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Abstract 

 

Enhanced and selective adhesion, and controlled friction between contact surfaces 

are highly desirable mechanical properties for high-level functional materials.  There are 

many instances in nature where such properties have been obtained by design of near-

surface architecture.  Inspired by many highly functional biological systems, we have 

explored bio-mimetic materials with different surface patterning, with the goal of 

designing surfaces that have unique combinations of contact mechanical properties.  In 

the studies presented here, we show how: (a) highly selective adhesion can be achieved 

by complementarity of patterned charge and shape, and (b) how friction can be 

modulated by spatial variation in stiffness, and how structured surfaces interact with 

surface roughness. 

We consider how adhesion selectivity can be accomplished by complementarity 

of shape and inter-surface forces.  We have studied an example each of charge and shape 

complementarity for selective adhesion between extended surfaces.  First, we studied 

theoretically how surfaces patterned with stripes of charge interact with each other, and 

exhibit strong selectivity on rigid surfaces.  However, deformability of the surfaces plays 

a crucial role in modulating adhesion by accommodating mismatches. To achieve shape 

complementarity, we designed and fabricated patterned elastomeric surfaces with lines of 

channels and complementary ridges with dimensions at the micrometer scale.  We show 

that such surfaces have highly enhanced effective adhesion for shape complementary 
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pairs and low adhesion between surfaces with a shape mismatch.  We find that the 

pillar/channel combinations form defects to accommodate interfacial misalignment.  

These defects are interfacial dislocations.  Adhesion between complementary surfaces is 

enhanced by crack trapping and friction, and attenuated due to the energy released by 

dislocation structures.  

In addition to enhanced adhesion, we studied the deliberate control of friction 

through near-surface micro-structures. Friction measurements on elastomeric surfaces 

patterned with periodic variation in stiffness show that it undergoes an “auto-roughening” 

transition under shear and this process can strongly attenuate overall sliding friction.  

Friction reduction is due to reduction of real contact area, as the initially full contact 

breaks up into partial contact at the interface.  Finite element analysis demonstrates how 

auto-roughening depends on the modulus mismatch, frictional stress and normal 

displacement. 

A surface with random roughness is used to study sliding friction against micro-

channel structures under fixed normal force.  In contrast to a smooth surface, against 

which structured surfaces all have highly reduced sliding friction, the roughened surface 

can exhibit significantly larger frictional force on a structured surface. The enhancement 

of sliding friction is governed by channel depth, spacing and applied normal force. 
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Chapter 1      Introduction 

 

In nature, highly controllable contact mechanical properties, such as adhesion, 

friction and compliance have been achieved by many biological attachment structures 
1,2

. 

These near-surface architectures are widely utilized for animal locomotion, such as in 

insects, spiders and lizards 
3-7

. One well-known example is the features on the toe-pad of 

the gecko, a hierarchical fibrillar design.  It enables a relatively heavy living creature to 

run, climb and traverse walls and ceilings 
8-10

.   Recent biological studies of such 

reversible dry adhesion and locomotion have sparked considerable interest both in 

studying the mechanisms involved and in developing functional bio-mimetic and bio-

inspired materials 
11-17

. 

Inspired by the adhesive structures on the gecko toepads, many mimetic materials 

have been designed, fabricated and modeled.  They are based on a fibrillar motif, 

including designs such as spatulated fibrils 
18

, mushroom-shaped structures 
19

 and arrays 

of micro-fibrils with a thin film on top 
20,21

.  Other synthetic surface designs for 

modification of contact mechanical properties include a flat elastomeric surface with 

embedded air- or oil-filled microchannels 
22,23

, shallow “chocolate” 
24,25

, “pancake” 

structures 
26

 and wrinkled surfaces 
27-30

, etc. Most of these structures are fabricated to 

have periodic spatial variation in properties.  

Selectivity of adhesion is a common feature in biology and is also a highly 

desirable property. Achieving it usually requires complementarity of some sort between 
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surfaces. The majority of the work just cited on bio-inspired attachment systems has been 

on one-sided surface structures, intended to modulate properties against any other generic 

surface. However, there are plenty of common “perfectly matched” surfaces in nature 
31-

34
 that provide inspiration for selectivity in adhesion over an extended surface. Here, we 

have investigated two types of complementary interfaces, one based on patterned charges 

and the other on surface topography. 

Friction is another important surface mechanical property. A growing emphasis 

has been placed in topographical surfaces, for controlling interfacial friction behavior 
35,36

. 

Here, two questions have been asked related to the study of sliding friction of elastomers:  

What is the influence on sliding friction of periodic variation in stiffness? Can structured 

surfaces interact with surface roughness in a synergistic fashion to enhance friction? 

 

1.1   Adhesion selectivity by complementarity 

The study of selective adhesion via complementarity involves well-distinguished 

and opposite properties that undergo strong attraction between the matching pairs. In 

nature, various types of complementarity have been observed, such as charge 
37

, shape 
38

, 

hydrogen-bond 
39

 and hydrophobicity 
40

.       

Although it is noticed that the interfacial properties can be highly enhanced 

between complementary surfaces, a deliberate control of adhesion selectivity by 

complementarity has not been much studied yet. In this thesis, two aspects of surface 

complementarity have been investigated for enhanced adhesion and selectivity: (1) 

Theoretical study of adhesion between two flat surfaces patterned with stripes of surface 
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charge; (2) Experimental work on elastomeric surfaces patterned with an array of ridges 

and channels. 

 

1.1.1   Electrostatic complementarity 

Previously, electrostatic complementarity has been found to play important roles 

in ligand binding systems and help to make hydrogen bonds with enzymes 
37

. A substrate 

can always find its favorable active sites of the synthesize enzyme, driven by charge 

complementarity. Moreover, the complementary aspect of charge is reported to have 

great potential for the study of chemical bonds 
41

.  However, we notice that most of the 

studies about electrostatic complementarity are related to biological systems 
32-34

 and 

molecular interactions. In this thesis, we try to develop a generic method for designing in 

adhesion selectivity by charge complementarity.   

As a model for surfaces with charge complementarity, we consider two surfaces, 

each with striped patterns of alternating positive and negative surface charge, and each 

with zero net charge (Figure 1.1). In one-dimension, the interaction between these two 

pattern-charged plates is governed by Debye–Hückel equation 
42,43

. In addition to the 

rigid surfaces, we also consider the material on either side to be deformable, modeled by 

hyperelastic neo-Hookean materials 
44,45

. 
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Figure 1.1 Schematic diagram of surfaces patterned with stripes of charge (mb=nc, in this case, 

3b=5c). Two infinitely large surfaces with striped patterns of alternating positive and negative 

charges on a dielectric material face each other in aqueous medium. 
46

 

 

1.1.2   Shape complementarity 

Barnes 
47

 points out that mechanical interlocking is the first main mechanism 

which enables animals to stick on substrates and opposite gravity, out of the other three 

(friction, bonding and gluing). The interlocking mechanism is found to be responsible in 

many biological attachment devices, such as in dragonfly head-arresting system 
48

 and 

beetles‟ wing-locking systems 
49

.  Such interlocking system can be viewed as an example 

in application of shape complementarity in nature. Another celebrated example of the 

mechanical complementarity is the development of hook-loop fasteners, such as the 

Velcro® adhesive 
50

. 

Enhanced adhesion also exhibits between complementary surface structures 
51,52

. 

Vajpayee et al 
53

 has shown that highly selective adhesion can be achieved between 

complementary elastic surfaces patterned with ripples. Complementary surfaces show an 
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enhanced interfacial adhesion with increasing ripple amplitude. In contrast, interfaces 

with mismatched amplitudes had nearly negligible adhesion.  

We investigated a related shape-complementary structure, one in which the 

surface is patterned with a parallel array of ridges and channels with varying channel 

depths and inter-channel spacing (Figure 1.2). We found a much larger enhancement of 

adhesion between complementary micro-channel/ridge combinations, with relative 

misalignment being accommodated by dislocation-defects in the form of visible striations. 

The first set of elastomeric sample by molding and curing an elastomer, poly 

(dimethylsiloxane) (PDMS), into etched silicon masters with parallel micro-channel 

structures patterned by photolithography. Samples with a complementary surface profile 

were obtained by a second molding and curing step on this first set of PDMS samples. 

The fabrication technique of the samples is discussed later in Chapter 3. 

 

 

Figure 1.2 SEM images of a pair of complementary surfaces with interchannel spacing c = 35 µm. 

(a) pillar-side with pillar width of 10 µm, (b) channel side with channel width of 10 µm.  
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The performance of micro-channel samples are measured through wedge tests. A 

wire serves as a wedge, applying an opening displacement approximately equal to its 

diameter. As a result a crack propagates away from the wire (Figure 1.3). The effective 

adhesion (energy release rate) at the structured interface can be calculated from 

measurement of equilibrium crack length. 

In Chapter 3, we report that a sizable increase in adhesion can be achieved, over 

the flat control in these complementary structures. We also show that this enhancement is 

due to a combination of frictional losses and crack-trapping 
54

. 

 

 

 

 

 

Figure 1.3 Schematic illustration of the experimental set-up for measuring adhesion energy. 
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1.2   Controlled sliding friction 

The study of frictional behavior can be trace back to over 300 years ago, when the 

model for friction between non-adhering surfaces was first published by Amontons 
55

. 

The Amontons‟ laws state that the frictional force is proportional to the normal load and 

independent of apparent contact area 
56

. The clear distinction between static and dynamic 

friction is made in Coulomb's friction law 
55

, which states that a static frictional force 

should be exceeded to initiate sliding, and a smaller dynamic friction is needed to 

maintain sliding. It is also pointed out that the dynamic friction is independent of sliding 

velocity. However, the classic Amontons-Coulomb Law fails to explain many aspects of 

friction, especially for soft materials in contact with rigid surfaces. For example, 

Chateauminois et al 
57,58

 studied the shear stress between a glass lens on a flat PDMS 

rubber, they found that the friction stress is nearly constant and independent of the sliding 

rate and distance.  Many experiments also show that a hard indenter does not slide 

uniformly on a soft substrate 
59,60

, formation of Schallamach waves is usually observed 

during sliding, which is possibly due to surface instabilities such as the buckling effect 
61

.   

Although the frictional behavior of soft materials has not been completely 

understood, many related investigations have been actively pursued for over half a 

century 
62

, due to its great practical importance in many applications, such as tires, rubber 

seals and belts, etc. In order to achieve a deliberate control of friction on elastic materials, 

a number of researchers have shown their interests in modification of frictional property 

by near-surface architecture, especially the bio-mimetic fibrillar structures
 35,63,64

. Gorb 

and Varenberg
 65

 showed that fibrillar surfaces can exhibit smooth and stable sliding with 
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much lower friction force, compared to a flat control sample. Additionally, film-

terminated fibrillar surfaces who significantly increase in static friction, but little change 

in the sliding friction compared to a flat control 
60,66

. Highly reduced sliding friction can 

also be observed over other type of surface structures, e.g. the wrinkled surfaces 
67

.  In 

this thesis, we have studied the control of friction by samples with spatial variation in 

stiffness (which are fabricated from both 1-D micro-channel and 2-D fibrillar structured 

surfaces), and interaction of surface roughness with a structured surface.   

 

1.2.1   Friction on surface with spatial variation in property 

Although we have shown that many bio-inspired surface structures are design for 

modifying the interfacial mechanical properties. Only a few experiments have been 

carried out for studying surfaces with spatially varying properties. Ghatak and co-workers 

have reported strong enhancement of adhesion with sub-surface micro-structures filled 

with fluids (e.g. oil or air) 
22,23

. The control of adhesion was investigated by Kendall 

using a composite material with periodic variation in stiffness 
68

. 

In Chapter 4, we consider an elastomer with a flat surface but periodic variation in 

stiffness.   We begin with an elastomer having a patterned surface.  In a subsequent step, 

the patterned surface is filled with a second elastomer with different elastic modulus.  

Two backfilling techniques are applied to fill the gaps in the structured surfaces (Figure 

1.4). Friction is measured by shearing the sample relative to an indenter placed on it 

under controlled normal load 
66

 (Figure 1.5). Experiments show a strong reduction in 

friction during sliding occurs due to an “auto-roughening” phenomenon in which a fully 
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connected contact region breaks into partial contact. This thesis also presents a finite 

element model to show how the auto-roughening depends on the contact openings of 

interfacial structures, resulting in reduced overall friction.   

 

 

Figure 1.4 Schematic diagram of the surfaces with 1-D & 2-D periodic variation in stiffness. 

 

 

 

 

Figure 1.5 Schematic drawing of the apparatus used for friction experiments 
66

.
a
 

 

1.2.2   How roughness affects friction on a structured surface 

Much of the work on friction of structured surfaces has been conducted against 

smooth surfaces.  However surface roughness is ubiquitous and has an enormous 

                                                 
a
 Reprinted with permission from: Vajpayee, S.; Long, R.; Shen, L.; Jagota, A.; Hui, C-Y. Langmuir 

2009, 25, 2765-2771. Copyright 2009 American Chemical Society. 
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influence on contact mechanical properties, including both adhesion and friction. The 

area of intimate contact is extremely smaller between rough surfaces than their apparent 

contact area 
69-71

, however rises linearly with the applied normal load 
72

. Theoretical 

study of contact mechanics between surface roughness and elastomeric materials has 

been pursued by many researchers, such as Persson 
73,74

, Johnson 
75

, Hui 
76,77

 and 

Robbins 
72,78

. Experimentally, Fuller and Tabor 
79

 found that even a small surface 

roughness with a few microns in amplitude can remove the adhesion completely between 

a smooth elastic surface and rigid roughness. Guduru has observed an adhesion 

enhancement between a wavy punch on a soft gel by testing the pull-off force 
80

, he 

showed that if there is an initial complete contact, the surface separation is alternately 

stable and unstable, which leads to an increased effective adhesion 
81

. 

Interfacial fibrillar structures have also been considered to be a good textured 

substrate for controlling sliding friction against surface roughness. In theoretical 

perspective, the interaction between near-surface architecture and roughness was first 

discussed by Persson 
82,83

. But not much experimental work has been carried out on this 

aspect of structured interfaces. Vajpayee et al 
84

 showed that a film-terminated fibrillar 

interface exhibits a reduction in adhesion against rough surfaces, however retains 

considerable adhesion compared to that of flat surfaces.   

In Chapter 5, we studied the sliding friction between a roughened indenter and 

and elastomeric surface patterned with ridges and channels.  The sliding friction is 

measured on series of micro-channel structured samples, with varied channel depth, inter-
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channel spacing and applied normal load. We show that the certain structured surfaces 

have significantly higher friction against a rough surface compared to a flat control.  

 

1.3   Outline 

The outline of the remainder of this thesis is presented below: 

 Chapter 2 presents a theoretical study of enhanced and selective adhesion between 

surfaces patterned with stripes of charge. 

 Chapter 3 studies the effect of adhesion and selectivity between surfaces patterned 

with complementary ridge-channel structures, and their underlying mechanism. 

 Chapter 4 demonstrates that the friction of a nominally flat surface with spatial 

variation in stiffness is much reduced compared to a homogeneous control 

because of an auto-roughening transition. 

 Chapter 5 explores friction between random roughness and micro-channel 

structured surfaces. 

 Chapter 6 concludes the thesis with major findings, ongoing work and future 

work. 
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Chapter 2      Adhesion Selectivity by 

Electrostatic Complementarity: One-

Dimensional Stripes of Charge 
b
 

 

 

 

Highly enhanced and selective adhesion can be achieved between surfaces 

patterned with charges even when each one has no net charge.  In this chapter, we 

analyze the possibility of adhesion selectivity between two flat surfaces patterned with 

stripes of surface charge chosen such that each surface initially carries no net charge.  A 

few combinations, with appropriately matching strip widths, are predicted to adhere to 

each other.  We also find that the deformability of the materials plays a critical role in 

defining the range of patterns that recognize each other, i.e., their selectivity.  With 

increasing compliance, a significant enhancement of adhesion can be achieved by 

deformation that allows better matching between charge patterns. 

 

                                                 
b
 Reprinted with permission from: Bai, Y.; Jin, C.; Jagota, A.; Hui, C-Y. "Adhesion selectivity by 

electrostatic complementarity. I. One-dimensional stripes of charge." Journal of Applied Physics 110, 5 

(2011): 054902. Copyright 2011, AIP Publishing LLC. 
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2.1   Introduction 

Enhanced, selective, and controllable adhesion between surfaces is a highly 

desired property.  At the macroscopic scale it manifests in a variety of fastening devices 

and designs based on shape complementarity.  As the property of a material surface, it 

can endow the ability to reject any surface other than its complementary one.  That is, 

adhesive and friction energy can be large between two complementary surfaces, and 

highly attenuated when they are not matched.  Selectivity usually requires 

complementarity of some sort between surfaces.  In nature, this idea of selectivity 

extends all the way from the organism to individual molecules.  For example, several 

interlocking mesoscale structures are responsible for attachment of forewings to the 

thorax in beetles (Coleoptera) 
1
, as well as in the dragonfly head-arresting system 

2
.  At 

the much smaller length scale of intermolecular interactions, one finds complementarity 

leading to recognition due to shape, charge, and hydrogen-bonding.  For example, it is 

well known that molecular shape plays an important role in the recognition and binding 

of biological molecules 
3
.  Over the years, shape complementarity has been confirmed by 

inspection of a large number of complex structures in the protein data bank (PDB, 

Bernstein et al. 
4
). However, it has been demonstrated that antibody/ antigen interfaces 

have a poorer geometric match than other protein/protein interfaces.  Usually, specificity 

of interactions between antigen and antibody also involve non-covalent binding of an 

antigenic determinant to the variable region (complementarity determining region, CDR).  

Thus specificity arises due to a combination of complementarity in shapes, hydrophobic 

interactions, hydrogen bonds and Van der Waals forces 
5-7

.  In nature, biochemistry 
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demonstrates that intermolecular attraction between complementary surfaces can 

assemble complex structures from solution. For example, the complex machinery of the 

ribosome self-assembles from more than 50 different protein molecules and can do so in 

vitro 
8,9

.   

The deliberate control of adhesion selectivity of material surfaces by 

complementarity has not been much studied.  Examples include the celebrated case of 

loop-clasp designs that led to the development of Velcro® 
10

.  In other examples, 

selectivity in adhesion has been accomplished by design of surface chemistry 
11-14

, using 

fibrillar structures 
15

, or between two complementary rippled surfaces 
16

.  A study about 

surface pattern recognition by using hydrophobic complementarity was reported by E. 

Kokkoli and C.F. Zukoski 
17

. 

Electrostatic complementarity presents a promising approach.  In this work we 

ask: Is it possible to achieve high selectivity, as measured via adhesion, using relatively 

smooth and flat extended surfaces patterned with charges? Although a number of 

measurements and explanations for electrostatic complementarity have been developed 

for biological systems 
18-20

, its use as a generic method for designing in selectivity has not 

been studied.  We consider the interaction between two flat surfaces separated by water, 

with simple striped patterns of alternating positive and negative surface charges, 

summing to zero net charge on either one.  We predict that such surfaces will have highly 

selective adhesion depending on the matching between charge patterns on the two 

surfaces.  This selectivity is modulated strongly by deformability of the materials. 
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2.2   Two uniformly charged plates 

We imagine an experimental realization in which the surfaces of two flat 

dielectric solids are patterned by self-assembled monolayers with surface groups that 

protonate or de-protonate in aqueous medium (e.g., NH
2
 to NH

3+
 or COOH to COO-), 

creating stripes of surface charges.  The interaction between these charges is modeled by 

the Debye–Hückel equation 
21

, which is a linearized form of the Poisson-Boltzmann 

equation 
22-25

 and is strictly valid for low ionic concentrations and potential.   

Anticipating that often the gap between surfaces will be much smaller than the 

lateral length scale of charge patterns, we expect to be able to represent the total 

interaction by a sum of local interactions between two uniformly charged infinite plates 

in water in the presence of ions.  (We have also analyzed 
30

 the full two-dimensional 

potential field.)   The two plates can have different charge densities (σ1 and σ2), but the 

charge distribution on each plate is uniform. They are placed parallel to each other at a 

distance of “a”, as shown in Figure 2.1.   We begin by establishing the force and energy 

of interaction between two such surfaces. 
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Figure 2.1 Schematic diagram of a 1-D model comprising two uniformly charged plates, with 

different charge densities (σ1 and σ2) separated by a distance, a. 

 

2.2.1   Electric potential between two uniformly charged plates under Debye- 

Hückel electrostatics 

In one-dimension, the variation in electrostatic potential in the region between the 

two plates is governed by the Debye–Hückel equation. 
24, 25

 

    
   

    
 

  
                                                (2.1) 

where lD is the Debye screening length 
25

 that, for a z-z electrolyte (e.g., 1-1 for NaCl) is  

        √
      

       
                   (2.1a) 

where   is the dielectric constant of water,    is the permittivity of free space, q is the 

charge of an electron, z is the unsigned valence of each of the two ions, co is the 

concentration of the ions, T is temperature, and kB is Boltzmann‟s constant.     
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The potential at either interface decays on the dielectric side over a length 

approximately equal to the sample thickness.  On the water side it decays over the Debye 

screening length.  Because the sample thickness (~mm) is much larger than the Debye 

screening length (~ nm), the dielectric can be modeled as a conductor (constant potential) 

in comparison with the strongly decaying field on the water side 
c
.  As a result, the 

boundary conditions at the two interfaces that relate the field to surface charge density 

take the form 

a.     
  

  
      (x=0), 

b.      
  

  
      (x=a).                            (2.1b)     

The general solution of Eq. (2.1) is: 
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Applying the boundary conditions, we find: 
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When the two plates have the same charge density,  , the result is: 

                                                 
c
 We have separately analyzed the electric potential distribution in an infinite open system with five 

regions: a narrow gap between the two charged plates, the plates themselves, and the exterior region on 

either side of the plates (results available from authors).  We find that, under the conditions of interest to us, 

i.e., when the gap is on the order of Debye screening length (a few nm), the field inside the charged plates 

is negligible. The solution is then nearly identical to that of a single domain between the two charged plates 

with a jump in the electric field balanced by the charge density on the two surfaces. 
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                                                                 (2.5) 

Note that, as expected, this function is even about      .  When both surfaces have the 

same magnitude of charge density, but of opposite sign (          ), then the 

electric potential is: 
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                                                            (2.6) 

As expected, this function is odd about      . 

 

2.2.2   Force and interaction energy between two uniformly charged plates 

Using the Maxwell stress 
26

, the force, f, (per unit area) 
d
 on the plate at x = a can 

be expressed by: 
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which can be evaluated at any point       .  Introduce the normalization 

      ̂  
    

   
,   ̂  

 

  
,  ̂  

 

  
, 
  ̂

  ̂
 

   

 

  

  
,    ̂  

    

   ,     ̂  
    

    
                 (2.8) 

where   is the interaction energy per unit area.  The potential between plates with the 

same charge density, Eq. (2.5), becomes  

                              ̂( ̂)  
     ( ̂    ̂)

     ( ̂  )
                      (2.5a) 

the potential between plates with equal and opposite charge density, Eq. (2.6), becomes 

                  ̂( ̂)  
     ( ̂    ̂)

     ( ̂  )
                        (2.6a) 

                                                 
d
 Here we assume that each surface has a unit thickness out of plane. 
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and the force per unit area, Eq.(2.7), becomes  
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 ̂ 
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)                                                  (2.9) 

For plates with equal charge densities, we use Eq. (2.5a) in Eq. (2.9), evaluated at 

 ̂   ̂  , where, by symmetry, 
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  . Then,  
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)                                                  (2.10) 

where the subscript „R‟ denotes „repulsion‟, since the force on the plate at x=a is always 

positive, i.e., the interaction is always repulsive.  The interaction energy can be computed 

by calculating the work done (per unit area) to move one of the two plates from a very 

long distance to the position x = a: 
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Also, in normalized form:  
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Therefore, the repulsive energy per unit area can be calculated by, 
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For equal and opposite charge densities,           .  Following the same 

procedure, we find that at (x = a/2), the potential is zero so that,  
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)              (2.14) 

where the subscript „A‟ denotes „attraction‟, since the interaction between opposite-

charged surfaces is attractive.  The normalized work of bringing the surfaces together is  

  ̂  
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                                             (2.15) 
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where  ̂  is the attractive energy per unit area. Figure 2.2 plots dimensionless force and 

energy for both the repulsive and attractive cases as a function of separation,  ̂.  Note that, 

for the same magnitude of charge densities, the repulsive force is always higher in 

magnitude than the attractive force.   

              

 

Figure 2.2 Force and interaction energy per unit area between two uniformly charged surfaces as 

a function of distance between them.  For small separation distance, both force and energy of 

repulsion diverge to infinity whereas the force and energy of attraction remain finite.  With 

increasing separation distance repulsion and attraction both decrease in magnitude, becoming 

equal and opposite for large separation.   

 

2.3   Interaction between rigid surfaces with striped patterns of charge 

As a first model for complementary surfaces we consider two surfaces, each with 

striped patterns of alternating positive and negative surface charge, and each with zero 

net charge (Figure 2.3).  These two surfaces are set some distance, a, apart from each 

other.  The width of each charged strip on the upper surface is b; that of strips on the 
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lower surface is c.  In this chapter, we assume both b and c to be much larger than the 

separation, a.  In an experimental realization, the characteristic length scale of the gap, a, 

is expected to be the Debye screening length that is on the order of a few nm.  On the 

other hand, length scales b and c, if generated by micro-contact printing, will have 

characteristic dimensions in the microns.  Also, we imagine patterning an extended 

surface such that the total length of the striped surface will be in centimeters, much larger 

than length scales b and c.  If the lateral length scales, b and c are not much larger than 

the gap, a, the problem of determining electrostatic interactions is two-dimensional and is 

considered in Ref. (30).   

 

 

 

 

Figure 2.3 Schematic diagram of surfaces patterned with stripes of charge (mb=nc, in this case, 

3b=5c). Two infinitely large surfaces with striped patterns of alternating positive and negative 

charges on a dielectric material face each other in aqueous medium. The surface comprises 

repeats of a periodic unit cell with length L=2mb=2nc.  This figure is not to scale since b and c 

are both assumed to be much larger than a.  
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If each charged strip faces a strip with charge of opposite sign, we have a 

perfectly matched pair of complementary surfaces that we expect would adhere well to 

each other.  In another limit, let us say that the lateral size of the strips on one of the 

surfaces is very different from the other, e.g. a<<b<<c.  Then, each strip of width „c‟ on 

the lower surface is opposed by a surface with net zero charge.  As we will show, in such 

a case we expect overall repulsion between the two surfaces.  These two simple cases 

suggest that this family of surfaces should exhibit high selectivity in adhesion.   

 

2.3.1   Electrostatics between two rigid surfaces 

We begin by regarding the two surfaces as rigid and asking how the interaction 

force and energy between two surfaces with striped patterns of charge depends on the 

geometrical parameters such as stripe dimensions and separation between the surfaces.  

Since a is assumed to be much smaller than either b or c, we can assume that the 

interaction force and energy is dominated by 1-D interactions computed in the previous 

section.  Specifically, we assume that the 2-D state near the region where charge density 

switches carries negligible contributions to the overall force and interaction energy.   

Therefore, in regions where similar charges face each other, the force and interaction 

energy per unit area are computed using Eqs. (2.10) and (2.13), respectively.  Where 

opposite charges face each other the force and interaction energy per unit area are 

computed using Eqs. (2.14) and (2.15), respectively.  
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Suppose that the charged strips have been distributed as shown in Figure 2.3 with 

zero net charge on both surfaces.  Consider a family of surfaces such that the lengths b 

and c are related as  

                                        (2.16) 

where m and n are both positive integers and have no common factors other than unity.  

Assume that the surfaces are extended indefinitely.  The surface then comprises repeats 

of a periodic unit cell with length Lc=2mb=2nc.         

Let  be the fraction of area within a unit cell where like charges face each other.  

In the remaining fraction of the unit cell, 1, charges are equal and opposite on two 

sides of the gap.  Then, the net force and electrostatic interaction energy per unit area are: 

    ̂  (   )    ̂      (2.17a) 

   ̂  (   )   ̂       (2.17b) 

Let us consider the situation where the two surfaces can adjust in the plane of the 

interface to find the configuration most favorable for adhesion (minimization of 

interaction energy).  In Appendix A, we demonstrate that this favorable configuration is 

one in which the unit cell starts with segments on the opposite surfaces aligned and with 

opposite charges.  For example, if m=n=1, the surfaces adjust so that  =0, i.e., charges 

are equal and opposite throughout the interface.  Again, Figure 2.3 shows the 

configuration that minimizes interaction energy for 3b=5c.  For arbitrary combinations of 

m and n, we find: 
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i) If either m or n is even, =1/2.  This is because in the second half of the unit cell the 

charge pattern on the side with even divisions is repeated whereas on the side with odd 

divisions it is reversed.  

Therefore, the minimum interaction energy and the corresponding force are    

   ̂  
 

 
 ̂  

 

 
 ̂  

 

   ̂  
,                (2.18a) 

                         ̂  
 

 
  ̂  

 

 
  ̂  

 

     ( ̂)
                         (2.18b) 

Since  
 

     ( ̂)
  , the overall interaction between such two surfaces is always repulsive. 

ii) If m and n are both odd, interaction energy is minimized if each unit cell begins with 

aligned regions of opposite charge, for example, as shown in Figure 2.3.  Also, we 

demonstrate in Appendix A that   
    

   
.   Thus, is always less than 0.5 for this case.  

The interaction energy and force are 

         ̂     ̂  (   )   ̂  
    

   
 ̂  

    

   
 ̂  

 (     ̂)

  (   ̂  )
                       (2.19) 

          ̂      ̂  (   )    ̂  
    

   
  ̂  

    

   
  ̂  

 (       ( ̂))

  (    (  ̂)  )
                   (2.20) 

It is clear from Eq. (2.19) that at large distances  ̂  
     ̂

  
; the interaction is 

attractive and decreases in magnitude exponentially with distance.  As distance  ̂    the 

energy and force both diverge to   , and there is always repulsion, unless m=n=1, in 

which case normalized interaction energy and the interaction force go to a limiting value 

of -1 and -1/2, respectively.  Therefore, except when m=n=1, there is always an 

equilibrium distance  ̂  at which force is zero and where the two surfaces will come to 

rest naturally.  Using Eq. (2.20), this condition is   
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 ̂ 

 
/  (   )  

 

 
     (

 ̂ 

 
)     

 (2.21) 

where we have used Eqs.(2.10) and (2.14).  The dimensionless distance  ̂  can be 

obtained by solving Eq. (2.21) (see Figure 2.4): 

                        ̂         (√
    

 
)                                                            (2.22) 

Eq. (2.22) provides the general relation between equilibrium separation   ̂  and fraction, 

α.  For the special case under consideration in this section,   
    

   
  and 

                     ̂        (  )                                                                     (2.23) 

Substituting Eq. (2.22) or (2.23) into Eq. (2.19) give the interaction energy at 

equilibrium,  ̂ .  For two rigid surfaces, this quantity (if negative) is defined as the 

adhesion energy. 

 

 

Figure 2.4 Equilibrium distance between two charged surfaces as a function of area fraction   of 

like charges across the gap.   
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For the special case of m=n=1,  ̂   , i.e., the force is always attractive, and 

within this model the surfaces come to rest in contact.  Eq. (2.23) shows that, as the 

product mn increases, so does the equilibrium distance.  Figure 2.5 plots the interaction 

force and energy versus  ̂ for the case of m=3; n=1.  

 

                 

 

Figure 2.5 Interaction energy and total force when mn=3. The solid line represents the 

dimensionless total energy change as a function of distance between the two surfaces.  The 

dashed line represents the force between the two surfaces.  The square symbol indicates the point 

of zero force, corresponding to minimum energy (circular symbol). 

 

When both m and n are odd, the pattern of surface charges in the second half of a 

unit cell is the reverse of that in the first half on both surfaces.  Consider, for example, 

Figure 2.3 where m=3, n=5.  Therefore for each region in the first half of the unit cell 

where the charges have the same sign, the corresponding region in the second half also 

has the same charge on the two sides.      Similarly, for each region in the first half with 
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oppositely charged surfaces, the corresponding region in the second half also has 

oppositely signed charges.  Due to this symmetry of electrostatic interactions, we only 

need to calculate the force and energy within half of one such unit cell. In addition, when 

later we allow the surfaces to deform, the node at the middle of the unit cell must remain 

fixed by symmetry.   

 

2.3.2   Numerical results and discussion 

In Figure 2.6 we show results for the adhesion energy per unit area,  ̂ , for 

different combinations of m, n.    Recall that when m,n are even numbers the surfaces 

repel so there is no adhesion.  Normalized adhesion lies in the range [-1, 0]; greater 

adhesion is represented by a more negative number.  Each square represents a single m,n 

combination and is colored using the non-linear scale shown to the right of the figure.  

The results of the case where the two surfaces are rigid and m>n are shown below the 

diagonal of this matrix.  The results shown above the diagonal will be discussed later.   

From Figure 2.6, it is clear that m=n represents the highest adhesion.  Other 

combinations that show adhesion are 3m= n, 5m=n, 7m=n, ..., and 5m=3n, 7m=3n, and 

so on. Note that configurations very „close‟ to each other in this space can have very 

different adhesion energy.  For example, the combination (15, 5) is adhesive but (15, 4) is 

repulsive.  Even more dramatically, the combination (20, 20) is highly adhesive but (20, 

19) is repulsive. (More strictly, the equilibrium separation  ̂  increases to infinity for 

cases such as (20, 19) that are repulsive.  Therefore, the corresponding “adhesion” in 

these cases vanishes.)  Therefore, this simple motif of two rigid surfaces patterned with 
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alternating stripes of equal and opposite charge is predicted to show strong selectivity of 

adhesion to surfaces with certain specific characteristic length, and to show overall 

repulsion against most other surfaces.     

 

 

 

Figure 2.6 Plots of interaction energy between two patterned surfaces for different m and n. 

(Negative values represent adhesion.)  Each square represents a single (m,n) combination and is 

colored using the (non-linear) scale shown to the right of the figure.  Results below the diagonal, 

i.e., for m>n, are for two rigid surfaces; those above the diagonal (m<n) are for a deformable 

surface with normalized stiffness,  ̂    .  Note that the best combination is for m=n.  

Combinations of m and n on some other rays emanating from the origin, such as m/n=3/1 or 1/3; 

m/n=3/5 or 5/3, etc. also give rise to net attraction.  Note that for rigid surfaces even the slightest 

variation from one of these combinations results in strong repulsion.  For example, while (20,20) 

results in the highest adhesion, (20,19) results in net repulsion.  There is therefore strong 

selectivity of one surface for another. The effect of deformability, shown above the diagonal 

reduces strong selectivity. 
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To estimate the sort of adhesion energies predicted by our model, let‟s consider an 

example of two rigid surfaces with a realistic charge density of one elementary charge per 

square nanometer, which is about 0.16 Coulombs per square meter.  Suppose the surfaces 

are placed in an aqueous solution at 300 K and one mM concentration of a 1-1 electrolyte 

(e.g., NaCl), for which Debye screening length lD is about 10 nanometers. According to 

Figure 2.6 and the normalization (Eq. (2.8)), the highest energy (adhesion) is achieved 

when (m,n) = (1, 1), with a value that is approximately 361 mJ/m
2
.  For the case of (3, 1) 

combination, the equilibrium distance between the surfaces is found to be about 18 

nanometers, and the total energy (adhesion) is only about 42.5 mJ/m
2
, which is much 

smaller than for the (1, 1) combination.  For case (5, 1), the equilibrium distance 

increases to 23 nanometers and the adhesion energy decreases to about 34.6 mJ/m
2
.   

 

2.4   Interaction between elastic surfaces with striped patterns of charge 

So far we have considered rigid charged surfaces.  This led to a conclusion that 

surfaces with patterned charges will show high selectivity.  However, one might ask: how 

is it possible that two surfaces with, say m=1000, n=999, should have strong repulsion 

from each other while another two with m=n=1000 attract each other strongly?  A related, 

practical question is, what use is such selectivity if the slightest misalignment or 

difference in dimensions will destroy adhesion?  We notice that with just a small amount 

of deformation, (1000, 999) can be transformed into (1000, 1000), and this suggests that 

there exists a strong electrostatic driving force for such a deformation.  That is, selectivity 
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is bound to be limited and conditioned by deformability.  To explore this idea, we have 

created a simple model described below.  

 

2.4.1   One-dimensional model of elastically deformable surfaces patterned with 

stripes of charge 

In this 1-D problem, we start with the two surfaces introduced above, each with 

striped patterns of alternating positive and negative surface charges summing to zero net 

charge and aligned to be in phase, as defined previously.  In addition, we allow nodes on 

both surfaces to move, but only sideways in the y direction, thus preserving the flatness 

of the dielectric layer.  The movement of these nodes is driven by reduction in 

electrostatic free energy, and restrained by increase in elastic strain energy, until the 

system reaches a state of equilibrium.  We assume that, although the materials on either 

side can deform (change the lengths on each side within every segment), the charge on 

each segment remains proportional to the current length, which means that the amount of 

surface charge can be changed by deformation.  A physical realization of this assumption 

could be an elastomer in which additional surface groups would be exposed if the area of 

the surface were increased. 

Suppose we have two plane surfaces (Figure 2.7).  The upper surface has m 

segments with alternating positive and negative charges and (m+1) nodes.  Similarly, the 

lower surface has n segments with alternating charge, a different segment length, and 

(n+1) nodes. We mark each segment by a Roman number and each node in an Arabic 

number. Let y(i) and u(i) be the location and displacement of node i, respectively 
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(1≤i≤m+n+2). We define displacement u(i) to be positive if oriented in the positive y 

direction.  We analyze the family of surfaces given by Eq. (2.16).  We generally analyze 

a half of a unit cell arranged such that the first regions on opposite sides of the gap, 

starting at the left, have opposite charge.  As discussed earlier, this ensures that the 

starting configuration has the lowest interaction energy and greatest adhesion energy for 

rigid surfaces.  Therefore, as shown in Figure 2.7, y (1) = y(m+2) and y (m+1) = y 

(m+n+2).  Moreover, we set u (1) =u (m+1) =u (m+2) =u (m+n+2) =0, i.e., while we 

allow deformations within a unit cell we do not allow any overall change in area. 

 

 

 

Figure 2.7 Schematic diagram of a 1-D elastic surface with patterned charge (half unit cell: 

3b=5c). 

 

It turns out to be important to handle potentially large deformations of the 

surfaces to prevent collapse of two neighboring nodes.  For this reason, we model the 

surfaces as one-dimensional hyperelastic neo-Hookean materials. 
27, 28

 For small 

deformations, the behavior is linearly elastic. 
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2.4.2   Model and algorithm  

2.4.2.1   Electrostatic energy 

Consider a general node i, say on the upper surface.  Holding all other nodes fixed, 

motion of this node i by  ( ) changes the electrostatic energy by a magnitude of     
  

|(      )   ( )| (for unit out-of-plane width), as long as the motion is small enough 

so that the node does not cross another node on the lower surface.  Define dimensionless 

displacement as   ̂( )  
 ( )

  
 . The sign of the electrostatic energy change (positive for 

increasing repulsion; negative for increasing attraction) can be obtained by examining the 

sign of charge density on the two sides in the segments adjacent to node i and the 

segment opposite to node i).   

Define sign(opp) as the sign of the segment opposite the node i, and sign(local) as 

the sign of the step in charge density moving from the segment to the left of node i to its 

right (see Table 2.1 for examples).  

Based on these quantities, for each node i, the change of dimensionless 

electrostatic energy after deformation is: 

            ̂   
  

    
    

    
   (  ̂   ̂ )   ̂( )      (     )      (       )              (2.24) 

The total change in electrostatic energy due to motion of nodes is obtained by 

summing up the contribution from each node: 

 ̂    ∑   ̂( )   ̂( )      (     )      (       )     
                   (2.25) 

where   ̂( ) is (  ̂   ̂ ). 
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Table 2.1 Examples of arrangements for a given node, i, and definition of terms sign(opp) and 

sign(local) that determine the change in electrostatic energy per unit movement of node i. 

 

 

Position of node i 

 

Signs 

 

 

sign(opp) = +1 

sign(local) = -1 

 

 

sign(opp) = -1 

sign(local) = +1 

     

2.4.2.2   Elastic energy 

As an illustrative model to capture the penalty of imposing deformations, we 

model segments on both sides as springs under uniaxial strains imposed by differences in 

displacements on its two ends.  The entire system is therefore composed by two strips of 

linked springs (the upper one has m springs in series, and the lower one has n springs in 

series). This model suppresses other deformation modes such as out of plane deformation 

which will change the electrostatic interaction. Nevertheless, we believe that this simple 

model captures the beneficial effect of deformation on adhesion.   

Let L0,i and Li be the initial and stretched lengths for a segment i , respectively.  

The stretch ratio for this segment is, 

   
  

    
 

          

    
 

 ̂     ̂   ̂ 

 ̂   
                                                               (2.26) 
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where    is the displacement of the node at the right end of segment i and    is the 

displacement of the node at its left end.  All    ,    and L0,i are normalized by the Debye 

screening length    ( ̂  
  

  
 ,  ̂  

  

  
 and  ̂    

    

  
).  

We model the spring as comprised of a Neo-Hookean solid 
e
 for which the strain 

energy density is given by 
27, 28

 

   (    )                                                                              (2.27) 

      
 

 
                                                                                    (2.28) 

where Y is the small strain Young‟s modulus 
27

.  Substituting Eq. (2.28) into Eq. (2.27), 

the expression for strain energy density becomes 

    (   
 

 
  )                                                                          (2.29) 

In this model, the spring cannot be compressed indefinitely (   ) since the 

strain energy density becomes unbounded in this limit.    For any segment i, the elastic 

energy can be calculated by (in dimensionless form) 

 ̂       ̂  ̂    ̂   ̂(  
  

 

  
  )   ̂    ̂                                               (2.30) 

where,   ̂    
   

    
     , and  ̂  

     

    is the normalized modulus.  The initial area of 

cross-section,   , is normalized by   
 
 ( ̂  

  

  
 ) and we assume that    is the same for 

every segment. 

The total elastic energy in dimensionless form is 

 ̂    ∑  ̂(  
  

 

  
  )   ̂    ̂ 

   
                                                         (2.31) 

                                                 
e
 For small deformations, this model reduces to Hooke‟s law for a linear spring.  For large deformations, it 

is nonlinear.  Eq. (2.29) shows that the spring stiffens indefinitely under compression, removing the 

unphysical behavior predicted by a linear model, in which neighboring nodes can collapse. 
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For small strains, since      for each segment, the expression for elastic energy 

is approximately: 

           ̂    ∑
 

 
(
 ̂ ̂ 

 ̂   
)     

   ( ̂   ̂ )                                 (2.32) 

Compare this to the case of a linear spring, 

    ̂    ∑
 

 
 ̂ ( ̂   ̂ )    

                                                         (2.33) 

where ki is the spring constant for segment i (i=I, II, … , m+n), which has the  

dimensionless form as  ̂  
   

  
  .   

 

2.4.2.3   Equilibrium 

The total energy consists of electrostatic and elastic contributions, 

 ̂     ̂     ̂                                                                    (2.34) 

In equilibrium, for a given separation  ̂, the first derivative of the total energy 

with respect to each degree of freedom should vanish:   

  ̂   

  ̂ 
 

 ( ̂     ̂   )

  ̂ 
 

  ̂   

  ̂ 
 

  ̂   

  ̂ 
                                                (2.35) 

According to Eq. (2.25),  

  ̂   

  ̂ 
   ̂( )      (     )      (       )                                      (2.36) 

The contribution to Eq. (2.35) from elastic energy generally is from each of the 

elements adjoining the node i.  In our case, except for nodes at the ends that are handled 

by boundary conditions, each node has contributions from two terms in Eq. (2.31), which 
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are  ̂        and  ̂      (see Eq. (2.30)).  So the derivative of elastic energy can be 

calculated by, 

  ̂   

  ̂ 
 

  ̂       

     

     

  ̂ 
 

  ̂     

   

   

  ̂ 
  ̂ ̂  (     

 

    
     

 

  
 )                      (2.37)  

For small strains, the linearized form of Eq. (2.37) is: 

  ̂   

  ̂ 
 

 ̂ ̂ 

 ̂     
( ̂   ̂   )  

 ̂ ̂ 

 ̂   
( ̂     ̂ )   ̂   ( ̂   ̂   )   ̂ ( ̂     ̂ )     (2.38) 

The right hand side of Eq. (2.38) is the same as the first derivative of the elastic 

energy for small displacements (Eq. (2.33)) respect to  ̂ . 

Substituting Eq. (2.36) and Eq. (2.37) into Eq. (2.35), we find that for each node i : 

    ̂( )      (     )      (       )   ̂ ̂  .     
 

    
     

 

  
 /          (2.39) 

which represents a system of nonlinear equations for the unknown nodal displacements 

subject to boundary conditions  ̂   ̂     ̂     ̂       .  Note that if we take 

the material on the two sides to be the same, the normalized set of Eq. (2.39) depend on a 

single dimensionless parameter,  ̂   ̂ ̂  since   ̂( ) is a function only of the gap  ̂ 

through Eqs. (2.13) and (2.15).  

We solve the system of Eq. (2.39) for fixed  ̂ using a viscous relaxation technique 

29
.  Define the left-hand side of Eq. (2.39) to be the residual, and introduce a fictitious 

viscous term in the equation such that the rate of change of displacements is proportional 

to the residual: 

 ̂ ̇̂    ̂(   )      (     )      (       )   ̂  (       
 

      
       

 

    
 )    

(2.40) 

Approximating  ̇̂  ( ̂      ̂ )   , Eq. (2.40) becomes: 
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 ̂           ̂   [  ̂(   )      (     )      (       )   ̂ (       
 

      
       

 

    
 )   ]   ̂                                                (2.41) 

Eq. (2.41) is marched forward in time with a sufficiently small time step to ensure 

stability until we obtain a solution with residual smaller than a specified tolerance.  Two 

sorts of events need special handling.  The first occurs if the deformation causes a node 

on one surface to cross a node on the other surface.  Because such an event results in a 

sudden change in     (     ), often the solution will not converge.  We handle such 

events by introducing a transition function that smoothly changes the value of 

    (     ).  The second event occurs if a linear elastic model is used to represent 

deformation and if the electrostatic driving forces dominate over the elastic resistance.  

Under such a circumstance, some springs can be compressed to zero length, i.e., nodes 

can cross on the same side.  In the neo-Hookean model such a situation does not arise but 

for the linearly elastic model it can and we terminate the computation when it does since 

node crossing on the same side violates the condition of small deformations and is not a 

physically meaningful event.   

Once we have obtained new displacements for every node, we compute the area 

fraction of repulsive interactions,  , and then find a new value of  ̂ using Eq. (2.22).  

This procedure is repeated iteratively until we achieve a converged equilibrium solution 

in which the total energy is minimized with respect to all  ̂  and separation,  ̂. 
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2.4.3   Analysis of a simple case, (m,n)=(1,3) 

We begin by examining a simple example in some detail.  Consider the 

combination of m=1 and n=3 (Figure 2.8) and let ̂   .  Because the two ends are fixed 

for both sides, only two nodes on the lower surface are free to deform and, by symmetry, 

they must have equal and opposite deformations, defined as δ (dimensionless).   

 

 

Figure 2.8 Illustration of deformation of (m,n)=(1,3) pattern.  The end-nodes are fixed and only 

the two central nodes on the lower surface can deform.  By symmetry, their deformation is equal 

and opposite. 

 

In this case, the upper surface does not deform, so its elastic energy remains fixed 

at zero.  The total energy is the summation of the electrostatic energy and elastic energy 

of the lower surface: 

                                          ̂     ̂     ̂                                                    (2.42) 

where the electrostatic energy and elastic energy (Eq. (2.31)) can be expressed by: 
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Summing up Eqs. (2.43) and (2.44), the total energy per unit area is 
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  1    (2.45) 

which is a function of two variables (   ̂).  We find numerically the values of (   ̂) at 

which the energy is minimized.  

 

 

 

Figure 2.9 Middle node displacement (δ) and total energy at equilibrium as a function of stiffness 

when  ̂    (stripe combination b=3c). As the stiffness reduces, deformation of the lower surface 

increases as the middle two nodes on that side move closer. The total energy at equilibrium shows 

that it can be reduced significantly due to increase of deformability. 
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Figure 2.9 shows the analytical predictions (which are consistent with the 

numerical results) for both the displacement of the two middle nodes on the lower surface 

and the total energy per unit area as functions of spring constant.  For small stiffness, we 

find that the deformations can be quite large.  We identify the total energy at equilibrium 

as the adhesion energy.  It includes a negative contribution from (net) electrostatic 

attraction and a positive contribution due to elastic energy.  That is, the release of elastic 

energy aids interfacial separation.  However, one should be mindful that in more complex 

systems, not all the stored elastic energy is available to propagate an interfacial crack.  

Figure 2.9 also shows how the total energy (electrostatic + elastic), identified here with 

the adhesion energy of the system, decreases as the deformation increases.   

 

2.4.4   How deformability affects selectivity 

We now examine the entire family of surfaces given by Eq. (2.16) and return to 

the questions raised at the beginning of Section 2.4.  To explore how deformability 

affects the adhesion selectivity seen in the right lower half of Figure 2.6 (m>n), we vary 

the elasticity by changing the parameter  ̂ .  For convenience, in the following discussion, 

we take the total dimensionless length of each surface equal to one ( ̂     ).   As an 

example, Figure 2.10 shows initial and final nodal positions for a (3,5) surface for two 

different values of stiffness as predicted by the neo-Hookean model.  
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Figure 2.10 Initial and equilibrium nodal positions for a (3,5) surface.  Plot (a) is the prediction of 

the neo-Hookean model for  ̂    .  For this relatively large stiffness, the deformation is small, 

and the associated reduction in energy is slight.  Plot (b) shows the nodal displacements 

when  ̂   ; the deformation is significantly larger.  

 

In Figure 2.6 we show results of the total adhesion energy,  ̂ , for different (m,n) 

after deformation using the neo-Hookean model with  ̂    .  These results are 

presented above the diagonal of this matrix, i.e., for m<n.  Again, m=n represents the 

highest adhesion achievable.  However, we notice that deformability has a profound 

influence on selectivity.  It “smoothes out” the sharp selectivity predicted for rigid 

surfaces.  Specifically, „compositions‟ close to the selective ones such as (1, 3) and (3, 5) 

in the space of m and n, find favorable modes of deformation to increase their adhesion.  

This is particularly true for compositions near m=n.  

At the end of Section 2.3, we showed that for realistic charge densities in a 1 mM 

1-1 electrolyte the (1, 1) combination is predicted to have significant adhesion but that 

this reduces significantly for other combinations; the second best (3, 1) is nearly a factor 

of ten lower in adhesion.  To illustrate the beneficial effect of deformability, let us 

 
(a)     (b)     
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consider the same example where now the patterned charge is on a deformable elastomer 

instead of a rigid surface.  Young‟s modulus of a representative elastomer, e.g., poly-

dimethylsiloxane (PDMS), is about 5MPa. If the dielectric has a thickness of 200 microns 

and width of about 3.6 mm, the parameter  ̂    .  

From the region of the Figure 2.6 above the diagonal, we observe that the 

maximum adhesion is still given by case (1, 1), and its value is the same as for rigid 

surfaces.  However, for other combinations, the deformability allows greater adhesion.  

For example, for the case (1, 3), the total energy increases a little, to about 65 mJ/m
2
.  

Much greater changes in adhesion are predicted when either m or n (Eq. (2.16)) is even, 

especially for combinations „near‟ the diagonal in Figure 2.6.  Recall that for the rigid 

case, if either m or n are even, the net force between the surfaces is repulsive.  The 

originally repulsive case (4, 5) becomes adhesive and the adhesion energy is about 59 

mJ/m
2
; the case (19, 20) has adhesion energy of 216 mJ/m

2
, which is a great 

enhancement of adhesion and approaches that of (1, 1).  

 

2.5   Summary and conclusions 

To explore whether and how adhesion selectivity can be designed using 

electrostatic complementarity, we have analyzed the interactions between two surfaces 

patterned with stripes of charge.  We have shown that strong adhesion can be achieved by 

exact complementarity between two such pattern-charged surfaces.  If the materials are 

rigid, we predict strong selectivity, which can be rather more a bane than a benefit 

because even a slight difference in dimensions or misalignment can drastically reduce 
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adhesion.  We show that deformability of the materials, modeled here by non-linear (neo-

Hookean) elasticity, strongly alters adhesion selectivity.  Specifically, by allowing the 

surfaces to deform, compositions similar to each other are found to have similar adhesion.  

The kind of striped charges we have analyzed can be achieved experimentally by 

microcontact printing of appropriate molecules onto an elastomer.  We have specifically 

analyzed the case where charges result from ionization of terminal groups on such 

molecules in aqueous medium.  As such, we expect that the predictions of our work are 

eminently realizable experimentally. 
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Chapter 3      Adhesion of Micro-channel 

Based Complementary Surfaces 
f
 

 

 

 

In this chapter, we show that highly enhanced and selective adhesion can be 

achieved between surfaces patterned with complementary micro-channel structures. An 

elastic material, poly (dimethylsiloxane) (PDMS), was used to fabricate such surfaces by 

molding into a silicon master with micro-channel profiles patterned by photolithography.  

We carried out adhesion tests on both complementary and mismatched micro-

channel/micro-pillar surfaces. Adhesion, as measured by energy release rate required to 

propagate an interfacial crack, can be enhanced by up to forty times by complementary 

interfaces compared to a flat control, and slightly enhanced for some special non-

complementary samples, despite the nearly negligible adhesion for other mismatched 

surfaces. For each complementary surface, we observe defects in the form of visible 

striations, where pillars fail to insert fully into the channels. The adhesion between 

complementary micro-channel surfaces is enhanced due to a combination of a crack-

trapping mechanism and friction between a pillar and channel, and is attenuated by the 

presence of defects. 

                                                 
f
 Adapted with permission from: Singh, A. K.; Bai, Y.; Nadermann, N.;  Jagota, A.; Hui, C-Y."Adhesion of 

Microchannel-Based Complementary Surfaces." Langmuir 2012, 28(9), 4213-4222. Copyright 2012 

American Chemical Society. 
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3.1   Introduction 

Enhanced adhesion and selectivity between contact surfaces are highly desirable 

and have the potential for novel designs of high-level functional materials. In nature, 

biological attachment devices are functional systems for temporary or permanent 

attachment of an organism to the substrate, to another organism, or temporary 

interconnection of body parts within an organism. Their design varies enormously in 

relation to different functional loads 
1
. For example, patterns of protuberances of different 

origin on surfaces play important roles in animals‟ locomotion, such as in insects, spiders, 

and lizards 
2-8

. Studies of these structures have shown that the contact mechanical 

properties (including adhesion and friction) can be modified by near-surface architecture 

independent of the surface chemistry. In fact, within the last decade, the development of 

these bio-mimetic and bio-inspired structured surfaces has been pursued actively by 

many research groups
 3, 6-20

. 

Although bio-inspired attachment systems have been broadly studied, most of the 

recent work has been on the adhesion and friction of one-sided surface structures against 

a generic flat surface 
3
.  There are few studies on adhesion selectivity by surfaces with 

complementary architectures despite the fact that there are plenty of perfectly matched or 

complementary surfaces in nature.  For example, insects use interlocking hard claws to 

attach to a wide variety of substrates 
1, 21

. An interlocking meso-scale structure is 

responsible for attachments in the dragonfly head-arresting system 
22

. At the much 

smaller length scale of intermolecular associations, it is well-known that two nucleotides 

on opposite complementary DNA or RNA strands are connected via hydrogen bonds 
23

;
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formation of protein-protein complexes is based on shape complementarity 
24

. Selectivity 

in adhesion can be achieved by surface chemistry 
25-28

, including a study about surface 

pattern recognition using hydrophobic complementarity 
29

. A celebrated example of 

achieving adhesion using mechanical complementary is Velcro
®
 

30
 which uses a loop-

clasp mechanism. Recently, Vajpayee et al 
31

 
 
showed that highly selective adhesion can 

be achieved between complementary elastic surfaces patterned with ripples.  The increase 

in adhesion in this case is due to a crack-trapping mechanism.   

In this work, we investigate the adhesion of micro-channel structured periodic 

surfaces with different channel depths and inter-channel spacing. Leger and co-workers 
16

 

and Shahsavan & Zhao 
17

 have recently shown that complementary structured surfaces 

have strongly enhanced adhesion.  However, their studies were on the first separation of 

an as-molded shape-complementary interface.  Here we pursue a somewhat different 

investigation; we ask: if patterned substrates are separated and then pressed into contact, 

will complementary shapes inter-penetrate sufficiently and with high recognition/ 

selectivity?  We find that adhesion, as determined by the energy release rate required to 

propagate an interface crack, can be highly enhanced when surfaces are complementary, 

but only for restricted ranges of geometrical parameters such as inter-channel spacing and 

channel depth. On the other hand, adhesion can be highly attenuated for mismatched 

samples, indicating that micro-channel/pillar structured interfaces can be used to achieve 

highly selective adhesion. Controlling adhesion and selectivity by structure provides a 

handle on this surface mechanical property that can be manipulated independently of 
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surface chemistry.  It has a variety of potential applications including fasteners, moving 

small objects, and as bandages or adhesives in biomedical applications.  

We also observe an interesting phenomenon in complementary samples: the 

appearance of defects in the form of visible striations.   These defects are similar to 

atomic-scale dislocations in crystalline materials, for example metals.  However, unlike 

metals, where dislocations cause plastic deformation that is responsible for their high 

toughness, our experiments indicate that while their presence accommodates orientational 

mismatch between the two surfaces, overall it is detrimental to adhesion.    We have also 

carried out a preliminary analysis to explore some of the properties of these defects and 

to understand how geometrical parameters affect adhesion. 

 

3.2   Experimental methods 

3.2.1   Sample fabrication 

The fabrication process is illustrated schematically in Figure 3.1.  We began by 

molding an elastomer, poly (dimethylsiloxane) (PDMS), into etched silicon masters (with 

parallel micro-channels on the surface) patterned by photolithography.  The channel 

width of the original masters was fixed at 10 µm, channel depth, d, was varied (10, 20, 

and 30 µm), and minimum center-to-center spacing or smallest period, c, was varied in 

the range 20-125 µm.  Molding was done by mixing liquid PDMS precursor (silicone 

elastomer base), with curing agent (Sylgard 184, Dow Corning) in weight ratio of 10:1.  

The liquid silicone mixture was degassed under vacuum for 30 minutes before applying 

to the master and was cured at a temperature of 80°C for 2 hours.  
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Figure 3.1 Schematic illustration of the sample fabrication process.  The positive replica is called 

the pillar side and the negative replica is called the channel side. 

 

After curing, we peel the solid PDMS replica off the silicon master.   Samples 

have pillar and channel widths 10 ,p cw m w  , and interchannel spacing
  cp wwc . The 

positive replica is called the pillar side since the pillar width is fixed at 10 µm.  A second 

set of PDMS samples complementary to the first set was fabricated by the following 

replica molding process.  The original PDMS samples were coated by a monolayer of n-

Hexadecyltrichlorosilane (C16H33Cl3Si).  Samples with a complementary surface profile 

were obtained by a second molding and curing of PDMS on this first set of PDMS 

samples with pillar and channel widths ; 10p c c pw w w w m      .  The negative replica 

is called the channel side since the channel width is fixed at 10 µm.  A typical sample is 
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635 m thick, 30 mm long and 10 mm wide.  Figure 3.2 shows scanning electron 

microscope (SEM) images of a pair of complementary samples with 35 µm center-to-

center spacing, c. 

 

 

Figure 3.2 SEM images of a pair of complementary surfaces with interchannel spacing c = 35 µm. 

(a) pillar-side with pillar width of 10 µm, (b) channel side with channel width of 10 µm.  

 

3.2.2   Adhesion testing 

We begin by separating the pillar and channel sides samples obtained after the 

replica molding step (Figure 3.1).  We then press two sheets against each other by hand, 

attempting to force pillars on one sheet to find and insert into the channels of the other.  

We found that the flexibility of the sheet was necessary for pillars to insert into channels 

with a minimal number of defects.  For example, mounting just one of the two sheets on a 

glass slide or cover slip made the sample too stiff to allow protrusions to reproducibly 

find complementary grooves.  We measured the adhesion of the resulting sandwich 

structure in the following manner (Figure 3.3).  One sheet of the sandwich sample was 

placed on a glass slide and a wire of known diameter (typically either 0.49 or 0.65 mm) 

was placed along the micro-channel/pillar interface a fixed distance (~ 2.0 mm) from the 
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edge of the sample.  The sample was then moved towards the wire and stopped.  The wire 

serves as a wedge, applying an opening displacement approximately equal to its diameter.  

As a result a crack propagates away from the wire (Figure 3.3b), eventually arresting at 

an equilibrium length.  We also carried out control experiments on flat, unstructured, 

samples of the same thickness.  For flat samples we waited for at least one hour for the 

crack to achieve its equilibrium position; for structured samples we found thirty minutes 

to be sufficient.  In the structured samples we always observed the formation of striations 

(Figure 3.3b) separating transparent regions where pillars were fully inserted into 

channels.  As discussed in detail later, these striations are defects that allow pillars to find 

channels while accommodating relative shear and rotation between the two sheets. 
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 (a) 

 

 

     

(b) 

Figure 3.3 (a) Schematic illustration of the experimental set-up for measuring adhesion energy. (b) 

Photograph of the experimental set-up showing the wire that serves as a wedge opening a crack.  

Also visible are a series of striations – these defects, which are similar to dislocations in 

crystalline materials, accommodate relative shear and rotation between the two PDMS strips 

while permitting alignment between the pillar and channels in regions between the defects. 
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3.2.3   Relating crack length to energy release rate  

The equilibrium crack length results from a balance between energy release rate 

supplied by the wedged portion of the PDMS strip and the energy required to increase the 

crack area by a unit amount.  If the crack length a  is long compared to the strip thickness, 

t , the energy release comes primarily from the wedged-open upper strip.  If the strip is 

modeled as a linearly elastic beam wedged open by a displacement equal to the diameter 

of the wire, , we obtain the well-known relationship between energy release rate, G, and 

crack length, a :
  31, 32

 

2 2

4

3

8

E t
G

a


               (3.1) 

where t is the thickness of the upper strip and E* is its plane strain modulus.  However, in 

our experiments, the crack length is comparable to the film thickness, so we conducted 

separate finite element calculations (using the commercial finite element package, 

ABAQUS
®
, version 6.9) to relate the  measured crack length to energy release rate over 

the entire experimental range of crack lengths, extending a similar analysis described 

previously 
31

. 

 

3.3   Results and discussion 

3.3.1   Defects accommodate relative shear and rotation between strips 

For complementary samples, since we took no special care to align the two PDMS 

strips, the first question is whether pillars will insert into their complementary channels.  

Stated another way, one can ask whether and how the two strips will accommodate the 
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necessarily present misalignment.  In Ref. (31), we studied adhesion selectivity and 

enhancement based on shape complementarity using rippled surfaces.  There we reported 

that complementary rippled surfaces with moderate amplitudes (amplitude/wavelength ≤ 

0.2) can readily be pressed into nearly perfect contact with no visible defects.  In sharp 

contrast, for the photolithographically fabricated channel/pillar structures studied in this 

work (with much higher aspect ratios), we invariably observe defects in the form of 

visible striations tens to hundreds of microns in width and separated by distances on the 

order of millimeters.   

Figure 3.4 (a-c) show three complementary samples with pillar-side pillar width 

of 10 µm and varying spacing, c.  In each case, these low-magnification micrographs 

have clear, featureless regions where pillars have been inserted fully into channels.  In 

addition there are white-ish, light-scattering, striations.  These striations become wider as 

the inter-channel spacing, c, increases, occupying most of the interfacial area for larger 

spacings.  We observe that striations can form with different orientations with respect to 

the pillar/channel direction.  In addition, they either end on the sample boundaries (Figure 

3.4b) or form internal loops (Figure 3.4a). 

To understand the nature of these striations, consider Figures 3.4 (d,e), which 

shows a complementary sample with c = 20 µm.  Figures 3.4d and 3.4e show two 

magnified views of a striation that runs approximately perpendicular to the channel 

direction.  Figure 3.4d shows that the striation has a characteristic width comprising of 

two regions: an inner core with an outer region on either side of the core.  Away from the 

striation are featureless regions where the pillars are fully inserted into the channels.  The 



61 

 

vertical lines making up the striation are pillar/channel combinations that are no longer 

fully inserted, i.e., the striation is visible because of light scattering from interfacial 

regions in partial contact.  A close examination (Figure 3.4e) reveals that in the core 

region pillars are extracted from their complementary channel and shifted over by one 

period (a distance, c) and partial inserted into another complementary channel.  Because 

of the complementary and symmetric nature of the two PDMS sheets, each such shift in 

one sheet is mirrored by an equal and opposite shift in its complementary sheet.  We have 

observed that these shifts always have a magnitude equal to one periodic spacing, i.e., 

when a pillar is forced out of its channel, it shifts over exactly one periodic spacing c to 

find a new channel into which to insert itself.   In the last section, we show that the 

striations in Figure 3.4 can be viewed as “screw dislocations” that carry a Burgers vector 

of magnitude c aligned orthogonal to the channel direction in the plane of the sheet. 
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Figure 3.4 Micrographs of defects in micro-channel complementary surfaces. All three samples 

shown above have the same channel depth and width, d = wp = 10 µm.  Channel spacings c are (a) 

20 µm. (b) 35 µm. (c) 110 µm.  In each case, the low-magnification micrographs on the left 

column (a-c) provide a macroscopic view of the sample.  Clear, featureless regions are those 

where pillars have been inserted fully into channels.  Note the appearance of white-ish, light-

scattering, striations.  (d) These striations are regions where pillars fail to fully insert into 

channels.  The striations have an inner core region (e), where a pillar switches from one channel 

to another, and an outer region where the pillars are debonded and partially removed from the 

channel. (f) Two defect-free pillar-channel pairs (colored strips represent pillars) insert into each 

other.  (g)  Striations are screw dislocations with Burgers vector of magnitude c with orientation 

normal to the channel direction. 
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3.3.2   Adhesion measurements of complementary interfaces 
g
 

Figure 3.3 showed how a crack advances between two sheets due to the wedging 

action of a wire inserted between the two.  Figure 3.5 shows the crack front as it runs in a 

well-adhered region.  Figure 3.5a shows a sequence of three micrographs from a flat 

control sample.  Figure 3.5b shows a complementary pillar/channel interface.  We 

observe from Figure 3.5b that 

a) There are two distinct fronts, one where the pillars have debonded or partially 

extracted from their complementary channels, and a second one behind it where the 

pillars are fully extracted from their channels.  Typically, as in these micrographs, there 

are 2-3 channels between first and the second front. 

b) The debonded front advances by nucleating small debonded segments along the 

overall direction of crack growth (horizontal in Figure 3.5).  These segments then grow 

orthogonal to the crack growth direction (vertically in Figure 3.5).  The crack front grows 

in a similar manner, following the debonding front. 

 

 

 

 

 

 

 

                                                 
g
 The adhesion measurements of complementary micro-channel surfaces were mostly done by Dr. Arun K. 

Singh, when he worked at Lehigh University as a postdoctoral research associate. 
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Figure 3.5 Optical micrographs of the region behind and ahead of the crack front. (a) the growth 

of a crack at the interface between two flat surfaces. (b) A complementary micro-channel sample 

(d = c =20 µm) showing a crack advancing through a well-adhered region of the interface. 

 

As explained in the experimental section, we measure the equilibrium crack 

length and then convert this measurement into effective interfacial adhesion energy using 

either Eq. (3.1) or our finite element calculation, depending on the crack length.  Figure 

3.6 plots the energy release rate required for interfacial opening normalized by its value 

for a flat control.  For each set of samples, we made 10 measurements (error bars 

represent standard deviation). Half of these measurements were performed with one of 

the complementary sheets on the glass slide and the rest were performed with the other 

complementary sheet on the glass slide.  We found no significant dependence on whether 
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the pillar or channel side was wedged open.  The first striking observation is that one can 

achieve a sizable enhancement of adhesion, up to a factor of forty, over the flat control 

(represented by the horizontal line in the figure) in these complementary structures. 

Secondly, we note that, except for one sample ( 30d m ), the effective adhesion 

decreases monotonically as inter-channel spacing increases.  Eventually, the effective 

work of adhesion decreases with increasing inter-channel spacing to a value lower than 

that of the flat control.   

 

 

 

Figure 3.6 Normalized energy release rate required to open the interface for different interchannel 

spacing, and three different channel depths (10, 20 and 30 µm). 
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The exceptional case of 30 µm deep channels is interesting.  Figure 3.6 shows that 

the adhesion energies of these samples with 20 µm spacing are much lower than those of 

samples with spacing of 35 µm.  Figure 3.7 shows low magnification images of these two 

samples.  We find that in the case of 20 µm spacing nearly the entire sample scatters light, 

which appears to be because channels are tall enough to adhere to their neighbors.  The 

sample with 20 µm spacing shows the more normal regions of good contact with 

striations that accommodate relative misorientation.  

 

 

 

Figure 3.7  Low magnification pictures of complementary samples with channel depth d = 30 µm. 

(A: inter-channel spacing c = 20 µm, B: c = 35 µm)   

 

3.3.3   Adhesion measurements of non-complementary interfaces 

The results of the previous section have established the fact that, with properly 

chosen dimensions, complementary pillar/channel samples can strongly enhance 

adhesion between two surfaces compared to a flat control.  We now ask whether and how 

strongly adhesion can be modulated by making the structures non-complementary.  We 

studied two sets of samples.  In both sets, the width of the channels and pillars on one 
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side of the sample was the same (10 µm, top sheet in Figures 3.8b, c).  In one set, the 

other side of the sample was a pillar side where the pillar width was fixed at 10 µm 

(bottom sheet, Figure 3.8b).  In the second set, the other side of the sample was a channel 

side where the channel width was fixed at 10 µm (bottom sheet, Figure 3.8c).  We can 

see that if cp is a multiple of cc=20 µm, then the pillar side is expected to „recognize‟ the 

channel side.  However, if this is not the case, then only occasionally will the pillar side 

„find‟ the channel side.  We can see that this is indeed the case in Figure 3.8a, the „blue‟ 

set of samples.  On the other hand, if we fix the periodic spacing of the pillar side to be 

20 µm and vary the periodic spacing of the channel side, then except for the case where 

the two periods are identical, the surfaces do not adhere well to each other at all.  This is 

shown in Figure 3.8a by the „red‟ set of samples.  Together these two results demonstrate 

strongly selective, shape-recognition based, adhesion between these samples. 
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Figure 3.8 (a) Normalized energy release rate versus periodic spacing of the bottom sheet for non-

complementary interfaces. The channel depth of both sheets is 10 µm.  The top sheet has identical 

pillar and channel width (10 µm).  The pillar width in the bottom sheet of the first set (blue) is 

fixed at 10 µm and the interchannel spacing is varied (pillar side).  In the second set (red), the 

channel width in the bottom sheet is fixed at 10 µm with varying spacing (channel side).  (b) 

shows an optical micrograph for channel width of 30 µm.  In region A, the pillars in the bottom 

sheet are fully inserted into the channel of the top sheet.   In region B, there is a 10 µm gap where 

there is no contact.   For this case adhesion is somewhat attenuated compared to a perfectly 

complementary case with interchannel spacing of 40 µm (see Figure 3.6).  (c) shows an optical 

micrograph with pillar width of 30 µm.  In Region C, the pillars are in line with the channels but 

cannot insert into them because of region D, where the 10 µm pillars are in contact with the 30 

µm pillars in the bottom sheet.   For this case, it is clear that there is no insertion and only 25 

percent of the interface is in contact.   This fact is consistent with the measurement effective work 

of adhesion (see (a)), which decreases by 75% compared to the flat control. 
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3.4   Mechanisms of adhesion modulation for complementary interfaces 

We identify three mechanisms that control adhesion of complementary surfaces.   

Two of these mechanisms (crack trapping and friction pull-out) enhance adhesion, while 

the third (energy release by misfit dislocations) is detrimental to it.   

 

3.4.1   Crack-trapping 

In a previous work on complementary rippled surfaces, we have shown that 

adhesion enhancement is due to a crack trapping mechanism. 
31

  Since the channel/pillar 

architecture can be considered as a special case of these rippled surfaces, we can use the 

theory developed in Ref. (31) to estimate the adhesion enhancement associated with this 

mechanism.   The basic idea behind crack trapping is that the energy release rate varies 

with the spatial position of the crack front, which is a periodic function for our geometry.  

For a homogeneous interface with a constant work of adhesion, the crack is trapped at the 

position where the energy release rate is a minimum. 
31

 At this position, when the 

external load increases enough to grow the crack, it extends dynamically and unstably, 

arresting just before the next energy minimum.  This intermittent unstable process results 

in significant loss of stored elastic energy which accounts for the increase in the effective 

work of adhesion.    

A simple model which captures the essence of crack trapping for our 

channel/pillar samples is shown schematically in Figure 3.9.  The geometry consists of 

two complementary thin sheets of PDMS (plane stress) with lateral dimensions much 

larger than the channel depth and width.   A long crack occupies half of the interface.   
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For the time being, we assume that the interface directly ahead of the crack is defect free: 

that is, all the pillars in this region are fully inserted into their complementary channels.  

In addition, the interface between the pillars and channels is frictionless.  A uniform 

vertical displacement  is applied on the top of the upper sheet and the lower sheet is 

fixed.  

 

 

 

Figure 3.9 Schematic diagram showing directions of crack propagation along both the flat 

interface and the structured interface.  

 

The essence of the argument is that the when the crack moves in a direction other 

than horizontal, the available energy release is lower.  According to our previous work 
31 

when the crack is forced to move orthogonal to the horizontal direction, the energy 

release rate is reduced by a factor  

 4/cos4

min G

       (3.2a) 
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The enhancement factor for the effective work of adhesion is the inverse of  Gmin , 

which is  

  4

1
4

cos
4

CT


 
 
 
                                    (3.2b)

 

It should be noted that Eq. (3.2a) assumes that the slope of the interface is nearly 

flat, a condition which is clearly violated since the channel walls are vertical. Indeed, due 

to this discontinuity, the position of minimum energy release cannot be precisely located 

using our previous theory – it can occur anywhere between a and b in Figure 3.9.  To 

check the accuracy of Eq. (3.2a), we determine the energy release rate using a plane 

stress finite element method (FEM) (Figure 3.10) in ABAQUS
®
. 

32
 The interface 

geometry is shown in Figure 3.10 where the debonded region consists of four 

pillar/channel pairs.  This assumption is consistent with our experimental observation that 

there are 2-3 channels between the debond and the crack front.  In our FEM, the two 

sides of the channel/pillar interface are defined as frictionless contact pairs.   A “tie” 

constraint is imposed on the nodes along this interface. We extend the crack along the 

structured interface by releasing selected nodes at this interface from the “tie” constraints.  

The energy release rate is determined by evaluating the J-integral 
31

 around the crack tip 

in ABAQUS
®
 and also by direct evaluation of the change in total strain energy of the 

system due to incremental crack advance; Figure 3.10 shows the results based on change 

in total strain energy.   Calculations are performed for two different models.   In model 

(a), the channel depth is the same as the channel width.     In model (b), the channel depth 

is double the channel width. 
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(a)       (b) 

 

Figure 3.10 Finite element model of crack-trapping mechanism for two different channel depths, 

(a) channel depth = channel width. (b) channel depth = 2 × channel width. 
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Figure 3.10 shows that the energy release rate varies periodically along the micro-

channel/pillar structured interface. The adhesion is enhanced by about five times for two 

different channel depths and the structure with larger channel depth (Figure 3.10b) has a 

slightly greater enhancement.  (The actual enhancement will be somewhat larger because 

of mode-mixity. 
31

) Thus, the approximate expression Eq. (3.2), which indicates that the 

energy release rate is independent of channel depth and width, agrees reasonably well 

with our finite element results.  However, the experimental results in Figure 3.6 show that 

the enhancement in the effective work of adhesion is about forty times for 

complementary samples with 20 µm depth and 20 µm spacing.   Moreover, the predicted 

energy enhancement due to crack trapping is about the same for the two different depths 

in Figure 3.10 while the experiments indicate otherwise – the 20 µm deep sample (Figure 

3.10b) is found to be 4 times tougher than the 10 µm deep sample (Figure 3.10a).  This 

comparison between experimental results and finite element analysis reveals that the 

crack-trapping mechanism could not solely be responsible for adhesion enhancement.   

This brings up the second mechanism for adhesion enhancement:  friction between the 

pillars and the channels. 

 

3.4.2   Effect of friction 

To estimate the energy release rate due to friction between a pillar and its 

complementary channel groove, we assume a constant friction stress τ along both sides-of 

the pillar/channel interface.   This assumption is consistent with experimental results by 

Chaudhury et al
 33,34

 and Chateauminois et al 
35

. who demonstrated that the sliding 
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friction stress between two PDMS surfaces is a material constant for a reasonably wide 

range of sliding rates.  To estimate the energy release rate contribution due to friction, it 

is sufficient to compute the energy required to completely pull the pillars off a unit area 

of a complementary surface.     

Let u denote the amount of pull-off and F be the force acting on one end of the 

pillar (see Figure 3.9).   To simplify the analysis, we ignore the elastic energy due to 

stretching of the pillar.   For this case, simple force balance shows that F is related to u by 

  budF        (3.3) 

where b  is the out-of-plane thickness of the pillar.  The energy required to fully extracted 

a pillar from its complementary channel is  

bdFduW
d

2

0
2                                                                 (3.4) 

Since the number of channel per unit area is 1/bc, the energy release rate due to 

friction pull-out is 

 
c

d

cb

W
G f

2
                   (3.5) 

Note that the contribution to the energy release rate due to friction is inversely 

proportional to the interchannel spacing and increases as the square of the channel depth.   

Also, since we neglected the elastic energy due to stretching of the pillars, the energy 

release rate given by Eq. (3.5) is a lower estimate since not all of the stretching energy 

can be recovered during the pull-off process.   Using results of Chateauminois 
35

 for an 

approximate value of 0.15MPa   and 20d c m  , 
23 /fG J m .  This estimate of 

frictional energy release rate should be compared to the typical work of separation for flat 
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PDMS samples, about 200 mJ/sq. m 
36

.  That is, friction between pillar and channel can 

enhance energy release rate by a factor of fifteen, which is significantly greater than the 

factor of five due to crack-trapping (as shown in the previous section).  Furthermore, for 

fixed inter-channel spacing mc 20  , we can see that the energy release rate for 

md 20   is about four times that for smaller depth, md 10 , consistent with the 

quadratic dependence of energy release rate on d predicted by Eq. (3.5).  We therefore 

conclude that the friction makes a major contribution to the work of separating the 

interface, albeit the crack trapping mechanism also plays a significant role.  More 

detailed analysis combining both these mechanisms will be needed to better model the 

separation process.  

 

3.4.3   Energy release by misfit dislocations 

The micrographs in Figure 3.4 strongly suggest that defects due to misfit can 

dramatically reduce the effective work of adhesion. Figure 3.11 shows that the fraction of 

interface area covered by defects in a sample with 10 µmchannel depth is approximately 

proportional to the interchannel spacing.   This result is consistent with Figure 3.6 which 

shows that the effective work of adhesion decreases with increasing interchannel spacing.   

To quantify the detrimental effect of these defects, it is necessary to understand the 

deformation and energy associated with these defects. 
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Figure 3.11 Fraction of dislocation area in a series of complementary samples with depth d = 10 

m and variable interchannel spacing, c.  

 

Many features of classical continuum dislocation theory can be used to describe 

the mismatch defects observed in our experiments.  To define a dislocation, imagine two 

complementary surfaces that fit perfectly and let D denote a simply connected planar 

region on this interface.  Without loss in generality, we assume that the interface is part of 

the x-y plane (z = 0) and that the channels are parallel to the y axis.   Let C denote the 

boundary curve of D.  Ascribe a positive sense of direction to C by requiring it to encircle 

the outward normal vector k  of D consistent with the right-hand rule. A dislocation is 

created by the following process:  make a cut on the surface D, and denote the upper 

(lower) surface resulting from the cut by D  ( D ).  The normal vector to D is in the 
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same direction as k  whereas the opposite holds for D .   Next, translate D  relative to 

D  by the vector 2 3b nci b j b k   , where n is an integer, 2b and 3b  can be any small 

real numbers.  In our experiments, 1n   . The vector b  is defined as the Burgers vector.  

The curve C is called the dislocation line.  If C is a closed curve, it is called a dislocation 

loop.   When b  is in the same direction as the curve C or the dislocation line, the 

dislocation is called a screw dislocation.   When b  is perpendicular to C, the dislocation 

is called an edge dislocation.  Since C is a curve, in general b  is neither parallel nor 

perpendicular to C, and the dislocation is called a mixed dislocation. 

A simple example of a screw dislocation is illustrated in Figures 3.4 (f,g).  Here D 

is the half plane defined by ,   0, 0x y z   .   The dislocation in Figure 3.4 is 

obtained by translating D  to the right and D  to the left by c/2, respectively.  The 

dislocation line is along the x axis and its direction is i .   The Burgers vector in Figure 

3.4 is icb


  and is parallel to the dislocation line.  (Since there are two equivalent 

sheets, the Burgers vector is equal and opposite in the other sheet.)  Note that far away 

from the dislocation line the channels fit perfectly.   Near the dislocation line, the sheets 

do not fit perfectly.  In Figure 3.4g, this region of misfit is an infinite long cylinder with 

radius cR  in the x direction.  This region is called the dislocation core.   The deformation 

in this region was described earlier (see also Figure 3.4).  From our description, it is clear 

that the core is dilated.  The core consists of a center region where the pillars are 

completely pulled-out and sheared sideways by a distance c; away from the core‟s center 

the pillars are partially extracted from the channels.  The complex deformation inside the 
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dislocation core will be addressed in a future work.   Here we will present a simple 

analysis of the stress and strain fields outside the core region for samples with thick 

backing layers, where t >> c. 

If the backing layers are very thick in comparison to c, they can be modeled as 

infinite elastic blocks.  The stress and strain fields far away from the core region are 

independent of x can be readily obtained using continuum theory 
37

. With respect to a 

polar cylindrical coordinate system ( , , )r x , i.e.,  

 
2 2 ,0 2r y z      ,                         (3.6) 

the displacement fields are: 

 1 2 3, 0               0 2
2 2

c c
u u u


 


                      (3.7) 

The non-trivial stresses induced at distances cr R  are given by:  

13 12cos ,       sin
2 2

Gc Gc

r r
   

 
                 (3.8a) 

The associated strains are: 

 13 12cos ,       sin
2 2

c c

r r
   

 
  

              
(3.8b) 

This solution is, of course, not valid near the core region, as evident by the fact 

that the stresses become infinite as 0r  .   As one approaches the core, higher order 

correction terms must be included in the stress field.  These terms depend on the internal 

structure of the core and are beyond the scope of this chapter.   The divergence of the 

stresses implies that the strain energy is unbounded.   Indeed, a straightforward 
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calculation shows the strain energy stored per unit length  of the dislocation line in a 

region bounded by cylinders of radius c oR R is 

 
2

ln
4

o

c

RGc

R
 

      (3.9)

 

where G is the shear modulus of PDMS. Note that the strain energy per unit length   is 

proportional to the square of interchannel spacing and diverges as oR  .   This 

divergence is due to the two dimensional artifact of our problem; the misfit energy 

depends on the size of the specimen.   To obtain a realistic energy for the dislocation, it is 

necessary to include the misfit energy of the pillars inside the core and to obtain an 

estimate of the width of the dislocation or the core size, problems are discussed in Ref. 

(38). 

Our analysis above indicates that a lower bound for the elastic energy of a misfit 

dislocation is given by Eq. (3.9).  Since we do not observe formation of new dislocations 

in our adhesion experiments, these dislocations cannot dissipate energy; rather, the elastic 

energy associated with them can be released to assist instead of retarding crack growth.  

Estimate Ro to be the sample width, 1.27 mm, and Rc to be characteristic core size, ~ c, in 

the range 20-100 µm. Then Eq. (3.9) is approximately, 

  2 / 2Gc 

       (3.10)

 

If we assume that all the elastic energy associated with these dislocations are 

released to assist crack growth, then a rough estimate of the negative contribution to the 

energy release rate is 
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  2 / 2dG Gc          (3.11) 

where  is the number of dislocation lines per unit length.  The fact that   is 

proportional to the square of the inter-channel spacing supports our observation that the 

effective work of adhesion decreases with c.    

Just as in polycrystalline metals, where the areas swept by dislocation lines create 

plastic strains, mismatch dislocations in complementary surfaces can accommodate 

elastic deformation. (In metals at room temperature dislocations glide on slip planes.  A 

poly-crystal has many slip planes oriented in different directions.   For our system there is 

only one slip plane which is the interface formed by the complementary surfaces.)  A 

simple example is shown in Figure 3.12a which shows one undeformed sheet with 

vertical pillars and channels.  Figure 3.12b shows part of the sheet drawn in Figure 3.12a 

but additionally with a set of parallel dislocations; this figure has been annotated with 

angles and distances in Figure 3.12c.  (Note that the dislocation lines drawn in Figures 

3.12c and 3.12d do not cut through the sample.  Rather, they represent the core at the 

interface.) 
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(a)           (b) 

 

(c) 

 

Figure 3.12  Schematic diagram showing how dislocations accommodate shear and rotation. 
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The Burgers vector for each inclined dislocation drawn in Figure 3.12c is  

  jcicb


tan        (3.12) 

where ji


,  are unit vectors in the „x‟, and „y‟ directions.  Note that this is the combined 

Burgers vector for the two sheets.  The idea is that these dislocations accommodate some 

relative shear and rotation between the two sheets by permitting the regions between 

dislocations to find their complement with the dislocation region itself carrying the shear.  

To relate the shear to the characteristics of the dislocation, note that averaged over many 

dislocations the mean displacement field corresponding to Figure 3.12c is 

y
c

x
c

ux






 cossin
                                             (3.13a) 

y
c

x
c

u y






 sin

cos

sin 2

                                       (3.13b) 

The corresponding average strain field and rotation are 

 
.
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

















cccc
xyxyyyxx                      (3.14) 

Since the strain field has to conserve area, there are only two independent 

quantities,  xx  and xy . Given some mismatch strain and assuming that the dislocation 

configurations are given by the simple array shown in Figure 3.12b, Eq. (3.14) 

determines the angle and average distance between dislocations that is needed to 

accommodate the relative shear and misorientation.  Note the inverse relationship 

between spacing between dislocations and the strain.  Eq. (3.14) can be solved to give 














 

xy

xx




 1sin

2

1
                                 (3.15) 
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3.5   Summary and discussion 

The observations and data reported in Figures 3.4 ~ 3.7 show that flexible strips 

with channels can insert into complementary channels, yielding strongly enhanced 

adhesion.  Optimal properties appear to require aspect ratios in the range 1-3 and spacing 

2-4 times the pillar width.  Outside these ranges, adhesion is attenuated by defects such as 

those due to the need to accommodate misorientation, or because the pillars are too 

slender and close to each other.  We carried out adhesion tests on both complementary 

and mismatched micro-channel/micro-pillar surfaces. Adhesion, as measured by energy 

release rate of an interface crack, can be enhanced by up to forty times for 

complementary interfaces and still be significantly enhanced for some special non-

complementary samples, despite the nearly negligible adhesion for other mismatched 

pairs.   The increase in adhesion for short and moderately long pillars can be attributed to 

a combination of friction pull-out of pillars and a crack trapping mechanism.   Indeed, our 

experiments shows that, up to a certain channel depth (about 20 µm in our case) increase 

of channel depth is beneficial since the amount of energy dissipated by friction during 

extraction is directly proportional to 2d .  For a complementary surface where d = c = 20 

m, a rough estimate of the contribution to the effective work of adhesion due to the 

friction pull-out mechanism is about 3 J/m
2
, which is about 15 times the work of adhesion 

of a flat control sample, significantly larger than the enhancement factor of ~ 5 due to the 

crack trapping mechanism. However, since these energy dissipation mechanisms can 

operate only when the pillars are in good contact with the grooves of the channels, it 

becomes ineffective as channel depth increases as long pillars are much more flexible and 
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even a very small misalignment can cause them to buckle, preventing insertion of pillars 

into channels.  As a result, long pillars and wide channels will increase the number of 

misfit dislocations. Since the strain energy associated with these dislocations varies as the 

square of the inter-channel spacing, the presence of misfit dislocations can easily negate 

the friction and crack trapping enhancement mechanisms (e.g. compare Eq. (3.5) and Eq. 

(3.11)).    

The analysis in this work can be improved significantly. Our model decouples the 

crack trapping mechanism from friction pull-out.   Our expression for the energy 

associated with a dislocation assumes that the dislocation is a pure screw dislocation, and 

more importantly, the strain energy stored in the core, which can be a significant fraction 

of the stored energy, has been neglected in our calculation.   Estimating the energy stored 

in the dislocation core is a non-trivial contact mechanics problem, since deformations of 

the pillars and channels in the core region are coupled to mechanical response of the 

backing layer and interfacial friction.   

Our work shows that adhesion between flexible sheets can be enhanced 

significantly and made highly selective by simple complementary pillar-channel surface 

profiles.  Such surface structuring suggests a new way by which functional surfaces can 

be designed for applications such as adhesives, fasteners, moving small objects, or 

bandages/adhesives in biomedical applications. 
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Chapter 4      Frictional Auto-

Roughening of a Surface with Spatially 

Varying Stiffness 

 

 

 

We show that significant reduction of sliding friction can be achieved between a 

rigid surface and a flat elastic surface by spatial variation in stiffness of the latter.  This 

reduction in friction during sliding occurs due to an “auto-roughening” phenomenon in 

which a fully connected contact region breaks into partial contact. An elastomer, 

poly(dimethylsiloxane) (PDMS), was used to fabricate nominally flat surfaces with 

regions of two different stiffness, achieved by using two different concentrations of 

cross-linker. Both experiments and finite element simulation show that, for sufficiently 

high friction and low normal load, the real contact area between a rigid indenter and a 

surface with spatially varying stiffness is reduced significantly due to auto-roughening.  

The finite element model also shows how the auto-roughening depends on the contact 

openings of interfacial structures, resulting in reduced overall friction. 
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4.1   Introduction 

Friction arises whenever two materials in contact move relative to each other.
1
 

Deliberate control of friction, say, an elastomer sliding against a rigid substrate, is of 

great practical importance in many applications, e.g., tires,
2-4

 windshield wipers 
5,6

 and in 

seals. Depending on the situation, one desires high or low friction, and this depends on 

the physical properties of the materials
1,7

 and near-surface texture.
8
 At the molecular 

scale, friction arises due to molecular stick-slip,
9,10

 a rate-dependent process,
11

 and 

adhesion.
7,11-13

 For stiff materials, friction is intimately related to limited asperity contact 

and deformation; for compliant materials such as elastomers, intimate contact between 

the surfaces is more easily attained.
7
  

Several recent studies have shown that contact mechanical properties, including 

both friction and adhesion, can be significantly modified by surface microstructure.  

Several designs of near-surface architectures have been inspired by the biological 

attachment systems,
14-16

 for example, the fibrillar structure observed on contact pads of 

lizards.  Several bio-mimicked and bio-inspired structures have been developed in recent 

years.
8,17-25

 Glassmaker et al 
26

 and Noderer et al 
27

 found that the adhesion and surface 

compliance can be strongly enhanced by a film-terminated fibrillar architecture. Several 

fibrillar structures terminated by “mushroom”-like ends 
20,28,29

 have been developed that 

achieve enhanced adhesion.  Ghatak and co-workers 
30,31

 have reported strong 

enhancement of adhesion with sub-surface micro-structures.  Guduru and co-workers 

showed how crack-trapping by a wavy interface can enhance adhesion.
32

 Control of 
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adhesion by spatial variation in properties was also investigated by Kendall 
33

 using a 

composite material with periodic variation in stiffness.   

Surface structuring can also be used to modulate friction.  Gorb and Varenberg
 29

 

showed that fibrillar surfaces can exhibit smooth and stable sliding with much lower 

friction force, in contrast to the stick-slip motion of a control flat surface.
34

 On the other 

hand, Kim et al 
35

 reported enhanced static friction for micro-pillar patterned elastomer 

surfaces.  Similarly, Shen et al 
36

 and Vajpayee et al 
37

 have also shown that the static 

friction can be increased significantly on a film-terminated fibrillar interface.  Rand et al 

38
 showed that the sliding friction can be reduced by surface wrinkles.  

In this work we investigated the effect on friction of an elastomeric surface with 

periodic spatial variation in properties. We measured sliding friction between a smooth, 

stiff, indenter and a nominally flat surface of an elastomer with spatial variation in elastic 

moduli.  The principal new finding of this work is that the surface undergoes a frictional 

“auto-roughening” phenomenon, which results in a transition from full to partial contact 

during the sliding phase, and decreases the friction force considerably.  Through finite 

element simulation we demonstrate that auto-roughening requires both spatial variation in 

modulus and sufficient frictional stress. 

 

4.2   Experimental methods 

4.2.1   Sample fabrication 

Figure 4.1 illustrates the fabrication process. We started with a series of silicon 

molds patterned by photolithography, which were basically of two types.  The first one 
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had 1-D parallel channels 
39

 with two different channel depths (d = 10 & 25 µm) and 

three different spacings (center to center distance, c = 20, 35 & 50 µm).  Using 

previously described techniques, 
38

 we molded an elastomer, poly-dimethylsiloxane 

(PDMS, Sylgard® 184 Dow Corning) onto the silicon mold, resulting in replicas of the 

sort shown schematically in Figure 4.1a. The second surface profile design comprises a 

2-D arrangement of holes that, on molding PDMS, yielded fibrillar structures 
40

 shown in 

Fig. 1b.  All of the molds for this second design have the same fibril height (h = 17.8 µm), 

and the spacing between two nearest fibrils was varied as s = 20, 35 & 50 µm.   The 

spaces between the channels/fibrils are subsequently filled with a lower modulus PDMS, 

as described below. 

 

 

Figure 4.1 Schematic diagram of the process that creates surfaces with (a) 1-D and (b) 2-D 

periodic variation in stiffness. 
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Liquid PDMS precursor was made by a mixture of silicone elastomer base with 

curing agent.  PDMS stiffness was adjusted by varying the curing agent (cross-linker) 

concentration.  In order to distinguish optically the different regions on the surface, we 

added a small amount of carbon black to serve as a pigment (approximately 0.2 wt%, 

dissolved in toluene and prepared by bath-sonication for at least two hours) into the 

stiffer PDMS precursor.  Typically, this first molding used the stiffer PDMS which was 

generated by mixing silicone elastomer base and curing agent at a weight ratio of 10:1, 

along with additional carbon black pigment.  The mixture was degassed for 30 minutes 

under vacuum, then applied to the silicon masters, and cured at 80ºC temperature for two 

hours after the molding step.  The structured sample obtained after the first step was, in 

the second step, backfilled with lower modulus (and transparent) PDMS liquid.  This 

second phase was mixed with a weight ratio of 20:1 of silicone base:cross-linker, 

dissolved in additional toluene (6.0 wt%) to increase the flowability, which further 

decreased its elastic modulus.  Using indentation tests based on Johnson-Roberts-Kendall 

(JKR) theory
 
(tests were carried out at loading rate = 1.0 µm/sec), 

42
 the Young‟s moduli 

for the 10:1 (with carbon black) and 20:1 PDMS were found to be 3.84 (± 0.08) MPa and 

1.64 (± 0.06) MPa, respectively. 
h
 

 

 

                                                 
h
 The measurement of elastic moduli for both stiff and compliant PDMS was implemented with assistance 

of Dr. Dadhichi Paretkar. 
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                            (a)                                                                            (b) 
 

Figure 4.2 SEM images of different structured composite samples: (a) surfaces with 1D variation 

in stiffness, channel depth d = 25 µm and interchannel spacing c = 20 µm; (b) surfaces with 2D 

variation in stiffness, fibril length h = 17.8 µm and spacing s = 20 µm. 

 

Two different approaches were used to create the composite 1-D ridge/channel 

and 2-D fibrillar surface structures.  The 1-D ridge/channel micro-channel structures were 

filled by the compliant second phase by liquid flow into the grooves driven by capillarity.  

We pressed the structured side of the PDMS sample obtained after the first molding 

against a glass slide with a spin-coated thin polystyrene film.  Then, the liquid mixture of 

toluene and PDMS (with lower cross-linker concentration) was poured on one side of the 

structured sample.  The entire assembly was placed at room temperature with a dead 

weight on top.  The liquid was pulled into the channels by capillarity and cured in place.  

Figure 4.2a shows a scanning electron microscope (SEM) image of a backfilled micro-

channel sample with spacing, c, of 20 µm. 

The capillary force method did not work well for the 2-D fibrillar structures, as 

the fibrils tended to bend and buckle under the dead load required to maintain uniform 

contact. For these samples, after the stiff PDMS sample with a fibrillar surface structure 

was generated, the second precursor with lower cross-linker concentration was spun into 

a thin film of the same thickness as the height of fibrils using a Modular Spin Processor 
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(Laurell Technologies Corporation).  Then, we placed the structured PDMS sheet onto 

the thin film with the structured side face down, so that the fibrils were fully inserted into 

the liquid precursor, and cured the sample at 80ºC for 2 hours. An SEM micrograph of a 

backfilled fibrillar sample is shown in Figure 4.2b. 

Although the backfilling process was carried out against flat glass or silicon, the 

surface had some undulation (with amplitude of less than 1 µm) in both cases (Figure 

4.2). A typical surface profile for a backfilled ridge/channel sample (Figure B.1 in 

Appendix B) measured using an interferometric optical profilometer (ZeGage. Zemetrics, 

Inc), shows surface undulations with amplitude of about 300 nm. Also, as shown later, 

the initial contact region upon indentation by a smooth sphere is bounded by a somewhat 

undulating line. The contact on the stiffer regions is larger than the compliant parts by the 

edge, since the stiff segments are relatively higher.  However, we consider the influence 

of this surface undulation to be minimal, since the amplitude is small compared to the 

other dimensions.  This is discussed further in the Section 4.3 and Appendix B. 

 

4.2.2   Friction measurement  

Our experimental set-up for studying the frictional behavior of the backfilled 

samples is shown schematically in Figure 4.3. A spherical glass indenter with a diameter 

of about 4.0 mm was precoated by vapor-depositing a self-assembled monolayer of n-

hexadecyltrichlorosilane (C16H33Cl3Si) on the surface, in order to reduce adhesion. 

Details of this coating process can be found in the work of Glassmaker et al 
26

. The glass 

indenter was placed on the sample under controlled normal load.  The sample was 
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attached to a glass slide above an inverted optical microscope.  The glass slide was 

moved by a variable speed motor (Newport ESP MFA-CC) at a fixed speed (u = 10 

µm/second), via a Newport ESP300 motion controller. The resisting shear force was 

measured by a load cell (Honeywell Precision Miniature Load Cell). 

 

 

Figure 4.3 Experimental set-up for the friction tests. A spherical indenter was lowered onto the 

sample with a normal load in the range of 3-20 mN. The horizontal movement of the indenter was 

driven by a D.C. motor, the shear force was measured by the load cell, and images of the contact 

between the indenter and sample were recorded through the inverted optical microscope. The 

sample on the glass substrate was connected to the motor by adhesive tape, drawn as a blue spring 

in this figure.  

 

4.3   Results and discussion 

4.3.1   Friction test on homogeneous control samples 

Control friction tests were carried out on nominally flat surfaces of homogeneous 

stiff and compliant samples. We observed that the contact was maintained throughout 

over a single region for both the controls.  Figure 4.4a and 4.4b show two optical 

micrographs of the contact region (darker area) between the stiff flat control sample and 

indenter.  Figure 4.4a shows the initial contact before the sample is sheared relative to the 
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indenter – the area is nearly circular. Figure 4.4b shows the contact area during sliding. 

We observe that the contact area decreases in size and changes to an oval shape, and the 

indenter slides smoothly on the material. Figures 4.4c, 4.4d & 4.4e show three 

micrographs of the contact region between the same rigid indenter and the compliant flat 

control sample. During the friction experiment, we observed Schallamach wave 

propagation. 
41

 Notice, for instance, that the contact areas in Figure 4.4d and 4.4e (darker 

regions) are quite different although both pictures were taken during sliding.  This occurs 

because in Figure 4.4d a Schallamach wave has just exited the trailing edge (TE) of the 

contact region. Consistent with this observation, force traces vary periodically as 

discussed in the next section. 
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Figure 4.4 Optical micrographs of spherical glass indenter sliding on a flat homogenous control 

sample. The glass indenter was held fixed and the sample was moved to the right. The letters „TE‟ 

and „LE‟ denote the trailing and leading edge of the contact, respectively. (a,b): contact area 

before sliding (a) and during sliding (b) on the stiff PDMS; (c,d,e): (c) contact area before sliding 

and (d,e) during sliding on the compliant PDMS.  

 

 

4.3.2   Friction test on samples with 1-D and 2-D periodic variation in properties 

4.3.2.1   Surface patterned by stripes with different, alternating stiffness 

Figure 4.5a shows typical measurements of shear force for 1-D samples with the 

same channel depth (d = 10 µm) but different spacing, compared to the two control 

samples for a relatively light normal load, FN = 3.5 mN.  For the stiff control, the shear 

force builds up quickly and goes into steady sliding.  For the compliant control, the shear 

force response shows an initial “static friction” peak, which corresponds to adhesive 
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failure of the contact and initiation of sliding.  The following periodically-varying shear 

force is indicative of Schallamach wave propagation.   

One might expect that the frictional resistance against shear of a composite 

surface will lie between the two limiting cases in which the material is homogeneous.  

However, all three composite samples have significantly smaller friction force than either 

the stiff or the compliant homogeneous controls.  The sample with smallest spacing (c = 

20 µm) has the lowest friction, which increases systematically with increase in spacing, 

corresponding to increasing surface area fraction of the more compliant material.  

Figure 4.5b shows optical images of the contact region in a composite surface 

before and during sliding.   The initial contact is roughly circular, with undulations 

corresponding to stiff and compliant regions (the dark region in Figure 4.5b, picture 

labeled „Initial Contact‟). As the interface is loaded in shear, the friction force builds up 

to a “static friction” peak, and then drops as sliding commences.  During sliding, the 

contact region is smaller in overall diameter and, more significantly, shows clearly a 

transition from full to partial contact between the indenter and the material surface.   We 

call this transition from full to partial contact “auto-roughening”.  This significant 

reduction in contact area evidently reduces the friction force.  As shown in Figure 4.5b, 

the contact region separates into ~10 striped regions with each strip partially on the stiff 

material and partially on the compliant one (see insert in Figure 4.5b „Sliding Phase‟). 

Each strip of contact has about the same width in its middle, and the width tapers towards 

the ends.  The envelope of the contact regions represents an overall apparent contact area.  

The previously observed asymmetry in contact shape (Figure 4.4b) is not so evident; it 
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manifests as a systematic difference in the width of contact strips at the leading and 

trailing edges.  If one follows a particular strip over time, we observe that it nucleates at 

the leading edge and grows in width and length as it enters the contact.  After reaching its 

maximum length, the contact strip decreases in size, eventually vanishing at the trailing 

edge.  We observe in Figure 4.5a that the shear force varies periodically for the 

composite samples during sliding.  In this case, unlike the homogeneous control, the 

period corresponds to the periodic variation in modulus of the surface, that is, the length 

of each period is identical to its corresponding inter-channel spacing (see insert in Figure 

4.5a). 
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Figure 4.5 (a) Shear force as a function of shear displacement for samples with 1-D periodic 

variation of stiffness and both homogeneous controls; (b) optical micrographs taken during a 

friction test on a sample with spatially varying stiffness (depth d = 10 µm, spacing c = 35 µm) 

shows a transition from initially full contact (before sliding) to partial contact during sliding. The 

red circle marks the apparent contact area measured by encircling all the dark stripes together 

(regions in contact) during sliding. The black region marks a small segment of contact, which is 

enlarged and drawn schematically on the right hand side, to illustrate that the real striped contacts 

are partially on the stiff material (grey strips) and partially on the compliant material (white 

regions).       

 

(a) 

(b) 
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As noted in Section 4.2.1 and Appendix B, the surface profile of the composite 

samples often had some waviness.  In cases where the compliant component was in 

excess of that required to fill the channels, it appeared as a thin layer covering the entire 

surface (also in the Appendix B, Figure B.2). Data from such samples was discarded, 

because the indenter made contact only with the compliant material, not with alternating 

stiff and compliant regions.   Waviness of the sample surface raises a natural question 

about the extent to which the auto-roughening reported in this work is due to surface 

roughness instead of spatial variation in stiffness. We found that even the samples that 

were coated completely by the compliant elastomer and had a flat surface always showed 

clear auto-roughening.  Based on this observation we surmise that spatial variation in 

stiffness plays the dominant role in auto-roughening. 

 

4.3.2.2   Stiff regions in a 2-D array surrounded by compliant regions 

A similar auto-roughening transition occurs in the samples with 2-D periodic 

variation in modulus; Figure 4.6a shows a typical example of friction-displacement 

curves.  Again, the sliding friction force for the composite samples is lower than that of 

both the flat control samples under the same normal load (FN = 3.5 mN). Larger spacings 

(c = 35 & 50 µm), with correspondingly larger area of the compliant material on the 

surface, still exhibit little enhancement of friction. 

Figure 4.6b shows micrographs of the contact region.  The dark region on the left 

hand side of Figure 4.6b („Initial Contact‟) shows the contact under normal load before 

shear force is applied.  On the right hand side, the grid-like dark regions represent the real 
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contact area during sliding.  The transition from full to partial contact is evident.  At the 

leading edge, the fraction of area in contact is larger than at the trailing edge. 

 

 

 

                 

 

Figure 4.6 (a) Shear force as a function of shear displacement for samples with 2-D variation in 

stiffness and both homogeneous controls; (b) optical micrographs taken during a friction test on 

composite fibrillar samples (depth  d = 10 µm, spacing c  = 20 µm) showing a transition from 

initially full contact (before sliding) to partial contact during sliding. The red circle marks the 

apparent contact area that encircles the entire grid-like dark regions during sliding. 

 

 

 

(a) 

(b) 
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4.3.3   Friction test under different normal loads  

Because the reduction in sliding friction due to auto-roughening is due to 

reduction in real contact area, one would expect that with increasing normal load the 

auto-roughening phenomenon might be prevented, possibly resulting in recovery of 

frictional resistance. We conducted experiments using significantly larger normal forces 

and examined both 1-D micro-channel and 2-D fibrillar structured composite samples. 

Figure 4.7a shows micrographs of the contact region before sliding („Initial 

Contact‟) and during sliding („Sliding Phase‟) for a backfilled microchannel sample 

under a normal force FN = 12.0 mN.  Other than being larger in size, the contact is very 

similar in character to that shown in Figure 4.5b. However, during the sliding phase, 

unlike in Figure 4.5b in which the contact broke into a number of smaller regions, in 

Figure 4.7a we observe partial contact at the periphery and full contact in the middle 

contact region (which bears the highest compressive normal traction).  As a result, the 

corresponding frictional shear forces on composite samples are higher, although they are 

still lower than either of the flat control samples, as shown in Figure 4.7b. 

A similar effect was observed for larger normal load in the case of the samples 

with 2-D variation in modulus.  Again, in the center region contact is complete whereas 

at its periphery contact is partial, especially at the trailing edge (Figure C.1 in Appendix 

C).  Similarly, the sliding friction remains lower than both controls (Figure C.2 in 

Appendix C).   
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Figure 4.7 (a) Optical micrographs taken during a friction test on backfilled micro-channel 

samples (d = 10 µm, c = 20 µm) show a transition from (a) initially full contact (before sliding) to 

(b) partial contact during sliding. The red circle marks out an inner region of full contact; (b) 

Shear force as a function of shear displacement. 

 

 

 

 

(a) 

(b) 
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4.3.4   Apparent shear stress  

For more quantitative interpretation of experimental results, it is useful to 

normalize the measured friction force by the area of contact.  For a fixed normal load the 

contact area changes because (a) the effective compliance of the samples varies with 

spacing and the amount of shear, and (b) the actual area of contact depends on the 

severity of the auto-roughening phenomenon.  Here, we define the “apparent” contact 

area as the area enclosed by the perimeter of all the combined regions of actual contact, 

for example, as marked by the red closed curves in Figures 4.5b and 4.6b.      

The apparent shear stress during sliding motion is calculated by dividing the 

sliding force by the apparent contact area. For each experiment, we randomly chose five 

images during the sliding phase, and measured the apparent contact area. The mean 

apparent shear stress and its variance were calculated as the ratio of average sliding 

friction and the average apparent contact area, corrected using the approximation given in 

Appendix D. The error bars shown in Figure 4.8 represent the standard deviation of the 

apparent shear stress. The calculation of apparent shear stress for the compliant control 

sample needs to account for the periodic variation in contact area and shear force due to 

the Schallamach waves. In this case, the frictional force was averaged over five different 

randomly picked “peak” values on the force trace and their corresponding “valley” values 

in the same periods, and the apparent contact area was calculated by averaging both the 

largest and smallest contact areas in five such periods during the sliding phase. 
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Figure 4.8 (a) Apparent shear stress of composite samples compared to both stiff and compliant 

flat controls, under the same normal load (FN = 3.5 mN).  The spherical glass indenter was tested 

against 1-D micro-channel samples with two different depths (10 µm & 25 µm), and also 2-D 

micro-fibrillar arrays. (b) Apparent shear frictional stress for four different normal loads and fixed 

spacing of 20 µm. 

 

 

 

(a) 

(b) 
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Figure 4.8a shows the apparent frictional stresses of a spherical glass indenter 

against several samples, under a normal load FN = 3.5 mN.  Observe that the apparent 

shear frictional stress for all samples with periodic variation in modulus is significantly 

lower than for the controls (~36 kPa vs ~140 kPa).  Note also that there is little variation 

between the various samples, from which we have established that the apparent shear 

stress is approximately independent of surface geometry. 

Figure 4.8b shows how apparent friction stresses depend on normal load at a fixed 

spacing of 20 µm.  In all three composite samples, friction increases initially with 

increasing normal load, but quickly attains a plateau value significantly lower than the 

stiff control. That is, even when the contact is apparently complete, a sample with 

periodic variation of properties always has friction lower than both stiff and compliant 

flat controls.  Note that the apparent shear stress increases dramatically in the range of 

small normal load (FN = 3.5 ~ 4.1 mN).  We surmise that the dark regions (in Figures 

4.5b and 4.6b) do not always indicate the actual area of contact, i.e., that there are small 

gaps (compared to the wavelengths of white light) at a small normal load (in this case, 

when FN = 3.5 mN) which are not observed through the optical microscope.  A small 

increase in normal force (FN = 4.1 mN) is needed to eliminate such contact gaps and to 

make full contact.   This suggests that whereas apparent contact area can be measured 

reasonably accurately from our micrographs, measurement of real contact area in the case 

where it consists of separated islands is inaccurate. 
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4.4   Mechanism of auto-roughening effect 

To better understand the mechanism of the “auto-roughening” transition observed 

experimentally, we analyzed the deformation of a surface layer with periodic variation in 

modulus using the finite element method. We built and analyzed a 2-D finite element 

model (FEM - ABAQUS
®
, version 6.9).   To simplify the analysis, all calculations were 

performed in plane strain. The spherical punch was replaced by a flat rigid punch having 

a width six times the periodic distance between two stiff regions. As shown in Figure 

4.9a, the FEM model has two parts.  The first is a flat surface layer consisting of 

periodically alternating stiff and compliant filled channels.  The second part is the 

homogeneous bulk material under the surface layer, the backing.  The backing is assigned 

properties of the stiff material, as in experiments.  Both materials were assumed to be 

linearly elastic and isotropic.  We assumed that contact is adhesionless, and contact pair 

definition in our FEM was applied to prevent interpenetration between contacting 

surfaces. Shear interaction between the rigid indenter and substrate surface was modeled 

by Coulomb friction limited by a maximum shear traction, τmax, which we call the 

interfacial sliding stress.  This sliding stress τmax is assumed to be a material property and 

is the same for both the compliant and stiff materials.  The Coulomb friction coefficient 

was chosen to be sufficiently large (a value of 5) so that in nearly the entire sliding region 

the shear traction equaled a constant value of τmax.  The assumption and value of the 

constant frictional shear traction is consistent with measurements on model elastomers.
43

 

 

 

 



108 

 

 

 

 

 

                             

 

Figure 4.9 (a) Schematic of the cross-section of an elastic sample that is infinite in the out-of-

plane direction.   The sample has alternating stiff and compliant regions but an overall flat surface.  

A thick backing of the stiff material is attached underneath the surface.   A rectangular rigid flat 

punch is moved from left to right (movement represented by „u‟).  Normal force is applied by 

imposing a uniformly distributed vertical displacement to the indenter, and denoted by „dN‟ in this 

figure; (b) contact pressure along the interface during normal indention without shear (end of step 

one), showing slight undulation due to the varying surface properties and pressure concentration 

at both edges. 

 

(a) 

(b) 
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The simulation is conducted in two steps. In the first step, the indenter is brought 

into contact with the material surface and a vertical downward displacement is applied.  

In the second step, the indenter is sheared relative to the sample, keeping the vertical 

displacement fixed.  Although we use fixed vertical displacement in all our finite element 

calculations, we found that the vertical load remains approximately constant during shear, 

so fixing the vertical displacement is equivalent to fixing the vertical load. 

 For structures with periodic variation of modulus, the materials are assigned the 

following Young‟s moduli: for the stiffer material E1 = 2.5 MPa, and for the compliant 

material E2 = 1.0 MPa. (Poisson‟s ratio was fixed for both materials at ν = 0.49.) The 

interfacial sliding stress τmax was fixed at 100 kPa in our simulations 
44

. At the end of step 

one (Figure 4.9b), the contact pressure is characteristic of that expected for a rigid punch 

indenting a composite surface, i.e., with stress concentrations at the punch edges.  (We 

tested our model by simulating a flat punch in contact with homogeneous material, see 

Appendix E, Figure E.1)  In this step, the indenter is in full contact and the shear stress at 

the interface is very small compared with the contact pressure. 
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Figure 4.10 (a) Contact pressure along the interface under combined normal and shear 

displacement showing the development of periodic regions with zero contact pressure, (b) relative 

displacement of the surface profile with respect to the indenter showing periodic loss of contact, 

(c) Shear traction distribution along the interface showing periodic variation between zero stress 

(open contact) and 100 kPa (prescribed friction stress), (d) schematic illustration of the deformed 

structure during sliding phase.  Black regions indicate contact opening between the punch and 

elastomer. Dark and light grey regions indicate stiff and compliant regions, respectively. 

 

 

 

 



111 

 

Figure 4.10 shows the corresponding results during the second step in which the 

indenter slides on the substrate. Figure 4.10a shows that there are periodic regions on the 

interface where the contact pressure is zero, i.e., contact is lost (Figure 4.10b). The 

contact pressure distribution is radically different from step one (as shown in Figure 4.9b). 

Figure 4.10c shows that the shear stress in these non-contact regions also vanishes, as 

expected.  Figure 4.10b plots the relative vertical displacement on two sides of the 

contact pair surfaces, showing the development of periodic gaps up to 0.08 µm 

(displacement normal to the sliding interface).  Note that the predicted openings can be 

small compared to the wavelength of white light, reinforcing our hypothesis that in some 

cases openings may not be visible optically.  In the contact regions (Figure 4.10c), the 

shear traction is 100 kPa, which is the given interfacial yield stress, τmax.  In Figure 4.10d, 

the black lines/segments show the non-contact regions where there is neither shear nor 

normal pressure.  The contact regions straddle the stiff and compliant regions, consistent 

with the experimental observation in Figure 4.5b. 

Our finite element simulation demonstrates that auto-roughening occurs due to the 

mechanics of friction against a surface with periodically varying properties.  We now use 

the simulation to study how auto-roughening is controlled by the following three 

parameters:   

 Normal Load: Recall that experiments show that auto-roughening can be 

prevented at least partially if normal load is sufficiently high.   In our simulation 

normal load is simulated by applying normal displacement on the indenter.  
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 Ratio of Elastic Moduli:  Experiments and simulation show that there is no auto-

roughening if the properties of the two materials are identical. It is therefore 

important to establish how auto-roughening varies as we change the ratio of 

elastic moduli. 

 Friction Stress: Simulation also shows that auto-roughening vanishes in the 

absence of friction.  We study how this effect depends on friction by varying τmax. 

 

In the following, auto-roughening is measured by the fraction of contact area that 

is open. Figure 4.11a shows 3-D plots of contact opening fraction as a function of the 

normalized interfacial sliding stress (friction stress divided by Young‟s modulus of the 

stiff material, τmax / E1) and normalized normal indenter displacement (vertical 

displacement applied to the indenter divided by length of one period,        ). First 

we notice that when the moduli of both materials are the same (E1 = E2), the indenter 

always maintains full contact regardless of τmax or applied normal indenter displacement.  

However, for all the remaining cases where the two moduli differ from each other, E1 ≠ 

E2 (here in Figure 4.11a, we show four different combinations of stiff and compliant 

materials and the modulus ratio E1 / E2 = 1, 1.5, 2.5 and 4), we find that the opening 

fraction depends strongly on both normal displacement and shear stress. The largest 

opening fractions are for high friction and low normal load.  For larger values of the ratio 

of elastic moduli, E1 / E2 is larger than about 2, fractional opening becomes quite 

insensitive to it (Figure 4.11b).  This suggests that relatively mild variation in material 

moduli can trigger the auto-roughening transition as long as adhesion can be neglected. 
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(In our experiments, the modulus ratio of stiff and compliant material is about 2.4.)  From 

Figure 4.11, we notice that the fraction of contact opening for this case could reach up to 

about 70% under a small normal load, which is consistent with the 60 - 70% decrease in 

experimentally measured apparent shear stress (Figure 4.8). 

We also conducted several simulations with a long cylindrical indenter.  Here, we 

present only the results using a flat “punch” indenter because its apparent contact region 

is fixed, facilitating comparison between different cases.  Results obtained using 

cylindrical indenters were qualitatively very similar to those presented above.   
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Figure 4.11 (a) 3-D surface plots of contact opening percentage as a function of the normalized 

friction stress (τmax) and normalized indenter displacement for four modulus ratios (E2 / E1= 1.0, 

1.5, 2.5 & 4.0). Evidently, when E1=E2, there is only a little contact opening due to tension at the 

contact edge.  For larger modulus ratio (>~ 2.0), the fraction of contact area lost is independent of 

modulus ratio.  It increases with increasing shear stress, and decreasing with increasing normal 

displacement. (b) Fraction of lost contact area as a function of normalized displacement, for τmax / 

E=0.1. 

 

(a) 

(b) 
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4.5   Summary and conclusion 

Our principal experimental finding is that a flat surface patterned with spatial 

variation in stiffness undergoes an auto-roughening phenomenon during frictional sliding 

against a rigid indenter.  As the indenter begins to slide against the material surface, the 

initially full and simply connected contact area breaks into partial contact.  For 

sufficiently small normal loads, the contact regions can be separated into many fragments 

resulting in a significant decrease of the real contact area. This contact area reduction 

results in lower sliding friction, compared to either stiff or compliant controls.  The 

“auto-roughening” phenomenon happens spontaneously and robustly to either 1-D 

(micro-channel) or 2-D (micro-fibrillar) patterns with spatial variation in stiffness.  Even 

though this effect of contact reduction can be alleviated by increasing the normal load, 

the overall sliding friction still remains below both flat controls. 

A similar “contact opening” effect is captured by finite element simulations, 

which show that periodic contact gaps are generated automatically during shearing of a 

flat rigid punch on a flat elastomer with alternating stiff and compliant surface materials.  

The extent of contact opening depends on frictional stress, elastic modulus mismatch, and 

normal load. High frictional stress and low normal load favor it.  A relatively small 

mismatch in moduli is sufficient to trigger auto-roughening, as measured by the fraction 

of area that loses contact. The auto-roughening transition could serve as a useful 

mechanism for deliberate control and reduction of friction. 

 

 



116 

 

4.6   References 

[1] Persson, B. N. J. Sliding Friction: Physical Principles and Applications Vol. 1, 

Springer, Berlin, 2000. 

[2] Moore, D. F. The Friction and Lubrication of Elastomer Pergamon: Oxford, 1972. 

[3] Aggarwal, S. L.; Fabris, H. J.; Hargis, I. G.; Livigni, R. A. Polym. Prepr. (Am. 

Chem. Soc., Div. Polym. Chem.) 1985, 26, 3.  

[4] Heinrich, G.; Klüppel, M. Wear 2008, 265, 1052-1060. 

[5] Roberts, A. D. Rubber Chem. Technol. 1992, 65, 673. 

[6] Theodore, A. N.; Samus M. A.; Killgoar, P. C. Ind. Eng. Chem. Res. 1992, 31, 

2759.  

[7] Bowden F. P.; Tabor, D. The friction and lubrication of solids Vol. 1, Oxford 

university press: Oxford, 2001. 

[8] Jagota A.; Hui, C-Y. Materials Science and Engineering R 2011, 72, 253-292. 

[9] Sills, S.; Vorvolakos, K.; Chaudhury, M. K.; Overney, R. M. Nanotribology: 

Friction and Wear on the Atomic Scale 2007, in E. Gnecco and E. Meyer (eds), 

Springer-Verlag: Heidelberg, Germany, 659-676. 

[10] Schallamach, A. Wear 1963, 6, 375-382. 

[11] Ghatak, A.; Vorvolakos, K.; She, H.; Malotky D. L.; Chaudhury, M. K. J. Phys. 

Chem. B 2000, 104, 4018-4030. 

[12] Homola, A. M.; Israelachvili, J. N.; McGuiggan, P. M.; Hellgeth, J. W. Wear 

1990, 136, 65-84. 

[13] Johnson, K. L. Proceedings of the Royal Society of London. Series A: 

Mathematical, Physical and Engineering Sciences 1997, 453, 163-179. 

[14] Bhushan, B. Phil.Trans. Roy. Soc. A 2009, 367, 1445-1486.  

[15] Creton, C.; Gorb, S. MRS Bull. 2007, 32, 466-472. 

[16] Kamperman, M.; Kroner, E.; del Campo, A.; McMeeking, R. M.; Arzt, E. Adv. 

Eng. Mater. 2010, 12, 335-348. 

[17] Jagota, A.; Hui, C‐Y.; Glassmaker N. J.; Tang, T. MRS Bull. 2007, 32, 492. 

[18] del Campo, A.; Greiner, C.; Arzt, E. Langmuir 2007, 23, 10235-10243. 

http://www.lehigh.edu/~mkc4/our%20papers/Springer_Rubber_Friction.pdf
http://www.lehigh.edu/~mkc4/our%20papers/Springer_Rubber_Friction.pdf
http://www.lehigh.edu/~mkc4/our%20papers/Springer_Rubber_Friction.pdf


117 

 

[19] Majumder, A.; Sharma, A.; Ghatak, A. Bio‐Inspired Adhesion and Adhesives: 

Controlling Adhesion by Micro‐nano Structuring of Soft Surfaces in Microfluids 

and Microfabrication Springer: USA, 2010. 

[20] Kim, S.; Sitti, M. Appl. Phys. Lett. 2006, 89, 261911-261913. 

[21] Ko, H.; Lee, J.; Schubert, B. E.; Chuah, Y-L.; Leu, P. W.; Fearing, R. S.; Javey, A. 

Nano lett. 2009, 9, 2054-2058. 

[22] Lamblet, M.; Verneuil, E.; Vilmin, T.; Buguin, A.; Silberzan, P.; Leger, L. 

Langmuir 2007, 23, 6966-6974. 

[23] Shahsavan H.; Zhao, B. Langmuir 2011, 27, 7732-7742. 

[24] Chan, E. P.; Smith, E. J.; Hayward, R. C.; Crosby, A. J. Adv. Mater. 2008, 20, 

711-716. 

[25] Parness, A.; Soto, D.; Esparza, N.; Gravish, N.; Wilkinson, M.; Autumn, K.; 

Cutkosky, M. J. R. Soc. Interface 2009, 6, 1223-1232. 

[26] Glassmaker, N. J.; Jagota, A.; Hui, C-Y.; Noderer, W. L.; Chaudhury, M. K. Proc 

Natl. Acad. Sci. 2007 , 104, 10786-10791. 

[27] Noderer, W. L.; Shen, L.; Vajpayee, S.; Glassmaker, N. J.; Jagota, A.; Hui, C.-Y. 

Proceedings: Mathematical, Physical and Engineering Sciences 2007, 463, 2631-

2654. 

[28] Murphy, M. P.; Kim, S.; Sitti, M. ACS Appl. Mater. Interfaces 2009, 1, 849-855. 

[29] Gorb, S.; Varenberg, M.; Peressadko A.; Tuma, J. J. R. Soc. Interface 2007, 4, 

271-275. 

[30] Majumder, A.; Ghatak, A.; Sharma, A. Science 2007, 318, 258-261. 

[31] Ghatak, A. Phys. Rev. E 2010, 81, 021603. 

[32] Guduru P. R.; Bull, C. J. Mech. Phys. Solid. 2007, 55, 473-488. 

[33] Kendall, K. Proceedings of the Royal Society of London. A. Mathematical and 

Physical Sciences 1975, 341, 409-428. 

[34] Varenberg, M.; Gorb, S. N. Adv. Mater. 2009, 21, 483-486. 

[35] Kim, S.; Aksak, B.; Sitti, M. Appl. Phys. Lett. 2007, 91, 221913. 

[36] Shen, L.; Jagota, A.; Hui, C-Y. Langmuir 2009, 25, 2772-2780. 



118 

 

[37] Vajpayee, S.; Long, R.; Shen, L.; Jagota, A.; Hui, C-Y. Langmuir 2009, 25, 2765-

2771. 

[38] Rand C.; Crosby, A. J. Appl. Phys. 2009, 106, 064913. 

[39] Singh, A. K.; Bai, Y.; Nadermann, N.; Jagota, A.; Hui, C-Y. Langmuir 2012, 28, 

4213-4222. 

[40] Glassmaker, N. J.; Jagota, A.; Hui, C-Y.; Kim, J. J. R. Soc. Interface 2004, 1, 23-

33. 

[41] Johnson, K. L.; Kendall, K.; Roberts, A. D. P. Roy. Soc. Lond. A Mat. 1971, 324, 

301-313.  

[42] Savkoor, A. R.; Briggs, G. A. D. Proc. R. Soc. Lond. A 1977, 356, 103-114. 

[43] Nguyen, D. T.; Paolino, P.; Audry, M-C.; Chateauminois, A.; Frétigny, C.; Le 

Chenadec, Y.; Portigliatti, M.; Barthel, E. J. Adh. 2011, 87, 235-250. 

[44] Vorvolakos, K.; Chaudhury, M. K. Langmuir 2003, 19, 6778. 

 

 

 

 

 

 

 

 

http://pubs.acs.org/action/doSearch?action=search&author=Vajpayee%2C+S&qsSearchArea=author
http://pubs.acs.org/action/doSearch?action=search&author=Long%2C+R&qsSearchArea=author
http://pubs.acs.org/action/doSearch?action=search&author=Shen%2C+L&qsSearchArea=author
http://pubs.acs.org/action/doSearch?action=search&author=Jagota%2C+A&qsSearchArea=author
http://pubs.acs.org/action/doSearch?action=search&author=Hui%2C+C&qsSearchArea=author
http://www.lehigh.edu/~mkc4/our%20papers/kathy.langmuir.2003.pdf


119 

 

Chapter 5      Enhancement of Friction 

against a Rough Surface by a Ridge-

Channel Surface Microstructure 

 

 

 

We report on a study of the sliding friction of elastomeric surfaces patterned with 

ridges and channels (and unstructured flat controls), against both smooth and roughened 

spherical indenters. Against the smooth spherical indenter, all of the structured surfaces 

have highly reduced sliding friction due to the reduction in actual area of contact.  

Against roughened spherical indenters, however, the sliding force for structured samples 

can be up to 50% greater than that of an unstructured flat control.  The mechanism of 

enhanced friction against a rough surface is due to a combination of increased actual area 

of contact, interlocking between roughness and the surface structure, and attendant 

dynamic instabilities that dissipate energy. 
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5.1   Introduction 

Within the last decade, significant efforts have been made to manipulate surface 

mechanical properties via design of surface structures 
1-7

.  Much of this work has been 

inspired by biological attachment devices of various animals 
8-11

.  Significant advances 

have been made in demonstrating bio-mimicked structures for controlling adhesion 
12-16 

and friction 
17-19

.  

In most reported examples involving elastomeric surfaces, surface structuring 

reduces sliding friction.  For example, highly reduced sliding friction was observed by a 

structured surfaces consisting of micro-fibrils 
20

, primarily due to decrease in actual 

contact area.  Similarly, a reduction of sliding force was also reported using elastomeric 

wrinkled surfaces 
21

. Recently, we reported an “auto-roughening” transition in which the 

surface of a nominally flat surface with spatially varying stiffness roughens when shear 

tractions are applied to its surface.  The reduction in contact area due to auto-roughening 

lease to sliding friction much lower compared to the homogeneous flat control samples 
22

.  

The studies cited above all report sliding friction of structured surfaces against a 

smooth stiff surface.  However, surfaces, such as roads, walls, and glass commonly are 

rough at all length scales. It is thus of considerable interest to study friction between 

elastomeric materials and rough stiff surfaces, for example to understand friction in tires 

23-25
.  Previously, theories of contact mechanics related to surface roughness have been 

studied broadly, by Persson 
26-29

, Johnson 
30

, Hui 
31-33

 and Robbins 
34

. From an 

experimental perspective, Fuller and Tabor 
35

 found that even a small surface roughness 

with a few microns in amplitude can remove the adhesion completely between a smooth 
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elastic surface and rigid roughness. However, other experimental work has shown that the 

work of adhesion initially increases with roughness before decreasing 
36-38

. In particular, 

Guduru has demonstrated the significant adhesion enhancement in pull-off force between 

a stiff wavy punch and a soft gelatin block 
39

, which is driven by crack-trapping 
40

.  

Persson first considered the mechanical interaction between the fibrillar structures 

on surface roughness with application to biological systems 
41,42

. He modeled the surface 

roughness as a self-affine fractal 
41

, and analyzed how hierarchical interfacial structures 

attach and detach a rough substrate. The interaction between roughness and fibrillar 

interfaces has also been studied by Bhushan 
43

 and Hui 
31

. However, there are only a few 

experimental studies on the mechanical properties of structured surfaces against surface 

roughness. Vajpayee et al 
44

 showed that film-terminated fibrillar samples can maintain 

considerable adhesion against rough surfaces, even when flat surfaces had almost none.  

In this work we report on a study of friction of elastomeric surfaces patterned with 

rows of ridges and channels (and nominally flat, unstructured controls) against smooth 

and rough indenters.  Consistent with previous reports 
18-21

, we find that sliding friction of 

structured surfaces against a smooth indenter is reduced compared to that of an 

unstructured control due to reduction in actual area of contact.  However, in contrast to 

the smooth stiff indenter, sliding friction of structured surfaces against a rough indenter 

can be significantly higher compared to an unstructured control, which has not been 

predicted by any previous theories. 
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5.2   Experimental methods 

5.2.1   Sample preparation 

The elastomeric surfaces used in our experiments are fabricated by a replica 

molding process, following previously described techniques 
45

.  An elastomer, poly-

dimethylsiloxane (PDMS, Sylgard® 184, Dow Corning) was molded into a series of 

silicon masters, patterned with parallel micro-channel structures by photolithography.  

The width of each channel, w, was fixed at 10 µm for the silicon masters, minimum 

center-to-center spacing, c, was varied as 20, 35, 50 and 65 µm. The channel depth, d, 

measured by interferometric optical profilometer (ZeGage. Zemetrics, Inc), was varied as 

13.0, 26.5 and 36.0 µm, Liquid PDMS mixture was made by adding a small amount of 

curing agent into the silicone elastomer base in a weight ratio of 1:10. The mixture was 

degassed under vacuum for 30 minutes and then applied onto the silicon masters and 

cured at 80ºC for 2 hours. A standard PDMS sample is 30 mm x 10 mm x 0.61 mm 

(length, width, and thickness, respectively), with ridged micro-structures that are 

complementary to the silicon master mold, as shown in Figure 5.1. 
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Figure 5.1 (a) Schematic illustration of structured elastomeric samples.  All the ridges have the 

same width w = 10 µm, and the channel depth and inter-channel spacing are varied. (b) Scanning 

electron micrograph of a typical structured surface.  
 

Friction experiments were conducted with two types of indenters.  The smooth 

spherical glass indenter (with a diameter of 6.0 mm) is made by melting one end of a 

glass rod (2.14 mm in diameter), while slowly rotate the rod at a constant speed using 

simple lampworking technique. To study the frictional behavior due to random roughness, 

a roughened spherical glass indenter was used as the testing probe in the friction 

experiments. A roughened spherical indenter is fabricated by placing a smooth indenter 

in a commercial rock tumbler (NSI Rock Tumbler Classic kits), and tumbled 

continuously within a mixture of coarse 60/90 grit silicon carbide 
i
 (26 grams) and water 

for about 24h. This procedure generates an indenter which was nominally spherical with 

random surface roughness. The final diameter of this roughened indenter is also about 6.0 

mm. Characterization of the surface roughness of the roughened indenter was measured 

by interferometric optical profilometer. Figures. 5.2a and 5.2b present the averaged 

                                                 
i
 Coarse grit is a sand-size material and is the most abrasive in a typical rock tumbler kit. It is used in the 

first step of the tumbling process to round the sharp edges off of the rough. The numbers, such as 60, 90, 

refer to a particle size (for 60/90 coarse grit, the particles are about 0.25 mm in diameter). They are the 

opening size, or "mesh" or a standard screen (small numbers refer to larger screen openings or larger 

particle sizes and large numbers refer to tiny screen openings). 
46

 

         (a)                                                                       (b) 

http://en.wikipedia.org/wiki/Mesh_(scale)
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surface profiles of four identical profilometry scannings under the same condition, for 

both smooth and roughened indenter surfaces, respectively. (Linear interpolation was 

used for filling small gaps among the scattered points in Figure 5.2a & b.) Figure 5.2c 

shows the power spectrum of the surface morphology on both smooth and rough 

indenters, the dimension of the roughness is calculated by the measured height 

information of each pixel using finite Fourier transform.  Note that when the wave length 

is varied in the range of ~ 0.16 µm to ~ 100 µm, the magnitude of surface roughness on 

the rough indenter is always larger than the smooth indenter, which reveals that the 

originally smooth indenter is effectively roughened by coarse SiC grit in the tumbler. 

 

 

 



125 

 

 

 

Figure 5.2 Surface morphology of glass surface on roughened spherical indenter, examined by 

optical profilometer. (a) Image of optical profilometry on the smooth spherical indenter; (b) 

image of optical profilometry on the surface of glass indenter, roughened by rock tumbler; (c) 

comparison of the power-spectrum of the roughness on both smooth and rough indenters.   

 

5.2.2   Friction measurement 

The experimental apparatus for measuring the frictional force between the 

spherical glass indenter and the structured samples is shown schematically in Figure 5.3. 

In the friction experiment, a sample was placed above an inverted optical microscope, 

and was brought into contact with a glass indenter under a fixed normal load (more 

detailed descriptions of the friction measurement apparatus are included in previous work 

47,48 
).  The elastomeric sample was attached to a glass slide, which was driven by a 
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variable speed motor (Newport ESP MFA-CC) via a motion controller (Newport ESP300) 

at a fixed velocity (u = 10 µm/s).  The frictional force was measured by a load cell 

(Honeywell Precision Miniature Load Cell) attached on the balance arm parallel to the 

direction of sample motion.  

 

 

 

Figure 5.3 Schematic illustration of the apparatus used for friction tests (side view). A glass 

indenter was attached to a mechanical balance (Ohaus 310D), and rested on the sample with a 

fixed normal load (N). The sample was attached to a transparent glass slide, which was moved in 

the horizontal direction by a motor with fixed velocity, u = 10 µm/s. Frictional force was 

measured by a strain-gauge-based load cell fixed on the balance.   

 

5.3   Results 

5.3.1   Smooth indenter 

Friction tests were carried out with smooth spherical indenter sliding against both 

micro-channel based PDMS surfaces and the flat control. Figures 5.4 a ~ e show five 

optical micrographs of the contact area (darker region) between the smooth indenter and 

two samples: unstructured flat control (Figures 5.4 a,b) and structured samples (Figures 

5.4 c,d,e) with channel depth d = 36.0 µm and center-to-center inter-channel spacing c = 
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35 µm).  Figure 5.4f shows plots of typical force-displacement data under a fixed normal 

load N = 48 mN.  

In the unstructured control samples, a circular contact is established (Figure 5.4a) 

when the smooth indenter initially contacts the PDMS surface and before the application 

of shear displacement.  As the sample is sheared relative to the indenter, the contact area 

shrinks and become oval during the sliding phase, as shown in Figure 5.4b.  The 

corresponding frictional force is shown by the black line in Figure 5.4f.  Figure 5.4f also 

shows the measured force-displacement response for four structured samples with 

varying spacing, c.  All four structured samples exhibit much lower sliding friction than 

the flat control. For the samples with relatively small inter-channel spacing (c = 20, 35 & 

50 µm), the shear force initially decreases with shear displacement, reaches a minimum 

value and then increases until the sliding phase is reached (see insert in Figure 5.4f for c 

= 35 µm), similar results are observed previously for a smooth indenter sliding against 

arrays of micro-scale fibrils 
20

.  
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Figure 5.4 (a) ~ (e): Optical micrographs of flat control and micro-channel structured samples 

under shear by a smooth spherical indenter. The letters „LE‟ and „TE‟ denote the leading and 

trailing edge of the contact, respectively. Flat control sample: (a) initial contact area before shear, 

(b) contact area during sliding; micro-channel based sample, with channel depth d = 36 µm and 

inter-channel spacing, c = 35 µm: (c) initial contact area before shear, (d) contact region with 

collapsed region in the center, and (e) contact region during sliding.  Labels a-e correspond to 

points labeled in Figure 5.4f. (f) Typical force-displacement response of a smooth spherical 

indenter (normal load, N= 48 mN). The insert is showing that the shear force initially decreases to 

a minimum value and then increases for micro-channel sample with spacing, c = 35 µm. 
 

       (a)                         (b) 

         (c)                            (d)                           (e)                                            

       (f)          
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A sequence of images of one sample (d = 36.0 µm, c = 35 µm) is shown in Figure 

5.4c ~ e. The labels (a ~ e) correspond to the points on the force-displacement curves in 

Figure 5.4f. Figure 5.4c is the optical micrograph showing initial contact area on the 

structured sample before application of shear. The contact perimeter is nearly circular and 

the red line encircles the initial contact region. As shear is applied, the normal 

compliance of the fibrils decreases and the ridges begin to buckle 
49

, shedding load to 

neighboring ridges, which leads to an expansion of the contact region. This results in the 

initial decrease of shear force from c to d on the red curve in Figure 5.4f. In a central 

region, the ridges collapse and touch the backing material, represented by the darker 

region in Figure 5.4d. Like the initial buckling of the fibrils shown in Ref. (20), these 

ridges try to recover from buckling state by releasing elastic energy, which performs 

work on the loading machine. Figure 5.4e shows that the collapsed center region in 

Figure 5.4d recovers during sliding. For this case, buckling nucleates at the leading edge 

and the ridges recover fully at the trailing edge, resulting in a constant sliding friction. It 

should be noted that this phenomenon varies somewhat from sample to sample, and 

depends on how much normal load is applied. For example, we observe no initial 

decrease of shear force for spacing, c = 65 µm, because the ridges were already buckled 

and collapsed during initial contact without shear.       

 

5.3.2   Roughened indenter 

Figures 5.5a ~ d show optical micrographs of contact area (darker region) 

between the roughened indenter and test samples (Figure 5.5a,b: flat control; Figure 
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5.5c,d: micro-channel structured sample with channel depth d = 36.0 µm and center-to-

center inter-channel spacing c = 35 µm). Figure 5.5e shows corresponding force-

displacement curves under the same normal load (N = 48 mN) as in Figure 5.4. Unlike 

the smooth indenter, the contact area (Figure 5.5a) is highly irregular.  Figure 5.5b shows 

that, for the unstructured flat control sample, the contact region during sliding remains 

largely unchanged compared to the initial contact. The sliding friction on the unstructured 

flat control sample is about 40 mN (black line in Figure 5.5e) and is significantly less 

than its value against the smooth spherical indenter with identical diameter (about 180 

mN, as shown in Figure 5.4f) for the same normal load. This is primarily because the 

actual contact area is greatly reduced by the surface roughness.  
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Figure 5.5 (a) ~ (d): Optical micrographs of flat control and micro-channel structured samples 

under shear by the roughened spherical indenter, the letters „LE‟ and „TE‟ denote the leading and 

trailing edge of the contact, respectively. Flat control sample: (a) initial contact area before shear, 

(b) contact area during sliding; micro-channel based sample, with channel depth, d = 36 µm and 

inter-channel spacing, c = 35 µm (normal load, N= 48 mN): (c) initial contact area before shear, 

(d) contact region during sliding.  The red polygons in (b) and (d) represent the convex hull of 

real contact area during sliding, respectively on flat control sample and micro-channel sample. (f) 

Typical force-displacement curves of roughened spherical indenter sliding against micro-channel 

structured surfaces (same depth, different spacing), compared to the flat control (normal load = 48 

mN). 

 

            (a)                         (b) 

          (c)                          (d)                                                                            

      (e)           



132 

 

Interestingly, in Figure 5.5e, structured samples with relatively large spacing (c = 

35, 50 and 65 µm) have larger sliding friction than the flat control. Figure 5.5c and 5.5d 

are images taken at the contacting surfaces between the rough indenter and the structured 

sample before and during sliding (for this case, the sample has channel depth d = 36 µm 

and inter-channel spacing c = 35 µm, and the experiment was carried out under normal 

load, N = 48 mN).  When only normal compression is applied on the roughened indenter 

(Figure 5.5c), several segments of darker regions in the center can be observed. It appears 

that surface roughness on the indenter can penetrate into the gaps between neighboring 

ridges and make contact with the flat regions and sides of the ridges. Hence, contact is 

made not only on top of the structured surface, but also within the channel grooves. Once 

the roughened indenter starts to shear, the ridges in contact bend and buckle, and quickly 

expand the contact region. The perimeter of buckled area can be observed easily from 

Figure 5.5d. The red polygon drawn in Figure 5.5d encircles the convex hull 
j
 of real 

contact area at the interface.  In a larger region outside the contact the ridges are bent by 

the shear forces transmitted by the thin film. The real area of contact, represented 

approximately by the darker regions within the closed polygon, increases under shear 

(compared to Figure 5.5c to Figure 5.5d).  

 

5.3.3   Influence of normal load and geometry  

A series of friction tests were carried out on micro-channel samples with variation 

in both depths and inter-channel spacing, using four different normal loads. In Figure 5.6, 

                                                 
j The convex hull of a planar set is the minimum-area convex polygon that contains the planar set 

50
. In this 

work, the vertices of a convex hull are determined by the real contact regions at the interface.   
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sliding friction of micro-channel samples is normalized by that of the flat control for each 

fixed normal load. The data points connected by dashed lines and solid lines represent the 

normalized sliding friction Fstructure / Fcontrol using the smooth indenter and roughened 

indenter, respectively. The error bars represent the standard deviation of four different 

measurements on the same sample subjected to the same normal force.  

Figure 5.6 shows that the sliding friction of all the micro-channel structured 

samples is much smaller than the flat control (Fstructure / Fcontrol < 1), using a smooth 

indenter. We can also notice that: (1) the sliding friction of micro-channel samples with 

largest depth (tallest ridges) is apparently larger than the shorter ones with the same inter-

channel spacing; (2) when a small normal load is applied (e.g. N = 16 mN), the sliding 

friction increases significantly for higher ridges and larger spacing. However, when the 

normal load is large enough (N = 32, 48 and 64 mN in Figure 5.6), the friction force does 

not increase so dramatically with channel depth and spacing.  It is also noticed that the 

channel depth has little effect on sliding friction for samples with inter-channel spacing c 

= 20 µm. Specifically, the normalized sliding friction Fstructure / Fcontrol of all such samples 

are quite similar, we conjecture that when the ridges are sufficiently close to each other, 

the bending of ridges are sufficiently restricted, so that the smooth indenter would slide 

on the edge of each contacting ridge which significantly minimize the real contact area at 

the interface. As a result, the actual contact areas of these small spacing samples remain 

approximately the same and much smaller under the same normal load. 

In contrast to the smooth indenter, we notice that the sliding friction of structured 

samples with relatively larger spacing (c = 35, 50 and 65 µm) is significantly larger than 
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that of the flat control (Fstructure / Fcontrol > 1), using the roughened indenter.  (The smallest 

inter-channel spacing, c = 20 µm, still has a slightly lower friction than the control.) 

There appears to be an optimal spacing (35 and 50 µm) for enhanced sliding friction.  For 

a fixed spacing, sliding friction increases with larger ridge depth. The maximum 

normalized sliding friction (Fstructure / Fcontrol ≈ 1.5) is achieved by sample with 36.0 µm 

channel depth and 50 µm spacing, under normal load N = 48 mN, showing that the 

enhancement of sliding friction might be controlled and optimized by micro-channel 

surface designs and normal load. 
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Figure 5.6 Comparison of sliding friction on micro-channel based samples using smooth (dashed 

lines) and roughened (solid lines) indenters, normalized by the sliding friction of a flat control 

sample. In each plot, different colors represent different channel depth: red – d = 13.0 µm; blue – 

d = 26.5 µm; green – d = 36.0 µm. All samples were tested under four different normal loads: (a) 

N = 16 mN; (b) N = 32 mN; (c) N = 48 mN; (d) N = 64 mN. 

 

5.3.4   Apparent and real shear stress 

To investigate the mechanism for friction enhancement, it is useful to normalize 

the measured friction force by the area of contact.  For a fixed normal load the contact 

area changes because (a) the effective compliance of the samples varies with channel 

depth and spacing, as well as the amount of shear, and (b) the actual area of contact 



136 

 

depends on the severity of buckling of the ridges and inter-penetration due to the surface 

roughness on both sides.  We define two contact areas.  One, an “apparent” contact area, 

is defined as the area enclosed by the convex hull of all the combined contact regions.  

The second is the actual, or “real”, contact area, as determined by the area of the dark 

regions in the same optical micrographs.  

Figure 5.7 shows both apparent shear stress (Figure 5.7a and 5.7c) and real shear 

stress (Figure 5.7b and 5.7d) using the roughened indenter and three different normal 

loads (N = 32, 48 and 64 mN). The ratio apparent / real shear stress during sliding motion 

is calculated by dividing the sliding force by the apparent / real contact area. For each 

experiment, we randomly chose five images during the sliding phase, and measured the 

apparent / real contact area. The apparent contact area is measured by the convex hull of 

all the contact regions at the interface, as marked by the red closed polygon in Figures 

5.5b and 5.5d. The real contact area is calculated by the number of pixels within adjusted 

threshold of intensities for the dark regions, and then converted into actual areas. The 

mean apparent / real shear stress and its variance were calculated as the ratio of average 

sliding friction (averaged by the five randomly picked values in the sliding phase) and the 

average apparent / real contact area, corrected using the approximation given in 

Appendix D. The error bars shown in Figure 5.7 represent the standard deviation (i.e. 

square root of corresponding variance) of the apparent / real shear stresses.  

 



137 

 

 

 

Figure 5.7 Apparent shear stress (a,c,e) and real shear stress (b,d,f) of micro-channel samples 

sliding against the roughened indenter, compared to a flat control. The colors of data points 

denote the different channel depth: red – d = 13.0 µm; blue – d = 26.5 µm; green – d = 36.0 µm. 

The samples are sheared under three different normal loads: (a,b) N = 16 mN; (c,d) N = 32 mN; 

(e,f) N = 48 mN.  
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From Figure 5.7, we notice that, for a flat control sample, although the apparent 

shear stress varies with the normal load, the corresponding real shear stress remains 

substantially unchanged (~ 140 kPa), and its value is reasonably close the shear stress (~ 

200 kPa) on flat PDMS against a rough glass lens, reported by Chateauminois and 

Fretigny 
51

. Figures 5.7a and 5.7b show that, when a relatively small normal force is 

applied (N = 32 mN), there is much less enhancement in the apparent shear stress for 

samples with larger depth and wider spacing (e.g. data point corresponds to d = 36.0 µm 

and c = 50 µm) than the larger normal loads, since the real shear stress for all the 

structured samples is smaller than the flat control. However, for larger normal loads 

(Figures 5.7c ~ f), we find that both apparent and real shear stresses are increased by such 

roughened surface shearing against the micro-channel surface with higher ridges and 

larger spacing, mechanisms other than the increased effective compliance must contribute 

to such highly enhanced sliding friction. 

Two possible dynamic instabilities can explain the enhancement of sliding friction 

by surface roughness. First, the sliding friction can be increased by elastic energy 

released for recovering the original shape of the micro-channels (ridges) from bending 

and buckling under shear. Second, when the normal load is large enough, the ridges 

might collapse onto their neighboring ones or the horizontal flat regions between two 

neighboring ridges (when      ), the roughness would make contact on side of the 

ridges and increase in frictional (adhesion) energy, including the extra work of adhesion 

due to “interlocking”, i.e., the inter-penetration between the rigid roughness and the 

channel grooves. Due to the variety of different experimental conditions, we tried to 
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understand the frictional behavior for three typical cases by varying the dimensions of 

micro-patterns on elastomeric surfaces, according to the apparent and real shear stress 

results in Figure 5.7 and the experimental observations: 

a) Small inter-channel spacing (c = 20 µm)  

For a micro-channel structured surface with inter-channel spacing, c = 20 µm, one 

might expect that the sliding friction would be reduced by 50% while the smooth indenter 

only make real contact on top of the ridges. In Figure 5.6, it is obvious that sliding 

friction remains approximately the same for samples with 20 µm inter-channel spacing, 

when using the smooth indenter and same normal load. However, the sliding friction 

decreases dramatically compared to its corresponding flat featureless control, Fstructure / 

Fcontrol = 0.1 ~ 0.2, even though the channel depths are different. Bending effect on 

contacting ridges can be observed once start to shear, which leads to an expansion of 

apparent contact area shown in Figure 5.4. As illustrated in Figure 5.8a and 5.8b, the 

curved smooth surface only makes contact on the edges of bent ridges, which results in a 

highly reduced real contact area. 

 

 

Figure 5.8 Typical contact region between the smooth indenter and micro-channel based surface 

with spacing, c = 20 µm: (a) schematic drawing of initial contact without shear (side view); (b) 

schematic drawing during sliding phase (side view), the small red ellipses mark the possible real 

contact regions; (c) optical micrograph of the contacting area under shear (micro-channel sample: 

d = 26.5 µm, c = 20 µm; normal load, N = 48 mN). 
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Significant enhancement of frictional resistance can be achieved by micro-

channel surface shearing against the roughened indenter, even though the sliding friction 

is still slightly smaller than the unstructured flat control. As illustrated in Figure 5.9a and 

5.9b, the local bending effect is varied by the introduced random surface roughness from 

the indenter (which can be observed by the irregular darker regions in Figure 5.9c). 

During the sliding phase, some of the larger-sized roughness is able to make contact on 

top of the ridges. At the mean time, many of the small-sized roughness from the indenter 

side, which can be viewed as small particle on the surface (the radius of each particle, Ra 

< 10 µm), can help increase the real contact area by making extra contact on either the 

edge or side of the ridges, due to bending and buckling of the ridges. The real contact 

area increases in form of small segments, which results in a larger sliding friction, 

compared to the smooth indenter.  From Figure 5.6, we also notice that the sliding 

friction on samples with 20 µm spacing increases with the channel depth, since the taller 

ridges are easier to be bend or buckled, and with more possibility to make contact with 

the surface roughness. 
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Figure 5.9 Typical contact region between the randomly rough surface and micro-channel based 

surface with spacing, c = 20 µm: (a) schematic drawing of initial contact (side view); (b) 

schematic drawing during sliding phase (side view), the small red ellipses mark the possible real 

contact regions; (c) optical micrograph of the contacting area under shear (micro-channel sample: 

d = 36.0 µm, c = 20 µm; normal load, N = 48 mN). 
 

b) Small channel depth (d = 13.0 µm)  

Figure 5.6 and 5.7 show that the lowest sliding friction and shear stresses are 

observed with samples having the smallest channel depth (d = 13.0 µm). In addition, 

these sliding frictions are approximately independent of the inter-channel spacing. In 

Figure 5.6, it is noticed the sliding friction by the smooth indenter reduces significantly 

(Fstructure / Fcontrol = 0.05 ~ 0.2), however, the loss of frictional force is compensated by 

introducing the surface roughness (roughened indenter, Fstructure / Fcontrol = 0.6 ~ 0.75), 

compared to the corresponding unstructured flat control.  

According to Euler buckling theory, it is known that pillars with lower aspect 

ratio buckle at higher stress, that is why we do not observe severe buckling effect on the 

contacting ridges (the width of each ridge is fixed, w = 10 µm, so the aspect ratio d / w 

depends only on the channel depth, d). As shown in Figure 5.10c, a small amount of 

bending is observed in all the samples with the smallest ridge height (channel depth). 
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Similar to the previous case (c = 20 µm), the smooth indenter can only make contact on 

the edges of the short ridges, which leads to a dramatically reduced sliding friction (as 

shown in Figure 5.10). 

 

 

 

Figure 5.10 Typical contact region between the smooth indenter and micro-channel based surface 

with channel depth, d = 13.0 µm: (a) schematic drawing of initial contact without shear (side 

view); (b) schematic drawing during sliding phase (side view), the small red ellipses mark the 

possible real contact regions; (c) optical micrograph of the contacting area under shear (micro-

channel sample: d = 13.0 µm, c = 35 µm; normal load, N = 48 mN). 

  

The influence of bending and buckling effect is also restricted by the small 

channel depth when using the roughened indenter, even though the surface roughness can 

still generate more contact area on side of ridges which helps alleviate the reduction in 

sliding friction, as illustrated in Figure 5.11b. As shown in the experiments (Figure 5.11c), 

the rough surface makes more real contact area on the side of bent structures, compared 

to the smooth indenter (Figure 5.10c). The reason why the frictional force (and stress) 

does not change much with the interchannel spacing is not clear yet. Since the amplitude 

(height) of structures is small, and the influence of bending effect is minimized, we 

conjecture that the normal load, as well as the geometry of the stiff surface plays a major 

role in sliding frictional behavior.     
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Figure 5.11 Typical contact region between the randomly rough surface and micro-channel based 

surface with channel depth, d = 13.0 µm: (a) schematic drawing of initial contact (side view); (b) 

schematic drawing during sliding phase (side view), the red ellipses mark the possible real 

contact regions; (c) optical micrograph of the contacting area under shear (micro-channel sample: 

d = 13.0 µm, c = 35 µm; normal load, N = 48 mN). 
 

c) Samples with large channel depth and inter-channel spacing 

Interestingly, when both channel depth and spacing are large enough, both the 

apparent and real shear stresses increase significantly, especially with increased normal 

load. From Figure 5.7c ~ f, we notice that for all the samples with channel depth, d = 

26.5, 36.0 µm and the inter-channel spacing, c = 35, 50 and 65 µm, both calculated shear 

stresses are much larger than the flat control (normal load, N = 48 and 64 mN), the real 

shear stress can even reach about 250 kPa under certain conditions (see Figure 5.7d). 

Under such conditions, ridge deflection can be very large, on the order of channel depth 

(ridge height). As we could observe from the interfacial contact area during sliding phase 

(Figure 5.5d), the ridges were strongly compressed and collapsed under shear and large 

normal load, as illustrated in Figure 5.12. The micro-structures could undergo much 

severe bending and buckling driven by the stiff roughness in large range of sizes (Region 

„A‟: illustrated in Figure 5.12b and experimental image Figure 5.12d), or the roughness 

could penetrate into the grooves of channels and make larger contact (and adhesion) on 
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the horizontal backing regions between neighboring ridges (Region „B‟: illustrated in 

Figure 5.12b and experimental image Figure 5.12d). Compare to the previous two micro-

channel designs, taller ridges and wider spacing strengthen the capability of dynamic 

instabilities, it is possible that not only the bending and buckling help increasing the 

frictional energy, but also mechanical “interlocking” between the surface roughness and 

micro-channels could contribute to enhance the effective adhesion at the interface, and 

spontaneously relates to the increased friction.     

 

 

Figure 5.12 (a) ~ (c): Schematic illustration of contact region between the randomly rough 

surface and micro-channel based surface with large depth and inter-channel spacing (side view), 

the red ellipses mark the possible real contact regions: (a) initial contact; (b) possible deformation 

of buckled ridges in contact region during sliding phase; (c) possible deformation of collapsed 

ridges in contact due to large normal compression. (d) Optical micrograph of the contacting area 

under shear (micro-channel sample: d = 36.0 µm, c = 50 µm; normal load, N = 48 mN). Region 

marked „A‟: contact area on side of ridges; Region marked „B‟: contact area on interval regions 

between neighboring ridges (“interlocking”). 
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5.4   Discussion and summary 

In this chapter, we have examined the frictional behavior of micro-channel based 

surfaces against both smooth spherical indenter and manipulated round indenter with 

random roughness on the surface. The friction tests by smooth indenter show a 

significantly reduced sliding friction, compared to the flat control. The easily visualized 

partial contact area plays a dominant role in the reduction in sliding friction, due to the 

highly decreased in real contact area. However, we also observe a buckling effect of the 

contacting ridges. Sliding friction of samples increases with channel depth, since the 

effective frictional energy can be restore a little possibly by elastic energy released from 

buckling. 

 However, the friction tests can exhibit an enhanced sliding friction of a micro-

channel sample with relatively large depth and spacing, using the indenter with random 

roughness, compared to a flat control sample, especially under large normal load. Within 

the interfacial contacting area, the ridges might be severely buckled, or even collapsed, 

due to the normal force and lateral shear force. This work provides a promising approach 

to control the frictional behavior against a rough surface via elastic topographic surfaces, 

which has a great potential in future tire design.  
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Chapter 6      Summary & Conclusions 

 

6.1   Main results 

This research presents studies of how near-surface patterning of shape, charge and 

elasticity can be used to endow generic materials with properties such as adhesion 

selectivity and controlled friction. The main results are summarized below: 

1.  Through our theoretical study of surfaces with patterned charge, we showed that 

strong selectivity can be achieved between two rigid materials. We also predicted 

that, by allowing the surfaces to deform, e.g. if charges were patterned on 

elastomeric materials, the selectivity could be effectively reduced and the overall 

adhesion enhanced. 

2.  We showed that highly enhanced selective adhesion can be achieved between two 

complementary surfaces with micro-channel structures, compared to the interface 

between flat controls. We found that misorientations between structured surfaces 

are accommodated by interfacial dislocation structures.  Adhesion between 

complementary surfaces is enhanced by crack trapping and friction losses, bu 

attenuated due to the energy released by interfacial dislocations. 

3. Surfaces patterned with periodic variation in stiffness undergo an “auto-roughening” 

transition during friction and this process can significantly attenuate overall 

sliding friction. This phenomenon can be interpreted as reduction of real contact 

area, based on the observation that the contact transforms from initially full 
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contact to partial contact at the interface. A finite element model demonstrates 

how the generation of contact opening during sliding depends on the elastic 

mismatch, frictional stress and normal load. 

4.  We show that the structured elastomeric surfaces usually exhibit highly reduced 

sliding friction against a smooth surface.  However, structured surfaces can have 

significantly larger friction against a rough surface.   

 

6.2   Ongoing and future work 

1.  In Chapter 2, we presented a theoretical model to demonstrate the adhesion 

selectivity between two flat surfaces with charge patterning. However, this idea 

has not been successfully implemented into experiments. Polyelectrolyte 

multilayers (PEMs) and the layer-by-layer deposition 
1
 technique provide a 

potential in fabrication of pattern-charged surfaces. The prepared substrate could 

be imprinted by surface structures, e.g. the micro-channel or fibrillar structures, 

before depositing the last layer of poly electrolyte. Assembly of multilayer films 

of the weak polyelectrolytes, poly(acrylic acid) (PAA) and poly(allylamine 

hydrochloride) (PAH) 
2
, acquire negative and positive charge in a water solution 

at neutral pH, which could be utilized for generating charge alternates on either 

rigid surface (e.g. silicon wafer) or elastic materials (e.g. PDMS surface). 

2.  In Chapter 3, we showed results of adhesion tests between complementary micro-

channel surfaces.  We also invariably observe defects in the form of visible 

striations tens to hundreds of microns in width and separated by distances on the 
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order of mm‟s. Further study of these defects showed that these striations can be 

considered as a combination of screw and edge dislocations. Jin et al 
3
 showed 

that the screw dislocations are formed due to the rotational misorientation at the 

interface, and effectively reduce the work of adhesion. Further investigation need 

to be implemented for the formation of edge dislocations as well, both 

experimentally and theoretically. The mechanism of dislocations within 

elastomeric structured surfaces is also very interesting to study. 

3.  Appropriate finite element model need to be built for analyzing the mechanism of 

enhanced sliding friction between micro-channel structures and surface roughness. 

This FEM result could also help to determine the critical condition that triggers 

the dynamic instability, and provide suggestions for new structure design 

according to the dimensions of surface roughness.     
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Appendices 

 

Appendix A: 
k
 Model for electrostatic complementarity 

Eq. (2.17) in the main text show that the total electrostatic interaction energy and 

force (per unit area) between two surfaces patterned with stripes of charge are known 

once we know  , the fraction of area within a unit cell where like charges face each other.  

Here we consider the family of surfaces defined by nb=mc, where n & m are both odd 

positive integers and n>m, b & c are lengths of unit elements on the two sides, and b<c.  

We demonstrate that (a) the strongest electrostatic interaction occurs when the top and 

bottom surfaces begin with aligned opposite charged regions, and (b) the fraction of area 

with oppositely charged surfaces is 

    
    

   
           (A1)  

We have already shown that if either m or n is even,      .   

Consider a unit cell of length L in which, without loss of generality, the left end is 

aligned with the start of a negatively charged region on the lower surface.  The lower 

region has m units of length c each.  The upper surface is shifted by δ in the positive „y‟ 

direction compared to a configuration in which it begins with a positively charged unit 

region.  We will show that electrostatic attraction is strongest for δ=0. (We need to 

consider only δ<b).  

                                                 
k
 The derivation in this Appendix is provided by Prof. C-Y. Hui at Field of Theoretical and Applied 

Mechanics at Cornell University. 
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Let a negatively charged region be assigned the number „1‟ and a positively 

charged region the number „0‟.  The charge pattern on the lower surface can be 

represented by the following function: 
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This represents a function of the form:                                               

 

The charge pattern on the upper surface can be represented by the following 

function:    

  ( )   ( )   (   )   (     )   (      )     (  (    ) 

  )   (     ) 

  ( )  ,∑ (  )    (      )    
   -   (     )                             (A4) 

Note that these functions vanish for 2 2x mc nb L   respectively.  Also,  

1 2

0 if the charge facing each sides are of the same sign
( ) ( )     

1 if the charge facing each sides are of opposite sign
x x 


  


     (A5) 
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The total length for which the two surfaces have opposite charges is 

 

  
2

1 2

0

( ) ( )

L

AL x x dx            (A6) 

The total length for which the two surfaces have identical charge is therefore 

                                                     (A7) 

By choosing L=1 we can compute   by calculating   .  Now, 

 
2 2 2

1 2 1 2 1 2

0 0

( ) ( ) ( ) ( ) 2 ( ) ( )

L L

AL x x dx x x x x dx                                 (A8) 

However, it is clear from the graph that 

2

0 0

( ) ( ) / 2           1,2

L L

i ix dx x dx L i             (A9) 

Eqs. (A8) and (A9) imply that 

 1 2

0

2 ( ) ( )

L

AL L x x dx                      (A10) 

Using Eqs. (A2) and (A4), the integrand in Eq. (A10) can be written as 

  ( )  ( ) 

 , ( )   (   )     (  (    ) )-, ( )   (     )

  (      )     (  (    )   )   (     )- 

  ( )∑ (  )    (  (   ) )  
    [ ( )∑ (  )    (      )    

    

 (   )∑ (  )    (      )    
       (  (    ) )∑ (  )    (      

   

    )]   (     )∑ (  )    (  (   ) )  
                                                               

(A11)  
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The following integrals in Eq. (A11) are simple: 

∫  ( )∑ (  )    (  (   ) )    
       

 

 
                                    (A12a) 

∫  (     )∑ (  )    (  (   ) )  
     

 

 
                             (A12b) 

From Eqs. (A10) and (A11), we need to evaluate integrals of the form: 

   ∫  (    )∑ (  )    (      )      
   

 

 
   k = 0,1,2,…2m-1   (A13) 

Note that 

 
0 0

( ) ( ) ( ) ( ) ( )

L L L

H x H x dx H x H x dx H x dx L



                  (A14) 

where 0L     . 

We have already assumed that 

 1
n

c b
m

                   (A15) 

This means that 

          /       0 1k k k kkc p b p kn m         1,2,....k      (A16) 

where     is the greatest integer function, e.g. 1.8 1   .   Now, 

    ∑ (  )       
   ∫  (      ) (  (     ) )

 

 
   

   ∑(  )   ,  (     ) -

  

   

 ∑ (  )   ∫  (      ) (  (     ) )  
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        (    )∑(  )   

  

   

 ∑ (  )   (      )

    

      

 

when (     )     (A17) 

   ∑ (  )   ,  (     ) -

    

   

 ∑ (  )   ∫  (      ) (  (     ) )  
 

 

    

    

 

      (    ) ∑ (  )   

    

   

 ∑ (  )   (      )

    

    

 

when (     )               (A18) 

Now, 

             ∑ (  )    {
               

                
  
                                                  (A19) 

             ∑ (  )    {
               

                    
    
                                                  (A20)         

and 

  

∑ (  )   (      )

    

      

 (   ) ∑ (  )   

    

      

  ∑ (  )  
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 (   ) ∑ (  )   

    

      

  , ∑ (  )  

    

   

 ∑(  )  

  

   

- 

                                                                                                                      (A21) 

 

Similarly, 

∑ (  )   (      )

    

    

 (   ) ∑ (  )   

    

    

  , ∑ (  )  

    

   

 ∑ (  )  

    

   

- 

 

                                                                                                                      (A22) 

Now,  

                 (   )∑ (  )       
       {

                       

  (   )           
                       (A23) 

                    (   )∑ (  )       
    

 {
(   )               
                             

                       (A24) 

Note that 

∑ (  )  

    

   

    (   )  (   )    (         )     

  (A25) 

   
1

( 1) 1 / 2 1 / 2        is odd
kp

j
k k k k

j

j p p p if p


                   (A26) 

∑ (  )  
    
    (    )                                                                 (A27) 

1

( 1) / 2     
kp

j
k

j

j p


                   is evenkif p                        (A28) 
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∑ (  )  
    
                                                                               (A29) 

So 

∑ (  )      
    ∑ (  )  

  
       (    )                               (A30) 

∑ (  )      
    ∑ (  )  

  
                                                  (A31) 

∑ (  )      
    ∑ (  )  

    
       (    )                             (A32) 

 

∑ (  )      
    ∑ (  )  

    
                                                  (A33) 

Thus, 

when (     )      

    
 

 
   

    

 
                           if  pk  is odd                                         (A34) 

    
 

 
      

  

 
                 if  pk  is even                                       (A35) 

when (     )     

    
 

 
      

    

 
              if  pk  is odd                                        (A36) 

    
 

 
   

  

 
                                if  pk  is even                                      (A37) 

Combining Eqs. (A10), (A11), and (A13) leads to the formula 

    ∑ (  )     
    
                                                                                (A38) 

Figure A.1 compares the value of   computed by this method (with    ) with 

the relation   
    

   
, showing the latter to be correct. 
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Figure A.1  
    

   
 versus fraction of repulsive part for different m & n combinations. 

 

Figures A.2 and A.3 show how α varies with shift δ.  When m=1, the area fraction 

α is minimized when δ=0; this corresponds to strongest attraction.  Figure A.3 shows that 

there are several minima with varying δ when m is larger than one, e.g. m=3,5,7… .  The 

fraction of α becomes a periodic function of the shift δ, and the minimum value of α is 

achieved when   
  

 
  (k=0,1,…(m-1)/2).  In Chapter 2, we have picked k=0.  
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Figure A.2  The fraction α depends on the shift  .  For m = 1 and n = 1,3,5,.., it is minimized 

when    . 
 

 

 

 

Figure A.3 The fraction α depends on the shift  .  For m > 1 and n = 1,3,5,.., it is a periodic 

function of,     with a minimum at    . 
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Appendix B: Surface profilometry of the composite samples 

The surface profile of the composite samples was measured using an 

interferometric optical profilometer (ZeGage. Zemetrics, Inc).  Figure B.1 shows that the 

surface undulates with small amplitude, of about 0.3 µm in this case, with the stiff 

regions being are slightly higher than the compliant ones.  

 

 

Figure B.4 Typical surface morphology of composite ridge/channel samples, showing that each 

stiff region is about 0.6 µm higher than its neighboring compliant region. The dimensions of the 

microstructures before backfilling are: channel depth d = 10 µm, interchannel spacing c = 20 µm. 

 

Even though the top surface of each composite sample is not ideally flat and with 

alternating stiff and compliant materials, the surface roughness does affect the “auto-

roughening” transition from the initial full contact to partial contact during sliding. Even 

when the top surface of the structured sample was over-backfilled, and finally results in a 

flat surface with a thin layer of compliant PDMS on top (Figure B.2), we can still see the 

separated contact regions (dark stripes in Figure B.2b „Sliding Phase‟). Such strictly flat 
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surface cannot prevent the development of “auto-roughening” during sliding, which 

reveals that the contribution of minor roughness on the tested elastic surface of composite 

samples is very small compared to its internal structures and the variation of stiffness.   

 

 

 

 

 

 

Figure B.5 Friction measurement on a over-backfilled 1-D micro-channel sample. (a) SEM image 

of an over-backfilled sample with a thin layer of flat compliant material on top of the 1D micro-

structure (depth = 10 µm, spacing = 35 µm); (b) optical micrographs taken during a friction test 

on sample (a) still shows a transition from initially full contact (before sliding) to partial contact 

during sliding.  

 

 

 

(a) 

(b) 
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Appendix C: Friction test on backfilled fibrillar samples under large 

normal load 

Figures C.1 and C.2 show the effect of increasing normal load on auto-roughening 

in the 2-D periodic samples. In the center region, contact is complete, whereas at its 

periphery contact is partial, especially at the trailing edge (Figure C.1b).  Similarly, 

Figure C.2 shows that friction remains lower than both controls. 

                      

Figure C.6 Optical micrographs taken during a friction test on backfilled fibrillar samples (h = 

17.8 µm, s = 20 µm). Observe the transition from (a) initially full contact (before sliding) to (b) 

partial contact during sliding; the red circle marks out that the region in which contact area is 

unbroken. 

 

 

Figure C.7 Shear force as a function of shear displacement for 2-D periodic samples with spacing 

of 20, 35 and 50 µm and fixed fibril length h = 17.8 µm, and both flat control samples. 
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Appendix D: Estimating the mean and variance of the apparent shear 

stress 

The frictional force F and the apparent contact area A are two independent 

random variables.  The ratio of (F/A) is the shear stress. We wish to find approximations 

for expected value mean of the ratio E (F/A) and variance Var (F/A). 

Using Taylor series expansions, the approximation of the mean of a quantity f 

which depends on F and A is 
1,2

 

 ( (   ))   (     )  
 

 
*   

  (     )   ( )      
  (     )   (   )  

   
  (     )   ( )+                                              (D1) 

where EF, EA denote the mean of F and A, Var(F), Var(A) denote the variance of F and 

A, respectively, and Cov(F, A) denotes the covariance of F and A.  

For   (   )     ,     
    ,     

       ,     
   

  

  . Since F and A can be 

considered to be independent,    (   )   .  Eq. (D1) implies that the mean of (F/A) is 

approximately 

 .
 

 
/  

  

  
 

   ( )  

   
                                                             (D2) 

Using the first order Taylor expansion, the variance is 

     ( (   ))    
 (     )    ( )     

 (     )  
 (     )   (   )  

  
 (     )    ( )                                                  (D3)    

Since   
     ,    

   
 

  , the variance of (F / A) is approximately 

   .
 

 
/  

 

(  ) 
   ( )  

(  ) 

(  ) 
   ( )                           (D4) 
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The results of Eqs. (D2) and (D4) can be used as an estimation for the mean and 

variance of apparent shear stress, and the standard deviation of the average shear stress is 

calculated as the square root of variance Var (F/A).   

 

Appendix E: Contact pressure on flat homogenous elastomer  

First, we checked by simulating a homogeneous material that our model matches 

the expected results in that case (at the end of step one, no slip). When a rigid flat and 

frictionless punch is pressed into an elastic half-space, the contact pressure distribution is 

given by the following equation, 
3
 

 
  2/122 xa

P
xp





                                                                        (E1) 

where P denotes the uniform normal pressure applied on the punch which has a 

rectangular shape of width 2a and sharp corners.  

Figure E.1 shows the normalized contact pressure distribution for a flat rigid 

punch indenting a half-space homogenous elastomer (non-slip). The contact pressure that 

obtained by finite element simulation is in agreement with the theoretical prediction of 

Eq. (E1), except at the edge where the normal stress becomes unbounded. 
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Figure E.8 Half-space contact pressure distribution along the interface due to indentation by a flat 

rigid punch. The interfacial position is normalized by half of the indenter width (a), and the 

contact pressure is normalized by the uniform normal load. 

 

 

Appendix F: Simple beam model for auto-roughening  

To gain insight into the mechanism of auto-roughening, we developed a simple 

model for the surface layer. The model explores the following idea.  We conjecture that 

in the composite samples, the stiff pillars deform like beams whereas the compliant 

material acts as a shear layer connecting the beams and resisting their deformation. 

Figure F.1 shows a free body diagram of a section of an elastic beam with 

moment M, distributed pressure P, distributed body moment m, transverse shear, V, and 

deflection w.   
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Figure F.9 Schematic illustration of an elastic beam under a uniformly distributed pressure P. 

 

According to the moment-curvature relation, we have: 

    
   

                                                                (F1) 

where E is Young‟s modulus of the elastic material, I is the moment of inertia of the 

beam. 

For a beam under a steady state, moment balance and force balance leads to: 

  

  
                                                             (F2) 

  

  
                                                                      (F3) 

Combining Eqs. (F1) to (F3) give: 

  
   

    
  

  
                                                   (F4) 

Figure F.2, shows the simplified model where the stiff pillars (I) are assumed to 

deform as beams.  The compliant material (II) is assumed to serve primarily as a shear 

spring that exerts shear tractions onto the stiff beams.  The shear forces, equal and 

opposite on two sides of the beam due to symmetry, are represented in the model by 

distributed body moments.  The structure is periodic so by symmetry we study only a 

single period. The shear strain of the beam is:  

    
 

 
.
  

  
 
  

  
 

  

  
/  

  

  
 
     

   
                                         (F5) 
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Therefore, the shear stress can be expressed as: 

            
  

  
 
     

  
                                                    (F6) 

The internal moment m is mainly generated by the shear stress, which is: 

            
  

  
 
  (     )

  
                                         (F7) 

When substituting Eq. (F7) into Eq. (F4), we can obtain the differential equation 

for the deflection of the stiff beam: 

  
   

     
  (     )

  

   

                                                      (F8) 

where G is the shear modulus of the compliant material. h1 and h2 denote the widths of 

stiff and compliant pillars, respectively, and l represents the length of each beam, as 

shown in Figure F.2a. In this case, P = 0, despite there is actual shear force at the edge 

(x=l). 

 

 

 

 

Figure F.10 Schematic illustration of a beam model for auto-roughening. Part I denotes the beam 

of stiff material and Part II denotes the compliant material served as a shear spring. (a) Initially 

each beam (Part I) is straight and connected by Part II without shear; (b) in the sliding phase, the 

beam of stiff material is bent and the surface becomes undulating after deformation.  
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To simplify the calculation, we define     
   (     )

    
 , and the dominate 

differential equation for this model can be normalized as: 

   

  
  

   

  
                                                          (F9) 

where          .  

 

Table F.1 Boundary conditions of analytical beam theory model 

 

Position Boundary Condition 
Normalized  

Position 

Normalized  

Boundary Condition 

                

                  

                       

            
  (     )

  
             

   
      

 

 

Table F.1 lists all the boundary conditions and their dimensionless form that 

applied to the model (  
 

      and     ). By substituting the normalized boundary 

conditions into Eq. (F9) gives us the final expression of the normalized deflection of the 

beam (stiff material). 

 ( )  
  ,    (    )      -

     
                                           (F10) 

Note that, this simple beam theory is only apt for large modulus mismatch, since the 

shear strain is only considered by the compliant component. 
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