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Abstract 

 The assembly of colloidal particles has drawn great attention due to its fascinating 

impact on various applications. One simple but effective method for the deposition of 

well-ordered particles microstructure is convective deposition. Convective deposition 

translates a meniscus of particle suspension across a substrate leaving behind a thin film. 

As the liquid phase of the suspension evaporates, primarily from the thin film, particles 

are deposited and order through capillary interactions. In this thesis, we develop novel 

techniques for enhancing the microstructure of evaporation-driven convective deposition. 

Confocal laser scanning microscopy and image analysis are used for quantifying the 

quality of deposited particle microstructure through number of nearest neighbors, packing 

density, and local bond order. 

 We have developed vibration-assisted convective deposition as an advanced 

technique for improving convective deposition. The original motivation for this work was 

to investigate how environmental disturbances would affect a deposition process in an 

industrial scale. With the application of lateral vibration of the substrate, drastic 

alterations of the interfacial liquid surface and the evaporation rate occur. Aqueous binary 

suspensions of colloidal microspheres and nanoparticles were used for studying effect of 

the amplitudes (0-250 µm) and the frequencies (0-50 Hz) of substrate vibration. This 

effect yields the unexpected result of opening the range of operating parameters from a 

single deposition velocity for a given set of conditions to a wide range of velocities that 

result in monolayer deposition. A large phase space of frequency and amplitude 
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demonstrates a region where at moderate conditions enhancement occurs. At low 

amplitudes and high frequencies the particles do not organize into well-ordered 

monolayers and at high amplitudes and low frequencies the substrate motion does not 

yield long range monolayers because of the pseudo-steady motion of the substrate.  It is 

also noted that this technique can be further extended to fabricate partially aligned (100) 

fcc thin film colloidal crystals. 

In two ways, the solution of the suspension has been manipulated to alter the 

dynamics of deposition. First, ionic strength of medium and particle surface charges are 

known as crucial parameters for understanding micro-scale mechanism of particle 

assembly. The presence of salt reduces the thickness of the electrical double layers 

(Debye length), which leads to pre-organized deposition and particle island formation. 

The electrostatic barrier as a function of the distance between particle and substrate as 

well as the effective separation distance as a function of the salt concentration are 

calculated using DLVO theory. On the contrary, the addition of NaOH provides 

additional electrostatic repulsion forces between particle-particle and particle-substrate, 

which results in the enhancement in particle deposition. Second, Marangoni flow, created 

by the surface tension gradient within binary liquid mixture of ethyl alcohol and water, 

offers the great promise in macro-scale defect suppression. Our preliminary results 

suggests significant enhancement of monolayer deposition at the concentration of ethyl 

alcohol between 30-50 %V. Droplet evaporation experiments give the detailed ideas of 

how surface tension-driven flow develops.  
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Chapter 1 

 
Introduction 

 

1.1 Dissertation Organization  

 This doctoral thesis presents research of novel techniques for enhancing 

evaporation-driven convective deposition of particle monolayers from suspension. 

Starting with fundamental understanding of convective evaporation and capillary force, 

previous studies on convective deposition is reviewed in Chapter 1. The experimental 

setup, material preparation and image analysis techniques are described in Chapter 2.  

Fundamental process enhancements using the application of lateral vibration of the 

substrate as well as the addition of nanoparticle to enhance microstructure order and 

packing density are presented in Chapter 3. With the addition of sodium hydroxide 

(NaOH) and sodium chloride (NaCl), we demonstrate the effect of the ionic strength and 

surface charge on convective deposition in Chapter 4. Preliminary investigations of 

Marangoni effect due to the surface tension gradient between water and ethyl alcohol 

(EtOH) are presented in Chapter 5. Applications and potential studies including areas of 

interest are discussed in Chapter 6. Finally, summary and future outlook are briefly 

discussed in Chapter 7.  
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1.2 Colloidal Self-Assembly 

The self-assembly of colloidal particles into thin films has been widely studied 

due to the fascinating physics involved and the promise of use in applications ranging 

from photonics (Haes, Haynes, and Van Duyne 2001; Tessier et al. 2001; Im et al. 2002), 

lithography (Haes, Haynes, and Van Duyne 2001; Haynes and Van Duyne 2001; Zhang 

et al. 2008), ceramics (Harris et al. 2007), catalysis (Tessier et al. 2000), biocompatible 

surfaces (Koyama, Yamaguchi, and Miyasaka 1994; Zhang et al. 2005; Wang et al. 2011), 

sensors (Koyama, Yamaguchi, and Miyasaka 1994; Velev and Kaler 1999; Yi et al. 

2006), membranes (Weldon et al. 2012), and fabrication of complex structures such as 

Janus particles (Pawar and Kretzschmar 2010) and ribbon-like structures (Kim et al. 

2010). Typical methods used to fabricate particulate thin films include spin coating (Jiang 

and McFarland 2005), epitaxy (van Blaaderen et al. 2003; Lee et al. 2004), optical 

tweezers (Biancaniello and Crocker 2006), electrophoretic particle assembly (Hayward, 

Saville, and Aksay 2000) and vertical deposition (Dimitrov and Nagayama 1996; Diao et 

al. 2005; Shimmin, DiMauro, and Braun 2006). However, these methods are all limited, 

whether it be in their complexity or speed of the process which limits scale-up, difficulty 

in integrating feedback control, or insufficient control over particle layer characteristics. 

Convective deposition (Kumnorkaew et al. 2008; Prevo and Velev 2004; Dimitrov and 

Nagayama 1995; Yamaki, Higo, and Nagayama 1995) provides an alternative because it 

can be used to easily, inexpensively, and reliably create relatively large, periodically-

ordered structures of spherical particles (Stebe, Lewandowski, and Ghosh 2009). 
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1.2.1 Convective Evaporation and Capillary Force 

Convective deposition, the evaporation-driven flow and capillary-driven 

assembly of colloidal particles on a substrate, essentially combines two recently 

explained concepts. The first, commonly known as the “coffee ring” effect (Deegan et al. 

1997), describes the phenomenon where particles flow to the contact line of a meniscus 

as a result of the evaporative flux (Figure 1.1). Convective deposition shares similar 

physics to these evaporating droplets as a suspension droplet is dragged across a substrate.  

This results in a trailing drawn-out thin film with enhanced evaporation. Particles are 

drawn into this region from the bulk and then are confined in a 2D thin film where they 

locally deform the liquid-air interface. Minimizing surface energy, the particles 

experience strong capillary-driven forces that result in particle-particle and particle-

substrate attractive potential (Figure 1.2). The inter-particle interactions (Gifford and 

Scriven 1971) were recently coined the “cheerio effect” (Vella and Mahadevan 2004). 

This describes the macroscopic phenomena of particle attractions as a result of interface 

deflections coming from their contact lines, relative buoyancy, and/or vertical 

confinement. The inter-particle interactions are strong and pull particles into their 

maximum packing density within the thin film. Capillary forces are sufficiently strong to 

overcome particle-particle and substrate-particle electrostatic repulsion and bring 

particles into contact with each other and the substrate. These same experimental 

conditions can be used to deposit particle multilayers in the form of a colloidal crystal 

where the physics of assembly depends on confinement and flow steering (Brewer et al. 

2008) as opposed to surface energy. 
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Figure 1.1: Demonstration of the “coffee ring” effect. (a) Diagram showing enhanced 

evaporation at the edge of a drying droplet. (b) Particles flow to the outside edge of a 

droplet as a result of enhanced evaporation. (c) 2-cm-diameter drop of coffee with high 

particle concentration at the outside edge. Reprinted from Deegan et al., 1997.  
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Figure 1.2: Schematic of convective deposition. (a) Particles are carried by water 
convective flow from meniscus to the particle array where evaporation occurred. (b) 

Strong capillary interaction due to the deformation of water surface results in 2D particle 

ordering. Reprinted from Nagayama, 1996.  

  

a) 

b) 
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Although it has been known that the cause of capillary forces is the deformation 

of the liquid surface owing to the presence of particles, Kralchevsky and Nagayama 

(1994) classified two different types of capillary forces: flotation and immersion capillary 

forces (Figure 1.3a) according to the physical location of particles on/in liquid surface. In 

case of floating particles, the flotation capillary forces originate from the particle weight 

and Archimedes force. This will not be applicable for particles of radii smaller than 10 

m since the interaction energy of these flotation capillary forces is smaller than thermal 

energy kT (Figure 1.3b). On the other hand, when particles are partially immersed in a 

liquid layer, the immersion capillary forces will exist even for 10-nm colloidal particles. 

The deformation of liquid surface in this case only depends on the wetting properties of 

the particle surface. 
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Figure 1.3: Capillary forces. (a) Comparison between the flotation and immersion 

capillary forces. (b) Immersion capillary forces exists even for 10-nm colloidal particles 

whereas flotation capillary forces are negligible for colloidal particles smaller than 10 

μm. Reprinted from Kralchevsky and Nagayama, 1994. 

  

a) 

b) 
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1.2.2 Convective Deposition 

Convective deposition has drawn the great attention of researchers due to its 

ability to scale up. With a vertical deposition (Dimitrov and Nagayama 1996), the 

withdraw velocity of 0.1-30 m/s can be precisely controlled. Later Prevo and Velev 

developed an operational basis for rapid (up to 212 m/s), controlled convective 

deposition of particles with wide size ranges (Prevo and Velev 2004). SEM and optical 

microscopy results show the microstructure change from a dilute submonolayer (Figure 

1.4a) to a locally-ordered submonolayer (Figure 1.4b) to a monolayer (Figure 1.4c) and 

finally to a multilayer (Figure 1.4d) with decreasing deposition velocity. With fixed 

particle size, evaporate rate and particle volume fraction, monolayers of particle with 

hexagonal closed packed structure are obtained only at a single deposition velocity. 

Exceeding this monolayer deposition velocity results in submonolayer whereas slower 

deposition velocity leads to multilayer formation. Additionally changing environmental 

humidity has a minimal effect on the thin films produced. The primary parameters 

strongly affecting the process outcome are deposition velocity and particle volume 

fraction.  

Previous work on convective deposition includes early work by Dimitrov and 

Nagayama (1995) who, through a simple material flux balances along with the geometric 

confinement of particles in a thin film, calculated the withdraw velocity dv  that matches 

the crystallization velocity cv . 
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The withdraw velocity dv  depends on particle volume fraction  , evaporation 

flux of liquid eJ , particle size d  and a deposition parameter, . Here, is a constant 

value between 0 and 1 that depends on particle-particle and particle-substrate interaction. 

For low volume fraction and electrostatically stable particles,approaches 1. The value 

decreases with increasing particle-substrate interaction. 

In addition to Prevo’s work, Kumnorkaew et al. (2008) investigated the effects of 

the blade angle and the hydrophobicity of the deposition blade on the optimal monolayer 

deposition velocity. Through SEM and Confocal Laser Scanning Microscopy (CLSM), 

by increasing the deposition blade angle, the particle flux increases due to the change in 

radius of curvature, resulting in increased deposition velocity to maintain monolayers 

(Figure 1.5). Using the hydrophilic deposition blade, the monolayer deposition velocity 

is a weak function of deposition angle; on the contrary, the monolayer deposition velocity 

shows linear relationship with deposition angle in case of the hydrophobic blade. The 

transition region between monolayer and multilayer is always in the form of loose-square 

packed structure. 
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Figure 1.4: Microstructures deposited at decreasing velocities: (a) dilute submonolayer, 

(b) locally-ordered submonolayer, (c) monolayer, and (d) multilayer. Reprinted from 

Prevo and Velev, 2004. 

b) 

a) 

c) 

d) 
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Figure 1.5: Four phase diagrams describe the dependence of the morphology on 

deposition velocity and blade angle,   for 1.0 and 0.5 μm SiO2 particle with hydrophobic 

and hydrophilic blades. Summarizing the results from these phase diagrams, clearly the 
monolayer deposition velocity strongly depends on blade angle for hydrophobic blades 

and weakly depends on blade angle for hydrophilic blades. Reprinted from Kumnorkaew 

et al., 2008. 
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1.2.3 Convective Deposition of Binary Suspension 

The addition of nanoparticles to suspension is a noteworthy enhancement in 

convective deposition. Not only instabilities and defects are significantly suppressed but 

also the improvement in particle packing density and extension of coating length are 

observed (Kumnorkaew and Gilchrist 2009). Using aqueous binary suspensions of 1 μm 

silica microspheres and 100 nm polystyrene (PS) nanoparticles, the effects of 

nanoparticle concentration ranging from 0 % to 16 % on the quality of the microsphere 

deposition was investigated. At low concentrations of nanoparticles, the deposition 

results in an instability that forms stripes parallel to the receding contact line. Optimum 

deposition occurs between 6 % and 8 % PS and forms a monolayer having the same high 

degree of uniformity as the monodisperse suspension is fabricated. For higher 

concentrations, the deposition is increasingly less uniform as a result of nanoparticle 

depletion destabilizing the microspheres. By considering relative species flux, the volume 

fraction ratio of smaller to larger constituents necessary for steady well-ordered 

deposition are predicted (Kumnorkaew, Weldon, and Gilchrist 2010). Theoretical 

optimum nanoparticle concentration is equal to 0.32 of microparticle concentration based 

upon a simple maximum packing argument for these two species. 
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Chapter 2 

 
Materials and Methods 

 

2.1 Materials Preparation  

2.1.1 Suspension Preparation 

The primary colloid suspension used in this work is prepared by dispersing silica 

microspheres (Fuso Chemical Co, Japan) having a density of 2.2 g/cm3, an average 

diameter of 2amicro = 1.01 ± 0.02 μm, and a zeta potential of −48 mV ± 1 mV in deionized 

(DI) water with a volume fraction ɸmicro. The suspension is dispersed using a sonic 

dismembrator (model 550, Fisher Scientific, Pittsburgh, PA) for 10 min and is stirred for 

30 min. (Fisher Scientific, model 550). In Chapter 3, a separate colloidal suspension of 

diameter 2anano = 75 nm polystyrene (PS) having a zeta potential of −59 mV ± 1 mV 

prepared at ɸnano = 0.35 in DI water (supplied by the Emulsion Polymer Institute at Lehigh 

University) is mixed with the silica suspension to achieve the desired suspension 

composition. Coupled with the application of lateral oscillatory vibration, the addition of 

nanoparticles is used as packing aids for obtaining maximum microstructure order and 

packing density. In Chapter 4, the freshly prepared solution of sodium hydroxide (NaOH) 

and sodium chloride (NaCl) ranged from 10-7 to 10-3 mol/dm3 are added into the silica 



 

16 
 

suspension to investigate the influences of suspension ionic strength and particle surface 

charge. In Chapter 5, ethanol (EtOH), 200 proof, and DI water are mixed into different 

EtOH:H2O volumetric ratio to use as the base solvent for the silica suspension. 

 

2.1.2 Substrate Preparation 

Plain glass microslides (76 × 25 × 1 mm3, Fisher PA) are used as deposition 

blades, and glass coverslips (40 × 24 × 0.25 mm3, Fisher PA) are used as substrates for 

all samples. All glassware is cleaned by immersion in Piranha solution, 5:1 v/v sulfuric 

acid/hydrogen peroxide, for 30 min. The cleaned glassware is rinsed with DI water until 

no residual acid remains and is then immersed in DI water until use. Deposition blades 

are hydrophobilically treated with the addition of parafilm (Fisher PA) to their bottom 

edge. The contact angles on bare glass and on the hydrophobic surface are measured to 

be 10 and 105°, respectively, by imaging a 10 μl stationary droplet on the surface. 
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2.2 Experimental Methods  

The experimental setup is shown in Figure 2.1. This apparatus is contained within 

a humidity-controlled environment where all experiments are performed at constant 20% 

relative humidity and 24 °C. The deposition blade angle  is placed at a set angle of       

20° ≤  ≤ 80° approximately 10 m above the substrate and observed directly using a 

digital camera (Dinolite AM311S). Next 10 l of the colloid suspension is injected into 

the wedge between the substrate and deposition plate. A suspension meniscus is pinned 

atop a glass substrate, by a hydrophobically-treated deposition blade. The substrate is 

then translated at a specified deposition velocity using a linear motor (Harvard 

Instruments Co. Ltd.).  

In Chapter 3, the modified setup is used. The motion of the substrate is controlled 

through a linear motor while a mechanical driver (PASCO SF-9324) and a waveform 

generator (Agilent 3320A) is used to control periodic oscillation. This setup is calibrated 

using high speed camera (Prof. Manoj Chaudhury’s lab, Lehigh) at the capture rate of 

500 frames per second. The amplitude calibration graph (Figure 2.2, raw data is shown 

in Table 2.1) shows the linear relation between input amplitude (Vpeak-peak) and output 

amplitude (μm) for all frequencies of vibration. The schematic diagram, shown in Figure 

2.3a, is similar to that for traditional convective deposition except for the added ability to 

oscillate the substrate along the deposition direction (Figure 2.3b).The position of the 

substrate is given by x = vwt + A0sinωt, where vw is the apparent deposition velocity of 

the substrate and A0 and ω are the amplitude and frequency of vibration. The relative 

velocity and acceleration of the sinusoidal motion scale as A0ω and A0ω2, respectively.  
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Figure 2.1: Experimental setup is in a humidity-controlled environment. All experiments 

are performed at constant 20% relative humidity and 24 °C. 
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Figure 2.2: Amplitude calibration graph showing the linear relation between input 

amplitude (Vpeak-peak) and output amplitude (μm) at frequency of vibration between 1-50 

Hz. 
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Table 2.1: Raw Data of the Amplitude Calibration at the Vibration Frequency between 

1-50 Hz 

 

Frequency 

(Hz) 

Input Amplitude 

(Vpeak-peak) 

Output Amplitude 

(μm) 

1 1.0 35 

 5.0 223 

 7.0 359 

 10.0 508 

   

10 1.0 35 

 5.0 219 

 7.0 354 

 10.0 503 

   

20 1.0 37 

 5.0 371 

 7.0 607 

 10.0 904 

   

30 2.0 272 

 4.0 517 

 6.0 837 

   

40 2.0 84 

 4.0 163 

 6.0 262 

 8.0 335 

 10.0 462 

   

50 1.0 24 

 2.0 45 

 4.0 93 

 5.0 99 

 6.0 140 

 7.0 161 

 8.0 188 

 10.0 248 
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Figure 2.3: (a) Schematic diagram of experimental setup showing deposition apparatus 

with a substrate motion highlighted. (b) A graph of substrate motion showing (c) extended 

meniscus, (d) meniscus at normal position and (e) shortened meniscus with a small bump.  
  

a) 

b) 

c) 

d) 

e) 
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2.3 Microstructural Analysis 

Deposited monolayers are observed directly using SEM (Hitachi 4300) after 

iridium coating and through confocal laser scanning microscopy after rewetting the layer 

with an aqueous solution of 8 mM Rhodamine B. Optical imaging of the sample is 

automated along the deposition length sampling 60,000 microspheres. The relative 

microsphere substrate coverage, , and the local bond order, Ψ6, are evaluated.  is 

defined as the ratio of the projected area covered by microspheres to total sample area. 

The long-range microsphere substrate coverage is qualitatively reported. The maximum 

theoretical value of surface coverage for monosized microspheres deposited as a two-

dimensional hexagonally-close packed (HCP) crystal is  =
𝜋

(12)2 =  0.907. In case of 

multilayers, the square-close packed structures are observed in the transition region 

between hexagonally-closed packed layers (Prevo and Velev 2004). The maximum 

theoretical value for these square-close packed structures is  =
𝜋

4
= 0.785. This suggests 

that overall microsphere substrate coverage of multilayers is slightly lower than 

monolayers due to the presence of square-close packed structures. Ψ6 is a parameter 

describing the relative crystallinity of particles. It is calculated using angles θ between 

each the particle of interest i and their nearest neighbors j. Vectors rij are determined for 

all nearest neighbors N and Ψ6 is defined as: 

 6(𝑟𝑖𝑗) =
1

N
∑ exp[6iθ(𝑟𝑖𝑗)]

𝑁

𝑗=1
 (2.1) 
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where Ψ6 = 1 describes particles oriented in a perfect hexagonally close-packed 

crystal. A monolayer is seen as having  ≥ 0.8 and Ψ6 ≥ 0.575. Submonolayers have 

densities  < 0.8 and identification of multilayer depositions are identified through direct 

imaging of multiple layers or through increased light reflectance. 
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Chapter 3 

 
Enhanced Colloidal Assembly via 

Vibration-Assisted Convective 

Deposition 

 

3.1 Introduction 

Here, a substantial enhancement of the convective deposition process is presented 

in the addition of periodic vibration in the direction of substrate motion. The schematic 

diagram, previously shown in Figure 2.3a, is similar to that for traditional convective 

deposition except for the added ability to oscillate the substrate along the deposition 

direction (Figure 2.3b). The original motivation for this work was to investigate how 

perturbations would affect convective deposition and whether vibration would thwart 

efforts to scale up this process in a commercial setting.  

Investigation into the stability of a vibrating film is a classic problem (Yih 1968; 

Baikov, Listrov, and Shabunina 1982; Or 1997; Shklyaev, Alabuzhev, and Khenner 2009; 

Benilov and Chugunova 2010; Porter et al. 2012; Bestehorn 2013). The first theoretical 

study was by Yih (1968). Thin liquid film on a horizontal and completely wetting 

substrate is considered. The substrate is oscillated in a horizontal direction. The flat 
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surface can become unstable only for long waves under a critical condition. The film 

instability happens only for a certain range of initial film thickness, depending on the 

oscillatory frequency and the fluid parameters. A sufficiently high oscillation frequency 

is required to excite the instability, for example, at least 300 MHz for a water layer with 

the thickness of 1 μm (Shklyaev, Alabuzhev, and Khenner 2009). Similarly, later studies 

from other researchers (Or 1997; Bestehorn 2013), using different mathematical analysis, 

shows a good agreement with Yih’s result. Baikov and coworkers (1982) introduced the 

length, 𝛿 = (
𝜐

𝜔
)

1/2

, where 𝜐 is the liquid kinematic viscosity and 𝜔 is the frequency of 

oscillating wall, to characterize the oscillating flow. This is also the characteristic length 

scale associated with Stokes’ 2nd problem, often known as the ‘Stokes Layer’.  For high 

oscillation frequency the velocity pulsations decay with increasing distance from the wall. 

On the other hand, for low frequencies of oscillations the velocity changes slowly with 

time. The flow can be assumed stationary. In the case of the frequency 𝜔~
𝜐

𝑑2 where d is 

the liquid thickness, the vibrations of the wall are most favorable for the loss of stability. 

However, to introduce an instability in our system, the oscillation frequency required is 

about 1 MHz (where  = 10-6 m2/s and d = 1 μm) which is much higher than our scope of 

experiment (0 ≤ ω ≤ 100 Hz).  

Additionally, more recent studies have used vibration was used to influence 

colloidal assembly (Alvarez, Friend, and Yeo 2008; Rudenko et al. 2010).  Notably, work 

by Wei and coworkers (2000) demonstrate that vibration of a monolayer of particles 

confined in a vertical soap film can anneal defects with a logarithmic coarsening profile; 
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however, the time scales in this work are inappropriately long for convective deposition 

due to the short particle residence time in the thin film and their scale-up limitations. 

In this chapter we present intriguing results showing enhanced convective 

deposition through increased viable deposition velocities, enhanced robustness of the 

deposition process through transition to a monolayer-deposition window, and higher 

resultant packing and order of deposited monolayers. These enhancements occur over a 

large range of vibration frequencies and amplitudes. Toward the end of this chapter we 

present a simple and promising technique to assemble tunable square-packing structures 

by the introduction of external oscillatory motion of the substrate during convective 

deposition of multilayer colloidal crystals. 
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3.2 Experimental Results and Discussion 

 Glass substrates were coated using variable deposition velocity, 0 ≤ vw < 90 µm/s, 

vibration amplitude, 0 ≤ A0< 800 μm, and frequency 1 ≤ ω ≤ 100 Hz. Similar to traditional 

convective deposition (effectively where A0 = 0, Kumnorkaew and Gilchrist 2009), 

relatively large areas are easily coated with a small amount of solution in a uniform 

fashion, shown on a coated glass slide, under optimum conditions (Figure 3.1a). At the 

macroscopic scale, three qualitative observations are apparent with even the smallest 

vibration amplitudes sampled (A0 = 1 µm). First, the quality of coated substrates appears 

more uniform and over a larger area versus those coated with constant velocity convective 

deposition. Second, buildup of particles along coating edges and the formation of 

multilayer streaks in the deposition direction are minimized with the vibration frequencies 

sampled. Third, although not investigated thoroughly for this study, substrates of variable 

hydrophobicity can be coated easily. Traditionally, convective deposition is limited to 

highly wettable substrates. Already, vibration-assisted convective deposition has been 

used to coat substrates with water contact angles up to 80°, including Fluorine-doped Tin 

Oxide (FTO), polyethylene terephthalate (PET), and GaN as shown in Figure 3.2. 

Although these effects are not quantified, they are readily apparent when using this 

technique in application. 

Similar to traditional convective deposition, three surface morphologies are 

observed: particle submonolayers, monolayers, and multilayers (Figure 3.1b-3.1d). 

Depending on experimental conditions, samples may be comprised of a single 

morphology or may exhibit all three, deposited in a periodic manner in the direction of 
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deposition. Locally, microspheres are in contact with one another and the interstitial 

regions between particles are filled with nanoparticles (Figure 3.1e). Experimental 

conditions are tuned such that microspheres and nanoparticle are codeposited; neither 

component will be deposited alone and void spaces have neither microspheres nor 

nanoparticles (Kumnorkaew and Gilchrist 2009; Kumnorkaew, Weldon, and Gilchrist 

2010). 
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Figure 3.1: Examples of coatings at ω = 50 Hz and A0 = 248 μm. Typical macroscopic 

coating using vibration-assisted convective deposition is shown in (a). The morphologies 

that result are (b) submonolayer, (c) monolayer, and (d) multilayer depositions, shown as 

optical images partnered with analysis where blue particles are ordered, red particles have 

fewer than 6 nearest neighbors, and green particles have 6 nearest neighbors with 

asymmetric neighbor locations. (e) SiO2 microspheres are surrounded by and packed 

within polystyrene nanoparticles. 

10 m 10 m

1 m

a) b) 

c) d) 

e) 
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Figure 3.2: Samples showing successful coatings using vibration-assisted convective 

deposition on (a) Fluorine-doped Tin Oxide (FTO), (b) Polyethylene terephthalate (PET), 

and (c) GaN. 

  

a) b) 

c) 
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3.2.1 Overall Phase Diagram of Deposition 

Figure 3.3 is the overall phase diagram of vibration-assisted deposition, which 

summarizes the effect of the amplitude (A0) and the frequency of vibration (ω). Three 

distinguishable regions of operation are clearly noticeable. In the first region, the 

“Enhanced monolayer deposition” represents the operating conditions, which monolayer 

depositions over a range of deposition speeds are observed. Each datum is represented by 

shaded square. Darker squares mean wider range of monolayer deposition velocity 

ranging up to 25 μm/s. The packing and order of deposited monolayers within this region 

is apparently enhanced. In the second region, the “Phase separation” represents the 

operating conditions, which the lateral separation of microparticles and nanoparticles is 

observed across the whole area of deposition. Monolayer depositions cannot be achieved 

at any operating condition. This region is represented by open diamonds. In the third 

region, “Pseudo-steady” represents the operating conditions, which all three 

morphologies (submonolayers, monolayers, and multilayers) are deposited in a periodic 

manner in the direction of deposition. This region is represented by triangles. The 

transparent grey shade outside experimental data shows the conditions, which are not able 

to operate due to equipment’s limitation. 
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Figure 3.3: Overall phase diagram of vibration-assisted deposition, which summarizes 

the effect of the amplitude (A0) and the frequency of vibration (ω). Open diamonds 

represent “phase separation” region. Squares represent “enhanced monolayer deposition” 

region. Each square is shaded with its respective range of monolayer deposition 

velocities. Triangles represent “pseudo-steady” region. Each region is shaded in color to 

guide the eye. The transparent grey shade outside experimental data shows the conditions, 

which are not able to operate due to equipment’s limitation. Constant acceleration (A0ω2) 

and constant velocity (A0ω) are shown in grey dash and black dash lines respectively. 
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3.2.2 Detailed Phase Diagram of Deposition 

Significant enhancements resulting from the addition of vibration are exhibited in 

the detailed phase diagram (Figure 3.4). Non-vibrated samples, exactly replicating 

traditional convective deposition, show that a single monolayer condition exists at vw = 

47 μm/s (not shown in Figure 3.4). The addition of vibration yields two primary effects. 

First, for all A0 sampled, the monolayer deposition velocity is increased. It can be 

interpreted that the effective length, l, of the thin film is increased similar to that seen in 

laterally vibrated evaporating droplets of water, where the evaporation is enhanced near 

the contact line. Experimental results are shown in Figure 3.5. Second, there is a wide 

monolayer deposition range of conditions. For ω = 1 Hz, a small region spanning less than 

15  μm/s results in monolayer coatings at 1 ≤ A0 ≤ 25 μm; at high amplitude, no long range 

monolayer deposition condition exists. At ω = 10 Hz, the separation of microparticles and 

nanoparticles (Figure 3.6) is observed under confocal and scanning electron microscopy 

at low amplitude (A0 < 15 μm) regardless of deposition velocity. At 15 ≤ A0 ≤ 25 μm, the 

range of monolayer deposition rates is roughly similar to ω = 1 Hz. At A0 > 25 μm, all 

three morphologies are deposited in a periodic manner in the direction of deposition as 

shown in Figure 3.7. For higher frequencies, results are similar to ω = 10 Hz, but the range 

of conditions resulting in monolayer depositions increases drastically. With ω = 20 Hz 

and ω = 50 Hz, increases/decreases to deposition velocity by as much as ∼50% do not 

necessarily transition deposition conditions beyond the monolayer regime, suggesting the 

mode of deposition has drastically changed. At ω = 100 Hz (not shown in Figure 3.4), 

similar to ω = 20 and 50 Hz, the separation of microparticles and nanoparticles is 
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observed at A0 < 25 μm. At A0 = 25 μm, the single monolayer deposition is noticed at vw 

= 54 μm/s. However, due to the limitation of experimental equipment, larger amplitude 

of vibration cannot be examined. 
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Figure 3.4: Phase diagrams show the resulting morphology as a function of changing 

amplitude, A0, and deposition velocity for (a) ω = 1 Hz, (b) ω = 10 Hz, (c) ω =  20 Hz, 

and (d) ω =  50 Hz. Open diamonds represent submonolayer deposition, green squares are 

monolayer conditions, black triangles are multilayer depositions, and red triangles are 

combined three morphologies. The operating conditions for monolayer deposition are 

shaded in grey to guide the eye. 
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Figure 3.5: Evaporation flux of a 10 μl sessile drop of DI water on a vibrated substrate. 

Note that the x-axis, amplitude is plotted on a log scale. Through motion of the thin film 

near the contact line, evaporation rate is enhanced.  
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Figure 3.6: (a) Confocal and (b) scanning electron microscopy images show the 

separation of microparticles and nanoparticles deposited at vw = 46 μm/s, ω = 10 Hz and 

A0 = 1 μm. It is noted that nanoparticles are invisible through confocal microscopy. 

a) 

b) 
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Figure 3.7: (a) Confocal and (b) scanning electron microscopy images show all three 

morphologies (submonolayers, monolayers, and multilayers) deposited in periodic 

manner at vw = 50 μm/s, ω = 10 Hz and A0 = 500 μm.  

b) 

a) 
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3.2.3 Enhanced Monolayer Deposition 

Through dimensional analysis (Table 3.1), one can consider the relative effects of 

inertia, surface tension, and viscosity. The Reynolds number, 


 LA
Re 0 , relating 

inertial to viscous forces increases roughly 100-fold with vibration addition. However, it 

is still no more than O(10−2) and thus is far below instability conditions for thin film flow. 

The capillary number, 


 0A
Ca  , relating viscous to surface force also increases by 

roughly 100-fold; however, it also remains extremely small at O(10−4). The Péclet 

number, 
kT

a
Pe

 36
 (Brady and Bossis 1985), relating rate of convection to diffusion 

increases roughly 100-fold to O(103) when based on the micrometer scale of silica 

particles. This suggests our system is dominated by the convection. The Weber number,



 LA
We

22

0 , increases to O(10−3) when based on the millimeter scale radius of 

curvature of the droplet between the blade and substrate (We is O(10−8) in case of 

traditional convective deposition). Although drop breakup is associated with We roughly 

O(1), this amount of inertia is sufficient to alter the shape of a droplet (Dimitrakopoulos 

and Higdon 1997). Here, the suspension interface likely deforms due to lateral 

acceleration as evidenced by the increase in Bond number,


 22

0 LA
Bo  , to O(10−3). 

This deformation would create pressure variations within the thin film that significantly 

alter the flow profile. Particles sliding over the substrate may sustain lubrication with 
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respect to the substrate, increasing the time which they can assemble before being brought 

into contact with the substrate through capillary force. 

The two-dimensional packing density and local order in monolayer depositions 

are enhanced by vibration as well. Figure 3.8 shows compiled microstructural analyses. 

There is little variation in sample quality within the monolayer regime. In all samples, 

this vibration-induced reduction of deposition speed sensitivity results in smaller error 

bars. Particles likely have more relative time within the thin film to assemble before 

capillary forces pin the particles to the substrate. Further investigation is necessary to 

determine the specific changes in self-assembly within the thin film. 
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Table 3.1: Dimensionless Analysis 

Dimensionless Number Traditional Convective 

Deposition  

(vw = 50 μm/s) 

Vibration-Assisted Convective 

Deposition 

(ω = 50 Hz, A0 = 248 μm) 

 







 LALv
Re w 0  1.0x10-4 2.5x10-2 







 0Av
Ca w   6.9x10-7 1.7x10-4 

kT

a
Pe

 36
  14 3600 







 LALv
We w

22

0

2

  3.5x10-8 2.2x10-3 







 22

0

2 LAL
Bo 


  0 8.6x10-3 

 

Note: a particle radius 

L

A

L

vw 
 0  
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Figure 3.8: Surface density, ρ, and local order parameter, Ψ6, as a function of vibration 

amplitude for ω = 50 Hz. Surface density and order increase as compared to traditional 

convective deposition, A0 = 0 μm, and smaller error bars indicate less variability between 

samples. 

 

  



 

43 
 

3.2.4 Phase Separation  

 As seen in Figure 3.3, the separation of microparticles and nanoparticles takes 

place at moderate frequency (10 ≤ ω ≤ 100 Hz) and small amplitude of substrate vibration 

(A0 ≤ 15 μm). Considering near crystal front where liquid film thickness is slightly larger 

than microparticle diameter, incoming microparticles may experience a lift within thin 

film by vibration-induced lubrication forces while nanoparticles continuously flow along 

the direction of deposition and form layers at crystal front. The nanoparticle flux exceeds 

that necessary to fill the microparticle interstitial region, nanoparticles force this region 

to expand. It is important to note that the Péclet number when based on the nanoparticle 

diameter is equal or less than 1 for all operating conditions with this region, for example, 

Penano~0.1 when ω = 20 Hz and A0 = 5 μm. This suggests that nanoparticles are dominated 

by diffusion. However, the interaction of microparticles and nanoparticles in a motion is 

complicated. Figure 3.9 depicts confocal images of particle morphologies deposited at 10 

≤ ω ≤ 100 Hz and 1 ≤ A0 ≤ 15 μm. All experiments are performed at monolayer deposition 

velocity (vw = 58 μm/s at ω = 10 and 20 Hz; vw = 67 μm/s at ω = 50 and 100 Hz). With 

increasing amplitude of vibration, higher disorder of microparticles is seen at every ω.  
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Figure 3.9: Confocal images of particle morphologies deposited at 10 ≤ ω ≤ 100 Hz and 

1 ≤ A0 ≤ 15 μm. All experiments are deposited at monolayer deposition velocity. 
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3.2.5 Pseudo-Steady  

 As previously mentioned, “Pseudo-steady” represents the operating conditions, 

which all three morphologies (submonolayers, monolayers, and multilayers) are 

deposited in a periodic manner in the direction of deposition. This periodic variation of 

morphologies is a result of the slow and gradual change in deposition speed. This result 

will take place only at low frequency (ω ≤ 20 Hz) and moderate to long amplitude of 

substrate vibration (A0 ≥ 50 μm). 
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3.2.6 Effect of Blade Angle  

 Figure 3.10 presents the phase diagram identifying monolayer deposition 

resulting from different deposition velocities and blade angles. All experiments are 

performed at ω = 50 Hz and A0 = 248 μm. At  = 20°, monolayer deposition velocities 

are ranging between 38-58 μm/s. With increasing deposition angle, faster deposition 

velocity is required to maintain monolayer deposition. This increased monolayer 

deposition velocity is due to the increasing of evaporation rate and pressure gradient along 

liquid thin film (Kumnorkaew et al. 2008). At  = 45°, the range of monolayer deposition 

velocities is roughly similar to  = 20° but the average monolayer deposition velocity is 

roughly 1.5 times faster. However, at  = 70°, the range of monolayer deposition 

velocities is only 40% of those smaller angles. The average monolayer deposition velocity 

is nearly similar to  = 45°. This result suggests that the addition of substrate vibration 

has less effect at high blade angle.  

Looking into submonolayer deposition results, all depositions are performed at vw 

= 108 μm/s and ω = 50 Hz. Figure 3.11 shows confocal images of the microstructure 

deposited at different blade angles (20° ≤  ≤ 70°) and amplitudes of vibration (0 ≤ 

A0 ≤ 248 μm). Here the characteristics of submonolayers (Figure 3.12) are identified by 

the ratio of the number of particles on the boundary of islands to total number of particles,

total

boundary

N

N
, and the ratio of the number of particles with  NN = 6 and 6 > 0.8 within islands 

to total number of particles,
 

total

NN

N

N 8.0&6 6
. At  = 20°, in case of non-vibrated samples 



 

47 
 

(A0 = 0 μm), 
total

boundary

N

N
and 

total

NN

N

N 8.0&6 6
are 0.12 and 0.19, respectively. At 1 ≤ A0 ≤ 

15 μm, we observed the enhancement in particle packing as evidenced by the decrease in 

total

boundary

N

N
 to 0.02 and the increase in

total

NN

N

N 8.0&6 6
 to 0.48. On the other hand, at 25 ≤ A0 ≤ 

248 μm, we observed the formation of particle islands. As increasing A0, more particle 

islands are observed as seen by dramatic increase in
total

boundary

N

N
to 0.25. However, the order 

of deposited particles within islands remains fairly constant. One possibility of the 

particle island formation is that the deformation of liquid film by substrate vibration 

causes temporary shifting of the crystal front to a new location. This shifting creates a 

gap between the primary crystal front and the incoming particles. Liquid film thickness 

is less than a particle diameter between this gap. The incoming particles stop at a liquid 

thickness equal to the particle diameter and create particle clusters at secondary crystal 

front. Since vw >> vmono, each particle cluster is deposited separately. Particles within each 

crystal domain may experience the rearrangement among themselves into well-ordered 

particle islands by capillary forces. Next, at  = 45°, 
total

boundary

N

N
and 

total

NN

N

N 8.0&6 6
are 0.08 

and 0.21 in case of A0 = 0 μm. At 1 ≤ A0 ≤ 15 μm, we observed the separation of 

microparticles and nanoparticles, which results in the decrease of 25% in
total

NN

N

N 8.0&6 6
. 

The mechanism is previously described in section 3.2.4. At A0 ≥ 25 μm, we observed 
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tremendous improvement of particle packing. 
total

boundary

N

N
decreases to 0.03 while 

total

NN

N

N 8.0&6 6
increases to 0.71. Finally, at  = 70°, 

total

boundary

N

N
and 

total

NN

N

N 8.0&6 6
 remain 

fairly constant at any A0. Even though we observed slight decrease of 8% in
total

boundary

N

N
and 

increase of 5% in
total

NN

N

N 8.0&6 6
at A0 = 248 μm, the effect of substrate vibration is still not 

conclusive. 

 

  



 

49 
 

 

Figure 3.10: Phase diagram identifying monolayer deposition resulting from different 

deposition velocities and blade angles. All experiments are performed at ω = 50 Hz and 

A0 = 248 μm. 
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Figure 3.12: Graphs show an analysis of the samples in Figure 3.11. The left-hand column 

shows   totalNN NN /8.0&6 6 
 while the right-hand column shows

totalboundary NN / . Blade 

angles are set at  = 20° for parts (a) and (b),  = 45° for parts (c) and (d), and  = 70° 

for parts (e) and (f). 

  

a) b) 

c) d) 

e) f) 
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3.3 Conclusions and Impact 

We demonstrate a purely mechanical technique for enhancing evaporation-driven 

convective deposition of particle monolayers from suspension. Lateral vibration in the 

deposition direction results in monolayer deposition at faster speeds, over a wider range 

of withdraw rates, and with higher degree of order versus traditional convective 

deposition. These enhancements and phenomena are a result of variation in the thin film 

where capillary interactions result in self-assembly by dynamically changing the air-

liquid interface. This enhancement in fabricating ordered particle thin films may enable 

development of optical and biological applications and efforts to scale-up this process for 

commercial application. 
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3.4 Template-free fabrication of partially aligned (100) fcc thin film colloidal 

crystals 

The assembly of monosized colloidal particles into long-range spatial crystalline 

order has long been the focus of fundamental studies for several decades  owing to their 

characteristic properties and applications in material engineering, optics and coatings 

(Pusey and Megen 1986). In contrast to natural particle assembly (Philp and Stoddart 

1996) governed by intermolecular and interparticle forces (Min et al. 2008; Bishop et al. 

2009), colloidal assembly (Whitesides and Grzybowski 2002) can be efficiently 

controlled through gravitational (Park, Qin, and Xia 1998), shear (Jiang and McFarland 

2004; Ruhl, Spahn, and Hellmann 2003; Shereda, Larson, and Solomon 2010), as well as 

electromagnetic (Hayward, Saville, and Aksay 2000; Smoukov et al. 2009) forces. 

Among these techniques, convective assembly (Dimitrov and Nagayama 1996; Prevo and 

Velev 2004; Ghosh, Fan, and Stebe 2007; Kumnorkaew et al. 2008), the evopration-

driven assembly of colloidal particles on a substrate, generates colloidal crystal films with 

fine control over film thickness and particle order over large sample areas.  

The research on convective colloidal assembly is mainly focused on self-assembly 

of monosized particles into single continuous crystal domain. This approach although 

yields ordered crystalline assemblies, however results in a combination of hexagonally 

close packed (hcp) and face centered cubic (fcc) structures, which have negligible 

variation in free energies (0.005 RT/mole, Woodcock 1997). The presence of these dual 

structures results in defects in overall packing, which limits their use in applications 

demanding highly ordered crystals. Here, a mixture of these hexagonal symmetries can 
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be referred as “random hexagonally close packed” or rhcp arrangements. Additionally, 

photonic (Vlasov et al. 2001; Jin et al. 2006; Yang et al. 2009), magnetic (Sun et al. 2000; 

Kazakova et al. 2004), and structural (An and Yu 2013) applications require non-close 

packed structures, which has been unable to realize without an application of external 

forces or utilization of complex templates. Although non-close packed colloidal 

structures such as body centered cubic (bcc) have been studied in addition to hexagonally 

close packed (hcp) structures for specific particle volume fractions and charge screening 

in concentrated suspensions of charge stabilized particles (Sirota et al. 1989), a separation 

of these structures from solution is still complicated.  

The spontaneous formation of square-packed domains by particle self-assembly, 

the (100) facets of fcc crystals, has been reported in confined transition regions between 

subsequent number of layers of hexagonal domains (Dimitrov and Nagayama 1996; 

Prevo and Velev 2004; Pieranski, Strzelecki, and Pansu 1983; Meng et al. 2006). 

However, the area of these transition regions is usually small and limited to only several 

particle diameters. Structures with (100) oriented colloidal-crystal planes has been 

reported successfully performed on pre-patterned substrates for many years (Blaaderen, 

Ruel, and Wiltzius 1997; Zhang et al. 2002; Yi, Seo, and Kim 2002; Lee et al. 2004; 

Hoogenboom et al. 2004; Jin et al. 2005; Yin, Li, and Xia 2003; Tanaka et al. 2006). 

In this section, we report the utilization of substrate vibration during convective 

assembly of multilayer colloidal crystals to fabricate extensive and tunable square-

packing structures. This substrate motion alters flow-patterns of the colloidal particles 

confined within the liquid film during convective assembly. Besides forming large (100) 
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fcc crystalline domains with relatively few defects, this technique is also able to control 

the crystal thickness and the proportion of hexagonal and square-packed arrangements.  

Vibration assisted convective deposition was employed to assemble particles 

from aqueous solutions into multi-layer colloidal crystal films. The experimental setup 

described previously (Muangnapoh, Weldon, and Gilchrist 2013) employs a glass 

microscope slide as a coating blade, fixed at an angle of 45o and ~1 mm above an 

underlying substrate. The bottom edge of the blade was made hydrophobic through 

attachment of Parafilm so as to confine small volumes (200 µl) of colloidal solutions in 

the angle between the blade and substrate. Continuous convective deposition of colloidal 

crystalline films was achieved by particle convection to and pinning at the contact line of 

the meniscus with the substrate during translation of the latter. In addition to linear 

translation of the substrate, characteristic of conventional convective deposition 

processes (Prevo and Velev 2004), colloidal crystalline depositions in this work were 

carried out with the addition of controlled in-plane vibrations imposed in the same 

direction as that of the meniscus withdrawal. This was achieved through combination of 

a linear mechanical driver (kdScientific) and a mechanical driver (PASCO SF-9324) 

coupled with a waveform sinusoidal signal generator (Agilent 33220A). 

Colloidal crystalline films were prepared in an enclosed chamber under controlled 

temperature (24oC) and humidity condition (20 %). Nominal depositions were prepared 

from a 10 % w/w suspension of 0.93 µm or 1.5 µm polystyrene (PS; Thermo-scientific) 

or silica particles (Fiber Optic Center Inc.) in water on 45 mm x 50 mm microscope cover-

glass (Fisherbrand) or glass-supported PS substrates. The latter was prepared by 
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convective deposition of 0.30 µm PS particles (10 % w/w) into ca. 2 µm films (14 µm/s 

at a humidity of 20 %) followed by melting at 240oC for 45 min. In all cases, glass 

substrates were pre-treated with piranha solution and subsequently rinsed with distilled 

water and dried prior to deposition. Colloidal crystalline film thickness, N, was tuned by 

controlling the rate of linear translation of the substrate, 𝜈𝑤 (2–10 µm/s), and relative 

humidity (i.e., evaporative solvent flux, je) according to the Equation 3.1 proposed by 

Dimitrov and Nagayama (1996).  

)(10.605
=





dv

Jl
N

w

e
    (3.1) 

where 𝛽𝑙 is  a constant, 𝜑 is the suspension concentration and 𝑑 is the diameter of particles 

in the suspension. Nominal waveform generation, A0sin(ωt), was carried out at a 

frequency of ω = 40 Hz and amplitude of ca. A0=1200 µm.  

Colloidal crystalline films were analyzed using white light irradiation and 

scanning-electron microscopy (SEM) on a Hitachi 4300 instrument to assess particle 

packing at the top-most layer of the film, and by laser scattering (λ=532 nm, 15 mm2 spot 

size) by the films supported on glass substrates for insight into the bulk crystallinity and 

crystal symmetry. The colloidal crystal samples were also analyzed using laser scanning 

confocal microscopy (CLCM, Visitech) after wetting samples with 8 mM Rhodamine-B 

dye in DMSO. CLSM scans were taken at sequential axial positions along the direction 

of coating as well as through the thickness of the colloidal crystal film.  

  



 

57 
 

Figure 3.13 presents a comparison of multi-layered polystyrene colloidal crystals 

prepared on glass substrates by conventional convective deposition (Figure 3.13a-d) and 

vibration-assisted convective deposition (Figure 3.13e-h). White light irradiation (Figure 

3.13a,e) of each colloidal crystal shows differences in the size of crystal domains. 

Especially, vibration-assisted assembly appears to increase the size of the single crystal 

domains (Figure 3.13e). Laser diffraction through these samples, carried out using a 532 

nm wavelength laser with a 15 mm2 spot size, confirms the large single crystalline 

domains prepared through vibration-assisted assembly (Figure 3.13f,g). On the other 

hand, Figure 3.13b shows the circular diffraction pattern in polycrystalline colloidal 

crystals assembled by conventional method due to lattice mismatch of smaller grains 

between hexagonal symmetries (Figure 3.13c). Laser diffraction from samples prepared 

by vibration-assisted assembly reveals two different crystalline symmetries. The first one 

is hexagonal symmetry (Figure 3.13f), commonly observed in colloidal crystals 

assembled by conventional method (Figure 3.13c,d). Second, the square/cubic symmetry 

(Figure 3.13g) refers to square-packed domains or (100) fcc as shown in the SEM image 

in Figure 3.13h. 
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Figure 3.13: Comparison of colloidal-crystals assembled by conventional (a-d) and 
vibration-mediated (e-h) convective deposition (a,e) White light irradiation of 

representative colloidal crystals comprised of 1.5 µm polystyrene particles on glass 

substrates reveals differences in characteristic scales of polycrystallinity, with laser 

diffraction (15 mm2 spot size) through the sample and corresponding SEM images of the 

colloidal crystal surface, indicating (b-d) micron-scale lattice-mismatched domains of 

rhcp symmetry with localized transition (shown as ‘t‘ in (c)) regions of square/cubic 

symmetry in the case of conventionally assembled colloidal crystals. The laser-diffraction 

experiments for samples obtained by vibration-mediated assembly shows a decidedly 

enlarged mm-scale domains of (f) hexagonal and (g,h) square/cubic symmetries. SEM 

images in (d,h) indicate the extent of the single crystallinity, with insets showing 

magnified views of the respective rhcp and square/cubic symmetries. 

 

a) e) 

b) c) 

d) 

f) g) 

h) 
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Further investigation of rhcp and square/cubic symmetries is explored under 

scaning electron microscopy and confocal laser scanning microscopy. Top-viewed SEM 

image (Figure 3.14a) of colloidal crystals prepared by vibration-assisted convective 

deposition of 0.93 μm polystyrene (PS) particles shows two distinct domains with 

differences in brightness. Darker regions possess a hexagonal arrangement of the close-

packed structure (rhcp) while brighter regions possess a square-arrangement as shown in 

the inset to Figure 3.14a. Moreover, the quality of colloidal crystals can be quantified by 

confocal laser scanning microscopy (Figure 3.14b), a technique enabling collection of 

optical slices through the thickness of the colloidal crystal and its subsequent 3D-

reconstruction (Figure 3.14c). The transition between the (100) fcc domains and rhcp 

domains occurred along well-defined sharp boundaries (Figure 3.14c), with the grain 

boundary extending vertically down across all the layers to the bottom-most layer of the 

assembly (Figure 3.14b). These vertical boundaries occur in contrast to (100) fcc 

assemblies obtained by epitaxy (Lee et al. 2004), primarily demonstrating 45º planar 

boundaries between domains, greatly reducing the effectiveness of the imposed surface 

structure.  
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Figure 3.14: Structural analysis of multi-layer cubic colloidal-crystals achieved by 

vibration-assisted convective assembly carried out by (a) SEM analysis of the top surface 

of the colloidal crystal (square packing of ‘(100) fcc’ domains shown in inset), (b) CLSM 

imaging of adjacent single crystalline domains at the crystal-substrate interface, and (c) 

3D reconstruction of the colloidal crystalline structure at a representative grain boundary. 

Analysis is shown for representative assemblies of 0.93 µm polystyrene (PS) particles. 

  

a) 

b) c) 
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The introduction of substrate vibration creates a back-and-forth movement of the 

meniscus (Figure 3.15a), resulting in a dynamic meniscus shape, as illustrated in Figure 

3.15b,c. One possible mechanism for the formation of (100) fcc crystalline domains could 

be the result of shearing of particle suspensions. There has been reported many studies 

on simple sheared colloidal systems (Dozier and Chaikin 1982; Ackerson and Clark 1983; 

Chen et al. 1992; Chen et al. 1994) as well as order induced by flow in Couette devices 

(Ackerson 1990) as well as planar geometries (Stancik et al. 2004) and Poiseuille flow 

(Sawada et al. 2001). Under oscillatory shear, the resulting structure depends on the 

direction of shear forces as well as the relative magnitudes of shear and inter-particle 

forces (Haw, Poon, and Pusey 1998; Panine et al. 2002; Besseling et al. 2012). In all of 

these systems, they observed only a formation of hexagonal symmetry, which is parallel 

to the boundaries of the system. However, in this work, the dynamic meniscus shape 

arising from substrate vibration might generate clusters with both hexagonal and square 

symmetry, which act as nucleates for the addition of incoming particles (Figure 3.15d). 

Moreover, this external shear might rotate generated clusters depending on the amplitude 

and frequency of substrate vibration. This can be observed in Figure 3.15d in which the 

large (100) fcc domains have a preferential orientation of 30o with respect to the 

deposition direction.   
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Figure 3.15: Schematic of vibration-assisted convective assembly and image analysis of 

in situ structure during assembly. (a) Schematic of the experimental setup for the 

vibration-assisted convective assembly procedure wherein the deposition blade is 

advanced at a velocity, vw, while the substrate undergoes oscillatory in-plane vibrations, 

A0sin(ωt), leading to periodic (b) elongation and (c) compression of the liquid meniscus 

during each cycle of the vibration. (d) Simultaneous formation of square and hexagonally 

packed regions through a nucleation-growth mechanism demonstrated by a color-

rendered in-situ confocal image. The image obtained using 0.93 µm PS particles and at 

40 Hz and amplitude of ~10 µm, comprises of both hexagonal (green) and square (red) 

packed nucleates being generated in the suspension (blue), suggesting a nucleation-

growth mechanism during convective assembly. 

 

a) 

b) c) 

d) 
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The self-arrangement of colloidal particles into non-hexagonal arrangement under 

the influence of flow fields has been suggested as a viable alternative to epitaxial 

approaches to engineer the packing structure in colloidal crystals. This approach adds 

vibration to the convective deposition process, inducing variations in solvent flow 

characteristics and meniscus properties, thereby resulting in spontaneous arrangement of 

particles in an oriented fcc (100) pattern parallel to the substrate and at a preferential angle 

α ~ 30º relative to the mean flow direction. This spontaneous ordering has been achieved 

in the absence of thickness variations, with an increasing trend for the phenomena 

observed with an increase in the number of layers of the colloidal crystal assembly. The 

possibility that variations of flow characteristics can organize the particles into various 

packing arrangements opens up new avenues to obtain tailored crystal structures tuned to 

the desired optical and structural requirements.   
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Chapter 4 

 
Effect of Ionic Strength and Surface 

Charge on Convective Deposition 

 

4.1 Introduction 

This chapter focuses on a fundamental understanding in particle-particle and 

particle-substrate interactions as well as impacts of ionic strength of medium and particle 

surface charge on convective deposition. Considering Nagayama’s equation (Eq. 1.1),  

is a value representing particle-particle and particle-substrate interactions (Dimitrov and 

Nagayama 1995), which is assumed to be between 0-1. approaches 1 for low volume 

fraction and electrostatically stable particles. However,   is a function of many 

parameters such as capillary force, ion strength of medium, or particle surface charge, 

which are simply hidden within this parameter. Previous studies have shown that other 

parameters such as the deposition blade angle (Kumnorkaew et al. 2008), the 

hydrophobicity of the deposition blade (Kumnorkaew et al. 2008), the introduction of 

nanoparticle (Kumnorkaew and Gilchrist 2009; Kumnorkaew, Weldon, and Gilchrist 

2010), or the external mechanical vibration (Muangnapoh, Weldon, and Gilchrist 2013) 

have a big impact on the final morphology of deposited particles. Here in this work we 
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aim to investigate effects of ionic strength of medium and surface charge of particles on 

convective deposition by simply controlling the concentration of NaCl and NaOH added 

into particle suspension. Coupled with DLVO theory, an electrostatic barrier and an 

effective separation distance can give better ideas of how particles interact with other 

particles and substrate. 
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4.2 Experimental Results and Discussion 

A surface charge of silica particles in aqueous phase is acquired by the 

dissociation of silanol group, SiOH (Iler 1979). This equilibrium is sensitive to 

surrounding conditions. An addition of electrolyte can drive new dissociation equilibrium 

resulting in more surface charge of silica particles as equilibrium shifts (Papirer 2002). In 

this study the surface charge of silica particles is controlled by an addition of NaOH until 

achieving desirable concentration of OH-. The reaction is shown below. 

OHSiOH ⇌  OHSiO 2  

Zeta potential (ξ) measurement gives an idea of surface charge on colloidal 

particle. Figure 4.1 depicts the zeta potential of silica particles as a function of OH- (open 

symbols) and NaCl (close symbols) concentration. Without an addition of NaOH, [OH-] 

= 10-7 mol/dm3, ξ of silica particle is -22 mV. The zeta potential of silica particles linearly 

decreases with respect to increasing concentration of adding NaOH. At [OH-] = 10-3 

mol/dm3, ξ of silica particle is -110 mV which suggests strong repulsion forces among 

silica particles. On the other hand, ξ of silica particle remains fairly constant with any 

addition of NaCl.  ξ of silica particle remains roughly constant at -40 mV at [NaCl] ≤    

10-4 mol/dm3, and slightly increases to -25 mV at higher salt concentration. These 

measurements suggest that the addition of NaOH alters both ionic strength and surface 

charge while the addition of NaCl alters only in ionic strength (Kershner, Bullard, and 

Cima 2004). 
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Figure 4.1: Zeta potential () as function of concentration of NaCl and OH- (mol/dm3). 
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4.2.1 Effect of Ionic Strength on Convective Deposition 

An ionic strength of medium depends on number of ions and ionic charge. Adding 

either NaOH or NaCl results in changing in the ionic strength. Here to observe effects of 

only ionic strength on convective deposition, [NaCl] ranged from 10-7 to 10-3 mol/dm3 is 

added. The two-dimensional packing density () and local order of deposited particles 

(6) are analyzed using confocal imaging. As shown in Figure 4.2, particle morphology 

can be categorized into 4 groups: (a) multilayer, (b) monolayer with 0.70 <  < 0.75 and 

6   0.575, (c) monolayer with   0.75 and 6  0.575 and (d) submonolayer. The 

effect of ionic strength on monolayer deposition is displayed in Figure 4.3. Similar to 

traditional convective deposition, the range of monolayer deposition velocity spans less 

than 10 μm/s. However,  and 6 of monolayer deposition are dramatically depressed 

even with little addition of NaCl (noted that  = 0.80 and 6 = 0.75 for monolayer 

deposition in traditional convective deposition). Red squares in Figure 4.3 represent 

monolayers with 0.70 <  < 0.75 and 6  0.575. Although, at 10-7 ≤ [NaCl] ≤ 10-5 

mol/dm3, the monolayer deposition velocity matches with traditional convective 

deposition, it decreases about 17% at [NaCl] = 10-4 mol/dm3 and further decreases to 

about 35% at [NaCl] = 10-3 mol/dm3. One possible reason of this depreciation in 

monolayer deposition velocity could be due to the difference in particle flux in thin film. 

Without an addition of NaCl, particles could not exist in vicinity of substrate due to 

electrostatic repulsion. As Debye length decreases, the effective area for particle flow 

increases which might slow down overall particle velocity, thus effective flux.  
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Figure 4.3: Phase Diagram showing monolayer deposition velocity (μm/s) as a function 

of log of concentration of NaCl (mol/dm3). Triangles represent multilayer deposition. 

Diamonds represent submonolayer deposition. Red rectangles represent monolayer 

deposition with 0.70 < ρ < 0.75 and Ψ6  0.575. 
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The electrostatic barrier as a function of distance between particle and substrate 

as well as the effective separation distance as function of concentration are calculated 

from mathematical simulation using DLVO theory (Zeng 2013). In case of [NaCl]        

10-5 mol/dm3, Debye length strongly depends on volume fraction because particles screen 

themselves. The effect of high particle volume fraction on Debye length was taken into 

account using following equation (Papirer 2002; Lebovka 2014). 

)(5.11

1
)( 0

re
DD









     (4.1) 

Where   =  Volume fraction of suspension 

 𝜆𝐷() =  Debye length at a volume fraction of  (m) 

𝜆𝐷
𝑜
  =  Debye length at infinite diluted suspension (m) 

σ  =  Surface charge density on silica particle (C/m2) 

ρ  =  Ionic density (m-3) 

e  =  Primary charge on single electron (C) 

r  = Radius of colloidal particle (m) 

 

At [NaCl] ≤ 10-5 mol/dm3, the electrostatic repulsions (Figure 4.4a) overlap, 

which suggests that the particles volume fraction dominates. However, this repulsion 

starts decreasing when added [NaCl] reaches 10-4 mol/dm3. At [NaCl] = 0.1 mol/dm3, 

suspension becomes unstable and particles start to aggregate, which is confirmed by our 

sedimentation experiment (Figure 4.5) and previous work (Rödner, Wedin, and 

Bergström 2002). Similarly, minimum repulsion distance (D) calculated by DLVO theory 
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(Figure 4.4b) remains constant until [NaCl] = 10-5 mol/dm3 and decreases with further 

NaCl addition (D = 89 nm at [NaCl] = 10-4 mol/dm3 and D = 37 nm at [NaCl] = 10-3 

mol/dm3). At this small distance, other forces like disjoining pressure act more strongly 

over electrostatic repulsion. If disjoining pressure is strong enough water film will break 

(Sharma 1993; Sharma 1998) and particles might collapse on substrate before they reach 

crystal front. To get better understanding, submonolayer deposition at various [NaCl] is 

investigated. We observed the clear transition in submonolayer deposition from locally 

ordered submonolayer at [NaCl]  10-5 mol/dm3 to randomly packed submonolayer, 

formed by separate clusters of particles at [NaCl] = 10-4 mol/dm3 (Figure 4.6). The locally 

ordered submonolayer suggests the particles have approached crystal front by ballistic 

deposition. On the other hand, random islands of particles suggest aggregation of particles 

in thin film. These big clusters increase effective diameter of particle and cannot be pulled 

to the crystal front as effectively as single particles by capillary forces, which leads to the 

reduction of monolayer deposition velocity. Also these separate clusters form monolayers 

with small domain sizes and increase the number of grain boundaries which result in 

lower  and 6.  
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Figure 4.4: (a) Electrostatic barrier due to repulsive forces between particle-substrate 

interactions as a function of distance (nm). (b) Minimum separation distance (nm) due to 

electrostatic repulsion as a function of NaCl concentration (mol/dm3). The calculation is 

courtesy of Kedar Joshi. 
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Figure 4.5: Sedimentation experiments showing (a) images of the suspension at different 

[NaCl] at t = 10 min, and (b) sedimentation height with respect to sedimentation time. 
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Figure 4.6: Rendering images of submonolayer deposited at (a) [NaCl] = 10-7 mol/dm3, 

(b) [NaCl] = 10-6 mol/dm3, (c) [NaCl] = 10-5 mol/dm3, and (d) [NaCl] = 10-4 mol/dm3.  
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4.2.2 Effect of Surface Charge on Convective Deposition 

Unlike an addition of salt, the addition of NaOH simultaneously alters both ionic 

strength and surface charge. With an increase in surface charge, as expected, we observe 

the enhancement of monolayer deposition. As depicted in Figure 4.7a, at [OH-] = 10-7 

mol/dm3 (no NaOH added), the monolayer condition exists at vw = 75-78 μm/s. The range 

of monolayer deposition velocity increases by 700% at [OH-] = 10-5 mol/dm3. However, 

this range again decreases at higher [OH-]. Here surface charge plays an important role 

in a stability of colloidal particles. With an increase in [OH-], surface charge increases as 

previously described in the zeta potential measurement (Figure 4.1). At [OH-] ≤ 10-5 

mol/dm3, minimum repulsion distance remains constant (Figure 4.4) as particles 

screening themselves; however, additional surface charges from OH- leads to stronger 

repulsion force between particles and substrate. Particles may have extra time to rearrange 

themselves within the liquid thin film resulting in higher  and 6. At [OH-] > 10-5 

mol/dm3, although particles gain additional surface charge, minimum repulsion distance 

decreases which brings particles closer to each other. This results in the shrinkage of 

monolayer region. 

In this study the expansion of monolayer deposition region is mainly found on 

slower velocity side (Figure 4.7a). At the lower deposition velocities, the particle flux 

from the meniscus to thin film is more than the particle flux needed for monolayer 

deposition which is governed by water evaporation rate. In order to get monolayers at 

such speed the thin film length has to be reduced by changing deposition blade angle 
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(Kumnorkaew et al. 2008), which will decrease the evaporation flux, or particles have to 

suspend in the thin film longer by additional electrostatic repulsion forces.  

Figure 4.7b presents experiments performed at fixed ionic strength [I] = 10-3 

mol/dm3 and varied [OH-]. With increasing surface charge, not only the expansion of 

monolayer region but also the improvement in the order of monolayer is noticeable. 

Again, in order to identify the effect of particle surface charge, microstructure analysis of 

submonolayer deposition is examined. As expected, we observed the transition from 

random to locally ordered submonolayer as confirmed in Figure 4.8. 
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Figure 4.7: Phase diagrams showing (a) monolayer deposition velocity (μm/s) as a 

function of [OH-], and (b) monolayer deposition velocity (μm/s) as a function of [OH-] at 

fixed ionic strength [I] =10-3 mol/dm3. Triangles show multilayer deposition. Diamonds 

show submonolayer deposition. Red rectangles show monolayer deposition with 0.70 < 

 < 0.75 and 6   0.575. Blue rectangles show monolayer deposition with   0.75 and 

6  0.575.  
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Figure 4.8: Rendering images of submonolayer deposited at constant [I] = 10-3 mol/dm3 

and (a) [OH-] =10-7 mol/dm3, (b) [OH-] =10-6 mol/dm3, (c) [OH-] =10-5 mol/dm3, and (d) 

[OH-] =10-4 mol/dm3. 
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4.3 Conclusions 

Ionic strength and surface charge play vital role in determining nature of particle 

morphology in convective assembly. The basic mechanism of particle deposition at 

micro-level is governed by particle-particle and particle-substrate interactions. Presence 

of salt brings particles closer due to increasing in ionic strength, which results in pre-

organized deposition and particle island formation. These particle islands lead to lower 

packing density and local order in monolayer depositions. On the other hand, an increase 

in surface charge results in the enhancement in monolayer depositions due to additional 

electrostatic repulsion forces. 
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Chapter 5 

 
Preliminary Investigations of 

Marangoni Effect on Convective 

Deposition 

 

5.1 Introduction 

Two-dimensional (2D) colloidal crystals obtained from the convective deposition 

(Kumnorkaew et al. 2008; Prevo and Velev 2004; Dimitrov and Nagayama 1995; 

Yamaki, Higo, and Nagayama 1995) of colloidal silica particles are formed through 

capillary force and convective evaporation. Silica monolayers achieved via convective 

deposition have great usages as coatings on optical technologies, including LEDs (Ee et 

al. 2007; Kumnorkaew et al. 2008) and DSSCs, as well as biological technologies, 

including immunoaffinity diagnostic tools (Wang et al. 2011) and viral filtration 

membranes (Weldon et al. 2012). However, these depositions are prone to imperfections 

that cannot be controlled during the deposition process. This causes many issues during 

scale-up and creates inefficiencies.  

Instability-driven “streaks” can nucleate and progress through the sample length 

(Figure 5.1). In this chapter “streaks” is defined as multilayers with more than 7 layers. 
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These macroscale defects are most likely a product of surface tension-driven flow 

(Brzoska, Shahidzadeh, and Rondelez 1992; Bertozzi and Brenner 1997; Kataoka and 

Troian 1997). Unless treated with a form of stabilization such as surfactants (Kleinert, 

Kim, and Velev 2010), nanoparticles (Kumnorkaew and Gilchrist 2009; Kumnorkaew, 

Weldon, and Gilchrist 2010) or applied mechanical vibration (Muangnapoh, Weldon, and 

Gilchrist 2013), random, uncontrollable multilayer streaks will form during the 

deposition process. The location, size, and thickness of these streaks have no modeled 

pattern and are believed to be caused by micro-level evaporating conditions not being 

uniform across the entire substrate.  

The Marangoni effect is observed in surface transport when there exists a surface 

tension gradient. This surface tension gradient will cause a flow of the fluid from lower 

surface tension to higher surface tension. In this study, the concentration gradient is 

caused by the difference in surface tension between the region with higher ethyl alcohol 

concentration (meniscus) and lower ethyl alcohol concentration (thin film); a similar case 

exists in many wines causing wine to flow up the sides of the glass in the direction of the 

surface tension gradient causing rings around the glass, hence “tears of wine” (Thomson 

1855; Hosoi and Bush 2001). Here this study focuses on solving the inherent problem of 

uncontrollable multilayer streaks that form during normal convective deposition of silica 

particles by the addition of ethyl alcohol (EtOH) as well as studying the Marangoni effect 

that persists in this EtOH-water system. 
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Figure 5.1: (a) Successfully deposited silica monolayer with no instabilities or streaks. 

(b) Silica coating that exhibits random, uncontrollable multilayer streaks. 
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5.2 Experimental Results and Discussion 

5.2.1 Marangoni Flows in EtOH-Water Based Silica Suspension: Droplet 

Experiments 

The driving forces behind Marangoni flows are, for the purposes of this study, 

temperature and EtOH concentration generating surface tension gradients. As shown in 

Figure 5.2, untreated silica suspension droplets illustrate the “coffee ring effect” (Deegan 

et al. 1997) in which the silica particles will collect at the edge of the droplet during 

evaporation causing the greatest concentration at the edge of the dried ring and a very 

low concentration in the middle. Across all temperatures, this was observed without much 

deviation. Once EtOH was added, significant drop spreading occurred due to the presence 

of Marangoni flows. Fingering instabilities (Troian, Wu, and Safran 1989) were observed 

especially when the concentration of EtOH is between 30-50 %V. At lower temperatures 

the droplet retained its circular shape, however at higher temperatures the shape of the 

droplet became highly irregular as a result of the combination of Marangoni-driven 

spreading and fingering instabilities at the edge of the advancing meniscus. At high 

concentration, the evaporation again dominates over the Marangoni flow resulting in the 

dried ring with higher concentration at the edge. 

Figure 5.3 represents three distinct phases of evaporating EtOH-water based silica 

suspension at 30 %V EtOH. This result shares some similarities to previous studies 

(Hamamoto, Christy, and Sefiane 2012; Innocenzi et al. 2008) where three distinct phases 

of evaporation were investigated. However, in their work, no fingering instability was 

observed. It is noted that they studied the flow characteristics of evaporating EtOH-water 
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droplet only at 5 %V EtOH. In our work, at initial condition (Figure 5.3a), t = 0 s, the 3-

l droplet of suspension is placed onto a piranha-treated glass substrate resulting in the 

circular droplet with a diameter of 0.4 cm. In the first phase, significant drop spreading 

and fingering instabilities occurred all around the droplet as a result of Marangoni flow 

(Figure 5.3b). This results in an expansion of the drop to roughly 1.7 cm. In the second 

phase, starting from the edge to the center, the first drying boundary suggesting the 

evaporation of EtOH is noticeable (Figure 5.3c). This phase takes place around 12 

seconds. In the last phase where water evaporates (Figure 5.3d), the rate of water 

evaporation is roughly 2 times slower than the second phase. 
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Figure 5.2: Photograph showing the effects of temperature and concentration of EtOH on 

suspension droplet spreading. 
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Figure 5.3: Three distinct phases of evaporating EtOH-water based silica suspension: (a) 

initial droplet, (b) Phase I: droplet spreading due to Marangoni flow and fingering 

instability, (c) Phase II: EtOH evaporation, and (d) Phase III: water evaporation. 
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5.2.2 Effect of EtOH Concentration on Convective Deposition 

In this set of experiments, the deposition velocity is manipulated at vw = 400-700 

μm/s which is roughly 10 times faster than traditional convective deposition (water-based 

suspension). The area of monolayers (%) is plotted with respect to EtOH concentration 

(%V) as depicted in Figure 5.4.  For all of these experiments, no streak has been observed 

in the middle of sample. For low EtOH concentration, 1-5 %V (not shown in Figure 5.4), 

the suspension is pulled toward the beginning part of deposition due to the surface tension 

gradient resulting in thick multilayer deposition (more than 7 layers) on the beginning 

part of sample. Moreover, wavelike patterns, which are double or triple layers, are 

commonly observed throughout the whole sample (Figure 5.5). At 10 and 20 %V EtOH, 

the results are similar to those samples of 1-5 %V EtOH. The thick multilayer deposition 

(more than 7 layers) in the beginning part are occupied around 15% of the whole sample 

area. Monolayers are less than 10%. The rest of sample is a combination of 

submonolayers and multilayers (less than or equal to 7 layers). Interestingly, between 30-

50 %V EtOH, the significant increase in monolayers is noticed. The obtained monolayers 

are at least 45% regardless of deposition velocity. Periodic stripes (Figure 5.6) within 

submonolayer region suggest a strong influence of Marangoni flows on a convective 

deposition. At higher EtOH concentration (more than 50 %V), due to high evaporation 

rate of EtOH, more than 90% of the whole sample area is multilayers.  
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Figure 5.4: Graph showing the area of monolayer (%) as a function of EtOH concentration 

(%V). 
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Figure 5.5: Photograph of the deposited sample using 3% EtOH suspension. Thick region 

at the beginning of sample is due to Marangoni flow. Wavelike patterns are observed 

throughout the whole sample. 
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Figure 5.6: Scanning electron microscopy images showing periodic stripes within 

submonolayer region. The sample is deposited at vw = 583 μm/s using 40% EtOH 

suspension. 
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5.3 Conclusions 

This study focuses on controlling instabilities via manipulating the meniscus flow 

by adding ethyl alcohol (EtOH) into the silica microsphere and water suspension. 

Nonuniform evaporation of EtOH results in a flow similar to that which is attributed to 

the formation of “tears of wine”. This phenomena had been shown by our data to have an 

appreciable impact on these instabilities and thus can be employed in scale-up procedures 

to achieve better coatings of silica monolayers. 
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Chapter 6 

 
Applications and Potential Studies 

 

6.1 Chapter Overview  

 This chapter presents applications and potential studies which have considerably 

utilized vibration-assisted convective deposition (previously described in Chapter 3) in 

their processes. First, we present a simple method of making colloidal microlens arrays 

from binary suspension of silica (SiO2) and polystyrene (PS) particles. PS thickness can 

be precisely controlled using either oxygen reactive ion etching (RIE) or additional 

deposition of PS suspension (section 6.2). These microlens arrays can be used in many 

applications including enhancing the light extraction efficiency of InGaN quantum-well 

light-emitting diodes (section 6.3) as well as making Iradium-capped Janus particles 

(section 6.4). Second, we demonstrate a potential application using uniform PS 

multilayers assembled by vibration-assisted convective deposition. These PS multilayers 

can be used as templates to make magnesium oxide (MgO) membranes for battery 

separator layers (section 6.5).  
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6.2 Development of Colloidal Microlens Arrays with Various Aspect Ratios  

In this study we demonstrate a use of vibration-assisted convective deposition to 

fabricate SiO2/PS microlens arrays with various aspect ratios. Binary suspension of 1-μm 

SiO2 particles (
2SiO = 0.2) and 75-nm PS particles ( PS = 0.08) is used in all experiments. 

First, the deposition of well-ordered microsphere monolayers from binary suspension is 

performed at vw = 70 μm/s, ω = 50 Hz, A0 = 248 μm, and blade angle of 45. Next, the 

sample is heated at 240 C for 5 minutes to melt PS particles. The initial thickness of PS 

layer is 650 nm as illustrated in Figure 6.1a. The thickness of the PS layer can be 

manipulated by two methods: 

1) Oxygen reactive ion (plasma) etching 

2) Additional deposition of PS suspension 

Reactive ion etching (RIE) is commonly utilized in colloidal lithography (Choi et 

al. 2004; Cong et al. 2009; Ji et al. 2011). Recently, RIE has been reported to use for size-

reduction of colloidal spheres (Cong et al. 2009). Here in this study, we use oxygen RIE 

in order to precisely reduce the thickness of PS layer. Figure 6.2 presents the thickness of 

PS layer as a function of time of oxygen RIE. The oxygen RIE is performed in oxygen 

plasma generator (Prof. Xuanhong Cheng’s lab, Lehigh) at radio frequency (RF) power 

of 50 W. The thickness of PS layer is reduced to 580, 480, 260 and 0 nm under oxygen 

RIE time of 1.5, 2.5, 5.0, and 7.0 minutes, respectively (Figure 6.1 b-e).  
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Figure 6.2: Thickness of PS layer as a function of oxygen RIE time. 
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On the other hand, to increase the thickness of PS layer, the additional deposition 

of PS suspension is required. First, SiO2/PS microlens arrays with PS thickness of 650 

nm is prepared as described above. Next, the sample is put into a furnace at 500 C for 

30 minutes to completely burn PS off (Figure 6.3b). Then the additional deposition of 4 

%V PS suspension is performed at vw = 50 μm/s on top of SiO2 monolayers. After 

deposition, the sample is again heated at 240 C for 5 minutes. The resultant PS thickness 

is 1 μm (Figure 6.3c). It is important to note that PS thickness can be accurately 

manipulated by either varying deposition velocity or concentration of PS suspension. 
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6.3 Application: Enhancement in light extraction efficiency of InGaN quantum-

well light-emitting diodes (LEDs) 

In collaboration with Prof. Nelson Tansu (Lehigh), SiO2/PS microlens arrays with 

various aspect ratios are deposited on top of InGaN quantum-well light-emitting diodes 

(LEDs). The electroluminescence (EL) measurements performed by Tansu group are 

shown in Figure 6.4. At  = 0 (normal direction) and current density of 80 A/cm2, the 

microlens LEDs with PS thicknesses of 0 nm, 250 nm, 650 nm, and 810 nm show 2.40, 

2.60, 2.03, and 1.96 times improvement in the integrated power, respectively. 

Additionally, at  = 45 (oblique direction) and same current density, the microlens LEDs 

with PS thicknesses of 0 nm, 250 nm, 650 nm, and 810 nm show 2.19, 2.80, 3.27, and 

3.18 times improvement in the integrated power. The light extraction efficiency of LEDs 

is increased due to the reduced Fresnel reflection, enlarged photon escape cone and 

enhanced photon scattering (Li et al. 2011). 
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Figure 6.4: EL spectra of InGaN QW LEDs emitting at 432 nm of SiO2/PS microlens 

arrays with various PS thickness measured at (a)  = 0, and (b)  = 45 (Li et al. 2011). 
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6.4 Potential Study: Convective Deposition for Making Janus Particles 

 Here we demonstrate a potential application using SiO2/PS microlens arrays for 

making Janus particles. Similarly, SiO2/PS microlens arrays with desired PS thickness is 

firstly prepared using methods in section 6.2. Next, sputter coating of Iridium (Ir) is 

performed. Finally, the sample is put into a furnace at 500 C for 30 minutes to completely 

burn PS off. SEM image of Iridium-capped silica particles and X-ray energy-dispersive 

spectroscopy (XEDS) analysis are shown in Figure 6.5. 
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Figure 6.5: (a) SEM images of Iridium-capped silica particles and (b) XEDS analysis. 
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6.5 Potential Study: Magnesium Oxide Membrane for Battery Separator Layers   

The goal of this study is to produce magnesium oxide (MgO) membrane to carry 

electrolytes and separate anode and cathode layers in batteries. Desired properties of 

membrane are listed: (1) Porous (small pore size to hold electrolyte), (2) Permeable to 

ion flow (minimal ionic resistance), (3) Mechanically strong, (4) Chemically stable, and 

(5) Easy to scale up. However, handling MgO is a challenging task since the density of 

MgO is high (MgO = 3.6 g/cm3). Moreover, MgO is not stable and preferably reacted 

with water to become Mg(OH)2 as shown Figure 6.6. The reaction of MgO and water is 

described in the following reaction.  

OHMgO 2    2OHMg  

 Here in this study 35-nm MgO particles (Inframat Advanced Materials) are 

dispensed in EtOH (200-proof). Alkali lignin (Sigma-Aldrich) is used as a stabilizing 

agent. Agglomerated MgO particles are separated using sedimentation. The liquid part is 

used as stock suspension for all experiments. Two approaches of making MgO 

membranes have been studied. First, a separate colloidal suspension of 600-nm 

polystyrene spheres (Thermo Scientific) is mixed with stock MgO suspension to achieve 

the desired suspension composition. This suspension is deposited onto piranha-treated 

glass substrate using vibration-assisted convective deposition. After deposition, the 

sample is put into a furnace at 500 C for 30 minutes to completely burn off PS 

nanospheres and alkali lignin. MgO layers with randomly distributed pores are observed 

under scanning electron microscopy (Figure 6.7). However, these pores are not 

interconnected and MgO layers are loosely stuck to the substrate.  
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For the second approach, the multilayers of 600-nm PS particles prepared by 

vibration-assisted convective deposition are used as a scaffold for the infiltration of MgO 

suspension. The stock MgO suspension is deposited on top of PS multilayers. We noticed 

that MgO particles cannot penetrate through PS multilayers (regardless of deposition 

velocity) and form a layer on PS multilayers (Figure 6.8). Also, positively-charged PS 

particles have been used in this experiment; however, the result is similar.  

In summary, the fabrication of MgO membrane for battery separator layers is not 

yet completed due to a problem in the infiltration process. In the future, magnesium nitrate 

hexahydrate will be used as magnesium precursor for infiltration into PS multilayers. 

MgO products will be generated by calcination at 600 C for 8 hours (Li et al. 2004). 
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Figure 6.6: SEM image of Mg(OH)2 particles formed by the reaction of MgO and water. 
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Figure 6.7: (a) Cross-sectional SEM image of 6-μm MgO layer deposited by the mixture 

of MgO and PS and (b) top-view SEM image showing randomly distributed pores 

throughout the whole samples. 

 

 

 



 

107 
 

 
 

Figure 6.8: Cross-sectional SEM image showing MgO layer on top of a PS multilayer. 
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6.6 Conclusions   

Vibration-assisted convective deposition is an advanced technique to assemble 

uniform SiO2/PS microlens arrays with high microstructure order. These SiO2/PS 

microlens arrays can be used in many applications including material engineering, 

biotechnology and energy-related applications. Here, we develop two methods to 

accurately manipulate PS thickness between 0-1 μm. First, oxygen reactive ion (plasma) 

etching can be used for decreasing PS thickness. The result shows that the thickness of 

PS linearly decreases with increasing plasma treatment time. Second, an increase in PS 

thickness can be performed by the additional deposition of PS suspension. The resulting 

PS thickness is dependent of deposition velocity and concentration of PS suspension. 

Moreover, we demonstrate a use of these SiO2/PS microlens arrays for enhancing the 

light extraction efficiency of InGaN quantum-well light-emitting diodes (LEDs). After 

fabricating SiO2/PS microlens arrays on top of mentioned LEDs, the light extraction 

efficiency is increased by 2-3 times depending on PS thickness. Besides, we present 

couple potential studies which are required vibration-assisted convective deposition in 

their processes. 
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Chapter 7 

 
Summary and Future Outlook 

 

7.1 Summary 

Convective deposition is a promising technique to fabricate relatively large, well-

ordered particles microstructure. This combines two phenomena where particles flow to 

the contact line of a meniscus as a result of the evaporative flux, then order through 

capillary forces. However, natural defects such as point defects, line defects, grain 

boundaries, and streaks can nucleate uncontrollably throughout the sample. This thesis 

focuses on the improvement of convective deposition to suppress undesirable instabilities 

and defects. 

The application of lateral vibration of the substrate is significant process 

enhancement in convective deposition. This technique not only suppresses instabilities 

and defects but also increases formation rates of deposited particles. Besides, it 

significantly improves process robustness by allowing the deposition of monolayers 

under a wide range of deposition velocities. These enhancements are a result of the 

deformation of air-liquid interface during the deposition. This deformation create 

pressure variations within the thin film which significantly change the flow profile and 
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introduce lubrication forces into the system. In addition, this technique is applicable for 

many applications including enhancing the light extraction efficiency of InGaN quantum-

well light-emitting diodes, fabrication of MgO membranes for battery separator layers 

and fabrication of complex materials such as Janus particles. 

Particle surface charges and ionic strength of medium are important parameters 

which have never been taken into account in convective deposition. The addition of salt 

increases the ionic strength and reduces the thickness of the electric double layers, which 

leads to particle clusters formation during deposition. On the contrary, the addition of 

NaOH increases particle surface charges and gives extra electrostatic repulsion forces 

between particle-particle and particle-substrate. The result shows the expansion of 

monolayer deposition region especially on slower deposition velocity side. 

Binary liquid phases of ethyl alcohol and water could lead to the Marangoni flows 

within convective deposition. Favored evaporation of ethyl alcohol drives surface tension 

gradients and results in the flow similar to the formation of “tears of wine”. Optimum 

ethyl alcohol concentration for convective deposition is between 30-50 %V where 

monolayers deposition can take place at deposition velocity roughly 10 times faster than 

traditional convective deposition.  
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7.2 Future Outlook  

The most significant challenge to researchers in this area is to scale up convective 

deposition process for industrial applications. Most of current researches in convective 

deposition use a small batch process (milliliter scale). Suspension stability is one of the 

major concerns since an agglomeration of colloidal particles will lead to a dramatic 

decrease in coating quality. In continuous process, a mixing equipment needs to be added 

to maintain well-dispersed suspension throughout a deposition process. An increase in 

electrostatic repulsion forces among particles (as discussed in Chapter 4) is another easy 

approach to improve suspension stability. In aqueous silica suspension, an addition of 

NaOH can increase particle surface charges resulting in an increase in electrostatic 

repulsion forces. However, this method cannot apply to other solvents or particle 

materials such as polystyrene. Furthermore, a life time of deposition blade needed to be 

evaluated.  

Besides, the effect of Marangoni flows on convective deposition is moderately 

understood. Further investigation at low (less than 20 %V) and high concentration (more 

than 50 %V) of ethyl alcohol must be carried on. Especially at low concentration, we 

observed periodic wavelike patterns of deposited particles throughout the whole sample 

regardless of deposition velocity. To the best of our knowledge, the mechanism of this 

formation has never been reported. Perhaps studies allowing experimental particle 

tracking under confocal laser scanning microscopy can give further insight into the 

formation of these wavelike patterns. Additionally, current study on defect suppression 

is also necessary. An addition of surfactants can create the surface tension gradient within 
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the meniscus, resulting in reversal Marangoni flows back into bulk suspension. This study 

has shown a potential for streaking suppression.  

 Finally, our developed methods for the fabrication of uniform SiO2/PS microlens 

arrays with controllable aspect ratios can be further utilized to create other functionalized 

colloidal materials such as hydrophobic-hydrophilic Janus particles.
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