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1 Abstract 

In the field of solid oxide fuel cells (SOFCs), a substantial portion of research is focused 

on the ability of some oxide materials to conduct oxygen anions through their structure. For 

electrolytes, the benefits of improving bulk transport of ions are obvious: decrease the resistive 

losses of the electrolyte, and device efficiency goes up and higher power densities are possible. 

Even for cathode materials, better bulk ion transport leads to an increase in the oxygen 

exchange rate at the cathode surface, and the oxygen reduction reaction at the cathode surface 

is the rate limiting step for SOFC operation at intermediate temperatures (500-700ºC). As 

operation in this regime is a key step towards lowering the manufacturing cost and increasing 

the lifetime of devices, much effort is spent searching for new, more conductive materials, and 

analyzing existing materials to discover the structure-activity relationships that influence ionic 

conductivity. 

In the first part of this work, an overview is given of the neutron powder diffraction 

(NPD) techniques that are used to probe the structure of the materials in later parts. In the 

second part, NPD was used to analyze the structures of perovskite-type cathode materials, and 

show that increases in bulk conductivity led to increases in the surface oxygen exchange rate of 

these materials. In the final part, the methods used for SOFC cathode design were applied 

towards the design of oxide catalysts used for certain hydrocarbon partial oxidation reactions. 

The reactions studied follow the Mars van Krevelen mechanism, where oxygen atoms in the 

catalyst are consumed as part of the reaction and are subsequently replenished by oxygen in the 

gas phase. Similar to SOFC cathode operation, these processes include an oxygen reduction 

step, so it was hypothesized that increasing the ionic conductivity of the catalysts would 
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improve their performance, just as it does for SOFC cathode materials. While the results are 

preliminary, the combination of a reference catalyst for the oxidative coupling of methane with 

a support with very high oxygen conductivity demonstrated a small increase in performance at 

low temperatures. 

  



3 

2 The Neutron Diffraction Technique 

2.1 Introduction 

Neutron scattering is a powerful tool for materials analysis, with many different 

techniques employed to gain unique insights into a variety of material systems. In this review we 

examine the use of neutron powder diffraction (NPD) to probe materials at elevated 

temperature, and often under controlled gas atmospheres. This forms the definition of in-situ 

utilized within this review: probing materials that will operate above ambient temperatures in 

gas atmospheres. The primary motivation for this chapter is to demonstrate the utility of such 

in-situ neutron diffraction techniques and to highlight the facilities available to those working in 

the field. The focus of this review, and the area in which the McIntosh research group focuses, is 

in materials with application for high temperature solid oxide fuel cells (SOFCs), ion transport 

membranes (ITMs), and catalysts.  Additional examples of other material systems are provided 

to illustrate the wide application of this technique.  

The majority of materials of interest for this application are crystalline mixed metal 

oxides, often with the perovskite, spinel or a related structure. Many show significant oxygen 

non-stoichiometry which is utilized, in the case of solid oxide fuel cells and membranes, to 

facilitate oxygen transport via a vacancy hopping mechanism or, in the case of automotive 

catalysis, to provide an oxygen storage capacity1. The oxygen anion conductivity of these 

materials is a function of the concentration of oxygen vacancies and the mobility of the oxygen 

anions; the latter being a function of the surrounding crystal structure. For example, oxygen 

vacancy ordering can occur, locking the vacancies at certain crystallographic sites and often 

dramatically decreasing ionic conductivity. 
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The power of neutron diffraction lies in the interaction of neutrons with these oxygen 

anions. X-rays interact with the electron cloud of the atom, such that the scattering intensity is 

directly related to the atomic number (number of electrons) of the ion. This also results in a 

relatively short penetration depth into materials that decreases with atomic number. In 

contrast, neutrons interact with the atomic nucleus, such that there is no direct correlation 

between scattering intensity and atomic number, and resulting in a high penetration depth for 

neutrons. Neutrons can also be scattered by unpaired electrons and the magnetic structure of a 

material, but both of these applications are outside the scope of this review. For a review of 

neutron scattering itself, we refer the reader to the work of Dove2. 

The result is that while an X-ray diffraction pattern contains information primarily 

related to the metal atoms in a mixed metal oxide, a neutron diffraction pattern contains 

information on both the metal atoms and the oxygen. Rietveld refinement3–5 of this diffraction 

pattern can then yield a multitude of information including the crystallographic location, 

occupancy, and the isotropic or anisotropic atomic displacement of the atoms. These 

parameters are of primary interest to those working to develop materials with high oxygen 

mobility and resulting ionic transport. The insights that this technique can provide will be 

highlighted in this review. 

While room temperature neutron diffraction, perhaps using quenched samples, can 

provide useful information on the structure of these materials, in-situ studies are required to 

understand what occurs under real operating conditions and to, for example, map phenomena 

such as phase stability in temperature-pO2-time space. The advantage of measuring all of these 

parameters in a single experiment should not be understated. For example, if we wish to 

determine the oxygen non-stoichiometry of a material without neutron diffraction we typically 

turn to thermogravimetric analysis (TGA), and map the change in weight of a sample as a 
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function of temperature and pO2. Aside from concerns related to accuracy and stability of the 

balance, this technique is only a relative measurement, requiring determination of the oxygen 

content in a reference sample to provide absolute oxygen stoichiometry. Furthermore, if phase 

transition occurs it may go unnoticed. Separate in-situ XRD experiments would be required to 

quantify this but would still be missing information on the distribution of oxygen across different 

crystallographic sites and their atomic displacement. These factors combine to create significant 

deviations in reported oxygen stoichiometry values for the same materials6. In-situ neutron 

diffraction solves this problem by providing simultaneous and direct measurement of the 

oxygen stoichiometry and crystal structure. 

While the advantages of this technique are great, there are some disadvantages. Of 

course a neutron system is housed at a national facility requiring an application for beam time 

and careful planning of experiments. However, a number of facilities, including both the 

POWGEN instrument at the Spallation Neutron Source (SNS), Oak Ridge National Laboratory, 

Oak Ridge, TN, USA and the D20 diffractometer at the Institut Laue-Langevin (ILL) in Grenoble, 

France, are now equipped to routinely probe materials under the in-situ conditions described 

here. The system at the SNS was developed as a collaboration between the POWGEN 

instrument team and the McIntosh group specifically for this application; it is capable of 

temperatures up to 850ºC and in gas atmospheres to control pO2 in the range 10-24 < pO2 <1 atm 

using gases from pure H2 to pure O2. Thus this ‘activation barrier’ is perhaps more perceived 

than real.  

The large penetration depth of neutrons implies that, compared to X-rays, neutrons are 

only weakly scattered resulting in comparatively long measurement times, depending on the 

scattering power of the sample, incoming neutron flux density, instrument configuration, and 

desired statistics in the data. When combined with limited beam time allocations, it can be 
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difficult to measure true equilibrium structures or obtain very accurate information on rapid 

phase transitions. Again, careful experimental planning is required.  

Finally, some elements exhibit significant neutron adsorption or low scattering intensity. 

For example, vanadium scatters only weakly making it useful for construction of sample 

containers but limiting the ability to study vanadium materials of interest. Gadolinium exhibits 

significant neutron adsorption, removing the ability to easily study Gadolinium compounds. 

Other elements exhibit similar scattering making it difficult to differentiate between them and 

to determine their distribution across crystallographic sites. This last limitation can often be 

overcome by combining neutron and X-ray measurements but it does remove the advantage of 

an ‘all in one’ experiment.  

In this review, we seek to highlight the advantages of in-situ neutron diffraction to 

probe the structure of mixed metal oxides at high temperature and, frequently, under 

controlled gas atmospheres. While this review is quite comprehensive, it is not an exhaustive list 

of all relevant studies. The reader is directed to review articles7 for further details. 

2.2 Single perovskites 

Single perovskites of the general form ABO3-δ are the most commonly researched 

structures for SOFC and ITM applications; indeed, a number of the other common structures are 

derivatives of this parent group. For these applications, the A-site is typically a lanthanide or 

alkaline earth element, with the B-site occupied by a transition metal. The A cation sits in a 12-

coordinated cuboctahedral site, with the B cation in octahedral coordination. This structure is 

quite flexible in terms of element choice, and can accept high concentrations of dopants. 

Oxygen non-stoichiometry occurs when the total charge on the A- and B-site is below 6+, 

creating oxygen vacancies in the lattice. Oxygen anion transport occurs via a vacancy hopping 



7 

mechanism, leading researchers to enhance the vacancy concentration through aliovalent 

doping on the A-site, or by selecting elements that will be at least partially reduced under 

operating conditions8. The mixed oxidation states on the transition metal also leads to electronic 

conductivity in these materials. In terms of oxygen anion motion, the most obvious pathway for 

oxygen anion motion is a curved path around the central cation. This has been demonstrated 

through theory9 and directly observed in La0.6Sr0.4Co0.8Fe0.2O3-δ through utilization of the 

maximum entropy method10 , Figure 2-1.  

 

 

Figure 2-1 : Crystal structure (a) and nuclear density isosurface of La0.6Sr0.4Co0.8Fe0.2O3-δ at 1260ºC10 

 

Many studies have been performed to investigate the phase stability of the cubic 

perovskite and understand the structural changes under application conditions10–12. For 

example, Haag et al.13 examined La0.3Sr0.7Fe0.7Cr0.3O3-δ at 800ºC and 900ºC in atmospheres 

ranging in pO2 from air to 10-22 atm. They showed the expected decrease in oxygen 

stoichiometry and associated increase in lattice parameter with decreasing pO2. This increased 

lattice expansion with the formation of oxygen vacancies, termed chemical expansion, is the 

result of the increasing size of the B-site cation upon reduction. The material remained cubic, 
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space group Pm3̅m, down to a pO2 of 10-20 atm at 800ºC and 10-18 atm at 900ºC, at which point a 

spinel phase formed, followed by metallic iron below a pO2 of 10-21.5 atm. Such material systems 

are of interest to application in the fuel electrode of SOFC and in ITMs for syn-gas generation. 

One material that has attracted a great deal of attention is the proposed SOFC cathode 

and air-separation ITM material Ba0.5Sr0.5Co0.8Fe0.2O3-δ that was demonstrated to provide very 

high performance14. McIntosh et al.15 studied this material by in-situ NPD between 600 and 

900ºC and between 10-3 < pO2 < 1 atm. They found that it has remarkably high oxygen non-

stoichiometry with 3-δ as low as 2.192(2) at 900ºC and pO2 = 10-3 atm while maintaining the 

cubic perovskite structure, space group Pm3̅m. This is significantly lower than may be expected 

to maintain this structure and is significantly lower than reported for the related material 

SrCo0.8Fe0.2O3-δ
16. While potentially explaining the high oxygen ion mobility in this material, and 

thus its high performance, a number of groups sought to verify this finding using more 

traditional methods17–21. However, this led to numerous reports with quite differing values for 

oxygen stoichiometry, Figure 2-26. A subsequent in-situ NPD study by Tomkiewicz et al.6 

confirmed a low oxygen stoichiometry for the related material Ba0.5Sr0.5Co0.5Fe0.5O3-δ. The scatter 

in other reported values may be due to errors in determining the oxygen stoichiometry of the 

reference state for their measurements, or by a phase change to a hexagonal structure during 

their measurements. In either case, this demonstrates the utility of NPD in simultaneously 

determining structure and oxygen stoichiometry. 
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Figure 2-2 : Oxygen stoichiometry determined for Ba0.5Sr0.5Co0.5Fe0.5O3-δ (closed blue circles)6 and 
Ba0.5Sr0.5Co0.8Fe0.2O3-δ (open green circles)15 by in-situ NPD and for Ba0.5Sr0.5Co0.8Fe0.2O3-δ by more 

traditional means Mueller et al.17 (open red squares), Jung et al.18 (closed green squares), Švarcová et al.19 
(red diamonds), Kriegel et al.20 (open blue triangles),  Bucher et al.21 (closed red triangles). 

 

A quite innovative study is that by Li, Maxey and Richardson22 who examined tubular 

SrFe0.2Co0.8O3-δ membranes with NPD in a specially-designed furnace that allowed for flowing 

different gases on either side of the membrane. Thus by exposing the sample to a pO2 gradient, 

they performed not just an in-situ study but an operando study of an ITM for oxygen separation. 

They reported that the perovskite phase was stable down to a pO2 of 10-12 atm at 900ºC without 

a gradient, but that it decomposes to Sr-rich n = 2,3 Ruddlesden-Popper (RP) phases, see below, 

and rock salt CoO below 10-14 atm. With an applied pO2 gradient, they reported that the oxygen 

chemical potential inside the membrane was close to that at the high pO2 side and that the 

chemical potential profile was quite flat across the membrane. This was derived from the 

observation that there was no peak broadening and that the lattice parameter was the same as 

the high pO2 sample rather than an average of the high and low pO2 samples. This indicates that 

oxygen removal from the membrane at the low pO2 side is limited by surface kinetics rather 

than bulk transport, and that there is a sharp decrease in chemical potential at the surface 
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exposed to a reducing atmosphere. This high internal oxygen chemical potential stabilizes the 

membrane and prevents the decomposition into RP and rock salt phases, at least when the flow 

on the oxidizing side of the membrane is sufficient. This work demonstrates the power of in-situ 

NPD to provide insights into materials under realistic operating environments. 

This discussion of oxygen disordered perovskites somewhat belies the complexity that 

can occur in these systems; a complexity that is apparent in the La1-xSrxMnOy system with x=0, 

0.1, and 0.2 in Ar, 1.2%CO/Ar and dry air between RT and 950ºC23. Figure 2-3 shows the data for 

the SrMnOy sample, showing boundaries for the vacancy ordered-orthorhombic (oO Sr7Mn7O19), 

ordered tetragonal (oT Sr5Mn5O13), ordered monoclinic (oM Sr7Mn7O19+δ), vacancy disordered 

tetragonal (dT Sr5Mn5O13), cubic (dC SrMnOy-δ) and stoichiometric cubic phases (sC SrMnO3). The 

x=2 sample shows a larger region of stability for the disordered cubic phase. This thorough study 

contains a large quantity of data and here we discuss only one example: For x=0, the sample 

initially existed as a mixture of oxygen vacancy ordered orthorhombic Sr7Mn7O19 and tetragonal 

Sr5Mn5O13, but this mixture transitioned to an increasing fraction of tetragonal as it was heated 

and then completely to an ordered orthorhombic phase Sr2Mn2O5. This second phase transition 

was complete above ~580ºC and was accompanied by a slight decomposition of the material. All 

of these structures have vacant sites capable of accepting non-stoichiometric oxygen, with the 

sites in the tetragonal and orthorhombic structures being equivalent through symmetry. 

Interstitial oxygen was indicated to exist in the orthorhombic Sr7Mn7O19+δ structure. The sections 

below provide more examples of phase transitions that can occur, and the implications for 

application of these materials. 
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Figure 2-3 : SrMnOy phase diagram determined by Suescun et al.23 

 

2.3 Double Perovskites 

Double perovskites, of general form AA’BO5+δ, differ from single perovskite through A/A’ 

layering along the c-axis. This leads to distortion of the cubic lattice to most commonly, at least 

at high temperatures, tetragonal symmetry. This layering leads to distinctly different 

environments for the oxygen anions. A number of reports24–26 have now directly shown that this 

layering can leads to localization of oxygen vacancies within this layer. Note that this differs 

from the ordering observed in the Brownmillerite structure in that these vacancies are quite 

mobile, leading to high anisotropic oxygen anion transport rates through the a-b plane.  

Cox-Galhotra and coworkers utilized in-situ NPD to examine both PrBaCo2O5+δ and 

NdBaCo2O5+δ finding similar results for both, from 573 to 852 ºC and 10-4 < pO2 < 10-1 atm, Figure 

2-4. The oxygen vacancies are localized in the Ba plane for both materials; here we provide 

details for the Pr material. The fractional occupancy of the O-site in the Pr layer ranges between 

0.15(1) and 0.53(1), and this site shows highly anisotropic nuclear displacement in the a-b plane. 

The nearest neighbor O site in the Co-O plane shows a smaller number of oxygen vacancies with 
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fractional occupancy between 0.976(6) and 0.981(6). This site is significantly shifted towards the 

vacancy rich Pr layer and shows anisotropic nuclear displacement in the c-direction. The O-site 

in the Ba layer is, within error, fully occupied. These occupancies and the location and nuclear 

displacements of the sites suggests a curved oxygen transport pathway, with hopping between 

the vacancy rich O-site in the Pr layer and the nearest neighbor O-site in the Co layer. This 

pathway has been suggested by a number of studies.  

 

Figure 2-4 : Composite of the observed Fourier nuclear density map and thermal ellipsoids (20% 

probability) for PrBaCo2O5+δ (P4/mmm) at 10-1 atm oxygen and 573 C with arrows indicating preferred 
oxygen transport pathways as a guide to the eye.25 
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2.4 Brownmillerite structures 

The brownmillerite structure, general form A2B2O5, is a set of alternating layers of B 

cations in octahedral and then in 4 tetrahedral coordination. It may be considered as a 

derivative of the perovskite phase with oxygen vacancies fixed in the tetrahedral coordinate 

layers as opposed to randomly distributed as in the cubic perovskite. The brownmillerite phase 

can form through vacancy ordering of the perovskite phase, and is accompanied by a dramatic 

decrease in oxygen anion mobility as the oxygen vacancies are ‘locked’ in place. McIntosh et al. 

examined the parent cubic perovskites SrCo0.8Fe0.2O3-δ and observed the formation and break up 

of this vacancy ordered structure as a function of pO2 and temperature. In general, as the 

temperature increases, the enthalpy driven formation of further oxygen vacancies in the 

structure overcomes the entropic ordering of oxygen vacancies required form formation of the 

Brownmillerite phase. Thus the Brownmillerite decomposes to a cubic perovskite as 

temperature increases. At pO2=0.1 atm and temperature of 596ºC, the brownmillerite 

transitions to a cubic perovskite with oxygen stoichiometry refined as 2.50(2); that is, equivalent 

to that of the parent brownmillerite. This confirms the accuracy of neutron diffraction in 

determining oxygen non-stoichiometry. They found the best fit was obtained for incomplete 

ordering of the oxygen vacancies, space group Icmm, allowing two possible orientations of the 

tetrahedral, Figure 2-5. The octahedral layer showed significant distortion, with elongation of 

the apical Fe/Co-O bond compared to the equatorial bond. This is due to a shift in the apical 

oxygen towards the vacancy rich tetrahedral layer. The formation of this vacancy ordered phase, 

with associated shift in lattice parameter, hinders the application of this material in an ITM. 

Note that the phase behavior of the related material SrFe0.8Co0.2O3-δ differs considerably as 

discussed above27. 
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Figure 2-5 : The two possible orientations with the tetrahedral layer of the Brownmillerite phase 

of Sr2Co1.6Fe0.4O5 in the Icmm space group.16 

 

Speakman et al.28 studied Ba2In2O5 via XRD and NPD in air from room temperature to 

1116ºC. They concluded from the XRD and NPD data that the material had three phases: 

orthorhombic (either Icmm or Ibm2) from room temperature to 900ºC, tetragonal I4cm from 

925ºC to 1040ºC, and cubic Pm3m above 1040ºC. The group commented that sensitivity of NPD 

to oxygen atoms, and the ability to measure oxygen stoichiometry in particular, is what allowed 

them to differentiate between related space groups.  While the material is a poor oxygen 

conductor at intermediate temperatures, it has a sharp increase in conductivity above 925ºC. 

NPD pointed towards two possible phenomena that could explain anion conductivity: (1) 

cooperative tilting of In-O octahedral in the tetragonal phase, as indicated by larger than 

expected atomic displacements for the O2 and O3 atoms, and (2) a gradual transition of the O1 

and O2 sites from fully ordered to fully disordered from 925-1040ºC, as indicated by a gradual 

decrease in O1 and O2 site stoichiometry from 1 to 5/6, and a gradual increase in O3 site 

stoichiometry from 0.5 to 5/6 as vacancies randomly distribute themselves among the sites. 
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Thus, while many Brownmillerites show low conductivity due to ordered oxygen vacancies, 

disordering of these vacancies creates a mobile carrier and can lead to high conductivity. 

An examination of Ba2In2-xMoxO5+3x/2 via XRD and NPD at room temperature, 700ºC, 

750ºC, and 950ºC was conducted by Rolle et al.29. Due to the similar atomic numbers of 

molybdenum and indium (42 and 49, respectively), XRD is unable to differentiate between the 

elements, and NPD was essential in determining molybdenum’s location in the structure. For 

the x=0.1 material at room temperature and 700ºC, molybdenum was entirely within the 

oxygen deficient layer on In2 sites. A Fourier difference map was generated from the room 

temperature NPD pattern of the x=0.1 material, which showed the presence of oxygen on the ¼, 

¼, ¼ site, in the O3 layer. The claimed path for oxygen conduction in the tetragonal phase was 

hopping between O3 sites. 

2.5 Ruddlesden-Popper Phases  

Ruddlesden-Popper (R-P) phases have the general form An-1A’2BnX3n+1 where A, A’ and B 

are cations and X is an anion30; here we consider materials where X is O2-. These R-P materials 

can be mixed oxygen anion and electronic conductors with applications in SOFC electrodes and 

as ITM materials. The R-P phase is commonly described as consisting of a stacking of n 

perovskite layers between n rock salt layers. The A cation sits in the cuboctahedral coordinated 

sites within the perovskites stacking layers, the A’ site sits at the boundary between the rock salt 

and perovskites layer, and the B cation sits in the octahedral sites (assuming no anion 

vacancies), Figure 2-6. Thus in the n=1 structure, there are only A’ sites. Neutron diffraction has 

great utility in, for example, identifying the position and quantity of anion vacancies, the 

isotropic and anisotropic displacement of the oxygen sites, and the cation distributions. These 

are key parameters to understanding oxygen anion transport in these materials.  
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Figure 2-6 : Structure of the n=1-3 Ruddlesden-Popper phases. Adapted from 30 

 

Neutron diffraction experiments reveal that these materials can exhibit either oxygen 

hyper-stoichiometry through the incorporation of oxygen at interstitial sites, or oxygen hypo-

stoichiometry through vacancy formation in the perovskite layers. Oxygen transport in these 

materials can occur either through an interstitial transport mechanism or via vacancy hopping. 

Both cases would lead to highly anisotropic oxygen transport within this a-b plane. This 

anisotropic transport mechanism has been confirmed through calculation31–36 and 

experimentally for La2NiO4 by Burriel et al.37, who measured more rapid oxygen diffusion in the 

a-b direction when compared with the c direction. The nature of the carrier depends on the 
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oxidation state of the cations, pO2 and temperature. For example, Tonus et al.38 observed both 

mechanisms in La1.5+xSr0.5-xCo0.5Ni0.5O4+δ (x = 0, 0.2) n=1 RP oxides. The samples were super-

stoichiometric at room temperature with excess oxygen (δ = 0.06 and 0.12 for x = 0 and x = 0.2) 

located at interstitial 4d sites (0, ½, ¼) in the I4/mmm space group. Upon reduction, interstitial 

oxygen was the first to be removed from the structure, followed by equatorial oxygen from the 

perovskites layer.  

Skinner39reported the presence of interstitial oxygen and its preferential removal during 

reduction for the SOFC cathode material La2NiO4, but similar interstitial oxygen could not be 

identified in the analogous La2Ni1-xCoxO4±δ materials40. Yashima et al.41,42 generated nuclear 

density maps of the n=1 RP, (Pr0.9La0.1)2(Ni0.74Cu0.21Ga0.05)O4+δ, space group i4/mmm, at 606.6ºC 

and 1015.6ºC. These maps were generated through the maximum-entropy method (MEM), and 

showed a smearing of density between the apical oxygen of the perovskites layer and an oxygen 

interstitial site between the rock salt and perovskites layers, Figure 2-7. This was interpreted as 

a direct observation of oxygen atoms hopping between these sites, indicating the path for 

oxygen transport in this facile oxygen conductor. An increase in density along this path at the 

higher temperature coincides with increased oxygen transport at higher temperatures in this 

material. 
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Figure 2-7 : (a) Structure and (b) isosurface of nuclear density at 0.05 fm Å-3 of 

(Pr0.9La0.1)2(Ni0.74Cu0.21Ga0.05)O4+δ at 1015.6 °C.41 

 

Broux et al.43 investigated the n=1 R-P phase La1.2Sr0.8MnO4+δ, observing and determining 

the occupancy of the oxygen interstitial site. For this material, heating in oxygen induced the 

incorporation of a large excess of oxygen interstitials, but was accompanied by a phase 

transition from an initial tetragonal I4/mmm structure to an orthorhombic Bmab structure, 

Figure 2-8. This phase transition, complete at ~410ºC, was due to significant tilting of the 

octahedra in the perovskites layer due to the presence of the interstitial oxygen. Tetragonal 

symmetry was restored after prolonged annealing at 550ºC due to decreased octahedral tilting 

as the lattice thermally expanded. This final structure contained a large oxygen hyper-

stoichiometry of δ≈0.42(2), ~21% occupancy of the interstitial site. It seems quite conclusive 

that large numbers of interstitial oxygen anions can be incorporated into these R-P phases, and 

that they can lead to facile oxygen transport. 
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Figure 2-8 : Structural distortion around the oxygen interstitial site in the Bmab unit cell of 

La1.2Sr0.8MnO4.30(1) at 400ºC 43 

 

Reduction of n=1 R-P phases has been shown to lead to preferential formation of 

oxygen vacancies on the axial site within the perovskite layers. Bahout et al.44 investigated the 

n=1 RP Pr0.5Sr1.5Cr0.5Mn0.5O4-δ. At room temperature, the sample had I4/mmm symmetry and 

was fully oxidized (δ = 0). The sample was heated to 700ºC under a flow of 5% H2-He, held at 

that temperature for 30 minutes, and then cooled to 60ºC. This led to expansion of the a and c 

axes (by 0.28% and 0.76%, respectively), and preferential removal of oxygen from the (4c) site to 

a fractional occupancy of 0.904, Figure 2-9, with associated increase in atomic displacement 

parameters. Afterwards, the sample was heated to 500ºC in air for an hour, cooled back to 

60ºC, and the lattice parameters, oxygen stoichiometry and atomic displacements returned to 

their pre-reduced values. In situ measurements taken during the heating/cooling of the sample 

indicated that the crystal structure remained as I4/mmm, and no other phases or impurities 
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were reported. This was claimed as evidence for the high redox stability of the material, an 

important parameter for SOFC electrodes. 

 

Figure 2-9 : Oxygen occupancy of the equatorial oxygen site in the n=1 Ruddlesden-Popper 

phase of Pr0.5Sr1.5Cr0.5Mn0.5O4-δ during heating (black) and cooling (red) in 5% H2-He44 

Studies by Tonus et al.45 found that Ln2Sr2CrNiO8-δ (Ln = La, Nd), also n=1 RP oxides, 

followed a similar trend of reduction when heated under a flow of 5% hydrogen in helium. 

Again, oxygen at equatorial sites was preferentially ejected while axial oxygen sites maintained 

full occupancy; the majority of the oxygen loss occurred between 200-400ºC, and I4/mmm 

symmetry was maintained throughout heating/cooling and reduction/re-oxidation.  

Maintaining the structure with disordered oxygen vacancy formation throughout the 

perovskites layer does not occur for all materials, and selective reduction of certain sites can 

lead to a phase transformation. For example, reduction of Sr2MnO4 leads to formation of a 

monoclinic phase46 that is maintained upon cooling to room temperature in the same gas 

atmosphere. The oxygen vacancies are localized within the b-c plane of the monoclinic structure 

at room temperature, Figure 2-10, with full occupancy on the O1, O2, and O3 sites but only 11% 

occupancy on the O4 site.  
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Figure 2-10 : b-c plane of the perovskite layer of the monoclinic phase of Sr2MnO3.55/ The O(4) 

site is not depicted due to the low occupancy of this site.46 

 

The number of reports on n>1 R-P phases is limited. Mogni and coworkers47 studied the 

n=2 Ruddlesden Popper phases of Sr2FeMO6+δ where M=Fe, Co and Ni. As may be expected by 

considering the relative reducibility of the cations, the total oxygen stoichiometry decreased in 

the order Fe>Co>Ni under the same measurement conditions. The majority of oxygen vacancies 

were found to be present on the O(1) site, the apical site connecting the two perovskite 

octahedral, with a smaller number on the O(3) site, the equatorial site of the perovskite 

octahedra. The apical oxygen at the boundary between the perovskite and rock salt layers was 

always fully occupied. This results supports the concept that oxygen transport via vacancy 

hopping between the sites in the perovskite layer of the structure may be generalized to higher 

n R-P phases. This confirmed the results of a previous report on Sr3Fe2O6+δ by the same group48. 
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2.6 Spinels – AB2O4 

The majority of spinel compounds49 crystallize in the Fd3m space group. The oxygen 

anions are arranged in a cubic close packed arrangement that yields 96 interstices in the unit 

cell. One eighth of the 64 tetrahedral sites and one half of the 32 octahedral sites are occupied 

by cations. The standard or normal configuration is that the A cation sits on the 8 tetrahedral 

sites, with the B cation on the 16 octahedral sites, denoted [4]A[6]B2O4. The full inverse 

structure sees all of the A cations move to the octahedral site and half of the B cations move to 

the tetrahedral site to yield [4]B[6](AB)O4. Spinels can form with either extreme arrangement or 

with mixtures of cations across the possible range with this distribution changing as a function 

of temperature and pO2. An order parameter50, Q, is often quoted where Q=1-3/2x in 

[4](A1-xBx)[6](B2-xAx)O4. Q=1 for the normal arrangement, 0 for a random arrangement, and -0.5 

for the inverse structure. Understanding the distribution of cations across sites is essential to 

understanding the thermal expansion behavior of these materials and their functional 

properties. Switching of cations between the tetrahedral and octahedral sites, or the 

introduction of new cations, has a significant impact on the size of the unit cell.  

Redfern et al. studied the cation distribution in MgAl2O4 spinel51, from room 

temperature to 1600ºC under vacuum. Since Mg2+ and Al3+ are isoelectronic, XRD cannot 

differentiate between them. However, the neutron scattering lengths of Mg and Al differ 

significantly, enabling differentiation. Redfern and coworkers directly observed an increase in 

the disorder across sites quantified by a decrease in Q value from ~0.8 to ~0.45 as temperature 

increases; that is, a shift of Mg2+ from tetrahedral to octahedral sites and vice-versa for Al3+. This 

shift in relative site occupancy has a direct impact on the thermal expansion of the material and 

the metal oxygen bond lengths on the tetrahedral sites, Figure 2-11. As the relative occupancy 
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of the octahedral site by the larger Mg2+ atom increases above ~800K, the metal-oxygen bond 

lengths begins to increase much more rapidly with increasing temperature than the purely 

thermal expansion behavior below this transition. The tetrahedral site shows the opposite 

trend, showing contraction as the relative occupancy of the smaller Al3+ cation increases.  A shift 

in the oxygen position is observed and directly related to this shift in bond length. 

 

Figure 2-11 : Metal oxygen bond lengths of the tetrahedral (circles) and octahedral (squares) 

sites upon heating (closed) and cooling (open) Mg2AlO4 under vacuum51. 

 

This work conclusion was verified by Pavese et al.52 who also studied cation and vacancy 

distributions in MgAl2O4 and also reported an increase in Al3+ occupancy at the tetrahedral site 

with increasing temperature above 944K, with concomitant decrease in the T-O bond length, 

again related to shift in the O-site position. As with the work of Redfern, they report a smooth 

variation in relative site occupancy with increasing temperature. Both groups utilized the 

O’Neill-Navrotsky53 model to extract thermodynamic parameters for this order-disorder 

transition. 
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The introduction of Fe into the material to form Mg(Fe0.5Al0.5)2O4 complicates the 

analysis of these materials54. This work combined both HTXRD and NPD techniques to enable 

quantification of the site distribution of all of the components. The Fe-containing material 

showed a similar trend to the Fe-free material; both Fe and Al shift from the tetrahedral to 

octahedral site, accompanied by the reverse shift for Mg, as the temperature is increased. 

Again, this is accompanied by a shift in the observed thermal expansion attributable to the 

change in cation size across sites. 

A similar shift occurs in Zn0.97Fe2.02O4 between room temperature and 1600K under 

vacuum55. As with the Mg-Al system, they observed a shift of the B-site cation from the 

octahedral to the tetrahedral site, an increase in disorder, with increasing temperature. 

Specifically, there was a shift from ~2% of the tetrahedral sites being Fe at 300K to >30% at 

1500K.  

In-situ powder neutron diffraction can also be utilized to map out the formation and 

stability of various phases. For example, Li et al.56 examined the formation of a spinel phase 

through the reduction of a CoO-2Fe2O3 mixture (previously annealed at 1440ºC in air) at 900ºC 

under controlled oxygen partial pressures ranging from 10-1 to 10-18 atm. Figure 2-12. The partial 

pressure was set through a series of gas mixtures including air, Ar, CO2, CO, 12%CO/Ar, He and 

O2. The initial sample contains both a spinel phase and hematite (α-Fe2O3). It is suggested that 

this forms and the spinel fraction increases via spontaneous precipitation of Fe3O4 spinel at the 

spinel-hematite grain boundary, followed by site-mixing between the original Co-containing 

spinel and the new Fe-spinel. There is a smooth increase in the weight fraction of the spinel 

phase at the expense of the hematite phase up until pO2 ≈ 10-12 atm, where the hematite phase 

fraction starts to decrease more rapidly and the spinel becomes for Fe-rich.  This corresponds 

with a rapid increase in the lattice parameter of the spinel as the larger Fe cation occupies a 
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larger fraction of both octahedral and tetrahedral sites. There is then a shift lattice parameter at 

pO2 ≈ 10-15 atm, a point where a Co-rich rock salt phase begins to precipitate from the bulk 

spinel. The increasing relative Fe content of the spinel is again accompanied by an increasing 

spinel lattice parameter.  

 

Figure 2-12 : Lattice parameter of the spinel phase formed from a CoO-2Fe2O3 mixture during 

reduction at 900ºC with step changes in pO2
56.  

 

2.7 Ceria 

CeO2 based oxides are of interest as anion conductors, catalysts, catalysts supports and 

as oxygen storage materials in three-way catalysts for automotive catalytic converters. This 

oxygen storage capacity is derived from varying the oxidation of the ceria-based oxide during 

pO2 swings in the exhaust; supplying oxygen during oxygen lean operation through the creation 

of oxygen vacancies, and refilling these during oxygen rich operation. In all end-use cases, 

knowledge of the mechanism of formation, quantity, and mobility of oxygen vacancies is critical. 

In-situ neutron diffraction is an excellent tool to probe these materials. 
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In-situ studies57 of Ce0.1Zr0.9O2 and 0.1 wt.-% Pt/ Ce0.1Zr0.9O2 indicated that the presence 

of Pt enhances the reduction of the oxide in the pO2 range studied. This was concluded by 

noting that the thermal expansion of the Pt-free sample was not influenced by the presence of 

either oxidizing (2% O2-Ar) or reducing (1% CO-Ar) atmospheres between RT and 700ºC. In 

contrast, the Pt containing sample showed an increase in the c-axis lattice parameter of the 

tetragonal phase of the oxide upon switching from oxidizing to reducing conditions. This was 

attributed to the conversion of Ce4+ to Ce3+. Unfortunately, the oxygen occupancy of the 

materials is not reported in this study. This concept was further underlined by a subsequent 

study comparing Ce-Zr solid solutions and CeO2
58. 

Li et al.59 were able to quantify the oxygen non-stoichiometry of fluorite structured 

Ce0.8Y0.2O1.9-δ, an oxygen anion conducting electrolyte, as a function of equilibrium gas pO2 at 

900ºC. In addition to observing absolute oxygen stoichiometry and associated changes in the 

lattice parameter, Li et al. were able to correlate the isotropic atomic displacement parameter 

of the O-site with the non-stoichiometry, Figure 2-13, and lattice parameter. The increasing 

displacement with increasing non-stoichiometry and lattice parameter is suggested to reflect 

the mobility of the oxygen anions within the material. Note that this study hints at one 

limitation of neutron diffraction: the commonly utilized ion conductor Ce0.8Gd0.2O1.9 is difficult to 

study due to the neutron adsorption of Gd. 
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Figure 2-13 : Oxygen displacement as a function of oxygen non-stoichiometry in Ce0.8Y0.2O1.9-δ
59

.  

 

Ozawa and coworkers also studied rare earth doped ZrO2 materials by powder neutron 

diffraction at room temperature60, and performed in-situ inelastic (INS) and quasielastic neutron 

scattering (QENS) to examine the motion of protons in the solid oxide proton conductor, Y-

doped BaCeO361. This work observed a jump from primarily vibrational displacement to jump 

diffusion at ~500ºC. In-situ QENS had previously been used to study proton motion in the similar 

Yb-doped SrCeO3 system by Hempelmann et al.62 who were able to conclude that proton 

transport in these materials occurs both by free diffusion and a series of trap and escape events. 

In free diffusion, the protons jump between oxygen ions, but they can become trapped at Yb3+ 

dopant ions on the Ce4+ sites in the lattice.  
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2.8 Some other in-situ studies of interest 

There are a number of other important scientific questions that can be probed via in-

situ neutron studies, from powder diffraction to the range of other techniques available. In this 

section we highlight a small number of these.  

Other materials of interest in automotive catalysis have also been probed. Ozawa et al.63 

observed the structural changes in a Cu-Al2O3 NO reduction automotive exhaust catalyst as a 

function of temperature under vacuum. They observed complete elimination of the pure CuO 

phase above 800ºC due to incorporation of Cu into the underlying oxide lattice. This was 

accompanied by stabilization of a Cu-Al2O3 phase that was structurally similar to the γ-Al2O3 

phase. In a further study of the alumina system, Loong et al.64 examined the influence of 1 mol.-

% La doping on the phase transition temperatures of Al2O3. They found that even such a small 

doping level was sufficient to shift the α-Al2O3formation temperature from ~1125ºC to ~1250ºC. 

They found that while oxygen resides on its prescribed atomic positions for all of the alumna 

phases, some of the Al ions shift from octahedral symmetry to tetrahedral and then back to 

octahedral as the phase transitions occur. It is suggested that this required diffusion of Al is 

hindered by the presence of the La dopant. Both studies provide invaluable insight for those 

seeking to understand the structure-function relationships of these catalysts. 

Walton and coworkers.65 utilized a moderate temperature in-situ cell to study the 

hydrothermal synthesis mechanism of BaTiO3 from Ba(OD)2.8D2O or BaCl2 and crystalline anatase 

TiO2 or amorphous TiO2∙H2O between 125 and ~200ºC. The sample holder formed a 

hydrothermal bomb type reactor. Understanding the mechanism is necessary to control the 

growth of the powder and resulting particle size. They were able to differentiate between two 

competing proposed mechanisms: one involving homogenous solution phase reaction between 
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the reactants (dissolution-precipitation) and the other involving heterogeneous reaction 

between solid TiO2 phase and soluble Ba species; confirming the dissolution-precipitation 

mechanism by observing dissolution of both the Ba salt and a considerable amount of TiO2 prior 

to the appearance of any BaTiO3. The rate of decay of TiO2 does not mirror the rate of BaTiO3 

formation, suggesting that the reaction is not directly with the TiO2 solid. 

Huq et al.66 utilized deuterium to examine hydrogenation of Li3N, a potential hydrogen 

storage material, at up to 350ºC. They observed, and were able to quantify the phase fractions 

forming and equilibrium amounts, the reaction pathway  

Li3N + 2D2 → Li2ND + LiD + H2 ↔ LiND2 + 2LiD 

An observed increase in unit cell volume for Li2ND upon deuteration, and corresponding 

decrease upon dedeuteration at 250ºC is indicative of a D non-stoichiometry in the phase to 

form LixND3-x. The LiN phase shows no such change in lattice volume under the same conditions. 

 

2.9 Summary and Outlook 

In-situ powder neutron diffraction is a powerful technique for the characterization of 

oxides. While there are some limitations, this technique is unrivalled as a tool to probing both 

oxygen hypo- and hyper-stoichiometric materials. In addition to understanding phase behavior, 

NPD can quantify and locate oxygen interstitials and vacancies, and the isotropic and anisotropic 

displacement of these sites can be utilized to visualize oxygen transport pathways within the 

material. In this review we have sought to highlight numerous examples of how this can provide 

new insights into material functionality and drive future material development. 

The accessibility to this technique for the research community is growing with in-situ 

sample environments available at both the SNS in the USA and ILL in France, and the number of 
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research groups routinely utilizing these facilities is growing. The next challenge is to integrate 

these crystallographic studies with other functional property measurements and theory to 

create true structure-function relationships for this class of materials, and perhaps develop a 

more predictive approach to new materials development.  



31 

3 Experimental Methods 

3.1 LnSCF Perovskites 

3.1.1 Powder Synthesis 

Catalyst materials for the prior and proposed work are synthesized via a modified 

Pechini method67. Metal nitrate solutions are prepared by dissolving metal nitrate hydrates (Alfa 

Aesar, Ward Hill, MA) in distilled water and confirming the concentration via titration with a 

standard 0.1 M EDTA solution (Ricca Chemical Company, Arlington, TX). Appropriate volumes of 

each solution are mixed in the desired molar ratio, EDTA and citric acid are added to chelate the 

metal ions, and the solution is continuously mixed as it is heated to evaporate the distilled 

water. This leaves behind a cake of metal ions, nitrate, EDTA and citric acid, which is then 

combusted, so that only the metal ions remain. A final heating step overnight at elevated 

temperatures (800~1300ºC) can be performed to sinter the resultant oxide powder, 

encouraging grain growth, which enhances the sharpness of the peaks for subsequent X-ray and 

neutron diffraction studies. 

Synthesis of the catalysts in this manner is quicker than solid state synthesis, which can 

require multiple 60+ hour heat cycles at the catalysts’ sintering temperature, interspersed with 

labor-intensive grinding and pellet pressing steps. A disadvantage of this technique, however, is 

that the precursor metal nitrate solutions must be titrated to determine their exact 

concentration, as the powder form of the metal nitrates tend to be quite hygroscopic, and thus 

do not have stable weights once they have been exposed to air. Additionally, the titration for 

certain metals, such as strontium, can involve indicator changes that are difficult to detect, so 
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the titration must be done very carefully. But, if titrated correctly, a single batch of metal nitrate 

solution can be used to prepare many different catalysts, so this is usually not a grave issue. 

3.1.2 Bulk Structure Determination: X-ray Diffraction & Neutron Diffraction 

Neutron powder diffraction (NPD) patterns for prior work were collected at the 

POWGEN beamline of the Spallation Neutron Source, Oak Ridge National Laboratory, Oak Ridge, 

TN, USA. Experimental details are similar to those reported previously24. Neutrons of different 

wavelengths can be used to probe different d-space ranges, depending on the material, but, for 

the most part, 1.333 Å neutrons have been used to collect data in the d-space range of 0.45~4.5 

Å, as this range contains most of the information of interest, and is where the instrument has 

the highest resolution.  

Samples for in situ measurements were held in a 40 mm long by 10 mm diameter quartz 

basket with a fritted bottom. Mass flow controllers were connected to cylinders of ultra-high 

purity oxygen and nitrogen gases and used to control the pO2 of the sample environments from 

10-1 to 10-3 atmospheres, while keeping total pressure at one atmosphere. Outlet pO2 was 

verified with a stabilized zirconia oxygen sensor (Imtech, Knoxville, TN, USA). The sample was 

heated by a fused silica quartz tube furnace with vanadium foil elements operating under 

vacuum conditions.  Concentric quartz tubes were used to suspend the sample basket, separate 

it from the vacuum of the furnace, and provide a flow path for the gas atmosphere. Diffraction 

patterns were collected at temperatures in the range of 300 to 400ºC for the bismuth 

molybdate materials, due to the low melting point of some of the phases tested and their 

potential application towards acrolein production, and in the 500-800ºC range for the 

perovskite and perovskite-based materials, due to their potential as SOEC/SOFC cathode 

catalysts. In all cases, the temperature was measured by thermocouples inside the same tube as 
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the sample and located just above and below the neutron beam. The temperature measured via 

the thermocouples was converted to a sample temperature using a ZnO reference sample.  

Equilibration of the sample with its environment is critical for obtaining a high quality 

diffraction pattern with sharp peaks, therefore diffraction patterns with short, 10-15 minute 

collection times were repeatedly collected and analyzed in order to confirm equilibrium after 

each condition change. If the main diffraction peaks for a sample were no longer shifting, it was 

deemed to have equilibrated. Ideally, a full Rietveld refinement modeling all parameters of 

interest for the material would be used, but the allotted beam time on a neutron source such as 

the SNS is a very limited resource, and so this quick equilibrium test was used. 

Patterns for refinement were generated by collecting data until total accelerator charge 

had reached 3.3 coulombs, which corresponded to approximately one hour of collection time. 

Diffraction patterns for an empty quartz basket were recorded for each measurement 

temperature, and this data was subtracted from the sample scans before performing further 

analysis. Additional room temperature diffraction patterns were collected on the same 

beamline, using longer collection times and with the samples contained in sealed vanadium cans 

packed under a helium atmosphere. These containers do not allow for the flow of gases, making 

them unsuitable for in situ experiments that call for controlled atmospheres; however, in the 

case of room temperature measurements, where the kinetics of sample reduction are too slow 

to observe over the course of a single experiment, one can take advantage of the fact that 

vanadium is more transparent to neutron flux than is quartz and obtain higher quality diffraction 

patterns. 

Synchrotron x-ray diffraction (XRD) patterns were collected at beamline 11-BM of the 

Advanced Photon Source, Argonne National Laboratory, Argonne, IL, USA. Sample powders were 

placed into 0.8 mm diameter Kapton tubes and spun at 60 Hz in a Debye–Scherrer geometry. 
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Measurements were performed in air at room temperature, using 0.413895 Å wavelength x-

rays. 

Rietveld refinements3 of the diffraction patterns were performed with the GSAS5 

package and EXPGUI68 interface. Refined parameters for all patterns included lattice constants 

and oxygen occupancy. If allowed by symmetry, oxygen positions were also refined, in general. 

For in situ NPD data, oxygen displacements were refined anisotropically if doing so significantly 

improved the quality of the fit, but for room temperature NPD and synchrotron XRD data, this 

parameter was refined isotropically. Displacement parameters for cations were always refined 

isotropically. Crystallite size and strain broadening was modeled with Lorentzian profile terms 

for the synchrotron data, and both Gaussian and Lorentzian profile terms for the neutron data. 

3.1.3 Surface Structure Determination: X-ray Photoelectron Spectroscopy 

For the X-ray photoelectron spectroscopy (XPS) analysis, powder samples of all three 

materials were pressed onto a conductive tape that was mounted onto a nickel substrate. 

1486.6 eV Al Kα x-rays were used to excite the sample, and the following orbitals were used to 

quantify the amount of each element: 3d for La, Pr, Nd, and Sr, 2p for Co, 3p for Fe, and 1s for O 

and Na (an impurity discovered on the surface of the materials). 

3.1.4 Cell Fabrication & Electrochemical Impedance Spectroscopy 

The perovskite catalyst powders were fabricated into electrodes for electrochemical 

impedance spectroscopy (EIS) analysis. Powder samples of each LnSCF material were added to 

powders of Gd0.2Ce0.8O1.9 (GDC20, Fuel Cell Materials, Columbus, OH) and graphite in a 10:10:1 

mass ratio and ball milled overnight in ethanol. The resulting slurry was strained and lightly 

heated to remove the ethanol, then ground and mixed with glycerol to form a paste. GDC20 

powder was pressed into circular pellets and fired at 1350ºC for 4 hours to form dense 
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electrolyte substrates with a diameter of 19 mm and a thickness of 600-800 μm. The paste was 

painted onto both sides of the substrate using a plain wood applicator and a stainless steel 

mask, and the cells were sintered at 1000ºC for 2 hours. This procedure was performed twice on 

each side to form symmetrical electrochemical cells with 6-8 mm diameter electrodes. Platinum 

ink was used as a current collector, along with platinum wire contacts, and the cells were placed 

in a tubular furnace in air in temperatures in the range of 400-700ºC. EIS spectra were measured 

using a Gamry Reference 3000™ potentiostat (Gamry Instruments, Warminster, PA) in 

potentiostatic mode with a perturbation of 10 mV rms. Duplicate cells were produced using a 

sintering temperature of 1200ºC, silver ink, and silver wire. 

3.1.5 Pulsed Isotopic Oxygen Exchange 

A pulse isotopic oxygen exchange technique69,70, was performed on the perovskite and 

perovskite-based samples to determine their oxygen surface exchange rate. Full details of the 

experimental system and procedure are available elsewhere70. Powder samples of the materials 

were sieved to a 106-150 μm particle size and then loaded into quartz tubes. The packed tubes 

were then heated to temperatures between 575-875ºC under flowing 21% O2/N2 such that the 

sample oxygen stoichiometry equilibrated with the gas. Multiple 500 μL pulses of 97 atom% 

purity 18O2 gas (Isotech, Champaign, IL) in UHP nitrogen of the same 21% 18O2/N2 ratio were 

injected into the reactor, and a residual gas analyzer (Cirrus 2, MKS Instruments UK Ltd.), was 

used to measure the outlet concentrations of 18O2 and 16O18O, from which surface isotopic 

oxygen exchange rates were calculated (the drop in 16O2 concentration cannot be accurately 

measured due to the relatively long residence time in the analyzer chamber). The surface area 

of the samples, as measured via BET, was used to normalize the rates. 
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3.2 Bismuth Molybdates 

Bi2(MoO3)nO3 (n = 1,2,3) materials were synthesized via a modified Pechini method67. 

Four samples were generated, each with a distinct phase: alpha (n=3), beta (n=2), and two 

different polymorphs of the gamma (n=1) phase, low temperature (LT gamma) and high 

temperature (HT gamma). The transition from LT to HT gamma happens irreversibly at 604ºC71, 

and the HT phase is metastable at room temperature. A bismuth(III) solution was prepared by 

dissolving bismuth nitrate pentahydrate powder (Alfa Aesar, Ward Hill, Massachusetts) in dilute 

nitric acid and checking the concentration via titration with a standard 0.1 M EDTA solution 

(Ricca Chemical Company, Arlington, Texas). A molybdate solution was prepared by dissolving 

ammonium molybdate tetrahydrate powder (Alfa Aesar) in distilled water and checking the 

concentration via titration with a 0.05 M lead nitrate solution (Fisher). Appropriate volumes of 

each solution were used to synthesize the samples used in the experiments. The alpha phase 

material was sintered at 650ºC for 8 hours, the beta phase material was sintered at 600ºC for 8 

hours, the LT gamma phase was sintered at 550ºC for 16 hours, and the HT gamma phase was 

sintered at 700ºC for 8 hours. 

Neutron diffraction patterns were collected similarly to the LnSCF materials, however 

UHP hydrogen (4% in helium) was used in addition to UHP oxygen, and equal parts of gas from 

each cylinder were fed to the sample holder, yielding a gas atmosphere of 1% O2, 2% H2, 48% 

He, and 49% N2. Total pressure was fixed at one atmosphere, and the same furnace and 

mounting hardware was used. Diffraction patterns were collected at temperatures of 300 and 

400ºC. 1.599 Å neutrons were used to collect data in the d-space range of 0.55-4.15 Å. Room-

temperature data was collected on the same beamline, with the samples contained in sealed 

vanadium cans packed under a helium atmosphere. 
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Synchrotron x-ray diffraction patterns were collected in the same manner as the LnSCF 

samples, but using 0.413227 Å wavelength x-rays. Rietveld refinements of the neutron and x-ray 

diffraction patterns were performed in a manner similar to the LnSCF materials. 

3.3 Oxidative Coupling of Methane 

Li/MgO powder was synthesized via a modified Pechini method67. Lithium nitrate and 

magnesium nitrate solutions of approximately 1 M concentration were prepared by dissolving 

nitrate powders (Alfa Aesar, Ward Hill, Massachusetts) in water. The magnesium nitrate solution 

was checked via titration with a standard 0.1 M EDTA solution (Ricca Chemical Company, 

Arlington, Texas), however the low valence of lithium precluded its titration, so its concentration 

is merely an estimate based on the weight of the starting nitrate powder. The two solutions 

were combined in a 1:1 ratio to create an equimolar solution of Li+ and Mg2+ ions. This solution 

was used both for the pure Li/MgO catalyst samples as well as to create supported catalysts. 

Li/MgO catalyst was added to YSZ and GDC supports via incipient wetness impregnation, with a 

catalyst loading of 1.3 mg/m2 for Li/MgO-YSZ and 1.6-1.9 mg/m2 for Li/MgO-GDC. 

HT gamma phase Bi2MoO6 was produced as in the previous section. PBMO was 

prepared via a two-step process. First, cubic, disordered PBMO was synthesized from metal 

nitrate solutions via a modified Pechini process as above, followed by calcination in air at 

1200ºC. This produced cubic PBMO as well as a hexagonal BaMnO3-δ phase. Reducing this 

material at 900ºC for 14 hours under an atmosphere of humidified 5% hydrogen gas in nitrogen 

converted the cubic, disordered PBMO and hexagonal BaMnO3-δ to layered PBMO. X-ray 

diffraction of the resultant powder confirmed that the structure was tetragonal P4/mmm. 

Powder samples of the materials were sieved to a 106-150 μm particle size and then 

loaded into quartz tubes. Reactions were carried out under temperatures ranging between 575-
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850ºC, with a continuous flow of methane and oxygen fed in a 2:1 ratio. Nitrogen was used to 

dilute the reactants and adjust total flowrate in order to control the methane conversion. The 

reactor setup was operated in two modes. In the first, conversion was high (on the order of 30-

40%), and the goal was to maximize C2 yield for each catalyst. In the second mode, methane 

conversion was kept below 10% to simulate a differential plug flow reactor, in order to compare 

the relative reaction rates of each catalyst. Inlet methane partial pressure varied from 0.02-0.2 

atmospheres, and total flowrate varied from 20-200 mL/min. A gas chromatograph (model 

8610C, SRI GC Inc.) with a HayeSep® D column and TCD detector was used to measure the outlet 

concentrations of hydrogen, oxygen, methane, ethane, ethylene and water, from which 

conversion, yield, selectivity, and reaction rates were calculated. Catalyst mass (or catalyst + 

support mass, in the case of Li/MgO-YSZ and Li/MgO-GDC samples) was used to normalize the 

rates. SiO2 particles, also sieved to a 106-150 μm particle size, were used to dilute samples in 

order to bring conversion below 10% for the more active materials. 
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4 LnSCF Perovskites 

4.1 Background on SOFC Cathode Materials 

The solid oxide fuel cell (SOFC) is a device that utilizes electrochemistry to convert 

chemical energy into electrical energy without the Carnot cycle efficiency limitations of heat 

engines. An SOFC has three main components: the anode, the cathode, and the electrolyte. 

Oxidation of the fuel occurs at the anode, which generates electrons that flow through an 

external circuit to reach the cathode, which consumes the electrons as a part of the reduction of 

oxygen that takes place on its surface. The electrolyte separates the chemical species on the 

anode and cathode sides of the cell, but allows O2- anions to pass through it. In order to prevent 

short-circuiting of the cell and to maximize its power output, the electrolyte material should not 

conduct electrons. Figure 4-1 below shows an example fuel cell performing complete oxidation 

of methane and utilizing an oxygen anion conducting electrolyte material: 
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Figure 4-1 : Complete combustion reactions in a SOFC. 

 

While methane is used in the example above, the main advantage of SOFCs is that any 

combustible fuel may be used, as opposed to proton conducting fuel cells, which require a 

proton source and are thus limited to hydrogen or methanol in terms of fuels. One of the 

disadvantages of SOFCs is the high temperature (>7000C) required for their operation. Operation 

at temperatures in the 500-700ºC range would allow the use of lower cost balance of plant 

materials, slow the degrading effect of solid-state reactions between materials, and decrease 

startup and shutdown times. One limitation to operation at lower temperatures is the rate of 

the oxygen reduction reaction (ORR) at the cathode72,73. As a result, research into improving the 

catalytic performance of cathode materials is a highly active field. 
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The most promising cathode materials are the mixed ionic-electronic conductors (MIEC). 

Unlike purely electronic conductors, where only the catalytic sites at the triple phase boundary 

(TPB) of gas/cathode/electrolyte are usable, the ORR can occur at any catalytically active site on 

an MIEC, as the oxygen anions generated can diffuse through the MIEC bulk to the 

cathode/electrolyte interface74. This greatly increases the usable surface area of the cathode, 

and thus the performance. MIEC cathodes are typically p-type metal oxides containing a 

significant fraction of oxygen vacancies that facilitate the rapid transport of oxygen anions via a 

vacancy hopping mechanism. Example materials include perovskites of the form ABO3, layered 

perovskites of the form AA’B2O6-δ, and Ruddlesden-Popper phases of the form An+1BnO3n+1. 

The electrical conductivity of these materials is typically significantly higher than the 

ionic conductivity. As such, the rate limiting process in the cathode is generally considered to be 

either the surface oxygen incorporation rate, or the bulk oxygen anion transport rate. It has 

previously been proposed that there is a link between the measured surface and bulk functional 

properties of these materials are linked. This hypothesis is based on an observed correlation 

between the measured bulk ionic transport (measured as a diffusivity, D) and surface oxygen 

exchange kinetics (typically measured as a surface exchange coefficient, k)75–77. Experimental 

data points for k and D from a number of studies appear to cluster into two groups depending 

only on whether electronic or ionic conductivity is dominant. This suggests a powerful and 

fundamental link between bulk and surface properties where the mobility of an oxygen anion in 

the bulk is related to the rate of oxygen dissociation on the surface. While this link was 

hypothesized almost twenty years ago, we currently have no fundamental understanding of 

what this link is, and there is an underlying unanswered question: Why would the dissociation of 

oxygen on the surface be correlated to the motion of oxygen within the bulk? 
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Ascertaining the source of this proposed link first depends on the accurate 

determination of all of the relevant properties. k and D are typically determined by isotope 

exchange depth profiling (IEDP) or conductivity relaxation experiments. In both cases, both 

parameters are fit to a single exponential decay, a procedure where the reported values can 

depend strongly on the fitting approach78. Other experimental problems can strongly influence 

these values. For example, the models used to determine k and D from IEDP depend strongly on 

the assumptions and boundary conditions, and there can be significant deviation of the actual 

conditions from those assumed79. Additionally, the surface composition of these materials is 

commonly reported to differ significantly from the bulk78,80–82. All of these issues lead to 

significant scatter in experimentally reported values these parameters in the literature. For 

example, the surface exchange rate for La0.6Sr0.4Co0.2Fe0.8O3- varies by an order of magnitude 

between similar studies83,84. 

 This work seeks to address these issues by utilizing a combination of techniques to 

study the bulk oxygen mobility and surface oxygen exchange rate independently. We study a set 

of three perovskite structure materials, Ln0.5Sr0.5Co0.8Fe0.2O3-δ, where Ln represents La, Pr, and 

Nd. In-situ neutron powder diffraction is utilized to quantify the oxygen mobility in terms of the 

thermal displacement parameter for the oxygen anions. The surface exchange rate is 

determined by a pulsed isotopic transient technique that aims to determine the equilibrium 

oxygen exchange rate independent of bulk transport. The surface composition is determined by 

X-Ray Photoelectron Spectroscopy (XPS). All of this data is then utilized to interpret the 

electrochemical performance of these materials as SOFC cathodes and to support the observed 

link between k and D. 
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4.2 Results 

4.2.1 LnSCF Structure Determination 

Neutron powder diffraction patterns were collected for LSCF, NSCF and PSCF at room 

temperature and at high temperature, 527-827ºC, at pO2 = 10-1 atm. Patterns were also 

collected for LSCF at pO2=10-2 and 10-3 atm. Beam time allocation limitations restricted data 

collection on NSCF and PSCF to the single pO2. Synchrotron XRD data was collected at room 

temperature for all samples. No impurity phases were detected in any of the samples in this 

study. 

The room temperature XRD and NPD data for LSCF were best fit to an R3̅c space group, 

with lattice parameters a = b = 5.4367 Å and c = 13.2556 Å. Refinement of the neutron data 

collected for LSCF between 520-827ºC at a pO2 between 10-3 and 10-1 atm showed that the 

structure transforms to Pm3̅m symmetry in this temperature-pO2 range, with lattice parameters a 

= b = c = 3.8721 to 3.9071 Å. Figure 4-2a shows the neutron powder diffraction pattern for LSCF 

measured at 827ºC at a pO2 of 10-1 atm, and the Rietveld refined fit to the Pm3̅m space group 

with quality of fit parameters 2 =2.015, and RWP= 3.21%. Corresponding structural parameters 

from Rietveld refinements for this and all other neutron diffraction patterns at 827ºC are 

reported in Table 4-1. 
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Figure 4-2 : (a) Neutron powder diffraction pattern for LSCF at 827ºC under a pO2 of 10-1 atm (Pm3̅m), and 
(b) synchrotron x-ray powder diffraction pattern for the same sample at room temperature in air (R3̅c). 
Patterns consist of observed intensities (dots), calculated intensities (red, upper line), observed-calculated 
intensities (blue, lower line), and Bragg reflections (vertical tick marks). The low d-spacing portion of each 
pattern has been magnified in the vertical direction by the multiplier shown. Peaks at 2.13 & 2.46 Å 
correspond to a 0.9 wt% CoO impurity in the material, and the peak at 2.97 Å corresponds to a 0.1 wt% 
La2O3 impurity. 
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 LSCF 
10-1 atm pO2 

LSCF 
10-2 atm pO2 

LSCF 
10-3 atm pO2 

PSCF 
10-1 atm pO2 

NSCF 
10-1 atm pO2 

Space group Pm3̅m 
Pm3̅m with 
split O sites 

Pm3̅m with 
split O sites 

Pm3̅m Pm3̅m 

a=b=c (Å) 3.90320(2) 3.90602(2) 3.90713(2) 3.88957(2) 3.88449(3) 

Oxygen content 2.81(1) 2.77(1) 2.78(1) 2.84(1) 2.75(2) 

χ2 2.015 1.964 2.056 1.800 1.754 

Rwp 3.21% 3.29% 3.32% 3.72% 3.18% 

O (x) 0.5 0.540(6) 0.546(3) 0.5 0.5 

Atomic displacement parameters (Å2) × 100 

Ln/Sr, Uiso 2.86(2) 3.02(2) 2.98(2) 3.21(3) 3.28(3) 

Co/Fe, Uiso 1.77(2) 1.83(3) 1.83(3) 1.75(3) 1.87(3) 

O, U11 5.19(3) 4.72(58) 4.26(37) 6.55(4) 7.08(5) 

O, U22 5.19(3) 3.69(31) 3.39 (25) 6.55(4) 7.08(5) 

O, U33 2.03(4) 2.04(4) 2.04(4) 2.20(4) 2.21(5) 

Table 4-1: Rietveld fit parameters for the materials at 827ºC. A-site cations are located at Wyckoff position 
1a (0, 0, 0) and B-site cations are located at Wyckoff position 1b (½, ½, ½). Oxygen is located at Wyckoff 
position 3c (½, ½, 0) in the base model and 12h (x, ½, 0) in the split oxygen site model. 

 

Similar Rietveld refinements were performed for NPD patterns of PSCF and NSCF 

collected at room temperature and between 520-827ºC at a pO2 of 10-1 atm.   Both materials 

were cubic, Pm3̅m space group, at and above 625ºC but reverted to R3̅c at, and below, 520ºC.  

The room temperature synchrotron patterns for the PSCF and NSCF patterns were each 

fit with a mixture of two phases: trigonal R3̅c and orthorhombic Pnma. A Representative room 

temperature synchrotron XRD pattern for LSCF with corresponding Rietveld refined fit to space 

group R3̅c is shown in Figure 4-2b. Corresponding structural parameters for the synchrotron 

XRD data are provided in Table 4-2.  
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 LSCF PSCF (phase 1) PSCF (phase 2) NSCF (phase 1) NSCF (phase 2) 

Space group R3̅c R3̅c Pnma R3̅c Pnma 

Weight fraction 1 0.52 0.48 0.16 0.84 

a (Å) 5.43670(1) 5.42139(1) 5.39099(3) 5.41200(7) 5.38121(1) 

b (Å) 5.43670(1) 5.42139(1) 7.61885(3) 5.41200(7) 7.60651(1) 

c (Å) 13.25555(1) 13.15816(3) 5.43564(2) 13.14912(21) 5.43092(1) 

χ2 4.873 5.629 5.629 4.208 4.208 

Rwp 14.1% 14.2% 14.2% 10.7% 10.7% 

Table 4-2: Rietveld fit parameters for synchrotron powder XRD of the materials at room 
temperature. 

 

We have utilized this combination of NPD and synchrotron XRD to determine if cation 

ordering occurs in these materials; this can be difficult to detect in a typical laboratory XRD 

pattern. NPD and XRD are required due to the similar diffraction properties of either neutrons or 

X-rays for some of the elements.  For example, the neutron scattering power of an atom 

depends on its coherent scattering length, b85; 7.02, 8.24, 4.58, 7.69, 2.49,  and 9.45 fm for Sr, 

La, Pr, Nd, Co, and Fe, respectively86; NPD cannot distinguish between ordered and disordered 

A-site structures due to the similar scattering lengths of La, Nd, and Sr. In contrast, Co and Fe 

have very different scattering lengths, and any ordering of the B sites would be quite apparent 

in the neutron data. The situation is reversed in the case of XRD, where scattering power is 

influenced by the form factor, f, of an atom85, which correlates with the atomic number. In this 

situation, Co and Fe are difficult to distinguish (f1 of 27.3 vs 26.3 for 30 keV x-rays), but Sr is very 

different from La, Pr, and Nd (f1 of 38.4 vs 56.2, 58.4, and 59.5 for 30 keV x-rays87). Thus, 

synchrotron XRD data was used to investigate A site ordering, and NPD data was used to 

investigate B site ordering.  

Attempts were made to fit both the XRD and NPD data to models with rock salt, layered, 

and columnar ordered A and/or B-site cations (Fm3̅m, P4/mmm, P21/m, and P42/nmc)88, but all 
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the models tested generated extra peaks in either the NPD or XRD data, due to additional lattice 

planes, that were not observed and these more complex models did not improve the fit. Thus, 

we conclude that no cation ordering exists in LSCF under the conditions tested, confirming prior 

work on related materials89,90.  

4.2.2 Refinement results 

Figure 4-3 shows the lattice parameters, oxygen stoichiometry, and the oxygen 

anisotropic atomic displacement parameters for all of the high temperature data for LSCF, PSCF 

and NSCF.  Comparing data at pO2=10-1 atm, Figure 4-3a, the lattice parameter increases with 

increasing temperature for all materials due to both thermal and chemical expansion.  The total 

expansion coefficients for the materials were calculated to be 28×10-6, 29×10-6, and 30×10-6 for 

LSCF, PSCF, and NSCF, respectively. At each temperature, the lattice parameter decreases in the 

order LSCF>PSCF>NSCF, in agreement with the expected trend from the Shannon radii91.  

Similarly, the lattice parameter increased with decreasing gas phase pO2 for LSCF, Figure 

4-3a; at 625ºC the lattice parameter was 3.88114(1), 3.88981(2), and 3.89210(1) Å at a pO2 of 

10-1, 10-2, and 10-3 atm, respectively. The smaller increase observed for the second decrease in 

order of magnitude of pO2 may be indicative of a lack of equilibration of the sample24, as full 

equilibration at low pO2 can be difficult to obtain in limited beam time. This chemical expansion 

is due to the reduction of B-site cations, as evidenced by the corresponding decrease in oxygen 

stoichiometry with decreasing pO2, Figure 4-3b. The coefficient of chemical expansion 

(fractional increase in lattice parameter per decrease in fractional oxygen occupancy)92,93 for 

LSCF was calculated to be 6.4%. Subtracting this chemical expansion from the thermal expansion 

for LSCF yields a purely thermal expansion coefficient of 22×10-6. 
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Figure 4-3 : (a) Lattice parameter a = b = c (Pm3̅m), (b) oxygen stoichiometry, (c) oxygen displacement 
parameter U11, and (d) oxygen displacement parameter U33 as a function of temperature and sample. 
Squares represent LSCF, circles PSCF, and triangles NSCF. The filling of shapes denotes the oxygen partial 
pressure that the sample was measured under: 10-1 atm (filled), 10-2 atm (half-filled), and 10-3 atm (empty). 
Error bars represent standard deviations for parameter values calculated via Rietveld refinement. 

 

 Our primary interest in performing in-situ NPD as opposed to XRD is the relatively 

strong interaction of neutrons with oxygen nuclei and ability to obtain high quality data in 

regions of high momentum transfer, Q. These factors are utilized to obtain the position, 
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anisotropic displacement, and occupancy of cations, and especially oxygen anions, in the 

materials in order to provide insight into possible O2- transport pathways.  

The atomic displacement parameters for the cations were refined from the NPD data 

isotropically for all samples under all conditions, as no preferred displacement direction was 

observed and the quality of fit was not significantly improved by utilizing anisotropic 

displacement parameters. Furthermore, all cations occupying the same site were constrained to 

share a single displacement parameter for each temperature, pO2, and material. This was 

necessary to ensure a stable refinement due to the random arrangement of the different A and 

B-site cations: an increase in the displacement parameter of a cation with a corresponding 

decrease in displacement parameter for the other cation on the same site will lead to many 

equivalent solutions to the least squares minimization routine involved in Rietveld refinement. 

Thus, it is common practice to model crystallographically similar atoms as having shared 

displacement parameters94. At 827ºC, A-site cation displacements ranged from 2.86-3.28 x10-2 

Å2, and B-site cation displacements ranged from 1.75-1.87 x10-2 Å2, Table 1. Displacements 

increased with temperature, as may be expected due to increased lattice vibration.  

The oxygen stoichiometry for NSCF was significantly lower than for LSCF and PSCF at the 

same temperature and pO2, Figure 4-3b; 2.75(2) for NSCF at 827ºC and pO2=10-1 atm, compared 

with 2.84(1) and 2.81(1) for PSCF and LSCF, respectively. As expected from reduction of B-site 

cations, the oxygen stoichiometry generally decreased with increasing temperature, and for 

LSCF, with decreasing pO2, Figure 4-3b. As with the lattice parameter, the smaller shift in 

oxygen stoichiometry of LSCF between pO2 of 10-2 and 10-3 atm may be due to a lack of 

equilibration of the sample.  

The anisotropic atomic displacement parameters for oxygen across the face of the 

Pm3̅m unit cell were significantly higher for PSCF and NSCF when compared to LSCF across all 
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temperature and pO2 measured, Figure 4-3c. This is interpreted as corresponding to greater 

oxygen mobility in NSCF and PSCF. As we have previously reported for the Ba analog of these 

materials, atomic displacement towards the central B-site cation in the unit cell is significantly 

lower, and does not vary significantly between materials or with pO2, Figure 4-3d. This 

anisotropy makes sense when one considers the curved pathway of oxygen transport between 

nearest neighbor oxygen sites that has been proposed for cubic perovskites95. 

GSAS was utilized to generate observed Fourier maps of nuclear density from the NPD 

data at 827ºC and pO2=10-1 atm to aid in visualization of oxygen anion displacement, Figure 4-4. 

The NSCF and PSCF samples both showed anisotropic displacement of the oxygen site along the 

face of the unit cell, Figure 4-4; U11=U22 were 7.08(5)x10-2 and 6.55(4)x10-2 Å2 and U33 was 

2.21(5)x10-2, 2.20(4)x10-2 Å2 at 827ºC and pO2=10-1 atm for NSCF and PSCF, respectively.  
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Figure 4-4 : Observed Fourier maps of nuclear density at 827ºC, as viewed perpendicular to the (100) plane, 
for (a) LSCF under a pO2 of 10-1 atm, (b) LSCF under a pO2 of 10-3 atm, (c) PSCF under a pO2 of 10-1 atm, and 
(d) NSCF under a pO2 of 10-1 atm. A-site cations are shown at the corners of the unit cell, and oxygen anions 
are shown at the edges and in the center. B-site cations are obscured by the oxygen. 

 

The corresponding displacement parameters for LSCF were U11=U22=5.19(3)x10-2 Å2 and 

U33 = 2.03(4)x10-2; however, the observed shape of the nuclear density for the oxygen site was 

not a simple ellipsoid, but was cross-shaped, parallel to the edge of the unit cell and pointing in 

between the A-site cations, Figure 4-4a. This anisotropic ‘shape’ became more pronounced at 

lower oxygen partial pressures, Figure 4-4b. Consequently, the neutron powder diffraction data 

for LSCF was fit using a modified version of the Pm3̅m model that moved the oxygen atom off 
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the 3c Wyckoff position, creating four oxygens at 12h positions at equal distances from the 

original 3c site, (±x, ½, 0) and (½, ±x, 0), in order to more accurately reflect the cross-like oxygen 

nuclear density. This change to the model more accurately represents the shape of the nuclear 

density but does not significantly change the quality of fit to the data. Average χ2 of the 10-2 and 

10-3 atm pO2 LSCF NPD data slightly decreases from 2.560 to 2.543. A visualization of the 

difference between this modified model and a standard Pm3̅m perovskite model can be seen in 

Figure 4-5. The oxygen occupancy refined to very nearly one quarter of the value in the un-split 

model, such that stoichiometry change was within error, e.g. for LSCF at 827ºC under a pO2 of 

10-3 atm, the fractional occupancy of oxygen decreased from 0.927(3) to 0.926(4) (4 x 0.231(1)) 

after splitting the site in the model. The position x was also refined in this model. 
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Figure 4-5 : Visualization of LSCF using (a) the Pm3̅m model, (b) a Fourier difference map for the 
Pm3̅m model, (c) the Pm3̅m model with split oxygen sites, and (d) a Fourier difference map for 
the Pm3̅m model with split oxygen sites. The red and yellow volumes in the difference map 
represent nuclear density that is underrepresented by the model. The improved fit of the model 
in (c) translates into more accurate representation of the nuclear density of the oxygen sites. 

 

4.2.3 LnSCF X-ray Photoelectron Spectroscopy 

The results of the XPS analysis are summarized in Table 4-3. There is an enrichment of 

cobalt near the surface at the expense of iron for all of the materials. This has been observed in 

other studies96,97. In contrast to other literature, we found no significant enrichment of 
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strontium for LSCF or NSCF and only slight enrichment for PSCF. Prior reports have shown mixed 

results for the surface concentration of strontium for related LSCF, LSC and LSM perovskites, 

with some researchers showing an enrichment on the surface96,98–102 and others showing 

identical or decreased strontium/lanthanide ratios on the surface, relative to the bulk96,97,101, 

often in the same experiment. The lack of observed strontium surface enrichment could be due 

to the fact that the XPS technique used in this paper averages crystal composition across several 

layers. However, many of the reported results for strontium enrichment were for perovskites 

grown as thin films, such as that performed by Crumlin et al101, which showed a surface enriched 

in strontium for a thin film LSC sample, but no such enrichment for pellets synthesized from LSC 

powder. This indicates that segregation of strontium at the surface is perhaps a function of the 

synthesis method, rather than the composition. Sodium was also observed on all three samples, 

despite its absence in the XRD and NPD data. Sodium is a known impurity in the iron nitrate 

used to synthesize the materials in this study, at a level of less than 0.05%, and segregation of 

impurities to the surface has been observed by others102,103, which can lead to significant surface 

quantities despite only being present in trace amounts in the bulk.  

Element Bulk LSCF PSCF NSCF 

Ln 10 8.5 6.2 9.6 

Sr 10 8.6 8.7 7.7 

Co 16 10.4 16.7 12.4 

Fe 4 0.4 0.4 0.4 

O 60 64.3 63.7 62.5 

Na 0 7.8 4.3 7.3 
Table 4-3: concentrations in mole percent, as determined by XPS, versus the bulk composition. 



55 

4.2.4 LnSCF Pulsed Isotopic Oxygen Exchange & Electrochemical Impedance 

Spectroscopy 

Isotopic oxygen exchange rates for the PSCF and NSCF materials were observed to be 

nearly two orders of magnitude higher than that of LSCF. For example, at 750ºC exchange rates 

for PSCF and NSCF were 6.1x10-4 and 5.6x10-4 mol∙m-2∙s-1, respectively, and 1.7x10-5 mol∙m-2∙s-1 

for LSCF. An Arrhenius plot of the surface exchange rate, normalized for surface area is shown in 

Figure 4-6. All three materials show linear trends. BET surface areas of the materials were 1.2 

m2/g for LSCF, 0.18 m2/g for PSCF, and 0.42 m2/g for NSCF, and activation energies were 

calculated to be 221 ± 4, 146 ± 6, and 161 ± 9 kJ/mol for LSCF, PSCF, and NSCF, respectively. 

 

 

Figure 4-6 : Oxygen surface exchange rate as calculated from pulse isotopic oxygen exchange. Squares 
represent LSCF, circles PSCF, and triangles NSCF. 

 

Similar to the oxygen exchange experiments, the PSCF, and NSCF materials showed 

improved performance relative to LSCF when used as air electrodes for symmetrical solid oxide 

electrochemical cells. The area-normalized polarization resistance across the 400-700ºC range is 

plotted against inverse temperature in Figure 4-7. A distinct change is slope is observed at 
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~550ºC for all of the materials. We attribute this to the observed change of phase from R3̅c to 

Pm3̅m between 520-625ºC observed in the NPD data for PSCF and NSCF materials.  A similar 

transition exists for the LSCF between 520ºC and room temperature.  

 

Figure 4-7 : Area specific polarization resistance of symmetric cells made from the three materials, as 
measured by EIS. Squares represent LSCF, circles PSCF, and open triangles NSCF. 

 

These impedance measurements were repeated utilizing Ag as a contact paste material 

with a sintering temperature of 1200ºC. While the absolute values of polarization were lower 

than with Pt paste, possibly due to some catalytic effect of the Ag, the overall trend of 

performance with composition was maintained. Furthermore, the microstructure of these two 

samples is likely significantly different due to the different sintering temperatures. While 

differences in cell impedance can be caused by differences in microstructure, we believe that 

the repetition of this trend across four samples per material (two at each sintering temperature) 

indicates a true functional difference between the materials, with a polarization resistance trend 

of LSCF>NSCF≥PSCF. 
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The scale of Figure 4-7 somewhat masks the significant increase in polarization 

resistance between the samples. In general, the polarization resistance for LSCF was 1-2 times 

that of NSCF and 2-3 times that of PSCF. Representative Nyquist plots are shown for three 

representative samples at 600ºC and 700ºC in Figure 4-8. All of the data was confirmed by 

measuring multiple samples of each material. The large, semicircular arc of each spectrum 

represents the polarization resistance of the electrodes of each cell, and the differences 

between the materials are clearly visible at 700ºC. The polarization resistance for LSCF 

electrodes was 500 mΩ∙cm2 compared with 190 mΩ∙cm2 for PSCF and 210 mΩ∙cm2 for NSCF 

electrodes at 700ºC. At 400ºC we measured 92 Ω∙cm2 for LSCF electrodes compared with 29 and 

17 Ω∙cm2 for PSCF and NSCF electrodes, respectively. 

 

 

Figure 4-8 : Example Nyquist plots of impedance spectra for samples at (a) 600ºC and (b) 700ºC. Electrolyte 
resistance was subtracted, and data was normalized by electrode area. Squares represent LSCF, circles PSCF, 
and open triangles NSCF. Data shown is for the better of the two cells tested for each of the three electrode 
materials. Numerals represent the log of the AC frequency of the indicated data point in Hz. 
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4.3 Discussion 

Decreasing oxygen stoichiometry with decreasing lanthanide size has been observed in 

other perovskites104–107. We observe the same trend when comparing LSCF and NSCF, the 

smaller Nd cation leads to lower oxygen stoichiometry. However, the PSCF sample had an 

oxygen stoichiometry very close to that of LSCF, rather than a value in between the LSCF and 

NSCF as may be expected from the cation radius. The related material, Pr0.5Sr0.5CoO3-δ, was 

reported108 to have an oxygen stoichiometry of about 2.85 at 700ºC under a pO2 of 10-1 atm, 

which is close to the value of 2.88(1) obtained from the NPD data for PSCF at 728ºC under the 

same partial pressure of oxygen. This suggests that the value we have determined is correct. 

Despite this, data in the literature on the stoichiometry of other Pr containing perovskites 

contains mixed results, with some groups observing a stoichiometry closer to La rather than Nd 

analogues104, and others reporting the reverse106. This unpredictable behavior may be due to the 

availability of a +4 oxidation state for the Pr ion, which would allow Pr based structures to 

compensate for aliovalent doping on the A-site without the need to generate oxygen anion 

vacancies, which may explain a higher oxygen stoichiometry than implied by cation size 

arguments. 

As a first approximation, we may expect that increasing oxygen mobility would directly 

correlate with decreasing oxygen stoichiometry. However, in-situ neutron diffraction provides 

an even greater level of detail as we look at atomic displacement. The increased oxygen atomic 

displacement in the U11/U22 directions for NSCF when compared to LSCF follows naturally from 

the observed increase in oxygen vacancy concentration for NSCF. An increase in vacancy 

concentration would be expected to lead to an increase in oxygen hopping between sites, and 

thus increase in average displacement along the hopping pathway. We would also expect 
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increased oxygen displacement due to the increased free lattice volume of NSCF compared to 

LSCF. The decrease in average A-site Shannon radius is greater than the decrease in lattice 

parameter91. Thus there is more free volume in the unit cell of NSCF, a ‘wider’ pathway, for the 

oxygen anions to hop between sites.  

PSCF and LSCF have similar oxygen stoichiometry but very different atomic 

displacement. Additional lattice volume is likely the origin of the increased U11/U22 displacement 

in PSCF compared to LSCF, which have similar oxygen stoichiometry. The lack of a trend for the 

U33 direction, representing motion towards the B-site, is likely due to the fixed B-site 

composition across all samples and is representative of the relatively small motion of the oxygen 

anion in that direction during oxygen site hopping95. Based on all of these considerations, we 

propose that the oxygen anion mobility of these materials would follow the trend NCSF ≥ PSCF > 

LSCF. 

A cross shape in the nuclear density of oxygen determined for La was also observed by 

Yashima10 for La0.6Sr0.4Co0.8Fe0.2O3-δ at 1260ºC in air. Elevated temperatures are reducing, similar 

to low pO2 atmospheres, so there is a trend that the cross shape is more visible as the 

concentration of oxygen vacancies increases. This shape could be due to increased vibration of 

oxygen towards vacant sites and/or increased oxygen hopping between sites. The NSCF material 

had a similar number of oxygen vacancies but no cross shape to the oxygen nuclear density, but 

it may have been masked by increased freedom of motion towards the A-sites: the decrease in 

average A-site radius (over 3%)91 was greater than the observed decrease in lattice parameter 

(0.2-0.5%), when compared with the LSCF material.  

The results of the pulse isotopic oxygen exchange showed that the PSCF and NSCF 

materials were over an order of magnitude more reactive than LSCF in terms of surface oxygen 

exchange. This higher activity is also reflected in the EIS results, and thus performance in an 
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SOFC cathode. The question then arises as to the cause of these differences. It is critical to 

understand how the bulk composition of these materials influences this surface exchange rate.  

Differences in crystal structure or deviations from expected bulk compositions could 

cause performance differences. The bulk composition of all of these materials, as determined by 

XRD and NPD, were confirmed to be in the expected ratios of 5:5:8:2 for the lanthanide, 

strontium, cobalt, and iron cations, respectively, and all three samples were observed to be 

cubic Pm3̅m in the temperature range of 625-827ºC. 

An alternative explanation is that the surface exchange rate is dictated by differences in 

surface composition. As has been reported by numerous authors96–102, the surface composition 

of SOFC cathode materials can differ markedly from the bulk due to surface enrichment of one 

or more elements, typically enrichment of Sr. ‘Surface’ is a relative term that may refer to the 

very outermost layer of cations or it may include a short distance away from the surface; it can 

be difficult to draw a line on where a technique is surface sensitive. Here we generally consider 

the surface to include a short distance (~10 nm) into the bulk, as may be probed with XPS. While 

the surface composition measured by XPS differed from the bulk for all three materials, all three 

showed the same Co/Fe ratio enrichment, and none showed significant surface enrichment of 

strontium. Another possibility for the difference in observed surface exchange rate is then that 

the presence of the different A-site cations, La, Nd, or Pr, on the surface influences the rate; 

however, numerous studies have demonstrated that the B-site transition metal cations typically 

control the reaction rate over perovskites109,110.  

It is possible that the difference in EIS performance between symmetric cells is due to a 

difference in microstructure between the samples. However, there are a few reasons why this 

may not be the case. Firstly, the cells were fabricated in an identical manner, so the electrodes 

should have similar microstructures. Secondly, the plot of impedance versus inverse 
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temperature shows a change in slope for all tested samples, and this change occurs in the same 

temperature range as a phase change in the electrode materials from R3̅c to Pm3̅m. This implies 

that the performance of the cells is a function of the crystal structure rather than the 

microstructure. Thirdly, the EIS performance data has the same trend as the oxygen isotope 

pulsing data, which are independent of microstructure. 

The only trend that we find correlates with the observed surface exchange rate and the 

electrode impedance is the trend in oxygen mobility determined from the neutron diffraction 

data. Thus, for this set of materials, it appears that the proposed link between surface exchange 

and bulk transport is correct. Rapid bulk transport and surface exchange then lead to low 

electrochemical impedance when the material is employed as an electrode. The remaining 

question is the source of this correlation. 

Following oxygen dissociation on the outermost MIEC material surface, an available 

vacant lattice site is necessary for incorporation of the oxygen anions into the bulk. These vacant 

sites are regenerated by oxygen anion transport from the surface through the bulk. Thus, if we 

consider that regeneration of vacant surface sites can be rate-determining, it follows that rapid, 

near-surface, bulk oxygen transport facilitates more rapid oxygen incorporation.  

If we consider other possible rate determining steps, such as oxygen dissociation on the 

surface, we require a more fundamental correlation between the factors that limit oxygen 

transport and the energetics of these other steps. Certainly factors such as variations in lattice 

parameter with vary A-site cation radius directly influences oxygen anion transport and will alter 

the distance between surface catalytic sites for oxygen dissociation. We assume that two metal 

sites are necessary for dissociative adsorption of O2.   
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5 Bismuth Molybdates 

5.1 Introduction 

Acrolein is an important precursor to a wide variety of fine chemicals, and is 

commercially produced via the partial oxidation of propylene: 

 

𝐶3𝐻6 + 𝑂2 → 𝐶3𝐻3𝑂𝐻 + 𝐻2𝑂 

 

One class of catalysts commonly used for this reaction is the bismuth molybdate 

family111. Partial oxidation reactions over these catalysts are believed to proceed via a Mars van 

Krevelen mechanism112–115, so oxygen mobility and conductivity may be key components to their 

activity, in the same vein as SOFC cathode materials. As a result, the technique of neutron 

powder diffraction was utilized to probe the structure of various bismuth molybdate materials in 

search of features that may be linked to oxygen mobility, such as localized vacancies or strained 

bonds.  

The major phases of the bismuth molybdate materials have a chemical formula of the 

form Bi2(MoO3)nO3, with n=1, 2, or 3. This yields three compositions and four distinct phases: 

alpha (n=3), beta (n=2), and two different polymorphs of the gamma (n=1) phase, low 

temperature (LT gamma) and high temperature (HT gamma). LT gamma undergoes an 

irreversible transition to HT gamma at 604ºC71, which allows for its analysis under the same 

conditions as the LT gamma phase. 

This work focuses on the localization of oxygen vacancies in these materials, as well as 

the relative thermal displacement parameters for different oxygen sites in each phase. In 
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previous work by our laboratory, we observed that, in other oxide materials, such properties are 

linked with oxygen conductivity and the ability of those materials to incorporate and release 

oxygen at the surface70,116,117. 

5.2 Results and Discussion 

Neutron diffraction patterns for the four materials at 400ºC are shown in Figure 5-1, and 

a summary of the refinement parameters for each phase is shown in Table 5-1. The alpha and 

HT gamma phases have monoclinic P21/c structures, the beta phase is also monoclinic, with 

P21/n symmetry, and LT gamma is orthorhombic with a Pca21 structure. All four samples were 

high purity: the alpha and LT gamma phase samples had no detectable impurity peaks in the 

neutron diffraction patterns, and the beta and HT gamma phase samples only had impurity 

concentrations of 2.7 wt% and 3.0 wt%, respectively. In the case of the beta sample, the 

impurity was an HT gamma phase, and in the case of the HT gamma sample, the impurity was 

bismuth oxide. 

 

Figure 5-1: Neutron powder diffraction patterns and Rietveld fits at 400ºC for the (a) alpha, (b) beta, (c) LT 

gamma, and (d) HT gamma phases.  
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Phase Alpha Beta LT Gamma HT Gamma 

Formula Bi2Mo3O12 Bi2Mo2O9 Bi2MoO6 Bi2MoO6 

Formula weight 897.83 753.88 609.92 609.92 

Space Group P21/c P21/n Pca21 P21/c 

a (Å) 7.7144(1) 12.0176(2) 5.52656(5) 17.3481(3) 

b (Å) 11.6251(1) 10.8625(1) 16.24558(12) 22.5253(4) 

c (Å) 11.9896(1) 11.9496(2) 5.55275(5)   5.6084(1) 

β (º) 114.934(1) 90.160(1) 90 90.492(1) 

Volume (Å3) 975.02(2) 1559.90(3) 498.538(7) 2191.52(6) 

Calculated density (g/cm3) 6.098 6.415 8.126 7.368 

Impurity phase - - HT gamma - - Bi2O3 

Impurity amount, wt% - - 2.7 - - 3.0 

Absorption coefficient 0.091 0.089 0.091 0.119 

χ2 1.787 1.473 2.720 1.411 

Rwp, % 3.28 2.67 3.58 3.06 

Table 5-1: Summary of Rietveld refinement results at 400ºC under 0.01 atm O2 and 0.02 atm H2. χ2 is an 
average between the 300ºC and 400ºC diffraction patterns, due to certain overall parameters being fixed 
between these two temperatures. 

 

While the beta and HT gamma phase materials expanded isotropically with increasing 

temperature, the alpha phase primarily expanded along the b axis, and the LT gamma phase 

expanded primarily along the a and c axes. The results for the lattice expansion of all four 

phases falls in line with previous reports in the literature118,119. Volumetric thermal expansion 

coefficients were roughly similar for all four phases, ranging from 4.1x10-5 ºC-1 for the alpha 

phase to 6.3x10-5 ºC-1 for the LT gamma phase, in the temperature range of 300-400ºC. 

Two models were used for each phase: one in which the oxygen atoms had anisotropic 

displacements, and one in which the displacements were isotropic. Cation displacements were 

isotropic in both models. According to Hamilton’s R-ratio test120, the anisotropic oxygen models 
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led to a statistically significant improvement of the fit to the diffraction patterns. While most 

oxygen sites refined to 100% occupancy, certain sites refined to have vacancies in both models, 

so it is possible that oxygen vacancies in the materials are localized to these sites. 

For the alpha phase, oxygen vacancies appear to be localized to the O4 site. This may be 

related to the fact that the octahedral around the molybdenum on the Mo3 site is quite 

distorted, making the Mo3-O4 bond distance the longest Mo-O bond in the structure: 3.007 Å at 

400ºC. This may indicate a less tightly bound oxygen at this site, and parallels earlier work done 

by Fansuri, et al., which observed that the O4 oxygens were among the few that were more 

strongly affected by an exposure of their sample to an atmosphere with a pO2 lower than that of 

air118. 

For the beta phase, the O16 site is most likely to be vacant. In this structure, 12 of the 

18 oxygen sites have bonds to three cation sites, while 6 have bonds to only two. O16 belongs to 

this latter group, and within this group, has the longest Bi-O bond at 2.806 Å at 400ºC, versus 

2.290-2.574 Å for the rest of the oxygen sites in this group. Similar to the case in the alpha 

phase, this may lead to oxygens at this site being less tightly bound than at other sites in the 

crystal, which could give rise to vacancies concentrating at this location. While Bi-O bond 

connected to this site is not the longest within the structure, all longer bonds belong to oxygen 

sites which have bonds to three cations and it may be the case that the greater number of 

bonds mitigate the weakness of the individual bonds. 

For the HT gamma phase, these were the O12 and O24 sites. Both are located on the 

border between the Bi and Mo cation regions of the unit cell, and the longest cation-oxygen 

bond in the crystal is between Bi2 and O12 (3.230 Å at 400ºC), which may indicate that oxygens 

at this site are less tightly bound than elsewhere in the crystal. The O24 sites also align into a 

column that is oriented along the c axis and spans the entire width of the unit cell. The O12 and 
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O6 sites also create columns of vacancies, although vacancies on the O6 site were only observed 

in the anisotropic model. Columns of vacancies such as these may be indicative of oxygen 

transport pathways through the structure, and could be the mechanism behind this material’s 

oxygen conductivity. 

For the LT gamma phase, both models refined to have full occupancy on all oxygen sites. 

Evidence of oxygen conduction pathways is not clearly present, in contrast to the HT gamma 

phase. LT gamma has been measured to have a lower conductivity than HT gamma in the 300-

400ºC region121, so the fact that a significant number of vacancies were not observed in this 

temperature range is not surprising. Murugan122 proposed that ionic conductivity in the LT 

gamma phase is related to the anisotropic thermal expansion of Mo-O bonds, yet we did not 

observe any anisotropy in the thermal expansion of apical and equatorial Mo-O bonds in the 

300-400ºC region. However, when looking at displacement parameters instead of vacancies, a 

trend can be observed in which the oxygen sites that are sandwiched between bismuth layers, 

O2 and O3, have smaller displacement parameters than those surrounding the molybdenum 

cations. This may indicate that any conductivity present in the material at these temperatures is 

due to oxygens associated with molybdenum and not the oxygens in the bismuth layer. 

It has been proposed that hydrocarbon oxidation, at least in the case of LT gamma, 

proceeds via a mechanism that involves donation of an oxygen bonded to a bismuth atom, 

which is then replenished by an oxygen bonded to a molybdenum atom, which is in turn 

replenished by oxygen from the gas phase123. This implies that not all regions of the crystal 

structure have an equal impact on catalytic activity, and therefore tuning the oxygen mobility in 

specific regions of the structure via vacancy concentration may be useful in improving the 

activity and selectivity of these catalysts. For example, Le et al. observed that, while the LT 

gamma phase has a higher conductivity than the beta phase, the beta material was more active 
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than the LT gamma material for the partial oxidation of propylene to acrolein124, and a 

combination of beta and LT gamma phases was even more active. Similarly, Ono et al. observed 

that the beta phase was more selective than the LT gamma phase for this reaction, and a similar 

synergy effect was seen between the two phases125. An explanation for this behavior may be 

that, while LT gamma is a good oxygen conductor, it is the oxygens associated with the 

molybdenum ions that contribute the most to this conductivity, while the oxygens in the 

bismuth layer are less mobile. In the beta-LT gamma synergy scenario, this would fit the theory 

that bismuth layer oxygens in the LT gamma phase are not mobile enough to significantly 

contribute to hydrocarbon oxidation at the surface, but the molybdenum layers are able to 

replenish oxygen in surface beta phase sites more quickly than a pure beta material would be 

capable of. 

5.3 Conclusions 

Localization of oxygen vacancies were observed for three of the bismuth molybdate 

phases investigated: alpha, beta, and HT gamma. While oxygen vacancies were not observed in 

the LT gamma phase, differences in oxygen displacement parameters were measured which 

mesh well with previous reports on the activity and selectivity of pure LT gamma catalysts 

versus mixed beta/LT gamma catalysts. This highlights the importance of understanding the 

structural phenomena behind ionic conductivity in oxide materials, and demonstrates why total 

conductivity measurements alone are not enough to explain the activity and selectivity of the 

catalysts used for Mars van Krevelen type reactions. 
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6 Other Collaborative Work 

In addition to the work described in the previous sections, collaboration was done as a 

second author on a number of other neutron diffraction projects related to SOFC materials. A 

synopsis of that research is detailed below. 

6.1 BSCF neutron studies 

Ba0.5Sr0.5Co0.5Fe0.5O3-δ was examined using neutron diffraction under an atmosphere of 

10% oxygen and 90% nitrogen at atmospheric pressure at temperatures ranging from 520-

827ºC, and synchrotron x-ray diffraction in air at room temperature. The material was observed 

to have cubic Pm3̅m symmetry under all conditions, without the presence of a hexagonal phase 

as was previously supposed19, or evidence of ordering for either the cation or oxygen sites. The 

average displacement of oxygen within the structure was found to be isotropic, in contrast to 

the anisotropic displacement of oxygen in the LnSCF materials. The structure was found to be 

significantly oxygen deficient, as well, with the non-stoichiometry parameter, δ, ranging from 

0.64 at 520ºC to 0.74 at 827ºC. 

Critically, the degree of oxygen non-stoichiometry was in very good agreement with 

previous neutron diffraction experiments performed on a similar material, 

Ba0.5Sr0.5Co0.8Fe0.2O3-δ
15, the latter being slightly more deficient in oxygen, due to substitution of 

iron for more cobalt causing the material as a whole to be more easily reduced. This agreement 

in oxygen occupancy is despite the fact that the experiments were conducted using entirely 

separate facilities and different methods for sample handling. In stark contrast to this 

consistency was the disagreement in oxygen stoichiometry in the literature among groups that 

measured the property using thermogravimetric analysis. While that technique is adept at 
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precisely measuring the change in overall oxygen stoichiometry with temperature, it requires a 

reference point to measure against, which can be difficult to accurately obtain. Neutron 

diffraction has no such limitation, as was demonstrated by this experiment. 

6.2 Ruddlesden-Popper materials 

This was a study of oxide materials with the Ruddlesden-Popper structure, which can be 

visualized as a variable number of layers of the perovskite structure sandwiched between layers 

of a rock salt type structure. These materials have compositions of the form An+1BnO3n+1, where 

n denotes the number of perovskite-type layers in between the rock salt layers. Three materials 

were prepared, representing the n = 1, 2, 3 structures: LaSrCo0.5Fe0.5O4-δ (n=1), La0.3Sr2.7CoFeO7-δ 

(n=2), and LaSr3Co1.5Fe1.5O10-δ (n=3). The unusual and inconsistent cation ratios between the 

samples were required in order to synthesize pure phases of each sample, as the structures 

have quite complex ordering. Neutron diffraction was carried out under an atmosphere of 10% 

oxygen and 90% nitrogen at atmospheric pressure at temperatures ranging from 492-797ºC. 

In addition, pulsed oxygen isotope experiments were used to measure surface exchange 

rates for the samples, and the structural models derived from the neutron diffraction results 

were compared with this rate data. δ for the n = 1, 2, and 3 phases was obtained through the 

Rietveld refinement to be 0.06, 0.62, and 0.42, respectively. In general, the oxygen vacancies 

tended to concentrate towards the center of the perovskite layers, and were the most 

concentrated in the case of the n = 2 structure, with the central O3 site nearly 40% vacant, while 

they were more spread out in the n = 3 structure and virtually nonexistent in the n = 1 structure. 

In addition to the vacancy concentrations, the n = 2 phase was theorized to have the shortest 

hopping distance between oxygen sites, n = 1 to have the longest such distances, and n = 3 

placed in between the other two structures, but closer to the n = 2 material. In line with these 
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results, the n = 3 material displayed oxygen exchange rates that were an order of magnitude 

higher than that of the n = 1 sample, and the n = 2 had even higher rates, as show in Figure 6-1.  

In order to rule out differences in surface composition between the samples, high-

sensitivity low energy ion scattering was performed, and the samples were nearly identical in 

terms of surface composition. For all three samples, the surface was almost entirely enriched 

with strontium, and the B site cations cobalt and iron were not present. This evidence was 

combined with previous results of oxygen on other perovskite oxides to put forth the hypothesis 

that oxygen exchange is not truly a surface reaction for these materials, but rather involves a 

significant portion of the bulk near the surface. 

 

Figure 6-1 : Surface oxygen exchange rates as a function of temperature for the n = 1 (red circles), n = 2 
(blue triangles), and n = 3 (green squares) Ruddlesden-Popper materials. 

 

6.3 PBMO - layered manganite 

This work utilized neutron diffraction to determine the structure of layered PrBaMn2O5+δ 

(PBMO). Humidified hydrogen gas of varying concentrations, from 0.08% to 50% was passed 
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over the sample to equilibrate it with a range of reducing gas atmospheres (pO2 between 

1×10-17.9 and 1×10-21.2 atm) before collecting diffraction patterns at temperatures from 419-

711ºC. The oxide was determined to have tetragonal P4/mmm symmetry, and a perovskite type 

structure with alternating layers of praseodymium and barium on the A sites.  

Oxygen vacancies were confined solely to the oxygen site in the praseodymium layer, 

O3, with O1 and O2 sites maintaining fully occupancy under all tested conditions. The O3 site 

was almost completely vacant under most conditions, as shown in Figure 6-2, which directly 

confirmed the hypothesis in the literature that the oxygen vacancies in the material layer along 

with the A site cations126. This work also proved that the material was very stable under 

reducing conditions: despite the wide range in oxygen partial pressures and temperatures, the 

material neither changed symmetry nor partitioned into separate phases. 

 

Figure 6-2 : Oxygen non-stoichiometry in PBMO as a function of the oxygen partial pressure of the gas 
environment. Sample temperatures were 419ºC (blue triangle), 515ºC (red circle), 613ºC (gold diamond), 
and 711ºC (green square). Results are compared against Sengodan126 at 650º (open triangle), 700ºC (open 
square), and 750ºC (open circle). 
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7 Oxidative Coupling of Methane 

7.1 Background on OCM 

In the oxidative coupling of methane (OCM), two molecules of methane are combined 

into an ethylene molecule via the following reaction: 

 

2𝐶𝐻4 + 𝑂2 → 𝐶2𝐻4 + 2𝐻2𝑂 

 

The reaction is exothermic and spontaneous, with a heat of reaction of -139 kJ per mole 

of methane and a Gibb’s free energy of -153 kJ/mol127, however the partial and total combustion 

of methane to CO, CO2 and water is even more favorable, and indeed these are the most 

common side products. In order to selectively produce ethylene, the kinetics of the above 

reaction must be improved, and this is where the bulk of the catalytic work is focused. It has 

been estimated that a single pass conversion of 35-37% along with a C2+ selectivity of 85-88% 

(leading to a yield of 30-33%) is the minimum requirement for this reaction to be economically 

feasible128. Conversion is calculated according to the following formula: 

 

𝑋𝐶𝐻4
=

𝑓𝐶𝐻4,𝑖𝑛 − 𝑓𝐶𝐻4,𝑜𝑢𝑡

𝑓𝐶𝐻4,𝑖𝑛
  

 

Where X is the conversion of methane, and ƒ is the molar flow rate of methane. The 

selectivity, S, of interest will be that of the production of C2 hydrocarbons, and is calculated 

according to the following formula: 
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𝑆𝐶2
=  

2𝑓𝐶2,𝑜𝑢𝑡

 𝑓𝐶𝐻4,𝑖𝑛 − 𝑓𝐶𝐻4,𝑜𝑢𝑡
 

 

Where ƒC2 is sum of the molar flowrates of ethane and ethylene.  

For heterogeneous catalysis utilizing a traditional packed bed reactor with co-fed 

methane and oxygen, the leading catalyst for OCM is lithium-doped magnesium oxide 

(Li/MgO)127. Feeds are typically methane, oxygen, and an inert gas, with methane fed in excess, 

and the bed is kept at atmospheric pressure and a temperature of 600 to 800ºC. These 

conditions lead to selectivities in the range of 50-80% and conversions of 5-40%, culminating in 

yields of 15-20%. The major side products are CO and CO2. 

Currently, high selectivity towards C2+ hydrocarbons can be obtained at low (<30%) 

conversions, but attempts to increase conversion with current catalysts leads to a decrease in 

selectivity as the reaction proceeds towards combustion products such as carbon monoxide and 

carbon dioxide. One of the current limitations at higher temperatures may be the conversion of 

the desired C2 products to combustion products such as CO and CO2. At temperatures above 

740ºC over Li/MgO catalysts, 30-80% of the CO2 side products are due to complete oxidation of 

C2 hydrocarbons129, placing a cap on the maximum attainable yield for these catalysts at high 

temperatures. At temperatures below 700ºC, however, conversion of C2 products account for 

less than 10% of the CO2 produced, indicating that an increase in the performance of catalysts at 

these lower temperatures could be the key towards breaking the current yield barrier. 

These reactions occur via a Mars van Krevelen mechanism, so oxygen conductivity may 

be able to influence the activity and selectivity of the catalysts used. Previous work by our lab 

has shown that an increase in oxygen mobility can lead to an increase in the surface oxygen 

exchange rate70,116, and Taniewski et al. observed a high oxygen mobility for Li/MgO130, one of 
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the current best catalysts for oxidative methane coupling127. We have set out to determine if 

these principles could be used to increase the activity of Li/MgO for the oxidative coupling of 

methane, as well as discover wholly novel catalysts for the process. In pursuit of this, a pair of 

oxygen conducting oxides, yttria stabilized zirconia (YSZ) and gadolinium doped ceria (GDC) have 

been selected for use as support materials for Li/MgO, in hopes that their ionic conductivity may 

be used to enhance the performance of Li/MgO, increasing the flux of oxygen anions to the 

active sites. In addition, a pair of catalysts not designed specifically for oxidative methane 

coupling have been chosen: the high temperature polymorph of gamma phase bismuth 

molybdate (HT gamma Bi2MoO6), and Layered PrBaMn2O5+δ (PBMO). The latter has been 

selected for its oxygen conductivity, and the former for its use as a partial oxidation catalyst for 

propylene131, in addition to some ionic conductivity. 

7.2 Results and Discussion 

7.2.1 Maximum Yield Tests 

In terms of yield, pure Li/MgO was the best performer, with a yield of 22% at 825ºC, 

followed by Li/MgO-YSZ (17.4% at 850ºC), Li/MgO-GDC (8.6% at 850ºC), Bi2MoO6 (6.3% at 

800ºC), and PBMO (6.0% at 775ºC). This is mainly a result of the high selectivity of pure Li/MgO, 

which is over 80%, versus 10-40% for the other materials. Yield versus temperature for selected 

runs is shown in Figure 7-1, and the feed conditions for these runs are summarized in Table 7-1.  
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Figure 7-1 : Percent yield for each catalyst as a function of temperature. 

 

Sample CH4, mol% O2, mol% Total Flow, mL/min Bed Volume, mL Catalyst Mass, g 

Li/MgO 40% 20% 20 1.6 1.974 

Li/MgO-YSZ 4% 2% 100 0.084 0.057 

Li/MgO-GDC 40% 20% 20 0.42 0.785 

Bi2MoO6 40% 20% 5 0.85 1.525 

PBMO 40% 20% 5 0.78 1.044 

 
Table 7-1: Feed conditions and amount of catalyst loaded in the reactor for the experiments designed to 
maximize C2 yield. 

 

While no material outperformed pure Li/MgO in terms of maximum yield, the GDC 

promoted material showed appreciable performance at low temperatures, with yields above 6% 

even at 625ºC. This is a promising result: Machocki132 carried out oxidative methane coupling 

reactions over an Li/MgO catalyst in this temperature regime and obtained a C2+ yield of ~7% at 
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650ºC using a similar feed composition, versus 7.8% in this work, and estimated a ~4% yield at 

625ºC, compared with the 6.2% yield obtained here for the GDC promoted catalyst. GDC is an 

excellent oxygen conductor133, and it may be this property that allows it to catalyze the reaction 

at such low temperatures. Given that subsequent oxidation of C2 products puts a sever 

constraint on yield at elevated temperatures129, operating the process at milder temperatures 

may be necessary to bring yields above 30%. At these lower temperatures, oxygen mobility and 

the rate of reduction of gaseous O2 may be a limiting factor, similar to what is observed for solid 

oxide fuel cell cathodes at these temperatures73,74. 

Selectivity versus temperature is plotted in Figure 7-2. In terms of selectivity, pure 

Li/MgO was the clear winner, with selectivities in the range of 80-100%, dropping as conversion 

increased. The YSZ promoted catalyst had a slightly higher maximum selectivity than the GDC 

supported catalyst, peaking at 43.5% versus 33.8%, although the GDC supported catalyst 

maintained selectivity above 20% as the temperature dropped to 625ºC, while the selectivity of 

the YSZ supported catalyst steadily decreased with temperature. Once again, GDC’s excellent 

oxygen conductivity is theorized to explain its ability to maintain its selectivity at lower 

temperatures than YSZ. The PBMO and Bi2MoO6 materials possessed the lowest selectivities out 

of the materials tested, which follows from the fact that these materials have not been designed 

for oxidative methane coupling. 
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Figure 7-2 : Percent selectivity for each catalyst as a function of temperature. 

 

7.2.2 Differential Operation 

Results from operating the reactor in differential mode can be seen in Figure 7-3, where 

the reaction rates have been normalized by catalyst mass (catalyst + support mass in the case of 

YSZ and GDC supported materials), and feed conditions are summarized in Table 7-2. Activation 

energies for Li/MgO, Li/MgO-YSZ, Li/MgO-GDC, Bi2MoO6, and PBMO were calculated to be 

122±4 kJ/mol, 152±10 kJ/mol, 224±29 kJ/mol, 212±7 kJ/mol, and 93±4 kJ/mol, respectively. In 

terms of activity, the Li/MgO catalyst on the YSZ support was the best performer, when 

normalized to catalyst + support weight. Li/MgO-YSZ performed much better than the GDC 

supported sample, despite the fact that the GDC support has a higher surface area, and that 

GDC theoretically has a higher oxygen conductivity than YSZ133. While this may seem in contrast 
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to the low temperature yield results for the YSZ and GDC promoted catalysts, the increased yield 

for the GDC supported material in that case was primarily due to better selectivity in the 625-

675ºC range, not higher conversion. The decrease in normalized conversion could be due to 

other phenomena occurring at the catalyst-support interface, such as better surface wetting of 

the Li/MgO on YSZ versus GDC, which would lead to a greater number of active sites per unit 

surface area. 

 

Figure 7-3 : Reaction rate based on the conversion of methane for the various catalysts, normalized by 
catalyst mass. 
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Sample CH4, mol% O2, mol% Total Flow, mL/min Bed Volume, mL Catalyst Mass, g 

Li/MgO 4% 2% 100 0.073 0.113 

Li/MgO-YSZ* 20% 10% 40 0.063 1.47x10-3 

Li/MgO-GDC* 10% 5% 50 0.18 4.95x10-3 

Bi2MoO6 20% 10% 20 0.85 1.525 

PBMO 4% 2% 100 0.78 1.044 

 
Table 7-2: Feed conditions and amount of catalyst loaded in the reactor for the experiments run in 
differential mode (conversion <10%). Samples marked with an asterisk (*) were diluted with SiO2 
particles, and catalyst mass given is exclusive of the diluent. 

 

In the case of the single-phase catalyst alternatives to Li/MgO, the PBMO sample 

performed quite well in terms of activity, greatly outperforming the HT gamma phase bismuth 

molybdate material, and performing very close to Li/MgO. This appears to lend credence to the 

hypothesis that oxygen conductivity plays a role in the reaction. Unfortunately, PBMO begins to 

revert from its layered phase to a disordered phase above 800ºC134, which prevents it from 

operating in the 800-850ºC region. However, it may be a promising candidate for further 

research into optimizing the reaction at lower temperatures, either through tuning its surface 

properties for higher selectivity, or as use as a support material for Li/MgO, similar to the use of 

YSZ and GDC in this study. 

Plain MgO is a very poor catalyst for methane coupling, and it is theorized that the 

addition of lithium creates defects in the crystal structure, and it is these defects that are the 

active sites for hydrogen abstraction and the formation of the methyl radicals that couple 

together to form C2 hydrocarbons135–137. One such defect is the color center, where electrons 

migrate towards an oxygen vacancy in the structure, which interacts with methane as well as 

gas phase oxygen, and may even act as part of an oxygen pump138. Such vacancies are also 

present in many oxygen conducting oxides, such as the YSZ, GDC and PBMO of this work, and 

they may be a source of active sites for these materials, further increasing the performance of 
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these materials in addition to their ionic conductivity. These defect sites may explain the 

significantly higher activity of the PBMO sample versus the HT gamma phase Bi2MoO6 sample, 

since vacancies are present in nearly one in six oxygen sites in the former134,139. 

7.3 Conclusion 

The results shown here implicate that oxygen conductivity may play a role in the 

oxidative coupling of methane, and this could be used to develop new catalysts to push the 

single pass yield of the process into an economically viable regime. In particular, the GDC 

supported samples showed a promising amount of C2 product yield at lower temperatures, and 

PBMO demonstrated excellent activity, despite not being designed for coupling reactions. 

Further research may be warranted to investigate the interaction between Li+, MgO, and the 

support materials, and how their combination affects the number and properties of active sites. 

Tuning these relations may be key to maximize the selectivity and conversion of future materials 

and bring overall yield above 30 percent. 

  



81 

8 References 

(1)  Sugiura, M. Oxygen Storage Materials for Automotive Catalysts: Ceria-Zirconia Solid 
Solutions. Catal. Surv. from Asia 2003, 7 (1), 77–87. 

(2)  Dove, M. T. An Introduction to the Use of Neutron Scattering Methods in Mineral 
Sciences. Eur. J. Mineral. 2002, 14 (2), 203–224. 

(3)  Rietveld, H. M. A Profile Refinement Method for Nuclear and Magnetic Structures. J. 
Appl. Crystallogr. 1969, 2 (2), 65–71. 

(4)  Von Dreele, R. B.; Jorgensen, J. D.; Windsor, C. G. Rietveld Refinement with Spallation 
Neutron Powder Diffraction Data. J. Appl. Crystallogr. 1982, 15 (6), 581–589. 

(5)  Larson, A. C.; Von Dreele, R. B. General Structure Analysis System (GSAS). Los Alamos 
Natl. Lab. Rep. 2004, LAUR86-748, 1–224. 

(6)  Tomkiewicz, A. C.; Tamimi, M. a.; Huq, A.; McIntosh, S. Evidence for the Low Oxygen 
Stoichiometry of Cubic Ba0.5Sr0.5Co0.5Fe0.5O3-δ from in-Situ Neutron Diffraction. Solid 
State Ionics 2013, 253, 27–31. 

(7)  Redfern, S. A. T.; Welch, M. D.; Henderson, C. M. B.; Knight, K. S. In Situ High- T Neutron 
Diffraction Studies of Non-Convergent Order/disorder in Minerals: From Simple Oxides to 
Complex Silicates. Phase Transitions 1999, 69 (1), 17–34. 

(8)  MIZUSAKI, J. Nonstoichiometry, Diffusion, and Electrical Properties of Perovskite-Type 
Oxide Electrode Materials. Solid State Ionics 1992, 52 (1-3), 79–91. 

(9)  Cherry, M.; Islam, M. S.; Catlow, C. R. A. Oxygen Ion Migration in Perovskite-Type Oxides. 
J. Solid State Chem. 1995, 118 (1), 125–132. 

(10)  YASHIMA, M. Neutron Diffraction Study of the Perovskite-Type Lanthanum Cobaltite 
La0.6Sr0.4Co0.8Fe0.2O3−δ at 1260 °C and 394 °C. Solid State Ionics 2008, 178 (39-40), 
1939–1943. 

(11)  Chen, Y.-C.; Yashima, M.; Ohta, T.; Ohoyama, K.; Yamamoto, S. Crystal Structure, Oxygen 
Deficiency, and Oxygen Diffusion Path of Perovskite-Type Lanthanum Cobaltites La 0.4 Ba 
0.6 CoO 3−δ and La 0.6 Sr 0.4 CoO 3−δ. J. Phys. Chem. C 2012, 116 (8), 5246–5254. 

(12)  Yashima, M. In Situ Observations of Phase Transition Using High-Temperature Neutron 
and Synchrotron X-Ray Powder Diffractometry. J. Am. Ceram. Soc. 2002, 85 (12), 2925–
2930. 

(13)  Haag, J. M.; Barnett, S. A.; Richardson, J. W.; Poeppelmeier, K. R. Structural and Chemical 
Evolution of the SOFC Anode La 0.30 Sr 0.70 Fe 0.70 Cr 0.30 O 3−δ upon Reduction and 
Oxidation: An in Situ Neutron Diffraction Study. Chem. Mater. 2010, 22 (10), 3283–3289. 

(14)  Shao, Z.; Haile, S. M. A High-Performance Cathode for the next Generation of Solid-Oxide 
Fuel Cells. Nature 2004, 431 (7005), 170–173. 

(15)  McIntosh, S.; Vente, J. F.; Haije, W. G.; Blank, D. H. A.; Bouwmeester, H. J. M. Oxygen 
Stoichiometry and Chemical Expansion of Ba 0.5 Sr 0.5 Co 0.8 Fe 0.2 O 3 - δ Measured by 
in Situ Neutron Diffraction. Chem. Mater. 2006, 18 (8), 2187–2193. 



82 

(16)  McIntosh, S.; Vente, J.; Haije, W.; Blank, D. H. A.; Bouwmeester, H. J. M. Phase Stability 
and Oxygen Non-Stoichiometry of SrCo0.8Fe0.2O3−δ Measured by in Situ Neutron 
Diffraction. Solid State Ionics 2006, 177 (9-10), 833–842. 

(17)  Mueller, D. N.; De Souza, R. A.; Yoo, H.-I.; Martin, M. Phase Stability and Oxygen 
Nonstoichiometry of Highly Oxygen-Deficient Perovskite-Type Oxides: A Case Study of 
(Ba,Sr)(Co,Fe)O 3−δ. Chem. Mater. 2012, 24 (2), 269–274. 

(18)  Jung, J.-I.; Misture, S. T.; Edwards, D. D. Oxygen Stoichiometry, Electrical Conductivity, 
and Thermopower Measurements of BSCF (Ba0.5Sr0.5CoxFe1−xO3−δ, 0≤x≤0.8) in Air. 
Solid State Ionics 2010, 181 (27-28), 1287–1293. 

(19)  SVARCOVA, S. Structural Instability of Cubic Perovskite BaxSr1−xCo1−yFeyO3−δ. Solid 
State Ionics 2008, 178 (35-36), 1787–1791. 

(20)  Kriegel, R.; Kircheisen, R.; Töpfer, J. Oxygen Stoichiometry and Expansion Behavior of 
Ba0.5Sr0.5Co0.8Fe0.2O3−δ. Solid State Ionics 2010, 181 (1-2), 64–70. 

(21)  Bucher, E.; Egger, A.; Ried, P.; Sitte, W.; Holtappels, P. Oxygen Nonstoichiometry and 
Exchange Kinetics of Ba0.5Sr0.5Co0.8Fe0.2O3−δ. Solid State Ionics 2008, 179 (21-26), 
1032–1035. 

(22)  Li, Y.; Maxey, E. R.; Richardson, J. W. Structural Behavior of Oxygen Permeable 
SrFe0.2Co0.8Ox Ceramic Membranes with and Without pO2 Gradients. J. Am. Ceram. 
Soc. 2005, 88 (5), 1244–1252. 

(23)  Suescun, L.; Dabrowski, B.; Mais, J.; Remsen, S.; Richardson, J. W.; Maxey, E. R.; 
Jorgensen, J. D. Oxygen Ordered Phases in La X Sr 1− X MnO Y (0 ≤ X ≤ 0.2, 2.5 ≤ Y ≤ 3): An 
In Situ Neutron Powder Diffraction Study. Chem. Mater. 2008, 20 (4), 1636–1645. 

(24)  Cox-Galhotra, R. A.; Huq, A.; Hodges, J. P.; Kim, J.-H.; Yu, C.; Wang, X.; Jacobson, A. J.; 
McIntosh, S. Visualizing Oxygen Anion Transport Pathways in NdBaCo2O5+δ by in Situ 
Neutron Diffraction. J. Mater. Chem. A 2013, 1 (9), 3091. 

(25)  Cox-Galhotra, R. A.; Huq, A.; Hodges, J. P.; Yu, C.; Wang, X.; Gong, W.; Jacobson, A. J.; 
McIntosh, S. An in-Situ Neutron Diffraction Study of the Crystal Structure of 
PrBaCo2O5+δ at High Temperature and Controlled Oxygen Partial Pressure. Solid State 
Ionics 2013, 249-250, 34–40. 

(26)  Hu, Y.; Hernandez, O.; Broux, T.; Bahout, M.; Hermet, J.; Ottochian, A.; Ritter, C.; 
Geneste, G.; Dezanneau, G. Oxygen Diffusion Mechanism in the Mixed Ion-Electron 
Conductor NdBaCo2O5+x. J. Mater. Chem. 2012, 22 (36), 18744. 

(27)  Mitchell, B. J.; Rogan, R. C.; Richardson, J. W.; Ma, B.; Balachandran, U. Stability of the 
Cubic Perovskite SrFe0.8Co0.2O3−δ. Solid State Ionics 2002, 146 (3-4), 313–321. 

(28)  Speakman, S.; Richardson, J. W.; Mitchell, B. J.; Misture, S. T. In-Situ Diffraction Study of 
Ba2In2O5. Solid State Ionics 2002, 149 (3-4), 247–259. 

(29)  Rolle, A.; Roussel, P.; Giridharan, N.; Suard, E.; Vannier, R. A Neutron Diffraction Study of 
the Oxygen Diffusion in Molybdenum Doped Ba2In2O5. Solid State Ionics 2008, 179 (35-
36), 1986–1995. 

(30)  Beznosikov, B. V.; Aleksandrov, K. S. Perovskite-like Crystals of the Ruddlesden-Popper 
Series. Crystallogr. Reports 2000, 45 (5), 792–798. 



83 

(31)  Allan, N. L.; Lawton, J. M.; Mackrodt, W. C. A Comparison of the Calculated Lattice and 
Defect Structures of La 2 CuO 4 , La 2 NiO 4 , Nd 2 CuO 4 , Pr 2 CuO 4 , Y 2 CuO 4 , Al 2 
CuO 4 : Relationship to High- T c Superconductivity. Philos. Mag. Part B 1989, 59 (2), 
191–206. 

(32)  Allan, N. L.; Mackrodt, W. C. Oxygen Ion Migration in La 2 CuO 4. Philos. Mag. A 1991, 64 
(5), 1129–1132. 

(33)  MAZO, G. The Molecular Dynamics Study of Oxygen Mobility in La2?xSrxCuO4?? Solid 
State Ionics 2004, 175 (1-4), 371–374. 

(34)  Read, M. S. D.; Islam, M. S.; King, F.; Hancock, F. E. Defect Chemistry of La 2 Ni 1 - X M X O 
4 (M = Mn, Fe, Co, Cu): Relevance to Catalytic Behavior. J. Phys. Chem. B 1999, 103 (9), 
1558–1562. 

(35)  Minervini, L.; Grimes, R. W.; Kilner, J. A.; Sickafus, K. E. Oxygen Migration in La2NiO4 + δ. 
J. Mater. Chem. 2000, 10 (10), 2349–2354. 

(36)  Cleave, A. R.; Kilner, J. A.; Skinner, S. J.; Murphy, S. T.; Grimes, R. W. Atomistic Computer 
Simulation of Oxygen Ion Conduction Mechanisms in La2NiO4. Solid State Ionics 2008, 
179 (21-26), 823–826. 

(37)  Burriel, M.; Garcia, G.; Santiso, J.; Kilner, J. A.; Chater, R. J.; Skinner, S. J. Anisotropic 
Oxygen Diffusion Properties in Epitaxial Thin Films of La 2 NiO 4+δ. J. Mater. Chem. 2008, 
18 (4), 416–422. 

(38)  Tonus, F.; Greaves, C.; El Shinawi, H.; Hansen, T.; Hernandez, O.; Battle, P. D.; Bahout, M. 
High-Temperature Redox Chemistry of La1.5+xSr0.5−xCo0.5Ni0.5O4+δ (X = 0.0, 0.2) 
Studied in Situ by Neutron Diffraction. J. Mater. Chem. 2011, 21 (20), 7111. 

(39)  Skinner, S. J. Characterisation of La2NiO4+δ Using in-Situ High Temperature Neutron 
Powder Diffraction. Solid State Sci. 2003, 5 (3), 419–426. 

(40)  Skinner, S. J.; Amow, G. Structural Observations on La2(Ni,Co)O4±δ Phases Determined 
from in Situ Neutron Powder Diffraction. J. Solid State Chem. 2007, 180 (7), 1977–1983. 

(41)  Yashima, M.; Enoki, M.; Wakita, T.; Ali, R.; Matsushita, Y.; Izumi, F.; Ishihara, T. Structural 
Disorder and Diffusional Pathway of Oxide Ions in a Doped Pr2NiO4-Based Mixed 
Conductor. J. Am. Chem. Soc. 2008, 130 (9), 2762–2763. 

(42)  Yashima, M.; Sirikanda, N.; Ishihara, T. Crystal Structure, Diffusion Path, and Oxygen 
Permeability of a Pr 2 NiO 4 -Based Mixed Conductor (Pr 0.9 La 0.1 ) 2 (Ni 0.74 Cu 0.21 Ga 
0.05 )O 4+δ. J. Am. Chem. Soc. 2010, 132 (7), 2385–2392. 

(43)  Broux, T.; Prestipino, C.; Bahout, M.; Hernandez, O.; Swain, D.; Paofai, S.; Hansen, T. C.; 
Greaves, C. Unprecedented High Solubility of Oxygen Interstitial Defects in La 1.2 Sr 0.8 
MnO 4+δ up to δ ∼ 0.42 Revealed by In Situ High Temperature Neutron Powder 
Diffraction in Flowing O 2. Chem. Mater. 2013, 25 (20), 4053–4063. 

(44)  Bahout, M.; Tonus, F.; Prestipino, C.; Pelloquin, D.; Hansen, T.; Fonda, E.; Battle, P. D. 
High-Temperature Redox Chemistry of Pr0.5Sr1.5Cr0.5Mn0.5O4−δ Investigated in Situ by 
Neutron Diffraction and X-Ray Absorption Spectroscopy under Reducing and Oxidizing 
Gas Flows. J. Mater. Chem. 2012, 22 (21), 10560. 

(45)  Tonus, F.; Bahout, M.; Battle, P. D.; Hansen, T.; Henry, P. F.; Roisnel, T. In Situ Neutron 
Diffraction Study of the High-Temperature Redox Chemistry of Ln3−xSr1+xCrNiO8−δ (Ln = 



84 

La, Nd) under Hydrogen. J. Mater. Chem. 2010, 20 (20), 4103. 

(46)  Broux, T.; Bahout, M.; Hernandez, O.; Tonus, F.; Paofai, S.; Hansen, T.; Greaves, C. 
Reduction of Sr 2 MnO 4 Investigated by High Temperature in Situ Neutron Powder 
Diffraction under Hydrogen Flow. Inorg. Chem. 2013, 52 (2), 1009–1017. 

(47)  Mogni, L. V.; Prado, F. D.; Cuello, G. J.; Caneiro, A. Study of the Crystal Chemistry of the N 
= 2 Ruddlesden−Popper Phases Sr 3 FeMO 6+δ (M = Fe, Co, and Ni) Using in Situ High 
Temperature Neutron Powder Diffraction. Chem. Mater. 2009, 21 (13), 2614–2623. 

(48)  PRADO, F.; MOGNI, L.; CUELLO, G.; CANEIRO, A. Neutron Powder Diffraction Study at 
High Temperature of the Ruddlesden–Popper Phase Sr3Fe2O6+δ. Solid State Ionics 2007, 
178 (1-2), 77–82. 

(49)  Sickafus, K. E.; Wills, J. M.; Grimes, N. W. Structure of Spinel. J. Am. Ceram. Soc. 2004, 82 
(12), 3279–3292. 

(50)  Carpenter, M. A.; Salje, E. K. H. Thermodynamics of Nonconvergent Cation Ordering in 
Minerals; II, Spinels and the Orthopyroxene Solid Solution. Am. Mineral. 1994, 79 (11-12), 
1068–1083. 

(51)  Redfern, S.; Harrison, R. Thermodynamics and Kinetics of Cation Ordering in MgAl~ 2O~ 4 
Spinel up to 1600 C from in Situ Neutron Diffraction. Am. … 1999, 84, 299–310. 

(52)  Pavese, A.; Artioli, G.; Hoser, A. MgAl2O4 Synthetic Spinel: Cation and Vacancy 
Distribution as a Function of Temperature, from in Situ Neutron Powder Diffraction. 
Zeitschrift für Krist. - Cryst. Mater. 2000, 215 (7). 

(53)  O’Neill, H.; Navrotsky, A. Simple Spinels; Crystallographic Parameters, Cation Radii, 
Lattice Energies, and Cation Distribution. Am. Mineral. 1983, 68 (1-2), 181–194. 

(54)  Marinoni, N.; Levy, D.; Dapiaggi, M.; Pavese, A.; Smith, R. I. In Situ High-Temperature X-
Ray and Neutron Powder Diffraction Study of Cation Partitioning in Synthetic 
Mg(Fe0.5Al0.5)2O4 Spinel. Phys. Chem. Miner. 2010, 38 (1), 11–19. 

(55)  Pavese, A.; Levy, D.; Hoser, A. Cation Distribution in Synthetic Zinc Ferrite (Zn0. 97Fe2. 
02O4) from in Situ High-Temperature Neutron Powder Diffraction. Am. Mineral. 2000, 
85, 1497–1502. 

(56)  Li, Y.; Maxey, E. R.; Richardson, J. W.; Ma, B. Structural and Chemical Evolution of 
Fe Co O Based Ceramics under Reduction/oxidation—an in Situ Neutron Diffraction 
Study. Mater. Sci. Eng. B 2004, 106 (1), 6–26. 

(57)  Ozawa, M.; Loong, C.-K. In Situ X-Ray and Neutron Powder Diffraction Studies of Redox 
Behavior in CeO2-Containing Oxide Catalysts. Catal. Today 1999, 50 (2), 329–342. 

(58)  Loong, C.-K.; Ozawa, M. The Role of Rare Earth Dopants in Nanophase Zirconia Catalysts 
for Automotive Emission Control. J. Alloys Compd. 2000, 303-304, 60–65. 

(59)  Li, Y.; Maxey, E. R.; Richardson, J. W.; Ma, B.; Lee, T. H.; Song, S.-J. Oxygen Non-
Stoichiometry and Thermal?Chemical Expansion of Ce 0.8 Y 0.2 O 1.9?? Electrolytes by 
Neutron Diffraction. J. Am. Ceram. Soc. 2007, 90 (4), 1208–1214. 

(60)  Loong, C. K.; Richardson, J. W.; Ozawa, M. Crystal Phases, Defects, and Dynamics of 
Adsorbed Hydroxyl Groups and Water in Pure and Lanthanide-Modified Zirconia: A 
Neutron-Scattering Study. J. Catal. 1995, 157 (2), 636–644. 



85 

(61)  Loong, C.-K.; Ozawa, M.; Takeuchi, K.; Ui, K.; Koura, N. Neutron Studies of Rare Earth-
Modified Zirconia Catalysts and Yttrium-Doped Barium Cerate Proton-Conducting 
Ceramic Membranes. J. Alloys Compd. 2006, 408-412, 1065–1070. 

(62)  Hempelmann, R. Quasielastic Neutron Scattering Study of Proton Diffusion in 
SrCe0.95Yb0.05H0.02O2.985. Solid State Ionics 1995, 77, 152–156. 

(63)  Ozawa, M.; Suzuki, S.; Loong, C.-K.; Richardson, J. W.; Thomas, R. R. Structural Phase 
Transitions and Lean NO Removal Activity of Copper-Modified Alumina. Appl. Surf. Sci. 
1997, 121-122, 441–444. 

(64)  Loong, C.-K.; Richardson, J. .; Ozawa, M. Structural Phase Transformations of Rare-Earth 
Modified Transition Alumina to corundum1Work Supported by US Department of Energy, 
BES, Contract No. W-31-109-ENG-38.1. J. Alloys Compd. 1997, 250 (1-2), 356–359. 

(65)  Walton, R. I.; Millange, F.; Smith, R. I.; Hansen, T. C.; O’Hare, D. Real Time Observation of 
the Hydrothermal Crystallization of Barium Titanate Using in Situ Neutron Powder 
Diffraction. J. Am. Chem. Soc. 2001, 123 (50), 12547–12555. 

(66)  Huq, A.; Richardson, J. W.; Maxey, E. R.; Chandra, D.; Chien, W.-M. Structural Studies of 
Deuteration and Dedeuteration of Li 3 N by Use of In Situ Neutron Diffraction. J. Phys. 
Chem. C 2007, 111 (28), 10712–10717. 

(67)  Doorn, R. H. E. van; Kruidhof, H.; Nijmeijer, A.; Winnubst, L.; Burggraaf, A. J. Preparation 
of La0.3Sr0.7CoO3−δ Perovskite by Thermal Decomposition of Metal-EDTA Complexes. J. 
Mater. Chem. 1998, 8 (9), 2109–2112. 

(68)  Toby, B. H. EXPGUI , a Graphical User Interface for GSAS. J. Appl. Crystallogr. 2001, 34 (2), 
210–213. 

(69)  Bouwmeester, H. J. M.; Song, C.; Zhu, J.; Yi, J.; van Sint Annaland, M.; Boukamp, B. A. A 
Novel Pulse Isotopic Exchange Technique for Rapid Determination of the Oxygen Surface 
Exchange Rate of Oxide Ion Conductors. Phys. Chem. Chem. Phys. 2009, 11 (42), 9640–
9643. 

(70)  Tomkiewicz, A. C.; Meloni, M.; McIntosh, S. On the Link between Bulk Structure and 
Surface Activity of Double Perovskite Based SOFC Cathodes. Solid State Ionics 2014, 260, 
55–59. 

(71)  Buttrey, D. J.; Vogt, T.; Wildgruber, U.; Robinson, W. R. Structural Refinement of the High 
Temperature Form of Bi2MoO6. J. Solid State Chem. 1994, 111 (1), 118–127. 

(72)  Simner, S. P.; Bonnett, J. F.; Canfield, N. L.; Meinhardt, K. D.; Shelton, J. P.; Sprenkle, V. L.; 
Stevenson, J. W. Development of Lanthanum Ferrite SOFC Cathodes. J. Power Sources 
2003, 113 (1), 1–10. 

(73)  Jacobson, A. J. Materials for Solid Oxide Fuel Cells. Chem. Mater. 2010, 22 (3), 660–674. 

(74)  Adler, S. B. Factors Governing Oxygen Reduction in Solid Oxide Fuel Cell Cathodes. Chem. 
Rev. 2004, 104 (10), 4791–4844. 

(75)  Kilner, J. A. Surface Exchange of Oxygen in Mixed Conducting Perovskite Oxides. Solid 
State Ionics 1996, 86-88, 703–709. 

(76)  De Souza, R. A. Oxygen Transport in La1−xSrxMn1−yCoyO3±δ Perovskites Part II. Oxygen 
Surface Exchange. Solid State Ionics 1999, 126 (1-2), 153–161. 



86 

(77)  De Souza, R. A. A Universal Empirical Expression for the Isotope Surface Exchange 
Coefficients (K*) of Acceptor-Doped Perovskite and Fluorite Oxides. Phys. Chem. Chem. 
Phys. 2006, 8 (7), 890–897. 

(78)  Cox-Galhotra, R. A.; McIntosh, S. Unreliability of Simultaneously Determining Kchem and 
Dchem via Conductivity Relaxation for Surface-Modified La0.6Sr0.4Co0.2Fe0.8O3−δ. 
Solid State Ionics 2010, 181 (31-32), 1429–1436. 

(79)  De Souza, R. A.; Chater, R. Oxygen Exchange and Diffusion Measurements: The 
Importance of Extracting the Correct Initial and Boundary Conditions. Solid State Ionics 
2005, 176 (23-24), 1915–1920. 

(80)  Baumann, F. S.; Fleig, J.; Konuma, M.; Starke, U.; Habermeier, H.-U.; Maier, J. Strong 
Performance Improvement of La[sub 0.6]Sr[sub 0.4]Co[sub 0.8]Fe[sub 0.2]O[sub 3−δ] 
SOFC Cathodes by Electrochemical Activation. J. Electrochem. Soc. 2005, 152 (10), A2074. 

(81)  Jiang, S. Origin of the Initial Polarization Behavior of Sr-Doped LaMnO3 for O2 Reduction 
in Solid Oxide Fuel Cells. Solid State Ionics 2001, 138 (3-4), 183–190. 

(82)  Wang, W.; Jiang, S. A Mechanistic Study on the Activation Process of (La, Sr)MnO3 
Electrodes of Solid Oxide Fuel Cells. Solid State Ionics 2006, 177 (15-16), 1361–1369. 

(83)  Bouwmeester, H. J. M.; Otter, M. W.; Boukamp, B. A. Oxygen Transport in 
La0.6Sr0.4Co1?y Fe Y O3?? J. Solid State Electrochem. 2004, 8 (9), 599–605. 

(84)  Lane, J. Oxygen Transport in La0.6Sr0.4Co0.2Fe0.8O3−δ. Solid State Ionics 1999, 121 (1-
4), 201–208. 

(85)  Toby, B. H. Getting Started with Rietveld Refinement: An Introduction Covering 
Fundamental Concepts, History and the Method; Argonne National Laboratory, 2006. 

(86)  Sears, V. F. Neutron Scattering Lengths and Cross Sections. Neutron News 1992, 3 (3), 
26–37. 

(87)  Chantler, C. T.; Olsen, K.; Dragoset, R. A.; Chang, J.; Kishore, A. R.; Kotochigova, S. A.; 
Zucker, D. S. X-Ray Form Factor, Attenuation, and Scattering Tables (version 2.1) 
http://www.nist.gov/pml/data/ffast/index.cfm. 

(88)  King, G.; Woodward, P. M. Cation Ordering in Perovskites. J. Mater. Chem. 2010, 20 (28), 
5785. 

(89)  Matsumoto, Y. Oxygen Evolution on La[sub 1−x]Sr[sub x]Fe[sub 1−y]Co[sub y]O[sub 3] 
Series Oxides. J. Electrochem. Soc. 1980, 127 (11), 2360–2364. 

(90)  Troyanchuk, I. O.; Karpinsky, D. V.; Efimov, V. V.; Efimova, E.; Sikolenko, V.; Yusupov, R. 
Crystal Structure and the Magnetic State of Pr0.5Sr0.5Co0.5Fe0.5O3. JETP Lett. 2008, 87 
(6), 306–310. 

(91)  Shannon, R. D. Revised Effective Ionic Radii and Systematic Studies of Interatomic 
Distances in Halides and Chalcogenides. Acta Crystallogr. Sect. A 1976, 32 (5), 751–767. 

(92)  Armstrong, T. R. Dimensional Instability of Doped Lanthanum Chromite. J. Electrochem. 
Soc. 1996, 143 (9), 2919. 

(93)  Larsen, P. H.; Hendriksen, P. V; Mogensen, M. Dimensional Stability and Defect Chemistry 
of Doped Lanthanum Chromites. J. Therm. Anal. 1997, 49 (3), 1263–1275. 



87 

(94)  McCusker, L. B.; Von Dreele, R. B.; Cox, D. E.; Louër, D.; Scardi, P. Rietveld Refinement 
Guidelines. J. Appl. Crystallogr. 1999, 32 (1), 36–50. 

(95)  Saiful Islam, M. Ionic Transport in ABO3 Perovskite Oxides: A Computer Modelling Tour. 
J. Mater. Chem. 2000, 10 (4), 1027–1038. 

(96)  Zawadzki, M.; Grabowska, H.; Trawczyński, J. Effect of Synthesis Method of LSCF 

Perovskite on Its Catalytic Properties for Phenol Methylation☆. Solid State Ionics 2010, 
181 (23-24), 1131–1139. 

(97)  Liu, Y.; Wang, F.; Chi, B.; Pu, J.; Jian, L.; Jiang, S. P. A Stability Study of Impregnated LSCF–
GDC Composite Cathodes of Solid Oxide Fuel Cells. J. Alloys Compd. 2013, 578, 37–43. 

(98)  Dulli, H.; Dowben, P.; Liou, S.-H.; Plummer, E. Surface Segregation and Restructuring of 
Colossal-Magnetoresistant Manganese Perovskites La0.65Sr0.35MnO3. Phys. Rev. B 
2000, 62 (22), R14629–R14632. 

(99)  Viitanen, M. Silica Poisoning of Oxygen Membranes. Solid State Ionics 2002, 150 (3-4), 
223–228. 

(100)  Fister, T. T.; Fong, D. D.; Eastman, J. A.; Baldo, P. M.; Highland, M. J.; Fuoss, P. H.; 
Balasubramaniam, K. R.; Meador, J. C.; Salvador, P. A. In Situ Characterization of 
Strontium Surface Segregation in Epitaxial La[sub 0.7]Sr[sub 0.3]MnO[sub 3] Thin Films as 
a Function of Oxygen Partial Pressure. Appl. Phys. Lett. 2008, 93 (15), 151904. 

(101)  Crumlin, E. J.; Mutoro, E.; Liu, Z.; Grass, M. E.; Biegalski, M. D.; Lee, Y.-L.; Morgan, D.; 
Christen, H. M.; Bluhm, H.; Shao-Horn, Y. Surface Strontium Enrichment on Highly Active 
Perovskites for Oxygen Electrocatalysis in Solid Oxide Fuel Cells. Energy Environ. Sci. 
2012, 5 (3), 6081. 

(102)  Druce, J.; Ishihara, T.; Kilner, J. Surface Composition of Perovskite-Type Materials Studied 
by Low Energy Ion Scattering (LEIS). Solid State Ionics 2014, 262, 893–896. 

(103)  de Ridder, M.; Vervoort, A. G. J.; van Welzenis, R. G.; Brongersma, H. H. The Limiting 
Factor for Oxygen Exchange at the Surface of Fuel Cell Electrolytes. Solid State Ionics 
2003, 156 (3-4), 255–262. 

(104)  Chen, D.; Wang, F.; Shi, H.; Ran, R.; Shao, Z. Systematic Evaluation of Co-Free 
LnBaFe2O5+δ (Ln=Lanthanides or Y) Oxides towards the Application as Cathodes for 
Intermediate-Temperature Solid Oxide Fuel Cells. Electrochim. Acta 2012, 78, 466–474. 

(105)  James, M.; Tedesco, T.; Cassidy, D. J.; Withers, R. L. Oxygen Vacancy Ordering in 
Strontium Doped Rare Earth Cobaltate Perovskites Ln1−xSrxCoO3−δ (Ln=La, Pr and Nd; 
x>0.60). Mater. Res. Bull. 2005, 40 (6), 990–1000. 

(106)  Kharton, V. V; Kovalevsky, A. V; Patrakeev, M. V; Tsipis, E. V; Viskup, A. P.; Kolotygin, V. 
A.; Yaremchenko, A. A.; Shaula, A. L.; Kiselev, E. A.; Waerenborgh, J. C. Oxygen 
Nonstoichiometry, Mixed Conductivity, and Mössbauer Spectra of Ln 0.5 A 0.5 FeO 3−δ 
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