contact line of drop makes an 

equilibrium angle with solid substrate given by Young’s law4 

slsvelv γγθγ −=cos                                                                                              (4.1)              

Where eθ  is equilibrium contact angle and lvslsv γγγ ,,  are interfacial tensions of solid-

vapor, solid-liquid, and liquid-vapor respectively. However, when a liquid drop contacts 

a solid substrate which is neither ideally smooth nor chemically homogenous, the contact 

angle formed by the drop is not always the equilibrium contact angle predicted by 

Young’s equation. As described earlier in earlier chapters, a sessile liquid drop on solid 

substrate can subtend a range of contact angles from receding angle to advancing angle.  

The difference between advancing and receding angles is called contact angle 

hysteresis )( AR θθ − .  

Contact angle hysteresis is interpreted as a phenomenon resulting from 
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chemical heterogeneity and physical roughness of solid substrate. It has been pointed out 

by Good5-7 that roughness and heterogeneity of solid substrate modify the parabolic free 

energy profile of drop to a corrugated energy profile with metastable equilibrium states. 

In case of a solid substrate that is contact angle hysteresis free,  if the contact angle of the 

drop on such as surface is increased or decreased beyond its equilibrium value ( eθ ), the 

contact angle of the drop is readily restored to its equilibrium like a spring. Here spring 

constant proportional to the surface tension of liquid )( lvγ . However, in presence of 

contact angle hysteresis, drop shows multiplicity of contact angles ranging from receding 

angle )( Rθ  to advancing angle )( Aθ . The drop can get stuck to any of metastable states 

due to the corrugated nature of free energy profile that prevents the drop from relaxing to 

global equilibrium state5-10. These contact angles correspond to the local minima of these 

metastable equilibrium states. Johnson and Dettre8-10 developed a detailed model for 

contact angle hysteresis on a heterogeneous solid substrate and shown that the contact 

angle hysteresis is controlled by vibrational energy available to drop as well as free 

energy barriers between each of the metastable equilibrium states. They suggested that 

the energy required in overcoming metastable equilibrium states can be supplied to the 

drop in the form of vibrational energy. Given sufficient vibrational energy the drop would 

relax to global equilibrium state. Subsequent simulation studies as carried out by 

Marmur11-13 showed that the advancing contact angle would decrease and receding angle 

would increase relaxing to equilibrium contact angle if energy is available to overcome 

the metastable equilibrium states.  

The concept of metastable equilibrium states in free energy of drop has also been 

investigated in many experimental studies14-18. Smith and Lindberg14 carried out 
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first such an experimental study on the effect of acoustic vibrational energy on contact 

angle measurements showing that the contact angle relaxes towards equilibrium when 

supplied with acoustic vibrational energy.  Andrieu et al15 studied the effect of vibrational 

energy on the advancing and receding contact angles. They subjected a liquid drop on a 

solid substrate to harmonic vibration of varying amplitudes and found that, at high 

enough amplitudes of vibration, both the advancing and receding angles relaxed to the 

same equilibrium angle. Cosine of final equilibrium angle was found to be the average of 

cosine of advancing and receding angles. In a similar experimental study with a solid 

plate immersed and removed from a pool of liquid, Decker and Garoff17 studied the effect 

of vibrational noise on the advancing, receding contact angles and capillary rise heights. 

They used pulsed vibrational noise to study the effect of individual noise pulses and also 

the accumulated effect of multiple noise pulses on metastable equilibrium states of 

contact angles and capillary rise heights. It was shown that contact angles and capillary 

rise height reached equilibrium values only after the application of many vibrational 

pulses. They found that contact angle and capillary heights relax to the same equilibrium 

state both from advancing and receding modes. In a recent experimental study, Meiron et 

al18 established optimal conditions for measuring equilibrium contact angle 

corresponding to global energy minimum. They placed liquid drop on rough solid 

substrate and applied vertical sinusoidal vibrations to allow the drop to reach global 

energy minimum state. They concluded that contact angle hysteresis disappears when 

drop reaches global energy minimum state. Similar experiments studies carried out by 

Bormashenko et al19-21 deal with Cassie-Wenzel wetting transition of a drop on a solid 

substrate subjected to vibrations. Liquid drops sitting on rough surface when 
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subjected to vibration penetrate the cavities and show transition from Cassie to Wenzel 

state. Noblin et al22,23 studied the transition of contact line of drop from pinned state to 

moving state when subjected to vertical harmonic vibrations of high enough amplitudes. 

They showed that the contact line is in pinned state at low amplitudes, shows stick-slip 

regime at intermediate amplitudes, showing a freely moving state at very high amplitudes 

of vibration. 

The experimental studies available in the literature about drops subjected external 

vibration consist of studying the final contact angle of drop as a function of amplitude of 

vibration to establish the optimal conditions for measuring true equilibrium contact angle 

on a solid substrate. Another aim of these studies was to show that the contact angle 

reached from both advancing and receding modes is equal to the equilibrium contact 

angle. However, there are no experimental or theoretical studies in the literature which 

looked at time dependent kinetic behavior of a drop at non-equilibrium state relaxing to 

equilibrium state under the influence of external vibration. In all of the experimental 

studies described above, striking conclusion is that contact angle hysteresis totally 

disappears when contact angle reaches equilibrium angle. In recent experimental studies 

carried out by Brunet24, Thiele and John et al25,26 , the authors claim that contact angle 

hysteresis is completely eliminated when a liquid drop is moving under the influence of 

external vibration. However, it is not clear from these experimental studies whether 

contact angle hysteresis is eliminated completely or there is a relaxation time associated 

with the process. If there is any relaxation time associated with the process, its 

dependency on the strength of vibration used is unknown. Also, the nature of relaxation 

from non-equilibrium state to equilibrium is not studied in the previous experiments. In 
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order to elucidate the nature of relaxation, we studied detailed kinetics of drop relaxing to 

equilibrium under the influence of external white noise vibration.  

In most of the previous experimental studies harmonic vibration has been 

used14,15,18-23. However, we subjected drop in non-equilibrium state to white noise 

vibration in our experiments. The rational for using white noise vibration instead of 

harmonic vibration is as follows. The first reason being, power spectrum of white 

vibration is flat in which all frequencies have equal power. This ensures that all possible 

vibration modes of drops are excited resulting in the effective relaxation of drop from 

non-equilibrium to equilibrium. The second reason being, when the drop is in non-

equilibrium state, the noises that the drop experiences from disturbances in environment 

are random in nature which can be approximated as a Gaussian white noise. Also, the 

fluctuations in thermal environment in the vicinity of contact line are also approximated 

as a Gaussian white noise that results in the fluctuations of the contact line of drop about 

the mean position. Many natural systems (Chemical reactions, radio active decay and 

colloidal particle in a potential well) that are in non-equilibrium state relaxing towards 

equilibrium state are driven by thermal Gaussian white noise. In order to mimic the 

natural noise that the drop experiences as well as for the effective relaxation of drop, 

Gaussian white noise is an appropriate choice in driving the drop from non-equilibrium 

state to equilibrium state rather than using harmonic vibrations. 

We carry out our experimental analysis in terms of radius of drop )(a  rather than 

the traditional way of analyzing in terms of contact angles )(θ  due to the ease of analysis 

of experimental data. Another advantage of working in terms of radius of drop is that the 

errors associated with measuring contact angles from experiments are completely 
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eliminated.  

When a sessile drop on a solid substrate makes an angle θ  other than the 

equilibrium contact angle eθ  there is always constant driving force acting on the contact 

line of drop that tries to relax the drop to equilibrium state (Figure 4.1). The driving 

force22,23 is equal to )(2 olv aa −− πγ where a  is radius of drop corresponding to contact 

angle θ  other than equilibrium contact angle and  oa  is radius of drop corresponding to 

equilibrium contact angle )( eθ . When there is no contact angle hysteresis, if the radius (or 

contact angle) of the drop is increased or decreased beyond its equilibrium value oa  

(or eθ ), drop is readily restored to its original position. However, in presence of 

hysteresis, drop can get stuck at any radius ranging from Aa (or Aθ ) to Ra (or Rθ ) which 

correspond to drop radius at advancing and receding angles (Figure 4.1). The contact line 

of drop has to overcome the resistance due to contact angle hysteresis before retracting or 

advancing. However, when external energy is supplied to the drop by white noise 

vibration, drop relaxes to equilibrium state. Before discussing the experimental results, 

we described the procedure used to prepare the flat PDMS (Polydimethylsiloxane) 

substrate used in the experiments. The reason for using flat PDMS substrate in the 

experiments is the high contact angle hysteresis of the surface which facilitates in 

observing the contact line relaxation behavior over a long period of time. 
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Figure 4.1. Schematic of a drop on a solid substrate subjected to white noise vibration in 
vertical direction. Left) drop on a solid substrate in advancing mode. The radius of drop 
in this case Aa  is less than equilibrium radius of drop oa .  Right) drop on a solid substrate 
in receding mode. The radius of drop in this case oR aa > . 
 
4.2. Preparation of Flat PDMS (Polydimethylsiloxane) Substrate 

In this section we describe the procedure used to prepare the PDMS substrate 

used in the experiments of drop relaxation. After thoroughly mixing the oligomeric 

component of the Sylgard 184 (Dow Corning) with the crosslinker in a 10:1 ratio by 

weight, it was degassed by applying in house vacuum for 2hrs. The degassed mixture was 

then cast between two silanized microscopic glass slides spaced 0.64 mm apart using 

spacers. These microscopic glass slides are silanized with monolayer of 

decyltrichlorosilane for the easy removal of PDMS substrate after crosslinking. The 

crosslinking of the elastomer is carried out overnight at 75oC. After crosslinking, the 

substrate is removed manually from the glass slides and Soxhlet extracted in toluene for 

24 hrs in order to remove any uncured monomer. The sample is then dried in 
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vacuum for 48hrs before using in the experiments. This PDMS substrate (elastic modulus 

~3MPa) is used in all the experiments except one experiment that was carried out on a 

self-assembled monolayer of per-fluoroalkylsiloxane on glass slide. The advancing and 

receding contact angles on the PDMS substrate measured using drop inflation and 

deflation method were 115o and 70o respectively. The roughness of PDMS substrate 

measured using atomic force microscopy is found to be ~2 nm. 

4. 3. Experiment 

The substrate (PDMS) (Figure 4. 1) was firmly attached to an aluminum platform 

(not shown here) which was connected to a mechanical oscillator (Pasco Scientific, 

Model No: SF-9324). White noise generated by signal generator (Agilent, Model 

33120A) was sent to the oscillator after it is being amplified by a power amplifier 

(Sherwood, Model No: RX-4105). A calibrated accelerometer (PCB Peizotronics, Model 

No: 353B17) driven by Signal Conditioner (PCB Peizotronics, Model No: 482) 

connected to an oscilloscope (Tektronix, Model No. TDS 3012B) was used to measure 

the acceleration of the supporting aluminum plate. The acceleration of the plate is found 

to follow Gaussian distribution. The whole set-up was placed on a vibration isolation 

table (Micro-g, TMC) to eliminate the effect of ground vibration. We used a constant 

volume (V=10μL, M=10-5 Kg) of drop in all the experiments. The test liquid used in the 

experiments is water that is de-ionized using Barnstead NanopureII water purifying 

system. The purified water used in the experiments had a resistivity of 18 Ω Ohm-cm and 

a surface tension of 72.8 mN/m. We studied the relaxation of contact line of drop in 

advancing and receding modes. In advancing mode, a 10μL water drop is placed on 

PDMS substrate using a micro syringe by inflating a small drop until the drop volume 
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is reached 10μL. We observed that the contact angle of drop was greater than the 

equilibrium contact angle of 90o and radius of drop was less than equilibrium radius of 

drop ( oa ) when drop is in advancing mode (Figure 4.2(a)). When the substrate is vibrated 

vertically using white noise, radius of drop increases and contact angle decreases (Figure 

4.2 (a), (b)). Here it is to be noted that the vibration applied to the drop is in vertical 

direction unlike in the Chapter 3 where lateral vibration was applied. In receding mode, a 

20μL water drop is placed on PDMS substrate using a micro syringe, then the drop is 

deflated by removing 10μL using a micro needle. We observed that the contact angle of 

water drop was less than the equilibrium contact angle of 90o and radius of drop was 

greater than equilibrium radius of drop ( oa ) when drop was deflated (Figure 4.2(c)). 

When the substrate is vibrated vertically using white noise, radius of drop decreases and 

contact angle increases (Figure 4.2(c), (d)). We carried out the experiments at different 

powers of noise )(K to study the effect on the final radius attained by drop at steady state. 

The stochastic motion of the contact line of drop is recorded with a high speed (1000 

frames/sec) Redlake Motion-Pro video camera. These videos are stored in computer for 

analysis in leisure. The fluctuating motions of contact line on both the ends of the drop 

are tracked as a function of time using motion analysis software MiDAS.  
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Figure 4.2. Initial and final configurations of a drop (V=10μL) on a solid substrate 
subjected to white noise vibration in advancing and receding modes.  
 
4.4. Experimental Results 

The drop resting on a solid either in advancing or receding mode has contact 

radius that is not its equilibrium radius. When contact radius of water drop ( a ) is not 

equal to equilibrium radius )( oa , the drop is in non-equilibrium state and there is always a 

constant driving force ( )( os aak −− ) arising from surface tension of liquid acting on the 

contact line of drop that tries to relax the drop to equilibrium. Here lvsk πγ2=  is the 

spring constant of the drop due to the surface tension of liquid. If there is no contact angle 

hysteresis on the surface, when the drop is deformed from its equilibrium radius by 

applying some external force, drop readily relaxes to its equilibrium radius once the 

external force is removed. However, when the solid substrate possesses some amount of 

contact angle hysteresis, there is a resistive force proportional to )cos(cos ARlva θθγ −  

that always opposes the motion of contact line of drop. The contact line of 
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drop gets pinned to the solid surface in non equilibrium state when the resistive force due 

to contact angle hysteresis ))cos(cos( ARlva θθγ − is greater than the driving force due to 

spring constant of liquid ))(( os aak − . In order to relax the contact line of drop from non 

equilibrium state to equilibrium state, some amount of external vibration is required. 

When white noise vibration of sufficient power is applied to drop, contact line starts 

relaxing towards its equilibrium position. The final equilibrium radius value to which the 

drop relaxes depends on the strength of noise. We carried out the experiments at various 

strengths of white noise vibration in order to elucidate the effect of power of noise )(K on 

the final radius reached by drop. Here, we present the results for drop relaxing from 

advancing mode. We observed that the drop reaches its equilibrium radius value oa  only 

when power of noise is above a threshold power. The final radius of drop is plotted 

against power of noise in Figure 4.3. The drop reaches equilibrium radius only when 

power of noise is above 0.15m2/s3. This experimental observation is in accordance with 

the experiments of Andrieu et al15, Decker and Garoff17.  The dependence of final radius 

of drop on power of noise is the consequence of metastable equilibrium states in free 

energy profile of drop. At low powers of noise, the maximum energy supplied by white 

noise vibration is limited by the maximum acceleration pulse at a given power of noise. 

This highest acceleration may not be sufficient enough to drive the drop out of the 

metastable equilibrium state. Hence, at low powers of vibration, the drop is stuck in a 

metastable equilibrium state that is far from the global equilibrium state. At high powers 

of white noise vibration, acceleration pulses of high energy facilitate in driving the drop 

out of all of metastable equilibrium states resulting in the drop relaxing to global 
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equilibrium state. Hence, as the power of noise increases, the drop relaxes more towards 

equilibrium state.  

If the noise used in the experiments is ideal white noise, there is always a finite 

probability of encountering an acceleration pulse of infinite energy at any power of noise 

that would drive the drop out of all the metastable equilibrium states resulting in 

relaxation of the drop to global equilibrium state. However, in any practical systems, 

there is always a cut off energy that can be supplied to the system. The white noise 

vibration that we have used in our experiments is a truncated white noise. The maximum 

acceleration pulse is a function of power of noise as well as the cut off value used in 

generating the white noise. Hence, the final radius reached by drop depends strongly on 

power of white noise vibration.  

In order to test whether the drop radius would reach global equilibrium radius 

even at low powers when the vibration is applied to the drop for a long time, we carried 

out the experiments by subjecting the drop to white noise vibration for about 1min. We 

observed that the final radius values for both short and long time vibrations were equal 

indicating that the final radius reached is only function of power of noise. 
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Figure 4.3. Final non-dimensional radius )/( of aa of a 10μL water drop on a PDMS 
substrate subjected to white noise vibration as a function of power of noise )(K . Here 0a  
is the final equilibrium radius of the drop corresponding to global equilibrium, which is 
achieved only with a high power noise. However, the drop does not always reach 0a . 
With a low power noise, it reaches a final value of fa , which is less than 0a .  
 

4.5. Stepwise Relaxation of Liquid Drop 

We plot the stochastic relaxation behavior of contact line of drop as a function of 

time in Figure 4.4. The drops are relaxing from advancing mode when they are subjected 

white noise vibration of 32 /3.0 smK = . The relaxation is stepwise as well as stochastic 

in all of the tracks. As observed from Figure 4.4, the relaxation behavior is not smooth 

showing stick slip relaxation. This stick-slip like behavior is also present when the 

contact line of drop is relaxing at other powers of noise as well as it is relaxing from 

receding mode as shown in Figure 4.5. Such a step wise relaxation provides the evidence 

for the existence of metastable equilibrium states in the energy profile of drop as shown 
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schematically in Figure 4.6. Here, point ‘B’ is the global minimum in the free energy of 

the drop. A liquid drop in receding state relaxing from point ‘A’, would relax to ‘B’ if 

sufficient energy is supplied to the drop. However, at low powers the drop gets stuck to 

local equilibrium state far from global equilibrium as the maximum acceleration is not 

sufficient to drive the drop out of local equilibrium. The contact line of drop escapes from 

a metastable equilibrium state when a vibration pulse of sufficient power dislodges it 

from metastable state otherwise it dwells in that particular metastable state for long time. 

At low powers of noise, dwell time in a metastable state is longer as seen from a track at 

a power of 32 /026.0 smK =  in Figure 4.5. Other reason for long dwell time is that 

energy barriers of the metastable states increase towards B . Such a behavior is observed 

at =K 0.09 m2/s3 and 0.04m2/s3.  It is also very interesting to note that at =K 0.026m2/s3, 

the drop gets stuck in metastable state for long time before a large acceleration pulse 

drives the drop of out that state. Also, the relaxation behavior from advancing and 

receding mode are very different as observed for the case of =K 0.3m2/s3. Such an 

asymmetric relaxation can be explained only when the resistance to contact line motion 

in advancing and receding modes are very different. When the contact line is pinned to a 

defect, the local distortion of contact line, dependent on whether contact line is advancing 

or receding and non-linear resisting force from defect may cause the asymmetry in 

resistance in advancing and receding modes. 
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Figure 4.4. Three tracks of the contact line fluctuations are shown for a 10μL water drop 
on a PDMS substrate subjected to white noise vibration at 32 /3.0 smK = . The data 
illustrates the stochastic and stepwise relaxation behavior of the contact line kinetics. 
Here ))0(/())0()(( aaataa o −−=′ which varies from 0 to 1 as drop relaxes from 
advanced to the equilibrium state. All the three tracks have same range, but are shifted 
upwards for clarity.  
 

4.6. Kinetics of Relaxation of Liquid Drop 

There have been many experimental and theoretical studies27-33 in the literature 

that looked at spontaneous relaxation of drops placed on a solid substrate from non 

equilibrium contact angle to equilibrium contact angle. These studies deal with the 

spontaneous relaxation (without any external force or vibration acting on the drop) of 

highly viscous liquid drops within first few seconds of depositing the drop on a solid 

substrate. Due to high viscosities of liquids used in these experimental studies 

spontaneous relaxation time is higher. The liquid that we have used in our experiments is 

water which has low viscosity, hence shows spontaneous relaxation within few 

milliseconds of depositing on solid. Also, we have applied white noise vibration to the 
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water drop after about 5 seconds of depositing the drop on the solid substrate. Therefore, 

relaxation dynamics that we observed here are only due to the applied external white 

noise vibration and there is no effect of spontaneous relaxation dynamics on the forced 

relaxation process. As described earlier, when a drop is in advancing mode, the contact 

angle of drop is greater than the equilibrium contact angle and radius of drop is less than 

equilibrium radius of drop ( oa ) (Figure 4.1, Figure 4.2 (a) and Figure 4.5). When the 

substrate is vibrated using white noise, radius of drop increases resulting in relaxing of 

contact line of drop to equilibrium radius. If the drop is in receding mode, the contact 

angle of drop is less than the equilibrium contact angle and radius of drop is greater than 

equilibrium radius ( oa ) and when the substrate is vibrated using white noise, radius of 

drop decreases and contact angle increases (Figure 4.1, Figure 4.2 (c) and Figure 4.5). 

We plotted the radius of drop relaxing to equilibrium as a function of time at different 

powers of noise in advancing and receding modes in Figure 4.5. The radius of drop 

relaxes to different equilibrium radius values depending on the power of white noise 

vibration. The drop relaxes to global equilibrium radius only when the power of noise is 

above 0.15m2/s3. At high powers of noise the radius of drop in receding mode also 

relaxes to same global equilibrium radius reached in advancing mode. As observed from 

the relaxation behavior at different powers of noise, the overall relaxation is exponential. 

However, the detailed relaxation behavior is step wise showing exponential relaxation in 

each step.  
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Figure 4.5. Relaxation behavior of contact line of a drop on a solid substrate subjected to 
white noise vibration at various powers of noise. The solid lines are the numerical 
solutions of equation 4.2 with sL 01.0=τ and 2/8.47 sm=Δ . 
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Figure 4.6: Schematic of a corrugated free energy )( GΔ  profile of drop showing 
metastable equilibrium states. Here O indicates the center of the drop; OB is the radius of 
the drop corresponding to global equilibrium. A and A′  are the inflection points that 
correspond closely to receding and advancing contact angles of the drop The figure is not 
drawn to scale. E.g., OA’, in reality, is much larger than what is shown here.  
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4.7. Theory 

In order to theoretically understand the experimental observations described 

above, we have drawn analogy between a drop subjected to external white noise vibration 

and a harmonically bound particle undergoing Brownian motion due to thermal 

fluctuations. The retracting force due to surface tension of liquid ))(( os aak −−  induces 

harmonic potential where as external white noise vibration mimics the thermal 

fluctuations. Brownian motion of a harmonically bound particle is described by Langevin 

equation that has an inertial term, a dissipation term due to kinematic friction as well as 

retracting spring force term due to the presence of harmonic potential which are balanced 

by acceleration due to thermal fluctuations34,35. However, in the case of liquid drop 

subjected to white noise vibration, apart from inertial term, dissipation term due to 

kinematic friction, retracting spring force term due to the surface tension of liquid, there 

is also an extra dissipation term is present that is due to contact angle hysteresis on the 

surface. Taking into account of all the forces acting on drop, equation of motion for 

contact line (or radius) of drop on a solid substrate subjected to an external white noise 

vibration ( )(tγ ) can be written as the following modified Langevin equation36- 39 

              ( )tVaa
dt
da

dt
ad

o
L

γσω
τ

=Δ+−++ )()(1 2
02

2
                                            (4.2) 

Here, a  is the non-equilibrium radius of drop, oa  is the equilibrium radius of drop, Lτ  is 

the Langevin relaxation time (ratio of the mass M of the drop and its kinematic friction 

coefficientζ ), Mks /0 =ω  is frequency term where lvsk πγ2=  is spring constant of 

liquid drop due to surface tension of liquid. The term ( )VσΔ  accounts for the dissipation 
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due to contact angle hysteresis. Δ  is a measure of the contact angle hysteresis 

(force/mass) which is proportional to Ma ARlv /)cos(cos θθγ − . Here, ( ) VVV /=σ  is 

signum function of velocity of contact line ( )dtdaV /=  with ( ) 00 =σ when drop is 

stationary )0( =V . ( ) 1−=Vσ  when 0<V  and ( ) 1+=Vσ  when 0>V . Therefore, ( )Vσ  

ensures that the resistive force due to contact angle hysteresis always acts against the 

motion of contact line of drop. ( )tγ  is the time dependent acceleration that the drop 

experiences from the white noise source. The acceleration ( )tγ  of white noise is ideally 

delta correlated with zero mean value. However, due to finite width and heights of the 

acceleration pulses in the experiments, the following approximation introduced by de 

Gennes36 is used: 

( ) ( ) 2
21 tt Γγγ =            for  c21 tt τ<−  

( ) ( ) 0tt 21 =γγ               for  c21 tt τ>−                                                               (4.3) 

where, Γ  is the root mean square acceleration and cτ  is the correlation time of the noise.  

The contact line of drop moves when the magnitude of applied acceleration 

( )taa γω +−− )( 0
2
0  is larger hysteresis )(Δ  otherwise it remains stuck to the surface 

until a large acceleration pulse dislodges it from pinned state. Recently Noblin et al22 

have derived an equation similar to equation 4.2 for the contact line motion of a drop on 

solid substrate subjected to sinusoidal vibrations using energy balance method. In our 

case, the contact line motion is stochastic as it is driven by white noise vibration where as 

equation derived by Noblin et al22 is for contact line motion driven by deterministic 

vibration.  
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The unknown parameters in equation 4.2 are the Langevin relaxation 

time )( Lτ and threshold acceleration required to overcome hysteresis force )(Δ .  Below 

we describe in detail the methods used to estimate the approximate values.  

4.8. Estimation of Approximate Langevin Relaxation Time of Drop 

As already described in Chapter 3, we have determined the Langevin relaxation 

time for a 10μL drop in our previous publications38, 39 by fitting drift velocities of drops 

on an inclined silanized substrate that are subjected to white noise vibration at various 

powers of noise. The Langevin relaxation time of a 10μL drop on decyltrichlorosilane 

monolayer coated silicon wafer thus determined is 0.01s. Apart from fitting the drift 

velocities, we also used another simple experiment to estimate the approximate Langevin 

relaxation time for a 10μL drop on the same surface. In this experiment, noise free drift 

velocity of a 10μL drop sliding on silanized silicon wafer is measured at various 

inclination angles of the substrate to the horizontal. The limiting velocity of drop in noise 

free sliding is given by LsV τγ=  where αγ sing= . Here g  is acceleration due to 

gravity and α  is angle of inclination the substrate to the horizontal. The slope of drift 

velocity versus αsing  gives an approximate value of Langevin relaxation time to be 

0.005s which is in the same order of 0.01s estimated from drift velocity fitting. 

We also used two other well known theoretical methods to estimate the 

approximate Langevin relaxation time. The first method is hydrodynamic and the second 

method is based on a molecular kinetic theory. Based on Subramanian et al’s40 

approximate solution of the hydrodynamic equation of Cox41, the ratio of the mass of the 

drop and the contact line resistance (i.e. ζ/M ) using wedge approximation gives ζ/M  
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value as 0.04 s whereas the lubrication approximation yields a value of 0.13 s.  The value 

of   ζ/M  =0.01 s as used in our calculations are smaller than that estimated using the 

hydrodynamic method.  

           We also estimated ζ  from the molecular kinetic theory of Blake and Haynes42, 

which is based on the following relationship between the contact line velocity V and the 

molecular kinetic parameters: 

             )2/sinh( TnKFVV Bo=                                                                         (4.4) 

where, oV  is a molecular velocity, F is the driving force, n is the number density of 

adsorption sites on surface, Bk  is the Boltzmann constant and T is the temperature. Using 

the values provided for the various parameters of the above equation by Blake et al43, i.e. 

smVo /108~ , and 2.0~)2/( TnkBlvγ , we can estimate oB VTnkVF /2/ ==ζ  from a 

linear approximation of equation 4.4. The ratio ζ/M  is thus estimated to be about 

0.003s for our system. Thus, all of the above mentioned theoretical as well as 

experimental estimation methods yield the relaxation time of 10μL drop on a silanized 

silicon wafer in the same order of magnitude. However, we used a PDMS substrate in our 

experiments to study contact line relaxation of a 10μL drop. We expect that the Langevin 

relaxation time for a 10μL drop on PDMS substrate would be of the same order to that on 

decyltrichlorosilane monolayer coated silicon wafer since the surface energy of PDMS (~ 

24 mJ/m2)44 is close to that of a SAM-coated surface (~21-22 mJ/m2)1 even though the 

packing density of the methyl groups should be somewhat different on these two 

surfaces.  
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4.9. Estimation of Contact Angle Hysteresis Term 

According to Noblin et al22, threshold acceleration required to overcome 

hysteresis force )(Δ can be approximately calculated as  

                
M

a er )cos(cos4 θθγπ −
=Δ                                                            (4.5) 

Where rθ  is receding contact angle and eθ  is equilibrium contact angle which we have 

measured on the PDMS substrate that we used in the experiments as 70o and 90o 

respectively. Experimentally determined value of Δ  using equation 4.5 is 47.8 m/s2 

which we have used in the simulations.  

4. 10. Estimation of Approximate Spring Constant of Liquid Drop 

The total surface energy of a spherical cap on a solid surface is contributed by the 

liquid-vapor, solid-vapor and solid-liquid interfaces as follows: 

         ( ) 2
2

cos1
2

a
a

U svsl
v γγπ

θ
πγ

−+
+

= l                                                             (4.6)                                           

By expanding U in Taylor series up to two terms with respect to a, one obtains equation 

4.7. 

 ( ) ( ) .....
2
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a
Uaa

a
UUU

υυ
                                      (4.7) 

Here, the volume (υ ) of the liquid drop is used as a constraint.  In order to evaluate the first 

and second derivatives of U, a relationship between a and θ  is needed, which can be 

obtained from the volume of a spherical cap and setting its derivative with respect to a as 

zero. One thus obtains: 
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θθθ sin)cos2( +−=
da
da                                                                               (4.8) 

Equation 4.7, in conjunction with equations 4.6 and 4.8 now becomes equation 4.9. 

( )( )osvslv aaaUU −−++= γγθγπ cos20 l                                             

                              ( ) 2/))cos2((sin2 22
ov aa −++ θθπγ l                            (4.9) 

At equilibrium ( 0/ =∂∂ aU ), the term ( )svslv γγθγ −+cosl  vanishes, which leads to the 

Young’s equation. The spring constant is given by equation 4.10:                                                                

   ( )θθπγ cos2sin2 2 += vsk l                                                                      (4.10)     

Since the equilibrium contact angle of water on PDMS is ~90o, sk is estimated to 

be lvπγ4 , which is twice the value of the spring constant ( lvπγ2 ) used in the simulations. 

The derivation used in this appendix is however very approximate as we assume a minor 

perturbation of the drop from the equilibrium value. The drop shape is also assumed to be 

perfectly that of a spherical cap, which may not be the case due to vibration and gravity. 

Furthermore, the free surface of the water drop may have small scale corrugations during 

vibration that will involve additional surface energy. In reality many of these assumptions 

underlying the derivation of equation 4.10 may be violated.  

4.11. Numerical Simulations of Modified Langevin Equation 

We carried out numerical simulations of modified Langevin equation (equation 

4.2), in order to theoretically predict the relaxation behavior of drop observed in the 

experiments. Numerical integration of the modified Langevin equation is carried out 

using a generalized integration method for stochastic differential equations as outlined by 

Gillepsie45. The update formula for the stochastic output variable (velocity or 
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displacement) consists of rescaling stochastic input (acceleration, ( )tγ ) to simulations in 

order to match strength of noise (K) in simulations to strength of noise in experiments. 

We measured stochastic accelerations of oscillating plate using accelerometer as 

described in the experimental section. These measured accelerations are rescaled to 

match various strengths of noise in experiments and then used as input accelerations in 

the simulations.  Since the hysteresis force ( )ΔVσ  always acts in the direction opposite to 

the motion of the contact line, ( )Vσ  is set as VV /  in the simulations. When the net 

acceleration ( )taa γω +−− )( 0
2
0  acting on the drop is less than the threshold acceleration 

)(Δ  required to set the contact line into motion, the contact line gets stuck, hence the 

velocity is set to zero. The modified Langevin equation is integrated with an integration 

time step of tΔ =0.00025s which is smaller than all of the relaxation times in the system.  

The simulations are carried out for 50 tracks with a total integration time of 2.5sec for 

each track at each power of noise. The solid black color lines shown in Figure 4.5 are 

average of such 50 stochastic realizations of drop relaxing to equilibrium. Further 

increase in the number of tracks did not affect the average. As observed from the 

relaxation behavior of drop in advancing mode at powers 0.3, 0.09 and 0.04m2/s3, 

numerical solution of modified Langevin equation agrees very well with the experimental 

results predicting the overall exponential relaxation of drop from non-equilibrium state to 

equilibrium state. 
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Figure 4.7. Simulated relaxation of a drop on a surface starting from either an advanced 
( a >1.5 mm) or a receded ( a <1.5 mm) state to global equilibrium ( oa =1.5 mm) by 
incorporating a sinusoidal perturbation term [ )/2sin( λπ aB ] to hysteresis in equation 
4.2. The arbitrary values of B and λ used here are 10 m/s2 and 20 μm respectively. Short 
and long time pinning of the contact line are evident here. Note that when a low power 
noise is used, the drop gets stuck at a radius that is lower than the equilibrium radius. 
Many of the features of the drop relaxation seen in this simulation are observed 
experimentally (Figures 4.4 and 4.5).  
 
4.12. Numerical Simulation of Step Wise Relaxation 

In the numerical simulations, we specified intermediate ( a ) values as final 

equilibrium ( oa ) radius in order to simulate stepwise relaxation. Even though these 

simulations agree well with experimental relaxation behavior observed at K=0.3 m2/s3 in 

receding mode, it is not a generalized method to predict such behavior. In order to predict 

such behavior we followed the method used by Sakaguchi46. In these simulations, we 

have added an extra sinusoidal perturbation term )/2sin( λπaB  on the right side of 

equation 4.2. Therefore, the hysteresis has an average value coming from a 
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constant Δ  along with spatially varying hysteresis resulting from sinusoidal term. We 

plot trajectories of contact line relaxation behavior at various powers of noise from 

advancing as well as receding modes obtained using Sakaguchi’s46 method in Figure 4.7. 

As observed from Figure 4.7, many experimental features are reproduced well in 

the simulations. At low powers of noise the drop gets stuck to metastable states far from 

equilibrium. At intermediate powers, the drop gets stuck at a metastable state for long 

time before a huge acceleration pulse dislodges it from one metastable state to the other. 

Such jumps clearly represent the stick slip motion observed in the experiments.  

However, at very high powers of noise the drop smoothly relaxes to global equilibrium 

without getting stuck at the intermediate metastable states.  The motion of the contact 

line, as simulated with this modification to equation 4.2, is presented in Figure 4.7. We 

used arbitrarily chosen values of B and λ in the simulations. Ηowever, we note that, 

though the value of amplitude (B) of sinusoidal perturbation term is arbitrary, choosing 

wavelength (λ) was based on the fact that the length of jumps of contact line as observed 

from Figure 4.5 at a power of 0.026m2/s3 at t~1sec is approximately 30μm which is close 

to 20μm that we have used in the simulation. Further research is required in order to 

accurately estimate these values. 

We note that in theoretical studies of contact angle hysteresis6-13, the authors have 

used periodic spatial variation of contact angles in order to show that there exist 

metastable equilibrium states in the free energy of drop on a heterogeneous solid 

substrate. However, in reality there is no concrete evidence to prove that the variation of 

contact angles due to surface heterogeneity follows well defined periodicity. Instead, the 

variation of contact angles might be random following a Gaussian distribution 
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due to the randomness of heterogeneity on the substrate. It is very interesting to study 

how the metastable states are distributed around the global equilibrium state in case of 

random variation of contact angles on heterogeneous solid substrate. 

)/( 32 smK

0

0.05

0.10

0.15

0.20

0.25

0.30

0 5 10 15 20 25 30 35

0.00
0.05
0.10
0.15
0.20
0.25
0.30

0 1 2 3 4
6.0−K

)
(s

L
R

τ
τ

−

)
(s

L
R

τ
τ

−

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0 0.1 0.2 0.3 0.4 0.5 0.

0.026

0.160

0.300

0.566

1.270

5.000

)(sTime

K

R

slope
τ
1

=

)
ln

(a
−

)/( 32 smK

6

(a) (b)

)/( 32 smK

0

0.05

0.10

0.15

0.20

0.25

0.30

0 5 10 15 20 25 30 35

0.00
0.05
0.10
0.15
0.20
0.25
0.30

0 1 2 3 4
6.0−K

)
(s

L
R

τ
τ

−

)
(s

L
R

τ
τ

−

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0 0.1 0.2 0.3 0.4 0.5 0.

0.026

0.160

0.300

0.566

1.270

5.000

)(sTime

K

R

slope
τ
1

=

)
ln

(a
−

)/( 32 smK

6 )/( 32 smK

0

0.05

0.10

0.15

0.20

0.25

0.30

0 5 10 15 20 25 30 35

0.00
0.05
0.10
0.15
0.20
0.25
0.30

0 1 2 3 4
6.0−K

)
(s

L
R

τ
τ

−

)
(s

L
R

τ
τ

−

)/( 32 smK

0

0.05

0.10

0.15

0.20

0.25

0.30

0 5 10 15 20 25 30 35
0

0.05

0.10

0.15

0.20

0.25

0.30

0 5 10 15 20 25 30 35

0.00
0.05
0.10
0.15
0.20
0.25
0.30

0 1 2 3 4
0.00
0.05
0.10
0.15
0.20
0.25
0.30

0 1 2 3 4
6.0−K

)
(s

L
R

τ
τ

−
)

(s
L

R
τ

τ
−

)
(s

L
R

τ
τ

−
)

(s
L

R
τ

τ
−

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0 0.1 0.2 0.3 0.4 0.5 0.

0.026

0.160

0.300

0.566

1.270

5.000

)(sTime

K

R

slope
τ
1

=

)
ln

(a
−

)/( 32 smK

6
0.0

0.5

1.0

1.5

2.0

2.5

3.0

0 0.1 0.2 0.3 0.4 0.5 0.

0.026

0.160

0.300

0.566

1.270

5.000

)(sTime

K

R

slope
τ
1

=

)
ln

(a
−

)
ln

(a
−

)/( 32 smK

6

(a) (b)

 

Figure 4.8. Relaxation time is calculated from the slope of ( )aln− versus time of 

vibration where
o

o

aa
ata

a
−
−

=
)0(
)(

. (b). Relaxation time ( Rτ ) of the contact line of a drop 

obtained from numerical simulations at various powers of noise. Inset of figure shows the 
plot of LR ττ −  as a function of 6.0−K . 
 
4.13. Effect of Power of Noise on Relaxation Time 

We also looked at the effect of power of white noise vibration on relaxation time. 

As shown in Figure 4.8(b), the relaxation time is on the order of 0.2 sec when the contact 

line relaxes towards equilibrium at a power of 0.3m2/s3. For lower strength noise this time 

is larger than 0.2 sec. This is contrary to the expectation that the contact angle hysteresis 

is eliminated instantly when external vibration is applied to a drop. In order to estimate 

the power of noise needed to completely eliminate contact angle hysteresis, the 

experiments have to be carried out at very high powers of noise. We could not carry out 

the experiments at very high power of noise due to experimental constraints. Hence, we 
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carried out numerical simulations over a wide range of powers of noise to determine the 

dependence of relaxation time on power of noise. As the relaxation behavior is 

approximately exponential, we used the following equation to determine the relaxation 

time 

                  ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

−
−

Ro

o t
aa
ata

τ
exp

)0(
)(

                                                                      (4.11) 

The relaxation time is determined from the slope of  ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
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−

−
o

o

aa
ata

)0(
)(

ln   versus time of 

vibration plot (Figure 4.8 (a)). As expected, relaxation time decreases with increase of 

power of white noise vibration (Figure 4.8 (b)). Ideally, when the power of noise 

approaches zero i.e. when there is no vibration, the drop would never relax, hence the 

relaxation time tends to infinity. We could not predict this behavior from our numerical 

simulations as the numerical methodology that we used would not give accurate results at 

very low powers of noise.  We attempted to plot Arrhenius type plot of relaxation time 

versus power of noise as the relaxation process is exponential. However, the relaxation 

time follows power law ( )6.0~ −− KLR ττ  with a scaling exponent of 0.6 with power of 

white noise vibration. As power of noises increases, the relaxation time decreases 

reaching the Langevin relaxation time at very high powers of noise. Saturation of 

relaxation time to Langevin relaxation time indicates that at high powers of noise, the 

dynamics of relaxation of drop are controlled only by kinematic friction rather than 

hysteresis. We wanted to check what is the power required to completely eliminate 

contact angle hysteresis. When contact angle hysteresis is completely eliminated, the 

relaxation time would in the order of Langevin relaxation time. As observed from the 
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numerical simulations, the relaxation time of drop reaches Langevin relaxation time only 

when the power of noise ( cK τ2Γ= ) is ~30 m2/s3. The corresponding root mean square 

acceleration 2/1)/( cK τ=Γ  for sc μτ 40=  is ~860m/s2. If the contact angle hysteresis were 

to disappear, such a high power noise has to be applied to the drop. However, supplying 

such high energy vibrations to drop is not feasible experimentally. Hence, drop reaching 

the equilibrium radius does not imply that the hysteresis is completely eliminated. 

4.14. Fokker Planck Equation 

So far, we looked at the relaxation behavior of contact line as a function of 

strength of noise using experiments as well as numerical simulation of Langevin 

equation. However, as the relaxation of contact line of drop is stochastic showing 

fluctuations, there is a need to look at these fluctuations in detail.  The fluctuations of 

contact line of relaxing drop contain rich information about the non-equilibrium behavior. 

As the noise input to the drop is stochastic, the displacement of contact line drop over a 

certain interval of time is also stochastic following a probability distribution unlike when 

the contact line relaxing under the influence of deterministic vibration. Hence, it is 

worthwhile to look the probability distribution of contact line of drop as a function time 

in order to draw conclusions about the effect of contact angle hysteresis while the contact 

line is in motion. In order to proceed in this direction, we look at the Klein-Kramers form 

of the Fokker-Planck equation34-37,38,39,47,48 corresponding to equation 4.2 for the 

transition probability density ),,( taVP as follows: 
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The derivation of equation 4.12 can be obtained using a method followed by 

Chandrasekhar32. The transition probability density for the radius of drop ),( taP can be 

obtained by solving equation 4.12 for ),,( taVP  with initial condition that at 0=t , 

Aaa =  or Ra , 0=V  and then integrating over velocity )(V as follows 

∫
+∞

∞−

= dVtaVPtaP ),,(),(                                                                                               (4.13) 

The mean of transition probability density for radius of drop ),( taP  at 0=t  is either Aa  

or Ra  depending whether drop is relaxing from advancing or receding mode. Then mean 

varies as a function of time reaching equilibrium radius of drop oa  after a certain period 

of time. However, obtaining an analytical solution of equation 4.12 is rather difficult as it 

involves VVV /)( =σ  which results in the discontinuity at 0=V  in force versus 

velocity relationship. There have been recent attempts to obtain transition probability 

from the solution of an equation similar to equation 4.12 involving Coulombic dry 

friction between two solid surfaces using parabolic cylinder functions49 and also using 

path integral formalism50. However, in our study we look at the steady state solution of 

equation 4.12 to gain some insights into the effect of contact angle hysteresis on 

relaxation dynamics. 

4.15. Displacement Fluctuation of the Contact Line of Water on PDMS 

In order to study the effect of contact angle hysteresis on the non-Gaussian 

probability distribution of the displacement fluctuations of contact line of drop, we 

looked at the spatially homogeneous and steady state solution44,45 of equation 4.12, which 

reduces to a simple balance of the diffusive and convective fluxes in the velocity space as 
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follows:  

                      0
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                          (4.14)                                 

here, ( )VP  is the steady state probability density function of the velocity which is 

obtained by integrating equation 4.14.  
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where, oP  is a normalization constant. According to equation 4.15, when 0=Δ , the 

velocity distribution is Gaussian with zero mean.  However, when 0≠Δ , the probability 

distribution of velocity has also an exponential component ( )( )KV /2exp Δ−  that results 

in the tails of the distribution to be exponential while at the center of the distribution, i.e. 

at 0~V , it is dominated by Gaussian term ( )( )LKV τ/exp 2− . In our experiment, we 

measured the displacement of the contact line of the drop with a high speed camera with 

a time scale *τ =0.001sec, with */τxV = , it gives us an approximate probability 

distribution of the jump length ( x ) distribution as: 
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Equation 4.16, shows that the distribution of x  is Gaussian in the absence of 

hysteresis, but has an extra exponential term in the presence of hysteresis. In order to 

estimate the displacement over a certain time τ > τ∗,  we generated a large matrix of the 

jump vectors ( x ) using equation 16 and randomly selected them to construct a stochastic 

path over a much longer time scale. The probability distribution of these randomly 

selected jump vectors is shown in the inset of Figure 4. 9 b along with the 



 

 

127

experimentally obtained jump length distribution at τ =0.001sec. Although the match is 

not exact, the discrepancy between experimental and simulation results is small. The 

simulations could reproduce the exponential nature of the distribution. From the 

stochastic path created over a large time scale, displacement distributions for various 

values of τ  can be constructed. Such a displacement distribution obtained for τ = 0.01 

sec (Figure 4. 9b) is found to be exponential thus indicating the effect of hysteresis. In 

Chapter 3 we studied the motion of a drop on a surface subjected to white noise and a 

bias. The bias was generated by tilting the plate or by creating a gradient of wettability. In 

these experiments the entire drop slides on a surface unlike here where only contact line 

of drop relaxes but there is no net translation of the drop. Here, the displacement 

distribution of the drop was found to be exponential and asymmetric. We also showed 

using numerical simulation of Langevin equation that both asymmetry and exponential 

displacement distribution are result of non-linear hysteresis force. The simplified 

equation 4.14 only leads to a non-Gaussian nature of the distribution, but does not predict 

any other features that are associated with a non-linear friction. Indeed the experimental 

data presented in Figure 4.9(a) reveal several higher order features, such as the 

distribution becomes asymmetric as time progresses and that a secondary peak appears at 

a higher value of the displacement that grows with time as well. 
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Figure 4.9: (a). Experimentally obtained distribution of displacement fluctuation of 
contact line of a 10μL drop subjected to white noise vibration of power 32 /3.0 smK = . 
Here )(ττ ax Δ= is the net displacement fluctuation of the contact line in time ‘τ ’ sec. 
The distribution of displacement fluctuations of drop is exponential and asymmetric. At 
longer times, a secondary peak appears as well. The data can be fitted with an 
asymmetric double sigmoidal function (solid line), the tails of which are exponential (b). 
The displacement distribution (pink circles) for τ  = 0.01sec as obtained from the paths 
constructed by joining the jump vectors randomly are compared with that obtained 
experimentally. A Gaussian function (dotted line) fails to fit the experimental data. Inset 
(axis and units are same as (b)) compares the experimentally obtained jump length 
distribution (open diamonds) with that obtained from equation 4.16.  Both the 
distributions have pronounced exponential tails.  
 

4.16. Displacement Fluctuation to Study Surface Chemical Properties 

So far, we looked at the relaxation behavior of contact line of drop on a flat 

PDMS substrate that had high contact angle hysteresis (45o). We also looked at the effect 

of magnitude of contact angle hysteresis on the relaxation time of contact line as well as 

the displacement distribution by carrying the experiment on a fluorocarbon monolayer 

coated glass slide that had lower hysteresis (24o) than flat PDMS substrate. The main 

interest in doing this experiment is to see whether it is possible to distinguish two 

surfaces of different chemical properties. Before discussing the experimental results, we 

describe the procedure used to prepare fluorocarbon monolayer coated glass slide. 
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4.17. Preparation of Fluorocarbon Monolayer Coated Glass Slide 

Self assembled monolayer of 1H, 1H, 2H, 2H-Perfluorodecyltricholorsilane was 

prepared on microscopic glass slides using vapor deposition method41.  The microscopic 

glass slides (Fisher Scientific) of dimensions of 75×25×1mm were placed in Piranha 

solution (30% Hydrogen Peroxide and 70% Sulfuric Acid by volume) for 30 min 

followed by rinsing with copious amount of distilled deionized (DI) water. After drying 

with ultra purified nitrogen gas, the glass slides were treated with oxygen plasma (model 

PDC-32G; Harrick Plasma) at 0.2Torr for 45s. The plasma treated glass slides were 

immediately transferred to a vapor deposition chamber. The vapor deposition of silane 

onto glass slide was carried for 2h in vacuum. After deposition, the glass slides were 

baked in oven for 15 min at 75oC. After cooling the samples to room temperature they are 

rinsed with DI water followed by drying with nitrogen. The advancing and receding 

contact angles of water on this fluorocarbon surface measure using drop inflation and 

deflation method are 116o and 92o respectively.  

4.18. Comparison of Displacement Fluctuations on PDMS and   

Fluorocarbon Monolayer Coated Glass Slide 

 
The relaxation behavior of contact line of a 10μL water drop on a flat PDMS 

substrate and on fluorocarbon monolayer coated glass slide subjected to white noise 

vibration of power 32 /3.0 smK =  is shown in Figure 4.10 (a). The relaxation observed in 

the experiments is in accordance with the magnitude of hysteresis on the surfaces, i.e. the 

relaxation time of drop on high hysteresis (45o) PDMS substrate  is ~1.5sec where as it is 

~0.25sec on low hysteresis (14o). The larger relaxation time signifies larger contact angle 
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hysteresis on the surface.  It is also observed from Figure 4.10 (a) that the magnitude of 

fluctuations of contact line on fluorocarbon coated glass slide (blue) are much  higher 

than the fluctuations on PDMS substrate due to higher contact angle hysteresis on PDMS. 

In order to compare the magnitudes of fluctuations we plotted the probability distribution 

of fluctuations of contact line of drop in Figure 4.10(b) at τ  = 0.01s. The variance of 

displacement distribution in case of fluorocarbon coated glass slide is higher than that of 

PDMS. We calculated the kurtosis of displacement distributions on both the surfaces. 

Kurtosis of a distribution is defined as the ratio of fourth moment to the fourth power of 

standard deviation of distribution ( 4
42 /σμβ = ) which gives the sharpness of a 

distribution. A Kurtosis value of close to 3 indicates the distribution is Gaussian, while 

higher values indicate that the distribution is highly sharp and non-Gaussian. The kurtosis 

of displacement distribution thus calculated for contact line fluctuations on PDMS is 

found to be 4.5 where as it is 3.6 for fluorocarbon surface. The kurtosis values in both 

cases are higher than 3 indicating that the displacement distribution of contact line on 

both the surfaces is highly non-Gaussian. This tells us that relaxation of contact line is 

controlled by contact angle hysteresis. Higher kurtosis value on PDMS surface than on 

fluorocarbon coated glass slide clearly reflects that effect of contact angle hysteresis on 

the sharpness of distribution. As shown in Figure 4.10(b), we could fit the data on both 

surfaces with an asymmetric double sigmoid function that has exponential tails. 
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Figure 4.10: (a). The relaxation kinetics of the contact line of a 10μL water drop on 
PDMS (red) and a perfluorinated glass slide (blue). (b). The probability distribution 
functions of the displacement fluctuations ))(( ττ ax Δ=  of the contact line on both the 
surfaces: PDMS (square) and per-fluorinated glass slide (triangle). These probability 
distribution functions have distinctive exponential features. The dotted lines indicate fits 
attempted by Gaussian functions and solid lines are exponential fits.  
 

4.19. Conclusions 

 Liquid drop that is in non equilibrium state on a solid substrate, when subjected to 

external white noise vibration shows relaxation towards equilibrium. The final radius 

reached by drop strongly depends on power of white noise vibration applied to the drop. 

The drop reaches equilibrium radius only when the power of white noise vibration is above 

a threshold power. The radius of drop reaches same final equilibrium value both from 

advancing and receding modes at high powers of noise. The over all relaxation behavior of 

contact line from non-equilibrium state to equilibrium state is exponential. However, the 

detailed relaxation shows step wise relaxation with stick slip motion of contact line. Theory 

based on modified Langevin equation predicts the relaxation behavior of contact line 

accurately. The relaxation time of contact line decreases with increase in power of white 
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noise vibration following a power law relation with an exponent of 0.6. The relaxation time 

approaches Langevin relaxation time at very high powers of white noise vibration. 

According to numerical simulations, the contact angle hysteresis disappears at very high 

powers of noise that are experimentally infeasible to generate, indicating that reaching 

global energy minimum state does not imply that the contact angle hysteresis totally 

disappears. 
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Chapter 5: Motion of Liquid Drops on Surfaces induced by 
Asymmetric Vibration: Role of Contact Angle Hysteresis 

 
5.1. Introduction: 

Motion of liquid drops on a solid surface is of fundamental importance in 

understanding the phenomena of wetting and contact angle hysteresis. It is also of 

technological importance in applications such as microfluidic1-6, heat transfer devices7-10, 

surface coatings, printing, water proofing and lubrication11-13. The actuation of liquid 

drops in micro fluidic and heat transfer devices is generally achieved by utilizing physical 

forces that arise due to surface energy gradient2,10 or thermal energy gradient7-9. However 

the liquid drops get pinned to solid surface due to resistive force arising from contact 

angle hysteresis on the surface which is proportional to )cos(cos ARlva θθγ − . Here a  is 

the contact radius of liquid drop, lvγ  is the surface tension of liquid and RA θθ ,  are 

advancing and receding contact angles of liquid on the surface. In order for liquid drop to 

move on a surface, external forces acting on drop have to be higher than the threshold 

resistive force due to contact angle hysteresis. Apart from the technological applications 

mentioned above, water drops sticking to an inclined solid surface is observed frequently 

in natural settings such as drops on glass windows, windshield of car and shower 

curtains. These drops run down on the surface with a slight tapping or mild shaking of the 

surface. However, if the drops are sitting on a horizontal solid surface instead of an 

inclined surface, tapping or shaking would cause the drops to oscillate back and forth 

with no net motion. A common feature in the above mentioned techniques used in 

microfluidic and heat transfer devices to induce liquid drop motion on a solid surface is 

that there is an externally applied bias that is responsible for the motion of drops. 
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A pertinent question that arises here is how drops pinned to a horizontal solid surface can 

be set into motion where external bias force such as gravity is not acting on the drop. It 

has been shown that liquid drops can be moved by exciting them with symmetric periodic 

vibrations on an asymmetrically structured solid surface14,15. The oscillations of drop get 

rectified resulting in drop moving in one direction due to asymmetric structure on the 

solid surface. Here asymmetric structure amounts to having triangular groves on the 

surface with unequal slopes. Recent theoretical study of Cebiroglu et al21 suggested that 

rectified motion can also be achieved in nonlinear media subjected to asymmetric random 

driving. A recent review by Hanggi and Marchesoni22 discusses the mechanism of 

rectified transport at various scales in the presence of a stochastic or a deterministic 

driving. This kind of ratcheting mechanism resulting from asymmetric structure on the 

surface is discussed extensively in the literature and it is well understood14-20. A simple 

example of such a ratchet is a microscopic particle that is undergoing Brownian motion in 

an asymmetric potential instead of classical parabolic potential. In case of particle in 

parabolic potential, position of the particle fluctuates around the minimum of potential 

where as in asymmetric potential the particle moves in one preferred direction. Another 

way of inducing motion of drops is by exciting the drop on a uniformly symmetric and 

smooth solid surface with asymmetric periodic vibrations of zero mean force1. Such a 

directed motion of liquid drops in the absence of bias has received considerable attention 

due to its significant implications in microfluidic devices.  

Recently, Daniel et al1 have shown that liquid drops can be transported on a solid 

surface in the absence of external bias by applying asymmetric periodic vibrations with 

zero mean to the solid support. It has been well understood that, in order to 
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achieve directed motion in presence of periodic or stochastic forcing with zero mean 

there needs to be at least one symmetry breaking mechanism present in the system23. 

Daniel et al1 argued that contact angle hysteresis is responsible for symmetry breaking in 

this case. In the context of rectification of motion of protein motors resulting in 

unidirectional motion, Mogilner et al23 indicated that there is a requirement for symmetry 

breaking mechanism as the stochastic velocity fluctuations resulting from conformational 

changes of motor protein are of zero mean. They suggested that Coulombic type friction 

is responsible for unidirectional motion of motor proteins. 

Recently, in theoretical analysis of motion of solid objects on a solid support, 

Fleishman et al24,25 and Buguin et al26 have also argued, similar to the arguments of 

Daniel et al1, that Coulombic friction analogous to contact angle hysteresis in the case of 

liquid drop, is responsible symmetry breaking. Experimental demonstrations of the 

motion of a solid on another solid by asymmetric vibration and friction were provided by 

Mahadevan et al27, Eglin et al28 as well as by Buguin et al26. Recent experimental study of 

liquid drops subjected to simultaneous vertical and horizontal vibrations as carried out by 

Noblin et al29 also supports the argument that the contact angle hysteresis is responsible 

for symmetry breaking resulting in the directed motion. In their experimental study, a 

sessile drop was subjected to horizontal and vertical vibrations simultaneously that 

resulted in the net motion of drop without any applied external bias. They proposed that 

the asymmetric forces acting on the contact line of drop brought about by the contact 

angle hysteresis are responsible for the ratcheting motion of drops. However, there have 

been several other arguments in the literature30-32 as to which mechanism is responsible 

for directed motion of drops in the absence of bias. Brunet et al30 used an 



 

 

138

empirical non-linear friction model to describe the uphill motion of a drop subjected to 

strong symmetric vibrations. John and Thiele31,32 argued that the vibration component of 

the drop perpendicular to the substrate leads to a strongly nonlinear lateral force-velocity 

relation that breaks the symmetry of the periodic forcing. They attributed the effect 

studied by Brunet et al30 and Noblin et al29 to such a non-linearity.  Also, John and 

Thiele31,32, Brunet et al30 argued that the asymmetry in vibrations or contact angle 

hysteresis may not be necessary ingredients for directed motion of drops in the absence of 

external applied bias. Based upon such conflicting arguments in literature, it is very 

important to check whether hysteresis is at all the necessary non-linearity for the drop 

motion under asymmetric vibration in the types of experiments presented by Daniel et al1. 

John and Thiele31,32, Brunet et al30 also indicated that the applied external vibration helps 

only in depinning the drop from solid support hence resulting in the complete elimination 

of contact angle hysteresis. 

However, in a recent experimental study33 as already described in Chapter 4, we 

have shown that contact angle hysteresis is not completely eliminated during the 

relaxation of drop from non-equilibrium state to equilibrium state under the influence of 

external vibration34-39. In this experimental study a water drop, which is either stuck in 

advancing or receding state on a high hysteresis PDMS substrate, is subjected to white 

noise vibration in vertical direction. The drop that is initially stuck in a metastable-

equilibrium state relaxes to equilibrium state due to externally applied white noise 

vibrations. We looked at the relaxation time of liquid drop from non-equilibrium state to 

equilibrium state. There are two relaxations times in presence of contact angle hysteresis 

on the surface. The first one is Langevin relaxation time due to kinematic friction 
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and the second one being the relaxation time due to dissipation coming from contact 

angle hysteresis. If the contact angle hysteresis is completely eliminated due to external 

vibrations, we expect the dynamics of the relaxation of drop would be controlled only by 

kinematic friction hence relaxation time would be of the order of Langevin relaxation 

time.  But the relaxation time of contact line of drop is found to be much higher than the 

Langevin relaxation time indicating that the contact angle hysteresis is not eliminated 

during the relaxation of the drop. It was also shown from numerical calculations that, in 

order to completely eliminate contact angle hysteresis, the drop has to be subjected to 

huge acceleration pulses which may not be easily achieved in laboratory. Also, the 

distribution of displacement fluctuation of contact line of drop would be Gaussian if the 

contact angle hysteresis is completely eliminated. However, the displacement fluctuations 

followed non-Gaussian distribution with exponential tails confirming that the contact 

angle hysteresis is present during the relaxation of drop.   

As there seems to be no consensus on whether all or some of these non-linearities 

contribute to symmetry breaking resulting in rectification, there is a need to analyze the 

motion of drops systematically using experiments and theory. We wanted to elucidate the 

role of non-linearity in contact angle hysteresis that is responsible for symmetry breaking 

using experiments and theory. We designed an experiment in which the motion of drops 

is studied by systematically varying the amount of contact angle hysteresis on the surface. 

We also developed a non-linear contact angle hysteresis model that clarifies the 

uncertainties associated with role of contact angle hysteresis. Using experiments and 

simulations, we convincingly show for the first time that contact angle hysteresis is an 

essential factor that is responsible for symmetry breaking resulting directed 
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motion of drops.  
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Figure 5.1. (a). Experimental set up (b) Typical asymmetric acceleration wave profile 
used to vibrate the solid support. )(tPγ  is the acceleration of the plate with 2/67 smAo =  
and Hz100=ω . 
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5.2. Experimental Procedure 

Typical experiment (Figure 5.1(a)) is to place drops of deionized water of 

volumes 1 and 4μL on two ends of a solid surface that is attached to a solid support and 

then subject the solid support to lateral asymmetric vibrations of zero mean. The solid 

surface was attached on an aluminum platform that is connected to the stem of a 

mechanical oscillator (Pasco Scientific, Model SF-9324). The asymmetric wave 

generated in a wave form editor was sent through the wave form generator (Agilent, 

Model 33120A) to the mechanical oscillator after it was amplified by a power amplifier 

(Sherwood Model No: RX-4105). The entire setup was placed on a vibration isolation 

table (Micro-g, TMC) to eliminate the effect of ground vibration. The asymmetric 

acceleration profile that is used to vibrate the solid support is a combination of two cosine 

waves24 given by ))4cos(2)2(cos( ttAo πωπω + . Here, oA  is the amplitude of acceleration 

and ω  is the fundamental frequency of oscillations. Typical asymmetric wave used to 

vibrate the solid support is shown in Figure 5.1(b) with 2/67 smAo =  and Hz100=ω . 

Accelerometer (PCB Peizotronics, Model No: 353B17) driven by a Signal Conditioner 

(PCB Peizotronics, Model No 482), and connected to an oscilloscope (Tektronix, Model 

No. TDS 3012B), was used to estimate the acceleration of the plate. Accelerometer 

reading showed that the above asymmetric wave was slightly distorted, when it passed 

though the oscillator (see Figure 5.3). However, as the displacement is periodic, its time 

average is zero. When subjected to asymmetric vibrations, 1 and 4μL drops move in 

opposite directions which are recorded from side view using a high speed camera 

(Redlake, MotionPro, Model 2000) operating at 2000 frames/sec and stored in computer 
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for analysis in leisure. Motion analysis software MiDAS was used to track the dynamics 

of contact line motion of drop.  

We used surfaces of negligible hysteresis, intermediate hysteresis as well as 

strong hysteresis in order to systematically check the effect of amount of contact angle 

hysteresis on drop motion. The hysteresis force acting on the liquid drop depends not 

only on the difference between the cosine of advancing and receding angles, but also the 

perimeter of contact between the drop and the substrate. We used micro fibrillated PDMS 

(Dow Corning Sylgard 184) surfaces as surfaces with negligible hysteresis. We used 

hydrocarbon monolayer coated silicon wafer and PDMS monolayer (Trimethylsiloxy-

terminated, Gelest Inc., Product Codes DMS-T22 and DMS-T12) coated silicon wafers as 

intermediate hysteresis surfaces. Fluorocarbon monolayer coated glass slide and 

polystyrene coated silicon wafer are used as surfaces with high hysteresis. Below, we 

describe the procedures used to prepare these surfaces. 

5.3. Preparation of Micro Fibrillated PDMS Substrate 

We prepared micro fibrillated PDMS substrates by a procedure previously used 

by Glassmaker et al40. The oligomeric component of the Sylgard 184 kit was thoroughly 

mixed with the crosslinker in a 10:1 ratio by weight followed by degassing using in house 

vacuum for 2hrs. The degassed mixture was then cast onto lithographically etched silicon 

master wafer. The silicon wafer is silanized with decyltrichlorosilane using vapor 

deposition method for easy removal of cured fibrillated PDMS sample. The cast PDMS 

was then cured at 80oC for two hours. The crosslinked PDMS was cooled in dry ice (-

78.5oC) for an hour followed by its removal from silicon master wafers manually. The 

PDMS surface thus prepared has square fibrils of 10μm size with fibrillar spacing of 
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95μm. The fibrillar spacing here corresponds to the center to center distance between two 

adjacent fibrils. The height of the fibrils was 25μm. The low hysteresis fibrillated PDMS 

surfaces were characterized using drop rolling method in which a 10μL drop was placed 

on a horizontal fibrillated PDMS surface and the angle of inclination of the surface was 

increased gradually until the drop started to move. The advancing and receding angles of 

the rolling drop were measured from their video images captured with a computer. These 

values were 162o and 160o respectively, with a hysteresis of 2o. The adhesion of water 

drops to this fibrillated PDMS surface was so low that it proved difficult to transfer the 

drops onto the surface as they stuck more to the microsyringe needle rather than to the 

fibrillated PDMS surface. Use of a very thin micro needle solved this problem.  

5.4. Preparation of Hydrocarbon Monolayer Coated Silicon Wafer 

The hydrocarbon monolayer was prepared by reacting plasma cleaned silicon 

wafer (Silicon Quest International) to the vapor of decyltrichlorosilane (CH3-(CH2)9-

SiCl3, Gelest Inc.). Before the vapor deposition is carried out, the silicon wafers are 

thoroughly cleaned as described below. The silicon wafer was placed in Piranha solution 

(20% Hydrogen Peroxide and 80% Sulfuric Acid by volume) for 30 min followed by 

rinsing with copious amount of distilled deionized (DI) water. After drying with ultra 

purified nitrogen gas (Praxair Inc.), the silicon wafer was treated with oxygen plasma 

(model PDC-32G; Harrick Plasma) at 0.2Torr for 45s. Before the vapor deposition is 

carried out, the silane is degassed for two hours in vacuum to remove any trapped air 

bubbles. The plasma treated silicon was immediately transferred to a vapor deposition 

chamber containing decyltrichlorosilane. The vapor deposition of silane onto silicon 

wafer was carried for 1h in vacuum. After deposition, the silicon wafer was 
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baked in oven for 15 min at 75oC. After cooling the samples to room temperature, they 

are rinsed with DI water followed by drying with ultra purified nitrogen gas (Praxair 

Inc.). The advancing and receding contact angles of water on this hydrocarbon monolayer 

coated silicon wafer measured using drop inflation and deflation method are 107o and 

99o, with a net hysteresis of 8o. The ellipsometric (V-Vase Ellipsometer, J. A. Woollam 

Co, Inc) thickness of hydrocarbon monolayer on silicon wafers is found to be ~1 nm. The 

root mean square (RMS) roughness of hydrocarbon monolayer coated silicon wafer is 

found to be 0.2 nm using Atomic Force Microscopy (Veeco NanoscopeV, Digital 

Instruments, Metrology Group) over an area of 1μm×1μm. 

5.5. Preparation of Trimethylsiloxy Terminated PDMS Monolayer 
Coated Silicon Wafers 

PDMS monolayer (Trimethylsiloxy-terminated, Gelest Inc., Product Codes DMS-

T22 and DMS-T12) coated silicon wafers were used as intermediate hysteresis surfaces. 

The PDMS (Trimethylsiloxy-terminated) coated silicon wafers were prepared using a 

method similar to that is described earlier41 with a slight modification. The silicon wafers 

(Silicon Quest International) were first cleaned with Piranha solution (20% Hydrogen 

Peroxide and 80% Sulfuric Acid by volume) for 30 min, followed by rinsing with 

copious amounts of distilled deionized (DI) water and drying it with ultra purified 

nitrogen gas (Praxair Inc). The silicon wafers were then further cleaned by oxygen 

plasma (Model PDC-32G; Harrick Plasma) at 0.2 Torr for 45s. Some of these oxygen 

plasma cleaned silicon wafers were immediately transferred to and immersed in 

trimethylsiloxy-terminated poly-dimethylsiloxane (PDMS) (Gelest Inc., DMS-T22, 

Viscosity of 200cSt, MW 9000-10000) in a cleaned glass Petri dish. The other remaining 
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oxygen plasma cleaned silicon wafers were immediately transferred to and immersed in a 

separate clean glass Petri dish containing a different trimethylsiloxy-terminated poly-

dimethylsiloxane (PDMS, DMS-T12 (Viscosity of 20cSt, MW 1600-2400). These Petri 

dishes were covered and kept in an oven at 100oC for 24hrs. The samples were then 

cooled to room temperature and dipped in toluene (99.9% pure, ACS grade) for 10min. 

Both the samples were rinsed with copious amounts of flowing toluene, after which they 

were dried with ultra pure nitrogen gas. The thicknesses of the grafted PDMS films were 

found to 1.7 nm for DMS-T12 and 5 nm for DMS-T22. The RMS roughness these 

surfaces were 0.3 nm for DMS-T12 and 0.4 nm for DMS-T22. The advancing and 

receding angles measured using drop inflation and deflation method on silicon wafer 

coated with PDMS (DMS-T12) were 106o and 95o respectively, whereas they were 112o 

and 104o on silicon wafer coated with PDMS (DMS-T22) respectively. The hysteresis 

(8o) on the latter surface is comparable to that of the hydrocarbon monolayer coated 

silicon wafer.  

5.6. Preparation of Fluorocarbon Monolayer Coated Glass Slide 

Self assembled monolayer of 1H, 1H, 2H, 2H-Perfluorodecyltricholorsilane was 

prepared on microscopic glass slides using vapor deposition method.  The microscopic 

glass slides (Fisher Scientific) of dimensions of 75×25×1mm were placed in Piranha 

solution (20% Hydrogen Peroxide and 80% Sulfuric Acid by volume) for 30 min 

followed by rinsing with copious amount of distilled deionized (DI) water. After drying 

with ultra purified nitrogen gas, the glass slides were treated with oxygen plasma (model 

PDC-32G; Harrick Plasma) at 0.2Torr for 45s. Before the vapor deposition is carried out, 

the silane is degassed for two hours in vacuum to remove any trapped air bubbles. 
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The plasma treated glass slides were immediately transferred to a vapor deposition 

chamber. The vapor deposition of silane onto glass slide was carried for 2h in vacuum. 

After deposition, the glass slides were baked in oven for 15 min at 75oC. After cooling 

the samples to room temperature they are rinsed with DI water followed by drying with 

nitrogen. The advancing and receding contact angles of water on this fluorocarbon 

surface measure using drop inflation and deflation method are 117o and 103o (hysteresis 

of 14o) respectively. The thickness of the grafted fluorocarbon layer on glass could not be 

estimated by ellipsometry due to its roughness and close match of the refractive indices 

of the glass and the grafted layer.  The ellipsometric thickness of an equivalent layer on 

silicon wafers is found to be ~1.4 nm. The root mean square (RMS) roughness of the 

fluorocarbon coated glass slide is found to be 18 nm. 

5.7. Preparation of Polystyrene Spin Coated Silicon Wafers 

Polystyrene coated substrates were prepared by spin casting a 5% solution by 

weight of Polystyrene (MW~50,000, Aldrich Chemical Company Inc.) in Toluene on the 

silicon wafer and drying it for several days. The thickness of polystyrene film was 357nm 

with a RMS roughness of ~0.3 nm. Using the drop inflation and deflation methods, the 

advancing and receding angles were found to be 91o and 68o (hysteresis of 23o). 
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Figure 5.2. Shape fluctuations of a 4μL drop subjected to an asymmetric vibration 
( 2/33 smAo = , Hz100=ω ) on surfaces of varying magnitude of contact angle hysteresis. 
 (a) Fibrillated PDMS (Sylgard 184) (b) Hydrocarbon monolayer (Decyltrichlorosilane) 
coated silicon wafer and (c) Polystyrene coated silicon wafer. The amount of contact 
angle hysteresis increases from panel (a) to (c) as indicated by the magnitude of 
hysteresis on the top of each panel. The standard deviations in the measurement of the 
advancing and receding angles are about 1o.  The time sequence shown on the middle 
panel also corresponds to the left and right panels. The drop does not show a net motion 
on low hysteresis (2o) fibrillated PDMS surface and on the high hysteresis (23o) 
polystyrene surface, whereas it drifts on the hydrocarbon monolayer coated silicon wafer 
that has intermediate hysteresis (8o).  
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5.8. Experimental Results 

  We show the shape fluctuations of a 4μL drop when subjected to asymmetric 

vibration ( 2/33 smAo = , Hz100=ω ) on surfaces possessing varying amount of contact 

angle hysteresis in Figure 5.2. As observed from the figure, the drop did not show any 

motion on low hysteresis (2o) micro fibrillated PDMS.  This result is counterintuitive to 

the expectation that the drops would move with high velocity on low hysteresis surfaces. 

However, the drop drifts with high velocity on hydrocarbon monolayer coated silicon 

wafer that had intermediate hysteresis (8o).  The drop again does not move on polystyrene 

coated silicon wafer that had very high hysteresis (23o). This counterintuitive 

experimental result clearly points out that some amount of contact angle hysteresis is 

required in order for the drop motion to get rectified resulting in directed motion when it 

is subjected asymmetric periodic vibrations. The same experimental results are observed 

when a 1μL drop is subjected to asymmetric vibration on surfaces with varying 

magnitudes of contact angle hysteresis. 1μL drop did not show net drift on low hysteresis 

micro fibrillated PDMS surfaces as well as on high hysteresis polystyrene coated silicon 

wafer, but it drifts with high velocity on intermediate hysteresis hydrocarbon monolayer 

coated silicon wafer. These experimental observations unequivocally support our 

hypothesis that hysteresis provides essential symmetry breaking mechanism resulting in 

directed motion of liquid drops when subjected to asymmetric vibrations.  
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Figure 5.3. The dynamics of the contact lines of 4μL and 1μL water drops on low 
hysteresis (2o) fibrillated PDMS surface that is subjected to asymmetric vibrations of an 
amplitude of 2/97 smAo = . The plate oscillations are also shown. The drops do not 
exhibit any net drift. Here 1x  corresponds to displacement of contact line of the drop 
relative to the plate as shown in figure 5.9. px corresponds to the displacement of the 
plate with respect to the laboratory frame.  
 

In order to show detailed contact line dynamics of 1 and 4μL drops oscillating on 

micro fibrillated PDMS surface, we carried out the experiments at a high amplitude of 
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vibration ( 2/97 smAo = , Hz100=ω ). We tracked the high resolution motion (2000 

frames/s) of contact lines of 1 and 4μL drops and plotted the contact line dynamics in 

Figure 5.3. The contact lines of 1 and 4μL drops oscillate back and forth without showing 

any net motion over several cycles of oscillations. These experimental observations 

clearly show that there needs to be some amount of contact angle hysteresis on the solid 

surfaces in order to show directed motion of liquid drops. Here, contact angle hysteresis 

provides the essential symmetry breaking mechanism. 

1mm

t = 0sec 

t = 0.007sec 1mm

t = 0sec 

t = 0.007sec 

 

Figure 5.4. Oscillations of the center of masses of 4μL and 1μL water drops subjected to 
asymmetric vibration with 2/33 smAo =  on a hydrocarbon monolayer coated horizontal 
silicon wafer. The directions of center mass oscillations are shown by arrows on top of 
each drop. At t=0 sec, the center of mass of the 4μL drop moves to the left whereas that 
of the 1μL moves to the right. At t=0.007 sec, the center of mass of the 4μL moves to the 
right whereas that of the 1μL drop moves to the left. These observations suggest that the 
oscillations of these drops are out of phase.  
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Figure 5.5. Oscillations of the center of masses of 4μL and 1μL water drops subjected to 
asymmetric vibration with 2/33 smAo =  on a hydrocarbon monolayer coated horizontal 
silicon wafer. The oscillations are shown in the reference frame of moving drops. As 
shown by arrows, the center of masses 4μL and 1μL water drops oscillate in opposite 
direction that result in time lag in the oscillations.  
 

5.9. Flow Reversal 

Recently, flow reversal of liquid drops was observed by Daniel et al1, Dong et al42 

with a different kind of asymmetric vibration. Such a flow reversal was termed polarized 

ratchet. Here, 1 and 4μL drops moved in different directions when subjected to 

asymmetric vibrations of zero mean. The flow reversal has been attributed to the phase 

change in the oscillations of center of masses of drops of different volumes. The phase 

change in the oscillations results from the amount of viscous dissipation in the bulk of the 

drops that is volume dependent. The smaller drops have smaller dissipation in the bulk 

where as the larger drops have large dissipation. The liquid drops move in opposite 

directions due to opposite phase in the oscillations of center of masses which are 
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illustrated in Figure 5.4 and 5.5. Here the oscillations of the center of masses of 4μL and 

1μL water drops are out of phase with each other.  In order to show such details, the 

center of masses of 4μL and 1μL drops was tracked using a video recording with a high 

speed camera at 2000 frames/sec. The analysis of center of masses from the high speed 

video images is carried out using Moment Calculator plug-in available in ImageJ 

software43. The plug-in calculates spatial moment of order 1 that corresponds to the 

center of mass of 2-dimensional image. The oscillations of center of masses of 4μL and 

1μL water drops thus determined are shown in Figure 5.5 in the reference frame of 

moving drop. The time lag (phase shift) between oscillations of center of masses of 4μL 

and 1μL water drops results in the drops moving in opposite directions when subjected to 

asymmetric vibrations. Another interesting observation is that for every one cycle of 

oscillation of center of mass of 1μL drop, there are two cycles of oscillations for 4μL 

drop. Benilov44 recently analyzed situation of a drop moving uphill due to asymmetric 

vibrations whose acceleration profile has flat wide crests and narrow deep troughs with 

zero mean.   

In order to dramatically show such an effect, we carried out an experiment with 

current asymmetric vibration on decyltrichlorosilane monolayer coated surface by 

inclining it 15o deg to the horizontal. The 1μL drop was placed on the upper side of the 

inclined surface where as 4μL drop was placed on the bottom side of the surface. When 

subjected to asymmetric vibration, contrary to the naïve expectation, the 1μL runs down 

the surface where as the 4μL moves up hill (Figure 5.6). These experiments are relevant 

to the recent experiments carried out by Noblin et al29 and Brunet et al30. Here, Noblin et 

al29 have subjected liquid drops to simultaneous vertical and horizontal 
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vibrations on horizontal substrate and showed that the direction of the drop motion can be 

reversed by tuning the phase difference between the vertical and horizontal vibrations. 

These experiments are in a sense similar to the experiments of Daniel et al1 because the 

phase difference in the oscillations is tuned by changing the volume of drop in Daniel et 

al1’s experiments where as it is done by tuning the phase difference between the vertical 

and horizontal vibrations in Noblin et al’s29 experiment. Noblin et al29 have also argued, 

similar to the arguments of Daniel et al1, that the contact angle hysteresis is responsible 

for symmetry breaking resulting in the directed motion. They proposed that the 

asymmetric forces acting on the contact line of drop brought about by the contact angle 

hysteresis are responsible for the ratcheting motion of drops.   

In a different experiment, Brunet et al30 observed climbing of drops on an inclined 

surface when subjected to symmetric vibrations of high accelerations. They attributed this 

effect to the symmetry breaking mechanism resulting from inclination of substrate and to 

the non-linear friction force between the drop and the substrate. They indicated that the 

contact angle hysteresis is completely eliminated when the drops are moving; hence it 

plays no role in making the drops move uphill. However, this is in contrast to Daniel et 

al1’s theory that attributes such a climbing up of drops to contact angle hysteresis in 

absence of which the drops would simply run down without showing any upward motion. 

In order to show that the vibration component vertical to the substrate may not be 

required in moving the drops on horizontal substrate, we carried out an experiment by 

subjecting a 10μL water drop on PDMS DMS-T22 surface to symmetric sine vibrations 

at a frequency of 40 Hz and acceleration amplitude of 100 m/s2(Figure 5.7, left panel). 

Here, the drop shows significant deformation of shape. Such a huge and 
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chaotic shape deformation might have been responsible for climbing of drop as observed 

by Brunet et al30. We also carried an experiment where a 10μL water drop on micro 

fibrillated PDMS substrate subjected symmetric sine vibration at a frequency of 40 Hz 

and acceleration amplitude of 90 m/s2(Figure 5.7, right panel). The PDMS surface is the 

low hysteresis (2 deg) surface used in the asymmetric vibration experiments described 

above that has square fibrils of 10μm size with fibrillar spacing of 95 μm. Here, the drop 

detaches from surfaces due to low hysteresis, bounces off of the surface. It drops onto the 

surface to bounce of again. The drop repeats the process of bouncing off until it reaches 

the end of the substrate. Such a detachment of drop from superhydrophobic surfaces has 

been discussed in the literature in the context of vertical vibrations45. But, here we show 

that horizontal vibrations can also be used for detachment of water drops. 
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Figure 5.6. (a). Uphill motion of a 4μL drop and a downhill motion of a 1μL drop on an 
inclined hydrocarbon (decyltrichlorosilane) monolayer coated silicon wafer subjected to 
an asymmetric vibration ( 2/63 smAo =  and Hz100=ω ). The inclination of the plate is 
15o from the horizontal plane.   
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Figure 5.7. (Left panel) A 10μL drop of water moves on a PDMS (DMS T22) coated 
horizontal silicon wafer that is vibrated with a sinusoidal vibration parallel to the surface 
at a frequency of 40 Hz and acceleration amplitude of 100 m/s2. Significant deformation 
of the drop shape is observed here. (Right panel) A 10μL drop of water moves on micro 
fibrillated PDMS substrate when it is vibrated with a sinusoidal vibration parallel to the 
surface at a frequency of 40 Hz and acceleration amplitude of 90 m/s2. The PDMS 
surface is the low hysteresis (2 deg) surface used in the asymmetric vibration experiments 
described above that has square fibrils of 10μm size with fibrillar spacing of 95 μm. The 
drop flies in the air, falls on the surface -- only to fly off again. The repetition of this 
process leads to a net motion of the drop. A vibration induced detachment of a drop from 
a superhydrophobic surface was reported previously36,54-56 with a vertical vibration. Here 
the vibration is horizontal to the surface.   

 

John and Thiele31,32 also indicated that the asymmetric shape fluctuations are 

responsible for the motion in the above experiments. However, we show that the flow 

reversal as observed in the case of liquid drops can also be observed when a solid object 

on a solid substrate is subjected to asymmetric vibrations. In order to show this, we 

carried out an experiment where a 4mm diameter solid steel ball on micro fibrillated 

PDMS substrate is subjected to asymmetric vibrations of various amplitudes (Figure 5.8). 

The PDMS surface has square fibrils of 10μm size with fibrillar spacing of 50 μm. 
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Here, the steel ball moves to the right when amplitude of acceleration of vibrations is 92 

m/s2 where as it moves to the left when it is 142 m/s2. As the steel ball is rigid there are 

no shape fluctuations; hence the flow reversal might be the result of non-linear rolling 

friction force between the steel ball and fibrillated surface. Such a flow reversal is 

observed when friction force between the steel ball and fibrillated PDMS surface has an 

ascending and descending branch as a function of velocity. In a related theoretical 

analysis of a solid object on solid substrate subjected to asymmetric vibrations, 

Fleishman24 et al observed a similar flow reversal that was attributed to non-linear 

friction force between the two solids.  
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Figure 5.8.  Motion of a steel ball (4 mm) on a horizontal fibrillated PDMS surface due 
to an asymmetric vibration.  The PDMS surface has square fibrils of 10μm size with 
fibrillar spacing of 50 μm. The frequency of the vibration is 100 Hz. Left panel shows 
that the steel ball moves from left to right when the vibration amplitude is 92 m/s2. The 
steel ball moves in the opposite direction (right panel) when the vibration amplitude is 
142 m/s2.  A nonlinear rolling friction force between steel ball and surface, which has an 
ascending and descending branch as a function of velocity, seems to be responsible for 
the flow reversal. One cycle of the displacement of the plate as a function of time is 
shown in the insets. Previously, Fleishman24 et al envisaged a similar flow reversal for 
the case of small solid object sliding on a solid support.  
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5.10. Comparison of Experimental and Simulation Results 

We describe the procedure used to theoretically explain the above experimental 

observations. In the previous model of contact angle hysteresis1,3,26,,46,47,53, drop is 

approximated as a linear harmonic oscillator and magnitude of threshold hysteresis force 

that is acting to retard contact line motion of a drop is assumed to be constant. Even 

though previous model was able to qualitatively show that contact angle hysteresis is 

responsible for symmetry breaking, it could not quantitatively predict the role played by 

contact angle hysteresis. Therefore, we introduced modifications to the previous model 

by incorporating a non-linear contact angle hysteresis term that depends on velocity of 

contact line of drop.  Since a liquid drop has two degrees of freedom (Figure 5.9), one at 

the base and the other at the center of mass, two coupled equations are required to 

describe its motion. In order to describe the equation of motion of the center of mass of 

the drop (x2), an inertial force, a damping force, a spring force and the imposed 

oscillatory force are taken into account (eq 5.1). The inertial force is formally ignored in 

describing the dynamics of the contact line (x1). Here, an additional force due to contact 

angle hysteresis is considered (eq. 5.2)1.   

x1x
2x

x1x
2x

 

Figure 5.9.  Schematic of the oscillation of a drop on a surface. 1x  indicates the 
displacement of the contact line relative to the plate and  2x  indicates the displacement 
of center of mass relative to its undeformed state.  
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Here, x1 and x2 are the displacements of contact line and center of mass of drop 

respectively. Bτ  and Lτ  are the relaxation times (the ratios of the mass of the drop and 

kinematic friction coefficient) due to viscous friction in the bulk and near the contact line 

of the drop. Mkso /=ω  is the resonance frequency of a drop with M  being its mass. 

The spring constant ( lvsk πγ2= ) is proportional to the surface tension of the liquid, lvγ . 

)(tγ  is the imposed acceleration on drop: ( ))4cos(2)2cos( ttAo πωπω +− . The negative 

sign indicates that the acceleration of the drop is in opposite direction to that of the plate.  

( )VαtanhΔ  is the hysteresis force divided by the mass of the drop,  where dtdxV /1=   is  

the velocity of the contact line. Usually, hysteresis term enters in the equation of motion 

as a jump discontinuity, Δ)(Vσ  with VVV /)( =σ  providing the sign of velocity of the 

contact line. )(Vσ  takes the values of -1, 0, +1 when 0<V , 0=V , 0>V  respectively 

that ensures that the resistance due to contact angle hysteresis always acts against the 

motion of contact line of drop. The difficulty associated with this model is that the 

signum function is discontinuous at 0=V  which results in the discontinuity in force 

versus velocity relationship. Several approximations can be used to by-pass this 

discontinuity. One approximation is to use piecewise continuous functions49-51 instead of 

the signum function.  The second method is to replace the signum function with another 

non-linear function such as ( )Vαtanh , which is widely used in tribology literature52. Here, 
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Coulombic dry friction48 that has a jump discontinuity similar to that of the wetting 

hysteresis at V=0. Here, α  is a parameter that signifies how fast the resistive force 

(acceleration) due to contact angle hysteresis reaches the threshold force (acceleration, Δ ) 

as a function of velocity of contact line as shown schematically in Figure 5.10. In the 

limit of ∞→α , hyperbolic tangent function is a good approximation to signum function. 

We numerically solve equations 5.1 and 5.2 to gain an understanding of how the drift 

velocity depends on the threshold value of the hysteresis Δ.  
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Figure 5.10. Schematic of variation of non-linear contact angle hysteresis as a function 
of velocity of contact line at various α  values. Here, Δ  is the threshold contact angle 
hysteresis. The force versus velocity relation is linear in the limit of smallα and it is 
highly nonlinear in the limit of largeα . In the limit of ∞→α , hyperbolic tangent 
function is a good approximation to signum function ( VVV /)( =σ ). 
 

5.11. Estimation of Parameters for Numerical Simulations 

The unknown parameters in the simulations are Δ , Lτ  and Bτ  . We found that it 

is very difficult to accurately estimate these physical parameters required to carry out 

numerical simulations. In order to approximately estimate these parameters, 



 

 

161

we tracked the high resolution motion of the contact line of water drops (1μL and 4μL) on 

the hydrocarbon surface to match drift velocity, the direction of the drift, amplitude of 

oscillation and its phase in simulations to the experiments. We carried out numerical 

simulations of equations 5.1 and 5.2 in order to obtain displacement of contact line (x1) of 

drop and thus the velocity of the drop which is compared with the experimental data. We 

used commercial software Mathematica® to numerically solve the simultaneous 

differential equations 5.1 and 5.2. The integration time step is 1000/Tt =Δ  where 

sT 01.0=  is time period corresponding to fundamental frequency ( Hz100=ω ) of 

oscillations. We show the comparison of experimental and simulation results 

corresponding to 2/33 smAo =  in Figure 5.11. We are able to describe the magnitude and 

drift velocity as well as amplitude of contact line oscillations and its phase using the 

values of Lτ , Bτ  and Δ as 0.003 sec, 0.002sec and 2/35 sm   respectively for the 1μL 

drop. These values are 0.01sec, 0.008 sec and 2/10 sm  for the 4μL drop.  As seen from 

Figure 5.11, not only the amplitude of contact line motion but also the exact shape from 

simulations matches accurately with the contact line motion obtained from experiments. 

The simulation not only predicts the exact details of the contact line motion of 4μL and 

1μL drops but also shows that the drops move in opposite direction. The simulation 

results are found to be insensitive to the value of α as long as it is large enough. We used 

a value of )/(50 ms=α , although higher values of α (100 s/m to 200 s/m)  produced 

similar numerical results as well.   
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Figure 5.11. Displacements of the contact lines of 4μL and 1μL water drops on a 
hydrocarbon monolayer coated silicon wafer subjected to an asymmetric vibration 
with 2/33 smAo = . 1x  corresponds to the displacement of the contact line of the drop 
relative to the plate as shown schematically in Figure 5.9. The initial positions of the 
drops are shifted from zero for the clarity of presentation. The blue and green symbols 
represent the experimental data and the red lines represent the simulation results. We 
used commercial software Mathematica® to numerically solve the simultaneous 
differential equations 5.1 and 5.2. The integration time step is 1000/Tt =Δ  where 

sT 01.0=  is time period corresponding to fundamental frequency ( Hz100=ω ) of 
oscillations. 

 

We found that the values of the relaxation times and Δ are in the expected 

directions for the drops of two different sizes. The Langevin relaxation time (the ratio of 

the mass to kinematic friction coefficient) is ζτ /ML = ; hence RRL /~ 3τ  i.e. 3/2~ VLτ  

where R is the radius of drop and V is the volume of the drop. Thus  Lτ  scales with the 

volume (V) of the drop as 3/2~ VLτ . Using this scaling law, Lτ  for the larger drop is 

expected to be at least 2.5 times larger than that of the smaller drop. The value of Lτ  that 

is used to describe the motion of the contact line for the larger drop is found to be about 3 
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times larger than that of the smaller drop.  However, as MR /~Δ ; hence 3/~ RRΔ . 

This results in 3/2~ −Δ V . Using this scaling law, we expect that Δ  for the larger drop to 

be at least 2.5 times smaller than that of the smaller drop. The value of Δ  used in the 

simulations to describe the motion of the contact line for the smaller drop is found to be 

about 3.5 times larger than that of the larger drop. The bulk relaxation time for the larger 

drop being greater than the smaller drop is also in the expected direction. The values of 

the parameters Lτ , Bτ  and Δ , as obtained by fitting the experimentally obtained motion 

of contact lines, are further validated by simulation of drift velocities of the two different 

size drops on two chemically different surfaces (PDMS coated and hydrocarbon coated 

silicon wafers) but with similar hysteresis at different amplitudes (Figure 5.12). Here, the 

drift velocities are calculated as function of amplitude of vibration. 
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Figure 5.12. Drift velocities of 1 and 4μL water drops subjected to asymmetric vibration 
as a function of amplitude of acceleration )( oA . These experiments are carried out on two 
different surfaces of similar hysteresis. Blue diamonds and red circles correspond to the 
data obtained on a hydrocarbon monolayer coated silicon  wafer whereas the dark green 
circles and the light green triangles correspond to the data obtained on a PDMS 
monolayer (Trimethylsiloxy-terminated, Gelest Inc., product code: DMS-T22) 
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coated silicon wafer. As indicated in the text, both of the surfaces used in these 
experiments have similar hysteresis (8o). The solid blue and red lines correspond to the 
simulation results.  
 

The simulation results show that there exists threshold amplitude of acceleration 

for each drop ( 2/5.11~ smAo  for 1μL drop and 2/17~ smAo  4μL for drop), below 

which no drift occurs. The drift velocity increases non-linearly as the amplitudes of 

acceleration becomes greater than the threshold. The drift velocity of drops saturates at 

higher amplitude of vibrations. Later, we describe the reasons for such a saturation 

observed at high amplitudes. The simulation results are in good agreement with the 

experimental observations of drop motion as shown in Figure 5.12. 

After such a thorough validation of the new contact angle hysteresis model as 

done by matching the detailed contact line motion, magnitude and direction of drift 

velocity as well as the drift velocities on two different surfaces as a function amplitude of 

vibration, we were convinced that the model is reasonably accurate. We then numerically 

estimated the drift velocities of the drops of different sizes as a function of the threshold 

hysteresis Δ  using equations 5.1 and 5.2. The values of the parameters Lτ  and Bτ  used 

for this simulation are same as those used for the hydrocarbon monolayer.  In reality Lτ  

and Δ  values are dependent on the chemical and physical nature of the surface. In ideal 

numerical simulation Lτ  should be estimated approximately for each surface. However, 

we used constant Lτ in the numerical simulations by varying Δ  in order to observe the 

effect of contact angle hysteresis alone on the drift velocity of drops. The value of Lτ  is 

initially estimated for drop motion of hydrocarbon monolayer coated silicon wafer. For 

fluorocarbon and PDMS coated silicon wafers Lτ estimated as above is reasonable since 
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the average contact angles on these surfaces are in the range 103-110. These angles are in 

the range of contact angles for hydrocarbon monolayer coated silicon wafer. However, 

for fibrillated PDMS surface and polystyrene coated silicon wafer the average angles are 

161 and 80 for which Lτ  may be very different. As we were only interested in trend of 

drift velocity as a function of Δ , we carried the numerical simulations by keeping Lτ  

constant and varying Δ . The simulation results (Figure 5.13) thus obtained are in semi-

quantitative agreement with the experimental results that show that the drift velocity 

vanishes as Δ goes to zero; it increases with Δ, reaching a maximum value, and then it 

decreases as the hysteresis increases further.   
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Figure 5.13. Effect of contact angle hysteresis )(Δ on the drift velocities of 1μL and 4μL 
drops subjected to an asymmetric vibration ( 2/33 smAo = , Hz100=ω ). The solid blue 
and red lines correspond to the simulation results.  
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When Δ is zero, the drops do not show any net motion due to the absence of the 

required non-linearity to break the periodic symmetry of external vibrations. On the other 

hand, with intermediate hysteresis the drop drifts with high velocity. At very high 

hysteresis, the applied vibration is not able to de-pin the contact line from the surface 

defects; hence the drift velocity is zero.  The simulation results are compared with the 

threshold hysteresis for various surfaces obtained using equation 5.3 and using the 

measured contact angles53.  

M
a arlv )cos(cos2 θθγπ −

=Δ                                                                                    (5.3)                  

where a  is contact radius of drop, aθ  and rθ  are the advancing and receding contact 

angles respectively, M is the mass of the drop and lvγ  is the surface tension of the liquid.  

The trend of the simulation results is in good agreement with the experimental data in 

which the drift velocity varies non-monotonically with Δ, exhibiting maximum at 

intermediate values of the hysteresis. As observed from the Figure 5.13, the simulations 

results deviate from experimental data. This is due to approximate nature of the model 

used in the simulation. In order to accurately simulate the drop motion, we need to solve 

full hydrodynamic equations along with taking into effect of details of contact angle 

hysteresis phenomena. In spite of these deviations, the main result is clear in that neither 

vanishing hysteresis nor large hysteresis is conducive to the drop motion. Some finite, 

but, small hysteresis is needed for drop to move on a surface in the presence of an 

asymmetric vibration.  
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5.12. Drift Velocity Saturation at High Amplitudes 

In this section we explain why the drift velocities of drops show a plateau at 

higher amplitudes of acceleration (Figure 5.12). Here, we provide an explanation based 

on our numerical simulations and show that the velocity saturation at higher amplitudes 

of acceleration is a manifestation on non-linearity in contact angle hysteresis. Ignoring 

the initial transients in the solution of center of mass from equation 5.1, the response of 

center of mass ( 2x ) of drop to asymmetric vibrations is periodic. Assuming 2x to be a 

periodic function of time, equation 5.2 can be integrated over one cycle of asymmetric 

vibration as below 
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Here T is the time period of vibration. The contributions of first two terms on the 

right hand side of equation 5.4 to the net drift are zero as 2x  and 
dt

dx2  are periodic 

functions (here also ignoring the initial transients). Therefore, net drift in one cycle of 

vibration is given by the area under the curve of non-linear contact angle hysteresis as a 

function of time as given below. 

                  dt
dt
dxX T

L
∫ ⎟

⎠
⎞

⎜
⎝
⎛Δ−=

0

tanh α
τ

                                                                 (5.5) 

We have carried out numerical simulation of equations 5.1 and 5.2 for a 1μL 

water drop subjected to asymmetric vibrations of various amplitudes in order to see 

whether the area under the curve of non-linear contact angle hysteresis as a function of 

time shows saturation at higher amplitudes. As seen from Figure 5.14 that shows non-

linear contact angle hysteresis at various amplitudes of accelerations for a 1μL water 
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drop, the area under the curve increases as the amplitude of acceleration increases 

showing saturation at very high amplitudes of acceleration. 
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Figure 5.14. Variation of non-linear contact angle hysteresis as a function of time at 
various amplitudes of acceleration of asymmetric vibrations for a 1μL water drop. As the 
amplitude of acceleration increases, area under the curve 
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 i.e. the 

net drift over one cycle of vibration saturates resulting in the saturation of drift velocity at 
higher amplitudes of vibration as observed in Figure 5.12. 
 

5.13. Conclusions 

 We experimentally demonstrated that for drop motion to occur in presence of 

asymmetry vibrations there needs to be a symmetry breaking mechanism. We showed 

that the contact angle hysteresis provides necessary non-linearity that breaks the 

symmetry. We successfully developed a non-linear contact angle hysteresis model to 

elucidate the critical role played by contact angle hysteresis in this case. Systematic 

experiments are also carried out to elucidate the nature of velocity amplitude 
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relation for drops subjected to asymmetric vibration. The non-linear contact angle 

hysteresis model predicts magnitude and direction of velocities of drops of various 

masses. The model also accurately predicts the minute details of contact line motion. The 

drift velocity increases non-linearly with amplitude reaching a plateau at higher 

amplitudes.  

We think that the role played by non-linear hysteresis required for drop motion to 

occur on an asymmetrically vibrated surface that is proposed earlier by Daniel et al1 is 

very similar to the non-linear friction model put forward by Brunet et al30 to explain the 

motion of drops due to an oblique vibration. However, the current experiments confirm 

the definitive role played by contact angle hysteresis in the rectification. The absence of 

any net motion of the drops on the fibrillated PDMS with negligible hysteresis, but its 

high drift on the hydrocarbon coated wafer clearly shows that there needs to be some 

amount of contact angle hysteresis in order to break periodic symmetry resulting in 

rectification. However, on surfaces with very high hysteresis the drops do not show any 

motion due to contact line pinning that is not overcome by a moderate amount of external 

vibration. It is worth noting here that the shape of the oscillating drop on the fibrillated 

PDMS as well on the polystyrene surface exhibit some noticeable asymmetry, but it does 

not lead to a net motion of the drop. This observation suggests that asymmetric shape 

fluctuation may not have a strong role to play in these experiments, although it is quite 

plausible that its role would be significant for larger size drops experiencing much 

stronger vibrations (Figure 5.7). In the problem studied here, a first order non-linear force 

due to hysteresis is responsible for breaking the periodic symmetry. The Coulombic 

friction that is analogous to contact angle hysteresis can also lead to motion of solid 
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objects under periodic or stochastic settings. It is to be noted that there is no shape 

fluctuations with a solid object. Hence, the only mechanism that is responsible for 

symmetry breaking is non-linear friction force between solid object and solid surface 

(Figure 5.8).  
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Chapter 6: Resonance Modes of the Surface and the Slipping 
Contact Line of a Sessile Liquid Drop Subjected to Random 

Vibration 
 
6. 1. Introduction: 
 
 It is well known from the works of Kelvin1, Rayleigh2, Lamb3 and Chandrasekhar4 

that a vibrating liquid drop exhibits multiple resonance modes that depend on mass, and 

surface tension of liquid. The viscosity of liquid also has an effect on resonance frequencies 

which is minor compared the effect of mass and surface tension. The resonant properties of 

liquid drops are crucial to many technological processes such as crystallization5,6, spray 

coating7, inkjet printing8, vibration induced motion of drops on surfaces9-13 and microscale 

heat transfer involving drop wise condensation12. Estimation of multiple resonance modes 

of liquid drops would greatly enhance the design of microfluidic devices. Also, from the 

fundamental point of view, oscillating bubbles and drops are useful in estimating surface 

tension of liquids14-16. 

 Recently, there have been many techniques developed for measuring 

resonant properties of liquid drops5,6,10,11,17-35. The first method involves subjecting liquid 

drops to external harmonic vibration and recording high speed videos of oscillating drops 

with a high speed camera5,6,10,11,17-24,35. Vibrating drops show maximum displacements 

when excited close to resonance frequencies. Here, the shape fluctuations of drops or 

displacements measured from high speed videos are used to estimate resonance 

frequencies. The second method involves subjecting the drops to external vibration and 

measuring the deformation of interface using laser beam deflection from the surface of 

drop25-29 or displacement of particle trapped inside the drop using optical tweezers30. Third 
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method developed recently uses an AFM probe to disturb interface of a liquid drop and 

measures response of AFM cantilever to interface oscillations in order to deduce the 

information of resonance properties31. Another class of technique used for measuring 

resonance properties is electrowetting of liquid drops that uses response of an 

electrowetting liquid subjected to oscillating electric field34.  Recently, significant advances 

have also taken place in characterizing the internal flow of a vibrating drop using particle 

velocimetry36, 37 that may be potentially used for resonance frequency identification.  All of 

above mentioned experimental methods, except the experiments by Noblin et al25, require 

frequency sweep to estimate multiple resonance modes. Frequency sweep involves time 

consuming experiments of subjecting the liquid drops to harmonic vibrations of various 

frequencies at regular intervals. These techniques also suffer due to errors resulting from 

the selection of interval for frequency sweep.  

There have been few attempts by Sharp et al26,27, Jonas et al28 , Vukasinovic et al29, 

McGuiggan et al31  and Hill and Eaves32,33 to estimate multiple resonance frequencies using 

a single experimental run. For example, Hill and Eaves32,33 measured response of a 

magnetically levitated water drop that is disturbed by air injection in order to identify 

resonance frequencies. This technique is very complex and requires highly sensitive 

equipment and the presence of magnetic potential slightly alters the resonance frequencies. 

Also, this technique is more applicable towards vibration of free drops that are not in 

contact with a solid boundary whereas in practical applications like microfluidics drops 

move on surfaces rather than levitate in air. 

Noblin et al25 used a much simpler method to measure multiple resonance 

frequencies where a loud speaker supplied with white noise is used to excite 
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large liquid drops. The deformation of interface of oscillating drop is measured using laser 

beam deflection from surface of the drop. When the deflection of the laser beam was 

Fourier-transformed, multiple resonance frequencies were readily obtained from a single 

run. Unlike previous estimation methods, this technique ideally requires only one 

experimental run to measure multiple resonance frequencies. While Noblin et al25 

mentioned this experiment in their paper, they did not report any related experimental data, 

other than pointing out that these were essentially same as those obtained using frequency 

sweeps. 

 

In recent years, we have been using computer generated Gaussian white noise 

vibration to induce shape fluctuation in a liquid drop38, 39 in the context of generating a 

rectified motion on a surface. Here, we did observe that a drop excited by a white noise 

vibration exhibits shape fluctuations that resembled resonance modes (figure 6. 1). A saw-

tooth wave or a sinusoidal wave composed of multiple harmonics can also be used to excite 

multiple resonance modes but it does not cover full spectrum of frequencies as an 

experiment with a white noise that has equal power at each frequency within the bandwidth 

of the vibration.  Hence, in our experiments, we used white noise vibration to excite liquid 

drops in the spirit of experiments by Noblin et al25. Noblin et al25 used larger drop volumes 

ranging from 100μL to 3000μL that were flattened by gravity, in order to facilitate the 

comparison of experimental data with 1-D capillary-gravity wave theory for a large liquid 

bath of uniform height. However, in our experiments, we subjected small drops of volume 

ranging from 1μL to 20μL to a controlled white noise vibration. Equilibrium shape of these 

small drops is dominated by surface tension rather than gravity. We were 
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interested in small drop volumes owing to their ubiquitous presence in microfluidic 

devices. Our experiment involves recording the height fluctuation of a drop with a high 

speed camera and then calculating its power spectrum. 

The aim of our experiments is many folds, the first is aim being simultaneous 

estimation of multiple resonance frequencies of small volume drops that are dominated by 

surface tension force, second aim being to test 1-D capillary wave theory for small drops 

with pinned contact lines (on polystyrene) as well as on superhydrophobic surface (micro-

fibrillar PDMS or polydimethylsixolane) with very large contact angles (~ 162o) where the 

contact line of drop shows substantial slippage. Third aim is to measure the resonance 

frequencies of liquid drop by studying the contact line fluctuations. Here, the comparison 

of contact line fluctuations with that of height fluctuations provides insights into the effect 

of contact line slippage on each resonance mode. Fourth aim is to understand the effects of 

viscosity on the variance of height fluctuations of drops that may be potentially used to 

measure the viscosity of liquids using very small drops. 

6. 2. Experiment: 
 
 Figure 6. 1(a) shows the schematic of the experimental procedure. Two types of 

supports were used for the sessile drop of water. One was a polystyrene coated silicon 

wafer and the other was a micro-fibrillar PDMS (polydimethylsiloxane or silicone) 

rubber, the details of which have been described in a previous publication13. The 

microfibrillar PDMS rubber had square fibrils of 10μm in size and 25μm in height with a 

fibrillar spacing of 50μm. The advancing and receding angles on the polystyrene surface 

were 91o and 68o (hysteresis of 23o) respectively. This surface, owing to high contact 

angle hysteresis, pins a liquid drop on the surface. By contrast, the advancing and 
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receding contact angles on the micro-fibrillar surface were 170o and 157o respectively, 

with a cosine average contact angle of ~ 162o.  When vibrated, the contact line contracted 

and expanded rather freely on this surface.  
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Figure 6. 1. (a) Schematic of a liquid drop on a solid substrate subjected to white noise 
vibration perpendicular to the plate. (b) Gaussian distribution of acceleration of plate. (c) 
A few randomly selected frames of a 20μL water drop vibrating on a micro-fibrillar 
PDMS surface show some of the resonance modes.  
 

The substrate was firmly attached to an aluminum platform which was fixed on a 

mechanical oscillator (Pasco Scientific, Model No: SF-9324). De-ionized water drops of 

volumes ranging from 1 to 20μL are placed on the substrate and subjected to white noise 

vibration generated by a signal generator (Agilent, Model 33120A). The details of the 

experimental set up are not repeated here as they have been presented in previous 

chapters. The distribution of plate acceleration as measured with an 
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accelerometer was found to be Gaussian as shown in figure 6. 1(b). With these random 

accelerations (γ), the nominal strength of the noise was estimated as, cK τγ 2= , τc is the 

time duration (40 μs) of the pulse. This is a fairly accurate definition of K if the noise is 

ideally white. However, a mechanical transducer produces a colored white noise in which 

there is a certain correlation of the noise pulses.  

 

For most part of the paper, we use the above nominal definition of K. However, 

towards the end this value of K was corrected with a numerical factor as was discussed in 

reference 40. For most experiments, white noise of (nominal) strength K = 0.17m2/s3 was 

used. The vibrating interface of liquid drops were recorded with a high speed camera 

(Redlake, MotionPro, Model 2000) operating either at 1000 or 2000 frames/sec. The high 

speed videos were stored in a computer for analysis in leisure. Motion analysis software 

MIDAS (Xcitex Inc, USA) was used to automatically track the interface fluctuations of 

drops. 

 

6. 3. Results and discussion: 
 

 It is well known that power spectrum of an ideal white noise has equal 

power for all frequencies. Hence, it is theoretically possible to excite all resonance modes 

of liquid drops when subjected to a true white noise vibration. However, in laboratory 

experiments, due to limitations of mechanical systems, it is not possible to achieve an 

ideal white noise vibration. The mechanical oscillator that we used in our experiments 

had a total bandwidth of 10KHz. Here the vibration is considered as an ideal white noise 
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vibration below the frequency of 5KHz. With the highest frame speed of 2000 fps for the 

video camera in our lab, the highest frequency that could be measured was 1 kHz. The 

side view (figure 6. 1c) of the recorded image of a vibrating drop was analyzed with an 

automatic motion tracking MIDAS software (Xcitex Inc, USA) to measure height of drop 

as a function time. The height fluctuations of the drops were fast Fourier transformed 

(FFT) using OriginLab® Software in order to indentify resonance modes. Several power 

spectra (five or more) were added together before de-noising in order to improve the 

clarity of the resonance peaks (figure 6. 2). The noisy power spectrum (not shown) is 

denoised using wavelet transform to show a clean power spectrum that facilitates in easy 

identification of resonance frequencies (figure 6. 2). MATLAB® was used to carry out 1-

dimensional automatic denosing of noisy power spectrum using wavelet transformation 

method. Heuristic threshold with level 4 wavelet decomposition was used for denoising. 

(Command: PS_denoised=wden(PS_original, 'heursure', 's', 'one', 4, 'sym8'). We observe 

some satellite peaks apart from the main resonance peaks (figure 6. 2a), the origin of 

which is not understood at present. 

 

6. 4. Resonance Modes: 

A few randomly selected frames of the vibrating drop (Figure 6. 1c) show some 

of the resonance modes. Figures 6. 2 and 6. 3 demonstrate the typical vibration spectra 

that can be obtained from the measurements of the height fluctuations. As shown in 

figure 6. 2a, where we compared power spectrum of 10μL water drop on two substrates, 

the resonance frequencies shift significantly to lower values for a given mode on fibrillar 

PDMS surface compared to Polystyrene surface due to the effect of contact angle. 
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However, we note that the positions of the resonant peaks on either the polystyrene (j = 2 

to 6) or the fibrillar PDMS surface (j = 2 to 5) are rather independent of the strength of 

the noise (figure 6. 3). The resonance peaks corresponding to j = 6, 7 and 8 on fibrillar 

PDMS are damped out (figure 6. 3b) at low power of K~0.006 m2/s3 compared to higher 

powers. However, the position of peaks corresponding to j = 2 to 5 on fibrillar PDMS are 

independent of the strength of the noise. The observation that resonance frequencies are 

independent of strength of noise coupled with the fact that the height fluctuations are 

Gaussian (figure 6. 2b) suggest that there are no overwhelming non-linearities38, 39 

associated with these drop dynamics.  
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Figure 6. 2. (a) Comparison of de-noised power spectra of a 10μL water drop vibrating 
on a fibrillar PDMS and a polystyrene surface. The mode numbers are shown on the 
spectra.  Gaussian probability distribution of height fluctuations of the same size drop on 
a fibrillar PDMS (b) and a polystyrene surface (c) corresponding to an observation time 
of 0.001s. Here x~  is the non-dimensional height fluctuation 

xpxxx σ/)(~ −=  

expressed in terms of the position of the peak ( px ) and the standard deviation ( xσ ) of the 
height fluctuations. White noise of strength K = 0.17m2/s3 was used to vibrate the drop, 
which was recorded with a video camera at 2000 frames/s.  
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Figure 6. 3. Effect of the strength of white noise vibration on resonance frequencies of a 
10μL water drop on Polystyrene (a) and Micro-fibrillar PDMS surface (b). The strength  
of vibration has no effect on the peak positions.  
 
 
 
6. 5. Comparison of experimental resonance frequencies with theory: 
 

In this section, we compare our experimental results for resonance frequencies 

with theoretical calculations.  Here, we also provide a brief summary of theoretical 

efforts in the literature for prediction of resonance frequencies of oscillating liquid drops. 

The earlier theoretical studies by Kelvin1, Rayleigh2, and Lamb3 focused on oscillations 

of free spherical drop for which resonance frequency of thj  mode of vibration for 2≥j  

is given by. 

)2)(1(
3

+−= jjj
m
lv

o π
γω                                                                (6. 1)                           

Here j  corresponds to the number of lobes (protrusions) present on the surface of 

drop as schematically shown in figure 6. 1(a). lvγ  is surface tension of the liquid, m is 

mass of drop. Later Strani and Sabetta6 numerically computed resonance 
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frequencies for liquid drop in partial contact with a solid support as a function of contact 

angle and showed that solid support increases the resonance frequencies compared to free 

drop. In a recent theoretical study, Lyubimov et al41 analyzed lateral oscillations of drop 

in partial contact with solid substrate.  Celestin and Kofman24 studied low frequency 

bending vibration mode of liquid drop in partial contact with a solid support by 

experiments and theory. They derived a semi-analytical expression for resonance 

frequency of rocking vibration mode as a function of contact angle of drop. Recently, 

Dong et al22 carried out 3D numerical simulations of Navier-Stokes equations using 

computational fluid dynamics software FLUENT for a laterally vibrating liquid drop on a 

solid support. They were able identify vibration modes of drop that were in excellent 

agreement with experiments of Daniel et al10,11.  

Recently, Lyubimov et al42 have extended their theoretical study on lateral 

vibration41 of drop to normal vibration of hemispherical drop ( o90=θ ) accounting for 

contact line dynamics. They derived expression for resonance frequencies of drop which 

was given in simplified form by McGuiggan et al31 as follows 

                                                    m
f jlv

j π
ωγ

6

~2
2 =                                                     (6.2) 

where lvγ  is the surface tension of the drop and m is mass and jω~  are roots of equation 
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As mentioned earlier, McGuiggan et al31 measured resonance frequencies 

corresponding to modes j = 2 and 3 for water drops volumes ranging from 5 to 200μL by 

disturbing the interface of a liquid drop by AFM probe. They numerically solved 
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equation 6.3 for modes corresponding to j  = 2 and 3 and calculated first two roots to be 

4171.4~
2 =ω  and 5706.10~

3 =ω  by using 1000 terms in the summation while solving for jω~ . 

In order to compare our experimental data with theoretical predictions of equation 6.2, we 

numerically solved equation 6.3 for modes corresponding to j  = 2 and 6. We got very 

good agreement with jω~  values for j  = 2 and 3 as calculated by McGuiggan et al31 even 

though we only used 150 terms in the summation of equation 6.3. The roots of the equation 

6.3 that we calculated are 4268.4~
2 =ω , 5920.10~

3 =ω , 0377.18~
4 =ω , 5954.26~

5 =ω , 

.1426.36~
6 =ω  We used above roots in equation 6.2 to calculate resonance frequencies 

corresponding to modes j  = 2 and 6 for water drops of various volumes. The data 

summarized in figure 6. 4a for resonance frequencies on polystyrene and the corresponding 

Table 6. 1 comparing the slopes of the lines suggest that the agreement between the theory 

and experiment is very good. 
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Figure 6. 4. (a) Resonance frequencies of water drops as a function of mass on a 
polystyrene coated silicon wafer (a) and a micro-fibrillar PDMS surface (b). Open 
symbols are the experimental data whereas the solid lines are the linear fits through the 
data by forcing the lines to meet at (0, 0).  The slopes of these lines are compared with 
the theoretical predictions in tables 6. 1 and 6. 2 (see below). 
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Table 6. 1. Comparisons of the slopes of linear fits through the experimental data of the 
drop vibrating on the polystyrene surface with those calculated from Equation 6.2 
(Lyubimov et al42) and Equation 6.4 (Noblin et al25). All the lines were forced to pass 
thorough the origin.  
 

 Slope (kg0.5 s-1) 
  Theory 

Mode ( j) Experiment Noblin et al25 Lyubimov et al42 
2 0.28±0.01 0.32 0.27 

3 0.66±0.01 0.69 0.66 
4 1.06±0.02 1.15 1.12 
5 1.65±0.02 1.68 1.65 
6 2.29±0.02 2.27 2.24 

 
 
 
Table 6. 2. Comparisons of the slopes of linear fits through the experimental data of the 
drop vibrating on the micro fibrillar PDMS surface with those calculated from Equation 6.4 
(Noblin et al25) taking slip and no-slip of contact line into account. All the lines were forced 
to pass thorough the origin.  
 

 Slope (kg0.5 s-1) 
  Theory 

Mode ( j) Experiment Noblin et al25  
(No Slip) 

Noblin et al25  
(Slip) 

2 0.13±0.01 0.19 0.11 

3 0.38±0.01 0.41 0.29 
4 0.67±0.02 0.68 0.54 
5 1.00±0.03 0.98 0.83 
6 1.46±0.02 1.33 1.15 
7 1.99±0.07 1.71 1.51 

 

 

For the drop on the fibrillar surface (θ ~ 162o), the equation of Lyubimov et al42 

could not be used as it was not meant to apply for contact angle larger than 90o.  Here, we 
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used the approximate analysis by Noblin et al25 that is an improvised version of 1-D 

gravity-capillary wave vector relation of Landau and Lifshitz43. Landau-Lifshitz equation 

predicts the resonance frequency ( jf ) for a thin layer of liquid on a surface as follows: 

)tanh(
4

1 3
2

2 hqqgqf jj
lv

jj ⎟⎟
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⎞
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⎝

⎛
+⎟
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⎝
⎛=

ρ
γ

π                                                     (6.4) 

Here g  is gravitational acceleration, jq  is the wave vector for thj  mode, lvγ  and ρ  are 

surface tension and density of liquid and h  is the mean height of the drop. The first term 

in equation 6.4 accounts for effect of gravitational acceleration and second term for effect 

of capillary force contribution to normal vibration modes. Ideally this equation is valid 

for a liquid bath of uniform height h  or for large volume drops that are flattened by 

gravity but nor for a sessile liquid drops whose equilibrium curved shape is dominated by 

surface tension force rather than gravity. However, as we show in later part of the 

chapter, indeed this approximate equation works well even for small drops. Noblin et al25 

have modified this equation in order to apply it to drops by modifying the wave vector 

relation to meridian (side view) perimeter of liquid drop. Here the wave vector for thj  

mode is given by pjq j /)2/1( −= π  when contact line of drop is pinned whereas  

pjq j /)1( −= π   when the contact line slips. These wave vector relations are derived by 

expressing meridian perimeter of drop in terms of wavelength of normal modes. 

Here θRp =  is half of meridian perimeter of liquid drop where R  is the radius circle of 

which the drop is spherical cap with contact angleθ . Such a radius is given as a function 

of volume (V ) and contact angle (θ ) of drop by the following expression. 
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θθπ

VR                                                                     (6.5) 

Mean height of drop is given by 2/ RVh π= . 

For the polystyrene surface, we used o90=θ  in calculating the resonance modes 

assuming that the drop is deposited onto the surface in an advancing mode. Numerical 

calculation, however, shows that even if we use the average contact angle of 80o, instead of  

90o, the calculated resonance frequencies increase by < 3%. We present the results based on 

o90=θ  in order make a fair comparison with the calculations based on the model of 

Lyubimov et al42.  On the polystyrene surface with pinned contact line, the model of Noblin 

et al25 practically makes the same prediction (figure 6. 4a and Table 6. 1) as that of 

Lyubimov et al42, although the later prediction is slightly better than the former.  
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Figure 6. 5. Comparison of the power spectra of the height and the contact diameter 
fluctuations of a 10μL water drop on fibrillar PDMS surface. White noise of strength K = 
0.17m2/s3 was used to vibrate the drop, which was recorded with a video camera at 2000 
frames/s. 
 

The calculations on the fibrillar PDMS surface were carried out with a contact 
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angle of 162o using the model Noblin et al25. Figure 6. 4b summarizes the resonance 

frequencies calculated from equation 6.4 with those measured experimentally for a total of 

six modes. As mentioned earlier, unlike the case of drops oscillating on polystyrene surface 

where the contact line was pinned, contact line of drops shows significant slip on the 

fibrillar PDMS surface. The contact line slip affects the wavelength of capillary waves on 

surface of drop hence affecting the resonance frequencies calculated from equation 6.4. 

The slopes of the lines (figure 6. 4b, Table 6. 2) obtained from resonance frequency versus 

m/1  plot shows that the agreement between experiments and theory is good for lowest 

mode when contact line slip is taken into account whereas for higher modes, the agreement 

is good when no slip model is used. In order to understand how the contact line slip affects 

power spectrum, we measured the fluctuation of contact diameter of drop on fibrillar 

PDMS surface. Liquid drop contour oscillations (top view of drop diameter oscillations) 

when subjected to high amplitude harmonic vibrations were studied by Noblin et al44 in the 

context of parametric resonance. Here, the authors analyzed the stability of drop contour 

that changes from circular shape (harmonic mode) to non-circular shape (subharmonic 

modes) as the amplitude of harmonic vibration is gradually increased.  In reference 25, 

Noblin et al25 measured the oscillations of contact radius of drop that is subjected to 

harmonic vibrations. Here, authors measured radius oscillations in frequency sweep in 

order to identify shift in resonance frequencies as the amplitude of harmonic vibration is 

increased. However, in our experiment, we measured the fluctuation of the contact 

diameter of drop when it is subjected to white noise vibration, power spectrum of which 

shows multiple resonance modes simultaneously. As shown in figure 6. 5, the contact line 

modes corresponding to j = 2, 3, and 4 are prominent and agree with the resonance 
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modes obtained from height fluctuations. However, the higher modes corresponding to j = 

5, 6, and 7 are damped out but they are weakly noticeable at the same locations as observed 

with height fluctuations. This observation indicates that the contact line slip is mode 

dependent explaining the fact that lower mode resonance frequency agrees well with slip 

model where as the higher modes agree with no slip model. The power spectrum of a water 

drop on a fibrillar surface is independent of the noise strength and peak position do not 

change with the strength of the noise even when the rms fluctuation of the contact diameter 

was increased from 2.5 % of the drop diameter to 9 %.   

 
6. 6. Effects of viscosity on resonance spectra: 
 

 In order to study the effects of viscosity on the resonance spectra, we 

carried out experiments with 10μL liquid drops of various glycerol-water solutions as per 

the previous studies of Sharp27. The viscosities of these solutions as measured using a 

rotating spindle viscometer (Model: Anton Paar Physica MCR301) were 1 , 2, 3.9, 6.2, 

and 10.9 cP (centiPoise) respectively for pure water, and 20, 40, 50 and 60 volume 

percent of glycerol in water respectively. The corresponding surface tensions (du Nouy 

ring method, FDS Dataphysics, Germany) were found to be 72.5, 70.8, 69.4, 69.1, 67.9 

mN/m respectively. Though there is a small change in the surface tension of the solution 

with the increase amount of the glycerol concentration, the change in viscosity is more 

pronounced as it varies from 1 cP (water)  to 10.9 cP (60% glycerol).  
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Figure 6. 6. (a)  Resonance spectra of glycerol-water solutions. Composition of the 
glycerol-water solution is stamped beside each spectrum. (b) Resonance frequency is 
proportional to mlv /γ  as expected from equation 6.2. The slopes of j = 2, 3 and 4 are 
1.14, 2.57 and 4.36 respectively. 
 

 The first theoretical studies that studied the effect of viscosity on vibrating liquid 

drops are by Lamb3 and Chandrasekhar4 which pointed out that apart from dampening 

resonance modes, viscosity also affects the resonance frequencies. The effect of viscosity 

is taken into account by adding viscous stress contribution to the Laplace pressure 

difference at the interface of drop. There have been extensive numerical studies in the 

literature that studied this problem14,15,45-53. Recently Sharp27 has used water-glycerol 

mixtures to study the effects of viscous damping on resonance peak. However, he did not 

report any shift in resonance frequencies as a function of viscosity. 

 

 Recently, Behroozi et al53-56 have developed an experimental technique where 

damping of capillary waves is used to simultaneously measure surface tension and 

viscosity of water-glycerol mixtures. They presented viscosity correction term as derived 

by Lamb3 which indicates that the reduction in resonance frequencies due to 
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viscosity is proportional to ( ) 2/123 / ργμ lvjf  in high viscosity limit. The viscosity 

correction is frequency dependent hence higher modes are affected significantly than 

lower modes. As we show later, the viscosity correction is negligible for most of the 

modes that we observed in experiments. In our study, we observed (figure 6. 6a), as did 

Sharp27, that the height of the peak decreases and its width increases with the viscosity.  

We also noted that the variance of the interfacial fluctuation decreases with viscosity that 

can be accounted for in a semi-quantitative manner using Langevin dynamics simulations 

(not shown here). The main observation here is that the resonance peak undergoes a red 

shift as the concentration of glycerol increases (figure 6. 6a).  Figure 6. 6b shows that the 

resonance frequency varies linearly with mlv /γ  for each of the three modes studied 

here. The slopes of these lines (1.14, 2.57, 4.35) for the three modes ( j = 2 , 3 and 4) are 

in good agreement with their values (1.00, 2.45, 4.16) estimated from the theory of 

Lyubimov et al42, which strongly favors the view that the observed red-shifts are mainly 

due to capillarity.   
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Here we discuss how viscosity of liquid affects the variance of fluctuation of the 

interface. It is expected that the variance of the interfacial fluctuation would increase with 

the noise strength (K), the mass of the liquid, and decrease with the friction factor )~( μξ   

and the surface tension. A simple dimensional analysis shows that, )/~( 2 γτσ Lx mK  

where Lτ   is the Langevin relaxation time  and LmKτ  is an effective temperature (Teff) of 

the system. Further re-arrangements (
νμ

ρ
ξ

τσ
23

2 ~~~~ DR
R

DRDmD Lx ) of the 

appropriate terms lead to DR x /~/ νσ , where R is the radius of the drop, ν  is the 

momentum diffusivity (or kinematic viscosity) and D is the index of spatial dispersion  

2/~/~ fKmKD γ .  Figure 6. 7 shows that xR σ/ is fairly linear with D/ν . As D 

varies very little with the glycerol concentration, the observation of figure 6. 7 shows that 

the interfacial roughness induced by the noise is strongly correlated with the kinematic 

viscosity of the liquid. 

 
 
6. 7. Conclusions 
 

We show that white noise vibration can be used to successfully identify the multiple 

vibration modes of micro liter drops on Polystyrene surface and mircofibrillar PDMS 

surface. The power spectrum plots of height fluctuations of the water drops show peaks at 

the corresponding resonance frequencies. Experimentally identified resonance frequencies 

of drops on Polystyrene surface agree well with the theoretical model of Lyubimov et al42. 

Also, model of Noblin et al25 that is an improvised version of capillary wave vector relation 
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of Landau and Lifshitz43 predicts the resonance frequencies on Polystyrene surface where 

contact angle is close to 90o, but also when the contact angle is as high as 162o. The contact 

line of drop is pinned on Polystyrene surface where as it shows significant slippage on 

fibrillar PDMS surface.  We observed that contact line slippage is mode dependent. The 

contact line slip affects lower resonance more than higher resonance modes. Hence, the 

resonance frequencies predicted by slip model agree well with experimental resonance 

frequency for low modes, where as the no slip model predicts higher modes accurately. We 

also measured the power spectrum of contact line fluctuations. Higher resonance modes of 

contact line are damped where as the lower modes agree well with that of resonance modes 

observed with height fluctuations. The observation that the resonance frequencies are 

independent of strength of vibration signifies that the dynamics are linear. The effect 

viscosity on the resonance spectra of drops of various water-glycerol mixtures was studied. 

The height of the resonance peaks decreases where as the width increases with increase in 

the viscosity. The shift in resonance frequencies is accounted by surface tension where as 

the decrease in variance of interface fluctuations is accounted by viscosity. The variance of 

interface fluctuations correlates well with kinematic viscosity that results in possibility of 

using our experiments not only to estimate the surface tension of drops but also the 

viscosity using micro liter volume liquid drops. 
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Chapter 7: Summary of Doctoral Research and 

Recommendations for Future Work 
7. 1. Summary of doctoral research 

The main goal of my doctoral research has been to elucidate the role played by 

contact angle hysteresis during the motion of liquid drops on a solid surface. The topic of 

contact angle hysteresis for research emanated from previous findings of our group about 

liquid drops motion on surfaces. Here, the drop motion was induced by external vibration 

and surface energy gradients. The main result that led to the current topic is the 

observation of random motion of water drops condensing on a silicon wafer having 

surface energy gradient. It was observed that the condensing water drops coalesced 

randomly on the surface and drifted away from hydrophobic end of the substrate towards 

hydrophilic end. Here, drifted random motion of liquid drops looked similar to the 

Brownian motion of colloidal particle in a solvent. We simulated the above situation by 

subjecting a liquid drop on a solid substrate to external white noise vibration in presence 

of a bias. Here, the external vibration mimics the effect of random coalescence and 

fluctuations of contact line of liquid drops. The bias mimics the effect of surface energy 

gradient. We focused on the effect of extra dissipation resulting from threshold contact 

angle hysteresis force that is not present in the classical Brownian motion of colloidal 

particle. We also focused on another aspect of contact angle hysteresis that is elimination 

of it when liquid drop is subjected to vibration. We have drawn analogy between 

Brownian motion of colloidal particle in a solvent and liquid drop undergoing Brownian 

like motion.  Unlike the drift velocity of colloidal particle which is independent of 

strength of the noise, the drift velocity of drop is found to be a non-linear function of 
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strength of noise. The drift velocity of did not saturate to Stokes-Einstein limit in the 

range of experimental powers used. This observation provides solid evidence to our 

hypothesis that the contact angle hysteresis is not eliminated when the drops are moving 

under the influence of external vibration. We also studied the detailed contact line 

fluctuations of drop using high time resolution video recording. Here, we looked at the 

probability distribution of displacement of liquid drop. Unlike the case of colloidal 

particle where displacement PDF is Gaussian due to linear nature of kinematic friction, 

we have shown that the displacement distribution of liquid drop is non-Gaussian 

following exponential distribution. The observed non-Gaussianity is the result of non-

linearity in contact angle hysteresis. We also looked at the work done by gravity on the 

drop in order to check whether the work distribution follows recently developed non-

equilibrium work fluctuation theorem. We showed that the work distribution does not 

follow conventional fluctuation theorem due to the presence of contact angle hysteresis. 

We also addressed the effect of contact angle hysteresis during the contact line 

motion of liquid drop in a different experiment. Here, contact line of liquid drop in non-

equilibrium is subjected to external white noise vibration. In this case, the drop does not 

translate as whole on surface but contact line of drop relaxes from non-equilibrium to 

equilibrium. In this study, we have drawn analogy between a harmonically bound 

colloidal particle undergoing Brownian motion and contact line of liquid drop. The 

retracting force due to surface tension of liquid induces harmonic potential where as 

external vibration mimics the thermal fluctuations. We focused on the relaxation of the 

contact of drop in order to draw some definitive conclusions about elimination of contact 

angle hysteresis. The overall relaxation behavior of contact line of drop is found to 
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be exponential with significant stick-slip motion. The stick-slip relaxation behavior is 

attributed to the presence of metastable equilibrium states in the corrugated parabolic free 

energy of the drop. The displacement distribution of contact line of drop is found to be 

non-Gaussian following exponential distribution. This observation emphasizes the role 

played by contact angle hysteresis during the relaxation process. The relaxation time of 

contact line was found to be much higher than Langevin relaxation time. This indicates 

that even though the drop relaxes to equilibrium, the contact angle hysteresis is not 

eliminated. It plays crucial role during the relaxation. We determined that the power 

required to completely eliminate contact angle hysteresis is so high that it is not easily 

achieved in usual laboratory conditions.  

We also studied another important aspect of contact angle hysteresis that is its 

role in symmetry breaking resulting rectification of drop motion when subjected external 

asymmetric periodic vibrations of zero mean. We hypothesized that non-linearity in 

contact angle hysteresis is the mechanism for symmetry breaking in this case. In order to 

verify this, we carried out systematic drop motion experiments on solid surfaces 

possessing varying amount of contact angle hysteresis. Contrary to the intuition that 

drops move with high velocities on low hysteresis surfaces, the drops did not show any 

net motion on surfaces with very low contact angle hysteresis. However, the drops moved 

with high velocities on surfaces with intermediate hysteresis. Again, the drops did not 

show any motion on very high hysteresis surfaces. Here, the contact line of drop is 

pinned due to large hysteresis. These observations clearly indicates that there needs to be 

some amount of contact angle hysteresis present on the solid surface in order to achieve 

net motion with asymmetric periodic vibrations. We developed a non-linear 
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contact angle hysteresis model to explain such a counterintuitive observation. We could 

predict magnitude and direction of velocities of drops of various masses accurately using 

the non-linear contact angle hysteresis model. We could also accurately predict the 

minute details of contact line motion. We found that the drift velocity increases non-

linearly with amplitude of external vibrations reaching a plateau at higher amplitudes. We 

showed that such a saturation of drift velocities is also a result of non-linearity in contact 

angle hysteresis. 

On the practical application side of the work, we demonstrated the combined 

effect of thermal gradient and vibration on liquid drops motion on a solid surface. We 

showed that application of external energy through vibration of solid surface overcomes 

the limitation of high temperature gradients required for high surface tension liquids in 

microfluidic devices. Very high temperature gradients are impractical especially when 

dealing with temperature sensitive reactants. The liquid drops remain stationary on 

thermal energy gradient surface due to the resistive force due to contact angle hysteresis. 

However, the drops show drifted motion when subjected to periodic vibrations. The 

velocity amplification shown by moving liquid drops corresponds to the resonance 

frequencies predicted by Rayleigh’s equation. Using a simple model we could explain the 

velocity amplification when the frequency of oscillations is close to the resonance 

frequency of liquid drops. Approximate numerical simulations predict the detailed 

contact line motions reasonably well. However, they predict complete sticking of the 

drop that is contrary to the experimental observation. Such a velocity dependent slipping 

of contact line observed in experiments is reproduced by simulations incorporating 

recently developed non-linear contact angle hysteresis model. In order to get a 
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detailed understanding of the dynamics of the flow phenomena and to analyze the 

development of temperature, velocity and pressure profiles inside the drop, we carried out 

numerical simulations of 3-D Navier-Stokes equations.  We used the commercial 

Computational Fluid Dynamics (CFD) software code FLUENT. We looked at CFD 

simulations in a qualitative way as they have not been conclusive. This is due to the fact 

that we did not take the details of dynamic contact angles as well as contact angle 

hysteresis phenomenon into account.  

We showed that white noise vibration can be used to successfully identify the 

multiple vibration modes of micro liter drops on Polystyrene surface and mircofibrillar 

PDMS surface. The power spectrum plots of height fluctuations of water drops show 

peaks at the corresponding resonance frequencies. Experimentally identified resonance 

frequencies of drops on Polystyrene surface and fibrillar PDMS surface. agree well with 

the theoretical models available in literature. The contact line shows huge slippage on 

fibrillar PDMS surface. We also measured the power spectrum of contact line 

fluctuations of drops. The lower modes are prominent in the power spectrum of contact 

line where as higher modes are damped out. The prominent lower modes in contact line 

power spectrum is in agreement with the modes observed in height fluctuations. We 

found that the slippage of contact line is mode dependent. The lower modes are affected 

by contact slip more than higher modes. This is explained by taking slip and no slip of 

contact line into account in the model.  We also studied the effect of viscosity on 

resonance power spectra using water-glycerol mixtures. The heights of resonance peaks 

are found decrease with viscosity where as the width increased. The shift in resonance 

frequencies is accounted by surface tension. The variance of interface 
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fluctuations is found to decrease with increase in viscosity. 

 

7. 2. Recommendations for Future Work 

7.2.1 Future work on CFD simulations 

1. As described earlier in Chapter 2 in CFD simulations, the drops with eθ >90o are 

moving towards hotter side and drops with eθ ≤90o moving towards colder side there may 

be a range of contact angles where the drops remain stationary. Such a discrepancy in the 

simulation may be a result of an artifact of boundaries. The drop may be in transient state 

which may move in right direction at steady state. We need to carry out numerical 

simulations with large domain size for long time to observe the steady state behavior of 

drop. 

2. The change of dynamic contact angles during the motion of drop has not been 

accounted in the simulations which if taken into account may predict the experimental 

results accurately. 

3. We did not take the details of contact angle hysteresis phenomenon into account. In 

order for the liquid drop to move on a solid surface, it has to overcome threshold resistive 

force due to contact angle hysteresis. However, in the current simulations we specified 

only one equilibrium contact angle on the surface. This results in the drop moving 

instantaneously when supplied with external force of any magnitude. In reality, the 

contact line of liquid drop moves only when the contact angle on the advancing side of 

the drop is greater than the advancing angle. Also, the contact angle of drop lies always 

between advancing and receding angles. The contact line of drop moves whenever the 
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contact angle of drop deviates above and below these angles. There have been few 

attempts in recent literature1-4 to incorporate these dynamic contact angles and contact 

angle hysteresis phenomenon into CFD simulations of drop motion using VOF method. 

However, there is a tremendous scope to improve these simulations to predict contact line 

motion behavior accurately. 

7.2.2 Future work on Brownian like motion of drop 

  There is also a tremendous scope for the future work on the Brownian like motion 

of liquid drops on a solid surface. In the current experiments, we subjected the liquid 

drops to uncorrelated white noise vibration. In the following section we describe how the 

correlation of noise affects the drop motion. 

 

7.2.3. Motion of Liquid Drops on a Surface Subjected to Simultaneous 

Colored Noise and a Weak Periodic Vibration 
The main goal of this experiment is to understand the role of nonlinearity in the 

contact angle hysteresis. The nonlinearity might induce a stochastic resonance when a 

liquid drop is subjected simultaneously to a weak periodic vibration along with colored 

noise vibration. Stochastic resonance is observed, whenever there is nonlinearity in the 

system and the system is subjected to a weak periodic signal in presence of noise23, 47. 

The response of the system when plotted as a function of intensity of noise shows 

resonance behavior. It would be very interesting to test this idea by subjecting a liquid 

drop or a solid block on a solid substrate to simultaneous periodic and color noise 

vibration. 
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7.2. 4. Relaxation Behavior of Contact Line of a Liquid Drop on Soft 

Substrates of Various Elastic Moduli 
 In the current experiments, we looked at the relaxation behavior of contact line of 

drop on flat PDMS substrate that is elastic in nature (elastic modulus ~3MPa). However, 

it would be very interesting to systematically vary the modulus of PDMS and study the 

relaxation behavior of contact line of drop when subjected to white noise vibration. In 

this experiment bulk viscoelastic effects on the relaxation of contact line can be studied. 

 

7.2. 5. Computational Fluid Dynamics Simulations of Liquid Drop 

Subjected to White Noise, Symmetric and Asymmetric Periodic 

Vibration 
 It would be very interesting to carry out CFD Simulation of drops subjected to 

white noise, asymmetric, symmetric vibration after introducing contact angle hysteresis 

into FLUENT. Here, the details of velocity and pressure profiles would give rich 

information about the dynamics. Also, there is an added advantage of switching on or off 

of the effect of contact angle hysteresis that is not easily achieved in the experiments. 
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