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Abstract 

This work can be divided into two different parts: Chapter 1, 2 and 3 are focused on carbon 

capture ranging from the thermodynamic analysis to the hybrid reactor design; Chapter 4 is 

devoted to the study of pumped heat electricity storage processes.  

In Chapter 1 we aim to illustrate the basic separation energy calculation and minimum 

work requirement for sorption processes and calcium looping processes. Based on the study it 

is possible to compare the potential energy savings of different technologies, namely 

temperature swing adsorption (TSA) and calcium looping processes (CLP), which are 

currently under development for carbon capture. Without considering the material 

deterioration for CLP it was found out that CLP is more competitive for flue gas with CO2 

molar fraction less than 10% while TSA using zeolite 13X requires less work when CO2 

molar fraction becomes higher than 10%.  

In Chapter 2 a specific hybrid reactor process called sorption enhanced reaction process 

(SERP) is discussed, which can be integrated into the pre-combustion carbon capture process 

for power plants with the potential to reduce the efficiency penalty compared with traditional 

post-combustion carbon capture processes. A detailed study is done to investigate the 

interaction of reaction and sorption on the performance of such processes. Four different 

zones were identified inside a well-developed sorption enhanced reactor: 1. the reaction 

controlled zone near the entrance, 2. the equilibrium zone after it, 3. the reaction mass 

transfer zone where both reaction and sorption interact with each other, 4. the equilibrium 

zone near the exit. Without considering the mass transfer resistance for adsorption and 

reaction, the only dominating factors are reaction kinetics and equilibrium constants and the 

shape of adsorption isotherm. It was found out that there are two different mechanisms that 

can affect the effluent profiles of the sorption enhanced reactor: 1. the reaction rate 
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determines the shape of the reaction mass transfer zone; 2. the shape of the isotherm 

determines the effluent profile of the adsorbate. Changing the reaction equilibrium constant 

will affect the effluent profile in both ways. Also the reaction stoichiometric parameters are 

discussed by comparing two different reactions: the water gas shift reaction and the hydrogen 

sulfide decomposition reaction. It was found out that it requires the reactor to be sulfur free in 

order to achieve high purity hydrogen product due to the stoichiometric coefficient of sulfur. 

The importance of mass transfer resistance and gas diffusion is also explored by the propene 

metathesis reaction.           

The experimental work on the high temperature carbon dioxide adsorbent is included in 

Chapter 3. Dry PSA tests using argon as the purge gas were done on a bench scale single bed 

setup. Among different PSA cycle schemes it was found out that the best purity was achieved 

with a 5-step (1. pressurization 2. adsorption 3. blowdown 4. rinse 5. purge) PSA scheme 

where CO2 purity of 86% (argon free) and recovery 18% was obtained. Thermogravimetric 

tests on fresh and PSA tested samples show that the used sample has a slower kinetics and 

lower equilibrium capacity. The limited success of the experimental results shows that the 

difficulties of the development of the appropriate CO2 sorbents as well as the optimization of 

the PSA cycles in a small laboratory unit. To study the effects of steam a pilot scale PSA test 

setup was built. Based on the thermal front moving during the steam purge and the amount of 

CO2 desorbed it is concluded that steam competes with CO2 on the surface of Na-promoted 

alumina.  

In Chapter 4 an emerging technology called pumped heat electricity storage (PHES) is 

discussed. It is a recently proposed competitive energy storage solution for large scale 

electrical energy storage (EES). It is especially valuable for regions where specific geological 

structures are not available. The performance of PHES depends on two factors: the operations 

of turbomachines and the thermal storage system. The former is characterized by pressure 

ratio, polytropic efficiency and gas heat capacity ratio. The latter contains the parameters of 
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heat regenerators that can be summarized into two dimensionless numbers: length Λ and step 

time π. The overall process operation can be described by temperature difference representing 

the energy stored per unit heat capacity, the storage bed utilization ratio and the turn-around 

efficiency. Exponential matrix solutions are obtained for a discretized heat transfer model of 

a typical pumped heat electricity storage process. Using the cyclic steady state and transient 

state solutions, we are able to analyze how dimensionless length and step time affect the 

storage bed utilization ratio as well as the turn-around efficiency. Our model provides basic 

guidance for further development of such processes. 
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 Thermodynamic Analysis of Adsorption and 

Calcium Looping Processes for Carbon Capture 

1.1 Introduction 
 

There is much work regarding the development of adsorption processes for CO2 

capture. The expectations are that adsorption processes will reduce the work needed for 

CO2 separation. Unlike the work on improving the equilibrium capacity of adsorbents, 

the fundamental energy requirements for adsorption processes are rarely discussed. In 

this work the Gibbs energy of desorbed gas was used to calculate the minimum work 

requirement to regenerate the adsorbent and collect the desorbed gas at a desired 

pressure.  

As pointed out by Berger and Bhown [1, 2], one cannot simply evaluate an adsorbent 

based on its properties alone, i.e. equilibrium capacity at a certain condition, heat of 

adsorption, thermal stability, heat capacity etc. Those properties need to be combined 

with a proper process. Until the optimum operating conditions are found for this specific 

adsorbent, we cannot reach a fair conclusion on the value of this adsorbent.  

 For temperature swing adsorption processes and chemical looping processes another 

important factor often overlooked [3] when evaluating energy requirement for a process 

is that heat requirement does not necessarily reflect the power loss imposed on a power 

plant. Hence it is more appropriate to evaluate those processes based on the equivalent 

work instead of the heat requirement. 

We will: first provide the expression for the minimum thermodynamic work required 

to regenerate an adsorbent, which determines the best possible performance of an 
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adsorption process, second discuss how the shape of isotherm affect the minimum 

required energy and finally evaluate an example of calculating the equivalent work 

instead of required heat for a temperature swing adsorption process and a chemical 

looping process. 

1.2 Thermodynamic minimum work of separation 

It is well known [4] that according to the Gibbs free energy balance of the ideal gas 

at constant pressure before and after CO2 capture, the minimum work of separation per 

mole of CO2 captured for flue gas containing y moles CO2 and (1-y) moles N2 (Figure 

1-1) is given by: 

 min 0

1 1
ln(1 ) lny' ln(1 )W RT r yr

r ry

 
     

 
  (1.1) 

where y’ is the CO2 partial pressure in the lean flue gas and r is the fraction of 

captured CO2: 

 (1 )
y'

1

y r

yr





  (1.2) 

 

Figure 1-1 Thermodynamic minimum work of separation for CO2 capture with recovery of r 

In this work T0 is the cold sink temperature, namely 25 oC for ambient temperature. 

In order to simplify our analysis pure CO2 is assumed to be obtained as a result of the 

separation. Usually for carbon capture the purity of captured CO2 ranges from 95% to 

y mol CO2

(1-y) mol N2

1 bar 25 oC

yr mol CO2

1 bar 25 oC

y(1-r) mol CO2

(1-y) mol N2

1 bar 25 oC
Flue gas

Lean flue gas

Captured CO2

Separation work
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99% depending on the source and separation process. A modification on the CO2 purity 

will be discussed in future work.     

 

Figure 1-2 The dependence of thermodynamic minimum energy of separation on the rich flue gas 

composition y and the process recovery rate r  

As shown in Figure 1-2 the minimum work is a function of the feed flue gas CO2 

composition y and the fraction of CO2 being recovered (recovery) r. When y is increased 

less amount of energy is needed to separate unit amount of CO2. The extra work needed 

to increase the recovery from 0.9 to 0.99 is larger compared with that needed to increase 

the recovery from 0.8 to 0.9 for the same feed rich flue gas. This pattern is true for all 

separation processes.  

1.3 Minimum work of separation for adsorption processes 

Adsorption processes use a selective adsorbent to capture CO2 from the flue gas. After 

the adsorbent is saturated, a regeneration step is needed to recover pure CO2 and produce 

clean adsorbent, for which external energy is required. Assume before regeneration the 

adsorbent is saturated with flue gas of CO2 composition y1 and after regeneration it is 

saturated with lean flue gas of CO2 composition y2. The CO2 loadings at those two 

conditions are n1 and n2, respectively. The desorption process, shown in Figure 1-5, 
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consists an ideal CO2-selective membrane unit that is put on top of the adsorbent while 

the gas in the interstitial space of the adsorbent is neglected. Assuming it is a reversible 

process, the CO2 partial pressure on one side of the membrane is the equilibrium CO2 

partial pressure of the adsorbent. A vacuum pump is used for pull out the gas from the 

adsorbent and discharge it at the desired final pressure. As CO2 is compressed and 

collected in downstream, the CO2 loading gradually decreased to n2. Because the heat 

of desorption doesn’t need to be taken into account at room temperature to calculate the 

equivalent work, the only work needed here is the isothermal reversible compression 

work for pure CO2 and lean flue gas. For an ideal gas, the minimum equivalent work 

per mole of captured CO2 by the process shown in Figure 1-5 is written as: 

 

2

1

0

1 2

ln( / )

n

ad atm

n

RT
W P P dn

n n


    (1.3) 

Eq. (1.3) can also be obtained by combining the grand potential of the clean adsorbent 

described in Myer and Monson’s work [5] and Gibbs free energy of ideal gases as shown 

in Appendix A. Utilizing the isotherm of the adsorbent at room temperature, n=f(P), the 

minimum work of separation for adsorption processes can be estimated. This minimum 

work is independent of the overall separation process and cannot be reduced. Note that 

it is also independent of the heat of adsorption. Here the analytical expressions for a 

linear adsorption isotherm (n=kP) and a Langmuir adsorption isotherm 

(n=mKP/(1+KP)) are listed in Table 1 in terms of pressure and adsorbent loading 

respectively. 
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Table 1-1 Minimum equivalent work of separation for adsorption processes 

Linear isotherm~p  1 1 2 2
0

1 2

ln ln
1lin

p p p p
W RT

p p

 
  

 
 (1.4) 

Linear isotherm~n  1 1 2 2
0

1 2

ln( / ) ln( / k)
1lin

n n k n n
W RT

n n

 
  

 
  (1.5) 

Langmuir 

isotherm~p  

2

10

1 2

ln ln
1 1

p

p

lang

m mKp
RT m p

Kp Kp
W

n n

 
   


  (1.6) 

Langmuir 

isotherm~n  

2

10

1 2

ln( ) ln
( ) K

n

n

lang

n
RT m m n n

m n
W

n n

 
   


 (1.7) 

 

It is shown in Eq. (1.4) that Wlin is independent of the slope of the isotherm, while 

based on Eq. (1.6) we know that Wlang is related to the Langmuir adsorption isotherm 

parameters K and m. For simplicity zeolite 13X is chosen in this work as the reference 

adsorbent for CO2 capture. The adsorption model is described by Chue et al. [6] with m 

= 5.1 mol/kg, K = 14.2 bar-1 and  ∆H = -34.5 kJ/mol (at 25 oC). The results of the 

minimum separation work for the linear and the Langmuir adsorption isotherm are 

shown in Figure 1-3 and Figure 1-4.  
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Figure 1-3 The minimum equivalent work of separation for the linear adsorption isotherm 

adsorbent varies with the feed composition and the process recovery rate 

 

Figure 1-4 The minimum equivalent work of separation for the Langmuir adsorption isotherm 

adsorbent varies with the feed composition y and the process recovery rate r where m = 5.1 

mol/kg and K = 14.2 bar-1 
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Figure 1-5 Reversible regeneration process with a CO2-selective membrane unit  

 

Figure 1-6 The minimum work of separation for adsorption processes depends on the shape of the 

isotherm where m = 5.1 mol/kg and r = 0.9  

In Figure 1-6 the minimum work of separation for adsorption processes with the linear 

isotherm and the Langmuir isotherm and the thermodynamics minimum work of 

separation is compared. According to the equation derived by us before, the minimum 

work of separation for adsorbents of linear isotherm is only related to the feed flue gas 

conditions and recovery rate. The minimum separation work must be lower than that of 

the linear and the Langmuir isotherm. As the value of K decreases the minimum 

separation work approaches that of the linear isotherm, due to the fact that the isotherm 

is closer to a linear isotherm. 

n mol/kg

Pco2 kPa

CO2

1 bar 25 oC

Reversible desorption
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1.4 Energy analysis for temperature swing adsorption processes  

Previously the minimum work of separation for adsorption processes has been 

analyzed by assuming reversible desorption with a CO2-selective membrane unit while 

the bed temperature is kept at room temperature (Tad). In reality the regeneration step 

can be carried out at an elevated temperature (Tde) as temperature swing adsorption 

(TSA), or at a lower pressure as pressure swing adsorption (PSA), or a combination of 

both, or using a purge gas, usually steam. In all cases the minimum work of separation 

calculated here remains the same. For a TSA process the regeneration energy includes 

two parts, sensible heat to increase the adsorbent temperature from Tad to Tde and heat 

of adsorption (-∆H). In an ideal case the energy needed to provide the sensible heat can 

be minimized by using a perfect heat exchanger between the regenerated adsorbents and 

the saturated adsorbents and adsorbed gas as is done in the amine processes. However 

the process with lower regeneration energy requirement doesn’t necessarily equal to the 

one with less parasitic energy penalty to the power plant. In order to evaluate the 

parasitic energy the following equation [1] is normally used to calculate the equivalent 

work for a TSA process: 

 
1 2(T T ) / (n n ) HTSA turbine Carnot p de adW c          (1.8) 

This equation allows us to calculate the energy penalty of carbon capture processes 

on power plants without worrying about details of extracting steam from power plants. 

The Carnot efficiency is calculated based on the desorption temperature as: 

 1 /Carnot ad deT T     (1.9) 

The turbine efficiency ηturbine is usually around 0.75 in Eq. (8) to calculate the 

equivalent electricity that can be produced by expanding the equivalent steam in a steam 
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turbine. Since we are only interested in equivalent work in this study ηturbine is assumed 

to be 1 and neglected in all the following studies.  

For a given adsorbent to achieve the given recovery as is described in Figure 1-1, the 

minimum desorption temperature can be determined by the Clausius-Clapeyron 

equation. At the end of the desorption step the CO2 partial pressure at least need to reach 

1 atm. After the adsorbent is cooled down the CO2 partial pressure drops to the lean flue 

gas CO2 partial pressure (p’), which is a function of the process CO2 recovery r and feed 

composition y. Assuming the isosteric heat of adsorption (∆H) is constant over the 

pressure and temperature range, the desorption temperature is calculated as: 

 

1

1
ln

'

atm
de

ad

pR
T

H p T



 
  

 
  (1.10) 

where p’ is a function of the feed composition and recovery rate. By substituting Eq. 

(1.10) into Eq. (1.8) we have: 

 

2

1 2

c ( )
ln

(n n ) '

p de ad atm
TSA ad

de

T T p
W T R

T p


 


  (1.11) 

From Eq. (1.11) the energy to provide the heat of desorption -∆H, as shown in the 

second term, is only a function of adsorption temperature and lean flue gas CO2 

pressure. Note that the heat of adsorption (-∆H) does not appear in the second term, 

which describes the work of separation due to heat of desorption. This is counter 

intuitive in the beginning. For an adsorbent with high heat of desorption the desorption 

temperature is lower. The Carnot efficiency is also lower thus results in the same work 

of separation. Hence if we use a perfect heat exchanger the minimum separation work 

for a TSA process can be expressed as: 

 min 1
ln ln

' (1 )

atm
TSA ad ad

p yr
W T R T R

p y r


 


  (1.12) 
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which is only a function of the CO2 capture process parameters. As shown in Figure 

1-7 the minimum work only depends on the feed composition y and the recovery rate 

r.   

 

Figure 1-7 The minimum work of separation required by TSA processes varies with the feed 

compostion y  and the recovery rate r when there is perfect heat recovery 

 

Figure 1-8 Comparison of different types of separation work for TSA processes 

Up until now we have proposed 4 different levels of separation work for TSA 

processes: the thermodynamic minimum, the minimum for adsorption processes, the 

minimum for TSA processes and the separation work including sensible heat to heat up 
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the adsorbent. As shown in Figure 1-8 the first 3 levels provide the lower boundary for 

work requirement of adsorption processes while the fourth level provides an upper 

boundary. 

1.5 Application to adsorbents screening for TSA processes 

As an example we will compare activated carbon and zeolite 13X to illustrate how 

our model will help choosing an adsorbent requiring less separation work. To compare 

their minimum separation work requirement their adsorption isotherms at room 

temperature are required. According to Chue et al. [6] both materials can be described 

by the Langmuir adsorption isotherm model n = mKP/(1+KP). To take the sensible heat 

into account for a TSA process their heat of adsorption are assumed to be constant as 

shown in Table 1-2. 

Table 1-2 Properties of activated carbon and zeolite 13X 

 Activated carbon Zeolite 13X 

K bar-1 1.9 11 

m mol/kg 2.5 4.9 

cp kJ/kg/K 1050 920 

∆H kJ/mol -30 -36 

 

The results are shown in Figure 1-9. Without considering the sensible heat Wcarbon min 

is closer to Wmin than Wzeolite min. The reason is because that the Langmuir equilibrium 

constant K for activated carbon is much smaller, which makes the shape of the isotherm 

closer to a linear isotherm. However after the sensible heat is taken in to account the 

separation work for zeolite 13X is smaller than that of activated carbon. The reason is 

mostly due to the higher working capacity of zeolite 13X at the same working condition 
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as activated carbon. Less amount of adsorbent needs to be heated up thus it requires less 

energy for regeneration. Note that the work required to provide the sensible heat is 

significantly larger than the work of separation providing the heat of desorption. 

 

Figure 1-9 Comparison of different separation work for activated carbon and zeolite 13X when 

recovery r=0.9 

1.6 Work of separation for chemical looping processes 

According to Fan et al. [7] there are two types of chemical looping processes (Type 

A-I and A-II) used for CO2 capture. Type A-I uses an oxygen carrier to provide a N2 

free oxidant to the fuel, thus avoids the need for CO2 separation from the inert of the 

flue gas. Depending on the final product it can be used for co-production of hydrogen 

and power as the syngas chemical looping (SCL) or for power production only as the 

chemical-looping combustion (CLC) or chemical looping with oxygen uncoupling 

(CLOU). None of those processes involves gas separation and no additional separation 

work is needed for carbon capture. According to Peltola et al. [8] the 100 MWth chemical 

looping combustion plant can achieve similar efficiency around 40% based on their 

simulation compared with modern steam power plants without CO2 capture [9]. 
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However major difficulties may come from the development of robust oxygen carriers 

and high temperature solid transfer equipment.  

Type A-II uses a CO2 carrier to react with CO2 in the flue gas and CO2 is collected 

after the carrier is heated up. Among those CO2 carriers calcium oxide is mostly studied 

due to its high equilibrium capacity and low cost.  

1.6.1 Calcium looping process with air separation unit  

The calcium looping process (CLP) (Figure 1-10) uses fluidized beds that may be 

assumed to be well-mixed. Calcium oxide is used as a reactant to carry CO2 between 

the carbonator and the calciner. Coal and pure oxygen are mixed and burned in the 

calciner to provide the heat to drive the CaCO3 decomposition reaction in this idealized 

model. The chemical reactions are listed as: 

 
2 3

2 2

(s) (g) (s)      178 /

(s) O (g) (g)              394 /   

r

c

CaO CO CaCO H kJ mol

C CO H kJ mol

    

    
  

Since there is only one gas species involved in the first reaction, the equilibrium-state 

CO2 partial pressure in the calciner and carbonator are functions of temperature 

according to the Van’t Hoff equation: 

 
2

2

1 1
ln ( ) ln

cal

COcarb r

carb

cal carb cal CO

PK H

K R T T P

   
       

   

  (1.13) 

while for the equilibrium coefficient we have: 

 
2 01/ exp r

CO eq

H
P K K

RT

 
   

 
  (1.14) 
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Figure 1-10 Calcium looping process for CO2 capture (ASU: air separation unit) 

Unlike the adsorption process, in which the lean flue gas composition is determined 

by the regeneration temperature, the lean flue gas composition of CLP is a function of 

the carbonator temperature. Substitution Eq. (1.2) into Eq. (1.14) yields the carbonator 

temperature as: 

 0

(1 )
/ ln

1
carb

H y r
T K

R yr

  
  

 
  (1.15) 

For example the carbonator temperature of 653 oC is required if the feed flue gas is 

composed of 10% CO2 and 90% recovery is targeted. Note that the temperature is very 

close to that of ultra-supercritical steam generation, a state-of-art steam cycle power 

generation process. Thus the heat provided in the calciner can be efficiently harvested 

in the carbonator using a supercritical steam cycle [10] as shown in Figure 1-11.  

The minimum calciner temperature is fixed since the pure CO2 is obtained at ambient 

pressure, which is estimated to be 1171 K when CO2 partial pressure is at 1 atm 

according to Eq.(1.16). 

  0/ lncal atm

H
T K P

R


   (1.16) 
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Figure 1-11 A coal-burning power plant retrofitted with a calcium looping process  

The oxy-combustion heat equals the sum of the reaction heat to decompose calcium 

carbonate and the sensible heat to heat up calcium carbonate. Assume that the oxygen 

going into the calciner is completely consumed, the amount of O2 and coal needed for 

combustion to capture 1 mol of CO2 from flue gas is given by:  

 
2 3 2,CaCO/ ( / ) /C O cal c p CO r cn n Q H c T n H H         (1.17) 

The thermodynamic minimum separation work for 1 mol O2 is given by: 

 
2 2 2 2 20 ln (1 ) / ln(1 )O O O O OW RT y y y y         (1.18) 

Assume that no energy is lost during the solid transport between the carbonator and 

the calciner, the total minimum equivalent work input for CLP to achieve the separation 

process in Fig. 1 is calculated using the definition of Carnot efficiency given in Eq. (1.9)

: 

 
2 2 2 2

min 0 0( ) ( )CLP cal cal carb O O cal O O

carb cal

T T
W Q n W Q n W

T T
         (1.19) 

 

1.6.2 Variances of calcium looping processes for CO2 capture  

In order to increase the process efficiency for CO2 capture the following two process 

schemes are proposed and the results are analyzed here as an example to demonstrate 

our minimum work analysis. 
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1.1.1.1 Multi-stage fluidized bed process 

 

Figure 1-12 Conceptual diagram of the 3-stage fluidized bed carbon capture process 

Kim et al. [11] recently reported a multi-stage fluidized bed process (Figure 1-12) 

with inter-stage heat integration to capture CO2. The concept is based on utilizing 

sorbents working at different adsorption and regeneration temperatures so that one 

adsorbent can be regenerated by the heat released during the adsorption of another 

adsorbent. Assuming that no energy is lost during heat exchange, the minimum work 

required to capture 1 mol of CO2 is calculated as: 

 1 ( )stage de adW H        (1.20) 

For the 3-stage process: 

 
1 1 1 2 2 2 2 3 3 3 3

3

1 2 3

( ) ( )de de ad de ad
stage

n H n H n H
W

n n n

    


       


 
  (1.21) 

where ΔH, η, n are the corresponding enthalpy change of adsorption, Carnot 

efficiency and amount of CO2 being processed. As discussed in Kim et al.’s work [11] 

K2CO3, Na2CO3 promoted MgO and Li4SiO4 solid sorbents were selected for a 3-stage 

fluidized bed carbon capture process. Their properties are listed in Table 1-3.   
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Table 1-3 Physical properties of the sorbents used in the 3-stage carbon capture process and 

parameters for each stage  

 K2CO3 Na2CO3  

promoted MgO 

Li4SiO4 

Adsorption/desorption  

temperature (K) 

323/443 543/723 823/1023 

Heat of adsorption (kJ/mol) 137.4 122.4 140.0 

Carnot efficiency ηad 1-298/323 1-298/543 1-298/823 

Carnot efficiency ηde 1-298/443 1-298/723 1-298/1023 

Work required for a single stage 

W1-stage kJ/ mol captured CO2 

45.0 16.7 9.9 

Feed flue gas  

split percentage (%) 

32.2 36.2 31.6 

   

The minimum work required for this 3-stage carbon capture process can be then 

calculated as W = 23.7 kJ/mol of captured CO2, which is only lower than the required 

work for a single stage capture process using K2CO3. From the view of thermodynamics 

the multi-stage carbon capture process doesn’t provide a more efficient process than a 

single stage process. However, a potential advantage is that it is a stand-alone process 

and does not require a steam turbine process to recycle the carbonation reaction heat.   
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1.1.1.2 Three fluidized beds combustion system 

 

Figure 1-13 Process scheme of the three fluidized combustion system 

Martínez et al. [12] proposed a three fluidized beds combustion system (Figure 1-13) 

using CaO as the CO2 carrier and heat transfer solid between the carbonator, calciner 

and circulating fluidized bed combustor (CFBC). Compared with the calcium looping 

process (CLP) discussed before, this process doesn’t require air separation unit (ASU) 

for oxy-combustion in the calciner. Instead the heat required in the calciner (950 oC) is 

provided by high temperature solids (CaO) from the CFBC, where compressed air and 

fuel are mixed with calcined CaO from the calciner and combusted at 1030 oC. 

Therefore, the main benefit of such a process is the reduction of air separation work. 

The minimum work required is obtained as: 

 3 ( )bed cal cal carbW Q       (1.22) 

Compared with Eq. (1.19) the only difference is the reduction of the separation work 

for O2, which is 3% of the separation work based on our previous calculation.  
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1.7 Comparison between temperature swing adsorption processes and 

chemical looping processes 
 

Utilizing Eq. (1.11) and Eq. (1.19) we are able to compare the separation work 

between the TSA process using zeolite 13X as the adsorbent with the CLP using CaO 

as the CO2 carrier. As shown in Figure 1-14 the equivalent work of separation varies 

with the feed flue gas composition y. The effects of capacity degradation for CLP are 

explored here. It is mentioned by Blamey et al. [10] that after 45 cycles of carbonation 

and calcination the sorption capacity of CaO drops to 0.316 g CO2/g sorbent (40% 

conversion). As shown in Figure 1-14, the degradation results in higher work 

requirement due to more heat required to heat up the solids and more O2 for oxy-

combustion. Compared with TSA processes using zeolite 13x, CLP processes require 

less work for flue gas with low CO2 concentration and there is a cross point where 

they require the same amount of work. For the ideal case where CaO is 100% reacted 

with CO2 the cross point is when y = 8.4% and for degraded CaO the cross point is 

when y = 5.6%. Generally TSA processes require less work when y is higher than the 

cross point. 



23 
 

 

Figure 1-14 The equivalent work of separation for TSA using zeolite 13x and CLP using CaO 

when the recovery rate r = 0.9 

The evaluation above is based on equivalent work required per unit of CO2 captured 

from power plants, which does not consider the actual higher efficiency of oxy-

combustion in the calciner and the benefits of producing extra CO2 without the need for 

separation. An evaluation method based on the overall power plant efficiency after 

adding the carbon capture including the compression work is proposed here. Assume 

the overall efficiency ηp for a stand-alone supercritical power plant is around 38.5% and 

the same number is assumed for the steam generator in the carbonator. After adding the 

CLP, the overall efficiency can be calculated by: 

 2 2,( ) (1 )

(1 )

c cal p c comp O sep O

CLP

c c

H Q n W n W

n H




    


 
  (1.23) 

While for TSA the overall efficiency can be given by: 

 
1 2(T T ) / (n n ) Hc p turbine Carnot p de ad comp

TSA

c

H c W

H

  


       


 

 (1.24) 
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where the compression work is calculated by using a train of five (Nc) ideal gas 

adiabatic compressors with intermediate cooling and an isentropic efficiency of 75%. 

The final pressure equals 100 bar. 

This yields: 

 
 
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0 1
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atm

PRT N k
W

k P

  
   

    

  (1.25) 

with k=1.3 for carbon dioxide and the compression work turns out to be 18.5 kJ/mol 

CO2. 

As an example shown in Figure 1-15, ηCLP of stoichiometric capacity overlaps with 

that of degraded sorbents and remains nearly constant to be around 33%, while ηTSA is 

greatly increased from zero to 34% as the flue gas CO2 concentration rises up to 10%. 

The conclusion is similar to that obtained with the equivalent work analysis: CLP 

remains more competitive with y less than 10% and TSA has an advantage when y 

becomes higher than 10%.   

 

Figure 1-15 Comparison of overall power plant efficiency after adding CLP and TSA for carbon 

capture with varying flue gas composition and 90% CO2 recovery (CO2 is compressed to 100bar) 

 



25 
 

1.8 Conclusions 

In this work we provided the expression to calculate the minimum work of separation 

for adsorption processes and applied the equation to the linear isotherm and the 

Langmuir isotherm. It was found that the adsorbent with the linear isotherm requires 

less minimum work of separation than that with the Langmuir isotherm. Moreover we 

analyzed the equivalent work needed for temperature swing adsorption processes and 

chemical looping processes. By using zeolite 13X and CaO the equivalent work required 

by those two processes are compared and calcium looping process is favored for low 

CO2 concentration flue gas while temperature swing adsorption requires less energy for 

high CO2 concentration flue gas. The point where the required work from both processes 

are equal depends on the extent of degradation of CaO. However due to the utilization 

of high temperature sensible heat and carbonation heat, the effects of degradation are 

hardly noticeable when it comes to the overall efficiency of power plants with carbon 

capture.   
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 Simulation Study of Sorption Enhanced Reaction 

Processes  

2.1 Introduction 

A sorption enhanced reaction processes (SERP) is based on Le Chatelier’s principle. 

By removing one or several species of the products, the reaction equilibrium is shifted 

towards the desired direction. Besides the improved conversion rate, another advantage 

is the reduction of equipment investment by combining reactors with separation 

processes. It is possible to drive a reversible reaction to near completion in a flow reactor 

by using a fixed bed packed with a selective adsorbent for one of the products and an 

appropriate catalyst, which provides an even higher conversion rate than that in a similar 

process using a well-mixed batch reactor.  

This concept was reported as early as 1931 by Gluud et al. [13] for the production of 

hydrogen in the water gas shift reaction. More recently it was thoroughly reviewed by 

Carvill et al [14] in 1996 and Harrison in 2008 [15]. So far the most studied example is 

the hydrogen production by integration of reform or shift reaction catalyst with high 

temperature CO2 adsorbents. It has been demonstrated experimentally in our laboratory 

and other groups [16-25] that high purity hydrogen can be produced by combining high 

temperature CO2 adsorbents with corresponding water-gas-shift or steam-methane-

reforming catalysts together in a fixed bed reactor.  

A typical gas component profile for a long sorption enhanced WGS reactor is shown 

in Figure 2-1. For a fixed bed there are 4 zones: A. a reaction controlled zone, where 

fresh feed starts to react under the influence of both adsorption and reaction; B. an 



27 
 

equilibrium zone, where both reaction and adsorption reach equilibrium; C. a reaction 

mass transfer zone, where due to the contact of fresh adsorbent the reaction equilibrium 

is shifted again; D. an equilibrium zone, where unadsorbed product and excess reactant 

reach reaction equilibrium. In the case of WGS and SMR the excess reactant is steam 

and can be easily separated by condensation, thus high purity hydrogen is produced.      

 

Figure 2-1 Typical gas species profile in a sorption enhanced reactor for water gas shift reaction 

(with 1000 times slower kinetics in order to demonstrate the reaction controlled zone) A: 

Reaction-controlled zone, B: Equilibrium-controlled zone, C: Reaction mass transfer zone, D: 

Equilibrium-controlled zone 

Although many studies have been done on the modeling of the process performance 

[19, 26-29], little is known on how different factors affect the transient concentration 

front in the reactor. In this work we aim to investigate how the reaction and operating 

parameters affect those four zones. By investigating a more general reaction A + B -> 

C + D, we would like to answer under what circumstance sorption enhanced reaction 

principle can be applied to produce high purity product. Moreover by studying cases of 

hydrogen sulfide decomposition and propene metathesis and comparing it with the well-

studied WGS reaction, we try to answer that whether other reactions have the similar 

profile in a sorption enhanced reactor. In order to focus on the reaction itself, local 

sorption equilibrium is assumed in all cases so that there is no mass transfer limitation. 
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The species concentration profile is determined by the reaction kinetics, stoichiometry, 

equilibrium constants and shape of sorption isotherm.  

For WGS reaction various reaction rate expressions exist for different catalysts and 

so is for the sorption isotherms of various high temperature CO2 adsorbents. Here a 

commercial Cu/ZnO/Al2O3 catalyst from Sud-Chemie, Inc. and K-promoted 

hydrotalcite from Air Products and Chemicals, Inc. are used for our sorption enhanced 

WGS reactor study [30]. While for sorption enhanced H2S decomposition reaction 

molybdenum disulfide powder from VENTRON GmbH is used as the catalyst [31]. 

There is no literature data available for elemental sulfur adsorption, however, there are 

patents [32, 33] mentioning the use of an admixture of catalyst and sulfur adsorbent for 

removing sulfur moieties from Claus tail-gas. The process operates at 120-135 oC after 

the tail-gas is cooled down. Nevertheless in this work it is assumed that such an 

adsorbent could be designed and manufactured in the future and for modeling purposes 

a simple Langmuir isotherm model can be used to mathematically describe it. A series 

of studies has been done on sorption enhanced propene metathesis by Gomes et al. [34-

36]. In their study rhenium oxide (Re2O7) supported on gamma-alumina (γ-Al2O3) was 

used as both the catalyst and adsorbent while zeolite 13X was used to preferentially 

adsorb butene and propene. It is studied here to show that the importance of the mass 

transfer during adsorption and the diffusion term in simulating sorption enhanced 

reactor.   

2.2 Model description 

Besides the instantaneous local sorption equilibrium assumption mentioned before, 

other assumptions made in the model are, isothermal operation, uniform pressure 

distribution, no radial concentration gradient, negligible axial dispersion, no mass 
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transfer resistance around catalyst and adsorbent and ideal gas behavior. As a result the 

total concentration in the reactor is the same everywhere, C=P/RT. The corresponding 

equations are:  

Mass balance equation for individual species in the gas phase is given by: 

 
(y ) (vy )i i i
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t z t
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Adding all species up yields: 
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The sorption isotherm can be expressed as: 
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Mass balance of the adsorbed phase: 
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2.3 Study on the water gas shift (WGS) reaction 

According to Choi and Stenger [37] the reaction kinetics of WGS reaction on the 

Cu/ZnO/Al2O3 catalyst described before is given by:  

  
2 2 2

/WGS r CO H O CO H eqR K P P P P K    (2.6) 

where Kr = Kr0 exp [Hr/(RT)] and the reaction equilibrium rate Keq [38] can be 

expressed as shown in Table 2-1. 

The adsorption isotherm is obtained from Lee et al.’s work [39]: 
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where Kc  = Kc0 exp [qc/(RT)] and ka = ka0 exp [qa/(RT)]. Jang et al. [40] made a 

modification on the expression of a so that it becomes a function of temperature. The 

parameters are listed as in Table 2-1. 

Table 2-1 Parameters for WGS reaction kinetics and equilibrium information and CO2 

adsorption isotherm on K-promoted hydrotalcite   

Kr0, mol/(s·kg·atm) 3.302*107 
Hr, kJ/mol -67.13 
m, mol/kg 0.25 
Kc0, atm-1 0.8778 
qc, kJ/mol 21.00 
a 0.285*exp(12200/RT) 
ka0, atm-a 1.34*10-3 
qa, kJ/mol 42.13 
Keq EXP(5693.5/T+1.077lnT+5.44E-4T-1.125E-7T2-49170/T2-13.148) 

 

Jang et al. [40] studied the same sorption enhanced reaction system experimentally 

and with a numerical model based on reactor energy balance for temperature effects, 

linear driving force (LDF) model for mass transfer during adsorption and reaction 

kinetics. Since the reactor diameter they used is small (1.73 cm) and the reaction is only 

moderately exothermic (∆H = -41.1 kJ/mol), we can assume an isothermal condition 

during the operation. Moreover the mass transfer coefficient is sufficiently large (kldf = 

3 min-1) so that the local equilibrium model can be applied in this case.  

The reactor was packed with 50:50 catalyst and adsorbent by weight and detailed 

information is listed in Table 2-2. The reactor was initially filled with steam and argon. 

Due to the void volume of the test setup and the response time of detectors, a 3.9 min 

delay is used to account for the time it takes before hydrogen appears at the exit of the 

reactor.  

A first order upwind finite difference method is used to discretize the reactor. The 

resulting stiff ordinary differential equations are solved by a build-in function ode15s in 
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Matlab. The effects of the number of grids (N) used for the simulation are explored in 

Figure 2-2, where the bed properties and operating conditions are the same as those used 

for the experiments except the feed gas is set as equal molar ratio of CO and H2O. When 

N is above 200 little effect is observed on the shape of the effluent curve. Therefore in 

the following discussion all the simulation were performed with N = 200 unless 

otherwise specified 

By changing the feed composition to the experimental value, the simulation results of 

our model match the reported experimental results well as shown in Figure 2-3. As is 

discussed later in our study the shape of the effluent gas composition profile is 

determined by the WGS reaction kinetics and equilibrium parameters and CO2 

adsorption isotherm shape. In the experimental study all parameters are in favor of the 

formation of high purity H2 product and a sharp breakthrough curve.     

Table 2-2 Reactor information and operation parameters for the base case of WGS reaction 

ρcat, kg/m3 410 
ρads, kg/m3 410 
ε 0.6 
ID, cm 1.73 
L, cm 50.2 
P, atm 1 
T, K 673.15 
FCO, ml/min (STD) 50 
FH2O, ml/min (STD) 258.6 
FAr, ml/min (STD) 150 
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Figure 2-2 The influence on the shape of effluent curves by increasing the number of grids used 

for the simulation 

 

 

 

Figure 2-3 Comparison of effluent gas composition (dry and argon free) from a SEWGS reactor 

using K-promoted hydrotalcite at 400 oC; symbols: experimental data, lines: simulation results. 

 

2.3.1 Results and discussion 

The reason of obtaining pure H2 in the SEWGS reactor as shown in Figure 2-3 is 

because there is a large excess of steam. For a more general reaction A + B -> C + D, if 

C is adsorbed we are interested in whether high purity D can be produced. The SEWGS 

reactor can be studied as an example and the question now evolves into whether it is 
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possible to produce H2 without the use of excessive H2O. The only way to do that is 

using the stoichiometric ratio of H2O and CO in the feed. Jang et al. [40] studied the 

effect of H2O/CO ratio and noticed that the H2 productivity increased dramatically 

around the minimum stoichiometric ratio of 1.0, which was explained by the 

thermodynamics of the WGS reaction. Here we also studied the case where FCO = FH2O 

= 50 sccm (standard cm3 per minute), FAr=0 and the bed is prefilled with argon. As 

shown in Figure 2-4, high purity H2 is available without the need of water condensation 

in this case. Therefore using a stoichiometric feed components ratio can reduce the need 

of product separation for a sorption enhanced reactor. We will limit to the stoichiometric 

feed components ratio for the following discussion on the effects of other parameters.    

 

 

Figure 2-4 Effluent gas composition profile at the end of the SEWGS reactor when FCO=FH2O 

(base case: Keq = 12.5, Kr = 203.9 mol/(s•kg•atm) and Kc = 37.4 atm-1 ) 

2.3.1.1 Effects of the reaction equilibrium constant 

As mentioned previously high purity H2 is available because of the formation of the 

equilibrium zone near the exit of the reactor shown in Figure 2-1. According to the 

equilibrium constant expression in Table 2-1 the reaction equilibrium constant Keq at 

400 oC is estimated to be 12.5. In order to study the effects of Keq on the H2 product 
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purity, two cases were studied here in which Keq became 1/10 and 1/100 of its original 

value. The H2 profiles at different equilibrium values are shown in Figure 2-5. As we 

reduce the value of the equilibrium constants the concentration of H2 is reduced in 

general, which reflects that the concentration front inside the reactor becomes more 

stretched as shown in Figure 2-6. Inside the reactor due to the large value of the reaction 

kinetics constant Kr the reaction controlled zone is too small to be observed and as we 

reduce the value of Keq the reaction mass transfer zone extends to the equilibrium zone 

at the reactor exit. According to Figure 2-8 the impurities are mostly unreacted CO and 

H2O while the CO2 profile also seems to be affected but not as much as that of the other 

components. 

 

Figure 2-5 Effects of different reaction equilibrium constants on the hydrogen profile where Kr = 

203.9 mol/(s•kg•atm) and Kc = 37.4 atm-1 
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Figure 2-6 Effects of different Keq on the CO concentration profile inside the reactor when t = 146 

sec, Kr = 203.9 mol/(s•kg•atm) and Kc = 37.4 atm-1 

To explore the reason for stretched hydrogen profile after reducing the value of Keq, 

the following explanation is proposed. It is well known [41] that the velocity of the 

concentration front for adsorbates with the Langmuir isotherm model will form a shock 

wave inside the bed if the bed is long enough, which is the base for the constant pattern 

model. However when the adsorbate concentration is low, the Langmuir model will 

approach a linear isotherm model, which results in a less compressed concentration 

front. In sorption enhanced WGS reaction if Keq is high enough so that the concentration 

of the adsorbate, also as one of reaction products, inside the bed becomes reasonably 

high, the same principle can be applied here to form a sharp reaction mass transfer zone, 

which results in high purity hydrogen product. If, however, the value of Keq is low so 

that the adsorbate concentration inside the bed lies in the region making the adsorption 

isotherm close to the linear isotherm, a stretched reaction mass transfer zone will form, 

resulting in the lack of high purity hydrogen product.  
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Figure 2-7 Dimensionless plot of the CO2 adsorption isotherm of K-promoted hydrotalcite at 400 
oC when Kc = 37.4 atm-1 (solid line and bottom x-axis) and 374 atm-1 (dash line and top x-axis) 

 

When Keq is reduced to 0.125, the equilibrium molar fraction of CO2 in the saturated 

region (Section B) was reduced from 0.39 (base case) to 0.13. The CO2 concentration 

in the reactor moves into the linear section of the adsorption isotherm according to the 

isotherm shown in Figure 2-7. To verify this hypothesis the value of Kc was increased 

from 37.4 atm-1 to 374 atm-1 and the modified isotherm is also shown in Figure 2-7. 

After increasing the value of Kc the equilibrium concentration of CO2 in the reactor no 

longer lies in the linear region. Therefore the adsorption front is more likely to form a 

sharp reaction zone. The simulation results for the case where Keq = 0.125 and Kc = 374 

atm-1 are compared with that where Keq = 0.125 and Kc = 37.4 atm-1. As shown in Figure 

2-8 the concentration of hydrogen in the product gas is greatly improved by increasing 

the value of Kc.  
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Figure 2-8 Reactor exit gas composition profiles with different values of Kc: solid lines – Kc = 37.4 

atm-1 dashed lines – Kc = 374 atm-1  (Keq = 0.125 and Kr = 203.9 mol/(s•kg•atm) ) 

Although the shape of the adsorption isotherm is found to be the main factor that 

affects the effluent profile, as we reduce the value of Keq the adsorbate concentration is 

reduced and approaches the linear section of the isotherm. Another effect of reducing 

the value of Keq is that the reaction rate (Eq (2.6)) is also reduced, which changes the 

shape the reaction mass transfer zone. We will discuss the effects of reaction kinetics 

on the shape of the reaction mass transfer zone in the following section.   

2.3.1.2 Effects of the reaction rate constant 

The reaction rate constant Kr used in Eq (2.6) at 400 oC is around 203.9 

mol/(s·kg·atm). Again we compared the effluent concentration profile after smaller Kr 

values are applied while keeping the other parameters unchanged. It is observed in 

Figure 2-9 that reducing the value of Kr has limited effects on the effluent profile when 

Kr is between 2 and 200 mol/(s·kg·atm). When Kr becomes smaller than 2 

mol/(s·kg·atm) the H2 concentration starts to decrease over the whole time period. The 

reason for that can be explained by the formation of the reaction controlled zone at the 

reactor entrance. When Kr is so small that it takes more than the whole length of the 

reactor to fully develop the reaction controlled zone, the equilibrium zone between the 
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reaction controlled zone and the reaction mass transfer zone will be eliminated and the 

equilibrium zone near the exit of the reactor becomes part of the reaction mass transfer 

zone as shown in Figure 2-10.  

Also shown in Figure 2-10 is that the molar fraction of CO forms a small peak in the 

reaction mass transfer zone after the value of Kr is reduced below 0.2 mol/(s·kg·atm), 

which is a combined result of adsorption and reaction. When there is only adsorption, 

after CO2 is taken away from the gas phase the molar fractions of the other 3 species 

increase simultaneously. When reaction comes into play if the reaction rate is fast, the 

equilibrium will instantaneously be shifted to the forward WGS reaction, thus reducing 

the molar fraction of CO and H2O while increasing that of H2. Competition between 

adsorption and reaction happens at the reaction mass transfer zone, where when CO2 

concentration is high adsorption dominates and when CO2 concentration is low reaction 

dominates. The peak corresponds to the transition between those two regions.     

 

 

Figure 2-9 Effluent H2 concentration profile when Kr is reduced from 203.9 to 0.02 

mol/(s·kg·atm), Keq = 12.6, and Kc = 37.4 atm-1 
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Figure 2-10 CO percentage inside the reactor when t=146.3 sec, Keq = 12.6, and Kc = 37.4 atm-1 

after reducing Kr from 203.9 to 0.02 mol/(s·kg·atm)  

It is demonstrated in Figure 2-11 that when Kr equals 0.04 the reaction controlled zone 

slowly develops with time in the reactor and after 400 sec the components reach reaction 

equilibrium near the reactor exit. Therefore there is not enough bed space for the 

concentration front to develop the sharp reaction zone and a longer reactor is needed to 

obtain high purity hydrogen. By increasing the reactor length from 0.5 m to 1 m (the 

number of computational nodes was increased from 200 to 400) high purity hydrogen 

is again available from the reactor as shown in Figure 2-12. Although the reaction rate 

is still slow the increased reactor length enables the formation of a stable reaction mass 

transfer zone and thus the high purity hydrogen. Interestingly the shape of the product 

profiles are not changed by increasing the length of the reactor as shown in Figure 2-13.      
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Figure 2-11 Components profile inside the reactor at t=146 sec (solid lines) and t = 400 sec 

(dashed lines) when Kr = 0.04 mol/(s·kg·atm) Keq = 12.6, and Kc = 37.4 atm-1 

 

Figure 2-12 Effects of reactor length to the product profiles when Kr = 0.04 mol/(s·kg·atm) Keq = 

12.6, and Kc = 37.4 atm-1 (solid lines: L = 0.5 m, dashed lines: L = 1 m) 
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Figure 2-13 Comparison of the product profile shapes of different reactor lengths after shifting 

the time frames when Kr = 0.04 mol/(s·kg·atm) Keq = 12.6, and Kc = 37.4 atm-1 (solid lines: L = 0.5 

m, dashed lines: L = 5 m) 

 

2.3.1.3 Effects of the isotherm model constant 

The only way that adsorption affects the reactor performance in this model is through 

the adsorption isotherm model. The rather complex isotherm model (Eq. (2.7)) used 

before can be approximated by the Langmuir isotherm model as n = mKcP/(1+KcP) 

when the partial pressure of CO2 is relatively small. By changing the value of Kc we can 

explore the effects of interaction strength between the adsorbate and adsorbent on the 

SEWGS reactor performance. Initially Kc equals 37.4 atm-1 at 400 oC, which implies 

relatively strong interaction between CO2 and K-promoted hydrotalcite. By reducing Kc 

the isotherm model tends to be closer to a linear isotherm and a weaker interaction force. 

If there is only adsorption happening the breakthrough curve for CO2 will be stretched 

resulting in a longer reaction mass transfer zone. Another direct effect is the equilibrium 

CO2 capacity in the reactor will be reduced causing shorter breakthrough time. The 

results are shown in Figure 2-14.   



42 
 

 

 

Figure 2-14 Effluent composition with different values of the adsorption constant Kc when Keq = 

12.6 and Kr = 203.9 mol/(s•kg•atm)  

2.4 Study on the sorption enhanced H2S decomposition reaction 

Up until now the most important factors like reaction equilibrium, reaction kinetics 

and adsorption isotherm when designing a sorption enhanced reactor have been covered. 

Another factor we would like cover is the reaction stoichiometry. From the studied 

SEWGS reactor it is clear that high purity product is available for a generalized reaction 

A + B -> C + D as long as all the factors mentioned before are in an appropriate range. 

It is of interest to find if the conclusions reached for WGS reaction can be extended to 

a reaction stoichiometry like A -> B + ½C, as in the H2S decomposition reaction H2S -

> H2 + ½ S2. 

It is proposed by Raymont [42] that instead of using the Claus process to eliminate 

the emission of H2S it is more economical to be use H2S as a source to produce 

hydrogen. Among the many different ways to decompose H2S, the most promising one 

is suggested to be the catalytic decomposition [43]. There are many studies [31, 44-47] 

focused on using transitional metal sulfides as catalyst to facilitate H2S decomposition. 
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In this study we will focus on using molybdenum disulfide due to its relatively high 

activity and stability [31].  

The same assumptions are made here as that for the previously discussed SEWGS 

reactor. Besides Eq (2.1)-(2.5) the reaction kinetics equation and adsorption isotherm 

equation are still needed. The thermodynamics information on H2S decomposition 

reaction is summarized by Kaloidas and Papayannakos [48]. The reaction equilibrium 

constant is calculated based on the Van’t Hoff equation and can be expressed as: 

 expeq
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  (2.8) 

where a and b equal 323.3 and -9.006E4 respectively. 

The kinetics data for catalytic H2S decomposition are obtained from another work by 

Kaloidas and Papayannakos [31] and a Hougen-Watson adsorption model, shown in the 

following equation, is used to calculate the reaction rate.     
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where Kr = 4.33E4 exp (-9.01E4/RT), KH2S = 9.75E-7 exp (2.16E5/RT) and KS2 = 

17.03 exp (1.02E5/RT). Since no literature data are available for a S2 adsorbent, a 

Langmuir isotherm model is used here: 
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where m = 1.6 and Kc = 6E-8 exp (1.3E5/RT). 

The reactor and operating information is summarized in Table 2-3: 
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Table 2-3 Reactor information and operating parameters for the base case of H2S decomposition  

ρcat, kg/m3 500 
ρads, kg/m3 500 

ε 0.6 
ID, cm 1.73 
L, cm 50 

P, atm 1 
T, K 1200 

FH2S, ml/min (STD) 70 
  

2.4.1 Results and discussion 

The effluent profile of the base case is shown in Figure 2-15. The composition profile 

shows that after around 120 sec the profile reaches equilibrium, which implies around 

20% conversion rate for H2S. Although enhancement on the reaction conversion is 

observed for the first minute, the results are not promising to produce high purity H2. 

From the conclusions we have reached for SEWGS reactor study we can improve the 

reactor performance by improve the properties of the catalyst and adsorbent.      

 

Figure 2-15 Effluent composition of the base case for the sorption enhanced H2S decomposition 

reaction where Kr = 3.64E4 mol/(s·kg·atm) Keq = 0.039, and Kc = 0.0328 atm-1 

Under the conditions of the base case the equilibrium molar fraction of S2 after the 

bed is saturated is around 0.063 and the adsorption capacity is at 3.3E-3 mol/kg, which 

is quite small compared with that of CO2 on K-promoted hydrotalcite. Therefore three 
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cases of increasing Kc by 100, 10,000 and 100,000 times are studied and the 

corresponding isotherms are shown in Figure 2-16. By increasing the value of Kc the 

equilibrium capacity for S2 is increased by 3 orders of magnitude and the shape of the 

isotherm becomes more favorable. It is shown in Figure 2-17 that only after we 

increased the value of Kc to 32,800 atm-1 the hydrogen profile becomes sharp when S2 

starts to breakthrough.      

 

Figure 2-16 Adsorption isotherm for S2 with different values of Kc (when Kc = 0.0328 the isotherm 

almost overlaps with the x-axis) 

 

 

Figure 2-17 Effluent profiles of the sorption enhanced H2S decomposition reactor after Kc is 

increased, (solid lines: Kc = 3280 atm-1, dashed lines: Kc = 32800 atm-1) 
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Also noticed is that the highest hydrogen concentration is limited to a certain value 

around 97.5%, which is due to the H2S formation by the reaction of initial S2 with the 

rich H2 product. The initial species molar fraction was set as 1E-6, which works fine for 

the sorption enhanced water gas shift reaction (WGS) simulation. However, for sorption 

enhanced hydrogen sulfide decomposition simulation that tiny amount of S2 would react 

with 97.5% hydrogen and form 2.5% H2S in the collected hydrogen product. The 

stoichiometric parameters for the elementary reaction of H2S decomposition is the main 

cause of this. In order to achieve high purity another case with initial S2 molar fraction 

of 1E-12 was studied and the reactor effluent profile is shown in Figure 2-18.         

 

Figure 2-18 Effluent profiles of the sorption enhanced H2S decomposition reactor after yS2
0 is 

reduced from 1e-6 to 1e-12 where Kr = 3.64E4 mol/(s·kg·atm) Keq = 0.039 and Kc = 32800 atm-1 

On the other hand we explored the effects of reaction kinetics by increasing the 

reaction rate Kr by 100 times. As shown in Figure 2-19 there is no noticeable difference 

between the concentration profiles before and after we increase the value of Kr. 

Therefore the reaction kinetics is not the limiting factor in this case. We then explored 

the effects of the reaction equilibrium constant. As mentioned previously in the 

discussion of the sorption enhanced WGS reactor the reaction equilibrium constant can 

affect the effluent profile from both adsorption and reaction perspectives. The results in 
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Figure 2-20 shows that the reaction equilibrium constant is a limiting factor to produce 

high purity H2 by sorption enhanced H2S decomposition reaction. Also noticed is that 

after increasing the value of Keq high purity hydrogen becomes available even with yS2 

= 1e-6. It confirms our previous conclusion based on SEWGS reaction that in order to 

produce high purity product all the factors including reaction kinetics, thermodynamic 

equilibrium and adsorption isotherm need to be considered and each factor determines 

the reactor performance in a different way.     

 

 

Figure 2-19 Comparison of effluent profiles of the sorption enhanced H2S decomposition reactor 

after increasing the reaction rate constant where Kc = 3.28 atm-1 and Keq = 0.039, solid lines: Kr = 

3.64E4 mol/(s·kg·atm), dashed lines: Kr = 3.64E6 mol/(s·kg·atm) 

 

Figure 2-20 Effluent profile of the sorption enhanced H2S decomposition reaction with various 

values of Keq where Kc = 3.28 atm-1 and Kr = 3.64E4 mol/(s·kg·atm) 
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2.5 Study on the sorption enhanced propene metathesis reaction 

Olefin metathesis reaction allows the mutual exchange of alkylidene groups between 

two substituted alkenes. It is widely applied in olefins production process to obtain 

olefins with desired number of carbon atoms and the polymerization of olefins [49]. 

Propene metathesis (the Phillips Triolefin Process) is a key industrial scale olefin 

metathesis reaction, which can either produce propene or ethene depending on the 

market demand.     

2 3 2 2 3 32CH CH CH CH CH CH CH CH CH         

The sorption enhanced propene metathesis reaction is proposed to improve the 

propene conversion for this equilibrium controlled reaction by using an adsorbent 

(zeolite 13X) to selectively remove butene. It was found out [35] that by operating the 

sorptive reactor in a cyclic fashion similar to a two-bed pressure swing adsorption cycle, 

the product yield and catalyst/adsorbent productivity was improved. A one-pass 

experiment with only the rhenium oxide (Re2O7) impregnated gamma-alumina (γ-

Al2O3) packed was conducted to verify the reactor model developed by Rawadieh et al. 

[34]. Here we try to compare their experimental results with our own model which 

neglects all mass transfer resistance and diffusion terms. 

There is one change that needs to be made for this process, the adsorption isotherm 

model. Since all three species are adsorbed on γ-Al2O3, a multicomponent Langmuir 

isotherm model is used and is written as: 

 
1
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where nis and bi are listed in Table 2-4. Therefore, Eq. (2.5) is rewritten as: 

 
ji i i i i k

i j k

cn n c n n c

t c t c t c t

     
  

      
  (2.12) 



49 
 

 The reaction kinetics was studied by Gomes and Fuller [36] and is expressed as: 
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  (2.13) 

where Kr equals 6.34E-2 mol/kg/sec. The bed properties and operating conditions can 

be found in Table 2-5. 

Table 2-4 The adsorption isotherm parameters of ethane, propene and butene on γ-Al2O3 

 Ethene Propene Butene 

nis, mol/kg 0.1836 0.4106 0.8144 

bi, m3/mol 239.7 332.6 514 

 

Table 2-5 Packed bed properties and operating conditions 

Reactor radius, m 5E-3 

Reactor length, m 0.0805 

Bed density, kg/m3 711 

Bed voidage 0.608 

Pressure, atm 1 

Temperature, K 291 

Feed flow rate, sccm 1520 

Feed composition, % Propene/Nitrogen 5/95 

      

2.5.1 Results and discussion 

The simulation results are shown in Figure 2-21, where the dimensionless time is 

calculated as tv0/L. The effluent composition after the bed is saturated with the feed 

shows the simulation data is close to experimental data. However, the breakthrough 

curves are far from satisfactory. Especially our model predicts a rather significant 

enhancement of ethene concentration, while the experimental results show the ethene 

concentration remains constant after the breakthrough. Moreover the butene 

breakthrough curve appears ealier than the experimental data, which is also observed 

when comparing simulation results with experimental data by Rawadieh et al. [34]. It 
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was suggested that using pure gas isotherm parameters instead of measuring the mixture 

isotherm parameter contribute to this breakthrough time error. 

In an attempt to modify different parameters in order to match the experimental 

results, the best match was found by reducing the kinetic parameter Kr by 20 times 

shown in Figure 2-22. It is shown that the enhancement on ethene concentration was 

less obvious and the breakthrough curve for propene is now closer to the experimental 

results.     

 

Figure 2-21 Comparison of the experimental results and our simplified model 

 

 

Figure 2-22 Comparison of the experimental results and the simplified model when Kr is reduced 

by 20 times 
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Comparing our model results with the model by Rawadieh et al. [34] it is found out 

that mass transfer resistance does play an important role on the enhancement of the 

product concentration. Further study is needed to confirm the effects of mass transfer 

resistance. 

2.6 Conclusions 

In this work we ignored the mass transfer resistance for both reaction and adsorption 

and focused on the effects of reaction kinetics, thermodynamic equilibrium and 

adsorption isotherm on the performance of the sorption enhanced reaction process. 

Three model reactions with different stoichiometric parameters, the water gas shift 

reaction, the H2S decomposition reaction and the propene metathesis reaction, are 

studied. It was found from the first two reactions that in order to produce high purity 

product the following parameters: Kr, Keq and Kc need to be large enough. The 

equilibrium constant affects the effluent profile in two ways: 1. by changing the 

equilibrium concentration of the adsorbate it changes the shape of the adsorbate 

concentration front thus the effluent profile; 2. by changing the reaction rate it changes 

the shape of the reaction mass transfer zone. In the meantime the reaction rate constant 

and the adsorption constant affect the reaction and adsorption separately. Also the 

reaction stoichiometric parameters are equally important as we found out in the study 

of the H2S decomposition, in which the product purity is determined by the initial 

concentration of S2 in the reactor. In practice it is difficult to periodically regenerate the 

reactor to the required level to produce high purity hydrogen. Secondary purification 

process may be needed to obtain high purity hydrogen from the sorption enhanced H2S 

decomposition reactor. These conclusions can be applied to the future design of a 

sorption enhanced reactor with various reaction schemes. The third reaction sheds light 
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on the importance of mass transfer resistance on the product concentration for a sorption 

enhance reaction reactor. Further study is needed to quantify the impacts of the mass 

transfer process during adsorption and the diffusion terms in the mass balance equation.     
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 Experimental Study of High Temperature 

Pressure Swing Adsorption with Steam Purge for Carbon 

Capture using Na-Promoted Alumina  

3.1 Introduction 

In order to mitigate global warming and climate change caused by greenhouse gases, 

carbon capture and storage (CCS) was proposed. Three different carbon capture 

pathways including pre-combustion, post-combustion and oxy-combustion are under 

development to reduce the CO2 emission from power plants, which accounts for 40% 

of total CO2 emission in the United States [4]. For pre-combustion carbon capture high 

temperature (>400 oC) CO2 adsorbents can provide high temperature carbon-free fuel 

for gas turbines thus increasing the efficiency [50]. It can also be used in hybrid reactors 

like sorption enhanced water gas shift reactors to produce high purity hydrogen [14].   

Among different adsorbents Na-promoted alumina and K-promoted hydrotalcite are 

the mostly studied materials due to their mild regeneration temperature, relatively high 

working capacity, long-time stability and low cost [51]. While K-promoted hydrotalcite 

has been studied by many groups [27, 39, 52-54] not much information is known for 

Na-promoted alumina, especially for its long-term stability and the role of steam on it.    

Na-promoted alumina was first mentioned in a patent by Sircar and Golden [55] as 

one of the candidate sorbents developed by Air Products and Chemicals Inc for pressure 

swing adsorption (PSA) processes to separate bulk CO2 from a wet high-temperature 

gas. Later our group published a series of work on Na-promoted alumina and K-

promoted hydrotalcite [16, 17, 30, 39, 56-62]. It was concluded that it shares the same 
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chemisorption mechanism thus the same isotherm model as that of K-promoted 

hydrotalcite. A key feature during those studies is that they were performed as a 

temperature swing adsorption process where adsorbents were regenerated by increasing 

the column temperature during each test no matter with steam or not. It was concluded 

that steam acted as inert purge gas during regeneration.  

A novel temperature swing sorption enhanced reaction (TSSER) was proposed [30] 

based on the experimental results obtained, where high pressure and low pressure steam 

were needed to regenerate the adsorbent. Based on simulation results Na-promoted 

alumina was found to require less steam during regeneration compared with K-

promoted hydrotalcite [61]. A high pressure condenser was studied to recover the high 

pressure steam used in TSSER, the heat recovery of which was estimated to be 11-32% 

[62]. 

Compared with temperature swing adsorption (TSA), pressure swing adsorption 

(PSA) can be run in faster cycles and requires less heat for regeneration. So far there is 

no experimental study related to PSA using Na-promoted alumina. Also recent results 

on other similar alkali metal promoted metal oxides show that steam plays a rather 

complicated role at various conditions. Walspurger et al. [63] reported K-Dawsonite 

crystalline phase was found on the potassium promoted alumina using in situ XRD 

under an equimolar mixture of CO2 and steam at 10 bar between 200-300 oC, and the 

breakthrough capacity was found to be enhanced to 1.5-1.7 mol/kg by adding steam. 

Boon et al. [53] measured the steam and CO2 mixture adsorption isotherm 

experimentally and proposed a combined model with low pressure surface adsorption 

and high pressure nanopore adsorption parts, where steam and CO2 only interact through 
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the high pressure nanopore part. Here we aim to explore the process performance of 

different PSA cycles and the role of steam as the purge gas on Na-promoted alumina. 

The testing temperature and CO2 partial pressure was determined by the exhaust gas out 

of a gas turbine to be around 400~440 oC and 2 atm.   

3.2 Experimental section 

Materials: Na-promoted alumina is purchased from BASF (CL-750) originally 

designed for hydrogen chloride removal.  

3.2.1 Thermogravimetric analysis (TGA) tests 

TA Instruments SDT Q600 was used for the TGA tests. Nitrogen (Praxair, >99.998%) 

was used as the purge gas and pre-mixed 44% CO2 balanced with N2 and pure CO2 

(Praxair, >99.998%) were used for the adsorption test gas. A typical TGA run was 

carried out with around 30 mg sample using platinum pans at 1 atm. The gas flow rate 

was set at 100 mL/min. The sample was first heated at 10 °C/min to the activation 

temperature (500 °C for Na-promoted alumina) and kept at that temperature for 4 hr in 

order to dehydrate and desorb CO2. The adsorption step was started after the sample 

weight stabilized at the testing temperature. The flowing gas was then switched from 

the purge gas to the adsorption test gas. During the desorption step the flowing gas was 

switched back to the purge gas. The influence of switching between different gases is 

negligible and was confirmed by checking the weight signal change using empty 

platinum pans. The adsorption capacity was calculated by the amount of CO2 adsorbed 

divided by the weight of the dehydrated sample (Eq. (3.1)).  
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where MCO2 is the molecular weight of CO2, Wdry is the sample weight when the 

adsorption step starts and Wad is the sample weight when the adsorption equilibrium is 

reached. However it is hard to accurately measure the total dry sample weight in a 

relatively large packed column for the pressure swing adsorption and breakthrough test. 

In this work the total sample weight during column packing was measured and part of 

the fresh sample was tested by the TGA test mentioned above. The weight loss based 

on the TGA test was then used to estimate the dry weight of the sample packed in the 

column. The sample weight and density in the following analysis are based on the dry 

weight.              

3.2.2 Pressure swing adsorption and column breakthrough tests 

A bench scale (Figure 3-1) and a pilot scale (Figure 3-3) experimental setup were built 

to test different quantities of adsorbents (~15g and ~200g) by pressure swing adsorption 

and column breakthrough tests. Here for the bench scale setup the following items were 

used for the experimental test rig: standard 44% CO2 balanced with N2 gas mixture 

(Praxair), argon (>99.999%, Praxair), nitrogen (>99.998%, Praxair), helium 

(>99.999%, Praxair), mass flow controllers (Alicat Scientific, Tucson, AZ and Aalborg 

instruments & controls, Orangeburg, NY), mass flow meters (Alicat Scientific, Tucson, 

AZ), back pressure controllers (Alicat Scientific, Tucson, AZ), and mass spectrometer 

(Pfeiffer QMA 200, Nashua, NH). The DAQ system (CB-7017, 7018 and 7520) comes 

from Measurement Computing Corp. and the control and automation system was 

enabled by a programmable logic controller (PLC), ELC series from Eaton Corp. For 

the pilot scale experimental setup mass flow controllers for CO2 and N2 were from 

Brooks Instrument due to a higher working pressure requirement. The high pressure 
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liquid metering pump from Eldex Laboratories Inc. provides accurate liquid flow rate 

to generate steam. Water separator with a coalescing filter and automatic drain from 

Parker Hannifin Corp. was used to separate condensed water from gas after the 

condenser. Desiccant (indicating Drierite from W.A. Hammond Drierite Co. Ltd.) was 

used before the gas product entered the Mass-Spec. High temperature heating tapes were 

used for the heating system for the bench scale setup (2-section) and the pilot scale setup 

(3-section). While the temperature controllers were controlled by K-type thermocouples 

attached to the wall, three K-type thermocouples were inserted into the column to 

monitor the temperature change inside the column. The setup pictures are shown in 

Figure 3-2 and Figure 3-4. The packed bed properties of the bench scale setup and pilot 

scale setup can be found in Table 3-1. Unlike the bench scale bed, glass beads were 

mixed and packed together with Na-promoted alumina in the pilot scale bed to reduce 

the temperature peak caused by heat of adsorption.  

A helium expansion experiment (Figure 3-5) was performed at room temperature to 

obtain the void volume (Vvoid) in the experimental setup using Eq. (3.2), where PH and 

PL are the pressure before and after the test setup is connected with the standard vessel 

and Vs is the volume of the standard vessel. After the setup was heated up to the test 

temperature the helium expansion experiment was performed again to calculate the 

average temperature TH in the system. By doing the mass balance calculation before and 

after connecting to the standard vessel at room temperature T0, the average temperature 

in the system TH can be derived by Eq. (3.3). 
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Figure 3-1 Schematic diagram of the bench scale experimental setup version 1.0 for the 

breakthrough and pressure swing adsorption tests on high temperature CO2 adsorbents (MFC: 

mass flow controller, BV: ball valve, TC: thermocouple, P: pressure sensor, SV: solenoid valve, 

FM: flow meter, NV: needle valve, Mass-Spec: mass spectrometer) 

 

Figure 3-2 Picture of the bench scale experimental setup for high temperature PSA test of CO2 

capture 
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Figure 3-3 Schematic diagram of the pilot scale experimental setup with automated steam 

procedures for adsorbent regeneration (MFC: mass flow controller, BV: ball valve, CK: check 

valve, FT: filter, TC: thermocouple, P: pressure transducer, BPC: back pressure controller, SV: 

solenoid valve, FM: flow meter, Mass-Spec: mass spectrometer)    

 

Figure 3-4 Picture of the pilot scale experimental setup for high temperature PSA test of CO2 

capture 
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Figure 3-5 Diagram illustration of the helium expansion experiment (MFC: mass flow controller 

for helium, CK: check valve, P: pressure transducer) 

3.2.3 Bench scale tests 

Four cases of pressure swing adsorption (PSA) cyclic tests were performed on the 

bench scale experiment setup. For each case the cyclic steady state was reached judging 

by the outlet composition and column temperature profile of the last two cycles. The 

column was fully regenerated at 500 oC before each cyclic test. The PSA cycle schemes 

are shown in Figure 3-6. The 5-step cycle analysis was based on the experimental results 

of the 4-step cycle, with the 4th purge step divided into a rinse step and a purge step. The 

reason to do that is to increase the product purity by purging the residual gas out during 

the rinse step.  

The amount of gas going out of the column was calculated based on the calibrated 

flow meter reading. The response time for the detector (Mass-Spec) was estimated to be 

around 8 seconds by comparing the response of the flow meter and the detector during 

the breakthrough experiment. Since the flow meter reading has a linear relationship with 

gas viscosity, the flow meter was calibrated by the gas mixture viscosity correlation by 

Kestin and Ro [64] using the effluent gas composition measured by the Mass-Spec.     
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Figure 3-6 4-step-1-bed (A) and 5-step-1-bed (B) pressure swing adsorption cycle for CO2 capture 

(PR: pressurization, AD: adsorption, BD: blowdown, RS: rinse and PG: purge) 

 

Table 3-1 Bed properties of the bench scale test and pilot scale test 

Bench scale setup bed properties  

ID, cm 1.09 

Height, cm 16.5 

Bulk density, g/cm3 0.906 

Vvoid, cm3 61.53 

TH, oC 125.2 

  

Pilot scale setup bed properties  

ID, cm 2.21 

Height, cm 56.5 

Bulk density for Na-promoted alumina, g/cm3 0.489 

Bulk density for glass beads, g/cm3 0.411 

Vvoid, cm3 314.1 

TH, oC 254.1 

 

After the pressure swing adsorption cycle tests were finished, the breakthrough 

experiment was performed at various CO2 partial pressures, with adsorption at 400 oC 

and desorption at 500 oC. The breakthrough capacity is calculated based on the mass 
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balance of CO2 from when the adsorption step starts to when the bed is saturated with 

the feed, which is typically less than 20 min while the desorption step is usually more 

than 1 hr. Typical mass balance error over the complete adsorption and desorption cycle 

is less than 3%, however when comparing the amount of CO2 adsorbed and desorbed 

during each cycle the error could be as high as 20% due to the reason of hard-to-measure 

low level CO2 composition during desorption. Therefore the breakthrough capacity here 

is based on the mass balance during the adsorption step shown in Eq (3.4):    
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where F is the molar flow rate and tad is the time when adsorption finishes. After the 

breakthrough tests the used sample were then taken out and tested by TGA tests and 

compared with the results of the fresh sample. 

3.2.4 Pilot scale tests 

The pilot scale tests were performed to verify the role of steam during regeneration. 

Glass beads with diameter (~3mm) similar to that of Na-promoted alumina was mixed 

with as diluent in the column. The bed density and mixing ratio can be found in Table 

3-1. The breakthrough tests done for the pilot scale setup were similar to that done for 

the bench scale tests. The experimental steps can be found in Figure 3-7. The same 

equation (Eq. (3.4)) was used to calculate the breakthrough capacity. The only 

difference lies in the regeneration step. The regeneration temperature was kept the same 

as the adsorption temperature at 440 oC. The steam test was performed at ambient 

pressure with 80% steam and 20% nitrogen. Here nitrogen was used to carry all the 

desorbed CO2 out of the condenser. A control test called Dry I was done by using the 
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same amount of gas without steam to regenerate the bed. Because there is no water 

removal device during the adsorption step, the bed needs to be completely dry before 

the adsorption step begins. Dry II was performed for both dry and steam tests to remove 

the moisture in the column. Breakthrough tests at PCO2 = 1 atm and 2 atm were 

performed. Since the tests at PCO2 = 1 atm were done at ambient pressure there was no 

pressurization and depressurization step. A series of breakthrough tests were performed 

and the results will be discussed later.    

 

Figure 3-7 Steam test steps for the pilot scale setup when PCO2 = 2 atm (PR: pressurization, AD: 

adsorption, DP: depressurization, Dry I: dry purge, Steam: steam purge, Dry II: dry purge)   

The adsorber column temperature is controlled by three separate temperature 

controllers at 440 oC. The temperature variance during the tests is within 12 oC. For a 

typical breakthough test at PCO2 = 1 atm, during adsorption 0.5 slpm (standard liter per 

minute) CO2 is sent to the bottom of the colum until the flow meter reading plus the 

temperature inside the column stabilizes, which typically takes 20 min. Then desorption 

for dry tests is started by sending 2.5 slpm pure N2 or Ar to the top of the column for 30 

min. Then the N2 or Ar flow rate is decreased to 0.5 slpm, which lasts for another 30 

min. For steam tests the first section of the desorption step is replaced by 0.5 slpm pure 

N2 or Ar together with around 2 slpm gas phase steam. The second section of the 

desorption step is the same as before, which will take away residue moisture inside the 
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column. For a typical breakthrough test at PCO2 = 2 atm, there are 2 more additional 

steps: pressurization and depressurization. The bed is first pressurized with 1 slpm 

nitrogen and stabilized at 4 bar for 5 min before adsorption starts. During adsorption 0.5 

slpm CO2 and 0.5 slpm N2 gas mixture is sent from the bottom to the top of the bed. 

After 20 min when the bed is saturated with gas mixture, co-current blow down starts. 

The desorption steps are the same as those done at ambient pressure tests. 

3.3 Results and discussion 

3.3.1 PSA results of the bench scale setup 

The adsorption pressure was chosen as 4.54 bar (52 psig) to separate a 44% CO2 and 

N2 mixture. The combination of adsorption pressure and mixture concentration enables 

us to test the adsorbent performance at 2 bar CO2 partial pressure. 4-step-1-bed 

PR+AD+BD+PG and 5-step-1-bed PR+AD+BD+RS+PG PSA cycles are explored here 

to study the effects of additional rinse step. The first cycle scheme is the simplest cycle 

scheme similar to the typical Skarstrom cycle. For either cycle scheme three tests were 

done using the feed to pressurize the bed and one test was, for comparison, done using 

argon.  

3.3.1.1 4-step-1-bed PSA cycles  

The test conditions for the four tests are listed in Table 3-2. The flow rate and time 

are values set in the programmable logic controller (PLC). The detailed mass balance 

results for each case can be found in the supplemental information. Assuming the gas 

received during PG is the product, the performance data are summarized in Table 3-3.     
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Table 3-2 Test conditions for 4-step-1-bed PSA cycles to capture CO2 from 44% CO2 and N2 

mixture on Na-promoted alumina at 400 oC and 4.54 bar (F: flow rate/sccm, T: time/sec) 

Case# Total cycles # 

Pressurization 

(PR)  

Adsorption 

(AD)  

Blowdown 

(BD)  

Purge 

(PG)  

P: 1->4.54bar P: 4.54bar P: 4.54->1bar P: 1bar 

F T F T F T F T 

1 79 132 105 132 300 100 92 100 300 

2 42 132 105 132 45 200 46 150 400 

3 47 132 105 132 25 200 46 150 200 

4 43 142 70 132 100 200 60 142 150 

 

Table 3-3 Performance of 4-step-1-bed PSA cycles 

 Purity Recovery Ar (Steam) / cm3 Feed throughput cm3/min 
Total feed / 

cm3 

Case 1 0.67 0.16 517 52 608 

Case 2 0.65 0.42 1046 29 285 

Case 3 0.64 0.41 521 37 232 

Case 4 0.71 0.35 645 36 228 

 

The adsorption time for Case 1 was long enough to saturate the bed with the feed. 

Hence it provided the highest purity among the cases where the bed was pressurized by 

the feed. However much CO2 was wasted in the adsorption step, resulting in the lowest 

recovery. Taking into account the amount of CO2 left in the void space, which was 

around 20 cm3, the actual amount of CO2 desorbed during PG, i.e. the working capacity 

of Na-promoted alumina, was around 0.066 mol/kg in Case 1. Comparison with TGA 

and breakthrough tested equilibrium capacity was made in Figure 3-9. 

In order to increase the working capacity of adsorbents and the CO2 recovery, the 

amount of Ar used for PG was doubled and the adsorption time was shortened in Case 
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2 (Table 3). As a result, the working capacity is estimated to be 0.093 mol/kg and the 

recovery is increased to 0.42. 

To further reduce the amount of CO2 lost in AD, a shorter AD time was set for Case 

3 with the same amount of Ar used during PG as that in Case 1. The purity and recovery 

are close to that of Case 2 but only half the amount of Ar was used during PG. The 

working capacity is close to that in Case 1. The purity and recovery of Case 2 and 3 are 

very close. Although the working capacity in Case 2 is higher, the effects of improved 

working capacity are diminished by the amount of CO2 lost during AD and BD.  

In all of the 3 cases above the CO2 concentration front already reached the end of the 

bed when PR was finished. Therefore part of the adsorption of CO2 was taken place 

when the desired partial pressure wasn’t reached. To fully utilize the adsorbents’ 

capacity and also create a sharp concentration front [65], Ar was used to pressurize the 

bed in Case 4. Two thirds of Ar as that in Case 3 was used. A smaller working capacity 

is observed with a higher purity even compared with Case 1. That can be explained: a 

larger fraction of Ar taking the place of N2 in the void space after BD. With a less 

working capacity more CO2 is lost during AD thus giving a smaller recovery.       

The system void volume is measured by the helium expansion experiment to be 61.5 

cm3 including the bed void volume, the connecting tubing, fittings, etc and the bed 

volume is 15.5 cm3. In all the four cases there are two significant drawbacks caused by 

this large void volume. One is that more than half of CO2 is lost during BD, the other 

one is that the product purity during PG decreases with larger void volume due to more 

N2 left in the void space after BD. 
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3.3.1.2 5-step-1-bed PSA cycles  

To increase the product purity during PG a rinse step is introduced using Ar to push 

the interstitial N2 out. This work is done based on the data obtained with the 4-step-1-

bed PSA cycles by manually divide the purge step into a rinse step (RS) and a purge 

step (PG). RS is stopped when CO2 concentration is higher than 80%. The 

corresponding test conditions and performance summary for the four cases are shown 

in Table 3-4 and Table 3-5. 

 

Table 3-4 Test conditions for 4-step-1-bed PSA cycles to capture CO2 from 44% CO2 and N2 

mixture on Na-promoted alumina at 400 oC and 4.54 bar (flow rate F: sccm, time T: sec) 

Case# Total cycles # 

Pressurization 

(PR) 

Adsorption 

(AD) 

Blowdown 

(BD) 

Rinse 

(RS) 

Purge 

(PG) 

P:1->4.54 bar P: 4.54 bar P: 4.54->1 bar P: 1 bar P: 1 bar 

F T F T F T F T F T 

1 79 132 105 132 300 100 92 100 33 100 267 

2 42 132 105 132 45 200 46 150 31 150 369 

3 47 132 105 132 25 200 46 150 29 150 171 

4 43 142 70 132 100 200 60 142 25 142 125 

 

 

Table 3-5 Performance of 5-step-1-bed PSA cycles 

 Purity Recovery Ar (Steam) / cm3 Feed throughput cm3/min 
Total feed / 

cm3 

Case 1 0.86 0.08 517 52 608 

Case 2 0.79 0.20 1046 29 285 

Case 3 0.82 0.18 521 37 232 

Case 4 0.86 0.18 351 36 228 
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As is shown in Table 3-4 the time taken by the rinse step (RS) is consistent for Case 

1 to 3, namely around 30 sec. But the flow rates are different. Case 1 and Case 4 show 

the highest purity of 86% CO2 balanced with N2, which is lower than expected. Because 

N2 is considered to be inert and after the remaining interstitial N2 has been removed 

from the column, only pure desorbed CO2 is coming out during the purge step (PG). 

The product composition during the purge step is shown in Figure 3-8. It shows an 

asymptotic composition of 2% CO2 and ~0.6% N2 regardless of the total purge flow.  

 

Figure 3-8 CO2 and N2 composition detected by Mass-Spec during purge in Case 1 of 5-step-1-bed 

PSA cycles 

By using the 5-step-1-bed PSA cycles the product purity is improved from 67% to 

86% (probably higher if Mass-Spec were accurate at low levels). The trade-off is a lower 

recovery. It is possible that the gases lost during AD, BD and RS can be recovered by 

the utilization of a multi-bed process. Also a higher capacity adsorbent may increase 

product purity and reduce the equipment size. 
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3.3.2 Comparison between breakthrough tests and TGA tests 

 

Figure 3-9 Comparison of the used (○) and fresh (□) sample capacity measured by TGA and 

breakthrough (Δ) tests with the simulated value (line) for Na-promoted alumina at 400 oC (the 

estimated cyclic working capacity (◊) is also shown here) 

The small working capacity observed in the PSA tests is unexpected. According to 

the isotherm model reported by Lee et al. [60] ideally (without considering the mass 

transfer resistance and column dynamics) the working capacity would be 0.65mol/kg. 

Additional breakthrough tests were done to check the adsorbents equilibrium capacity. 

The results are shown in Figure 3-9. A huge deviation was observed especially at the 

higher partial pressure region. According to the newly measured isotherm ideally the 

working capacity would be around 0.35mol/kg. Still this value is much higher than what 

was observed in the PSA tests, namely less than 0.1mol/kg, which proves the PSA 

performance is desorption limited. Desorption tests were carried out at 300, 400 and 

500oC as is shown in Figure 3-10. It was observed that the rate of desorption slows down 

after around 40 cm3 CO2 at all three temperatures. This is very close to what was 

observed in the PSA tests during the purge step. The fastest desorption rate is found at 

500 oC while the desorption rate at 300 oC follows exactly as that at 400 oC. It is not 

clear which mechanism is dominating during desorption.  
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Figure 3-10 Desorption tests of Na-promoted alumina at different temperatures (after 

breakthrough test of 44% CO2 and N2 mixture at corresponding temperatures) 

 

According to Lee et al. [56] completely reversible desorption of CO2 on Na-promoted 

alumina was observed at 350 oC, namely more than 95% of CO2 desorbed with 90 min 

of pure N2 purge, and the desorption process can be described by the linear driving force 

model using the same mass transfer coefficient as is used in the adsorption process. This 

is not true with the Na-promoted alumina sample tested in this work. The adsorption 

and desorption test at 300 oC in Figure 3-10 shows that even after 2 hr N2 purge there is 

still 46% CO2 left on the adsorbents, which was only driven off when the temperature 

was raised up to 500 oC. At the end of the 2 hr purge, the CO2 concentration has already 

fallen to 0.2%, which is close to the accuracy limit of our Mass-Spec. This type of 

phenomenon is also observed for the desorption test at 400 oC. It is shown in Figure 

3-10 that after 2 hr purge at 400 oC the amount of adsorbed CO2 remains around 0.1 

mol/kg, which is 1/3 of the total capacity.       

In order to find out the reason why the equilibrium capacity of Na-promoted alumina 

was much smaller than the value in the literature and to confirm the capacity data 
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obtained by the breakthrough method, thermogravimetric analysis (TGA) was applied 

to Na-promoted alumina. Both used samples from previous column tests and fresh 

samples were tested. The results are shown in Figure 3-9. The capacity of the fresh 

samples (square) appears to be slightly above the model predicted data while the 

capacity of the used samples (circle) falls right around the breakthrough tests results 

(triangle). Therefore it confirms the previous breakthrough results and reveals the long 

term degradation of Na-promoted alumina. The desorption of CO2 on a used sample 

after being saturated by 44% CO2/N2 at 400 oC is also studied. As shown in Figure 3-11 

the weight loss curve is approximately linear during the first 30min. After that the rate 

of desorption slows down. It indicates that two different mechanisms take place during 

desorption. The operation of PSA cycles falls into the linear section with a desorption 

rate of 0.0036 mol/kg/min. If this desorption rate could be applied to the estimated 0.066 

mol/kg actual working capacity in Case 1 of 4-step-1-bed PSA cycles, it would have 

taken 21 min for the desorption to take place while the whole cycle was no more than 

14 min. Hence this mechanism cannot be applied directly to the PSA cycles.      

Compared with the column desorption test in which 0.146 mol/kg CO2 desorbed in 

50 min in Figure 3-10, the TGA test shows that 0.155 mol/kg CO2 desorbed within the 

same time period in Figure 3-11. The closeness of those two numbers reveals that the 

column desorption rate is limited by the mass transfer or surface desorption in the solid 

adsorbents. 
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Figure 3-11 Desorption curve of used Na-promoted alumina at 400 oC measured by TGA 

 

3.3.3 Pilot scale steam tests  

3.3.3.1 Comparison between breakthrough tests, TGA tests and model predicted results 

The CO2 capacity of fresh Na-promoted alumina at 440 oC and PCO2 = 1 atm measured 

by TGA are shown in Figure 3-12. Compared with model [60] predicted results the 

capacity data after 3hr adsorption in TGA appear to be slightly higher. The adsorption 

kinetics details are shown in Figure 3-13. The equilibrium is not reached until 90 

minutes. From the inset in Figure 3-13 it is shown that the rate of adsorption slows down 

after the first ~5 minutes, which is when the adsorption capacity becomes close to what 

is predicted by the model.  

Previous study by our group shows that the CO2 equilibrium capacity at 440 oC 

follows the pattern in Figure 3-12. At 1 and 2 atm the equilibrium capacity is 0.45 and 

0.6 respectively. Compared with the breakthrough tests results shown in Figure 3-14 the 

initial test at ambient pressure is very close the model results. During the breakthrough 

tests the bed was never fully regenerated, which is the reason the capacity is lower 

thereafter. The breakthrough capacity at PCO2 = 2 atm reached the maximum after the 

bed was regenerated by steam. However compared to the model result 0.6 mol/kg it is 
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still lower. Also as is reflected by the results in Figure 3-14 there are lots of uncertainties 

in the measure at this condition due to errors from the detector and flow meters.         

 

Figure 3-12 Comparison of the isotherm model by Lee et al. [60] and TGA test results on Na-

promoted alumina at 440 oC 

 

Figure 3-13 TGA capacity test on fresh Na-promoted alumina at 440 oC when PCO2 = 1 atm 

(dashed line is the capacity predicted by the isotherm model, the inset is a zoom-in for the first 20 

minutes)  
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Figure 3-14 Breakthrough tests on Na-promoted alumina at 440 oC and ambient and high 

pressure (PCO2 = 2 atm) 

For the first 6 tests the test conditions were explored to enable a full breakthrough and 

reasonable regeneration. From the 7th test on every test was done at the same conditions. 

The adsorber bed is only partially regenerated so that the capacity measurement is in 

fact the working capacity of alumina at these cyclic testing conditions. As shown in 

Figure 3-14 it reached cyclic steady state around test 12-20. After steam test 4 the 

capacity of the breakthrough test 21 is increased by more than 0.5 mol/kg. After that 6 

dry tests were performed and the capacity slowly deceased to the same level before the 

steam test. Generally the CO2 capacity of Na-promoted alumina is increased by around 

0.5 mol/kg after steam purge for most cases. There is one exception. During steam test 

2 it was observed that the increase of capacity happened before the steam test. It was 
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later found out the steam leak into the column from a bypass line was the reason. As 

shown in Figure 3-15 and Figure 3-16 the increased working capacity of the adsorbent 

can be clearly indicated by the delay of flow meter readings and mass spectrometer 

response curves.  

The high pressure breakthrough test started from test a, before which the bed stood 

still for 4 days after previously being cleaned by the cyclic operation for ambient 

pressure breakthrough tests. After 4 cyclic high pressure breakthrough tests its capacity 

stabilized around 0.35 mol/kg. Then the bed was regenerated at 490 oC under dry 

condition. After 3 cyclic breakthrough tests the working capacity stabilized again at 0.35 

mol/kg. After standing still for 4 days the bed was tested by cyclic breakthrough tests 

again (test b). Both test a and b showed lower capacity compared with the other tests at 

the same condition, the reason of which is not clear yet. The working capacity before 

steam test 5 was around 0.35 mol/kg. After steam test 5 the working capacity increased 

to 0.5 mol/kg and gradually dropped back to 0.35 mol/kg after 4 dry tests.  
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Figure 3-15 Comparison between the breakthrough curve before and after steam test 4 (solid line: 

Mass-Spec reading of CO2 composition, dashed line: exit gas flow meter reading) 

 

Figure 3-16 Comparison between the breakthrough curve before and after steam test 5 (solid line: 

Mass-Spec reading of CO2 composition, dashed line: exit gas flow meter reading) 
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Table 3-6 Steam mass balance during five steam tests 

Steam test # Water pumped in/g Water collected /g Error% 

1 85.9 94.1 -9.5 

2 44.3 58.5 -32.0 

3 37.5 N/A  

4 44.8 43.7 2.4 

5 58.2 55.7 4.3 

  

Steam mass balance was performed by measuring the weight loss from the water 

bottle (source) and the water collected at the moisture separator (destination). The steam 

test 1 and 2 in Table 3-6 show that more water was collected than what was pumped in. 

This is due to the water accumulated in the moisture separator when steam was sent 

through the bypass before the steam purge. This step was skipped since steam test 3. 

However some water was spilled during steam test 3 so it was not clear the amount of 

water collected for steam test 3. In the end the results of steam test 4 and 5 show that 

the steam balance can be closed by that modification of test procedures.   
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3.3.3.2 Possible role of steam during regeneration 

 

 

Figure 3-17 Temperatures along the axis of the bed and amount of desorbed CO2 recorded during 

Steam Test 4 (Solid line: thermocouple (TC) readings, dashed line: integrated volume of CO2 

coming out of the column)  

Figure 3-17 and Figure 3-18 show that the temperature inside the column increased 

when steam ran from the top to the bottom. The thermocouples along the column axis 

experienced this temperature pulse in a sequential way. The highest temperature peak 

was observed at the bottom thermocouple. Compared with the dry test shown in Figure 

3-19 the bottom was also 7 oC higher than the other parts of the column. It could be 

explained by the following reason. The top of the column was cooled by large amount 

of gas flow while the preheating section was not providing enough power to heat the 

entering gas from room temperature to 440 oC. Since the sensor for the temperature 

controllers was located near the region where the flowing gas temperature was lower 
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than 440 oC, the heating tape maximized its output to reach the set point. Although the 

resulting temperature at the sensor was well maintained at the set point, the gas flow 

was overheated by the heating tape below the sensor. By the time it reaching the column 

bottom, its temperature was higher than 440 oC. Therefore, the bottom temperature 

could not be well-controlled and was overheated.  

 

 

Figure 3-18 Temperatures along the axis of the bed and amount of desorbed CO2 recorded during 

Steam Test 5 (Solid line: thermocouple (TC) readings, dashed line: integrated volume of CO2 

coming out of the column) 

The temperature peak indicates that steam is not as inert as nitrogen or argon on Na-

promoted alumina. Comparing the amount of desorbed CO2 with respect to time in 

Figure 3-17 and Figure 3-18 it shows that most of the CO2 desorbed when the 

temperature peak appeared around the bottom thermocouple in around 10 min. During 
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the dry test in Figure 3-19 CO2 was being continuously removed during the first 30 min. 

Not only more CO2 came out during the steam purge but also the rate of desorption was 

faster.  

The direct reason for the benefits of using steam is not clear. To explain the increased 

working capacity one can look at it from two different angles. One way of viewing it is 

that the steam purge allows more CO2 to be released. The other one is that after steam 

purge additional sites are created. To determine which one is the dominating factor for 

the higher capacity, the amount of CO2 adsorbed and desorbed during steam purge tests 

and dry tests are compared as shown in Figure 3-20. Without steam purge the CO2 

capacity dropped over cycles because some of the adsorbed CO2 accumulated on the 

adsorbent as the amount of CO2 purged out during the desorption step was constantly 

lower than the amount of CO2 adsorbed during the adsorption step. Moreover it is found 

out that the amount of CO2 purged by steam matches reasonable well with the increased 

capacity after Steam Test 5. Regeneration by steam helped release of those irreversibly 

adsorbed CO2 therefore creating more adsorption sites.      

However the heat of adsorption released by steam causes a higher temperature inside 

the column. The higher temperature could also have facilitated the desorption kinetics 

and provided a cleaner adsorber. Based on our test with high pressure breakthrough test 

this could not be the only reason. As shown in Figure 3-14 the adsorber capacity is 

higher (0.5 mol/kg) after steam purge than that (0.4 mol/kg) after being generated at 490 

oC. It could be that steam is competing with CO2 on the surface of Na-promoted alumina 

so that CO2 was pushed out by steam. Once the column is saturated with steam there 

would be no CO2 leaving the column as shown in Figure 3-17 and Figure 3-18. Hence 
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the following conclusions can be reached: steam is competing with CO2 for the same 

site on Na-promoted alumina. 

 

 

Figure 3-19 Temperatures along the axis of the bed and amount of desorbed CO2 recorded during 

Dry Test 20 (Solid line: thermocouple (TC) readings, dashed line: integrated volume of CO2 

coming out of the column) 
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Figure 3-20 Comparison of the amount of CO2 accumulated during the adsorption steps and 

purged out during the desorption steps of a series of breakthrough test for Steam Test 5  

Although now it is clear that steam is adsorbed on Na-promoted alumina, it is difficult 

to quantify the amount of steam adsorbed at different conditions. The key issue is to 

find valves and instruments compatible with steam, which are less common for small 

scale test setups. So far the only quantitative study of high temperature steam adsorption 

isotherm was done by Boon et al. [53] on K-promoted hydrotalcite at 400 oC with 

columns 6 m tall and 3.8 cm ID. According to their results the steam adsorption capacity 

on K-promoted hydrotalcite is around 0.1 mol/kg at 400 oC and 1 atm. There is an easier 

way (Eq (3.5)) to estimate the adsorption capacity by monitoring the velocity of the 

travelling thermal front in the bed when adsorption happens. A few assumptions need 

to be made here: isothermal bed, sharp concentration front and the ideal gas law. In Eq 

(3.5) t is the time needed for the thermal front to travel from the top to the bottom 

thermocouple (TC) shown in Figure 3-21, L is the distance between the top and bottom 
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TC shown in Figure 3-22 and S is the cross section area of the bed. Capacity calculated 

based on this method tend to be smaller than the actual capacity. For example it is 

calculated that CO2 capacity at 440 oC and PCO2 = 2 bar is 0.26 mol/kg while according 

to our mass balance calculation it is around 0.35 mol/kg.  

 2

2 2

Total H O

H O b H O

bed

P LSy
F t LSn

RT


    (3.5) 

It is estimated that Na-promoted alumina has a capacity of 2.67 mol/kg for steam at 1 

atm and 440 oC, which is much higher than that of K-promoted hydrotalcite reported by 

Boon et al. [53]. 

 

 

Figure 3-21 Temperatures along the axis of the bed and amount of desorbed CO2 recorded during 

Steam Test 5 (Solid line: thermocouple (TC) readings, dashed line: integrated volume of CO2 

coming out of the column, t: travelling time for the thermal wave to move from the top TC to the 

bottom TC) 
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Figure 3-22 Illustration of the column structure 

3.4 Conclusions 

Our test results on Na-promoted alumina indicate that under dry testing conditions the 

CO2 capacity decreases over cycles due to incomplete desorption or irreversible 

adsorption. However, it was discovered that steam competitively adsorbed on Na-

promoted alumina, which makes it ideal for the regeneration of this adsorbent. Further 

study is needed to quantify the interaction between steam and CO2 on the surface of Na-

promoted alumina. Experimental work to measure the isotherm of pure steam and 

mixture of steam and CO2 at various pressures is essential for the design of a novel high 

temperature pressure swing adsorption process.  

  

TC 1 TC 2 TC 3
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3.5 Supplemental information 
Table 3-7 Case 1: Mass balance data for each component during one cycle after cyclic steady state 

is reached for 4-step-1-bed PSA cycles (*volume at standard conditions: 25 oC, 14.696 psia 

**CO2% without considering Ar) 

Unit: cm3* CO2 in  CO2 out N2 in N2 out  Ar in  Ar out  CO2 % ** 

PR 75 1 93 0 181 177 0 

AD 197 160 243 233 0 31 41 

BD 0 65 0 77 0 12 46 

PG 0 43 0 22 517 475 67 

Total 272 268 336 332 698 695 45 

 

Table 3-8 Case 2: Mass balance data for each component during one cycle after cyclic steady state 

is reached for 4-step-1-bed PSA cycles (*volume at standard conditions: 25 oC, 14.696 psia 

**CO2% without considering Ar) 

Unit: cm3* CO2 in  CO2 out N2 in N2 out  Ar in  Ar out  CO2 % ** 

PR 81 0 102 1 180 178 0 

AD 45 15 57 53 0 29 22 

BD 0 58 0 76 0 13 43 

PG 0 52 0 29 1046 977 65 

Total 126 126 159 158 1226 1197 44 

 

Table 3-9 Case 3: Mass balance data for each component during one cycle after cyclic steady state 

is reached for 4-step-1-bed PSA cycles (*volume at standard conditions: 25 oC, 14.696 psia 

**CO2% without considering Ar) 

Unit: cm3* CO2 in  CO2 out N2 in N2 out  Ar in  Ar out  CO2 % ** 

PR 79 1 101 1 183 181 0 

AD 23 4 29 23 0 21 14 

BD 0 56 0 84 0 15 40 

PG 0 42 0 23 521 483 64 

Total 102 102 130 131 704 699 44 
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Table 3-10 Case 4: Mass balance data for each component during one cycle after cyclic steady 

state is reached for 4-step-1-bed PSA cycles (*volume at standard conditions: 25 oC, 14.696 psia 

**CO2% without considering Ar) 

Unit: cm3* CO2 in  CO2 out N2 in N2 out  Ar in  Ar out  CO2 % ** 

PR 0 1 0 1 288 119 0 

AD 98 13 121 47 6 121 21 

BD 3 52 4 60 0 75 46 

PG 1 34 1 14 351 340 71 

Total 102 99 126 122 645 655 45 

 

Table 3-11 Test conditions for the steam tests when PCO2 = 1 atm for adsorption 

Adsorption   

(Co-current) CO2 flow rate, slpm 0.5 

 Total pressure, atm 1.0 

 Step time, min 20 

Regeneration   

Step 1 Dry purge I N2 flow rate, slpm 2.5 

(Counter-current) Total pressure, atm 1.0 

 Step time, min 30 

Step 1 Steam purge Steam flow rate, slpm 2.0 

(Counter-current) N2 flow rate, slpm 0.5 

 Total pressure, atm 1.0 

Step 2 Dry purge II N2 flow rate, slpm 0.5 

 Total pressure, atm 1.0 

 Step time, min 30 

 

Table 3-12 Test conditions for the steam tests when PCO2 = 2 atm for adsorption  

Adsorption    

(Co-current) CO2 flow rate, slpm 0.5 

 N2 flow rate, slpm 0.5 

 Total pressure, atm 4.0 

 Step time, min 20  

Regeneration   

Step 1 Depressurization 
(Co-current) 

Total pressure 4.0 -> 1.0 atm 

Step 2 Dry purge I  
(Counter-current) 

N2 flow rate, slpm 2.5 

 Total pressure, atm 1.0 

 Step time, min 30 

Step 2 Steam purge  Steam flow rate, slpm 2.0 
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(Counter-current) 

 N2 flow rate, slpm 0.5 

 Total pressure, atm 1.0 

 Step time, min 30 

Step 3 Dry purge II  
(Counter-current) 

N2 flow rate, slpm 0.5 

 Total pressure, atm 1.0 

 Step time, min 30 

Step 4 Pressurization  
(Co-current) 

N2 flow rate, slpm 1.0 
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 Analysis of Pumped Heat Electricity Storage 

Process using Exponential Matrix Solutions 

4.1 Introduction 

The need to store excessive amount of electrical energy comes with the fact that the 

demand has peaks and valleys while the output of a power plant, especially nuclear 

power plants, is relatively stable. Additionally development of intermittent renewable 

energy like wind, solar and tides further provides an incentive for the development of 

such processes. It is also reported [66] that electricity storage has many benefits ranging 

from renewable energy integration to power quality and reliability. The most commonly 

used processes for large scale electrical energy storage (EES) are pumped hydroelectric 

storage (PHS), compressed air energy storage (CAES) and flow batteries [67].  

PHS is comprised of two water reservoirs at different elevations and electrical energy 

is stored as gravity potential energy. CAES compresses air into large caverns up to 10 

MPa and uses gas turbines to recover the energy. Flow batteries have two half-cell 

electrolyte reservoirs, from which electroactive species flow through a power cell to 

reversibly convert chemical energy into electricity or vice versa. All three of them have 

a high turn-around efficiency of 60-90% [68], which is defined as the ratio between the 

amount of electricity retrieved and the amount of electricity stored. Among the 

nonchemical techniques PHS and CAES require particular geological structures, which 

might not be available to regions that EES is needed.  

Thermal energy storage could provide a nonchemical solution for regions without any 

geographical features like rivers and caverns. However as is said by Morandin et al. [69] 

there is little literature available on the transformation of electrical energy into thermal 
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energy for storage, because electrical energy is believed to degrade once it is converted 

to heat. It is mentioned by Chen et al. [68] that the turn-around efficiency for thermal 

energy storage is usually below 60%. A new thermal electrical energy storage process, 

referred as pumped heat electricity storage (PHES) in [70], thermo-electrical energy 

storage (TEES) in [69, 71, 72] or pumped thermal electricity storage (PTES) in [73-75], 

has recently been proposed and studied by several independent groups [70-74, 76-84]. 

In this study it will be referred as pumped heat electricity storage (PHES). 

4.1.1 Recent development on PHES processes 

PHES is able to achieve high turn-around efficiency by acting as a heat pump during 

loading and as a thermal engine during delivery. In an ideal case where a reversible 

Carnot heat pump with efficiency of η1=T1/(T1-T0) and a reversible Carnot heat engine 

with efficiency of η2=(T1-T0)/T1 are applied, and pressure drop, thermal losses and 

properties dependence on temperature are neglected, it could have a turn-round 

efficiency of η1 η2=100%. A simple finite-time thermodynamics study has been done 

recently by Thess [70] predicting that the turn-around efficiency of PHES would be 

comparable to that of advanced-adiabatic CAES under certain conditions. 

However the concept is not new and dates back to the work published in 1924 by 

Marguerre [85], which has not been translated into English. The development of such a 

concept over the last century is well illustrated in the work by Mercangӧz et al. [86]. 

Recently two types of PHES based on the same basic principle appeared in literature: 

one is based on using transcritical CO2 as the working fluid with hot water and ice 

storage (patented by ABB Ltd. [83]), the other one is based on using inert gas as the 

working fluid with hot and cold solid material storage tanks (patented by Isentropic Ltd. 
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[87] and SAIPEM S.A. [88]). Although both of them are still under development and 

no demonstration plants have been built, an increasing number of journal papers and 

patents shows that this is an area gaining lots of interest.  

Full scale process modeling and optimization studies exist for both types of PHES. 

Morandin et al. [69, 71] optimized the procedure for the synthesis of the heat exchanger 

network and the storage tanks for the transcritical CO2 PHES, and achieved a maximum 

turn-around efficiency of 60% with the isentropic efficiency of compressors and 

expanders around 0.85. McTigue et al. [75] studied the second type of PHES and 

concluded that the success of PHES would hinge upon compressor and expander 

performance and with polytropic efficiency of 0.99 the turn-around efficiency could be 

close to 70%. The prototype machines development is reported by Howes [80] that 2 

prototypes machines were developed at Isentropic Ltd with reciprocating compressors 

and expanders and based on that preliminary tests a hypothetical 2-MW storage machine 

is defined with a turn-around efficiency of 72%. 

In this work we will focus on the study of the second type PHES with the same 

configurations as described by Desrues et al. [79]. Our model is based on the cyclic 

steady state solution obtained by Carnish and Caram [89] for heat regenerators. 

Traditional full scale simulation of the cyclic heat regenerator operation requires 

calculation from the initial state and progressively reaches the cyclic steady state. With 

the help of the exponential matrix solution we are able to express the cyclic steady state 

solution of the temperature distribution explicitly thus provide an efficient alternative 

method to evaluate the process. A disadvantage of such a solution is that it cannot be 

applied to cases where parameters are dependent on temperature, which prevents it from 
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being used for more detailed engineering simulation. To our best knowledge this method 

has not been applied to the PHES process, our aim is to provide a different approach to 

evaluate the second type PHES process and a guideline for further development.             

4.2 Process description 

The process includes a high pressure (HP) tank and a low pressure (LP) tank packed 

with solid refractory material, pairs of compressors and turbines to transfer electrical 

energy into thermal energy and vice versa, a heater and a cooler to regulate the process 

gas temperature, and a circulating inert gas flow connecting the components listed 

above. The operation schedule can be divided into two steps: the loading step and the 

delivery step. Electrical energy is stored as sensible heat in the solid material inside the 

tank during the loading step and released during the delivery step. The process flow 

diagrams are shown in Figure 4-1 and Figure 4-3 while the corresponding T-S diagrams 

are shown in Figure 4-2 and Figure 4-4. 

 

Figure 4-1 Process flow diagram during the loading step 
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Figure 4-2 T-S diagram during the loading step, comparison with the isentropic turbomachines 

 

  Figure 4-3 Process flow diagram during the delivery step 

 

 Figure 4-4 T-S diagram during the delivery step 
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Table 4-1 Illustrative example of the temperature calculation at the compressor and turbine 

Loading Delivery 

T2nom = 773.15 K, T0nom = 298.15 K, PR = 

3,  

γ = 1.66, ζ = 0.9 

T2nom = 773.15 K, T0nom = 298.15 K, PR’ = 

3.88,  

γ = 1.66, ζ = 0.9 

T3 = T2nomψ1/ζ = T2nomPR(γ-1)/(γζ) = 1256.1 K T2 = T3ψ-ζ = T3PR’(γ-1)(-ζ)/γ = 773.2 K 

T1 = T0nomψ-ζ = T0nomPR(γ-1)(-ζ)/γ = 201.2 K T0 = T1ψ1/ζ = T1PR’(γ-1)/(γζ) = 366.2 K 

 

During the loading step the gas flows clockwise. The compressor works as a heat 

pump and raise the gas temperature to a desired point to heat up the HP tank while the 

expander provides a cold stream to cool the LP tank down. Hence the hot thermal wave 

moves towards the bottom of the HP tank while the cold thermal wave moves towards 

the top of the LP tank. The step is stopped before either thermal wave breaks through, 

otherwise it will become a great burden for the heater and the cooler and decrease the 

overall energy efficiency.  

During the delivery step the gas flows counterclockwise. The expander works as a 

heat engine to release the thermal energy previously stored in the system. The thermal 

waves move upward in the opposite direction compared to that of the loading step. The 

LP tank is heated up while the HP tank is cooled down. The low temperature of the gas 

stream coming out of the bottom of the LP tank actually reduces the work needed at the 

compressor.  

A cooler is added to remove the extra heat generated by the irreversibilities of the 

turbomachines at room temperature T0nom. A heater is added to maintain the temperature 

of the gas going into the compressor at T2nom during the loading step thus increase the 

total energy stored in the HP tank. Depending on the electricity supply and demand the 

loading step time and the delivery step time may vary.    
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4.3 Model description 

An exponential matrix solution for the temperature distribution in the storage vessels 

can be obtained using the method proposed by Carnish and Caram [89]. The tank is 

discretized into N identical compartments as shown in Figure 4-5. Here a linear 

relationship of heat transfer between gas and solid phase is applied in Eq. (4.2), in which 

the heat transfer coefficient (h) is a lumped factor, accounting for the gas phase 

dispersion effect, the film heat resistance and the heat conduction inside the solid 

spheres. When h is infinitely large the thermal wave becomes a flat front as is described 

in Levenspiel’s work [90]. Neglecting accumulation of the gas phase, the energy balance 

equations of the nth compartment for gas and solid phases are given by: 

 

Figure 4-5 Discretized compartments-in-series model for PHES processes 

 1( ) ( )g g pg n n n nU C hal T         (4.1) 

 ( )n
s ps n n

dT
C ha T

dt
     (4.2) 

where Ug, ρg, Cp,g, ρs, Cp,s, h, a, l, T and θ are the superficial velocity, gas density, gas 

heat capacity, solid bulk density, solid heat capacity, heat transfer coefficient, solid 

surface area to volume ratio, length of each compartment, solid temperature and gas 

temperature. We assume Cp,g, Cp,s, ρs, ρgUg and h are independent of temperature. 

Process gas is assumed to obey the ideal gas law and irreversibilities of the 
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turbomachines are taken into account by using the polytropic efficiency ζ. Therefore the 

temperature ratio for a compressor can be calculated as: 

 
1//out inw T T     (4.3) 

ψ is the thermal compression ratio and for an ideal gas ψ = PR(γ-1)/γ where γ = Cp/Cv. 

The temperature ratio for a gas turbine can be calculated as: 

 /in outT T      (4.4) 

As is mentioned in Desrues et al.’s work [79] the irreversibility of turbomachines 

tends to increase the outlet temperature. In the PHES process the irreversible heat is 

removed at the cooler. To avoid the extra heat generated by the turbine during delivery, 

a different pressure ratio is chosen for the delivery step so that the outlet gas temperature 

T2 = T2nom as shown in Table 4-1:  

 
21/'PR PR    (4.5) 

The dimensionless length and time are defined as: 
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    (4.6) 
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


   (4.7) 

where L is the total length of the tank. Those dimensionless numbers were also used 

in White’s work [73] on the study of PHES processes and exist in several works related 

to heat regenerators [89, 91]. Eq. (4.1) and (4.2) are then transformed into 

 1n n nT       (4.8) 

 n
n n

dT
T

d



    (4.9) 

where 𝛽 and 𝜒 are defined as  
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N
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  (4.10) 

 1     (4.11) 
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Because the cooler and heater will keep the temperature of the gas going into the LP 

tank and the HP tank constant, the temperature profile in the two tanks can be solved 

separately. Here for the sake of simplicity we solve them together in a set of linear 

differential equations.  

In the loading step the compartments are numbered clockwisely from the bottom of 

the LP tank to the bottom of the HP tank: 
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 (4.12) 

In the delivery step the compartments are numbered counter-clockwisely from the 

bottom of the HP tank to the bottom of the LP tank: 
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 (4.13) 

Eq. (4.12) and (4.13) can be written in the matrix notation as: 

 d ( )
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d





 

T
AT F   (4.14) 

 d ( )
( ) '

d





 

T
AT F   (4.15) 

Eq. (4.14) and (4.15) have the same form of exponential matrix solution as:  
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1 1

0( ) ( )e     A
T T A F A F   (4.16) 

The corresponding gas temperature can be calculated as: 

 ( ) ( ) ( )   θ A I T F   (4.17) 

The cyclic steady state solutions of the solid temperature distribution after the delivery 

step and the loading step, namely Tssc and Tssh, have the following relationship: 
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M , π and π’ are the dimensionless time of the loading and 

delivery step respectively. M is used as a factor to reverse the compartments order. 

Solving Eq. (4.18) and (4.19) we have: 
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 (4.21) 

Hence the exponential matrix solutions for cyclic steady state temperature distribution 

are obtained. Together with Eq. (4.16) we are able to calculate not only the cyclic steady 

state temperature profile but also the transient temperature profile during each step.  

4.3.1 Definition of the turn-around efficiency and storage bed utilization ratio     

The turn-around efficiency is widely described in existing studies [73, 79, 83] on 

PHES processes as the ratio of amount of work obtained during delivery to the amount 

of work stored during loading. We will follow the same definition to be consistent with 

them. However it is worth noting that the turn-around efficiency does not equal the 

overall process efficiency, which is defined as the ratio of the work obtained during 
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delivery to the total energy provided in both the loading and delivery step. The bed 

utilization ratio is the ratio of actual stored energy and the maximum amount of energy 

that can be stored with the existing PHES process. Because the solid properties, e.g. 

tank dimensions and heat capacity, can be canceled out, the utilization ratio is 

represented by the volume averaged temperature difference between the loading step 

and delivery step. The detailed derivations are described in the following work.  

The energy flow diagram is provided in Figure 4-6, where Qhot1, Qcool1, Qhot2 and 

Qcool2, are the heat transferred at the electric heater and cooler when loading and 

delivering. Wnet1 and Wnet2 is the amount of work done at the compressor and work 

received at the expander during the loading and delivering step.  

Based on the first principle the energy stored in the process during the loading step is: 

 1 1 1 2 2 2tot hot net cool net hot coolE Q W Q W Q Q         (4.22) 

Neglecting the energy accumulated in the gas phase we have: 

 + ( + )tot HP LP s ps HP LPE E E c LS T T         (4.23) 

 HPT  and LPT  are the volume average temperature differences before and after the 

loading step of the solid in the HP tank and the LP tank respectively. The total stored 

energy has a linearly relationship with HP LPT T  , which is defined as the average 

temperature difference ΔTaverage and can be easily calculated based on our model. 
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Figure 4-6 Energy flow diagram during the loading and the delivery step 

The turn-around efficiency is then defined as: 
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which becomes negative when Qhot2 is larger than Wnet2. It can now be expressed as 

dimensionless numbers as the following: 
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  (4.25) 

where 1coolT , 2coolT , 1hotT  and 2hotT  are time averaged temperature differences 

at the cooler and heater during the loading and delivery step respectively.  

For given storage vessels we prefer to design a PHES process with not only high turn-

around efficiency but also large storage capacity. To quantify the percentage of the used 

storage capacity, a storage bed utilization ratio is defined as:       
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
   (4.26) 

Similar conception was discussed in White’s work [113], where it was referred as a 

capacity or utilization factor by the ratio of π/Λ and similar dimensionless analysis was 

done for availability losses in PHES processes. We will show that RU is very close to 
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the value of π/Λ in most cases but starts to diverge when π is close to Λ later. When the 

vessels are fully utilized, RU equals 1 and thermal fronts travel through the whole storage 

vessel. When step time approaches zero RU will reduce to zero. Therefore RU is mainly 

a function of step time. 

4.4 Simulation setup 

In this work the matrix exponential is calculated using Matlab function EXPM. 

Discussions on the algorithms to compute the matrix exponential can be found in Moler 

and Loan’s work [92]. The temperature profiles in the tanks are obtained by discretizing 

it into N1=300 compartments while the net work of turbomachines and heat duties of 

heaters and coolers for each time step are calculated using N2=300 time steps. Increasing 

N1 and N2 to 400 will change the turn-around efficiency and utilization ratio by less than 

1%. The value of operating parameters are T0nom=298.15K, T2nom=773.15, PR=3, 

PR’=3.88, γ=1.66 and ζ=0.9 unless otherwise specified. The computation time for 

calculating a complete dynamic cycle of loading and delivery is around 60 seconds by 

running MATLAB R2013a on an Intel i5 3.10 GHz, 8 GB RAM and Windows 7 64-bit 

computer.  

An analytical solution for a single charge operation for a heat regenerator is available 

in White’s work [73] and is shown below: 

         0, , exp 2g s I              (4.27) 

where θ, ξ and η are the dimensionless temperature, length and time respectively and 

I0 is the zero-th order modified Bessel function of the first kind. The number of 

compartments used in this work causes dispersion effects as discussed in Levenspiel’s 

work [90]. For a given size of regenerator the larger the number of compartments, the 

closer it is to the analytical solution. In Figure 4-7 the results are shown for a single 
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charge operation heating the regenerator with Λ=400 from 25 oC to 500 oC. The 

numerical solution represents well the travelling of thermal front in the regenerator, 

however, dispersion effects make the front spread wider, resulting in a slightly smaller 

turn-around efficiency. 

 

Figure 4-7 Comparison of dimensionless temperature difference during a single charge operation 

when Λ=400 π=50 

4.5 Results and discussion 

In order to evaluate the influence of turbomachine irreversibilities and film resistance 

to heat transfer on the PHES process capacity and efficiency, three levels of 

approximations including four models are proposed:  

1. A flat front model with the polytropic efficiency ζ=1 for turbomachines,  

2. A flat front model with the polytropic efficiency ζ=0.9 for turbomachines,  

3. A film resistance model with the polytropic efficiency ζ=1 and 0.9 for 

turbomachines.  

In a flat front model heat transfer reaches equilibrium immediately so that the initial 

step change of fluid temperature retains its shape when travelling through the tank. 

When the polytropic efficiency ζ equals to 1, compression and expansion in 

turbomachines are considered to be reversible, in which case PR=PR’ and no additional 
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heat needs to be removed at the cooler. The following equation is used to calculate the 

corresponding isentropic efficiency for compressors and turbines: 
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Note that PR is the pressure ratio of the HP tank and LP tank. Therefore the 

corresponding isentropic efficiency for the compressor and turbine are calculated as 

0.87 and 0.92 in the PHES process here.  

4.5.1 Flat front model and ζ=1      

When π<Λ the front is still contained in the tank thus the storage capacity has a linear 

relationship with the distance travelled by the front. The dimensionless length for such 

a distance can be represented as the following: 
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To maximize process efficiency π need to be kept smaller than Λ to avoid the 

breakthrough of the front. When step time π is equal to Λ the storage vessels are fully 

used and RU becomes 1, which is true for all flat front models. Also ζ=1 means 

turbomachines are reversible so that the pressure ratios during loading and delivery are 

the same, which in this case equals 3 for both steps. Assume that the temperature at the 

heater and cooler stays the same, T3 = T2nomPR(γ-1)/γ = 1196.6 K and T1 = T0nom/PR(γ-1)/γ 

= 192.6 K.   In this case ΔTaverage equals to (T3-T0nom)-(T2nom-T1) = 318 K and the turn-

around efficiency equals 1.     
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4.5.2 Flat front model and ζ=0.9 

The average temperature difference can still be represented by (T3-T0nom)-(T2nom-T1) 

= 386 K, where outlet gas temperature T1 and T3 will be the same as that calculated in 

Table 4-1. Note that ΔTaverage in this case is 386 K compared with 318 K in the previous 

case when ζ=1. Therefore the storage capacity at a constant pressure ratio is increased 

when the irreversibilities of turbomachines are considered. However the turn-around 

efficiency is lower because of the additional heat caused by the losses in the 

turbomachines. According to Eq. (4.24)   
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which is equivalent to the equation derived in Desrues et al.’s work [120].Therefore 

the turn-around efficiency is around 82.4% based on the numbers in Table 4-1. 

Moreover Eq. (4.31) shows that when there is no heat transfer resistance, the turn-

around efficiency is independent of tank size and operation duration. 

4.5.3 Film resistance heat transfer model, ζ=1 and ζ=0.9 

The turn-around efficiency and utilization ratio are functions of the gas and solid 

material properties, pressure ratios and the dimensionless numbers π and Λ. A base case 

is studied with parameters T0nom=298.15K, T2nom=773.15, PR=3, γ=1.66, π=100 and 

Λ=200. As shown in Table 4-2 the turn-around efficiency are affected by both the 

polytropic efficiency and the film heat transfer resistance. The utilization ratio is 

determined by the ratio of π and Λ. Changing the polytropic efficiency from 1 to 0.9 has 

little effect on the utilization ratio. The heat transfer resistance reduced the utilization 

ratio because that the thermal front is stretched inside the storage tank and after reaching 
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cyclic steady state the front partially breakthrough the storage tank as shown in Figure 

4-8 and Figure 4-9.   

Table 4-2 Results of four different models where π=100 and Λ=200 

Model assumptions  ΔTaverage / K Eff % RU % 

Flat front, ζ =1 318 100 50 

Flat front, ζ =0.9 386 82.4 50 

Film resistance, ζ =1 156 88.4 48.9 

Film resistance, ζ =0.9 189 72.2 48.9 

 

Details on how each of the operating variables and dimensionless numbers affect the 

turn-around efficiency and the utilization ratio in the film resistance heat transfer model 

will be discussed below. 

4.5.3.1 Cyclic steady state solid temperature distributions in the LP and HP tanks 

With Eq. (4.20) and (4.21) the cyclic steady state temperature distributions at the end 

of each step are obtained, while the transients are solved based on Eq. (4.16). As shown 

in Figure 4-8 and Figure 4-9 the thermal wave propagates with respect to time after the 

cyclic steady state is reached. During the loading step the thermal wave moves from the 

bottom to the top in the LP tank while in the HP tank it moves from the top to the bottom. 

During the delivery step it moves in the opposite direction. The outlet temperature of 

both tanks starts to change as the thermal front breaks through, which can be used as a 

signal to switch from loading to delivery or vice versa. Due to the same step duration 

and the heater and cooler acting as temperature regulators, the cyclic steady state 

temperature profiles at the end of each step are centrally symmetric. However the 

transient profiles do vary a little in the beginning of a new step but remain the same 

while travelling through the tank.        
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Figure 4-8 Solid temperature profile during the loading step after the cyclic steady state is 

reached when PR=3, PR’=3.88, T0nom =298.15K, T2nom= 773.15K, π=100 and Λ=200 

 

Figure 4-9 Solid temperature profile during the delivery step after the cyclic steady state is 

reached when PR=3, PR’=3.88, T0nom =298.15K, T2nom= 773.15K, π=100 and Λ=200 

4.5.3.2 Comparison of air and argon as the process gas 

Only the effects of different heat capacity ratios of the two gases are discussed here 

while the other parameters are the same as those in the base case of film resistance and 

ζ =0.9 model. The heat capacity ratio γ for air is 1.4 while for argon it is 1.66. Changing 

the working gas from argon to air in this case changes the temperature ratio at the 

turbomachines. It greatly reduces the average temperature difference by 38.2% and 

slightly changes the turn-around efficiency from 72.2% to 67.2%. Therefore a higher 
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heat capacity ratio is crucial for the total capacity of the process and it also helps to 

improve the turn-around efficiency. Furthermore for the same Λ since argon has a higher 

density compared to air at the same conditions, the superficial velocity Ug for argon will 

be smaller than that for air, which means less attrition for the solid material and stress 

for the turbomachines. Also inert argon will greatly reduce the oxidation effects at high 

temperatures. 

4.5.3.3 Effects of changing the loading step pressure ratio: PR 

It is showed in Figure 4-10 that by increasing the loading step pressure ratio PR from 

2 to 5 the turn-around efficiency is raised from 0.67 to 0.76 while the utilization ratio 

stays the same around 0.49. Higher pressure ratio can increase the turn-around 

efficiency but hardly affect the utilization ratio. Meanwhile the highest temperature of 

the solid materials in the HP tank is also increased from 1050 to 1574 K, which on one 

hand increases the average temperature difference thus help improve the storage 

capacity, on the other hand together with the high pressure turns to a challenge for both 

the energy storage material and process equipment. Considering the working 

temperature of a regenerator packed with inexpensive ceramic materials for iron and 

steel combustion air preheating is from 500 to 1350 oC [93], the pressure ratio ranges 

between 2 to 5 in our study. To avoid the maximum temperature limit T2nom is set to -

15oC in Howes’s [80] 2-MW PHES process so that the pressure ratio can be chosen as 

12 with the highest temperature being 500 oC.    
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Figure 4-10 Relationship between PR and turn-around efficiency and utilization ratio  

4.5.3.4 Effects of changing the dimensionless numbers: π and Λ on the capacity and 

efficiency 

Since the dimensionless step duration π and the dimensionless tank length Λ

 

are 

comprised by several parameters, some of which are distinct like ρg , Cpg  , Ug and L to 

Λ and ρs ,Cps and tstep to π while the others are the same like h and a, we will discuss 

their effects separately.    

The effects of changing dimensionless numbers Λ and π independently on turn-around 

efficiency and utilization ratio are shown in Figure 4-11. Once Λ is fixed changing the 

step time π will change the temperature distribution inside each tank when the cyclic 

steady state is reached, as shown in Figure 4-12. The utilization ratio increases almost 

linearly with the step time π until π is close to Λ. Then it starts to level off, which is 

associated with the breakthrough of the thermal wave resulting in uniform temperature 

distribution for the solid material thus reaching its maximum capacity. The linear 

relationship between the total temperature difference and π is in accordance with the flat 

front model, which is valid when π is relatively small compared with Λ.   
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Figure 4-11 Effects of π and Λ on turn-around efficiency and utilization ratio when 

T0nom=298.15K, T2nom= 773.15K, PR1=3 and PR2=3.88 

 

Figure 4-12 Temperature profile at the end of loading and delivery step with different values of π 

when T0nom=298.15K, T2nom= 773.15K, PR=3, PR’=3.88 and Λ=200 

The turn-around efficiency decreases as π increases and the maximum efficiency is 

determined by Λ. The maximum efficiency is increased from 63% to 78% by changing 

Λ from 50 to 400. The maximum efficiency is limited by the irreversibilities of 

turbomachines and cannot be higher than 82.4% in the flat front model when ζ=0.9. 

Also it takes longer time for the efficiency to drop to a certain value with a larger Λ, 

which is an advantage for larger size vessels.  
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The results indicate that choosing a proper value for Λ not only determines the 

maximum capacity but also the maximum efficiency. Besides π needs to be set carefully 

since a larger value of π comes with larger capacity but lower efficiency.  

 

Figure 4-13 Effects of ha on the efficiency and the total temperature difference when 

T0nom=298.15K, T2nom= 773.15K, PR1=3, PR2=3.88, πo=150 and Λo=200 

So far we have discussed the effects of varying Λ and π separately using their distinct 

factors. By changing the value of ha, π and Λ can be changed together. To better 

illustrate the effects of changing π and Λ together a base case is chosen where πo=150 

and Λo=200. As shown in Figure 4-13 that a higher value of ha results in slightly higher 

utilization ratio and turn-around efficiency. Increasing the surface area and the heat 

transfer coefficient does have a larger impact on turn-around efficiency than on 

utilization ratio. 

4.5.3.5 Effects of turbomachinary polytropic efficiency 

According to McTigue et al. [75] after optimization the losses associated with 

pressure drop and irreversible heat transfer are only a few percent and the performance 

of PHES processes may be determined by the efficiency of turbomachinary. As we 
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mentioned before Desrues et al. [79] derived the following equation for the flat front 

model: 
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  (4.32) 

Therefore we can compare the effects of turbomachinary efficiency in both the film 

resistance heat transfer model and flat front model. As shown in Figure 4-14, it is clear 

that in both models the polytropic efficiency is an important factor for the turn-around 

efficiency. A small decrease in the polytropic efficiency will result in a large drop in the 

turn-around efficiency. The utilization ratio, however, is not affected. Another effect of 

decreasing the polytropic efficiency is that the temperature ratio at the turbomachines is 

changed. The average temperature difference is increased from 171 K to 232 K when 

the polytropic efficiency is reduced from 0.95 to 0.8. The storage capacity is therefore 

increased as a side effect.     

 

Figure 4-14 Effects of turbomachinary polytropic efficiency on the process turn-around efficiency 

when T0nom=298.15K, T2nom= 773.15K, PR1=3, PR2=3.88, π=100 and Λ=200 

4.5.3.6 Asymmetrical operation 

Previously we have focused on the symmetrical operation during which the loading 

period π equals the delivery period π’. For a PHES process with identical LP and HP 
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storage tanks, we can imagine that in a flat front model the cyclic steady state position 

of the thermal front will be determined by the shorter duration step in an asymmetrical 

operation. For example if π is larger than π’ the energy input during π-π’ will be wasted 

at the heater and cooler because the front moves out of the tank during this time. In 

practice we may encounter situations where the loading period might be longer or 

shorter than the delivery period. Therefore we analyzed those two asymmetrical 

operation scenarios and compared them with the symmetrical operation and the results 

are shown in Figure 4-15. Both asymmetrical operations result in the breakthrough of 

thermal fronts, therefore greatly reducing the turn-around efficiency. The utilization 

ratio, as discussed for the flat front model, is determined by the shorter step time. For 

example when we keep π the same and increase the value of π’, the utilization ratio stays 

the same when π’> π. It decreases with π’ when π’< π.     

 

Figure 4-15 Solid cyclic steady state temperature distribution for different operation scenarios 

when T0nom=298.15K, T2nom= 773.15K, PR1=3, PR2=3.88, π=100 and Λ=200 

   

4.6 Conclusions 

We used a simplified discretized heat transfer model to simulate the pumped heat 

energy storage system. Exponential matrix solutions for transients and cyclic steady 
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state temperature distributions were easily obtained and used for process analysis. Turn-

around efficiency and storage utilization ratio were defined to characterize the 

performance of the system. Effects of different process gases, pressure ratios, and 

dimensionless parameters on those two factors were discussed, which provides us 

guidelines for later design and detailed modeling. Effects of heat transfer resistance and 

turbomachinery efficiency on the process performance are compared. Turbomachinery 

efficiency is found to be the limiting factor to the turn-around efficiency. Symmetric 

operation for PHES processes is suggested to achieve high turn-around efficiency and 

utilization ratio. The dynamic process of the system pressure change when switching to 

a new step and dependence of heat capacity and heat transfer coefficient on temperature, 

pressure and Reynolds number is neglected in this work. The matrix exponential 

solution won’t be available in those cases. In order to take those detailed engineering 

effects into account, a traditional numerical method need to be used. The matrix 

exponential solution provides us a convenient approach to analyze the cyclic steady 

state process performance for PHES processes and is well suited for a first principle 

analysis.             

4.7 Illustrative example 

Here we use an example given by Levenspiel [90] to demonstrate the design process 

for a typical PHES process based on our exponential matrix solutions. Given two storage 

vessels with 32 m high and 3 m in diameter filled with uniformly sized spherical basaltic 

beach stones, an appropriate step time is needed to make full use of the storage capacity 

while keeping the turn-around efficiency relatively high. By calculation of the two 

dimensionless numbers, an appropriate operation point can be easily found according to 

Figure 4-11. To compare PHES processes with available technologies like lead acid 
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batteries, storage specific energy ρenergy is calculated with all three levels of 

approximations models studied before. 

Data 

For the solid: 

dp=0.08m ε=0.4 a=3(1- ε)/R=45 m-1 ks=0.5 W m-1 K-1 ρs=912 kg m-3 Cps=1000 J kg-1 K-1 

Ug=0.4 m s-1 at 20 oC 

For Argon at 20 oC and 1 atm: 

µ= 2.2×10-5 kg m-1 s-1 kg=0.017 W m-1 K-1 ρg=1.7 kg m-3 Cpg=521 J kg-1 K-1  

For the process parameters: 

PR=3, PR’=3.88, T0nom =298.15K, T2nom= 773.15K 

Re 2473
p g gd U 


   

Pr 0.67
pg

g

C

k


   

Using the correlation from Levenspiel: 1/2 1/32 1.8Re Pr
p

g

hd

k
   

we have h = 17.1 W m-2 K-1. Then the dimensionless length variable 69.5
g g pg

haL

U C
     

1. Flat front model and ζ = 1 

In a flat front model the maximum energy density can be achieved and RU equals 1. 

The storage specific energy is defined as: 

 
+

( + ) / 2
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s s

E E E
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V V


 

  
       (4.33) 

where    3 0nom 2nom 1T T T T 318 KHP LPT T       thus ρenergy is calculated to be 

44.2 Wh/kg and the turn-around efficiency equals one. 

Table 4-3 Results of four different models for the illustrative case 

Model assumptions ΔTaverage / K Efficiency % 
Bed utilization 

ratio % 

Specific energy 

ρenergy Wh/kg 

Flat front, ζ =1 318 100 100 44.2 

Flat front, ζ =0.9 386 82.4 100 53.6 

Film resistance, ζ =1 132 79.3 41.1 18.2 

Film resistance, ζ =0.9 160 64.0 41.0 22.1 

 

2. Flat front model and ζ = 0.9 
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The maximum energy density in this case is higher than that when ζ = 1 due to the 

larger average temperature difference caused by the irreversiblities of turbomachines. 

According to Eq. (4.25) and (4.26) ρenergy is calculated to be 53.6 Wh/kg and the turn-

around efficiency is 82.4%. 

3. Film heat transfer resistance model, ζ = 1 and ζ = 0.9 

Based on the simulation results shown in Figure 4-11, the maximum turn-around 

efficiency and the total capacity will be limited with such a small value of Λ regardless 

of the value of π chosen. For π=30, tstep = ρsCpsπ/ha = 9.9 h. As shown in Table 4-3 for 

ζ = 1, ΔTaverage = 132 K, RU = 41.1% and Eff = 79.3%. For ζ = 0.9 ΔTaverage = 160 K, RU 

= 41.0% and Eff is 64.0%. The storage specific energy can then be calculated as 18.2 

and 22.1 Wh/kg respectively. 

Compared with lead acid batteries with specific energy between 30 and 50 Wh/kg 

[68], this PHES process has the potential to reach 53.6 Wh/kg when in flat front model 

and ζ=0.9. When considering the heat transfer resistance the specific energy drops down 

to 22.1 Wh/kg while turn-around efficiency becomes 64.0%. Alternatives to improve 

the performance include increasing the pressure ratio to increase the specific energy, 

and raising the value of Λ to increase the maximum turn-around efficiency. Note that in 

an actual PHES process other losses like pressure loss, mechanical and electrical losses 

are inevitable, thus we would expect an even lower efficiency.   
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Nomenclature 

a solid material surface area to volume ratio, m2/m3 

A discretization matrix for the governing equations 

Cpg gas heat capacity, J/(kg K) 

Cps solid heat capacity, J/(kg K) 

dp particle diameter, m 

ΔEtot
 

Energy stored during the loading step and released during the delivery 

step 

Eff Turn-around efficiency 

F feed vector of the loading step 

F’ feed vector of the delivery step 

h heat transfer coefficient, J/(m2 s K) 

I identity matrix 

l length of each compartment, m 

L total length of each tank, m 

M matrix to reverse the compartments order 

n tank index 

N1 number of compartments 

N2 number of time steps 

PR pressure ratio of the HP tank and the LP tank during loading 

PR’ pressure ratio of the HP tank and the LP tank during delivery 

RU tank utilization ratio 

tstep step duration, s 

T solid temperature vector, K 

Tssh solid temperature vector for cyclic steady state solution after loading, K 

Tssc solid temperature vector for cyclic steady state solution after delivery, K 

ΔTaverage 
sum of volume average temperature difference in both HP tank and LP 

tanks, K 

HPT  
volume average temperature difference of the HP tank between the end of 

loading and delivery steps, K 

LPT  
volume average temperature difference of the LP tank between the end of 

loading and delivery steps, K 

1coolT
 

time average temperature difference of the process gas at the cooler when 

loading, K 

2coolT
 

time average temperature difference of the process gas at the cooler when 

delivering, K 

1hotT
 

time average temperature difference of the process gas at the heater when 

loading, K 

2hotT  
time average temperature difference of the process gas at the heater when 

delivering, K 

Ug interstitial velocity of gas flow, m/s 

w Toutlet/Tinlet of a compressor 

β =(Λ/N)/(1+ Λ/N)
 

γ heat capacity ratio Cp/Cv 

ε void fraction of the tank 

ζ polytropic efficiency of the turbomachines 

η dimensionless time 

θ gas temperature vector 

μ gas viscosity, kg m-1 s-1 
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π dimensionless step duration 

ρg gas density, kg/m3 

ρs bulk density of the solid material in the tank, kg/m3 

χ =1/(1+ Λ/N) 

Λ dimensionless length of the tank 

ψ thermal compression ratio 
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 Conclusions and Future Work 

Chapter 1 

An expression for the minimum work of separation for adsorption processes based on 

the isotherm at ambient temperature was developed and applied to the linear isotherm 

and the Langmuir isotherm. It was found that the adsorbent with the linear isotherm 

requires less work than that with the Langmuir isotherm. In all cases considered the 

work was greater than the ideal work of separation from the gas mixture. Moreover we 

analyzed the equivalent work needed for temperature swing adsorption processes and 

chemical looping processes. By using zeolite 13X and CaO the equivalent work required 

by those two processes are compared and calcium looping process is favored for low 

CO2 concentration flue gas (<5%) while temperature swing adsorption requires less 

energy for high CO2 concentration flue gas (>5%). The point where the required work 

from both processes are equal depends on the extent of degradation of CaO. However 

due to the utilization of high temperature sensible heat and carbonation heat, the effects 

of degradation are hardly noticeable when it comes to the overall efficiency of power 

plants with carbon capture. Further study is needed to analyze an emerging type of new 

metal organic framework (MOF) which possesses characteristics of both adsorption and 

chemical looping. Their capacity is dependent on the partial pressure of the flue gas and 

the working capacity and heat of adsorption is high. 

Chapter 2 

In Chapter 2 we ignored the mass transfer resistance for both reaction and adsorption 

and focused on the effects of reaction kinetics, thermodynamic equilibrium and 

adsorption isotherm on the performance of the sorption enhanced reaction process. 
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Three model reactions with different stoichiometric parameters, the water gas shift 

reaction, the H2S decomposition reaction to produce H2 and S2 and the propene 

metathesis reaction to produce ethylene and butene, were studied. It was found from the 

first two reactions that in order to produce high purity product the following parameters: 

Kr, Keq and Kc need to be large enough. The equilibrium constant affects the effluent 

profile in two ways: 1. by changing the equilibrium concentration of the adsorbate it 

changes the shape of the adsorbate concentration front thus the effluent profile; 2. by 

changing the reaction rate it changes the shape of the reaction mass transfer zone. In the 

meantime the reaction rate constant and the adsorption constant affect the reaction and 

adsorption separately. Also the reaction stoichiometric parameters are equally important 

as we found out in the study of the H2S decomposition, in which the product purity is 

determined by the initial concentration of S2 in the reactor. In practice it is difficult to 

periodically regenerate the reactor to the required level to produce high purity hydrogen. 

A secondary purification process may be needed to obtain high purity hydrogen from 

the sorption enhanced H2S decomposition reactor. These conclusions can be applied to 

the future design of a sorption enhanced reactor with various reaction schemes. The 

third reaction sheds light on the importance of mass transfer resistance on the product 

concentration for a sorption enhance reaction reactor. Further study is needed to 

quantify the impacts of the mass transfer process during adsorption and the diffusion 

terms in the mass balance equation.     

Chapter 3 

In Chapter 3 an experimental study of pressure swing adsorption to separate CO2 was 

carried out on Na-promoted alumina at high temperature. Argon was used as a purge 
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gas. The highest purity product was 86% CO2 (argon free) with a 5-step scheme where 

the recovery rate was only 18%. The mass balance for each step suggests more than 

90% of the uncollected CO2 was lost during the blowdown step, which was caused by 

the void space in the test setup. The tests also showed that the adsorption capacity of the 

sorbent declined rapidly after a few cycles, which matched the results from 

thermogravimetric analysis on used samples. Moreover, based on the pilot scale steam 

tests it was discovered that steam was competitively adsorbed on Na-promoted alumina 

with CO2, which greatly facilitated the regeneration process. The steam capacity of Na-

promoted alumina is estimated to be 2.67 mol/kg when the steam partial pressure is at 

0.8 atm. To fully regenerate Na-promoted alumina saturated by 2 atm CO2, 16.6-24.9 

mol steam per mol of capture CO2 is required. In the future an experimental setup with 

minimized void space should be built to test the cyclic performance of CO2 adsorbents 

for pressure swing adsorption processes. A modification on our pilot scale setup is being 

planned to include steam in the feed CO2 mixture to study the role of steam during 

adsorption on Na-promoted alumina. This will make possible the quantification of the 

interaction between steam and CO2 on the surface of Na-promoted alumina and 

measurement of the isotherm of pure steam and mixture of steam and CO2 at various 

pressures. Moreover, surface characterizations are under investigation to elucidate the 

mechanism behind the observed competitive behavior of CO2 and steam on Na-

promoted alumina.  

Chapter 4 

In Chapter 4 we used a simplified discretized heat transfer model to simulate a 

pumped heat energy storage system. Exponential matrix solutions for transients and 
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cyclic steady state temperature distributions were easily obtained and used for process 

analysis. Turn-around efficiency and storage utilization ratio were defined to 

characterize the performance of the system. Effects of different process gases, pressure 

ratios, and dimensionless parameters on those two factors were discussed, to provide us 

guidelines for detailed modeling and later design. Effects of heat transfer resistance and 

turbomachinery efficiency on the process performance were compared. 

Turbomachinery efficiency is found to be the limiting factor to the turn-around 

efficiency. Symmetric operation for PHES processes is suggested to achieve high turn-

around efficiency and utilization ratio. The dynamic process of the system pressure 

change when switching to a new step and dependence of heat capacity and heat transfer 

coefficient on temperature, pressure and Reynolds number is neglected in this work. 

The matrix exponential solution will not be applicable in those cases. In order to take 

those detailed engineering effects into account, a traditional numerical method will need 

to be used. The matrix exponential solution provides us a convenient approach to 

analyze the cyclic steady state process performance for PHES processes and is well 

suited for a first principle analysis. Future work is needed to extend this analysis method 

to other periodic operation processes to simplify the calculation for the cyclic steady 

state solutions.             
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Appendix A. Minimum Work of Desorption 

According to Myers and Monson [5] the grand potential of a clean adsorbent in vacuo 

to be immersed to equilibrium pressure of p at constant temperature T is: 
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P
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RT dP
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which is the minimum energy required to clean the adsorbent per unit mass of 

adsorbent. When the adsorbent is partly cleaned from loading n1 to n2 the minimum 

energy can be calculated by taking the Gibbs free energy of gas into account.  

Before desorption: 
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After desorption: 
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The Gibbs energy change during desorption: 
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According to Eq. (3) based on the reversible membrane desorption process: 
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Integrate Eq. (21) by parts we can prove that: 
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After isothermal compression of the desorbed gas from P2 to one atmosphere: 
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Appendix B. Gas Mixture Viscosity  

The Alicat flow meter needs to be calibrated by gas viscosity in order to show the 

actual gas flow rate. In our previous study the Wilke equation [94] was used to calculate 

the gas mixture viscosity: 
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In Eq (B.1) and (B.2) xi, μi and Mi represent the molar fraction, pure component 

viscosity and molecular weight respectively. 

However an improvement was made by Kestin and Ro [64] using the extended law of 

corresponding states with an accuracy of ±0.1% at 25 oC. A complete set of equations 

to calculate the multi-component gas mixture viscosity is listed as the following: 
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where ν is the number of gas species in the mixture and 
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where the units of η, M, T, σ and ε/k is μP, g/mol, K, Å and K. The value of σij and 

εij/k for CO2, N2 and Ar were listed in Table B-1 and Table B-2. 

Table B-1 The scaling factor σij  (Å) for CO2, N2 and Ar 

σij  (Å) N2 Ar 

CO2 3.705 3.604 

 N2 3.48 

Table B-2 The scaling factor εij / k (K) for CO2, N2 and Ar 

εij / k (K) N2 Ar 

CO2 151.1 156.5 

 N2 120 

The results of those two different gas mixture viscosity model are compared in Figure 

B-1.  

 

Figure B-1 Comparison of two gas mixture models from Wilke and Kestin and Ro with 

experimental data 
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