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Abstract 

Despite significant structural differences between the active sites of supported 

vanadium oxide catalysts such as supported VO4/SiO2, and vanadium bromoperoxidase 

enzyme mimics such as the vanadium peroxo-oxo compound chelated with N-(2-

hydroxyethyl)iminodiacetic acid (heida) or K[VO(O2)(heida)], both catalysts are 

capable of conducting similar partial oxidation reactions.  The K[VO(O2)(heida)](aq) 

vanadium enzyme mimic contains a vanadium peroxo-oxo structure, O=VO2, that is not 

present for vanadia supported on inorganic oxides such as silica.  Vanadia dispersed on 

silica is present as a trigonal pyramidal surface VO4 species possessing one terminal 

V=O bond and three bridging V-O-Si bonds under dehydrated conditions.  The first 

objective of the studies included in this dissertation was to compare the aqueous 

methanol oxidation mechanism of K[VO(O2)(heida)](aq) with that of the vapor-solid 

methanol oxidation by supported VO4/SiO2.  The second objective was then to extend 

this to the study of Vanadium Haloperoxidases (VHPOs), thereby beginning to bridge 

the gap between heterogeneous and enzyme catalysis.  In this study, we have used in 

situ Raman, UV-vis and ATR-IR spectroscopy during methanol oxidation to examine 

the nature of the active sites, most abundant reaction intermediates, rate-determining-

step, and oxidation mechanisms of the K[VO(O2)(heida)](aq) mimic compound and 

inorganic supported vanadia catalyst.  In both catalytic systems, methanol chemisorbs at 

the bridging V-O-ligand and V-O-Si sites.  The use of methanol as a molecular probe 

was employed to provide important information on the active site and mechanism of 

oxidation by K[VO(O2)(heida)](aq).  This study elucidates the K[VO(O2)(heida)](aq) 

active site, most abundant reaction intermediates, the rate-determining-step, and the 
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important role of the vanadium peroxo structure for aqueous methanol oxidation, 

bridging the gap between inorganic and protein based vanadate oxidation catalysts.  

These results were then used as a benchmark for the study of Vanadium Haloperoxidase 

enzymes. 
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Chapter 1:  Introduction 

Selective oxidation of methanol to formaldehyde over supported vanadium 

oxide catalysts has emerged as the model system for oxidation reactions over metal 

oxide catalysts in recent years because the structure-activity relationship for this 

catalytic system is becoming fairly well understood.  This is due to recent extensive 

fundamental characterization studies (EXAFS 1, 2, 
51

V NMR 3, Raman4, IR5, UV-vis 6, 7 

and DFT calculations8, 9).  The supported vanadium oxide catalysts contain isolated and 

polymeric surface VO4 species below monolayer coverage.  Only isolated surface VO4 

sites are present below ~20% of monolayer coverage and mostly polymeric surface VO4 

species are present at monolayer coverage.  Crystalline V2O5 nanoparticles form if 

monolayer coverage is exceeded.  The surface VO4 species possess one terminal oxo 

V=O bond and three bridging V-O-Support/V-O-V bonds with the V-O-V bonds only 

present for the polymeric species.  The oxidation of methanol to formaldehyde over an 

isolated surface VO4 site proceeds via CH3OH chemisorption on the bridging V-O-

Support bond to form surface methoxy (CH3O*) and hydroxyl species as seen below in 

equation (1.1). 8-10 

                   (1.1) 
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The surface methoxy intermediate subsequently transfers one of its hydrogen 

atoms to the terminal V=O bond, which irreversibly forms the departing formaldehyde 

reaction product, shown below in equation 1.2.8, 9 

                              (1.2)  

The reduced surface VOx species can further react with the adjacent surface hydroxyl to 

form H2O via the reaction (see equation 1.3): 

                                  (1.3) 

It should be noted that the exact molecular structures of the reduced surface 

VOx species have still not been determined in the heterogeneous catalysis literature, 

although during reduction, the loss of the V=O stretching vibration can be observed 

using in situ Raman and IR spectroscopy. In order to complete the catalytic cycle, the 

reduced surface VOx species is reoxidized back to V
+5

 by either gas phase molecular O2 

or oxygen donated from the bulk.  If the oxidation reaction involves chemisorbed 

oxygen species (e..g., superoxide, peroxide or atomic oxygen species), the reaction is 
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referred to as proceeding via a Langmuir-Hinshelwood mechanism.  If the oxidation 

reaction involves oxygen supplied by the surface VOx species or the catalyst bulk 

lattice, the reaction is referred to proceeding via a Mars-van Krevelen mechanism.11 

Supported vanadium oxide catalysts are frequently used in gas phase chemical 

processes. However, in pharmaceuticals, fine chemicals, and other industries where 

aqueous phase chemistry is prominent, aqueous vanadium complexes using functional 

ligands as supports can be employed as oxidation catalysts in aqueous and non-aqueous 

liquid media.  Additionally, bioinspired catalysts are also beginning making their debut 

in the world of traditional heterogeneous catalysis.12-16  Drug discovery laboratories have 

already embraced such an approach to research.  Rather than designing a 

pharmaceutical compound de novo, researchers can modify a natural compound to 

produce a better analog.17, 18 

Because of the great deal of knowledge that already exists on supported 

vanadium oxides, and considering the interest in vanadia biocatalysts and biocatalyst 

mimics, a unique research opportunity for the study of vanadium containing enzymes 

has presented itself.  Unfortunately, the use of methanol oxidation as a model chemical 

reaction molecular probe has been ignored in biocatalysis research, but this is partially 

due to enzyme substrate specificity.  Enzymes are typically oriented so that their 

catalytically active amino acids only accept the natural substrate, or at least a very 

similar substrate, or a substrate that passes through a similar transition state.19, 20  An 

example of this is a serine protease.  In serine proteases the catalytic active site is an 

amino acid triad.  This makes the enzyme extremely selective.  However, 
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metalloenzymes, including the vanadium haloperoxidase family of enzymes, are usually 

more likely to exhibit what has been dubbed “catalytic promiscuity” (accepting multiple 

different substrates) than strictly proteinaceous active site enzymes, due to their isolated 

metal cofactor.19, 20 

The vanadium haloperoxidases (VHPOs) are a class of enzymes that contain a 

vanadium oxide cofactor in the center.21  VHPOs are named for their ability to catalyze 

the two-electron oxidation of halide ions (Cl
-
, Br

-
, or I

-
) in the presence of hydrogen 

peroxide to produce hypohalous acids (HOCl, HOBr, or HOI).22   

H
+
 + H2O2 + X

-
  HOX + H2O    (1.4) 

The VHPOs are named 

according to the most electronegative 

halide ion they are able to oxidize. For 

example, a vanadium bromoperoxidase 

(VBrPO) can catalyze the oxidation of 

both Br
-
 and I

-
, but not Cl

-
.23  The 

chloroperoxidase form can be extracted 

from fungus such as Curvularia 

inaequalis, the bromoperoxidase form 

of the enzyme can be extracted from 

brown and red algae such as Corallina 

officinalis and Ascophyllum nodosum, 

Figure 1.1 Superimposed active sites of the native 

form of vanadium chloroperoxidase from C. 

inaequalis  (displayed in CPK color) and vanadium 

bromoperoxidase from A. nodosum (displayed in pink 

color).  Figure adapted from Pooransingh-Margolis   

et al. 
38
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and the iodoperoxidase enzyme can be found in green algae such as Acrosiphonia 

sonderi.2-4  The molecular mass and number of amino acid residues for each type of 

VHPO varies from species to species.  However, on average, the molecular mass of a 

vanadium haloperoxidase monomer is approximately 73.4 kDa.   A halide ion is not 

required for enzymatic activity despite the implication of the enzyme’s name.  In the 

native form, VHPOs maintain a trigonal bipyramidal vanadium configuration 

represented in Figure 1.1.24-26  In the presence of H2O2, the vanadium cofactor is 

activated, and the vanadate cofactor is transformed.  This transformation turns the 

vanadate cofactor into a side-bound vanadium peroxo group, a double bond oxo group, 

two long V-O bonds ligated to supporting amino acids, and a direct long V-N bond to a 

distal histidine residue.  The peroxo-oxo structure of VHPOs is referred to as the “active 

form.”  

VHPOs and vanadium mimic compounds have many functions both in nature 

and in research.  VHPOs exist naturally in some types of algae and fungi and are 

thought to catalyze the oxidation of a halide to the hypohalous acid as a defense 

mechanism against microbes and other potentially destructive organisms.21, 27, 28  VHPOs 

are being studied not only as halide oxidant, but also as a catalyst for other reactions 

such as sulfoxidations, and alcohol oxidations.22, 29-31  In addition, VHPOs are gaining 

interest in medical research since vanadium appears to have therapeutic effects on 

diseases such as diabetes mellitus and osteosarcomas.32-34  Vanadium and vanadium 

enzymes are an essential component for many different species, including humans, 

although there is less than 0.1 mg of vanadium in an adult human.35  Vanadium is 

believed to act as an alkaline phosphotase inhibitor in the human body and in other 
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species.  Also, recent research has shown that some aqueous vanadate complexes have 

an insulin enhancing effect.36  It is still not entirely clear, however, why vanadium is 

useful for humans. 

Studies on the structure and function of vanadium haloperoxidases are well 

documented with respect to the signature oxidation of a halide in the presence of 

hydrogen peroxide.24, 25, 37-39  Although X-ray crystallographic structural studies of 

VHPOs are well established,24, 37 there have not been many spectroscopic 

characterization studies during reaction.  X-ray absorption spectroscopy 

(XANES/EXAFS) studies of VHPOs have been reported, but were found to be of 

limited value because EXAFS yields an average V-O bond length for the multiple 

oxygen ligands and requires somewhat high aqueous VHPO concentrations for 

measurement (mM concentrations).39-41  Solid-state MAS 
51

V NMR studies of the V
+5

 

VHPO enzymes have also been successfully reported in the mol range and are in 

agreement with crystallographic findings.42  Furthermore, EPR spectroscopy has been 

employed to measure the inactive reduced form of VHPO enzymes with the V
+4 

cation.43  

The most interesting spectroscopic study to date was reported with in situ UV-vis 

spectroscopy during HCl oxidation by vanadium chloroperoxidase (VCPO) and H2O2.
44  

This study demonstrates that  concentrations of the aqueous VCPO could be 

monitored with time-resolved UV-vis spectroscopy and that the oxidation reaction 

required several minutes to completion.  To the best of our knowledge, no Raman or 

ATR-IR studies have been reported of aqueous VHPO and its oxidation reactions.  
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Furthermore, literature studies 

have primarily focused on halide 

oxidation by VHPO, not 

sulfoxidation or alcohol oxidation. 

Several research groups 

have designed metal-organic 

compounds that mimic the 

structure and function of the active 

peroxidated form of VHPOs.45-47  Enzyme mimic compounds are advantageous since the 

synthesis procedure is significantly simpler than the synthesis or extraction and 

purification procedure for the actual enzyme.  The most studied of these VHPO mimic 

compounds is K[VO(O2)(heida)], a vanadium peroxo-oxo compound chelated with N-

(2-hydroxyethyl) iminodiacetic acid (heida), depicted in Figure 1.2 a.45  The 

K[VO(O2)(heida)] complex is a structural and functional mimic of vanadium 

bromoperoxidase which is able to catalyze bromide and iodide oxidation, asymmetric 

sulfoxidation, and also (as will be demonstrated in this study) aqueous methanol 

oxidation in the presence of hydrogen peroxide.45,
 48  Bromide oxidation by the 

K[VO(O2)(heida)] complex appears frequently in the literature, and is reported to occur 

via nucleophilic attack of the incoming halide on the peroxo group.45  The proposed 

mechanism for anaerobic oxidation of 2-propanol by aqueous vanadium peroxo 

compounds occurs via propanol adsorption at the vanadium center, followed by 

hydrogen abstraction by the peroxo group, passing through a short-lived radical 

Figure 1.2 a. Structure of K[VO(O2)(heida)] 

mimic of VHPO showing peroxo and oxo groups 

b. Structure of dehydrated supported vanadia 

species on silica possessing  the trigonal pyramid 

structure. 
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species.49  However, this mechanism is only a putative mechanism, and until now, direct 

experimental evidence for this type of alcohol oxidation mechanism has been lacking.   

This proposed alcohol oxidation mechanism49 is fairly similar to that of gas 

phase alcohol oxidations over supported vanadium oxide heterogenous catalysts.  

However, there are significant structural and reactivity differences between the active 

site of supported vanadium oxide catalysts and the K[VO(O2)(heida)](aq) complex.  The 

vanadium peroxo-oxo structure present for the K[VO(O2)(heida)] mimic is not present 

for vanadia supported on inorganic oxides such as silica.50  The dehydrated supported 

vanadia species on silica at low coverage are present as the trigonal pyramidal structure 

shown in Figure 1.2 b with the surface VO4  species possessing one terminal V=O bond 

and three bridging V-O-Si bonds.  Details regarding the structural differences between 

these two systems will be discussed further in Chapter 2. 

The intent to study VHPOs and VHPO mimics was preceded by several studies 

to develop experimental techniques required for studying vanadium containing clusters 

in both solid and aqueous form.  We have demonstrated our laboratory capabilities for 

examining vanadium containing clusters in two recent publications.51, 52  In these 

publications, we have examined two different families of W12-xVxO40 and W12-xVxO40 

Keggin clusters.  The Keggin structure is shown in Figure 1.3.  We have investigated 

the influence of introducing VOx sites into the primary, bulk structure of 

polyoxometalates H3+xPM12-xVxO40 (x = 0, 1, 2, 3 and M=W or Mo) and the secondary, 

surface structure of supported VOx/H3PM12O40 Keggins.  This was done in order to 

establish their structure-reactivity/selectivity relationships.51, 52  VOx deposited onto the  
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secondary surface of the Keggin is depicted in Figure 1.4 for the purpose of better 

visualization.  

The addition of vanadium centers to molybdophosphoric (H3PMo12O40) and 

tungstophosphoric (H3PW12O40) acid clusters is beneficial for redox catalysis.  This 

shifts reactivity primarily from acidic character to redox character as evidenced by a 

shift in selectivity of methanol oxidation from production of dimethyl ether to 

formaldehyde, respectively.53  Vanadium-containing molybdophosphoric acid (MPA) 

clusters, H3+xPMo12-xVxO40 (x = 0, 1, 2, 3) are particularly interesting because of their 

exceptionally dynamic character in both the solid and aqueous phase.  These vanadium  

 

Figure 1.3 Keggin Structure representing the overall structure of 

molybdophosphoric (H3PMo12O40) and tungstophosphoric (H3PW12O40) 

acid clusters 
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containing MPA studies were important vanadium-containing cluster preliminary 

investigations.  Here we learned the techniques and knowledge required to analyze 

dynamic vanadium-containing enzymes and enzyme mimics as seen in the following 

chapters.  

Recent in situ solid state heterogeneous characterization studies by EPR, UV-

vis, Raman, FTIR, and NMR during heat treatment up to 350
o
C have revealed that the 

vanadium cation can be expelled from the vanadium containing MPA Keggin.54-56  Even 

when the vanadium is located in the primary structure after synthesis, it can migrate 

outwards to sit on the secondary structure as a surface vanadyl group under reaction 

conditions.57  In situ Raman spectroscopy experiments during thermal treatment and 

Figure 1.4 VOx deposited onto the secondary surface of a Keggin cluster. 
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under propylene oxidation conditions have revealed that the decomposition of the intact 

MPA Keggin begins with the expulsion of vanadyl and molybdenyl species.  This 

expulsion causes defective Keggin structures to form, then the defective Keggin units 

disintegrate into intermediate MoOx species before finally fully decomposing to 

MoO3.
58  The appearance of a “multiplet” of Raman bands in the 900-1000 cm

-1
 spectral 

region appears to be indicative of the transformation of intact Keggin anions to the 

intermediate mixed MoOx phase.58 

We recognized the complexity of the vanadium-containing MPA catalysts and, 

also, the need for in situ characterization studies, especially in situ Raman 

characterization studies under reaction conditions because of the dynamic nature of 

such complex mixed oxide catalysts.  Additionally, the complexity of these catalysts 

made them an ideal starting point for the development of Raman techniques for the 

study of vanadium-containing clusters such as K[VO(O2)(heida)](aq).  Therefore, a series 

of vanadium incorporated MPA Keggins, with vanadium introduced into the primary 

and onto the secondary Keggin structure, was examined for the first time with in situ 

Raman spectroscopy to determine their molecular structural evolution under reaction 

and aqueous conditions.  Additionally, the overall capability of Raman spectroscopy to 

monitor dynamic changes of vanadium containing clusters was evaluated.   

These vanadium containing MPA studies have proven our ability to accurately 

characterize vanadium containing clusters under various conditions.  We have observed 

dynamic changes in MPA and vanadium containing MPA structures in the solid state at 
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both ambient and dehydrated conditions, during reaction conditions, and in aqueous 

solution. 

The research included in the remainder of this dissertation examines vanadium 

containing biocatalysts and biocatalyst mimics and compares each system to traditional 

vanadium oxide supported catalysts such as V2O5 supported on SiO2.  These studies 

utilize the same techniques developed during preliminary vanadium containing MPA 

studies.  The studies in this dissertation bridge the gap between biocatalysis and 

traditional heterogeneous catalysis by (1) establishing effective characterization 

methods and approaches for the in situ study of vanadium biocatalysts and biocatalyst 

mimics in the aqueous phase, (2) extending the in situ spectroscopic characterization 

methodologies to VHPOs and K[VO(O2)(heida)](aq) in H2O2 and CH3OH oxidation 

environments, (3) applying the advanced methodologies to study the VOx structure, 

oxidation state, catalytic active site, and mechanism of oxidation for VHPOs and 

K[VO(O2)(heida)](aq), and (4) investigating the kinetics of aqueous methanol oxidation 

by K[VO(O2)(heida)](aq).  
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Chapter 2:  K[VO(O2)(heida)](aq), A Vanadium Bromoperoxidase Mimic  

The K[VO(O2)(heida)](aq) metal-organic vanadium bromoperoxidase mimic 

compound was designed by the Pecoraro laboratory group at University of Michigan.1  

Various other mimic compounds have been designed by the Pecoraro group and other 

research groups.1-3  Many of 

these soluble VOx hybrid 

complexes, have been 

employed as oxidation catalysts 

in many different types of 

media such as, ionic liquids, 

aqueous and non-aqueous 

soutions.1, 2, 4, 5  These other 

mimic complexes may contain 

ligands such as nitrilotriacetic 

acid (nta), N-(2-amidomethyl) 

iminodiacetic acid (ada), N,N-

bis(2-pyridylmethyl) glycine 

(BPG), and N,N,N-tris(2-

pyridylmethyl) amine (TPA).  

The structures of these ligands are shown in Figure 2.1 in addition to the N-(2-

hydroxyethyl)iminodiacetic acid ligand (Figure 2.1 B), commonly abbreviated as 

“heida.”1  A literature search reveals that the most studied, and most effective of these 

ligands for mimicking the structure and function of the active form of VHPOs is the 

Figure 2.1  Edited figure published by Colpas et al.
1 

A. nitrilotriacetic acid, B. N-(2-hydroxyethyl) iminodiacetic 

acid, C. N-(2-amidomethyl) iminodiacetic acid, D. N,N-bis(2-

pyridylmethyl) glycine, and E. N,N,N-tris(2-pyridylmethyl) 

amine. 
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heida ligand.  Every form of VHPO contains a vanadate cofactor which is covalently 

bound to the imidazole nitrogen of a histidine residue.  The central nitrogen atom in the 

heida compound serves as a mimic for the conserved histidine residue which is present 

in the first coordination sphere of all forms of vanadium haloperoxidase, bromo-, 

chloro-, and iodoperoxidases alike.1, 3, 6, 7   

K[VO(O2)(heida)] is actually a mimic of the active form of vanadium 

bromoperoxidase (VBPO).  It is a vanadium bromoperoxidase mimic specifically 

because it is able to oxidize bromide and iodide, but not chloride.  It is an active form 

(and not native form) mimic because it contains a vanadium peroxo-oxo structure 

(which will be examined and characterized further in this chapter) much like all VHPOs 

when they are activated by exposure to H2O2.  Prior to activation by exposure to H2O2, 

VHPOs do not contain a vanadium peroxo group, but are present in the native form as 

what appears to be a vanadium dioxo resonant structure.6  Likewise, a native form 

mimic of VBPO is obtainable prior to addition of H2O2.  The dioxo structure, 

K[VO(O)(heida)] a mimic of the native form of VBPO, will also be examined later in 

this chapter, since the dioxo form is crucial to the full oxidation mechanism of methanol 

by K[VO(O2)(heida)]. 

The first section of this chapter focuses on the characterization of the peroxo-

oxo active form mimic compound K[VO(O2)(heida)].  The second section focuses on 

the characterization of the dioxo native form mimic, K[VO(O)(heida)].  The third 

section of this chapter presents a comparison between the peroxo-oxo 

K[VO(O2)(heida)](aq) structure and the heterogeneous case of VO4/SiO2. 
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Section 1: Spectroscopic Characterization of K[VO(O2)(heida)](aq) 

  Few research groups have 

reported on characterization of 

K[VO(O2)(heida)] (shown in Figure 2.2) by 

vibrational spectroscopic methods.  Raman and 

FTIR characterization have been performed on 

the solid state crystalline form of 

K[VO(O2)(heida)]1, and Raman and ATR-IR 

spectra of K[VO(O2)(heida)] in organic solvents 

such as acetonitrile have been collected with less than perfect results (although 

vibrational spectroscopy was not the focus of this referenced study).8  Since 

K[VO(O2)(heida)] is only marginally soluble in acetonitrile, lower signal to noise ratios 

were obtained than if K[VO(O2)(heida)] were solubilized in water, and some of the 

K[VO(O2)(heida)] bands of interest are masked by the acetonitrile signal.  Additionally, 

it appears that the vanadium peroxo V-O2 stretching vibration was mis-identified as the 

asymmetric stretch, and not the symmetric stretch in acetonitrile solution.  However it is 

important to note that in this referenced study, the focus was density functional theory 

(DFT), and not the identification of Raman bands.8  The excellent results of the DFT 

portion of this referenced study will be revisited in Chapter 3.8   

UV-vis and 
51

V-NMR1 have been used to identify the presence of a vanadium 

peroxo-oxo chelated structure and to investigate the coordination of vanadate to the 

ligand.  To the best of our knowledge, high quality, high signal-to-noise ratio, high 

Figure 2.2 Structure of 

K[VO(O2)(heida)](aq) showing peroxo 

and oxo groups  
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resolution aqueous vibrational spectroscopy characterization of the K[VO(O2)(heida)] 

complex specifically in aqueous media has not been reported.  Characeterization of the 

peroxo-oxo form of K[VO(O2)(heida)] in aqueous media by vibrational spectroscopy is 

important, since the active form of all VHPOs are proposed to possess a vanadium 

peroxo-oxo cofactor.  In this chapter, K[VO(O2)(heida)] is synthesized, assayed by 
51

V-

NMR and UV-vis, and then is fully characterized in aqueous solution by Raman and 

ATR-IR spectroscopy.  The K[VO(O2)(heida)](aq) mimic is then compared to the 

heterogeneous model catalyst, supported VO4/SiO2.  

Experimental 

K[VO(O2)(heida)] Synthesis 

The K[VO(O2)(heida)] mimic was synthesized according to the method 

published by Colpas et al1.  30 mL of deionized water was cooled to approximately 0
o
C 

with stirring, and 5 mmol of KVO3 (Alfa Aesar, 99.9% pur.) was added and stirred until 

dissolved.  Special care was taken so that there was no excess KVO3.  The solution was 

filtered and 5 mmol of N-(2-hydroxyethyl)iminodiacetic acid (TCI America, min. 98% 

pur.) was added and stirred until completely dissolved.  Then, 2 mL of 30% H2O2 was 

added dropwise to yield a dark red solution and buffered to pH 4 + 0.2 with potassium 

hydroxide or hydrochloric acid if needed, but buffering was typically not required.  The 

mixture was stirred overnight, and then refrigerated at 2-8
o
C for at least 24 hours.  

Chelation of vanadate and formation of the peroxo-oxo group is highlighted in Scheme 

2.1.   K[VO(O2)(heida)](s) was isolated by crystallization.  To facilitate  nucleation of  
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Scheme 2.1  Synthesis of K[VO(O2)(heida)](aq)  

 

the K[VO(O2)(heida)] crystals, approximately 30 mL of 200 proof cold ethanol at 2-8 

o
C was added slowly.  The suspension was returned to the refrigerator for at least 

another 24 hours until rod shaped, dark red crystals formed.  The crystals were collected 

by filtration, washed with cold 200-proof ethanol and allowed to air dry.  The 

K[VO(O2)(heida)](s) crystals were redissolved in deionized water for the aqueous 

experiments. 

K[VO(
18

O2)(heida)] and K[V
18

O(O2)(heida)] Synthesis with Isotopic 
18

O 

Isotopic H2
18

O2 at 90 atom % was purchased from ICON Isotopes.  Isotopically 

labelled K[VO(
18

O2)(heida)] was synthesized as described above according to the 

procedure designed by Colpas et al1 and modified from experiments in acetonitrile from 

Schneider8 using isotopically labeled H2
18

O2 in the vanadium peroxo formation step.  

This isotopic synthesis procedure was designed so that only the two oxygen atoms in 

the vanadium peroxo position were isotopically labeled.  The V=O bond was not 

affected in this particular experiment. 

The vanadyl V=O bond was exchanged with 
18

O by dissolving 

K[VO(O2)(heida)] in H2
18

O and incubating at 2-4
o
C for a few days.  The vanadium 
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peroxo group was unaffected by this exchange method.  The H2
18

O at 95 atom % was 

purchased from Isotec via Sigma-Aldrich. 

UV-vis Transmission and Liquid Phase 
51

V-NMR Spectroscopy 

51
V-NMR spectroscopy and transmission UV-vis and were used to check the 

integrity of the synthesized K[VO(O2)(heida)].  

Aqueous phase 
51

V-NMR was performed using a Bruker Avance 500 MHz 

NMR under ambient conditions.  Aqueous K[VO(O2)(heida)] was compared to a neat 

VOCl3 reference standard.   

Aqueous K[VO(O2)(heida)] was examined using a Varian Cary 5E UV-vis 

spectrophotometer.  First, a deionized water baseline spectrum was prepared over the 

range of 200-800 nm under ambient conditions, and the spectrum of each aqueous 

catalyst sample was collected from 200-800 nm under ambient conditions.  The UV-vis 

spectra were analyzed using the Kubelka-Munk function F(R∞) in order to better 

visualize broad bands.9 

Raman Spectroscopy 

Raman spectra of K[VO(O2)(heida)] and supported V2O5/SiO2 catalysts were 

collected with a Horiba-Jobin Yvon LabRam-HR spectrometer equipped with a 

confocal microscope, 2400/900 grooves/mm gratings, and a notch filter. The visible 

laser excitation at 532 nm (green) was supplied by a Yag doubled diode pumped laser 

(20 mW).  The scattered photons were directed and focused onto a single-stage 
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monochromator and measured with a UV-sensitive liquid nitrogen-cooled CCD detector 

(Horiba-Jobin Yvon CCD-3000V).  For the collection of ambient aqueous spectra, a 

single droplet was placed on a glass or CaF2 slide and the laser was focused just slightly 

below the droplet surface in order to accommodate droplet spreading.  The Raman 

signal using the 532 nm laser was significantly stronger than the signal obtained using 

the 442 or 325 nm lasers and, consequently, only results with the 532 nm laser will be 

presented. 

ATR-IR Spectroscopy 

The solid K[VO(O2)(heida)] crystals were dissolved in deionized water and the 

IR spectrum was recorded using a Thermo Nicolet 8700 IR spectrometer equipped with 

a liquid nitrogen cooled DTGS detector and Harrick Horizon ATR attachment on a zinc 

selenide crystal.  The spectrum was collected in the 400-4000 cm
-1

 range with 72 scans, 

and the deionized water spectrum was background subtracted. 

Results  

The 
51

V NMR spectrum of aqueous K[VO(O2)(heida)] is shown in Figure 2.3.  

Aqueous K[VO(O2)(heida)] exhibits a sharp 
51

V NMR band at -593 ppm, which is 

consistent with that of a ligated aqueous vanadium peroxo-oxo species with solvation 

effects.1  This indicates that the compound synthesized is indeed K[VO(O2)(heida)] and 

not other forms of aqueous vanadate species.   
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mimic showing peroxo band at 470 nm and oxo band below 300 nm. 
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The Kubelka-Munk function F(R∞) transformed absorbance spectrum of 

aqueous K[VO(O2)(heida)] is presented in Figure 2.4 and highlights the 470 nm band of 

the vanadium peroxo group and the 300 nm oxo group.1  The UV-vis spectrum is a clear 

indicator of the ligand to metal charge transition (LMCT) from vanadium to a peroxo 

group at 470 nm, and from vanadium to an oxo group at 300 nm. 

Assignment of the Raman bands for aqueous K[VO(O2)(heida)]  was achieved 

with the aid of isotopic oxygen labeling studies.  In order to selectively investigate the 

vibrational positions of the peroxo bands, isotopic H2
18

O2 was used during synthesis.  

The Raman spectra of K[VO(
16

O2)(heida)](aq) and K[VO(
18

O2)(heida)](aq) are presented 

in Figure 2.5.  The addition of H2
18

O2 during K[VO(O2)(heida)] synthesis elicits a red 
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Figure 2.5  Raman Spectrum of K[VO(O2)heida](aq), black line, 

and isotopic K[VO(
18

O2)heida](aq), blue line, demonstrating the 

vibrational assignment of the peroxo bands at 575 and 932 cm
-1

 

and overtone of the 575 cm
-1

 band at 1150 cm
-1

. 
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shift in the peroxo vibrations due to the heavier mass of 
18

O2 in the vanadium O-O 

stretch (932  881 cm
-1

), V-O2 stretch (575  547 cm
-1

) and its V-O2 overtone (1150 

 1108  cm
-1

) indicating that these are peroxo related vibrations.  In contrast, the 

Raman band at 967 cm
-1

 is not perturbed indicating that this band is not peroxo related.   

The Raman spectra of K[V
16

O(O2)(heida)] and K[V
18

O(O2)(heida)]  are shown 

in Figure 2.6.  Incubation with H2
18

O initiates the selective exchange of the oxygen 

atom of the oxo V=
16

O to V=
18

O.  The exchange using H2
18

O, does not perturb the 

K[VO(O2)(heida)] peroxo bands at 1150, 575 or 932 cm
-1

, but only leads to a red shift 

of the 967 cm
-1

 band to 932 cm
-1

. This indicates that the 967 cm
-1

 band must be 

associated with the vanadyl V=O oxo stretch. Dissolution of K[VO(O2)(heida)] in 

deuterated water yielded 
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no change in the Raman spectra, indicating neither the peroxo nor the oxo groups are 

affected by solvent hydrogen bonding or protonation in aqueous solution. 

The Raman and ATR-IR spectra of K[VO(O2)(heida)](aq) are compared in Figure 

2.7.  The O-O and V=O stretching vibrations observed in the ATR-IR spectrum are 

consistent with the vibrations observed in Raman indicating that these are symmetric 

vibrations.10   

Discussion 

We have successfully synthesized characterized K[VO(O2)(heida)] in aqueous 

solution.  51V NMR reveals a sharp single band at -593 ppm, which is consistent with 

literature findings indicating that K[VO(O2)(heida)] is a peroxo-oxo compound 
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correctly chelated to the heida ligand with water solvation effects.1  UV-vis reveals both 

the vanadium-oxo band at 300 nm, and a vanadium-peroxo ligand-to-metal charger 

transfer band at 470 nm.  Additionally, the K[VO(O2)(heida)] mimic is very soluble in 

water, so high molar concentrations of K[VO(O2)(heida)](aq) which yield better Raman 

and ATR-IR spectra, can be achieved, unlike organic solutions like acidified 

acetonitrile, where K[VO(O2)(heida)] is only marginally soluble.   

The peroxo-oxo active K[VO(O2)(heida)](aq) enzyme mimic catalyst contains 

three distinct oxygen functionalities: a peroxo V-O2 group, an oxo V=O group, and 

bridging V-O-C coordinating ligand bonds.  The peroxo and oxo groups of 

K[VO(O2)(heida)](aq) are easily observed by Raman and ATR-IR spectroscopy in 

aqueous solution.  This is a significant departure from previous Raman studies in 

acetonitrile, in which only the V=O and O-O stretching vibrations of K[VO(O2)(heida)] 

were able to be resolved, albeit weakly, with interfering bands from the acetonitrile 

solvent.8  For the first time, (Figure 2.5) the symmetric “breathing” mode vibration of 

V-O2 is sharply resolved by Raman spectroscopy in aqueous solution for 

K[VO(
16

O2)(heida)](aq) at 575 cm
-1

, and for isotopic K[VO(
18

O2)(heida)](aq) at 547 cm
-1

.  

The identification of the symmetric V-O2 Raman overtone at 1150 cm
-1

 is also 

important since it is too weak to resolve in the ATR-IR spectrum shown in Figure 2.7.  

The stronger 575 cm
-1

 band and 1150 cm
-1

 overtone band in the Raman spectrum, and 

weak, nearly unresolvable nature of any overtone band in the ATR-IR spectrum 

confirms that the 575 cm
-1 

band and 1150 cm
-1

 overtone are indeed symmetric 

vibrations, and not asymmetric vibrations as previously assigned.8  This is because 

Raman spectroscopy detects symmetric vibrations more strongly than ATR-IR 
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spectsrocopy, and ATR-IR spectroscopy detects asymmetric vibrations more strongly 

than Raman spectroscopy. 

Raman spectroscopy has precisely identified the V=O oxo stretch for the 

K[VO(O2)(heida)](aq) mimic for the first time (Figure 2.6).  The red shift of the 967 cm
-1

 

symmetric V=O stretch to 932 cm
-1 

upon isotopic exchange with V=
18

O clearly 

confirms this assignment.  In addition, these assignments agree with previously reported 

IR results for K[VO(O2)(heida)] in both the solid crystalline state and in organic media8. 

Conclusions 

The K[VO(O2)(heida)](aq) mimic has been fully characterized using Raman and 

ATR-IR spectroscopy.  The signature vanadium peroxo and oxo vibrations have been 

identified using isotopic oxygen-18 studies.  This study demonstrates the powerful 

capabilities of vibrational spectroscopy.  Vanadium peroxo and vanadium oxo bands in 

aqueous solution are sharp and easy to resolve, indicating that Raman and ATR-IR 

spectroscopy are ideal tools for future studies of K[VO(O2)(heida)] and vanadium 

haloperoxidases. 
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Section 2: K[VO(O)(heida)] dioxo 

characterization 

The parent compound for the synthesis of 

K[VO(O2)(heida)](aq), before addition of H2O2 is 

presumed to be the dioxo compound, 

K[VO(O)(heida)],  (see Scheme 2.1).  The 

presumed dioxo compound K[VO(O)(heida)] is 

pictured in Figure 2.8.  The true identity of this dioxo compound in aqueous solution, 

and the precise identification of the Raman bands corresponding to this compound is 

not trivial, since oxidations involving the peroxo-oxo K[VO(O2)(heida)] must cycle 

through the dioxo K[VO(O)(heida)] before being reoxidized by H2O2 back to the 

peroxo-oxo form.  This is similar to the way VHPOs, during oxidation reactions, cycle 

back to the native dioxo form of the vanadium cofactor before being reactivated by 

H2O2 to regenerate the peroxo-oxo active form of the vanadium cofactor.11, 12  In the next 

chapter, the mechanism of methanol oxidation by K[VO(O2)(heida)](aq) is examined 

with Raman and ATR-IR spectroscopy, therefore is it is critical to identify the Raman 

and ATR-IR fingerprint of the parent compound, K[VO(O)(heida)].   

A similar dioxo compound, Na[VO(O)(heida)](s), has been characterized by 

XRD crystallography, confirming the dioxo nature of this compound in pure crystalline 

form.13  However, no aqueous vibrational spectroscopy characterization literature has 

been found on the K[VO(O)(heida)](aq) dioxo compound prior to this study.  In this 

Figure 2.8  Structure of  dioxo 

K[VO(O)(heida)](aq) compound 

 



33 
 

section, the K[VO(O)(heida)](aq) dioxo compound is fully characterized by Raman and 

ATR-IR spectroscopy. 

Experimental 

K[VO(O)(heida)] Dioxo compound Synthesis 

Dioxo K[VO(O)(heida)](aq) was synthesized using a modified version of the 

method published by Colpas et al which was truncated prior to any addition of H2O2
1.  

30 mL of deionized water was cooled to approximately 0
o
C while stirring, and 5 mmol 

of KVO3 (Alfa Aesar, 99.9% pur.) was added and stirred until dissolved.  Special care 

was taken so that there was no excess KVO3.  The solution was filtered and 5 mmol of 

N-(2-hydroxyethyl)iminodiacetic acid (TCI America, min. 98% pur.) was added and 

stirred until completely dissolved, forming the dioxo structure as shown in Scheme 2.2. 

Aquesous, unchelated KVO3 and the heida ligand alone were also examined by 

Raman spectroscopy in order to assist in the assignment of free aqueous vanadate 

species. 

Scheme 2.2  Synthesis of dioxo K[VO(O)(heida)](aq)  
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Isotopic K[V
18

O(
18

O)(heida)] Synthesis 

The isotopic dioxo K[V
18

O(
18

O)(heida)] structure was synthesized as described 

above using H2
18

O as a solvent (Isotec via Sigma-Aldrich; 95 atom % H2
18

O isotopic 

enrichment) and stopping before any addition of H2O2.  The dioxo 
16

O=V=
16

O group 

was found to convert to 
18

O=V=
18

O almost immediately at room temperature. 

Results 

The Raman spectrum of the dioxo compound K[VO(O)(heida)](aq), formed by 

chelation of KVO3
 
to the heida ligand, is shown in Figure 2.9 (black line).  The Raman 

 

Figure 2.9  Raman spectra of the dioxo K[V
16

O(
16

O)(heida)](aq) enzyme 

mimic in H2
16

O, black line, and its isotopically labeled 

K[V
18

O(
18

O)(heida)](aq) enzyme mimic in H2
18

O, blue line, confirming the 

dioxo 
16

O=V=
16

O vibrational modes at 920 (vs) and ~900 (vas) cm
-1

. 
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spectrum of the dioxo compound does not possess the vanadium peroxo-oxo bands at 

575, 932 and 967 cm
-1

.  Instead, a large broad band at approximately 920 cm
-1

 with a 

weak shoulder at ~895 cm
-1

 is present, plus two smaller bands at 975 and 1003   cm
-1

.  

The Raman spectrum of the isotopic dioxo K[V
18

O(
18

O)(heida)](aq) compound is also  

shown in Figure 2.9 (blue line).  The large broad band at 920 cm
-1 

is red shifted 

approximately 45 cm
-1

 due to the heavier mass of 
18

O2 in the vanadium dioxo 

vs(O=V=O) stretch (920  875 cm
-1

).   

A complementary ATR-IR spectrum was also collected to assist in 

distinguishing between asymmetric and symmetric stretching vibrational assignments 

for the 895, 920, 975 and 1003 cm
-1

 bands (see Figure 2.10).  The 920 cm
-1

 band 

corresponds to the symmetric dioxo vs(O=V=O) stretching mode and is accompanied by 

the weak dioxo vas(O=V=O) stretching mode at 895 cm
-1

.   

Since different vanadate species are present at different pH values in aqueous 

solution, aqueous KVO3 standards were examined and compared to the spectrum of 

K[VO(O)(heida)](aq).  Figure 2.11 shows 5mmol KVO3 in 30 mL of deionized water at a 

pH value of 7 (black line).  Under these conditions, KVO3 is present as a dioxo 

polymeric vanadate species14 which produces a broad symmetric symmetric dioxo 

vs(O=V=O) stretching mode at 948 cm
-1

.  As the pH is dropped using HCl to pH 4 (the 

working pH during K[VO(O2)(heida)](aq) synthesis), the dioxo species is converted to 

decavandate clusters.14  The decavanadate clusters  at pH 4 (blue line) exhibit 

decavanadate [V10O28]
6-

 vibrations near 997 and 970 cm
-1

.   
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Figure 2.11  Raman spectra of aqueous vanadate species at different pH values. 
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structure. 
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The effect of chelation of the decavanadate [V10O28]
6- 

solution by the heida 

ligand is shown in Figure 2.12.  A highly concentrated spectrum of the heida ligand 

alone is also included (red line) for comparison.  When 5 mmol of heida is added to the 

decavanadate solution (blue line), some of the vanadate is chelated to form 

K[VO(O)(heida)](aq) and some remain as decavanadates.  This solution containing both 

K[VO(O)(heida)](aq) and decavanadates can be seen in Figure 2.12 (green line).  
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The presence of the K[VO(O)(heida)](aq) compound causes the broad band at 920 cm
-1

 

to form which is the symmetric dioxo vs(O=V=O) stretching mode. 

An additional batch of the dioxo K[VO(O)(heida)](aq) was synthesized in D2O in 

order to determine the effect of hydrogen bonding, and to eliminate the possibility of 

Figure 2.12  Raman spectra showing chelation of decavanadate KVO3 solution at pH 4 with 

the heida ligand.  A highly concentrated heida solution is shown in red for comparison.  No 

strong heida bands are observed in the chelated spectrum. 
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the 920 cm
-1

 band actually being a V-OH vibration.  The Raman spectra of 

K[VO(O)(heida)] in both water and D2O solution are shown in Figure 2.13.  Unlike the 

peroxo-oxo K[VO(O2)(heida)](aq) compound, the dioxo K[VO(O)(heida)](aq) is affected 

by hydrogen bonding.  The tall 920 cm
-1

 symmetric vanadium dioxo vs(O=V=O) 

stretching mode is slightly perturbed by the presence of deuterated water.  The small 

bands at 975 and 1003 cm
-1 

are also slightly red shifted in the presence of D2O. 

 

Discussion 

The crystal structure of a similar vanadium dioxo compound, 

Na[VO(O)(heida)](s), features the two V=O dioxo bond lengths of 1.663 Å and 1.624 

Å.13  The correlation of V=O bond length to the Raman band position reported by 

Figure 2.13  K[VO(O)(heida)] (aq) dioxo structure in water 

(blue line) and deuterated water (black line). 
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Hardcastle et al. indicates that the dioxo 895 and 920 cm
-1

 Raman bands are located in 

the range consistent with the reported V=O bond lengths.15  Furthermore, dioxo 

F2V(=O)2
-
 (970/962 cm

-1
) vibrates much lower than mono-oxo F3V=O (1058 cm

-1
) and 

reflects the significant vibrational difference between dioxo and mono-oxo vanadyl 

structures.10  The V=O and O=V=O vibrations of the aqueous peroxo-oxo 

K[VO(O2)(heida)](aq) (967 cm
-1

) and dioxo K[VO(O)(heida)](aq) (920/895 cm
-1

) enzyme 

mimics, respectively, occur at lower wavenumbers than the corresponding gas phase 

complexes because hydrogen bonding by H2O elongates their V-O bonds.   

The 975 and 1003 cm
-1

 bands also present in the Raman spectrum of the dioxo 

K[VO(O)(heida)](aq) correspond to decavanadate [V10O28]
6-

 vibrations resulting from 

dissociation of dioxo-vanadate from the heida ligand and conversion to decavanadates 

in the acidic pH.  The weak Raman bands at ~410 and 830 cm
-1

  correspond to heida 

ligand vibrations that are present in the Raman spectra of both the peroxo-oxo 

K[VO(O2)(heida)](aq)  and dioxo K[VO(O)(heida)](aq) compounds.  Therefore, the 

K[VO(O)(heida)](aq) dioxo compound also appears to be in equilibrium with dissociated 

heida ligand and decavanadates [V10O28]
6- 

as shown in Scheme 2.3.  This equilibrium is 

also in agreement with what is found for solid supported vanadium oxide catalysts on 

acidic metal oxide supports such as Al2O3.  At low coverage, solid V2O5 supported on 

Al2O3 is present as a dioxo structure, as observed by Raman spectroscopy.  However, at 

high coverage, solid V2O5 supported on Al2O3 converts to decavanadate clusters.16  
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Scheme 2.2 Equilibrium solution of K[VO(O)(heida)](aq) dioxo compound and 

decavanadates [V10O28]
6-

 plus dissociated heida ligand 

 

Conclusions 

K[VO(O)(heida)](aq) has been fully characterized using Raman and ATR-IR 

spectroscopy for the first time.  The vanadium dioxo vibrations have been identified 

using isotopic oxygen studies.  Raman spectroscopy on K[VO(O)(heida)](aq) dissolved 

in deuterated water has revealed that K[VO(O)(heida)](aq) is affected by hydrogen 

bonding, but there are no V-OH groups present for K[VO(O)(heida)](aq).  Additionally, 

and equilibrium exists between the dioxo compound and decavanadate clusters 

[V10O28]
6- 

 along with the dissociated heida ligand.  These dioxo characterization studies 

will prove invaluable to methanol oxidation studies, as described in the next chapter, 

since oxidation by K[VO(O2)(heida)](aq) cycles through the K[VO(O)(heida)](aq) dioxo 

compound before it is reactivated by H2O2. 
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Section 3: Structural Comparison to Supported Vanadium Oxide Catalysts 

A vanadium peroxo-oxo structure has recently been proposed to be present on 

dehydrated supported vanadia catalysts, such as V2O5/SiO2 (see Figure 2.15 c), where it 

has been dubbed the vanadium oxide “umbrella” structure.  The umbrella structure 

proposal was based on a comparison between Density Functional Theory (DFT) results 

and a previously un-

assigned Raman band at 

~920 cm
-1

 present for 

supported vanadium oxide 

catalysts17.  The proposed 

vanadium peroxo-oxo 

umbrella structure 

happens to be nearly 

identical to the active site structure present for K[VO(O2)(heida)] shown in Figure 2.14 

a.  There is no experimental evidence, however, for the existence of a stable, dehydrated 

surface vanadium oxide umbrella structure on an oxide support like silica.  Multiple 

spectroscopic characterization studies have demonstrated that, at low coverage, the 

molecular structure of the dehydrated surface vanadium oxide species on oxide supports 

exists in its fully oxidized state as the VO4 trigonal pyramidal structure with an apical 

V=O oxo and three bridging  V-O-Support bonds shown in Figure 2.14 b. 18-25 

Although the vanadium peroxo-oxo umbrella structure under dehydrated 

conditions has subsequently been revoked, it has been suggested that a hydrated version 

a. b. c. 

Figure 2.14  a. Structure of K[VO(O2)(heida)] mimic of VHPO 

showing peroxo and oxo groups b. Structure of dehydrated 

supported vanadia species on silica possessing  the trigonal pyramid 

structure, and c. Proposed vanadium oxide “umbrella” structure 

supported on silica showing the proposed peroxo-oxo groups   
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of the umbrella structure is still possible where the peroxo O-O moiety would instead be 

present as two –OH groups.26, 27  Furthermore, there are still research groups who 

continue to look for evidence of the dehydrated surface vanadium peroxo-oxo umbrella 

structure on oxide supports and seek to assign vibrational modes to the umbrella 

structure.28  Recent published DFT results concluded that the full catalytic cycle for 

methanol oxidation over silica passes through a dehydrated vanadium peroxo-oxo 

umbrella structure upon reoxidation of the catalyst.28 

The true surface structure of solid supported vanadium oxide catalysts like 

V2O5/SiO2 is not trivial, since an important step of bridging the gap between 

heterogeneous catalysis and enzyme catalysis in this study, is comparing the structure 

and function of V2O5/SiO2 to K[VO(O2)(heida)](aq).  The mechanism and reactivity of 

these two systems will be examined thoroughly later in this dissertation to establish a 

solid basis for this comparison.  Therefore, it is paramount to fully characterize and 

understand the structure of each system.  This portion of the study determines whether 

or not the surface vanadium peroxo-oxo structure is truly present on oxide supports by 

comparing the vibrational spectrum of the true peroxo-oxo umbrella structure present in 

K[VO(O2)(heida)] to the vibrational spectrum of supported vanadium oxide species on 

a silica support.18 
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Experimental 

Supported Catalyst Synthesis 

The supported catalysts were synthesized according to the method published by 

Tian et al25.  Supported V2O5/SiO2 was prepared by incipient wetness impregnation 

under continuously flowing N2 atmosphere in a glove box using 2-propanol solutions of 

vanadium isoproproxide and dried overnight under N2.  The supported V2O5/SiO2 

catalyst was then dried under flowing air (100 cc/min) at 120
o
C for 1 hour, 300

o
C for 

another hour, and calcined at 450
o
C for 2 hours.  The supported K[VO(O2)(heida)]/SiO2 

was prepared by incipient wetness impregnation under ambient conditions using an 

aqueous solution of K[VO(O2)(heida)], since K[VO(O2)(heida)] is not sensitive to air.  

The supported K[VO(O2)(heida)]/SiO2 was then dried in ambient air for approximately 

8 hours, and then dried at 100
o
C in flowing air (100 cc/min) for 1 hour to avoid any 

thermal decomposition. 

Raman Spectroscopy 

Raman spectra of K[VO(O2)(heida)] and V2O5/SiO2 were collected with a 

Horiba-Jobin Yvon LabRam-HR spectrometer as described in the previous section.  For 

the collection of ambient solid spectra, solid samples were spread evenly onto a glass 

slide.  Dehydrated spectra were taken using an environmental cell (Linkam T-1500) 

maintained below the confocal microscope and treating the samples at different 

temperatures representing typical reaction temperatures for each catalyst under flowing 

10% O2/ balance He. 
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Results 

The Raman spectrum of aqueous K[VO(O2)(heida)](aq) exhibits four major bands 

at 575, 932, and 967 with an overtone of the 575 cm
-1 

band at 1150 cm
-1

.  These key 

bands are also present for K[VO(O2)(heida)] impregnated onto SiO2 as seen in Figure 

2.15.  Silica-supported K[VO(O2)(heida)], however, was found decompose after 

approximately 24 hours, which reflects its poor stability on oxide supports.  

Additionally, silica-supported K[VO(O2)(heida)] was unable to tolerate dehydration 

temperatures of greater than 125
o
C, which further reflects the poor stability of a peroxo-

oxo structure on oxide supports.  The fully hydrated supported V2O5/SiO2 catalysts 

exhibit broad Raman bands (not shown) at ~1020, ~704, ~652, 506−523, 
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Figure 2.15 Raman spectra of supported K[VO(O2)heida]/SiO2 under ambient and dehydrated 

conditions and supported V2O5/SiO2 under dehydrated conditions.  The peroxo breathing mode at 575 

cm
-1 

and O-O stretching at 932 cm
-1

 are observed for supported K[VO(O2)heida]/SiO2 but not for 

dehydrated supported V2O5/SiO2. 
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 264−274, and 155−164 cm
-1

 that do not match those of the silica supported 

K[VO(O2)(heida)] complex
30

.  The observed Raman bands for the dehydrated supported 

K[VO(O2)(heida)]/SiO2 are also quite different from those of dehydrated supported 

VO4/SiO2 (Figure 2.15) with the V=O vibration at 1035 cm
-1

.  The dehydrated 

supported VO4/SiO2 catalyst contains neither the O-O stretch at ~930 cm
-1

, the V-O2 

stretch at ~575 cm
-1

 nor the UV-vis O-O transition at ~470 nm.   

Discussion 

Retention of the key bands of K[VO(O2)(heida)] after impregnation onto SiO2 as 

seen in Figure 2.15, clearly indicates that the peroxo-oxo molecular structure of 

K[VO(O2)(heida)] is conserved when it is impregnated onto a silica support.  However 

the peroxo-oxo structure of K[VO(O2)(heida)]/SiO2 begins decomposing after 

approximately 24 hours at room temperature, or almost immediately at temperatures of 

125
o
C.  Therefore, it is extremely unlikely that a peroxo-oxo structure umbrella 

structure for V2O5/SiO2 is stable at room temperature, let alone at typical reaction 

conditions of up to 500
o
C. 

The observed Raman bands for the both hydrated and dehydrated supported 

K[VO(O2)(heida)]/SiO2 are vastly different than those for hydrated (not shown) and 

dehydrated supported VO4/SiO2 in Figure 2.15.  If the dehydrated surface umbrella 

structure on SiO2 did indeed exist, then the V-O2 stretch at ~575 cm
-1

, overtone at 1150  

cm
-1

, the V-peroxo O-O stretch at ~930 cm
-1

 and the 470 nm transition would be easily 

detected with Raman and UV-vis spectroscopy, respectively. 
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Conclusions 

It is, therefore, concluded that an umbrella-type vanadium peroxo-oxo structure 

does not exist for hydrated or dehydrated supported V2O5/SiO2 catalysts.  Examination 

of the Raman spectra for other supported vanadium oxide catalyst systems also reveals 

that the umbrella vanadium peroxo-oxo structures are not present.  The umbrella-type 

vanadium peroxo-oxo structure, however, is a valid model in vanadium oxide 

biocatalyst systems including VHPOs and mimic compounds such as 

K[VO(O2)(heida)].  Thus, although a protein or organic support stabilizes vanadium 

peroxo-oxo structures, oxide supports do not seem to stabilize the vanadium peroxo-oxo 

structures that have been suggested for supported vanadium oxide catalysts.  Hence, 

comparisons between K[VO(O2)(heida)] and V2O5/SiO2 should be made using, 

respectively, the peroxo-oxo and mono-oxo trigonal pyramid structures shown in Figure 

2.15 a and Figure 2.15 b. 
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Chapter 3:  Oxidation Mechanism by K[VO(O2)(heida)](aq) and Comparison to 

Oxidation Mechanism by Supported Vanadium Oxide Catalysts 

Despite the significant difference in the molecular surface structures between the 

K[VO(O2)(heida)] enzyme mimic and the supported VO4/SiO2 catalyst (see Chapter 2, 

Section 3), both are capable of oxidizing methanol to formaldehyde even under vastly 

different reaction conditions: K[VO(O2)(heida)] under aqueous conditions at mild 

temperatures, and VO4/SiO2 at the gas/solid interface at high temperatures.  The 

K[VO(O2)(heida)](aq) enzyme mimic, contains a vanadium peroxo-oxo structure, 

O=VO2, that is not present for supported vanadia catalysts on inorganic oxides such as 

silica.  The dispersed vanadia on silica is present as a trigonal pyramidal surface VO4 

species possessing one terminal V=O bond and three bridging V-O-Si bonds under 

dehydrated conditions.  However, given the different molecular structures of the 

catalytic active site in the enzyme mimic and supported catalyst, can we expect the 

methanol adsorption site, reaction intermediates, and mechanism for both catalysts to be 

the same?  This chapter examines the similarities and differences between the 

K[VO(O2)(heida)](aq) enzyme mimic and the supported VO4/SiO2 catalyst for methanol 

oxidation to formaldehyde. 
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Section 1: Catalytic Active Sites, Reaction Intermediates, Reaction Mechanism and 

Kinetics of Aqueous Methanol Oxidation by K[VO(O2)(heida)](aq) versus Gas Phase 

Methanol Oxidation by Supported V2O5/SiO2 

The reactivity studies of the K[VO(O2)(heida)] enzyme mimic have mostly 

focused on bromide oxidation in acidified organic media.1  Several studies have 

appeared on sulfoxidation reactions2-4, and a few have touched on propanol and ethanol 

oxidation by similar vanadium peroxo-oxo compounds5, 6  One very interesting recent 

study by Conte et al., has investigated the reactivity of vanadium mono oxo and 

vanadium peroxo-oxo compounds for bromide oxidation, sulfoxidation, epoxidation, 

and hydroxylations in two phase and ionic liquid systems7.  No studies, however, have 

been reported for characterization of vanadium peroxo-oxo enzyme mimics during 

oxidation reactions that would allow for direct observation and molecular insights about 

the catalytic active sites, reaction intermediates and reaction mechanism. 

The objective of this study is to compare the aqueous methanol oxidation 

reaction mechanism of K[VO(O2)(heida)](aq) with that of the well-established vapor-

solid methanol oxidation by the supported VO4/SiO2 catalyst system.  In this chapter, 

the K[VO(O2)(heida)](aq) enzyme mimic is monitored during methanol oxidation with 

cutting edge in situ Raman and ATR-IR spectroscopy.  These in situ vibrational 

techniques, which are traditionally applied for the study of heterogeneous catalysts like 

VO4/SiO2 for vapor-solid catalysis, are also shown in the current investigation to be 

highly effective and informative in the study of homogenous reactions of aqueous 

enzyme mimics.  The in situ vibrational spectroscopic measurements were able to 

identify the catalytic active site, reaction intermediate and reaction mechanism during 

methanol oxidation in aqueous media  by the K[VO(O2)(heida)](aq) enzyme mimic.  
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Raman and IR spectroscopy revealed that CH3OH chemisorbs at the bridging V-O-

carbon bond forming the V-OCH3 reaction intermediate that transfers its methyl 

hydrogen to the VO2 peroxo functionality. Although the chemisorption sites are 

identical for the enzyme mimic and the supported vanadium systems, the methoxy 

methyl hydrogen rate-determining-step occurs at the terminal V=O bond for the 

supported vanadia catalyst while the methoxy methyl hydrogen is transferred to the 

peroxo functionality in the enzyme mimic. Thus, methanol oxidation follows different 

rate-determining-steps for enzyme mimics and vapor-solid catalysts due to the presence 

of different vanadium functionalities. 

Experimental 

Raman Spectroscopy 

The Raman spectrum of K[VO(O2)(heida)](aq) was collected with a Horiba-Jobin 

Yvon LabRam-HR spectrometer as described in the previous chapter.  For the 

collection of aqueous in situ Raman spectra, six stoichiometric molar equivalents of 

methanol and hydrogen peroxide were added to a vial of K[VO(O2)(heida)] (aq) (0.2M), 

and the vial was placed in a water bath maintained at 50
o
C.  Negative controls using 

K[VO(O2)(heida)](aq) only and methanol and hydrogen peroxide only at 50
o
C were run 

in parallel.  The Raman spectra of aqueous formaldehyde, methanol, hydrogen 

peroxide, dimethyl ether, dimethoxy methane, and formic acid standards were used for 

comparison.  Raman spectra were collected at 20-25 minute intervals.  For the 

monitoring of the peroxo band using Raman spectroscopy, six stoichiometric 

equivalents of methanol only, but no H2O2, were added to a vial of 
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K[VO(O2)(heida)](aq), and the vial was placed in a water bath maintained at 50
o
C.  

Raman spectra were collected every 3-5 minutes once the rapid loss of the V-O2 group 

was observed. 

ATR-IR Spectroscopy 

The K[VO(O2)(heida)] dissolved in deionized water was examined using a 

Thermo Nicolet 8700 IR spectrometer equipped with a DTGS detector cooled with 

liquid N2 and Harrick Horizon ATR attachment on a zinc selenide crystal. The spectrum 

was collected in the 400-4000 cm
-1

 range with 72 scans and deionized water was 

background subtracted.  For the collection of aqueous in situ ATR-IR spectra, six 

stoichiometric equivalents of methanol and hydrogen peroxide were added to a vial of 

1M K[VO(O2)(heida)](aq), and the vial was placed in a water bath maintained at 50
o
C.  

K[VO(O2)(heida)](aq) was used at a higher concentration for the ATR-IR experiments in 

order to yield a better signal to noise ratio at the higher concentration.  Negative 

controls at 50
o
C using K[VO(O2)(heida)](aq) only and methanol and hydrogen peroxide 

only were run in parallel.  The ATR-IR spectra were collected at 20-25 minute intervals, 

and the K[VO(O2)(heida)](aq) negative control was background subtracted for better 

observation of reaction intermediate species.  The ATR-IR spectra contained both 

information about the aqueous K[VO(O2)(heida)] structure, reaction intermediates 

(methoxy), and the dissolved oxygenated components (methanol and reaction products).  
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Rate Determining Step  

The rate determining step for methanol oxidation with H2O2 by 

K[VO(O2)(heida)](aq) was investigated by performing an experiment using using 

CH3OH and CD3OH.  Three identical vials were prepared containing 0.2 grams 

K[VO(O2)(heida)] in 20 mL deionized water.  One vial was designated as the negative 

control, the others were designated as the positive sample reaction vials and labeled 

with either CH3OH or CD3OH.  Each vial was placed into a 70
o
C hot water bath for 

approximately 30 minutes before the reagents were added.  200 L of CH3OH or 

CD3OH was added to the reaction vial, and 200 L of deionized water was added to the 

negative control vial.  Each vial was sampled every 20 minutes by removing 200 L 

from the vial and assayed by the Purpald® method described in Chapter 4. 

Results 

Methanol Oxidation by K[VO(O2)(heida)](aq)
 
Enzyme Mimic in the Absence of 

H2O2 

Liquid phase oxidation of methanol at 50
o
C by the K[VO(O2)(heida)](aq) enzyme 

mimic in the absence of H2O2 was monitored with time-resolved in situ Raman 

spectroscopy and the findings are presented in Figure 3.1 for the 200-1200 cm
-1

 spectral 

region. The time-resolved in situ Raman spectra during aqueous methanol oxidation by 

K[VO(O2)(heida)](aq) illustrate the consumption of the V-O2 peroxo bands  at 575, 932 

and 1150 cm
-1

.  In the absence of the H2O2 oxidant, K[VO(O2)(heida)](aq) is transformed 

to dioxo K[VO(O)(heida)](aq) (see Chapter 2, Section 2 for dioxo characterization) 
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because it is unable to regenerate the vanadium peroxo functionality via reoxidation and 

repeat the catalytic cycle.  Consequently, the 575 cm
-1

 vanadium peroxo Raman band 

and its overtone at 1150 cm
-1

 progressively decrease as the reaction proceeds.  
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Simultaneously, the vanadium peroxo vs(O-O) stretching vibration at 932 cm
-1 

becomes 

eclipsed by the broad vs(O=V=O) stretch at 920 cm
-1

 and the  vas(O=V=O) stretch of the 

895 cm
-1

 shoulder that are characteristic of the dioxo K[VO(O)(heida)](aq) (which was 

characterized in Chapter 2) during the course of the methanol oxidation reaction.  Note 

Figure 3.1 Time-resolved in situ Raman spectra of the 0.2M K[VO(O2)(heida)](aq) enzyme mimic in 

the presence of methanol and without H2O2 in the 200–1200 cm
-1

 spectral region. The Raman 

spectrum at the end of the reaction at the top of the figure matches the Raman spectrum for the dioxo 

K[VO(O)(heida)](aq) enzyme mimic.  (See Figure Chapter 2, Section 2 for the dioxo 

K[VO(O)(heida)](aq) characterization). 
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that the vanadyl shift from 967 to 920 cm
-1

 is not related to the reduction in the 

oxidation state of the vanadium, since both the dioxo and oxo-peroxo are both V(V) 

compounds, and the vibrational shift is simply from the conversion of the mono-oxo 

V=O functionality into the dioxo O=V=O functionality.  The small band which emerges 

at ~1003 cm
-1

 is due to the presence of decavanadates.  The presence of decavanadates 

in equilibrium with the dioxo K[VO(O)(heida)] compound are described in Chapter 2, 

Section 2. 

Methanol Oxidation by K[VO(O2)(heida)](aq)
 
Enzyme Mimic in the Presence of 

H2O2 

Liquid phase oxidation of methanol at 50
o
C by the K[VO(O2)(heida)](aq) enzyme 

mimic in the presence of H2O2 also was monitored with time-resolved in situ Raman 

spectroscopy and the findings are presented in Figure 3.2 for the 200-1200 cm
-1

 spectral 

region. The black curve is the Raman spectrum of 0.2 M K[VO(O2)(heida)](aq) prior to 

the addition of six molar equivalents of methanol and hydrogen peroxide.  The blue 

curve is the spectrum taken immediately after the addition of six molar equivalents of 

methanol and hydrogen peroxide.  The subsequent ascending spectra in Figure 3.2 were 

collected at 20–25 minute intervals as the reaction proceeded.  Aqueous H2O2 gives rise 

to the strong 878 cm
-1

 band corresponding to the O-O stretch of H2O2 and CH3OH(aq) 

gives rise to the strong 1028 cm
-1

 band related to the C-O stretch of CH3OH.8  Both 

bands decrease as these reactants are consumed during the course of the methanol 

oxidation reaction, and the new shoulder band at ~895 cm
-1

 from the dioxo vas(O=V=O) 

stretch of K[VO(O)(heida)](aq) simultaneously increases in intensity with extent of 
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reaction, but the spectrum for aqueous free formaldehyde also has a strong band present 

at approximately 900 cm
-1

, so band overlap may be a possibility.9  Upon addition of 

CH3OH and H2O2, the weak Raman bands in the 331-465 cm
-1

 region, corresponding to 
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V-O-C bending and V-N stretching vibrations,slightly downshift indicating a slight 

lengthening of these bonds from coordination of methanol to the vanadium oxide active 

site.  Note that the peroxo V-O2 vibrations at (932, 575 and 1150 cm
-1

) and the V=O 

oxo vibration at (967 cm
-1

) of the K[VO(O2)(heida)](aq) compound are unperturbed 

Figure 3.2 Time-resolved in situ Raman spectra during methanol oxidation with H2O2 at 50
o
C by the 

0.2M K[VO(O2)(heida)](aq) enzyme mimic in the 200–1200 cm
-1

 spectral region.  The black curve is 

the initial Raman spectrum for the K[VO(O2)(heida)](aq) enzyme mimic prior to addition of CH3OH 

and H2O2.  The subsequent Raman spectra are taken at 20–25 minute intervals following the addition 

of six molar equivalents of CH3OH and H2O2. 
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during the course of the reaction while H2O2 is still present.  This indicates that neither 

the peroxo nor the oxo groups function as the methanol adsorption site and suggests that 

the methanol adsorption site is the bridging V-O-C ligand bond. 

 Once H2O2 has been completely consumed, as indicated by the disappearance 

of the 878 cm
-1

 band, the K[VO(O2)(heida)](aq) peroxo Raman bands at 575 cm
-1

 and 

1150 cm
-1

 begin to decrease in intensity.  The intensity of the 932 cm
-1

 peroxo Raman 

band also decreases and becomes eclipsed by a larger broad band at ~920 cm
-1

, which 

corresponds to the dioxo vs(O=V=O) stretch of K[VO(O)(heida)](aq).  The latter band 

overlaps the 932 cm
-1

 V-O2 peroxo functionality of K[VO(O2)(heida)](aq) (see Figure 

3.2). After complete consumption of H2O2, new Raman bands begin to appear at 1003 

and 976 cm
-1

 that is associated with the vs(V=O) and vas(V=O) stretching modes, 

respectively, of decavanadate [V10O28](aq)
6-

 clusters resulting from dissociation of the 

dioxo K[VO(O)(heida)] compound in the acid pH solution (see Chapter 2, section 2). 

The corresponding time-resolved in situ Raman spectra during aqueous 

methanol oxidation by K[VO(O2)(heida)](aq) and H2O2 in the 1000-2000 cm
-1

 spectral 

region associated with the reactant and product oxygenates are presented in Figure 3.3.  

The black curve is the Raman spectrum of the K[VO(O2)(heida)](aq) enzyme mimic 

prior to the addition of methanol and hydrogen peroxide, and the blue curve is the 

spectrum taken immediately after addition of methanol and hydrogen peroxide.  The 

subsequent ascending spectra were taken at 20–25 minute intervals.  It is important to 

note that in low concentration aqueous solutions of formaldehyde, formaldehyde 

(HCHO) and formaldehyde monohydrate (HOCH2OH) are in equilibrium, with the 
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monohydrate species predominating at concentrations up to 5 mol%.9  Approximately 

20-25 minutes into the reaction, a broad band appears at 1715 cm
-1

 characteristic of the 

carbonyl C=O stretching functionality of formic acid (HCOOH).10  A formic acid 
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 standard was examined by Raman spectroscopy to confirm the assignment (not shown).  

The 1715 cm
-1

 formic acid Raman band appears after formaldehyde is produced and is 

related to further oxidation of formaldehyde to formic acid by either 

K[VO(O2)(heida)](aq) or by excess H2O2.   

Figure 3.3 Time-resolved in situ Raman spectra during methanol oxidation with H2O2 at 50
o
C by the 

0.2M K[VO(O2)(heida)](aq) enzyme mimic in the 1000-2000 cm
-1

 spectral region.  The black curve is 

the initial Raman spectrum for K[VO(O2)(heida)](aq) prior to addition of CH3OH and H2O2. The 

subsequent Raman spectra are taken at 20–25 minute intervals following the addition of six molar 

equivalents of CH3OH and H2O2. 
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Aqueous oxidation of methanol by H2O2(aq) and K[VO(O2)(heida)](aq) at 50
o
C 

was also monitored with time-resolved in situ ATR-IR spectroscopy since vanadium 

methoxy vibrations are more easily detected by IR.  This study was performed in order 

to observe the catalytic active site for methanol oxidation by K[VO(O2)(heida)](aq).  The 

resulting IR spectra are presented in Figure 3.4 for the 2500-3100 cm
-1

 spectral region 

corresponding to the various oxygenated species.  The red curve in Figure 3.4 

represents the spectrum obtained for K[VO(O2)(heida)](aq), which possesses small IR 

bands in this region.  Negative controls were run in parallel and a baseline negative 
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Figure 3.4 Time-resolved in situ ATR-IR spectra during CH3OH(aq) oxidation by H2O2(aq) and 

K[VO(O2)(heida)](aq) enzyme mimic in the 2500–3100 cm
-1

 spectral region.  The red curve is for the 

0.2M K[VO(O2)(heida)](aq) enzyme mimic prior to addition of six molar equivalents CH3OH and H2O2 

and was used as a baseline for the subsequent reaction spectra.  The blue curve is the CH3OH(aq) 

standard.  The spectra were collected at 10 minute intervals following the addition of CH3OH and 

H2O2. 
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control spectrum was subtracted from each sample spectrum in order to avoid any 

interference from K[VO(O2)(heida)](aq) IR bands.  The blue curve in Figure 3.4 is the 

spectrum for an aqueous solution of CH3OH(aq) (2854 and 2952 cm
-1

 with weak 

shoulder bands at ~2800 and 2900 cm
-1

).8  The ascending black spectra were taken at 5- 

10 minute intervals after the introduction of CH3OH(aq) and H2O2(aq).  As CH3OH 

adsorption proceeds, new bands begin to appear from intact CH3OH bound to the 

vanadium active site (2s(CH3) at 2854 cm
-1

), the V-OCH3 reactive methoxy 

intermediate (s(CH3) at 2924 cm
-1

) and the HCHO(aq) reaction product (asCH2 at 2908 

cm
-1

).11  Note that intensity of the IR bands for CH3OH(aq) decrease while the intensity 

of the IR bands for V-OCH3(aq) and HCHO(aq) increase with extent of methanol 

oxidation.  The aqueous methanol vibrational bands at 2842 and 2952 cm
-1

 overlap the 

methoxy V-OCH3 2s(CH3) and intact methanol s(CH3) vibrations, respectively.  

Assignments for the methoxy and intact bound methanol IR band assignments were 

made by comparison to analogous vanadium oxide catalysts.11  

Rate Determining Step 

The kinetics of CH3OH and CD3OH oxidation by K[VO(O2)(heida)](aq) at 70
o
C 

in the presence of H2O2 is shown in Figure 3.5.  It can be seen that the kinetic rate of 

oxidation of CD3OH by K[VO(O2)(heida)](aq) to deuterated formaldehyde (DCDO) is 

slower than the kinetic rate of oxidation of CH3OH to formaldehyde (HCHO).  This 

indicates that the rate of C-D methoxy bond breaking is slowed down by the kinetic 

isotope effect.  The rate of C-H methoxy bond breaking proceeds at a faster rate. 
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Discussion 

Active Structure for Aqueous Methanol Oxidation by the K[VO(O2)(heida)](aq) 

Enzyme Mimic 

Two V-O-heida aqueous molecular complexes are present during methanol 

oxidation: the peroxo-oxo K[VO(O2)(heida)](aq) and the dioxo K[VO(O)(heida)](aq), with 

the peroxo-oxo structure K[VO(O2)(heida)](aq) being the catalytic active form (see 

spectra in Figure 3.1). 

 

Figure 3.5 Kinetics of CH3OH and CD3OH oxidation by K[VO(O2)(heida)](aq) at 70
o
C in the 

presence of H2O2 showing kinetic isotope effect.  The kinetic oxidation rate is slower for CD3OH 

than for CH3OH indicating that the C-H methoxy bond breaking step is rate determining. 
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Chemisorption 

The active peroxo-oxo K[VO(O2)(heida)](aq) enzyme mimic contains three 

distinct oxygen functionalities: a peroxo V-O2 group, an oxo V=O group, and bridging 

V-O-C coordinating ligand bonds.  The appearance of the s(CH3) V-OCH3 ATR-IR 

vibration (2924 cm
-1

) upon chemisorption of CH3OH on the K[VO(O2)(heida)](aq) 

enzyme mimic and the absence of perturbation of the peroxo V-O2 and oxo V=O 

vanadyl vibrations (see Figures 3.4 and 3.2, respectively) implicates the bridging V-O-

C(heida) bonds as being involved in dissociative chemisorption of methanol at the 

vanadium atom of the enzyme mimic to from V-OCH3 and C-O-H.  The current 

determination that methanol chemisorbs at the bridging V-O-C(ligand) site is in 

agreement with the proposal of Conte et al. that 2-propanol oxidation by an analogous 

vanadium-peroxo-tri-isoproproxide compound initiates with propanol complexation 

with the central vanadium atom.5 

Most Abundant Reaction Intermediates 

Two reaction intermediates are present during CH3OH(aq) oxidation by the 

K[VO(O2)(heida)](aq) enzyme mimic: physisorbed intact V-CH3OH and V-OCH3 

species (see Figure 3.4).  As the CH3OH oxidation reaction proceeds, the ATR-IR 

vibrational bands from intact CH3OH bound to the vanadium active site (2s(CH3) at 

2854 cm
-1

) and the V-OCH3 reactive methoxy intermediate (s(CH3) at 2924 cm
-1

) both 

begin to increase in intensity, the latter with greater intensity.  The preponderance of the 
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V-OCH3 band indicates that V-OCH3 is the most abundant reaction intermediate for the 

partial oxidation of methanol to formaldehyde by K[VO(O2)(heida)](aq). 

Rate Determining Step 

The kinetic isotope effect for CH3OH and CD3OH oxidation by 

K[VO(O2)(heida)](aq) at 70
o
C in the presence of H2O2 can be clearly seen in Figure 3.5.  

When the methoxy hydrogen atoms (CH3O-) are replaced by deuterium atoms, the 

heavier mass of the deuterium results in lower vibrational frequencies and therefore a 

lower zero point energy for CD3O-.  Therefore more energy is required to break a C-D 

bond than a C-H bond.  This results in a lower kinetic rate of C-D bond breaking than 

C-H bond breaking.12, 13  If the methoxy C-H bond breaking step was not rate limiting 

(for example if the rate determining step was adsorption or desorption), the rate for 

CD3OH oxidation would not appear to be slower than CH3OH oxidation.  CD3OH 

oxidation to DCDO by K[VO(O2)(heida)](aq) proceeds at a much slower rate than 

CH3OH oxidation to HCHO as seen in Figure 3.5.  This indicates that the rate 

determining step for methanol oxidation by K[VO(O2)(heida)](aq) is the methoxy C-H 

bond breaking step.   

Catalytic Active Site 

The peroxo V-O2 functionality is the catalytic site where methanol oxidation 

takes place by performing the methyl C-H bond breaking step and losing one of the 

oxygen atoms from the peroxo group in the formation of the water byproduct.  The 

remaining oxygen atom of the peroxo group forms the second vanadyl V=O bond of the 
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dioxo K[VO(O)(heida)](aq) complex.  This is directly observed during oxidation of 

methanol by the K[VO(O2)(heida)](aq) enzyme mimic in the absence of the H2O2 oxidant 

as consumption of the peroxo V-O2 functionality (e.g., the strong peroxo Raman 

vibration at 575 cm
-1

 in Figure 3.1) during the oxidation reaction.  The appearance of 

the broad Raman band at 920 cm
-1

, characteristic of the dioxo K[VO(O)(heida)](aq) 

compound, demonstrates that the second oxygen atom from the peroxo forms a second 

vanadyl group (see Chapter 2, section 2 for the dioxo spectrum).  It, thus, appears that 

the oxo V=O vanadyl bond is not directly involved in the aqueous methanol oxidation 

reaction by the K[VO(O2)(heida)](aq) enzyme mimic and is retained to form the reduced 

dioxo K[VO(O)(heida)](aq) complex. 

Reaction Mechanism of Aqueous CH3OH oxidation by K[VO(O2)(heida)](aq)  

The catalytic cycle for aqueous methanol oxidation by the K[VO(O2)(heida)](aq) 

enzyme mimic is schematically shown in Scheme 3.1.  The first step involves the 

chemisorption of methanol at the bridging V-O-C(ligand) bond that results in scission 

of this bond and formation of V-OCH3 and H-O-C(ligand) bonds.  In the second step, 

the V-OCH3 intermediate transfers its methyl hydrogen atom to the V-O2 functionality 

to form H2CO, H2O, and the dioxo K[VO(O)(heida)](aq) compound.  In the final step, 

which completes the catalytic cycle, the dioxo K[VO(O)(heida)](aq) is reoxidized by 

H2O2(aq) to the active K[VO(O2)(heida)](aq) peroxo-oxo compound.  Thus, this reaction 

proceeds via a Mars-van Krevelen reaction mechanism14 since the participating peroxo 

oxygen in the rate determining step is supplied by the K[VO(O2)(heida)](aq) enzyme 

mimic and not from the H2O2(aq) oxidant (see Figure 3.1). The proposed reaction 



65 
 

mechanism is supported by density functional theory (DFT) calculations of the 

energetics of this reaction (to be presented in the following section). 

Formic acid is also produced in significant quantities due secondary oxidation of 

the formaldehyde reaction product by the active K[VO(O2)(heida)](aq) enzyme mimic, or 

by oxidation with excess H2O2 or even by facile oxidation of formaldehyde by 

atmospheric oxygen.  The detailed mechanistic steps of HCHO oxidation to HCOOH by 

the active K[VO(O2)(heida)](aq) enzyme mimic, have not been investigated and, thus, 

will not be further discussed. 

Scheme 3.1 Proposed mechanism of partial methanol oxidation to formaldehyde 

by K[VO(O2)(heida)](aq) enzyme mimic in the presence of H2O2. 

 



66 
 

Comparison of Methanol Oxidation in the Vapor Phase by Supported 

VO4/SiO2 and  Aqueous Phase by K[VO(O2)(heida)](aq) Enzyme Mimic 

Vapor phase oxidation of methanol by supported vanadium oxide catalysts (see 

Scheme 3.2, below) has been extensively investigated and shown to proceed via the 

Mars-van Krevelen reaction mechanism in which the vanadium oxide catalytic active 

site, and not gas phase molecular O2, supplies the oxygen involved in the rate 

determining step of the oxidation reaction.  Dissociative methanol chemisorption occurs 

at the bridging V-O-Support bond to form the surface V-OCH3 reaction intermediate 

and Support-OH species.15-17  The terminal V=O bond is involved in the rate 

determining C-H bond breaking step by a hydrogen atom from the methoxy  

 

Scheme 3.2 Oxidation mechanism of methanol to formaldehyde over SiO2/VO4  
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group which leads to the formation of the vapor phase formaldehyde reaction  

product.15, 16  The remaining surface V-OH and Support-OH intermediates subsequently 

recombine to release H2O.  Gas phase molecular O2 completes the catalytic cycle by 

reoxidizing the reduced vanadium oxide catalytic active site from V
+3

 back to V
+5

.  The 

aqueous phase oxidation of methanol by the K[VO(O2)(heida)](aq) enzyme mimic 

catalyst also proceeds via the Mars-van Krevelen reaction mechanism where the 

vanadium oxide catalytic active site, and not the H2O2 oxidant, supplies the oxygen 

involved in the oxidation reaction.  In biocatalysis jargon, this type of mechanism is 

sometimes also referred to as a ping-pong mechanism.18  In situ Raman and ATR-IR 

spectroscopy indicate the similarity of the overall mechanism of methanol oxidation by 

K[VO(O2)(heida)](aq) and supported vanadium oxide heterogeneous catalysts.  For both 

catalytic systems, CH3OH chemisorbs at a bridging V-O-Support/ligand bond to form 

V-OCH3 reaction intermediates and both perform oxidation via a Mars-van Krevelen 

reaction mechanism, but with one critical difference.  For K[VO(O2)(heida)](aq), the 

methoxy C-H bond breaking rate determining step is performed by the peroxo V-O2 

group as indicated by the consumption of the peroxo band (see Figure 3.1).  For 

supported VO4/SiO2, which does not contain a peroxo V-O2 group, the C-H bond 

breaking step is performed by the terminal V=O oxo group.15, 16  Lastly, reoxidation of 

the inactive dioxo K[VO(O)(heida)](aq) to the active K[VO(O2)(heida)](aq) peroxo-oxo 

complex requires H2O2 as the oxidant whereas for VO4/SiO2 molecular O2 performs the 

reoxidation of the reduced surface VOx site.  Thus, methanol oxidation in the vapor and 

liquid phases exhibits many similarities (Mars-van Krevelen mechanism and bridging 

V-O-X active site, in which X is either a C ligand or an oxide support cation, for 
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methanol chemisorption), but also a key fundamental difference in the methoxy C-H 

bond breaking rate determining step (use of peroxo V-O2 vs. oxo V=O functionalities). 

Conclusions 

The K[VO(O2)(heida)](aq) enzyme mimic and supported vanadium oxide 

catalysts, such as vanadia supported on silica, differ greatly in the local VOx molecular 

structure.19  K[VO(O2)(heida)](aq) contains a peroxo-oxo structure while a O=VO3 

trigonal pyramidal structure is present for VO4/SiO2.  Despite these molecular structural 

differences, both catalysts share a similar methanol adsorption site (the bridging V-O-X 

bond and the V-OCH3 reaction intermediate).  The K[VO(O2)(heida)](aq) and VO4/SiO2 

also perform oxidation reactions via a Mars-van Krevelen mechanism where the VOx 

catalytic active site relinquishes its active oxygen during the rate determining step and 

must subsequently be reoxidized to its active fully oxidized form in order to continue 

the full catalytic cycle.  The K[VO(O2)(heida)](aq) and supported VO4/SiO2, however, 

differ in the nature of the rate determining step involving the methoxy C-H bond 

breaking.  K[VO(O2)(heida)](aq) transfers the methoxy hydrogen atom to the peroxo 

VO2 group while supported VO4/SiO2 transfers the methoxy hydrogen atom to the oxo 

V=O group because it does not possess a peroxo functionality. Furthermore, the oxo 

V=O functionality in the K[VO(O2)(heida)](aq)  enzyme mimic does not participate in 

methanol oxidation reflecting the greater reactivity of peroxo VO2 groups than oxo 

V=O groups for oxidation reactions. 

This is the first time experimental evidence has been presented for the catalytic 

active site, reaction intermediates, rate determining step, and reaction mechanism for an 
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oxidation reaction by K[VO(O2)(heida)](aq) in the presence of H2O2.  The new 

fundamental information was provided by time-resolved in situ Raman and ATR-IR 

spectroscopy.  The new insights reveal the similarities and differences between 

methanol oxidation in the vapor phase by supported VO4/SiO2 catalysts and 

K[VO(O2)(heida)](aq) enzyme mimics.  Although the enzyme mimic and catalyst exhibit 

many similarities, there is a significant difference in the critical oxidation step.  The 

nature of the oxygen involved in the oxidation reaction is different for both systems: a 

vanadyl for supported VO4/SiO2 and peroxo for the K[VO(O2)(heida)](aq) enzyme 

mimic.  
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Section 2: Supplemental Density Functional Theory (DFT) Calculations for 

Methanol Oxidation by K[VO(O2)(heida)](aq) 

Density Functional Theory (DFT) calculations were performed to supplement 

experimental results.  DFT was used to compute the lowest energy pathway for 

methanol adsorption and for the C-H bond breaking step for methanol oxidation by 

K[VO(O2)(heida)].  All DFT work was performed in collaboration with Middle East 

Technical University (METU) in Ankara, Turkey with the gracious help of Ms. Duygu 

Gerçeker, advised by Professor Işik Önal. 

Prior to this study, a few reports in literature included DFT work on the the 

K[VO(O2)(heida)] complex, but none of them performed any DFT calculations on 

methanol oxidation; sulfoxidation and bromide oxidation mechanisms were studied.3, 4, 20 

 Both sulfoxidation and bromide oxidation reactions by 

K[VO(O2)(heida)] are typically carried out in a polar aprotic solvent such as acetonitrile 

which is slightly acidified.  Water as a solvent is thought to function as a buffering 

agent which does not permit protonation of the peroxo group of K[VO(O2)(heida)].  In 

acetonitrile, protonation of K[VO(O2)(heida)] is easier because acetonitrile does not 

possess the same buffering capability as water. 

For bromide oxidation to HOBr, it is believed that protonation of 

K[VO(O2)(heida)] is required for activity.  The protonated peroxo atom is attacked by 

the incoming bromide, which plucks away an oxygen atom and the associated proton to 

form the HOBr product.1, 20  Vanadium haloperoxidases are thought to catalyze halide 



71 
 

oxidation in a similar fashion, but the associated proton is donated by a nearby amino 

acid.21-24  In a recent study, DFT was used to investigate the bromide oxidation 

mechanism by protonated K[VO(O2)(heida)].  It was found that even though bromide 

prefers to approach the unprotonated oxygen of the protonated peroxo group, there was 

no suitable pathway for removal of an –OH group by the bromide.  Therefore, it was 

concluded using DFT that bromide oxidation occurs via nucleophillic attack of the 

incoming bromide at the protonated oxygen of the protonated peroxo group (See 

Scheme 3.3 for representation of this bromide attack suggested by the DFT work of 

Eshtiagh-Hosseini et al.).20 

Scheme 3.3 Suggested mechanism of bromide attack by the DFT work of Eshtiagh-

Hosseini et al.20 

 

 

DFT studies have shown that sulfoxidation occurs via thiol or thioether attack at 

the more electrophilic, unprotonated oxygen atom of the K[VO(O2)(heida)] protonated 

peroxo group in acetonitrile solution.2-4, 25  Vanadium haloperoxidases are also thought to 
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perform sulfoxidations in the same manner.25  A schematic of the sulfoxidation 

mechanism found for K[VO(O2)(heida)] is shown in Scheme 3.4. 2-4, 25 

Scheme 3.4 Representation of the suggested mechanism for sulfoxidation by 

K[VO(O2)(heida)].2-4, 25  

 

We did not investigate whether or not methanol oxidation by K[VO(O2)(heida)] 

occurs in acidified acetonitrile, however we believe that a protonated peroxo group in 

acetonitrile solution would not be beneficial.  This is because during the C-H bond 

breaking step, an H atom needs to be removed by the unprotonated peroxo group.  Still, 

prior to this study, there has not been any reported DFT work on alcohol oxidation by 

K[VO(O2)(heida)](aq).  The DFT performed in this section serves as a complement to the 

experimental work performed earlier in this Chapter.  Here we investigate the energetics 

of methanol adsorption, and the mechanism for the C-H bond breaking step using DFT.  

Two mechanistic pathways were investigated and the computational results were 

compared to the experimental results.  The DFT results agree with experimental results 
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showing that the C-H bond breaking step is most likely performed by the peroxo group 

and not the oxo group. 

Experimental 

Density Functional Theory (DFT) Calculations 

DFT calculations were performed within the Gaussian 2009 software suite using 

the functional B3LYP with a 6-31G (d,p) basis set.  Gaussian code programming was 

performed by Ms. Duygu Gerçeker.  Water as a solvent was incorporated using the 

polarizable continuum model (PCM) for all calculations.  A single point energy (SPE) 

calculation was performed to obtain the lowest spin number for the [VO(O2)(heida)]
- 

and equilibrium geometry (EG) optimization was performed on the [VO(O2)(heida)]
-
 

cluster using crystal data for initial bond lengths/bond angles.1  Solvation energetics of 

the [VO(O2)(heida)]
- 

cluster using the lowest spin number was computed and 

equilibrium geometry (EG) optimization was also performed on the methanol molecule.  

An initial starting guess for adsorbed methanol was optimized, and the energy barrier 

for methanol adsorption was computed. 

The C-H bond breaking step was investigated via two reaction coordinate driven 

computations: via proton transfer to the peroxo group and via proton transfer to the oxo 

group.  Transition state optimization was performed for each reaction pathway, and the 

activation energy barrier of the C-H bond breaking step was computed for both 

scenarios. 
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Results 

DFT Study on Methanol Oxidation by K[VO(O2)(heida)](aq) 

Single point energy calculations yielded a lowest spin number of 3 for aqueous 

[VO(O2)(heida)]
-
.  The heat of formation was calculated for both gas phase 

[VO(O2)(heida)]
- 

and aqueous phase [VO(O2)(heida)]
-
 and found to be -1833.05 a.u. 

and -1833.22 a.u. respectively.  The solvation energy in water was computed and found 

to be -109.85 kcal/mol.  The optimized equilibrium geometry (EG) for the 

[VO(O2)(heida)]
- 

cluster converged in 20 steps and is shown in Figure 3.6 a.  The 

methanol molecule was also geometry optimized and is shown in Figure 3.6 b. 

 

 

Figure 3.6 a. Ball-and-stick representation of optimized equilibrium geometry structure of aqueous 

[VO(O2)(heida)]
- 
cluster with atom labeling, and b. optimized geometry structure of methanol with 

atom labeling. 

 

a. b. 
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Next, methanol adsorption was examined via a V-O reaction coordinate driven 

pathway between the vanadium (V1) and oxygen (O25) atom for methanol.  A local 

minimum was found for non dissociative methanol physisorption at a V1-O25 distance 

of 2.24 Å.  The relative energy for methanol physisorption was calculated to be 3.45 

kcal/mol.  Further along the coordinate driven pathway dissociative methanol 

chemisorption was found to occur at V1-O25 distance of 1.82 Å.  Simultaneously, the 

methanol hydroxyl group loses its H atom which breaks the V-O-ligand bond and 

deposits H29 on O5 with a bond distance of H29-O5 of 0.997 Å.  This configuration 

was found to have a relative energy of -11.61 kcal/mol.  This configuration showing 

methanol chemisorption directly to the vanadium center (V-OCH3) breaking the V-O-

ligand bridging bond and depositing H29 on O5 is shown in Figure 3.7. 

 

Figure 3.7 Optimized structure of chemisorbed methanol on aqueous [VO(O2)(heida)]
- 

cluster with V1-O25: 1.82 Å and H29-O5: 0.997 Å. 
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Next, the energetics of two possible C-H bond breaking pathways were 

computed via coordinate driven reaction pathways: abstraction of a methoxy proton by 

the peroxo O3 or by the oxo O2 to determine the most likely pathway for C-H bond 

breaking.  For proton transfer from the methoxy to the peroxo group at O3, a methoxy 

rotation step was required prior to C-H abstraction.  The rotation step is shown in Figure 

3.8 b.  H27 transfer to O3 then proceeded with a bonding distance of H27-O3 of 1.253 

Å followed by the immediate release of formaldehyde.  The activation energy barrier of 

 

Figure 3.8 Optimized structure of a. chemisorbed methanol on aqueous [VO(O2)(heida)]
- 
cluster with 

V1-O25: 1.82 Å and H29-O5: 0.997 Å, b. methoxy rotation step, c. transition state (TS) showing proton 

abstraction by peroxo group with H27-O3: 1.253 Å and d. final release of formaldehyde product. 
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proton abstraction by the peroxo group was found to be 17.71 kcal/mol.  The optimized 

structures for rotation, H27 transfer to O3, and subsequent immediate formaldehyde 

product release are shown in Figure 3.8. 

Investigation of the second pathway for C-H bond breaking, abstraction of the 

proton by the oxo group, met with less success.  An upwards rotation of the methoxy for 

this pathway was not required for this pathway, due to the proximity of H26 to O2.  

H26 transfer to O2 was initiated and the bonding distance of H26-O2 was found to be 

1.14 Å.  The activation energy barrier of proton abstraction by the oxo group was found 

to be 37.31 kcal/mol.  Additionally, spontaneous release of formaldehyde was not 

observed; it simply remained adsorbed.  The optimized structures for adsorption and 

H26 transfer to O2 are shown in Figure 3.9. 

 

Figure 3.9 Optimized structure of a. chemisorbed methanol on aqueous [VO(O2)(heida)]
- 
cluster with 

V1-O25: 1.82 Å and H29-O5: 0.997 Å, b. transition state (TS) showing proton abstraction by oxo 

group with H26-O2: 1.14 Å 
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The activation energy barrier for H26 abstraction by O2 was found to be 

significantly higher than the activation barrier for H abstraction by the peroxo group.  

Figure 3.10 shows the computed relative energy results per equilibrium geometry (EG) 

optimization step for methanol adsorption, including the local physisorption minimum, 

which is followed by methanol chemisorption, and the two possible pathways for C-H 

bond breaking including transition state (TS) energy barriers for H transfer to the oxo 

and peroxo groups. 
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Discussion 

DFT calculations and experimental results concur that the active site for 

methanol adsorption is the V-O-ligand bridging bond.  Methanol adsorbs directly to the 

vanadium center forming a V-OCH3 methoxy group and a ligand-OH hydroxyl group 

simultaneously.  Of the two C-H bond breaking pathways investigated, proton 

abstraction by the V-O2 peroxo group was more energetically favorable than proton 

abstraction by the V=O oxo group.  The peroxo C-H bond breaking pathway yielded an 

activation energy of approximately 18 kcal/mol, while the oxo group C-H bond 

breaking pathway yielded an activation energy of approximately 37 kcal/mol.  Not only 

is the oxo path unlikely to occur because of its higher activation energy, we were unable 

to find a suitable path for the release of formaldehyde for the oxo path. 

Conclusions 

 DFT computations are in complete agreement with experimental results 

for the mechanism of methanol oxidation by K[VO(O2)(heida)](aq) (see Scheme 3.1 in 

Section 1).  Experimental results indicate that methanol adsorption occurs by breaking a 

V-O-ligand bridging bond, and that C-H bond breaking occurs via proton transfer to the 

V-O2 peroxo group.  DFT results are in agreement.  Methanol adsorption, and C-H bond 

breaking via the V-O2 peroxo group were calculated to be the lowest energy pathway, 

and therefore the most likely path for methanol oxidation to formaldehyde by 

K[VO(O2)(heida)](aq).  These DFT results provide an additional indication of the 

similarities and difference between the aqueous enzyme mimic and the heterogeneous 

catalyst.  In the heterogeneous case for VO4/SiO2, methanol adsorption also occurs by 
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breaking a V-O-Si bond to form an adsorbed vanadium methoxy and a silica hydroxyl.  

DFT studies on VO4/SiO2 indicate that C-H bond breaking is performed by the V=O 

group16 since VO4/SiO2 does not contain a V-O2 peroxo group.   
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Section 3: K[VO(O2)(heida)] Protonation Site for Bromide Oxidation 

Bromide oxidation by K[VO(O2)(heida)] is typically carried out in a polar 

aprotic solvent such as acetonitrile because it appears that this particular reaction occurs 

more efficiently in non-aqueous solution.  The mechanism for bromide oxidation is 

completely different than the mechanism for methanol oxidation.  For example, 

bromide may not bind directly to the vanadium atom, instead it appears that oxidation 

occurs by nucleophilic attack of the incoming halide on the peroxo group of 

K[VO(O2)(heida)].1  The reason why it is believed bromide oxidation does not occur as 

readily in protic solvents is because K[VO(O2)(heida)] needs to be protonated in order 

to oxidize bromide to hypobromous acid.1  The proposed mechanism for bromide 

oxidation was shown in the previous section where bromide plucks away the protonated 

oxygen atom of the peroxo group, yielding HOBr. 

As mentioned in the previous section, recent DFT (density functional theory) 

calculations have proposed that the peroxo functionality, not the oxo group, is 

protonated in acetonitrile, but not in aqueous solution at normal reaction conditions due 

to the leveling effect of protic solvents.3, 4, 26  However, this is only a theoretical result 

and there have not been any experimental observation of the protonation of the peroxo 

group in acidified acetonitrile. 

In light of the successful structural and mechanistic experiments performed on 

methanol oxidation by K[VO(O2)(heida)](aq) presented in Chapters 2 and 3, the same 

tools and techniques can be applied to observe the protonation site for 

K[VO(O2)(heida)] in acidified acetonitrile solution.  Therefore, in order to address the 



82 
 

remaining question in the mechanism for bromide oxidation by K[VO(O2)(heida)], full 

characterization of K[VO(O2)(heida)] by Raman spectroscopy in acetonitrile is 

presented in this section.  A protonated peroxo group should appear as a distorted 

Raman band, since one side of the group will become lengthened, and the other side 

shortened.   

Experimental 

K[VO(O2)(heida)] was synthesized and crystallized by the method described in 

Chapter 2.1  Approximately 0.1 g of K[VO(O2)(heida)] was added to no less than 3 mL 

acetonitrile.  Next, 0.12 g 18-crown-6 (C12H24O6) was added in order to chelate the 

potassium ion to facilitate dissolution of the K[VO(O2)(heida)].  Acidification of the 

acetonitrile/ K[VO(O2)(heida)] solution was also achieved by adding a one molar 

equivalent of perchloric acid (HClO4).  The K[VO(O2)(heida)]/acetonitrile solution was 

transferred to a screw-top quartz cuvette, and analyzed by Raman spectroscopy, as 

described in previous sections, this time focusing through the walls of the quartz 

cuvette.  Acetonitrile/perchloric acid/16-crown-8 standards were run to identify 

background Raman bands. 

Results 

The Raman spectrum of K[VO(O2)(heida)] in acetonitrile is presented in Figure 

3.11.  The Raman spectrum of K[VO(O2)(heida)] in aqueous solution is also shown in 

Figure 3.11 for comparison.  Acetonitrile exhibits two large Raman bands at 380 cm
-1

 

and 924 cm
-1

.  Unfortunately, the 924 cm
-1

 acetonitrile band overlaps the O-O 
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symmetric stretch of the V-O2 peroxo group for K[VO(O2)(heida)] in acetonitrile.  The 

967 cm
-1

 band, corresponding to the symmetric stretch of the V=O oxo group is seen to 

be mostly unperturbed in the acetonitrile solvent.  It does appear, that the V=O oxo 

band at 967 cm
-1

 may be slightly red shifted by no more than 3 cm
-1

.  The V-O2 peroxo 

symmetric “breathing” vibration, which appears at ~575 cm
-1

 in aqueous solution, is 

split into a triplicate band for K[VO(O2)(heida)] in acetonitrile.  The V-O2 breathing 

mode peak occurs at approximately 585 cm
-1

, with a shoulder at 575 cm
-1

, and a second 

shoulder at 557 cm
-1

.  We are unable to determine if the overtone band at 1150 cm
-1

 has 

been affected due to the lower signal to noise ratio for K[VO(O2)(heida)] in acetonitrile. 
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Figure 3.11 Raman spectrum of (blue line) the K[VO(O2)(heida)](aq) enzyme mimic in aqueous 

solution, and (black line) the Raman spectrum of the K[VO(O2)(heida)] enzyme mimic dissolved 

in acetonitrile. 
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Discussion 

The Raman spectra of K[VO(O2)(heida)] in acetonitrile and water clearly 

indicate that K[VO(O2)(heida)] is affected by the solvent.  The triplicate V-O2 peroxo 

breathing mode in acetonitrile indicates that the V-O2 group has been distorted.  A 

probable explanation for this triplicate Raman band is partial protonation of one of the 

oxygen atoms of the V-O2 peroxo group.  If one oxygen atom is protonated, one V-O 

bond becomes lengthened, thereby red shifting its vibration.  The other V-O bond 

becomes shortened, which blue shifts its vibration.  It is likely that K[VO(O2)(heida)] is 

not fully protonated in acidified acetonitrile, since a shoulder at the original position of 

575 cm
-1

 still exists.  These results agree with previous DFT work which conclude that 

protonation of one of the V-O2 peroxo oxygen atoms is more favorable than protonation 

of the V=O oxo group. 

Conclusions 

By comparing the Raman spectra of K[VO(O2)(heida)] in acetonitrile to that of 

K[VO(O2)(heida)] in aqueous solution, the final piece of the bromide oxidation 

mechanism puzzle has been solved.  In acidified, acetonitrile K[VO(O2)(heida)] is 

partially protonated at the V-O2 peroxo group, and not the oxo group.  This is indicated 

by a simultaneous red shift and blue shift from the original position of the V-O2 group 

at 575 cm
-1

.  In other words, Raman shows that one side of the peroxo group is 

protonated, thereby lengthening one V-O bond and shortening the other.  The 

persistence of the original 575 cm
-1

 band indicates that an unprotonated configuration 
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also exists in acetonitrile.  Our findings are in agreement with previous DFT work 

indicating that the peroxo group, and not the oxo group is protonated in acetonitrile.4 
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Chapter 4:  Comparison of Methanol Oxidation Kinetics by K[VO(O2)heida](aq) 

Enzyme Mimic Supported Vanadium Oxide Catalysts 

In Chapter 3, the mechanism of aqueous oxidation of methanol to formaldehyde 

by K[VO(O2)heida](aq) was shown to be remarkably similar to that of gas phase 

methanol oxidation by heterogeneous supported VO4/SiO2.  Both systems perform 

methanol oxidation via a Mars-van Krevelen mechanism and activate methanol upon 

chemisorption to surface methoxy with the bridging V-O-ligand bond.  The difference 

between the two systems is found in the surface methoxy C-H bond breaking rate-

determining-step.  In the case of the K[VO(O2)heida](aq) enzyme mimic, C-H bond 

breaking appears to be performed by the vanadium peroxo group.  In the case of the 

supported VO4/SiO2 catalyst, which does not possess a peroxo functionality, the surface 

methoxy C-H bond breaking is performed by the apical vanadium mono-oxo group. 

In the case of methanol oxidation by supported vanadium oxides, the surface 

methoxy C-H bond breaking step has been shown to be rate-limiting.1  An interesting 

finding for supported vanadium oxides is the dependence of the turn over frequency 

(TOF) on the oxide support, but independence of the apparent activation energy on the 

oxide support.  It has been generally observed that the less electronegative the 

supporting oxide, the greater the specific activity of the catalyst for methanol oxidation 

which is reflected in the TOF.2-5  At 230
o
C, the redox TOF for methanol to 

formaldehyde over VO4/SiO2 is in the range of 10
-3

 1/sec, whereas the redox TOF over 

VO4/CeO2 is in the range of 10
0
 1/sec.3  However, the apparent activation energy for 

supported vanadium oxides is approximately 20 to 21 kcal/mol regardless of the oxide 

support (SiO2, Al2O3, TiO2, CeO2, Nb2O5, and ZrO2).
3, 5-7   
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There are no reports in literature of kinetic studies for methanol oxidation with 

hydrogen peroxide by K[VO(O2)heida](aq).  There are, however, some very interesting 

reports of aromatic and alcohol compound oxidations by similar vanadium +5 peroxo-

oxo compounds which indicate the complexity of the kinetic oxidation reaction by 

enzyme mimics.  For example, at high catalyst concentrations some vanadium peroxo 

compounds, such as a vanadium tri-isopropoxide compound, have been found to shift 

from primarily oxidizing the target substrate to decomposing hydrogen peroxide.8  This 

has not been investigated for the K[VO(O2)heida](aq) enzyme mimic.  It has also been 

noted that in the presence of atmospheric oxygen, some vanadium tri-isopropoxide 

compounds are able to reduce atmospheric dioxygen to hydrogen peroxide through a 

radical process, thereby exhibiting oscillatory behavior under certain reaction 

conditions, but this has not been investigated for K[VO(O2)heida](aq).
9  In Chapter 3 of 

this dissertation, the loss of the peroxo group was observed when methanol oxidation 

was performed under aerobic conditions without the addition of H2O2.  It should be 

noted that under the reaction conditions used throughout this investigation, oscillatory 

H2O2 behavior has not been observed for the K[VO(O2)heida](aq) enzyme mimic and the 

very strong Raman signal for H2O2 continuously decreases over the course of the 

reaction. 

These literature reports have shown that identifying the optimal reaction 

conditions for studying kinetic behavior in similar aqueous enzyme mimic systems is a 

daunting task.  The focus of this dissertation is to provide mechanistic insights into 

methanol oxidation by the K[VO(O2)heida](aq) enzyme mimic rather than to determine 

the optimal reaction conditions for K[VO(O2)heida](aq) or to elucidate its kinetic 
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behavior (as this type of study is an entire field of research in itself).  Still, certain 

kinetic and reactivity experiments were warranted to support this primary goal.  

Specifically, an understanding of parameters such as reaction order, and an 

approximation of the activation energy are integral to fully understanding the 

mechanism of methanol oxidation by K[VO(O2)heida](aq), which is the motivation for 

this chapter. 

The kinetics of aqueous methanol oxidation by K[VO(O2)heida](aq) were 

investigated in order to obtain reaction orders and the activation energy.  Additionally, 

it should be noted that both K[VO(O2)heida] (peroxo-oxo compound) and 

K[VO(O)heida] (dioxo compound) contain vanadium in the +5 oxidation state.  

Supported mono-oxo vanadium oxide catalysts are able to oxidize methanol to 

formaldehyde and in the process are reduced from +5 to +4.  Additionally, the catalytic 

mechanism for K[VO(O2)heida](aq) cycles through the K[VO(O)heida](aq) dioxo 

compound.  Therefore, the capacity of the dioxo K[VO(O)heida] compound to oxidize 

methanol was also investigated to see whether or not the dioxo compound contributes to 

the methanol oxidation mechanism. 

Accurate analysis is an additional challenge to performing aqueous phase 

reactivity studies with labile reaction products such as HCHO.  Qualitatively, 

formaldehyde and formic acid concentration were determined by GC.  However, 

without access to a mass spectrometer designed for handling liquids, there was a need to 

develop a secondary assay in order to quantify aqueous formaldehyde product 

concentration.  Thus, a quick, chromogenic assay was designed using 4-amino-3-

hydrazino-5-mercapto-1,2,4-triazole, a reagent developed by Aldrich Chemical which is 
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also known as Purpald®.10  Purpald®, which is colorless, reacts with aldehydes to 

create a colorless cyclic intermediate.  The Purpald®/aldehyde cyclic intermediate then 

is oxidized by atmospheric oxygen to yield a deep purple compound which can be 

easily assayed by UV-vis and translated to a formaldehyde concentration by an 

extinction coefficient.  The reaction scheme for this chromogenic technique using 

Purpald® is shown below in Scheme 4.1, which has been adapted from Hopps et al.10 

 

Scheme 2.1  Purpald® assay for formaldehyde developed by Aldrich Chemical, adapted 

from Hopps et al.10

 

 

In this section, a Purpald® formaldehyde assay was first developed, and then the 

kinetics and reactivity of methanol oxidation by K[VO(O2)heida](aq) were investigated 

in order to determine the activation energy for this system, and compare and contrast to 
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the heterogeneous case of VO4/SiO2.  With this Purpald® assay, methanol oxidation by 

K[VO(O2)heida](aq) was investigated to determine the reaction orders in both methanol 

and hydrogen peroxide.  Then, the activation energy was determined and compared to 

that of the heterogeneous supported VO4/SiO2 catalyst.  The ability for 

K[VO(O2)heida](aq) to perform methanol oxidation at much milder temperatures that 

VO4/SiO2 is due to the presence of the vanadium peroxo group in the enzyme mimic. 

Experimental 

Formaldehyde Product Concentration Assay Development 

Formaldehyde (Sigma Aldrich, reagent grade, 36.5% formaldehyde solution) 

stock solutions were formulated in deionized water at concentrations between 0.25 mM 

and 0.05 mM.  An alkaline Purpald® reagent solution was freshly prepared daily by 

dissolving 0.068 g Purpald® in 12 mL of 2N NaOH solution.  200 L of each 

formaldehyde solution of known concentration was added to 800 L of Purpald® 

reagent solution in a vial and agitated.  Additionally, a negative control sample of 200 

L of water was added to 800 L of Purpald® reagent solution and agitated.  Each 

sample was allowed to rest overnight to allow the full purple color to develop. 

Each vial of known formaldehyde concentration was then analyzed by Varian 

Cary 5E UV-vis spectrophotometer.  100 L from each vial was added to a 1 cm path 

length Suprasil quartz cuvette, and diluted with 3 mL of deionized water.  The cuvette 

was placed in the UV-vis sample beam path.  Likewise, 100 L was taken from the 

negative control sample, placed into a cuvette, and diluted with an additional 3 mL of 
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deionized water.  The negative control cuvette was placed into the rear reference beam 

of the UV-vis and remained there during the entire sample analysis. 

The UV-vis wavelength was set to 546 nm, the absorbance maxima for 

Purpald®/formaldehyde solutions, and an absorbance reading was taken for each known 

formaldehyde concentration sample.   

Reaction Order in H2O2 

The reaction order of methanol oxidation with H2O2 by K[VO(O2)heida](aq) was 

investigated prior to activation energy experiments, since the reaction order determines 

the formula used for the activation energy. 

To determine the reaction order in H2O2, two separate experiments were 

performed, one with H2O2, and one without.  This was a short experiment, which was 

completed before one full turnover was achieved. 

Without H2O2:  Two identical vials were prepared containing 0.2 grams 

K[VO(O2)heida] in 20 mL deionized water.  One vial was designated as the negative 

control, the other designated as the positive sample reaction vial.  Each vial was placed 

into a 50
o
C hot water bath for approximately 30 minutes before the reagents were 

added.  200 L of methanol was added to the reaction vial, and 200 L of deionized 

water was added to the negative control vial.  Each vial was sampled every 20 minutes, 

by removing 200 L from the vial and adding to 800 L of Purpald® reagent solution, 

prepared freshly as described above.  The Purpald® vials were allowed to rest 
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overnight, and were analyzed the next day according to the dilution and UV-vis 

procedure described above. 

With H2O2:  Two identical vials were again prepared containing 0.2 grams 

K[VO(O2)heida] in 20 mL deionized water, one the negative control, the other the 

positive sample reaction vial.  Each vial received 100 L of 30% H2O2 and then was 

placed into the 50
o
C hot water bath for approximately 30 minutes before the reagents 

were added.  200 L of methanol was added to the reaction vial, and 200 L of 

deionized water was added to the negative control vial.  Each vial was sampled every 20 

minutes, and analyzed using the Purpald® technique described above. 

Reaction Order in Methanol 

To determine the reaction order in methanol, an experiment was performed, with 

increasing concentrations of methanol.   

Four identical vials were prepared containing 0.2 grams K[VO(O2)heida] in 20 

mL deionized water each, one the negative control, the other three labeled as positive 

sample reaction vials according to the concentration of methanol each was to receive.  

Each vial received 100 L of 30% H2O2 and then was placed into a 70
o
C hot water bath 

for approximately 30 minutes before the reagents were added.  50 L of methanol was 

added to one reaction vial, 100 L to the second, and 200 L to the third.  Each vial was 

sampled every 20 minutes, and analyzed using the Purpald® technique described above. 
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Apparent Activation Energy of Methanol Oxidation by K[VO(O2)heida](aq) 

Once methanol oxidation by K[VO(O2)heida](aq) was determined to be zero- 

order in H2O2 and first-order in methanol, which is in agreement with the Mars-van 

Krevelen mechanism with an overall rate equation of r= krds[CH3OH], the activation 

energy was able to be determined using the Arrhenius equation.  Two separate 

experiments were performed, one at 50
o
C, the other at 70

o
C.  Each vial was sampled 

every 20 minutes, and analyzed using the Purpald® technique described above.  

Formaldehyde concentration was plotted as a function of time for the 50
o
C experiment 

and for the 70
o
C experiment.  A logarithmic plot of the methanol concentration with 

time yields a slope of -krds.  This method was used to determine the apparent rate 

constant (krds) from the slope for each experiment.  The apparent rate constants at 50
o
C 

and 70
o
C were used to determine the apparent activation energy of the reaction using 

the Arrhenius equation. 

Edge Energy of K[VO(O2)heida](aq) 

Since some recent gas-solid oxidation publications have tried to correllate the 

Edge Energy (Eg) value for supported vanadium oxides to general reactivity trends, we 

felt that determination of the Eg value for K[VO(O2)heida](aq) might be of interest to 

demonstrate the great difference between the enzyme mimic and supported vanadium 

oxides.  The edge energy was determined by obtaining the UV-vis spectrum from 200-

800 nm of aqueous K[VO(O2)heida] as described in Chapter 2.  The spectra were 

analyzed using the Kubelka-Munk11 function F(R) and evaluated for the edge energy 
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value (Eg) using the method of Davis and Mott12 for vanadium oxides as further 

described by Gao for vanadium compounds.13  R was evaluated by taking the negative 

difference between the absorbance of K[VO(O2)heida](aq) and the water baseline and 

taking the antilog (base 10) as shown below in equation 4.1. 

  baselineample AbsAbs
R



 
s10                                (4.1) 

The Kubelka-Munk function was evaluated from Ras shown by equation 4.2 

 
 









R

R
RF

2

1
2

                                              (4.2) 

and equation 4.3 was plotted as a function of h, the incident photon energy in eV. 

  2hvRFy                                                 (4.3) 

 

Capacity of K[VO(O)heida] Dioxo to Perform Methanol Oxidation 

The dioxo compound K[VO(O)heida] was synthesized similarly to the method 

described in Chapter 2.  1.5 mmol of KVO3 was dissolved in 40 mL of deionized water, 

filtered, and chelated to 1.5 mmol of the heida ligand.  No H2O2 was added.  The yellow 

solution was divided evenly into two vials and placed in the 50
o
C hot water bath for 

approximately 30 minutes before any reagents were added.  200 L of methanol was 

added to the reaction vial, and 200 L of deionized water was added to the negative 
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control vial.  Each vial was sampled every 20 minutes, and analyzed using the Purpald® 

technique described above. 

Results 

Formaldehyde Product Concentration Assay 

The UV-vis absorbance of each Purpald®-derivatized formaldehyde sample was 

plotted against its formaldehyde concentration to provide a calibration curve (Figure 

4.1).  Using the Beer-Lambert law, a linear trend line reveals an extinction coefficient, 

which is specific for this assay procedure, of  = 8333.8 (1/M).  This extinction 

coefficient was used to determine formaldehyde concentrations in each reaction batch in 

subsequent experiments. 
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Figure 4.1 Absorbance at 546 nm of known concentration formaldehyde solutions.  Used 

for formaldehyde assay development. 
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Reaction Orders 

The rate of methanol oxidation by K[VO(O2)heida](aq) is shown in in Figure 4.2 

and is initially unaffected by the concentration of H2O2, indicating that the reaction is 

zero-order in H2O2.  This experiment was carried out over a period of two hours, which 

is shorter than the time required to achieve one turnover.  It should be noted that this 

relatively low oxidation rate is not uncommon since other homogenous vanadium 

peroxo compounds (in aqueous and non-aqueous media) typically require several hours 

to achieve one turnover at mild temperatures. 
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Figure 4.2 Formaldehyde product concentration with time, both with and 

without the addition of H2O2. 
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Figure 4.4 Formaldehyde product concentration versus initial volume of 

methanol added at two distinct time points.  

 

Figure 4.3 Formaldehyde product concentration with time, starting with 

different initial volumes of methanol, 50, 100, or 200 L. 
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The rate of methanol oxidation by H2O2(aq) and K[(VO)O2heida](aq) is  dependent 

on the aqueous concentration of methanol as shown in Figure 4.3.  As the initial 

concentration of methanol is increased, the reaction proceeds faster.  The concentration 

of formaldehyde produced as a function of initial quantity of methanol added to the 

reaction vessel is plotted at two different time points, 20 mins, and 40 mins, are 

presented in Figure 4.4.  The data are linear with the starting methanol concentration 

indicating that the reaction order is first-order in aqueous methanol concentration. 

Apparent Activation Energy of Methanol Oxidation by K[VO(O2)heida](aq) 

The oxidation of methanol by H2O2(aq) and K[VO(O2)heida](aq) was determined 

to be zero-order in H2O2(aq) and first-order in  CH3OH(aq) for an overall reaction order of 

one with a rate equation of r=krds[CH3OH].  The method of determining activation 

energy was selected based on this finding and the formaldehyde product concentration 

as a function of time for at two different reaction temperatures, 50
o
C and 70

o
C, are 

presented in Figure 4.5.  

The data for each temperature experiment were plotted as a logarithmic function 

of the methanol concentration with time to obtain krds.  A plot of ln[CH3OH] versus 

time for each temperature is shown in Figure 4.6, which yields slope = -krds.  The 

apparent rate constant for 50
o
C was found by this method to be krds50= 9x10

-8
 min

-1
, and 

the apparent rate constant for 70
o
C was found to be krds70= 5x10

-7
 min

-1
. 
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To determine the apparent activation energy (Eapp) for methanol oxidation by 

K[VO(O2)heida](aq), the following first-order kinetic equation was used. 
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Plugging in the apparent rate constant for each temperature, the absolute reaction 

temperature, and the gas constant (R) 
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yields an apparent activation energy of Eapp = 79 kJ/mol or 19 kcal/mol for methanol 

oxidation by H2O2(aq) and K[VO(O2)heida](aq). 

Figure 4.5 Formaldehyde product concentration with time at 50
o
C and 70

o
C. 
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Figure 4.7 Kubelka-Munk transform of the UV-vis absorbance spectrum of 

K[VO(O2)heida](aq).  Determination of the Eg value is demonstrated by the red dotted line 

which extrapolates the leading linear edge of the vanadium peroxo LCMT to the abscissa. 

Figure 4.6 Log plot of decreasing methanol concentration with time for 

different reaction temperatures, 50
o
C, and 70

o
C. 
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Edge Energy of K[VO(O2)heida](aq) 

The UV-vis Kubelka-Munk plot vs. h is given in Figure 4.7.  Two ligand to metal 

charge transition (LMCT) bands are present in the Kubelka-Munk transformed 

absorbance spectrum of K[VO(O2)heida](aq): one for the V=O oxo group at 300 nm 

(4.14 eV); and one for the V-O2 peroxo group at 470 nm (2.64 eV).  The edge energy 

(Eg) was found to be 2.07 eV, determined by extrapolating the leading linear edge for 

the V-O2 peroxo LCMT and is reflected by the red line in Figure 4.7.  

Capacity of K[VO(O)heida](aq) Dioxo to Perform Methanol Oxidation 

The dioxo compound K[VO(O)heida](aq) was not found to oxidize methanol at 

any significant rate in the absence of H2O2(aq).  In the presesence of H2O2(aq), the 

oxidation of the dioxo K[VO(O)heida] to the active peroxo-oxo  K[VO(O2)heida] was 

found to be nearly instantaneous.  Therefore, we have concluded that the dioxo 

compound K[VO(O)heida] does not contribute to methanol oxidation activity. 

Discussion 

Formaldehyde Product Concentration Assay 

The plot of absorbance versus concentration for known formaldehyde 

concentrations was linear.  A linear trend line indicates that formaldehyde 

concentrations in a reaction solution are able to be determined by the above Purpald® 

dilution procedure and dividing the absorbance at 546 nm by the extinction coefficient  

= 8333.8 (1/M). 
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Purpald® does not react with methanol or hydrogen peroxide, therefore, this 

assay is unaffected by the reaction substrates.  However, a major disadvantage of this 

assay is that Purpald® does not react with formic acid.  In Chapter 3, we reported that 

formaldehyde is not the only oxidation product produced by methanol oxidation by 

K[VO(O2)heida](aq); formic acid is also produced.  Since this Purpald® assay is only 

able to quantify formaldehyde product concentration and not formic acid concentration, 

it cannot be used to quantify absolute reactivity and turn over frequency for comparison 

to the heterogeneous case of VO4/SiO2.  However, this Purpald® assay can be used for 

determination of reactivity properties by K[VO(O2)heida](aq) where reaction scenarios 

involving methanol oxidation by the same system under similar conditions are 

compared to each other, so that the formic acid contribution can be minimized as a 

variable.  For example, when determining the activation energy of methanol oxidation 

by K[VO(O2)heida](aq), two reaction scenarios are compared to each other; two 

experiments with identical experimental reaction conditions with the exception of one 

parameter, the reaction temperature. 

Reaction Order 

Methanol oxidation by K[VO(O2)heida](aq) has been shown in Chapter 3 to take 

place via a Mars van-Krevelen mechanism.  Mars van-Krevelen is inherently zero-order 

in the oxidant/re-oxidant, and first order in the substrate, indicating that it is first- order 

overall.14  Methanol oxidation by K[VO(O2)heida](aq) is seen in Figure 4.2 to be 

unaffected by H2O2 concentration, which makes the reaction zero-order in H2O2.  The 

K[VO(O)heida] dioxo compound was not found to contribute to formaldehyde 
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production.  Since conversion of the dioxo K[VO(O)heida] to the peroxo-oxo 

K[VO(O2)heida] is almost instantaneous, the contribution of the dioxo component is 

negligible for methanol oxidation.   

The linear dependence of formaldehyde production on the concentration of 

methanol (shown in Figure 4.4) demonstrates that methanol oxidation by H2O2(aq) and 

K[VO(O2)heida](aq) is first-order in methanol.  This is consistent with Mars van-

Krevelen kinetics.  Therefore, the rate expression can be represented by equation 4.6 

below where krds is the temperature dependent apparent rate constant for the rate-

determining-step. 

][ 3OHCHkr rds                                             (4.6) 

Apparent Activation Energy of Methanol Oxidation by K[VO(O2)heida](aq) 

For gas phase methanol over supported vanadium oxides, Eapp is approximately 

21 kcal/mol, regardless of the oxide support (SiO2, Al2O3, TiO2, CeO2, Nb2O5, and 

ZrO2).
3, 5-7  It is important to note that the apparent activation energy (Eapp) is the sum of 

the true activation energy (Eact) plus the heat of adsorption (Hads) as seen below in 

equation 4.7. 

Eapp = Eact + Hads                                                    (4.7) 

When activation energy experiments, such as those for VO4/SiO2, are performed 

at steady state in a plug flow reactor prior to catalytic active site saturation by the 

methanol substrate, Eapp contains a Hads component.  Temperature programmed 

desorption (TPD) experiments on VO4/SiO2 have revealed that Hads is approximately   



106 
 

-13.3 kcal/mol,4 which makes Eact approximately 34.4 kcal/mol for the C-H bond 

breaking step for methanol oxidation by VO4/SiO2.
3, 4 

Aqueous methanol oxidation by K[VO(O2)heida](aq) was performed as a batch 

reaction, therefore at steady state, the V sites for methanol adsorption are saturated with 

surface V-OCH3 species.  In this case where all adsorption sites are saturated, the Hads 

contribution is zero.  Therefore, Eapp = Eact for methanol oxidation by 

K[VO(O2)heida](aq) at steady state in a batch reactor.  For liquid phase methanol 

oxidation by K[VO(O2)heida](aq)  Eact is equal to 19 kcal/mol.   

In Chapter 3, the activation energy for proton transfer from the V-methoxy to 

the peroxo group was computed using density functional theory (DFT).  DFT results 

indicated that the activation barrier for this C-H bond breaking step was approximately 

18 kcal/mol.  This agrees with experimental results.  Thus, comparable energy barriers 

for the C-H bond breaking step by the V-peroxo group were found by both theory and 

experiment. 

Although the reaction is fairly slow, why is K[VO(O2)heida] able to perform 

one-electron oxidations at all at 50
o
C, whereas vanadium oxides such as VO4/SiO2 are 

unable to produce any formaldehyde until reaction temperatures approach 230
o
C?  The 

ability of K[VO(O2)heida](aq) to perform methanol oxidation at mild temperatures and 

the inability of VO4/SiO2 to perform methanol oxidation at mild temperatures is not 

explained by the Eapp, however, it is explained by Eact.  We believe the answer is that 

K[VO(O2)heida](aq) possesses a vanadium peroxo group which drops Eact to 19 

kcal/mol, whereas VO4/SiO2 does not contain a vanadium peroxo group and therefore 

possesses an Eact of 34.4 kcal/mol.  
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In the field of heterogeneous catalysis, researchers sometimes try to correlate 

reactivity with the Edge Energy.  The Edge Energy (Eg) reflects the difference in energy 

between the lowest unoccupied molecular orbital (LUMO) and the highest occupied 

molecular orbital (HOMO).  Gao et al. have shown that, for heterogeneous vanadium 

oxide catalysts, the Eg value decreases as domain size (i.e. extent of vanadia 

polymerization) increases.15  In a recent publication, Tian et al. expressed that although 

the Eg value typically decreases as the redox TOF increases, there is no link between the 

surface metal oxide domain size and redox TOFs.16  This referenced publication states 

that the correlation of lower Eg value to redox TOF is related to another factor not 

addressed in that publication such as the support effect.16  In other words, the Eg value 

for heterogeneous vanadium oxide catalysts is not affected by domain size, but by the 

electronegativity of the oxide support ligand (SiO2, Al2O3, TiO2, CeO2, Nb2O5, or 

ZrO2).  Therefore, any link between the Eg value and TOF is a reflection of the support 

effect. 

A publication in the same vein regarding the support (ligand) effect by Conte et 

al. points out that a vanadium peroxo compound with a lower Eg performs 1-electron 

oxidations more efficiently than vanadium peroxo compounds with high Eg values.17  

The Eg value for K[VO(O2)heida](aq) is 2.07 eV and is significantly lower than purely 

isolated site dehydrated 1% VO4/SiO2 which has an Eg value of 3.60 eV13  However, 

this lower energy is due solely to the presence of the vanadium peroxo group.  Without 

the contribution of the peroxo group, the V=O LMCT energy would fall above 3 eV.  

Therefore, it is not a fair comparison to equate the Eg value for K[VO(O2)heida](aq) to 
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the Eg value for VO4/SiO2, since the respective Eg values are determined by two totally 

different chemical groups.   

The goal of this part of the discussion is to separate two factors which affect the 

Eg value: the support/ligand effect, and functional/oxidizing group effect.  For 

K[VO(O2)heida](aq) the HOMO occurs at a significantly lower energy when it is 

determined by a peroxo group, instead of an oxo group.  For solid supported vanadium 

oxides, if the LUMO is determined by the vanadium metal d-orbital, and the HOMO is 

determined by the -orbital of the axial mono oxo group, then the Eg value will only 

change by degree of electronegativity provided by the oxide support (within the limits 

of what the oxo group will permit).  For K[VO(O2)heida], we have the additional factor 

of the peroxo group.  If, for K[VO(O2)heida], the LUMO is still determined by the 

vanadium d-orbital, but now the HOMO is determined by the -orbital of the peroxo 

group, the Eg value cannot be expected to fall within the same range as that of a solid 

supported vanadium oxide catalyst.  The Eg value may still change in response to the 

degree of electronegativity provided by the ligand support, as suggested by Conte et 

al.17, but this time within the limits of what a peroxo group may permit.  It is important 

in future studies to only equate the Eg values of vanadia compounds with the same 

chemical groups. 

Conclusions 

Methanol oxidation by K[VO(O2)heida](aq) has been shown to be first-order in 

methanol and zero-order in H2O2, making the overall reaction order first-order.  This is 

consistent with Mars-van Krevelen kinetics.  This is similar to methanol oxidation by 
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the heterogeneous catalyst VO4/SiO2.  Gas phase methanol oxidation by VO4/SiO2 also 

follows a Mars-van Krevelen mechanism and is first-order in methanol and zero-order 

in O2 for an overall reaction order of 1.   

The Eact for liquid phase methanol oxidation by K[VO(O2)heida](aq) was found 

experimentally to be 19 kcal/mol which is in agreement with the activation energy 

barrier calculated by DFT methods of 17.71 kcal/mol (see Chapter 3).  The Eapp for gas 

phase methanol oxidation by supported VO4/SiO2 is approximately 34.4 kcal/mol.3-7  

This indicates why K[VO(O2)heida](aq) is able to perform methanol oxidation at low 

temperatures, but VO4/SiO2 is unable to produce any formaldehyde until temperatures 

approaching 230
o
C. 
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Chapter 5:  Vanadium Haloperoxidases 

In light of the successful experiments using the vanadium haloperoxidase mimic 

K[VO(O2)(heida)], the final step in bridging the gap between heterogeneous catalysis 

and biocatalysis is studying the vanadium haloperoxidase family of enzymes.  As 

discussed first in Chapter 1, vanadium haloperoxidases (VHPOs) are a family of 

enzymes characterized by their vanadate-dependent active site. They are named for their 

ability to catalyze the two-electron oxidation of halide ions (Cl
-
, Br

-
, or I

-
) in the 

presence of hydrogen peroxide to produce hypohalous acids (HOCl, HOBr, or HOI).1 

H
+
 + X

-
 + H2O2  HOX + H2O    (5.1) 

There is no known form of vanadium fluoroperoxidase simply because VHPOs 

are not strong enough to oxidize fluoride, but the other three forms of vanadium 

haloperoxidases can be extracted from many types of algae and terrestrial fungus.  The 

chloroperoxidase form can be extracted from fungus such as Curvularia inaequalis, the 

bromoperoxidase form of the enzyme can be extracted from brown and red algae such 

as Corallina officinalis and Ascophyllum nodosum, and the iodoperoxidase enzyme can 

be found in green algae such as Acrosiphonia sonderi.2-4  The molecular mass and 

number of amino acid residues for each type of VHPO varies from species to species.  

However, on average, the molecular mass of a vanadium haloperoxidase monomer is 

approximately 73.4 kDa.  The bromo- and chloro- forms of vanadium haloperoxidase 

have nearly identical active site geometries including the amino acid residues present in 

the coordination sphere around the vanadium oxide cofactor.5-7  Figure 5.1 is a ribbon 
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type diagram of the monomeric vanadium chloroperoxidase structure from the fungus 

Curvularia inaequalis as published by Butler et al.2  

 

Recombinant vanadium chloroperoxidase (VCPO) from fungal species such as 

Curvularia inaequalis, can be expressed as the apoenzyme in Saccharomyces cerevisiae 

or E. Coli, and dialyzed against orthovanadate solution to form the holoenzyme.8  

Affinity of the vanadate cofactor for the native form of VCPO from Curvularia 

inaequalis is around Kd = 140 nM at pH 8.9  Vanadium bromoperoxidases (VBPO) from 

seaweed species such as Corallina officinalis are typically present as dodecamers with 

slight differences in each protein chain, and are therefore more easily obtained by 

extraction and isolation from the seaweed.10  The apoenzyme for VBPO has a higher 

Figure 5.1  Ribbon structure of vanadium chloroperoxidase  monomer from the fungus 

Curvularia inaequalis.
2
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affinity for vanadate with Kd values ranging from 35 to 55 nM for the native form near 

pH 8.11, 12 

Despite differences in amino acid sequence, the vanadate cofactor and amino 

acid coordination sphere around the vanadium cofactor in each species of vanadium 

haloperoxidase enzyme is highly conserved with little variation in the active site 

residues between different VHPO species.7   

 

 

As seen in Figure 5.2 a, the native form of the vanadium active site for VCPO 

exists in a trigonal bi-pyramidal coordination.  In Figure 5.2, the amino acid residues 

which are displayed in the area around the vanadium active site are labeled with the 

corresponding number where the residues are located in the chloroperoxidase enzyme 

peptide chain.  The corresponding residues for the bromoperoxidase enzymes are nearly 

super imposable, as seen in Chapter 1, Figure 1.1.  There is little variation in the amino 

Figure 5.2 Vanadium chloroperoxidase vanadium cofactor in a. the native form and b. in the active 

form once exposed to hydrogen peroxide. 

a. b. 
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acid residues surrounding the vanadate cofactor between the chloroperoxidase and the 

bromoperoxidase enzymes.7  The chloroperoxidase equatorial V-O bonds possess an 

average bond length of approximately 1.65 Å, and the bromoperoxidase equatorial V-O 

bonds possess an average bond length of 1.6 Å.12  At this bond length, it can be 

suggested that the equatorial V-O bonds are considered “short bonds” that have double 

bond resonance structures.  Additionally, 
51

V MAS NMR spectroscopy and DFT agree 

that the native form the vanadate cofactor possesses two oxo bonds in the equatorial 

plane, a hydroxo in the apical position, and also probably an additional hydroxyl in the 

third equatorial position.7, 13, 14  The vanadate entity is bound covalently at the basal 

position to a histidine residue for both VCPO and VBPO.  The apical V-O bond 

possesses a bond length of 1.93 Å for the VCPO, and about 1.8 Å for the VBPO, 

indicating that the apical group is most likely a hydroxide.12  In the native form, the 

vanadate cofactor is negatively charged, but is balanced by hydrogen bonding.12  The 

apical hydroxide is hydrogen bound to the nucleophilic imidazole component of the 

histidine 404 residue in the chloroperoxidase enzyme and of the histidine 418 residue in 

the bromoperoxidase enzyme.  The apical hydroxide may also experience hydrogen 

bonding with two water molecules in aqueous environments, which are not shown in 

Figure 5.2.  The VCPO equatorial oxygen atoms experience hydrogen bonding to the 

lysine, arginine and serine residues in the sphere around the active vanadate moiety.7  

The degree of hydrogen bonding to the remaining amino acid residues in Figure 5.2 is 

debated in other publications.15, 16  It has been suggested that the hydrogen bond between 

the apical hydroxide and the histidine 404/418 residue for chloro/bromo peroxidase is 

able to make the hydroxide more nucleophilic, contributing to the activity of the 
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enzyme.  When vanadium haloperoxidases are exposed to hydrogen peroxide, the apical 

oxygen becomes deprotonated by the histidine 404/418 and a water molecule 

dissociates from the active site.3, 15, 17  The vanadate cofactor converts to the active 

peroxo-oxo structure seen in Figure 5.2 b, similar in central structure to the peroxo-oxo 

form of the K[VO(O2)(heida)] mimic compound.  Affinity of the VCPO apoenzyme for 

the activated peroxo-oxo form of the vanadate cofactor was found to be approximately 

200 fold stronger than the affinity of the native form of the vanadate cofactor.18 

Site directed mutagenesis studies were also performed on the amino acid 

residues surrounding the vanadate cofactor for vanadium chloroperoxidase, histidine 

496, lysine 353, arginine 360, and arginine 490.  It was found that when the His-496 

residue is mutated to an alanine, the enzyme completely loses its activity since the 

covalent bond to the vanadate is removed.  The vanadate was found to dissociate from 

the protein scaffold.  When the remaining three mutated residues were changed to 

alanine residues, the enzyme lost its ability to oxidize chloride, but it retained the ability 

to oxidize bromide.  This study has shown that the His-496 residue is essential to 

enzyme activity.8 

A directed evolution study by Hasan et al. identified a vanadium 

chloroperoxidase mutant which exhibited a 100-fold increase in halide oxidization 

activity at pH 8. In this experiment the proline 395 residue was changed to an aspartic 

acid residue, the leucine 241 was changed to a valine residue, and the threonine 343, 

was changed to an alanine residue.  It has also been suggested that the lysine 353 and 
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the phenylalanine 397 residues are essential for biocatalytic activity and that these 

residues could be fine-tuned to obtain a more active enzyme.16 

The proposed minimal reaction scheme for the oxidation of a halide to the 

hypohalous acid in the presence of hydrogen peroxide by vanadium chloroperoxidase is 

shown in Figure 5.3.  The active vanadium site is shown coordinated to the three 

oxygen atoms in the equatorial position (v1, v2, and v3), the apical hydroxyl (v4), and 

the N atom from the basal histidine residue.  The peroxide functionality is formed in 

step C.  Halide oxidation occurs via nucleophilic attack of the incoming halide on the 

peroxo group as seen in step D.  The hypohalous acid is released and the enzyme 

returns to its native form in steps E and F.8  This proposed mechanism for halide 

oxidation by VCPO is essentially the same as the proposed mechanism for bromide 

oxidation by K[VO(O2)(heida)]. 

 

Figure 5.3 Proposed minimal reaction scheme for the oxidation of a halide catalyzed by vanadium 

chloroperoxidase adapted from Hemrika et al.
8
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It has been suggested that, instead of occurring via nucleophilic attack of the 

halide directly on the peroxo group, that the halide first coordinates to the vanadium 

center, and then interacts with the peroxo group.19  This has been investigated using 

EXAFS (Extended X-ray Absorption Fine Structure), where a solution of vanadium 

chloroperoxidase and NaCl was examined for evidence of a V-Cl bond.20  No evidence 

of a V-Cl bond was seen using EXAFS, however this experiment was performed using 

the native form of VCPO, without any added hydrogen peroxide to form the active 

peroxo structure.  Therefore, this experiment was not able to determine whether or not a 

V-Cl bond exists.  EXAFS on VCPO with both H2O2 and NaCl would have proven to 

be difficult, according to a personal conversation with Professor Ron Wever from 

University of Amsterdam, because any excess H2O2 in the sample would react with 

halides present resulting in a burst of singlet oxygen.  This causes foaming in the 

sample and makes EXAFS analysis difficult (We encountered this foaming 

phenomenon in our experiments as well).  H2O2 disproportionation by VHPOs has been 

shown to only occur if halides are present; it is not catalase activity.21, 22  Therefore, this 

recent EXAFS study is only able to confirm the order of several steps in the mechanism 

of halide oxidation by VCPO: formation of the peroxo group must occur first, before 

interaction with the incoming halide.  The halide does not first coordinate to the 

vanadium in the native form before it interacts with hydrogen peroxide to form the 

vanadium peroxo group.  This study, however, is not able to indicate if halide 

coordination directly to the vanadium center may occur after the formation of the active 

form vanadium peroxo group.20   
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The mechanism for sulfoxidation has not been investigated directly (only 

indirectly through DFT studies on K[VO(O2)(heida)]23-25) but reactivity and selectivity 

for asymmetric sulfoxidation by VCPO and VBPO have been investigated.1, 26-28  The 

mechanism for the VHPO catalyzed oxidation of methanol has not been investigated, 

but the mechanism is expected to be similar to the mechanism for the oxidation of 

methanol to formaldehyde by K[VO(O2)(heida)](aq) (see Chapter 3). 

In addition to the above mentioned 
51

V MAS NMR, EXAFS/XANES, and X-ray 

crystallography studies, EPR and UV-vis studies have been performed on VBPO and 

VCPO.  EPR studies were of limited value, since vanadium in the +5 oxidation state is 

not paramagnetic and therefore, not observable by EPR spectroscopy.9  EPR did, 

however, indicate that the VBPO vanadate cofactor is not reduced to the +4 oxidation 

state during catalytic turnover.9  This is not surprising, since the peroxo-oxo active form 

of the enzyme and the dioxo native form are both V
+5

.  UV-vis spectroscopy also 

indicated no presence of V
+4

.  Additionally, the UV-vis spectrum reveals a band at 315 

nm for the native dioxo form of the VCPO enzyme, which does not appear to be present 

for the apoenzyme without the vanadate cofactor.18  The band at 315 nm was found to 

disappear when VCPO was converted to the active peroxo-oxo form when exposed to 

H2O2.
18 

In this Chapter, we have taken the first steps towards characterization of the 

vanadate cofactor of VHPOs by Raman and ATR-IR spectroscopy.  However, we have 

only scratched the surface of the capabilities of these techniques for enzyme 

characterization.  Raman spectroscopy has been called the “Sleeping Giant in Structural 



119 
 

Biology,”29 however, Raman characterization of the VHPO enzymes has proven to be 

more challenging than previously thought.  Here we report on the challenges we faced 

in characterizing VCPO and VBPO by Raman and ATR-IR spectroscopy. 

Experimental 

Vanadium Chloroperoxidase and Bromoperoxidase  

With the gracious help of our collaborators, Prof. Polenova’s group at 

University of Delaware, Ms. Minyue Li and Ms. Jenna Yehl, vanadium 

chloroperoxidase was produced recombinantly from E. coli using the expression16 and 

purification8 procedures published by the Wever group at University of Amsterdam.  

Vanadium chloroperoxidase (VCPO) from the fungus Curvularia inaequalis was 

chosen specifically for recombinant production because this form of VCPO is a 

monomer in its active form.  VCPO was expressed as the apoenzyme, without the 

vanadate cofactor, and vanadium was incorporated by adding K3VO4 to the apoenzyme 

after purification.  VCPO was formulated in 25mM Tris-acetate, pH 8.1.  VCPO 

enzymatic activity was assayed using the standard monochlorodimedon (MCD) UV-vis 

absorbance method published by Hemrika et al.8   

VBPO which has been extracted from Corallina officinalis was obtained from 

Sigma Aldrich as a lyophilized powder with 2-(N-morpholino)ethanesulfonic acid 

buffer salts (MES).  Extraction of VBPO from the seaweed Corallina officinalis is often 

complicated by the presence of phycoerythrin, which is a major component of the 

photosynthesis system of C. officinalis.  Phycoerythrin tends to co-purify with VBPO 
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and if present in the final sample, will cause fluorescence in the Raman spectrum, 

among other interference bands.  In order to attempt to minimize the presence of intact 

phycoerythrin in the VBPO sample, VBPO was first heat treated for two hours in a hot 

water bath at 70
o
C according to the procedure published by Zhang et al, since 

phycoerythrin is found to denature at 40-45
o
C.30  VBPO, which is a very hardy enzyme, 

is stable at 70
o
C.31  Both VCPO and VBPO were activated by adding approximately 0.5 

mol H2O2 per mg of enzyme, converting the enzyme from the native form to the active 

form.  Isotpopic H2
18

O2 (90 atom % was purchased from ICON Isotopes) was also used 

to aid in the identification of Raman bands.  If foaming due to H2O2 disproportionation 

was observed, the sample was allowed to settle for 1-2 minutes before performing 

spectroscopy experiments. 

UV-vis Spectroscopy 

Transmission UV-vis spectroscopy was used to identify the native and active 

peroxo form of VBPO and VCPO.  Results were compared against current literature to 

ensure the integrity of the samples.18  Active and Native VHPO was examined using a 

Varian Cary 5E UV-vis spectrophotometer.  First, the corresponding buffer blank 

baseline spectrum was prepared over the range of 200-800 nm under ambient 

conditions, and the spectrum of each aqueous catalyst sample was collected from 200-

800 nm under ambient conditions.  If needed, the UV-vis spectra were analyzed using 

the Kubelka-Munk function F(R∞) in order to aid in better visualization of broad bands, 

however this was not typically needed, since VHPOs produce rather strong UV-vis 

bands.32 
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Raman Spectroscopy 

Raman spectra of VBPO and VCPO were collected with a Horiba-Jobin Yvon 

LabRam-HR spectrometer equipped with a confocal microscope, 2400/900 grooves/mm 

gratings, and a notch filter. Three laser excitations were used to experimentally 

determine the ideal wavelength for use with VHPOs.  The visible laser excitation at 532 

nm (green) was supplied by a Yag doubled diode pumped laser (20 mW), the visible 

laser excitation at 442 nm (blue) and 325 nm (UV) were supplied by a He-Cd laser.  

The scattered photons were directed and focused onto a single-stage monochromator 

and measured with a UV-sensitive liquid nitrogen-cooled CCD detector (Horiba-Jobin 

Yvon CCD-3000V).  For the collection of enzyme spectra, a single droplet was placed 

on a glass or CaF2 slide and left for about one minute, to permit enzyme migration to 

the exterior of the droplet via a coffee ring effect.   The laser was focused near the edge 

of the droplet, but just slightly below the droplet surface in order to accommodate 

droplet spreading.  MES and 25 mM Tris-acetate buffer blanks were also investigated 

by Raman spectroscopy using each laser in order to identify interfering buffer bands. 

ATR-IR Spectroscopy 

The ATR-IR spectra for VCPO and VBPO were recorded using a Thermo 

Nicolet 8700 IR spectrometer equipped with a liquid nitrogen cooled DTGS detector 

and Harrick Horizon ATR attachment on a zinc selenide crystal.  The spectrum was 

collected in the 400-4000 cm
-1

 range with 72 scans, and the corresponding MES or Tris-

acetate buffer blank spectrum was background subtracted. 
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Results 

UV-vis Spectroscopy  

Native form and active form VBPO was examined by UV-vis spectroscopy and 

compared to the UV-vis results for VCPO published by Renirie et al.18  UV-vis results 

are shown in Figure 5.4 and our results are in agreement.  Native VBPO exhibits a band 

at 270 nm which is probably due to absorbance by aromatic amino acids, and a broad 

band between 300 and 350 nm most likely indicating V
+5

.  This is in agreement with 

findings for VCPO.18  When VBPO is converted to the active form by adding H2O2, the 

band at 270 nm decreases and red-shifts slightly to 280 nm, and the V
+5 

band red shifts 

to approximately 350 nm.  There is no indication of a V-peroxo band at 470 nm as there 
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Figure 5.4 UV-vis spectra for native and active form VBPO showing the native form band at 270 

nm which decreases and the 350 nm band which increases when VBPO is activated by H2O2. 
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was for K[VO(O2)(heida)].  We thought it was interesting that no V-peroxo band was 

observed at 470 nm, so we became suspicious of potential differences in the vanadium 

cofactor between the crystal form (which indicates a V-peroxo by X-ray 

crystallography) and the free aqueous form.  If the X-ray crystallography indicates the 

active form possesses a V-peroxo group, is it possible that in the aqueous form it is 

actually converted to a V-hydroperoxo (V-O-O-H)?  In order to test this suspicion, we 

suspended native and active form VBPO in 25% glycerol buffer in order to closer 

simulate the crystal form of the enzyme.  The UV-vis spectra for native and active 

VBPO in 25% glycerol is shown in Figure 5.5.  However, active form VBPO in 25% 

glycerol, exhibits no band at 470 nm.  The broad 350 nm band appears in the same 

position. 
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Figure 5.5 UV-vis spectra for native and active form VBPO in 25% glycerol conditions to 

simulate crystal form conditions.  The 350 nm band is still present, and no band is observed at 

470 nm for active form VBPO in 25% glycerol. 
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Raman Spectroscopy 

Enzyme work has proven to be the most difficult part of this dissertation.  

Recombinant production of VCPO by E. coli, unfortunately yields low titers, so we only 

had approximately 1.4 mg of VCPO to work with at a total volume of about 1 mL, for a 

very low concentration sample of 1.4 mg/mL.  For Raman spectroscopy, it is beneficial 

to have a very concentrated sample.  The more concentrated the sample, the better the 

signal to noise ratio.  The vanadate cofactor of VCPO in the native form which is 

present as a vanadium dioxo structure was expected to exhibit Raman bands similar in 

position to those of the K[VO(O)(heida)] dioxo compound (broad band at ~920 cm
-1

 in 

both Raman and ATR-IR spectroscopy).  Likewise, VCPO in the active peroxo-oxo 

form was expected to exhibit bands similar to the peroxo-oxo K[VO(O2)(heida)] mimic 

(peroxo breathing mode at ~575 cm
-1

, O-O stretching at ~932 cm
-1

, and V=O stretching 

at ~967 cm
-1

) since X-ray crystallography data indicated VCPO and K[VO(O2)(heida)] 

possess the same V-O bond lengths.5, 23  However, our first attempt at Raman 

spectroscopy with the 1.4 mg/mL sample yielded spectra from all 3 laser wavelengths 

(532, 442, and 325) with a significant amount of noise.  None of the expected Raman 

bands were observable.  Additionally, the overall signal was too weak to interpret.  The 

Raman spectrum for VBPO, despite heat treatment to denature the phycoerythrin still 

exhibited a great deal of fluorescence using both the 532 and 442 nm Raman lasers.  

The 325 nm laser did not cause fluorescence in the sample, however the signal was 

dominated by Raman bands corresponding to the MES buffer.  Thus, we proceeded 

with the VCPO enzyme only. 
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We were able to concentrate our VCPO sample approximately 3-fold, with the 

help of Ms. Rachael Barton advised by Professor Berger’s at Lehigh University, using a 

10 kDa centrifugal filter (Millipore), increasing the sample concentration to 

approximately 4.2 mg/mL.  The more concentrated sample of VCPO was examined 

again by Raman spectroscopy using all three lasers.  The more concentrated sample of 

VCPO yielded a signal significantly stronger than that of the first, more dilute sample.  

However, none of the expected Raman bands were observable for neither the native 

form of VCPO, nor that active form of VCPO.  Even though, the signal was 

significantly stronger for the more concentrated sample, the signal to noise ratio was 

still too low to allow us to interpret the spectra.  The Raman spectra for VCPO in the 

native and active form using the 325 nm UV laser are shown, for demonstration 

purposes only, in Figure 5.6.  Additionally, the Raman spectrum for active form VCPO 
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Figure 5.6 Raman spectra using the 325 nm laser for VCPO in the native and active form, along with 

isotopic active form VCPO using H2
18

O2.  No resonance Raman enhancement was observed.  The 

spectra were unfortunately too weak to interpret. 
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using isotopic H2
18

O2 is included in Figure 5.6.  We had hoped, by using the 325 nm 

laser, we would observe some degree of resonant enhancement from the vanadate 

cofactor electronic transition observed by UV-vis spectroscopy between 300 and 350 

nm.18  Unfortunately, we were not able to observe any enhancement. 

The Raman spectra for the active form of VCPO and the isotopic active form of 

VCPO (using H2
18

O2) using the 532 nm laser are also shown in Figure 5.7 for 

demonstration purposes only.  The native form spectrum is not shown in Figure 5.7 for 

brevity, because it did not yield any information.  In Figure 5.7, a broad set of bands is 

observed between 400 and 450 cm
-1

 which correspond to the Tris Acetate buffer.  

Unfortunately, the rest of the spectra are unable to be interpreted because of the weak 

signal.  No real observable difference can be seen between the active form of VCPO
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Figure 5.7 Raman spectra using the 532 nm laser for VCPO in the active form and the isotopic 

active form of VCPO using H2
18

O2.  The spectra were unfortunately too weak to interpret, and 

no significant difference between the two spectra can be observed. 
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and the isotopic active form of VCPO, with the exception of an ambiguous band at 752 

cm
-1

.   

ATR-IR Spectroscopy 

VCPO was examined by and ATR-IR spectroscopy, similar to the 

characterization performed on the K[VO(O2)(heida)] mimic, and the results are shown 

in Figure 5.8.  A large band is present at 883 cm
-1

 for the active form of VCPO, but not 

for the native form.  This 883 cm
-1

 band is not due to H2O2, as the H2O2 would occur at 

878 cm
-1 

as a very small band.  The 883 cm
-1

 band observed in ATR-IR spectrum 

certainly warrants further characterization. 
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Figure 5.8 ATR-IR spectra for VCPO in the native form and the active form of VCPO using 

H2O2.  A large band is observed at 883 cm
-1

 for the active form of VCPO. 
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Discussion  

Although we were not able to gain any information from Raman experiments on 

VCPO and VBPO, we remain optimistic that a more concentrated sample yielded a 

stronger signal to noise ratio.  Unfortunately, we were limited by the low titer yielded 

by the E. coli expression method for VCPO.  If multiple batches of recombinant VCPO 

can be pooled and concentrated, we are optimistic that a better quality Raman signal can 

be obtained.  Citing a personal conversation with Professor Ron Wever from the 

University of Amsterdam, the maximum obtainable concentration of VCPO is about 

100 mg/mL, but over 80 mg/mL is not advisable because of the risk of aggregate 

formation.  Therefore, we remain optimistic that Raman studies on a more concentrated 

sample would yield better results since we have only been able to try a concentration of 

up to 4.2 mg/mL.  Additionally, the weak Raman spectra for VCPO were consistent.  

This is a good indication that the enzyme sample is not being altered by the Raman 

laser. 

 It appears that ATR-IR could be a better method for characterizing 

VCPO.  A large broad band is observable at 883 cm
-1

 for the VCPO active form.  This 

is band is not present in the native form.  Additionally, the prominence of this 883 cm
-1 

band indicates that it must be an asymmetric vibration, since ATR-IR is more sensitive 

to asymmetric vibrations, and Raman is more sensitive to symmetric vibrations.  It is 

possible that an asymmetric stretch of a vanadium hydroperoxo group would appear 

much stronger as an in the ATR-IR spectrum.  VCPO requires further characterization 

by ATR-IR spectroscopy to determine the origin on the 883 cm
-1 

band. 
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UV-vis remains a reliable source for indicating the oxidation state of VCPO and 

VBPO.  No reduced vanadium (V
+4

/V
+3

) was observed, only a broad V
+5

 band is present 

between 300 and 400 nm.  We however, did not observe a vanadium-peroxo band at 

470 nm as we had expected.  Formulating the enzyme in a 25% glycerol buffer in order 

to simulate crystal structure conditions did not indicate any change in the V
+5

 band 

between 300 and 400 nm, nor did it reveal a vanadium-peroxo band at 470.  This does 

not indicate any discrepancy between the crystal form of the enzyme and the free 

aqueous form. 

Conclusions 

We have merely scratched the surface here in regards to VCPO and VBPO 

characterization.  Although we were not able to extract any clear information at present 

from the Raman spectrum, the increasing signal to noise ratio observed with an increase 

in concentration is promising for future work.  Since VCPO can be produced 

recombinantly as several separate batches, pooled, and concentrated, we are confident 

that Raman spectroscopy will be able to yield detailed information about the nature of 

the active site for VCPO.  The Raman lasers do not appear to change the enzyme signal 

indicating that VCPO is stable enough to withstand Raman laser irradiation. 

ATR-IR experiments have shown the potential of this technique for 

characterizing enzymes.  The presence of the 883 cm
-1

 band for active VCPO warrants 

further investigation.  We expect that this band is an asymmetric stretch, however we 

cannot currently say which chemical group is responsible for this vibration.  Future 
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isotopic H2O2 experiments would indicate whether or not this band is associated with an 

asymmetric V-hydroperoxo vibration. 
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Chapter 6:  Conclusions and Future Directions 

The work included in this dissertation has made a significant contribution 

towards bridging the gap between heterogeneous catalysis and biocatalysis.  A great 

deal was already known about gas phase methanol oxidation by solid VO4/SiO2, but 

essentially nothing was known about aqueous phase methanol oxidation by 

K[VO(O2)(heida)](aq).  We were presented with a unique opportunity to utilize the 

techniques traditionally used in the field of heterogeneous catalysis, Raman, ATR-IR, 

and UV-vis, to begin bridging the gap from heterogeneous catalysis to biocatalysis 

through biocatalysis mimics. 

Prior to embarking on our study of K[VO(O2)(heida)](aq) we developed our 

techniques for analyzing vanadium-containing clusters by Raman spectroscopy using 

vanadium-containing Keggins.  These studies using tungstophosphoric acid (TPA) and 

molybdophosphoric acid (MPA) resulted in two publications,1, 2 and permitted us to 

develop the techniques and proceed with the characterization of K[VO(O2)(heida)](aq). 

Raman spectroscopy proved to be a valuable tool in the characterization of 

K[VO(O2)(heida)](aq).  We were able to identify the Raman bands associated with the 

vanadium-peroxo group using isotopic H2
18

O2 during synthesis.  Raman 

characterization of the isotopic K[VO(
18

O2)(heida)](aq) revealed the symmetric breathing 

mode (575 cm
-1

) and overtone (1150 cm
-1

), and the symmetric O-O stretch (932 cm
-1

) 

for the vanadium-peroxo group.  Incubation with H2
18

O resulted in the exchange of the 
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oxygen atom of the V=O vanadium-oxo group.  Raman characterization permitted the 

identification of the V=O oxo stretch at 967 cm
-1

. 

Comparison of the unique peroxo-oxo structure of K[VO(O2)(heida)](aq) to 

VO4/SiO2 resulted in a publication highlighting the structural differences between the 

two catalysts.3  The vanadium peroxo-oxo structure, previously dubbed the vanadium 

“umbrella structure” was found to only be present in biocatalyst and biocatalyst mimic 

systems such as K[VO(O2)(heida)](aq).  VO4/SiO2 at low coverage is present as a 

trigonal pyramid structure with one V=O oxo group and no peroxo group.  This study 

finally settled the long debate over the existence of the umbrella structure for supported 

vanadium oxide heterogeneous catalysts. 

Considering the significant difference in structure between K[VO(O2)(heida)](aq) 

and VO4/SiO2, we moved forward to determine whether or not the methanol oxidation 

mechanism for each system was the same or different.  In situ ATR-IR studies during 

methanol oxidation by K[VO(O2)(heida)](aq) indicated that methanol adsorption happens 

by breaking the V-O-ligand bond.  This is the same as methanol adsorption for 

VO4/SiO2.  In the case of VO4/SiO2, methanol adsorption occurs by breaking the V-O-

Si bond.   

Raman spectroscopy during methanol oxidation by K[VO(O2)(heida)](aq) in the 

presence of H2O2 indicated that methanol is not adsorbing on the vanadium peroxo 

group.  Raman spectroscopy during methanol oxidation by K[VO(O2)(heida)](aq) 

without the presence of H2O2 indicated that the peroxo group was lost during the course 
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of the reaction when a reoxidant was not present.  This means that the rate determining 

step, the C-H bond breaking of the methoxy, is performed by the peroxo group.  An 

oxygen atom is lost from the peroxo group with the release of the water byproduct.  In 

order to continue the full catalytic cycle, K[VO(O2)(heida)](aq) must be reoxidized to 

regenerate the vanadium-peroxo group.  This is similar to VO4/SiO2.  This overall type 

of mechanism where the catalyst loses an oxygen atom and must be reoxidized in order 

to continue the catalytic cycle is called the Mars-van Krevelen mechanism.4  Methanol 

oxidation by both K[VO(O2)(heida)](aq) and VO4/SiO2 proceeds via the Mars-van 

Krevelen mechanism.   

There is, however, one major difference between the two systems: the C-H bond 

breaking step.  For K[VO(O2)(heida)](aq) the C-H bond breaking is performed by the 

vanadium-peroxo group.  VO4/SiO2 does not contain a vanadium-peroxo group, 

therefore C-H bond breaking is performed by the V=O oxo group. 

Density functional theory (DFT) provided a complement to these experimental 

results.  DFT calculations have shown that methanol adsorption on 

K[VO(O2)(heida)](aq) is favorable when it occurs at the V-O-ligand bridging bond.  DFT 

has also agrees with experiment on the C-H bond breaking step.  It was found to be 

more energetically favorable when the proton from the vanadium methoxy is transferred 

to the vanadium peroxo group than if it were transferred to the vanadium oxo group.  

Therefore, DFT indicates that the C-H bond breaking step is performed by the 

vanadium-peroxo group, followed by the release of the formaldehyde product. 
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Kinetic experiments revealed methanol oxidation by K[VO(O2)(heida)](aq) is first 

order in methanol and zero order in H2O2, making the overall reaction first order.  This 

is consistent with Mars-van Krevelen kinetics where the reaction is first order in the 

substrate and zero order in the reoxidant for an overall first order reaction.  The 

activation energy (Eact) for methanol oxidation by K[VO(O2)(heida)](aq) was found 

experimentally to be 19 kcal/mol.  Since, this experiment was performed in a batch 

reactor where the V sites for methanol adsorption were completely saturated, the heat of 

adsorption Hads approaches zero.  Therefore the apparent activation energy (Eapp) is 

equal to Eact for steady state methanol oxidation by K[VO(O2)(heida)](aq) in a batch 

reactor.  The activation energy for C-H bond breaking by the vanadium-peroxo group 

was also calculated by DFT to be approximately 17 kcal/mol, which indicates that 

theory and experimental results concur. 

Eapp for VO4/SiO2 and VO4 supported on other oxide supports has been found to 

be approximately 21 kcal/mol regardless of the support.  However, the Eapp for 

VOx/MOx is composed of the actual activation energy for the C-H bond breaking step 

(Eact) plus a heat of adsorption term (Hads).  Subtracting Hads = -13.4 kcal/mol, yields 

an actual activation energy of Eact = 34.4 kcal/mol for methanol oxidation by VO4/SiO2. 

5-9  This difference in activation energy between methanol oxidation by VO4/SiO2 and 

K[VO(O2)(heida)](aq) indicates why K[VO(O2)(heida)](aq) is able to perform methanol 

oxidation at low temperatures, and VO4/SiO2 is not able to produce any formaldehyde 

until temperatures approaching 230
o
C. 
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The enzyme studies on VCPO and VBPO were by far the most difficult portion 

of the research work included in this dissertation.  Although we did not have as much 

success studying the full enzymes as we did with K[VO(O2)(heida)](aq) we are optimistic 

about the potential of the characterization systems in our laboratory.  We believe that a 

more concentrated sample of VCPO would be easily characterized by Raman and ATR-

IR spectroscopy. 

Considering the great success we had in studying K[VO(O2)(heida)](aq), future 

work on other enzyme mimics would certainly be valuable.  During my research work, I 

became interested in iron enzymes, especially the cytochrome P family of enzymes.  

Cytochrome P450 oxidase (CYP450) is a class of enzymes found abundantly in the  

 

 

 

Figure 6.1 Detailed view of heme group Fe
+3

 protoporphyrin IX 

with linking cysteine ligand. Adapted from Meunier et al.
13
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human body.  CYP450 enzymes are responsible for oxidation metabolism of 

endogenous and exogenous compounds in the liver and they functions in the synthesis 

of hormones and sterols.  CYP450s are the most important selective metabolic 

oxidation enzymes in the body, in fact, 75% of all drugs currently on the market are 

metabolized by CYP450s.10  CYP450s are broken down into families, subfamilies, and 

polypeptide numbers for classification purposes.  For example CYP450 2D6 identifies 

the enzyme as belonging to the CYP450 family number two, subfamily D, with a 

polypeptide number six which specifies the parent gene.  All CYP450 enzymes contain 

a heme cofactor.  The heme cofactor is a Fe
+3

 protoporphyrin IX prosthetic group, 

which is linked to the sulfur atom of a cysteine amino acid ligand.  This Fe
+3

 cofactor is 

present in the resting state of all CYP450 enzymes.11-13  The Fe
+3

 cofactor and linking 

cysteine residue pictured in Figure 6.1 are identical in all forms of CYP450.13  In order 

to become activated, the Fe
+3

 cofactor is oxidized to Fe
+5 

either by NADPH as a 

coenzyme for electron transfer, or by using hydrogen peroxide. 

CYP450s are able to catalyze a variety of stereoselective reactions such as the 

hydroxylation of C-H bonds, epoxidations of olefins, and aromatic oxidations.  They are 

also able to catalyze the hydroxylation of an unactivated C-H bond at room temperature 

using hydrogen peroxide.  This is a valuable reaction for the production of fine 

chemicals and pharmaceuticals which require stereoselectivity and can be sensitive to 

high processing temperatures during production.13  The oxidation of alkanes to the 

alcohol via the CYP450 hydrogen peroxide shunt is shown in Figure 6.2. 
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The CYP450 enzyme is first present in the Fe (III) resting state in step A in Figure 6.2.  

The alkane is able to adsorb onto the surrounding amino acid pocket in step B.  In order 

to hydroxylate the alkane, the heme cofactor of the CYP450 must be activated to Fe 

(V).  The activation mechanism via the hydrogen peroxide shunt can be seen in steps C 

through E.  Step E is then followed by alkane hydroxylation and the return of the heme 

cofactor to the Fe (III) resting state.  It is unclear exactly how the alkane hydroxylation 

proceeds, and exactly how the alkane interacts with the Fe (V) heme cofactor. 

 CYP450s are of particular interest to chemists because there are currently no 

other alkane hydroxylation methods involving essentially one step at mild temperatures.  

Figure 6.2 Oxidation of an alkane to the alcohol, adapted from Meunier et al.
13 

A. Resting state of 

CYP450, B. alkane adsorption in adjacent amino acid pocket, C.  and D. activation using hydrogen 

peroxo, and E. fully activated Fe 
V
 and subsequent hydroxylation of adsorbed alkane. 
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C-H bond transformation in one step has been called a “holy grail.”14  This is why 

mimic compounds designed to properly mimic the structure and function or the 

CYP450 family of enzymes are of great desirability.  The first CYP450 enzyme mimics 

consisted of simple iron porphyrins linked to a thiolate or nitrogen base ligand, however 

many of these simple ligands permitted aggregation of the porphyrins and oxidation of 

the associated ligand.15   Other CYP450 mimic compounds were developed which 

consisted of a “picnic basket” type ligand which serves to form a rigid cavity in which 

the intended substrate is permitted to enter.15  It was found that a manganese porphyrin 

form of this particular “picnic basket” CYP450 was found to perform steroselective 

epoxidation reactions.15  Cyclodextrin “supramolecular” porphyrin CYP450 enzyme 

mimic compounds have also been synthesized specifically to better mimic the amino 

acid pocket that is present around the heme cofactor in the CYP450 enzymes.  The 

cyclodextrin-porphyrin enzyme mimics were found to catalyze stereoselective 

epoxidations of substrates that bind specifically within the cyclodextrin ring such as 

hexane.15 

 Although many different kinds of iron porphyrin CYP450 and manganese 

substituted enzyme mimics have been developed and examined for their capability to 

perform selective oxidation reactions, there have been no in situ spectroscopic 

investigations on the oxidative mechanism for CYP450 mimics under reaction 

conditions.  There have been no reports using ATR-IR to investigate the substrate 

adsorption site and reactive intermedieates.  There have been no Raman studies clearly 
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investigating the evolution of the iron-hydroperoxo and iron-oxo intermediate structures 

under reaction conditions. 

Considering the versatility of the CYP450 family of enzymes, it would certainly 

be interesting to explore some CYP450 mimic compounds.  CYP450 mimics could be 

examined in the same fashion as K[VO(O2)(heida)](aq) by Raman and ATR-IR 

spectroscopy in order to visualize the active site, and the role of the Fe=O bond in the 

activated form.  With these studies, we have deomonstrated the potential of in situ 

Raman and ATR-IR spectroscopy for the study of enzyme mimics under reaction 

conditions.  CYP450 mimic research would continue to extend our novel work bridging 

the gap between heterogeneous and biocatalysis. 
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