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Abstract 

 

Biomineralization is an intriguing approach to the synthesis of functional inorganic 

materials for energy applications whereby biological systems are engineered to mineralize 

inorganic materials and control their structure over multiple length scales under mild 

reaction conditions.  Herein we demonstrate a single enzyme mediated biomineralization 

route to synthesize crystalline, catalytically active, quantum confined ceria (CeO2-x) and 

ceria-zirconia (Ce1-yZryO2-x) nanocrystals and a bio-inspired ligand mediated method for 

the synthesis of copper doped ceria (Ce1-yCuyO2-x) and gallium oxide. In contrast to typical 

synthesis routes, the crystalline oxide nanoparticles are formed at room temperature from 

an otherwise inert aqueous solution. An engineered form of silicatein, rCeSi, as a single 

enzyme not only catalyzes the direct biomineralization of the nanocrystalline oxides, but 

also serves as a templating agent to control their morphological structure. The 

biomineralized nanocrystals of less than 3 nm in diameter are catalytically active towards 

carbon monoxide oxidation following an oxidative annealing step to remove carbonaceous 

residue. The introduction of zirconia into the nanocrystals leads to an increase in Ce(III) 

concentration, associated catalytic activity, and the thermal stability of the nanocrystals. 

Our ligand mediated synthesis of crystalline oxide is enabled through ligand exchange prior 

to pH adjustment to prevent the precipitation of the hydroxide phase. By producing 

particles at room temperature, dopant exsolution and particle growth by sintering can be 

minimized and/or controlled.  Using our methodology, copper dopant concentrations of up 

to 35 mol % could be produced in 1.7 nm diameter ceria nanocrystals. The resulting 

materials showed high catalytic activity towards both the water gas shift reaction (WGS) 

and CO oxidation, with improved performance following the trend of increasing copper 
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content. In comparison to pure ceria nanocrystals, the WGS activation energy decreased 

from 89.0 to 49.2 kJ mol-1 and the CO oxidation light-off temperature decreased from 262 

to 159°C at a space velocity of 25,000 h-1 upon doping with 35 mol % copper. Using this 

ligand mediated synthesis gallium oxide nanocrystals can also be produced with crystal 

sizes of 2.7 ± 0.5 nm.  These gallium oxide crystals when used with an Al2O3 support show 

activity towards the ethane dehydrogenation reaction and show reduced deactivation due 

to coke when compared to a TiO2 supported catalyst. Reaction with platinum and gallium 

oxide nanocrystals supported on alumina reached 26% and maintained 11% conversion 

after 48 hours (at 500°C and WHSV = 0.5 h-1).  Our results show the complementary effect 

of gallium oxide nanoparticles on alumina when utilized in platinum dehydrogenation 

system. This effect is due to the ability of gallium oxide on alumina to limit coke build-up.   
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1. Introduction 

 

 

1.1 Background and Motivation 

 

Transition metal oxide and solid solution metal oxide nanoparticles are of functional 

interest due to their current widespread commercial application in environmental 

catalysis1, their use in fuel cells2, as pharmacological agents3, and chemical mechanical 

planarization abrasives4. In particular, ceria and doped ceria mixed oxides are widely 

utilized in automotive exhaust catalysis as oxygen storage materials due to the facile redox 

behavior that exists between Ce(III) and Ce(IV). This facile redox couple also makes ceria-

based materials active oxidation catalysts and catalyst supports for a wide range of 

oxidation reactions5-7 and the industrially important water gas shift reaction(WGS)8-10. 

Doping ceria can promote catalytic properties depending on the cation and the extent of 

cation replacement. The introduction of zirconium into ceria enhances the formation of 

oxygen defects within the nanocrystals to promote catalytic activity and also increases the 

thermal stability of the materials11,12. While copper-cerium mixed oxide catalysts show 

high activity for oxidation and WGS reactions due to the active site created by the 

incorporated copper and the favorable redox properties of ceria10,13-18. Ceria and doped 

ceria materials are most commonly synthesized through flame aerosol pyrolysis19, co-

precipitation20, or hydrothermal routes21.  These synthesis methods require high 

temperatures to generate crystalline products; however, exposure to high temperatures 

during synthesis can lessen the catalytic potential of the materials in two ways. Firstly, 

phase separation and migration of dopants out of the ceria lattice can occur at high 

temperature, which limits the degree of interaction between dopant and ceria.  Secondly, 
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high temperature processing can lead to increased crystallite size in the final doped ceria 

product which in turn decreases the oxygen mobility, an important factor for reactions 

involving the Mars-van-Krevelen mechanism, as oxygen vacancy concentration tends to 

be highest in small ceria crystallites22,23. 

 

This paper will describe two low temperature aqueous synthesis methods for transition 

metal oxide materials, in particular doped ceria materials and gallium oxide.  The first 

method, biomineralization, depends on the silicatein enzyme which has been long used by 

marine sea sponges to produce solid oxide spicules for defense.  The second method, a 

ligand mediated precipitation, makes use of over 30 years of transition metal sol-gel 

research to develop a ambient temperature base precipitation technique which directly 

deposits transition metal oxides. 

 

Biomineralization seeks to utilize biological systems as potentially green and scalable 

alternatives to typical material synthesis routes. Our work demonstrates that 

biomineralization is a feasible, green, pathway to the formation of ceria and ceria-zirconia 

nanoparticles and that these biomineralized materials are functionally equivalent to their 

chemically synthesized counterparts. Templated biomineralization of ceria has previously 

been reported by Okuda et al who utilized an apoferritin cage to template CeO2 

nanoparticles upon inducing mineralization with HEPES-NaOH in aqueous solution24. 

This process yields nanoparticles ~ 5 nm in size but requires multiple separation steps to 

remove larger ‘bulk’ ceria particles formed through reaction of the precipitant with free 

ceria; that is, ceria precursor in solution that is not associated with a templating ferritin 
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cage. In contrast, the combined enzymatic mineralization and templating approach 

described herein exclusively produces ceria nanocrystals and no subsequent particle size 

selection is required.  

 

Our ligand assisted synthesis of transition metal oxides seeks to utilize the bidentate ligand 

lactic acid to stabilize the soluble metal complex until oxide precipitation. As described in 

a classic paper by Livage et al25, direct precipitation of the metal oxide from an aqueous 

phase metal nitrate or metal chloride precursor would require an elevated pH. As the pH of 

the reaction mixture increases, the interaction of the metal with the aqueous solution 

transitions from “aquo” (M-OH2) to “hydroxo” (M-OH) and finally to “oxo” (M-O).  

Addition of typical precipitants, such as sodium hydroxide or ammonium hydroxide, raises 

the pH into the “hydroxo” region, leading to dissociation of any weakly bound NO3
- or Cl- 

ligands and precipitation of metal hydroxide particles. These then require a high 

temperature calcination step to form metal oxide particles. Ligands utilized in sol-gel 

processing, such as ethylenediaminetetraacetic acid (EDTA), can prevent hydroxide 

precipitation, however their strong binding also prevents oxide precipitation26, once again 

requiring a calcination step to remove the ligand and transform to the metal oxide.  In this 

work we demonstrate a facile method for direct formation of copper cerium oxide 

nanocrystals at room temperature in aqueous solution. This approach exchanges the nitrate 

ligands present in a mixed cerium nitrate and copper nitrate precursor solution for the 

intermediate strength lactate ligand, to shift the precipitation pH from the “hydroxo” to the 

“oxo” regime. 
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1.2 Biomineralization 

Biomineralization is process in which living organisms produce inorganic materials.  In 

nature, biomineralized materials commonly take the form of bones, teeth, shells, and cell 

walls in some unicellular organisms.  Biomineralization is thought to have begun more 

than 750 million years ago, and has been shown to have evolved independently in 

organisms27,28.  Although primarily used for structural purposes biomineralized materials 

are also used for a variety of specialty purposes. For example, in magnetotactic bacteria 

mineralized iron oxide is used to help the organism orient itself with the earth’s magnetic 

field and sea sponges mineralize silicon oxide for both structural purposes as well as for 

defense in the form of silica spicules29. 

 

1.3 Sol-gel chemistry 

Sol-gel chemistry is a field in chemistry and materials science studying the interactions and 

formation of colloidal materials in solution.  Understanding the interactions of dissolved 

transition metals with solvent is critical in the development of strategies for the formation 

of inorganic colloidal materials such as ceria nanocrystals.  The work of Livage et al. has 

been particularly insightful in this field and has been greatly influential in the work 

described in this dissertation25. Livage et al.’s work qualitatively describes the nature of 

the interaction of aqueous solvent with dissolved transition metals at different pH’s and 

with different metal oxidation states. As the pH of a solution increases, the favored 

interaction of the metal with the aqueous solution transitions from “aquo” (M-OH2) to 

“hydroxo” (M-OH) and finally to “oxo” (M-O), with the precise pH required for a 
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‘transition’ being a function of the identity of the transition metal itself and the associated 

ligands in solution. 

 

1.4 Materials characterization 

1.4.1 X-Ray Diffraction 

X-ray diffraction (XRD) can be used to demonstrate the shift in lattice parameter which 

will accompany the incorporation of other cations in the ceria lattice.  Lattice parameter 

shift along with Raman spectra shift are among the best measurements to prove the 

incorporation of dopants into the lattice.  XRD can also be used to show phase purity and 

it is important to know that dopant precursors are not forming secondary crystalline oxide 

phases.  XRD is also a useful tool for calculating the crystallite size of nanocrystalline 

particles.  Crystallite size is calculated using the Scherrer equation, and can be used to 

predict the particle size in well dispersed colloid systems30.  Another application of XRD 

is to explore the thermal stability of as synthesized materials.  Using non-ambient XRD, 

the temperature of phase separation can be determined.  This is important for determining 

the maximum concentration which is stable at a certain temperature.  Many possible 

applications for doped ceria require elevated temperatures (e.g. fuel cell electrolyte, 

catalyst), so knowing the temperature limits of a material is critical to the determination of 

the optimal working conditions.  Non-ambient XRD can also determine thermal stability 

in terms of crystallite growth. Growth of nanocrystalline particles can greatly affect the 

surface area of the catalyst which in turn effects the catalytic performance of the material. 
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1.4.2 Raman Spectroscopy 

Raman Spectroscopy is used to examine how dopants change the crystal bonds in a 

material. In fluorite crystal structured ceria materials there is only one Raman active 

symmetry T2g, corresponding to the Ce-O bond breathing mode.  The bond distance of the 

Ce-O bonds is effected by incorporation of a dopant, and thus a shift in the frequency of 

vibration of these bonds is induced.  Depending on the dopant element, the Raman peak 

will shift to higher or lower wave number31. Raman spectroscopy is useful in demonstrating 

that dopant metals are incorporated in the lattice because the peak shift and broadening 

effects on the Raman peak are dependent on the dopant being integrated in the lattice. 

 

1.4.3 Electron Microscopy 

High-resolution transmission electron microscopy (HR-TEM) provides direct evidence of 

oxide particle size, crystallinity, and dispersion.  Size distribution measured from TEM 

images can be used to prove the size of synthesized particles. Crystallinity of particles and 

dispersion is visually apparent in HR-TEM.  Individual lattice planes can be seen and 

measured to assist in crystal phase detection.  In addition to collecting images, electron 

microscopy detector attachments also allow us to collect x-ray energy-dispersive spectra 

(XEDS).  XEDS allows for the determination of the elements in our sample qualitatively 

and quantitatively.  Small area XEDS has the sensitivity to determine elemental 

composition of a single particle.  This is important for understanding the distribution of 

compositions in our sample. 
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1.5 Cerium oxide and size dependent properties 

The properties of cerium oxide change substantially between bulk crystals and 

nanocrystals.  The most drastic changes in properties occur under 10nm.  It has been long 

accepted that the surface layer of cerium oxide is readily reduced, depending on the 

environment32.  Naturally, as the size of cerium oxide nanoparticles reduce, this surface 

effect becomes more substantial.  Deshpande et al. have reported that the Ce(III) 

concentration reached up to 44% in 3nm ceria particles33.  Higher Ce(III) concentrations 

also lead to an expansion of the crystal lattice due to the size difference in the Ce(III) and 

Ce(IV) atomic radii, 1.01 and 0.87 respectively34. When ceria is in a reduced state and 

maintains a cubic fluorite crystal structure there are vacancies where oxygen should be in 

the lattice.  Oxygen mobility is strongly positively correlated with the number of oxygen 

vacancies35.  In reactions which follow the Mars-Van Krevelen mechanism oxygen 

mobility is extremely important for the replacement of reacted oxygen36,37.  Nanoscale ceria 

catalysts are therefore not only highly sought after for their high surface area but are also 

desired for their high oxygen mobility and redox properties. 

 

1.6 Catalysis 

CO oxidation catalysts are used commonly as an important component in three-way 

catalyst systems for both mobile and fixed engines.  Reduction of CO is important for 

environmental reasons because CO has a Global Warming Potential (GWP) 19 times larger 

than CO2 and CO is a significant component in the exhaust of petrol engines38,39. In addition 

to being an industrially important reaction, CO oxidation is also use as a common 

benchmark for a catalysts as an indicator of its performance in other oxidation reactions.  
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Nanoscale ceria structures are often used as active supports in oxidation catalysts due to 

their high availability of oxygen in Mars-Van Krevelen type reactions. 

 

WGS is an industrially important reaction and is only growing in importance in the last 

few years with the increase in natural gas supplies.  The WGS reaction is important in 

steam methane reforming, the Haber process and the Fischer-Tropsch process two of the 

most important chemical processes in the modern age. Low temperature WGS catalysts are 

also increasingly important in proto-exchange membrane fuel cell systems where CO is a 

poison to the fuel cell catalyst.  Catalysts that conduct the WGS reaction at low temperature 

can reach compete conversion where high temperature catalysts are limited due to the shift 

in equilibrium at high temperatures.  Materials like Cu-Ceria are able to completely remove 

CO from the fuel cell feed to save the precious metal catalyst. 

 

In this paper we will discuss two primary metrics for the performance of a catalyst, light-

off temperature and activation energy.  Light off curves plot the change in conversion with 

change in temperature.  These plots follow a characteristic S-curve shape.  The “light-off 

temperature” is commonly reported is the temperature at which the reaction conversion 

reaches 50%. The lower a catalyst’s light off temperature the higher its catalytic activity, 

when all other variables are held constant.  This metric is useful when comparing like 

samples and for directly determining temperature vs. conversion for specific conditions. 

 

Activation energy is an effective measure to compare catalysts when the conditions of the 

catalysis are not identical.  Activation energy is calculated using data collected at low 
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conversion and where diffusion effects are minimized.  In this “kinetic regime” equilibrium 

and diffusion effects have negligible effect on the reaction rate and the rate equation 

reduced to the Arrhenius equation (Equ. 1). 

 

𝒌 = 𝑨𝒆−𝑬𝒂/(𝑹𝑻)     (1) 

𝒍𝒏(𝒌) =
−𝑬𝒂

𝑹
(
𝟏

𝑻
) + 𝒍𝒏(𝑨)             (2) 

Where: 

𝒌  is the rate constant 

𝑻 is the absolute temperature 

𝑨 is the pre-exponential factor 

𝑬𝒂 is the activation energy for the reaction 

𝑹 is the universal gas constant 

 

Measuring a reaction at a few temperatures allows for the determination of the activation 

energy of the rate limiting step for the reaction with a specific catalyst.  By re-arranging 

the equation (Equ. 2) we can see that a plot of ln(k) vs. T-1 would have a linear slope of -

Ea R-1.  Using linear regression an activation energy (Ea) can be obtained using 

experimental values of k and T. 
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2.   Direct Single-Enzyme Biomineralization of Catalytically Active Ceria and 

Ceria–Zirconia Nanocrystals 

 

2.1 Introduction 

Natural biomineralization pathways40,41 most commonly form amorphous structural 

materials; for example, calcium carbonate-biopolymer composite mollusk shells42, iron 

oxides in the teeth of limpets43, or structural spicules of silica in sea sponges44. Mann, in 

his classic textbook, categorized biomineralization into either biologically induced 

mineralization, whereby mineralization occurs through a metabolic reaction of precursors 

in solution, or biologically controlled mineralization, whereby the biological system 

controls the structure of the mineral, but the mineralization process occurs through 

supersaturation rather than a metabolic turnover of precursors45. Without structural control, 

biologically induced mineralization leads to materials with irregular size, shape, structure 

and composition, making such an approach generally unfavorable for the formation of 

well-defined functional nanomaterials. In contrast, a reliance only on precipitation from a 

supersaturated solution limits the materials palette available to thermodynamically 

favorable products unless, as in a biotemplating approach, an additional reactive chemical 

species is introduced; e.g. in functional material production, the use of Na2S as a reactive 

sulfur source in CdS biomineralization46 and H2O2 as an oxidizing agent in Co3O4 

biomineralization for battery applications47. The challenge to producing ‘green’ functional 

materials by biomineralization is thus to develop approaches that combine metabolic, or 

more generally active enzymatic precursor turnover, with biotemplating in a single 

biological system; we term this combination direct biomineralization. Herein, we 
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demonstrate a single enzyme active for the direct biomineralization of cerium oxide and 

cerium-zirconium oxide solid solution nanoparticles. To the best of our knowledge, there 

are no prior reports of direct biomineralization of these widely utilized catalytic materials, 

nor are there prior reports of biomineralized oxide materials being used as active 

heterogeneous catalysts for gas phase reactions.  

 

The motivation for the current direct biomineralization work comes from our group’s 

previous work developing a single enzyme for direct sulfide biomineralization48 and the 

fascinating reports regarding silicateins, silica proteins, first identified by Shimizu et al as 

responsible for biomineralization of silica spicules in the marine sponge Tethya aurantia49. 

These silicateins assemble into axial filaments and actively turnover a precursor, most 

likely silicic acid, in the ocean to form largely amorphous hydrated silica spicules in sea 

sponges. The amino acid sequences of the most abundant silicateins isolated from Tethya 

aurantia (α- and β-forms) are very similar (50% by sequence, up to 75% by function) to 

the well-studied cathepsin-L family of hydrolytic enzymes, suggesting a mechanistic 

pathway to silica from the tetraethylorthosilicate precursor via hydrolysis of ligands 

surrounding the precursor50. For a full discussion of the use of silicatein in inorganic 

material synthesis we refer the reader to the excellent review by Andre et al51. 

 

Native or recombinant forms of silicatein have previously been successfully applied to 

biomineralization of silicon dioxide50, titanium dioxide52, gallium(III) oxide53, tin 

dioxide54, and barium titanate oxyfluoride55 particles. This body of work is complemented 

by that of the Tremel group who have sought to utilize surface immobilized silicatein to 
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mineralize thin films of multiple materials onto inorganic supports materials54,56-58.  Of 

particular relevance to the current work is the pursuit of biomineralized functional 

materials. One particular challenge in this area is the balance of crystalline versus 

amorphous structure formed during mineralization, as typically the crystalline phase is the 

desirable component for functional activity. For example, silicatein biomineralization of 

both titanium dioxide and zirconium dioxide is reported to lead to the formation of 

relatively sparse nanocrystalline domains within largely amorphous matrices56,57, and 

crystalline γ-Ga2O3 is only formed at very low precursor concentration53. In the pursuit of 

highly crystalline materials, Bawazer et al developed an engineered recombinant form of 

silicatein that is active in the formation of ~5 nm partially crystalline titania, demonstrating 

a critical link between enzyme sequence and nanoparticle crystallinity59. In contrast, 

BaTiOF4 was successfully biomineralized in crystalline form although unfortunately 

without any corresponding functional property measurements, most likely due to the 

relatively low material yield of many biomineralization strategies; the authors in that work 

note that insufficient material was obtained for X-ray diffraction (XRD) analysis55. 

 

While the pursuit of functional materials is ongoing, there are, to the best of our knowledge, 

no prior reports of the functional properties of directly biomineralized catalytic oxides, 

although there are some reports regarding the function of other directly biomineralized 

materials; for example, the use of directly biomineralized metal chalcogenide quantum dots 

in photovoltaic applications60, the magnetic properties of fungi mediated biomineralized 

magnetite61, the ferroelectric properties of fungi mediated barium titanate62, and reports of 
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fungi mediated manganese containing materials63,  or bacterial mediated γ-FeOOH to form 

α-Fe2O3 base Li-ion battery electrodes upon a brief heat treatment64. 

 

2.2 Results and Discussion 

Herein we describe the single enzyme direct biomineralization of ceria and ceria zirconia 

solid solution nanocrystals of less than 3 nm diameter from aqueous solution of cerium(IV) 

ammonium nitrate and zirconium(IV) dinitrate oxide. Nanocrystal biomineralization of the 

oxides occurs without the addition of any reducing agent or additional templating species 

or any post-mineralization heating. The resulting nanocrystals are demonstrated as active 

catalysts for carbon monoxide oxidation, one of a large number of potential energy and 

environmental catalysis applications ranging from water gas shift catalysts, to promoters 

in automotive three-way catalysts, to oxidation catalysts for direct hydrocarbon solid oxide 

fuel cells. To the best of our knowledge, this work is the first demonstration of single 

enzyme mediated direct biomineralization of an oxide, the first demonstration of directly 

biomineralized solid solution crystalline nanoparticles, and the first demonstration that 

directly biomineralized oxide materials are functionally active catalysts. 

 

We have engineered a form of recombinant ceria-mineralizing silicatein from S. 

domuncula (NCBI accession number Q6YD92.1) denoted hereafter as rCeSi, by taking the 

wild-type sequence and generating serial truncations of the N- and C-terminal to improve 

expression yield from E. coli. We identified a truncated sequence containing amino acids 

124-217 as well as a C-terminal hexahistidine tag that exhibited consistently high 

expression from E. coli (rCeSi). Previous studies to engineer silicatein have used DNA 
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shuffling to diversify silicatein sequences as well as including C-terminal hexahistidine 

tags59. 

 

 

 

Figure 1: Ceria and Ceria-Zirconia Nanocrystal Biomineralization. a) Photograph under 

natural light and b) photograph with red laser illumination of cerium(IV) ammonium 

nitrate precursor incubated with rCeSi (left) and without rCeSi (right).  An opaque pale-

yellow sol is formed in the presence of rCeSi enzyme but not in the control sample which 

shows no precipitation or color change.  The laser light scattering demonstrates the 

presence of colloidal particles in the sample with rCeSi enzyme and no particles in the 

sample without rCeSi.  The laser beam is coming from the right and is passing through 
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both sample vials. c) Synchrotron powder X-ray diffraction spectra of the dried as-

synthesized product of incubation of (i) rCeSi with the cerium(IV) ammonium nitrate and 

(ii) rCeSi with a 1:1 molar mixture of cerium(IV) ammonium nitrate and zirconium(IV) 

dinitrate oxide (ICSD collection code 156250, substantial peaks identified). d) 

Representative HRTEM image of as-synthesized ceria nanocrystals; the inset fast Fourier 

transform (FFT) from the particle in the yellow box is consistent with the [11̅0] projection 

of the CeO2 (fluorite) structure; e) corresponding spherical equivalent particle size 

distribution – with no particles larger than 4 nm being observed; and f) XEDS spectrum 

confirming the presence of Ce and O in the particles. The Cu and C signals originate from 

the TEM grid and the Si signal is an artefact from the Si drift detector; g) HAADF-STEM 

image of the as-synthesized ceria-zirconia particles; the inset FFT obtained from the 

particle in the yellow box is consistent with the [11̅0] projection of the fluorite structure; 

h) corresponding spherical equivalent particle size distribution for the ceria-zirconia 

sample; i) the XEDS spectrum from a single nanoparticle (blue) and the summation of ten 

spectra from extended area nanocrystal groupings (red) confirming the presence of both 

Ce and Zr in the nanocrystals. 

 

Incubation of the rCeSi enzyme with an aqueous cerium(IV) ammonium nitrate (CAN) 

precursor solution for 24 h led to the formation of an opaque, yellow solution, showing 

laser light scattering properties consistent with the formation of a colloid, Figure 1a and 

1b. No corresponding color change or colloid formation was observed for the control 

samples which were identical in composition and synthesis conditions to the primary 

samples except that no rCeSi was added, Figure 1a and 1b. Aqueous CAN solutions are 

shelf-stable and do not undergo spontaneous oxidation to form nanocrystals within this 

time period at this temperature and pH.  XRD patterns collected in our laboratory can be 

indexed to the fluorite structure of ceria, and are consistent between batches, Figure 2.  
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Figure 2: Laboratory XRD patterns of two batches each of the dried as-synthesized 

product of incubation of a) (red) rCeSi with the cerium(IV) ammonium nitrate and b) (blue) 

rCeSi with a 1:1 molar mixture of cerium(IV) ammonium nitrate and zirconium(IV) 

dinitrate oxide.   

 

Figure 3: Synchrotron powder X-ray diffraction spectra and Rietveld refinement of the 

dried as-synthesized product of incubation of a) (red) rCeSi with the cerium(IV) ammonium 

nitrate and b) (blue) rCeSi with a 1:1 molar mixture of cerium(IV) ammonium nitrate and 

zirconium(IV) dinitrate oxide.  Observed (light line), calculated (dark line), and difference 

(grey) patterns are shown. Expected peak positions for the fitted ceria structure, space 

group 𝐹𝑚3̅𝑚, are also shown. 

 

The synchrotron XRD pattern, shown in Figure 1c, of the solid pellet centrifuged from this 

opaque solution shows peak positions and peak broadening consistent with the formation 
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of CeO2 nanoparticles having the fluorite structure (ICSD collection code 156250). 

Rietveld refinement, Figure 3, of the XRD pattern confirms the fluorite structure, space 

group 𝐹𝑚3̅𝑚, with a lattice parameter of 5.449(1) Å and mean crystallite size, estimated 

from the Lorentzian crystallite size broadening parameter as implemented in GSAS65, of 

22.1 ±0.2 Å.  

 

Figure 1d shows a high resolution transmission electron microscopy (HR-TEM) image of 

the centrifuged and dried pure ceria sample, demonstrating that the ceria has been 

mineralized as highly facetted individual crystalline nanoparticles. The interplanar 

spacings and angles present in these phase contrast images are in good agreement with 

those expected for the fluorite structure of CeO2, Figure 4. The ceria nanoparticles have a 

tight size distribution with mean particle diameter (based on area equivalent spherical 

particles) of 2.56±0.38 nm, Figure 1e, which is consistent with the crystallite size estimated 

from XRD. No large crystallites or amorphous regions were observed during imaging of 

multiple samples. Furthermore, X-ray energy dispersive spectroscopy (XEDS) analysis 

confirms the presence of only cerium and oxygen within the particles, Figure 1f. While 

there is likely residual carbonaceous material, including the enzyme, in the as-prepared 

sample, the particles do not appear to be bound within any carbonaceous matrix and are 

stable as a colloid upon re-suspending in dilute nitric acid without any additional 

processing. 
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Figure 4: HR-TEM analysis of dispersed ceria nanoparticles prepared via 

biomineralization.  a) HR-TEM image of some representative pure ceria nanoparticles.  

Inset is a Fast Fourier Transform obtained from the individual nanoparticle contained in 

the yellow box.  b) The interplanar spacings and angles of the lattice fringes in this particle 

are in good agreement with the [11̅0] projection of ceria having the fluorite structure. 

 

To the best of our knowledge, this is the first report of a protein biologically inducing the 

mineralization of ceria, as opposed to biologically templating mineralization24. It is 

especially important to note that unlike other preparation methods, ceria nanocrystal 

formation occurs in aqueous solution without the addition of a base or elevation of 

temperature and in the absence of an explicit chemical structure directing agent. 

Furthermore, these ceria nanoparticles are amongst the smallest reported in the 

literature66,67. The ability to form such small particles is a consequence of the direct 

biomineralization of the material. The majority of chemical approaches to ceria 

nanoparticle synthesis utilize elevated temperatures during synthesis or during a post 

annealing step to form the crystalline oxide6. While we utilize an annealing step to remove 

any carbonaceous material prior to catalytic testing, elevated temperature is not required to 

form the crystalline oxide. 
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Figure 5: HR-TEM analysis of pure zirconia nanoparticles prepared via 

biomineralization.  a) HR-TEM image of some representative pure zirconia nanoparticles.  

Most of the nanoparticles in the sample have a low degree of crystallinity; highly 

crystalline zirconia nanoparticles were only encountered very sporadically.  Inset is a 

Fourier Transform of one such highly crystalline area boxed in yellow.  b) Interplanar 

spacing and angle measurements of this particle are in good agreement with the [021] 

projection of zirconia having the tetragonal structure. 

 

Attempts to biomineralize pure zirconia from zirconium(IV) dinitrate oxide (ZDO) via 

rCeSi leads to the formation of a solid zirconia phase; however, the product consists 

primarily of slightly larger (5-10 nm) highly disordered particles with only a relatively few 

highly crystalline tetragonal zirconia nanoparticles present, Figure 5. This is similar to prior 

reports of amorphous silicon dioxide50, titanium dioxide52, and gallium(III) oxide53. In 

contrast, incubation of rCeSi with a 1:1 mixture of CAN and ZDO leads to the formation 

of an opaque sol after 24 h.  

 

As with the pure ceria sample, XRD patterns of the centrifuged material obtained from this 

mixed CAN and ZDO solution can be indexed to the fluorite structure of ceria and are 

consistent between batches, Figure 2. The higher resolution synchrotron XRD pattern of 
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the centrifuged solid material, Figure 1c, is also consistent with the formation of single 

phase fluorite structured nanoparticles, space group 𝐹𝑚3̅𝑚. Rietveld refinement, Figure 3, 

provides lattice parameter of 5.437(2)Å and average crystallite size, again from the 

Lorentzian isotropic size broadening, of 24.53± 0.1 Å. When compared with the values 

obtained for the pure ceria sample, the measured contraction in lattice parameter is 

consistent with formation of a ceria-zirconia solid solutions11,68,69.  

 

 

Figure 6:  HR-TEM analysis of ceria-zirconia mixed oxide nanoparticles prepared via 

biomineralization.  a) HR-TEM image of some representative ceria-zirconia mixed oxide 

nanoparticle.  Inset is the Fast Fourier Transform obtained from the individual 

nanoparticle contained in the yellow box.  b) The interplanar spacings and angles of the 

lattice fringes in this particle are in good agreement with the [11̅0] projection of ceria-

zirconia having the fluorite structure. 

 

HAADF-STEM analysis, Figure 1g, again confirms the formation of individual crystalline 

nanoparticles and the absence of any larger particles or amorphous material (see also Figure 

6). The particles have a narrow size distribution, Figure 1h, with a mean size of 2.41 ± 0.43 

nm, which is in good agreement with that deduced from XRD. 
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Compositional analysis of individual nanoparticles by XEDS was attempted, but in many 

cases we were unable to collect a statistically significant number of X-rays before the 

nanoparticle was irretrievably damaged by the electron beam. Instead XEDS spectra could 

be more reliably collected from groups of two or three particles and analyses on many such 

NP groupings provided similar XEDS spectra. Figure 1i shows an XEDS spectrum derived 

from the summation of ten such ‘extended area’ spectra and one example from an 

individual nanoparticle. This semi-averaging analysis method supports the conclusion that 

ceria-zirconia solid solution nanoparticles are formed by incubation of rCeSi in the 

presence of both Ce and Zr containing precursors.  The relative atomic concentration of 

Ce : Zr, calculated using a Cliff-Lorimer type analysis, was determined to be approximately 

82% : 18%. As with the case of pure ceria, this is the first report of biologically induced 

mineralization of mixed cerium oxide-zirconium oxide nanoparticles, and their size are 

amongst the smallest reported to date for ceria-zirconia nanocrystals70. 

 

Figure 7: XEDS spectra of ceria zirconia nanoparticles prepared with different nominal 

Ce:Zr precursor ratios. The XEDS spectra shown are summed from data acquired from 

several extended area nanocrystal groupings for samples prepared with a) 1:2 ratio and 

b) 1:4 ratio of cerium and zirconium precursors.  Atomic ratios determined from XEDS 

are 83:17, and 81:19 respectively. 
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Interestingly, when the nominal ratio of zirconium to cerium was increased in the synthesis 

procedure by adjusting the precursor concentrations, their relative atomic concentration of 

the nanoparticles remained unchanged.  Samples synthesized with nominal Ce:Zr ratios, 

1:2 and 1:4 in solution, at the same total precursor concentration as the other materials in 

this study, yield particles with atomic ratios of 83:17, and 81:19, respectively, as 

determined by XEDS analysis, Figure 7. This lack of sensitivity to increased Zr content in 

the solution may be due to the intrinsic enzymatic biomineralization turnover kinetics of 

cerium versus zirconium that is not substantially influenced within the current range of 

precursor concentrations explored to date. It should certainly be feasible to increase the 

zirconium content in fluorite structured nanoparticles as demonstrated for chemically 

synthesized materials71,72. 

  

 

Figure 8: Proposed Mechanism for the Formation of Cerium Dioxide Nanocrystals from 

Cerium Ammonium Nitrate. 1) dissociative binding of the precursor to the active site of 

rCeSi, 2) hydrolysis of the precursor, and either 3) subsequent condensation of a precursor 

molecule and a hydrolyzed molecule or 4) dehydration of two hydrolyzed precursor 

species. 

 

These results unequivocally demonstrate that rCeSi is active to biologically induce and 

control mineralization of crystalline pure ceria, pure zirconia and mixed cerium-zirconium 
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oxide nanoparticles under ambient conditions. The catalytic mechanism of both ceria and 

zirconia biomineralization by rCeSi is likely to be similar to that previously proposed for 

native silicatein, as the proposed catalytic residues of silicatein are preserved in the rCeSi 

enzyme44. The resultant rCeSi from N- and C-terminal truncations is similar to the mature, 

protease-resistant fragment of S. domuncula silicatein isolated directly from spicules73. 

While the exact structure of the CAN precursor in solution is still the topic of some debate, 

most recent studies conclude that it exists as a dimeric entity with bridging Ce-O-Ce 

bonds74,75. The nature of the six-coordinating species around each cerium atom in this 

dimeric entity varies between reports, possibly due to the variations in the solvent pH 

employed, but for simple dissolution of the precursor in water, the coordinating species are 

likely to be a mixture of (NO3)
-, OH-, and H2O

74. In Figure 8 we suggest a hydrolysis 

mechanism analogous to that proposed previously for biomineralized silica50, titania52 and 

gallium oxide53 using silicatein. Variations in the nature or number of the coordinating 

ligands surrounding the Ce-O-Ce dimeric structure in the solvated precursor will alter the 

number of hydrolysis steps required to form the oxide. Interestingly, attempts in our 

laboratory to utilize a Ce(III)-type precursor, Ce(III) nitrate, did not lead any observable 

mineralization, further indicating that the structural state of the precursor in solution is 

critical to the mineralization mechanism. 

 

This proposed mechanism, whereby a serine and histidine pair within the enzymatic active 

site form an acid/base pair to catalyze hydrolysis of the precursor, draws upon the sequence 

and structural similarities between the α-form of native silicatein and the hydrolytic 

enzyme cathepsin L50. This has been experimentally demonstrated for tetraorthosilicate 
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hydrolysis by observing a removal of function through site directed mutagenesis to replace 

either the purported active serine histidine or serine residue with alanine76, and has been 

indicated as the mechanism for gallium hydroxide and gallium oxide biomineralization 

from gallium nitrate53. In our case, the hydrolysed precursor subsequently undergoes 

condensation or nitrate removal to form ceria. The formation of crystalline ceria, rather 

than crystalline cerium hydroxide or an amorphous phase, we hypothesize is templated by 

hydrogen bonding interactions between hydroxyls on the rCeSi and the hydrolyzed 

precursors; again this mineralizing and templating mechanism has been proposed for the 

native silicatein in the biomineralization of silica44,50, titania52 and gallium oxide53.  

 

Unlike the case of pure zirconia, we find no evidence of particles larger than 4 nm or 

amorphous regions in the ceria or ceria-zirconia materials further demonstrating an 

intimate interaction between the two elements rather than independent mineralization of 

ceria and zirconia. The observed specificity of rCeSi towards templated biomineralization 

of purely crystalline materials only for ceria-rich compositions is perhaps unsurprising 

given the previously demonstrated need to engineer material specific variants to selectively 

biomineralize crystalline silica or titania59. This is particularly true given that the 

commonly observed crystal structures of zirconia are either monoclinic or tetragonal, 

whereas those for ceria and ceria-rich ceria-zirconia mixed oxides are both cubic. 
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Figure 9: Faceting of Biomineralized Ceria Nanocrystals. Representative a,c) HR-TEM 

images of biomineralized ceria having polyhedral and truncated cubic  morphology 

nanocrystals; the schematic diagrams in b) and d) are plausible reconstructions of the NP 

shown in a) and c) respectively. The polyhedral nanocrystals are the more abundant 

entities. 

 

Both polyhedral and cuboid particle shapes were found in the biomineralized ceria 

nanocrystals (see Figure 9), with the polyhedral being the dominant shape.  The exposure 

of {111} and {200} -type surface facets results in a polyhedral shape, while predominant 

{200} facet terminations form cuboid-like nanocrystals. These morphologies are consistent 

with those found in comparable materials synthesized via traditional chemical routes at 

elevated temperature77, indicating that while rCeSi clearly both induces and controls ceria 

biomineralization, it does not template in such a way to produce surface facet distributions 

that deviate from the typically expected distribution. As with chemically synthesized 

nanocrystals, the polyhedral shape is more commonly observed in the biomineralized 

materials due to the comparable surface energies of the {111} and {200} facets77. In 

common with the ceria nanoparticles, polyhedral and cuboid shapes were also found in the 

biomineralized ceria-zirconia samples, with the polyhedral shape being dominant. 
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Figure 10: Raman and X-Ray Photoelectron Spectroscopic Analysis a) Raman spectra 

collected on as-prepared samples of biomineralized ceria and ceria-zirconia and from the 

commercially obtained referenced sample of ceria. The increase in measured Raman shift 

for the ceria-zirconia sample is consistent with the formation of a solid solution. b)  X-ray 

photoelectron spectra of the Ce(3d) region of the biomineralized ceria and ceria-zirconia 

samples following annealing of both powders in air at 500°C for 20 min demonstrating the 

increased Ce(III) concentration, and thus higher oxygen defect concentration, upon doping 

with zirconia. 

 

The Ce-O bond within the fluorite structure is Raman active with an expected peak position 

for pure ceria of ~462 cm-1 78,79.  Formation of a ceria-zirconia solid solution shifts this Ce-

O bond vibrational frequency to a higher wavenumber78-80.  Figure 10a) shows the Raman 
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spectra for the as-synthesized, non-heat-treated, biomineralized ceria and ceria-zirconia, 

and the purchased commercial pure ceria reference sample. Both the biomineralized and 

commercial pure ceria show peaks at the expected position of 467 cm-1. In contrast, the 

peak position of the biomineralized ceria-zirconia is shifted to 480 cm-1 providing further 

confirmation of the formation of ceria-zirconia solid solution nanoparticles by the enzyme 

in the aqueous phase at ambient temperature.   

 

Figure 11: Zr (3d) XPS analysis of the biomineralized ceria-zirconia sample.  High 

resolution XPS spectrum of the Zr(3d) region from the mixed ceria-zirconia biomineralized 

sample showing the spin orbital doublet Zr3d5/2-Zr3d3/2 with binding energies of 182.4 and 

184.8 eV respectively.  This demonstrates the presence zirconium in the 4+ oxidation state 

in the mixed oxide sample.  No other peaks corresponding to Zr in lower valence states 

were detected. 

 

Cerium is found in both the 3+ and 4+ oxidation state as shown in the XPS spectrum 

presented in Figure 10b.  XPS peaks are labeled U and V, following the naming convention 

set by Burroughs et al, representing the spin orbit doublet 3d5/2 and 3d3/2 

respectively81.  The peaks u, v, u’’, v’’, u’’’, and v’’’ correspond to cerium in the 4+ 
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oxidation state, where the u’’’ and v’’’ result from the Ce3d9 O2p6 Ce4f0 final state and u, 

v, u’’, and v’’ result from a mixing of the Ce3d9 O2p5 Ce4f1 and Ce3d9 O2p4 Ce4f2 final 

states82.  The peaks designated u0, v0, u’, and v’ correspond to cerium in the 3+ oxidation 

state, whereas u0, v0, u’, and v’ peaks result from a mixing of the Ce3d9 O2p5 Ce4f2 and 

Ce3d9 O2p6 Ce4f1 final states82. Annealing the samples in air leads to an increased Ce(III) 

content (26%) in the ceria-zirconia sample as compared to pure ceria material (12%). This 

increased Ce(III) concentration is consistent with previous reports11,83. Incorporation of 

zirconium into the ceria lattice, has been shown to reduce the oxygen vacancy formation 

energy and stabilize oxygen vacancies leading to a shift in the ceria redox equilibrium and 

an associated increase in Ce(III) concentration84. The determined Ce(III) concentration is 

within the range of previous reports85-87.  XPS analysis of the Zr(3d) region, see Figure 11, 

further confirms the presence of the zirconium in the mixed sample and suggests it exists 

solely in the 4+ oxidation state. 
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Figure 12: Optical Properties and Catalytic Activity towards CO Oxidation: a) Optical 

band gap determination for the as-synthesized biomineralized ceria and ceria-zirconia 

nanocrystals compared to larger grained (15-30 nm) commercially purchased ceria. The 

increase in band gap is indicative of the quantum confinement of the < 3 nm diameter 

biomineralized nanocrystals. b) CO conversion as a function of temperature for comparing 

the catalytic activity of biomineralized ceria and ceria-zirconia nanoparticles. The 

temperature required to achieve 50% conversion for the ceria sample is 304 °C, whereas 

that for the ceria-zirconia material is 252 °C. This reduction in temperature is a 

consequence of the enhanced reducibility and increased thermal stability of the ceria 

material upon incorporation of zirconium atoms within the structure. Data for a second 

repeat of the light-off measurement on the same sample is included. 

 

The direct optical band gap for our biomineralized ceria and ceria-zirconia materials and a 

commercial sample containing 15-30 nm ceria nanoparticles were determined to be 
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3.55(3), 3.57(3), and 3.22(3) eV, respectively, Figure 12a.  The significant increase in band 

gap for the biomineralized ceria compared with the commercial ceria material is consistent 

with expectations and prior reports of quantum confinement in similarly sized chemically 

synthesized ceria nanocrystals88. An simplistic type of Vegard's law relationship has been 

shown to apply to the band gap of some alloy semiconductors89.  All other things being 

equal, increasing the zirconium content in ceria should have the effect of increasing the 

band gap, due to the -band gap of bulk cubic zirconia being 6-7eV90.  However, prior 

literature has shown that an increase in Ce(III) concentration in Ce1-yZryO2-x, along with 

the associated increase in oxygen vacancy concentration, leads to the formation of a 

partially occupied 4f1 band that reduces the band gap of oxygen deficient ceria91,92. As 

shown in Figure 4b, there is a significant increase in Ce(III) concentration upon zirconia 

incorporation. Therefore, the lack of measured band gap increase upon Zr doping that may 

be predicted from a simple Vegard’s law approach is most likely due to the opposing 

influence of increased oxygen vacancy concentration. In addition, numerous subtle factors 

including influence of chemical environment and capping ligands can potentially influence 

the measured band gap. 

 

The underlying motivation for introducing zirconium atoms into ceria is to enhance the 

thermal stability, oxygen storage capacity, and associated catalytic activity of the material 

relative to that of pure ceria. Hence, CO oxidation was chosen as a simple test reaction to 

characterize the catalytic performance of our biomineralized materials. CO light-off 

curves, presented in Figure 12b, demonstrate enhanced activity of the biomineralized ceria-

zirconia sample through a 52 oC reduction in the temperature (from 304 ± 5 oC down to 
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252 ± 5 oC) to achieve 50% CO conversion.  For comparison, commercial ceria (Alfa 

Aesar, 15-30 nm), under identical reaction conditions, exhibited a 50% conversion at 293 

± 5 °C, which is in reasonable agreement with the light-off data for our biomineralized 

pure ceria nanoparticles. Repetition of the experiment utilizing the same sample showed 

very little shift in the light-off curve, indicating the stability of our biomineralized 

materials. 

 

Figure 13: HAADF-STEM analysis of biomineralized ceria nanoparticles after catalysis.  

a) Micrograph of a representative ceria nanoparticle after use as a CO oxidation catalysis.  

Inset is a Fast Fourier Transform from the nanoparticle.  b) The interplanar spacings and 

angles of the lattice fringes in this nanoparticle are in good agreement with the [11̅0] 

projection of ceria having the fluorite structure. 
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Figure 14: HAADF-STEM analysis of biomineralized ceria-zirconia mixed oxide 

nanoparticles after catalysis. a) Micrograph of a representative ceria-zirconia 

nanoparticle after use as a CO oxidation catalyst.  Inset is a Fast Fourier Transform from 

the individual nanoparticle.  b) The interplanar spacings and angles of this particle are in 

good agreement with the [11̅0] projection of ceria-zirconia having the fluorite structure. 

 

Figure 15: Particle size distribution analysis of biomineralized ceria and ceria-zirconia 

nanoparticles after catalysis.  Particle size distribution for (a) ceria and (b) ceria-zirconia 

nanoparticles (NPs) after use as a CO oxidation catalyst.  A narrower distribution and 

smaller mean particle size is found for ceria-zirconia particles when compared with the 

pure ceria nanoparticles. 

 

Subsequent HAADF-STEM analysis of the biomineralized materials after use as a CO 

oxidation catalyst, Figure 13 and 14, demonstrates that both ceria and ceria-zirconia 
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particles maintain their fluorite crystal structure.  Particle size distribution analysis (Figure 

15) demonstrates some limited particle size growth after use as a catalyst. However, it is 

worth noting that a smaller increase in average particle size was found for the ceria-zirconia 

nanocrystals, confirming the expected increased thermal stability of ceria upon doping with 

zirconium11. This increase in average particle size is likely due to the relatively high 

temperature (500 oC) oxidative pre-treatment conducted prior to the catalytic function tests.  

 

While this high temperature treatment removes some of the particle size advantage gained 

from low temperature synthesis, it is necessary to fully clean the catalyst surface in this 

laboratory scale catalysis demonstration. In application however, this higher temperature 

step can be performed in-situ during start-up of, for example, an automotive exhaust system 

where the catalyst will operate above 400oC and be exposed to the varying pO2 

environment existing in the exhaust stream. This does not negate the green production 

advantages of direct biomineralization in terms of removing the need for corrosive 

precipitants or the multi-step processing typically necessary to generate such small ceria-

zirconia particles. Finally, the biomineralized materials described here can be utilized 

without the need for this high temperature step in other applications, for instance as a 

biological antioxidant93 or in chemical mechanical planarization94, that do not operate at 

high temperatures. Further process development is required to be able to controllably tune 

the Ce:Zr ratio in the final mixed oxide product and to recycle or reuse the enzyme to 

enable nanoparticle production at commercially viable levels. One possible option is to 

explore surface immobilization of the engineered silicatein as previously demonstrated by 

Tremel et al for titania and zirconia mineralization57. 
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2.3 Conclusion 

In summary, the demonstrated retention of crystallinity, enhanced reducibility, better CO 

oxidation activity and enhanced thermal stability noted after zirconium incorporation into 

ceria, all serve as confirmation that functional mixed oxide ceria-zirconia nanocrystals can 

be successfully prepared by our direct biomineralization route. Both the pure ceria and 

ceria-zirconia nanoparticles produced via our rCeSi enzymatic route exhibit catalytic 

performance characteristics which make them competitive with counterpart materials made 

by more conventional chemical methods. In addition, the much smaller particle sizes that 

are readily accessible via direct biomineralization can already potentially offer surface area 

advantages for catalysis applications, and also allow fine tuning of the band gap by 

quantum confinement for optical applications.  Most importantly, we have conclusively 

demonstrated that enzymatic direct biomineralization is a viable environmentally benign 

route for the controlled, low temperature, aqueous synthesis of catalytically active 

functional oxide nanomaterials. 

 

2.4 Experimental 

An E. coli codon-optimized, truncated form of silicatein from S. domuncula (NCBI 

accession number Q6YD92.1) containing amino acids 124-217 with mutation T10L and 

added C-terminal hexahistidine tag was sub-cloned into plasmid pET28a as a BamHI-XhoI 

fragment; this adds an N-terminal hexahistidine sequence present in pET28a. Unless 

otherwise stated, standard molecular biology techniques were used for sub-cloning and 
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sequences confirmed using standard DNA sequencing (Genscript). The resultant protein 

sequence is given below:- 

 

  10         20         30         40         50         60 

HHHHHHSSGL VPRGSHMASM TGGQQMGRGS GASYAFSAMG ALEGANALAK GNAVSLSEQN  

 

        70         80         90        100        110        120 

IIDCSIPYGN HGCHGGNMYD AFLYVIANEG VDQDSAYPFV GKQSSCNYNS KYKGTSMSGM  

 

       130        140        150        160        170        180 

VSIKSGSESD LQAAVSNVGP VSVAIDGANS AFRFYYSGVY DSSRCSSSSL NHAMVVTGYG  

 

       190        200        210        220 

SYNGKKYWLA KNSWGTNWGN SGYVMMARNK YNQLEHHHHH H 

 

The modified silicatein was expressed from E. coli BL21(DE3) pLysS cells using isopropyl 

β-D-1-thiogalactopyranoside (IPTG) induction and the recombinant enzyme purified using 

immobilized metal affinity chromatography (IMAC) according to previously described 

methods95,96.  A series of 3 x 3 h dialysis steps (Thermo Scientific SnakeskinTM 3.5kDa 

MWCO) against DI water was used to remove residual salts from IMAC purification before 

use.  

 

Particle synthesis was induced by adding either (i) 2mM of cerium ammonium nitrate (Alfa 

Aesar), (ii) 2mM zirconium dinitrate oxide hydrate (Alfa Aesar), or (iii) a mixture of 1mM 

cerium ammonium nitrate and 1mM zirconium dinitrate oxide hydrate, to the purified 

protein solution (4μM silicatein).  Samples were then incubated on an orbital shaker at 

room temperature. After 24 h the samples were centrifuged (18000 G) for 10 minutes and 
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the pellet re-suspended in 2mM nitric acid solution (Fisher Scientific).  This washing 

process was repeated five times. As reported by Patil et al. the zeta potential of ceria 

nanoparticles increases at lower pH, enabling the formation of a stable nanoparticle sol in 

dilute nitric acid without the need for an additional capping agent97.  The samples were 

centrifuged and dried under vacuum prior to catalytic testing and structural 

characterization, as necessary. Control samples, with only the rCeSi enzyme absent, 

underwent exactly the same synthesis procedure as the primary samples. No indication of 

any particle formation or change in color occurred within 48 hours. 

 

Crystal structure and crystallite size were determined by X-ray diffraction measurements 

carried out at beamline 11-BM at the Advanced Photon Source, Argonne National Labs, 

USA.  The diffraction spectra were collected at room temperature using incident X-rays 

having a wavelength of 0.41417 Å.  Rietveld refinement was conducted on as-synthesized 

samples utilizing GSAS65 with the EXPGUI interface98. Both structures were fit to the 

fluorite phase, space group 𝐹𝑚3̅𝑚, with lattice parameter and Lorentzian isotropic strain 

parameter, LX, refined in GSAS profile 3 to determine the mean crystallite size.  

 

High resolution X-ray Photoelectron Spectroscopy (XPS) analysis (Rutgers University, 

Thermo Scientific K-Alpha+ XPS) of the Ce(3d), 875-925eV, and Zr(3d), 176-196eV 

spectral windows were recorded using monochromatic Al Kα radiation at pass energies of 

50 and 100 eV, respectively.  A Ce4+ reference spectra, matching previously reported Ce4+ 

doublet and satellite peaks99, was obtained from 15-30 nm ceria particles (Alfa Aesar).  The 

reference Ce4+ spectra was fitted to the measured spectra for the biomineralized materials 
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and subtracted leaving only the peaks contributed by Ce3+.  The integrated areas of the 

Ce3+and Ce4+ peaks were used to calculate the relative Ce3+ : Ce4+ ratios, using a  method 

similar to that described in  a previous report87. The spectra were calibrated to the C(1s) 

line of adventitious C at 284.8 eV. Prior to XPS analysis samples were annealed at 450°C 

in air. 

 

The samples were analyzed in an aberration corrected JEOL ARM 200CF analytical 

electron microscope equipped with a JEOL Centurio SDD XEDS system operating at 

200kV.  Images were collected in both the high angle annular dark field scanning 

transmission electron microscopy (HAADF-STEM) mode and high resolution 

transmission electron microscopy (HR-TEM) modes. Samples were prepared by drop 

casting the aqueous sol onto carbon coated copper mesh TEM grids.  Particle size 

distributions from more than 50 particles captured in HAADF-STEM images. The 

crystallography of individual nanoparticles were analyzed by measuring the interplanar 

spacings and angles from the Fast Fourier Transforms (FFTs) derived from the 

corresponding atomic resolution HAADF-STEM and HR-TEM lattice images. The lattice 

fringe spacings and inter-planar angles were also analyzed to determine the particle 

orientation and identity of the exposed profile view surface facets with the most likely 3D 

particle shapes proposed by comparison with literature reports100.  

 

X-ray energy-dispersive spectroscopy (XEDS) was conducted on the TEM specimens in 

STEM mode. When analyzing nanoparticles in the mixed oxide samples, the electron beam 

(probe current: 100pA) was rastered over small rectangular regions (area: 10-75 nm2) 
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which enclosed groups of 3 or fewer particles. Collecting X-rays from small groups of 

particles rather than from single particles increases the signal-to-noise ratio and alleviates 

the amorphization and shrinkage of nanocrystals (each consisting of only a few hundred 

atoms) via knock-on damage during acquisition. Quantification of the XEDS spectra were 

carried out via the Thermo NORAN System SIX (NSS) software using the Cliff-Lorimer 

method101.  

 

The direct optical band gap of the nanoparticles in our sols was determined from 

ultraviolet-visible (UV-vis) absorbance spectra measured on a Shimadzu UV-2600 

spectrometer operating at room temperature over the 200-550nm wavelength range102. 

Raman spectra were collected using a Witec alpha300RA (Knoxville, TN, USA) confocal 

Raman microscope with laser excitation of 532 nm.  Measurements were performed with 

a spot size of ~5 um using a 20x objective.  Spectra were collected using a UHTS 400NIR 

spectrometer with a grating of 2400 lines/mm. 

 

The biomineralized ceria and ceria-zirconia materials were used as catalysts for carbon 

monoxide oxidation. Their performance was compared to that of a conventionally prepared 

commercial CeO2 material (Alfa Aesar) comprised of 15-30 nm particles. In order to isolate 

the biomineralized ceria and ceria-zirconia particles from residual enzyme, the samples 

were heated in air at 500°C for 20 min (ramp rate 10°C/min).  For catalytic testing 

purposes, the ceria and ceria-zirconia materials were dispersed (10 wt-%) onto 110 μm γ-

phase alumina particles (Alfa Aesar) by mixing in ethanol. 70 mg of supported catalyst was 

packed into a 4 mm diameter quartz reactor tube and held in place with quartz wool plugs.  
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Prior to commencing catalysis measurements, pure oxygen was flowed through the reactor 

and the temperature was ramped at 10°C/min from 30 to 500°C.  Gas analysis during 

catalytic reactions was performed using a Cirrus 2 benchtop atmospheric pressure gas 

analysis system (MKS instruments).  Signals for m/z = 28, 32 and 44 were monitored and 

assigned to CO, O2 and CO2 respectively. The reaction gas consisted of 2% CO, 8% O2 

and 90% Ar and the total flow rate used was 37.5mL/min.  The reactor temperature was 

ramped up at 10 °C min from 30 to 500°C. The procedure was repeated for each sample 

by cooling in pure oxygen from 500°C to room temperature and repeating the temperature 

ramp in the CO containing gas mixture. 
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3. Ambient Temperature Aqueous Synthesis of Ultrasmall Copper Doped Ceria 

Nanocrystals for the Water Gas Shift and Carbon Monoxide Oxidation 

Reactions 

 

3.1 Introduction 

 

Copper-cerium mixed oxide materials are of considerable interest in a variety of catalytic 

applications such as the water gas shift (WGS) and CO oxidation reactions10,13-18. Both of 

these reactions have important significance in the industrial and automotive sectors.  WGS 

catalysts are used for hydrogen and ammonia production at the industrial scale, and are an 

important component in fuel processors for proton-exchange membrane fuel cells, 

preventing CO poisoning at the anode8-10.  In automobiles and stationary combustion 

sources, CO oxidation catalysts are widely used to mitigate the environmental impact of 

CO emissions and are an essential part of three-way catalyst systems103-105. Copper-cerium 

mixed oxide catalysts show high activity for these reactions due to the favorable redox 

properties of ceria and the active site created by incorporating copper. Additionally, the 

relatively low cost and earth-abundance of the constituent elements makes synthesis of 

these materials economical and scalable.  While high copper dopant concentration and 

small particle size are desirable for enhancing this catalytic activity, the elevated 

temperatures associated with most synthesis procedures leads to exsolution of the dopant 

as well as particle growth. These two factors limit the accessible copper doping 

concentration and as-synthesized particle size. In this work, we describe a new synthesis 

protocol for the direct aqueous phase synthesis of ultrasmall highly doped copper-ceria 



43 
 

nanocrystals and demonstrate their high activity towards the water gas shift and CO 

oxidation reactions.  

 

There is general agreement in the literature that both copper and ceria play important roles 

in catalysis.  While researchers agree on the importance of the redox capability of ceria 

through the Mars-van-Krevelen mechanism 36,37, which has been demonstrated in ceria 

doped with other transition metals106-108, the precise nature of the Cu active site for both 

CO oxidation and the water gas shift reaction over CuxCe1-xO2-  catalysts is still a matter 

for ongoing debate 13,14. For example, Wang et al and Gammara et al propose that CuOx 

clusters on the catalyst surface are critical for the selective oxidation of CO13,15,16. 

However, Liu and Flytzani-Stephanopoulos have presented contradictory evidence 

showing that Cu(I) ions incorporated within the ceria lattice are the active sites17,109. The 

oxidation state of the Cu species will be a strong function of reaction conditions, depending 

on whether one is dealing with total CO oxidation in excess O2 or selective CO oxidation 

in the presence of H2. Elias et al proposed that Cu can exist at a higher oxidation state under 

reaction conditions of high oxygen partial pressure and that the active sites are oxygen 

vacancies formed adjacent to Cu-substituted surface sites in the mixed oxide 

nanoparticles14.  

 

Despite this debate, there is some consensus that surface and near-surface enrichment of 

copper occurs under reaction conditions as the copper content in CuxCe1-xO2-  increases, 

most likely leading to the formation of some CuOx phase. However, there seems to be some 

clear advantages of fabricating these samples initially as intimately mixed solid solutions 
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rather than depositing Cu directly onto pre-formed CeO2. For example, Gammara et al 

specifically compared the CO selective oxidation activity of co-precipitated CuxCe1-xO2-  

catalysts to the activity of supported CuOx on CeO2
16. They noted that the high copper 

dispersion and initial presence of Cu in the co-precipitated catalyst leads to higher activity 

in the CO oxidation reaction. 

 

In this study, we demonstrate a facile method for direct formation of copper cerium oxide 

nanocrystals at room temperature in aqueous solution. This approach exchanges the nitrate 

ligands present in a mixed cerium nitrate and copper nitrate precursor solution for the 

intermediate strength lactate ligand, to shift the precipitation pH from the “hydroxo” to the 

“oxo” regime. Inducing precipitation via addition of ammonium hydroxide then leads to 

direct formation of < 4 nm diameter CuxCe1-xO2- nanocrystals in the aqueous phase at 

room temperature.  The Cu content can be tuned through the Cu nitrate/Ce nitrate ratios in 

the initial precursor solution to achieve as-synthesized Cu contents up to x = 35 in CuxCe1-

xO2- . We demonstrate that these two factors make our nanoparticles excellent candidate 

materials for CO oxidation and water gas shift reaction catalysts. 

 

3.2 Experimental Methods: 

3.2.1 Particle synthesis  

We synthesized ceria based nanoparticles using a modified base precipitation method as 

shown schematically in Figure 16.  100mL of aqueous solution was prepared with 100mM 

Ce(NO3)3, 0-200mM Cu(NO3)2 and a DL-lactic acid concentration equal to the total 

solution nitrate concentration ([CH₃CHCOOH] = [NO3]).  While stirring (500 rpm), 
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nanoparticle growth was initiated by raising the pH to between 8.5 and 9 through the 

dropwise addition of 6% ammonium hydroxide solution. This pH was maintained for 2 h 

and the solution was allowed to stir overnight. After particle synthesis, excess lactic acid, 

nitric acid and ammonia were removed by dialysis using Thermo Snakeskin 3,500 kDa 

tubing against deionized water, which caused aggregation of the mixed oxide particles. The 

solid product was washed three times by centrifugation (10,000 RCF) and subsequent re-

suspension in deionized water. The nanoparticles were finally re-dispersed and stored in 

dilute citric acid buffer (20mM, pH 5.5) until required for use.  

 

Figure 16: Synthesis flow diagram for the synthesis of our CuxCe1-xO2- nanoparticle sols. 

 

3.2.2 Materials Characterization 

Samples for scanning electron microscopy (SEM) and energy dispersive X-ray (XEDS) 

analysis were prepared by drying the nanoparticle sols at room temperature, under vacuum 

overnight and attaching the dried film to an Al sample stub using adhesive carbon tape.  
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The samples were examined in a Hitachi 4300SE SEM operating at an accelerating voltage 

of 20keV, which was equipped with an EDAX silicon drift detector.  XEDS spectrum 

quantification was conducted using EDAX Genesis software employing appropriate 

atomic number (Z), absorption (A) and fluorescence (F) corrections110. 

 

Synchrotron X-ray powder diffraction patterns obtained at beamline 11-BM of the 

Advanced Photon Source at Argonne National Labs, were utilized to determine the crystal 

structure and mean crystallite size of the as synthesized material.  Rietveld refinement of 

this data was performed using the GSAS package65 with EXPGUI interface98 and the peak 

shapes were fitted to the  Lorentzian isotropic crystallite size, LX, strain broadening, LY, 

and Lorentzian anisotropic crystallite size broadening, ptec, parameters in GSAS Profile 3. 

The mean crystallite size was then derived from the calculated LX parameter. 

 

The phase stability of the crystallites at elevated temperature was determined using an 

Anton Paar DHS1100 domed hot stage attachment to a PANalytical Empyrean X-ray 

diffractometer.  The sample holder was heated from 50-750°C collecting spectra at 100°C 

intervals with a 15 min dwell time at each temperature. Spectra were collected over a 30-

100° 2θ angular range.  

 

Raman spectra were collected at room temperature using a Witec alpha300RA (Knoxville, 

TN, USA) confocal Raman microscope equipped with a 532 nm laser.  The laser was 

focused to a ~5μm2 spot on the dried CuxCe1-xO2-  sample using a 20x objective lens. 
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Spectra were collected using a UHTS 400NIR spectrometer with a diffraction grating 

having 2400 lines/mm. 

 

Samples for analysis by scanning transmission electron microscopy (STEM) were prepared 

by drop casting some diluted aqueous sol onto a carbon coated molybdenum mesh TEM 

grid (Electron Microscopy Sciences). The samples were analyzed in an aberration 

corrected JEOL ARM 200CF analytical electron microscope equipped with a JEOL 

Centurio XEDS system operating at 200kV. Images were collected in high angle annular 

dark field (HAADF)-STEM and high-resolution HR-TEM modes.  Fast Fourier 

Transforms (FFTs) derived from the HAADF-STEM and HR-TEM images were used to 

measure interplanar spacing and angles.  

 

As-synthesized and dried CuxCe1-xO2-  samples and those annealed at 300oC for 15 min in 

air were analyzed by X-ray photoelectron spectroscopy (XPS). The samples were attached 

to the sample holder with conductive carbon tape. XPS spectra were collected using a 

Scienta ESCA-300 system with an excitation energy of 1486.6eV (Al Kα).  The operating 

pressure of the sample chamber is in the range of 10-8 Torr which may lead to a slight 

reduction of the sample materials. High resolution scans were collected from the Ce(3d), 

Cu(2p), O(1s) and C(1s) spectral regions, along with a lower resolution wide survey scan 

of the entire spectrum.  All spectra were calibrated to the C(1s) line of adventitious carbon 

(284.8eV).  The relative concentrations of Ce(III) and Ce(IV) were calculated semi-

quantitatively by integrating the area under the peaks associated with Ce(III) (u0, v0, u’, 

and v’) and Ce(IV) (u, v, u’’, v’’, u’’’, and v’’’) following the method proposed by Zhang 
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et al 85, in which, peak centers were set and only peak intensity and width were left as free 

parameters for peak fitting. The peak width and integrated area values obtained were found 

to be in good agreement with those reported in prior literature85,111-113. 

 

3.2.3 Catalytic Testing 

CeO2- or Ce1-xCuxO2- nanoparticles were loaded onto 105-150 μm silica support particles 

(Sigma Aldrich) through incipient wetness impregnation from a washed solution of 

nanoparticles buffered in 20mM citric acid at pH 5.5.  The vacuum dried supported catalyst 

was packed into a 4 mm inner diameter quartz reactor tube and held in place with quartz 

wool plugs.  Prior to any catalytic tests being performed, the reactor temperature was 

ramped at 10 °C/min from 30 to 450 °C in flowing air to remove residual water and citrate 

capping ligands from the catalyst particles.  TGA analysis showed removal of water and 

citrate capping ligands to occur at 100°C and 150-300°C respectively (Figure 17). 

 

CO oxidation light-off curves were measured utilizing 500mg of the supported catalyst 

(1% w/w) in a gas mixture of 2% CO, 8% O2 and 90% Ar at a total flow rate of 37.5mL/min.  

The reactor temperature was raised at 10°C/min from 30-450 °C. Gas analysis was 

performed using a Cirrus 2 benchtop quadrupole mass spectrometer (MKS instruments) at 

the reactor outlet monitoring for m/z = 28, 32 and 44 signals which were assigned to CO, 

O2 and CO2 respectively.  
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Figure 17: Thermogravimetric analysis (TGA) of an aqueous sol of Cu0.15Ce0.85O2- 

nanoparticles.  TGA was used to determine the total solids content of a 40μL volume of 

nanoparticle sol. Moisture vaporization occur at temperatures around 100°C whereas 

citrate capping ligand decomposition occurs between 150°C and 300°C. 

 

Water gas shift reaction rate measurements were performed utilizing 500mg of supported 

catalyst (7.5% w/w) in a gas mixture of 1.5% CO, 1.5% H2O, and 97% N2 at various flow 

rates chosen to be between 25 and 100 mL/min.  The inlet gas composition and flow rate 

were controlled by mass flow controllers and H2O was added to the stream by flowing a 

portion of the N2 gas through a sparger containing DI water at 25°C. The gas composition 

at the reactor outlet was analyzed by an in-line model 8610C gas chromatograph (SRI 

Instruments) equipped with thermal conductivity and flame ionization detector.  Samples 

were heated to 450 °C and the conversion measured stepwise at decreasing temperature 

intervals of 25 °C. Calculations for activation energy used only data collected where 

conversion level was less than 15%.  The measured rates were normalized to the BET 
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surface area of the catalysts as determined by N2 adsorption measurements at -196 °C using 

a homemade instrument.   

 

3.3 Results 

   

Figure 18: Photograph of copper-doped ceria sols taken under a) natural light and b) 

green laser illumination.  The copper nitrate content used during synthesis increases from 

0mM to 200mM from left to right while the cerium nitrate concentration for each sample 

remained constant at 100mM.  The color of the washed sol changes from clear to pale 

yellow to green with increasing copper content. The laser scattering demonstrates the 

presence of colloidal nanocrystals. 

Direct formation of the oxide is possible due to the intermediate bond strength of the lactic 

acid ligand with the cerium ion.  Lactic acid bonds to cerium with a binding constant 

(log(K1)) of 2.756 allowing the pH to be adjusted to 8.5-9.0 before solid formation114.  

During particle synthesis, clear sols were formed after pH adjustment as shown in Figure 

18a). Laser light scattering, which is indicative of colloidal sol formation, became visible 

within minutes accompanied by a change in color, which was dependent on the copper 

content.  Sols with low nominal copper contents (i.e., x = 0 to .01) transition from colorless 

to pale yellow whereas the samples with higher copper content (i.e., x = 0.05 to 0.35) 
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transition from blue to deep green. Following synthesis, dialysis and washing, the 

nanoparticles were suspended in a dilute citric acid buffer solution (pH:5.5, <20mM) where 

they once again become clear with light scattering visible under laser illumination, Figure 

18b.  A plot quantifying the relative proportions of precipitated-to-unprecipitated metal 

precursor for each sample composition prepared is shown in Figure 19, as determined by 

inductively coupled plasma mass spectrometry of the dialysis products. 

 
Figure 19: Histogram showing ICP-MS analysis of the relative amount of Cu and Ce metal 

precursors ending up in the CuxCe1-xO2- precipitate versus the residual solvent.  Samples 

after synthesis underwent dialysis to remove the remaining soluble metal precursors.  The 

dialysis water was subsequently analyzed using ICP-MS to determine the concentration of 

remaining soluble metal precursors.  It was found that as the nominal copper precursor 

concentrations tend toward x= 0.35 the majority of the copper precursor remains 

unprecipitated.  The fraction of cerium precursor that gets incorporated into the precipitate 

remains above 90% for all samples except for Cu0.35Ce0.65O2-δ. The Cu0.35Ce0.65O2-δ sample 

has the smallest particle sizes, and it is likely a small portion of precipitated oxide particles 

diffused across the dialysis membrane leading to higher concentrations of cerium in the 

dialysis water. 
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Figure 20: Photograph of a 100mM copper nitrate and 200mM lactic acid solution as pH 

increases.  It should be noted that the solution remains clear throughout the transition from 

lactic acid bound cerium at low pH to ammonia bound cerium at high pH, with no solid 

cupric hydroxide formation in the intermediate pH range. 

 

In contrast to ceria precipitation, attempting to form pure cuprous oxide nanoparticles using 

a similar approach led to the generation of a clear Cu(II) complex when the ammonium 

hydroxide base was added (Figure 20). While the solution color intensity changed, there 

was no indication of precipitation or sol formation, suggesting a simple exchange of the 

complex ligand, from lactate to ammonia. Interestingly, this by-passes the formation of a 

solid cupric hydroxide precipitate that is expected to occur in the intermediate pH range in 

the absence of lactic acid115 which supports the notion that the lactate ligand plays a 

stabilizing role in our synthesis procedure for Ce1-xCuxO2-.  
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Figure 21: a) SEM-XEDS spectra collected from copper-doped ceria samples prepared 

with varying concentrations of copper nitrate in solution during synthesis. The inset in a) 

shows a magnified view of the spectral range encompassing the Cu K peak (0.8mM and 

4mM peaks multiplied by 25 and 5 times respectively). The color key for these spectra is 

inset in (b). b) Measured copper content, x, in CuxCe1-xO2-  nanoparticles, derived from 

analysis of the XEDS data presented in a), as a function of Cu nitrate precursor 

concentration. The Ce nitrate precursor concentration was held constant at 100mM in all 

samples. 

 

SEM-XEDS spectra were collected from dialyzed, washed and dried precipitated films of 

the as-synthesized nanocrystals, Figure 21a.  All of the samples showed a strong series of 

Ce L-series peaks. The intensity of the Cu K and K peaks increased with increasing 
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concentration of Cu nitrate in the synthesis solution. The corresponding copper 

concentrations in the set of CuxCe1-xO2- samples were determined on a metals basis using 

the standardless ZAF correction method116, Figure 21b.  The highest measured copper 

concentration corresponded to x = 0.35 which is amongst the highest reported to date in 

CuxCe1-xO2- 
117-119. While XEDS and ICP-MS (Figure 19) shows that most of the copper 

is incorporated into the CuxCe1-xO2- precipitate  for low concentration samples (i.e., x = 

0.01, 0.05), the production of CuxCe1-xO2- particles with Cu higher concentrations required 

the copper precursor to be in excess, and thus much of the precursor remains 

unprecipitated. It should also be noted that if we calculate the expected composition of the 

nanocrystals utilizing the ratios of precipitated materials determined from the ICP-MS data, 

we arrive at Cu contents greater than those experimentally determined by XEDS. This is 

due to the precipitation of a separate copper hydroxide phase that is removed from the 

particles after synthesis by a triplicate washing procedure. The apparent saturation of Cu 

content at x = 0.35 in the nanoparticles for higher Cu nitrate precursor concentrations is 

consistent with prior research that suggested a maximum Cu content of x =~0.30 is 

sustainable within single phase Ce1-xCuxO2-
120. 
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Figure 22: a) Synchrotron X-ray diffraction patterns of the as-synthesized CuxCe1-xO2- 

materials with varying Cu content showing good agreement with the CeO2 fluorite 

structure, space group 𝐹𝑚3̅𝑚, (ICSD collection code 156250, reference peak positions 

shown). The progressive broadening of the peaks with increasing copper content is 

indicative of decreasing crystallite mean size. The trend line is provided as a guide to the 

eye. b) Lattice parameter and crystallite size measurements derived from Rietveld 

refinement of the XRD patterns presented in a). 
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Figure 23: XRD spectra and GSAS fitting of the Cu0.35Ce0.65O2-d sample showing only 

fluorite-type structure cerium oxide peaks. 

 

Rietveld refinement of synchrotron X-ray diffraction (XRD) patterns obtained from the as-

synthesized material with varying Cu contents confirmed the presence of a single phase 

with the fluorite structure, space group 𝐹𝑚3̅𝑚, in each sample (Figure 22). There was no 

evidence of secondary CuO or Cu2O phases in any of the samples, Figure 23. The average 

crystallite size was found to decrease with increasing Cu content, with the 1.7 nm mean 

size measured for the x = 0.35 sample being amongst the smallest ever reported for either 

pure or doped ceria nanocrystals10,121,122. The ability to access such small crystallite sizes 

is a direct consequence of the absence of any calcination step in our synthesis procedure, 

which removes the opportunity for sintering and growth processes to occur. Decreasing 

crystallite size typically leads to an increase in the lattice parameter in pure CeO2 
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particles33. In the present case, this is counterbalanced by the expected decrease in lattice 

parameter upon increasing the concentration of the lower radius Cu(II) ions replacing the 

larger Ce(III) and Ce(IV) ions CuxCe1-xO2-
123.  The Shannon ionic radii of Cu(II), Ce(III) 

and Ce(IV) in an octahedral coordination environment are 0.73, 1.01 and 0.87 Å 

respectively34. In our systematic set of materials, the influence of copper concentration on 

lattice parameter is dominant which leads to a progressive decrease in  lattice parameter 

except for the  x = 0-0.01 Cu concentration range where the influence of size dominates 

and leads to a larger  lattice parameter. Note that this result was confirmed by repeating the 

synthesis procedure and XRD measurements several times. 
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Figure 24: Representative HAADF-STEM images of a,b) CeO2- and d,e) Cu0.05Ce0.95O2- 

nanoparticles showing high crystallinity. The inset FFTs in a) and d), obtained from the 

areas in the yellow boxes, are consistent with the [11̅0] and the [112̅] projections of 

fluorite structured ceria respectively. Surface-equivalent spherical diameter particle size 

distributions of the pure ceria and copper-doped ceria nanoparticles are shown in c) and 

f) respectively. 

 

Figure 24(a,b) show representative HAADF-STEM micrographs of the pure ceria 

material confirming the crystalline and nanoparticulate nature of the as-synthesized 

material. The measured interplanar spacing and angles derived from the corresponding 

fast Fourier transform (FFT, inset in Figure 24a) match well with those expected for the 

[11̅0] projection on the CeO2 fluorite structure, Figure 25.  The ceria particles have a 

relatively narrow size distribution with an average particle size of 4.2 ± 0.7nm (measured 



59 
 

as a surface-equivalent spherical diameter (Figure 24c) which matches well with the 

value derived from the XRD data (Figure 22).  

 

 
 

Figure 25: HAADF-STEM image of pure ceria and corresponding interplanar spacing 

and angles.  Inset is an FFT obtained from the particle in the yellow box.  Interplanar 

spacings and angles match those expected of the [1̅10] projection of fluorite structured 

ceria. 

 

Figure 26: HAADF-STEM image of Cu0.05Ce0.95O2-δ and corresponding interplanar 

spacing and angles.  Inset is an FFT obtained from the particle in the yellow box.  

Interplanar spacings and angles match that expected of the [11̅2] projection of fluorite 

structured ceria. 
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Figure 24(d,e,f) show the corresponding HAADF-STEM micrographs and particle size 

distribution of the nanocrystals in the Cu0.05Ce0.95O2- sample.  As with the pure ceria 

material, the interplanar spacing and angles derived from the FFT inset in Figure 24d match 

well with the fluorite structure; this time viewed along the [112̅] projection, Figure 26. The 

particle size distribution is narrow (Figure 24f), with a mean particle size of 3.7 ± 0.7 nm, 

which again matches well with the corresponding value derived from XRD analysis (Figure 

22).    
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Figure 27: a) Raman spectra of the as-synthesized CeO2 and copper-doped ceria samples 

showing peak broadening and a progressive shift to lower frequencies in the Ce-O band 

peak position as the copper content increases, which is consistent with the formation of a 

solid solution.   b) Corresponding Ce-O Raman peak full-width-at-half-maximum (FWHM) 

and peak frequency as a function of copper content extracted from the data in a). 
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Figure 28: Raman spectra of the set copper-doped ceria samples and a pure (Alfa Aesar) 

ceria reference material showing a wide Raman shift range.  Only the F2g bands of cerium 

oxide are present. There are no copper oxide peaks indicating the absence of any 

secondary phase [CuO(295, 345, 630   cm-1); Cu2O(150, 230, 640 cm-1)]. A wide band 

centered at ~600 cm-1 is present is all samples and can be attributed to the presence of 

oxygen vacancies13. 

 

Raman spectra acquired from the pure CeO2- material exhibit a single peak centered at 

470 nm-1, Figure 27a, which is consistent with the reported position of the single allowed 

Raman mode of ceria with the fluorite structure 31,124. This F2g symmetry peak has 

previously been assigned to an oxygen anion breathing mode around the central cation31. 

This peak was observed to both broaden and systematically shift to lower wavenumber in 

an approximately linear fashion as the Cu content in the series of CuxCe1-xO2-  samples 

increases, Figure 27b. The F2g peak position decreased to 455 cm-1 for the x = 0.35 Cu-

doped sample. This is trend is fully consistent with the formation of a solid solution of 

copper within ceria 13,31.  Peak broadening with increasing Cu content can be attributed to 

increased disorder due to the random distribution of both copper cations and oxygen 

vacancies in the material and their effect on neighboring Ce-O bond strength16. A portion 

of this increased peak width can also be attributed to the observed decrease in crystallite 
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size that typically increases the peak width in nanomaterials125. Additionally, from wide-

range Raman spectra (Figure 28) no Cu2O (150, 230, and 640 cm-1) or CuO (290, 340, and 

625 cm-1) peaks were detected, further confirming that a single phase solid solution 

material forms upon doping CeO2 with Cu.  Also visible in the wide range Raman spectra 

is a wide band peak at ~600 cm-1, which can be attributed to oxygen vacancies in the 

samples13. 
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Figure 29: (a) X-ray photoelectron spectra of the 29 mol % copper doped ceria sample in 

the Ce(3d) region.  Peaks attributed to both Ce(III) (red) and Ce(IV) (blue) can be seen 

which can only be accommodated if there are also oxygen vacancies present in the crystal 

lattice. (b) XPS spectra of the Cu(2p) region of the entire set of CuxCe1-xO2-  samples with 

x varying from 0 to 0.35. The absence of strong Cu(II) satellites at 942 and 962 eV indicates 

that copper exists in the Cu(I) oxidation state. 

 

In order to further confirm the formation of a solid solution and the potential impact on 

catalytic activity, the influence of Cu doping on the Ce oxidation state and oxygen vacancy 

concentration in the as-synthesized materials was investigated by XPS.  While this is 
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typically described as a surface characterization technique, we can in this case consider the 

spectra to be representative of the bulk due to the mean nanoparticle diameter being smaller 

than the XPS penetration depth. A representative spectrum of the Ce(3d) region for the 

Cu0.29Ce0.71O2- sample is shown in Figure 29a with the spectra for all of the other materials 

in the series presented in Figure 30.  Cerium was found to exist in both the Ce(III) and 

Ce(IV) oxidation states which is typical of nanoscale ceria33. The concentration of Ce(III) 

was determined semi-quantitatively by taking a ratio of the area under the curve of fitted 

Ce(III) peaks over that of the summed areas of the Ce(III) and Ce(IV) peaks, following a 

method previously described by Zhang et al 85. This analysis indicates a trend of decreasing 

Ce(III) concentration with increasing copper content, varying from 56% in pure CeO2- to 

48% in the highest doped Cu0.35Ce0.65O2- sample, Table 1.  The Ce(III) concentration 

values obtained were found to be in good agreement with those reported in prior 

literature33,86. 
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Figure 30: XPS spectra of as synthesized copper-doped ceria samples.  The Ce(III)/Ce(IV) 

ratio was found to be slightly dependent on the copper concentration.  Peaks attributable 

to Ce(III) and Ce(IV) are represented in red and blue respectively. 

 

Figure 29b shows the XPS spectra of the Cu(2p) region for the complete set of CuxCe1-xO2-

 samples.  The x = 0.05, 0.15, 0.29, and 0.35 samples showed clear Cu2p1/2 and Cu2p3/2 

peaks with only weak satellite peaks at ~945 eV, indicative of primarily a Cu(I) oxidation 

state with only small quantities of Cu(II)126. The minor amount of Cu(II) may be indicative 

of a small amount of a segregated Cu-containing secondary phase in these highest Cu-

content materials127. As expected, no Cu(2p) peaks were observed in the x = 0 nanocrystals. 

Similarly, no Cu(2p) peaks were observed in the x = 0.01 sample due to the detection limit 

constraints of the XPS instrument. 
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Table 1: Physical Characteristics of the various CuxCe1-xO2-δ materials 

Nominal 

copper 

concentrationa 

(mM) 

Actual copper 

concentrationb 

(metals basis) 

Mean 

crystallite 

size c  

(nm) 

Lattice 

parameterc 

(Å) 

Ce(III) 

concentrationd 

(%) 

Raman 

Peak 

(cm-1) 

0 - 4.2 5.433 56% 470.3 

0.8 0.01 3.4 5.455 56% 469.6 

4 0.05 3.0 5.450 54% 465.3 

20 0.15 2.5 5.437 50% 462.0 

100 0.29 2.1 5.409 46% 457.0 

200 0.35 1.7 5.408 48% 454.7 
a Concentration of Cu(NO3)2 used during synthesis.  
b Determined from XEDS measurements.   
c Calculated from Reitveld refinement of synchrotron powder XRD data. Standard deviations in the lattice 

parameter, obtained from GSAS, are an order of magnitude lower than the lowest reported digit. 
d Determined using XPS data from the Ce(3d) energy range, following the method proposed by Zhang et al 
85. 
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Figure 31: Series of X-ray diffraction spectra of a) x = 0.15 and b) x = 0.35 copper-doped 

CuxCe1-xO2-  samples after being subjected to calcination at increasing temperatures in 

air for a 15 min dwell time. As the calcination temperature increases, the diffraction peaks 

get narrower due to crystal growth effects.  In the samples with the highest copper-doping 

levels distinct copper oxide (labelled *) peaks begin to appear after calcination at elevated 

temperatures. c) Plot showing the mean ceria crystallite size as a function of calcination 

temperature. High copper concentrations seem to hinder sintering of the fluorite-type 

CuxCe1-xO2- phase. 

A key benefit of the lactic acid mediated synthesis approach employed in this study is the 

direct formation of the mixed CuxCe1-xO2- nanocrystals at room temperature, removing 
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the need for a high temperature calcination step that can lead to unwanted crystallite growth 

and possible exsolution of Cu from the solid solution. However, many catalytic 

applications of these materials will typically require that they be exposed to elevated 

temperatures. High temperature XRD patterns obtained upon heating the CuxCe1-xO2- 

samples in air were analyzed to determine the extent of crystal growth and the stability of 

the mixed oxide phase as a function of calcination temperature.  The Scherrer equation was 

used to estimate the average crystallite size from the (220) and (311) reflections of CeO2 

using a shape factor of 0.930,128. 

 

Figure 31(a,b) shows XRD of the systematic set of spectra for the Cu0.15Ce0.85O2- and 

Cu0.35Ce0.65O2- materials at a series of calcination temperatures beginning at 50°C and 

increasing up to 750°C at 100°C intervals  with a 15 min dwell time at temperature before 

taking any measurements.  A distinct narrowing of the peaks characteristic of the fluorite 

structure was noted for each sample with increasing temperature due to crystallite growth 

at these elevated temperatures (Figure 31c).  The secondary set of XRD peaks at 750°C 

and 450°C respectively for Cu0.15Ce0.85O2- and Cu0.35Ce0.65O2- can be indexed to CuO, 

indicating an upper thermal limit of phase stability for these solid solutions. No CuO phase 

formation was observed for any of the other lower Cu content nanocrystals up to the 

maximum measurement temperature of 750°C. The source of this CuO phase can be 

attributed either to the exsolution of Cu from these higher Cu-content CuxCe1-xO2- 

nanocrystals, or the subsequent crystallization of an amorphous Cu phase formed during 

synthesis. Such an amorphous Cu phase cannot be detected by XRD or by STEM, although 
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we note the possible indication of the existence of some amorphous material in the as- XPS 

data acquired from the as-synthesized Cu0.29Ce0.81O2- sample, (Figure 29).  

 

 

Figure 32: XPS spectra of the Cu(2p) region of the various copper-doped ceria samples 

after calcination at 300 oC for 15 mins. The presence of strong satellite peaks indicate a 

shift in Cu from the Cu(I) to the Cu(II) oxidation state after heat treatment. 

  

Figure 32 shows the XPS spectra of the Cu(2p) region for the series of copper-doped ceria 

samples that have been calcined at 300oC for 15 min.  Samples with low copper 

concentrations show no significant Cu(2p) peaks.  The heat-treated variants of the more 

highly doped samples show characteristic Cu2p1/2 and Cu2p3/2 peaks along with the Cu(II) 

satellites indicating the copper in the sample has changed oxidation state from Cu(I) to 

Cu(II).  Likewise, there is an average shift in binding energy of +0.6 eV in the Cu2p3/2 

peaks after heat treatment, further indicating this switch in oxidation state126. Such a change 

in oxidation state has been reported previously by Sciré et al in copper-doped ceria 
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materials that were heated from 200 to 400°C129. Taken together with our data this indicates 

that the transition from Cu(I) to Cu(II) occurs somewhere between 200-300°C. 
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Figure 33: a) CO conversion data as a function of temperature for the set of CuxCe1-xO2-  

materials (with x varying from 0 to 0.35) supported on silica.  The temperature required 

for 50% conversion ranges from 262°C for CeO2- to 145°C for Cu0.29Ce0.71O2-.  b) The 

CO conversion curves for Cu0.29Ce0.71O2- materials that had been subjected to calcination 

at varying temperatures.  It should be noted that a significant reduction in catalytic activity 

is only apparent for samples calcined above 650°C. (Note: the 350°C and 450°C curves 

strongly overlap).  c) Arrhenius plot analyses of water gas shift rates for the set of CuxCe1-

xO2- materials (with x varying from 0 to 0.35) supported on silica for a CO:H2O:N2 gas 

mixture of 1.5:1.5:97 % at 1 atm. 

 

The CO oxidation reaction is typically used as an important benchmark for the catalytic 

activity of these Cu-doped ceria materials130.  The CO oxidation light-off curves shown in 

Figure 33a exhibit the anticipated trend of lower light-off temperature, indicative of higher 

catalytic activity, with increasing copper content in the CuxCe1-xO2- structure.  The 

exception to this trend occurs for the highest copper content material, i.e., Cu0.35Ce0.65O2-, 

which shows a slight decrease in the copper light-off temperature relative to the 

Cu0.29Ce0.71O2- sample, most likely due to the formation of some CuO secondary phase as 

indicated by our high temperature XRD experiments. The Cu0.29Ce0.71O2- catalyst showed 

50% conversion at 145°C with a gas hour space velocity of 25,000 h-1. Hence the 

performance of our Cu0.29Ce0.71O2- material is in-line with other literature reports on 

copper-doped ceria CO oxidation catalysts10,131. 

CO oxidation light-off experiments were repeated for the Cu0.29Ce0.71O2- sample following 

calcination at a series of elevated temperatures.  The Cu0.29Ce0.71O2- sample was chosen 

for this experiment because it was the highest performing catalyst of the series and because 

it had been shown, through high temperature XRD, to develop CuO crystals after 

calcination at elevated temperatures.  The CO oxidation performance of this particular 

catalyst was unaffected at calcination temperatures below 550°C; however, a significant 
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decrease in the activity was observed after calcination at 650°C which was attributable to 

copper exsolution (Figure 33b). 

 

Figure 34: Water gas shift conversion as a function of reaction temperature for ceria 

materials with varying copper concentrations.  In general, increasing the Cu content 

gradually improves the catalytic performance with the exception of the Cu0.35Ce0.65O2-δ 

sample which we believe underwent some phase separation under the reaction 

environment. 

 

An Arrhenius plot of the reaction rate for the water gas shift reaction using the set of 

CuxCe1-xO2- samples is shown in Figure 33c. These reaction rates have been normalized 

using the surface areas determined from BET isotherm analysis (Table 2).  As with the CO 

oxidation light-off data, the catalytic activity generally increases with increasing Cu 

content in the CuxCe1-xO2- material, as shown in Figure 34.  The measured decrease in 

activation energy was accompanied by an increase in overall reaction rate as x increased in 

CuxCe1-xO2- up to x=0.29. Again, as with the CO light-off data, the overall rate of the x = 

0.35 decreases when compared with the x = 0.29 sample, however the activation energy 

slightly decreases.  This further indicates a decrease in accessibility of more active solid 

solution sites caused by exsolution of copper.  Representative STEM micrographs of the 
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Cu0.35Ce0.65O2-/SiO2 materials before and after the WGS oxidation reaction are shown in 

Figure 35.  The images clearly show some evidence of crystallite growth in the post-

reaction sample. Although, the presence of any thin amorphous layers of exsoluted copper 

rich material could not be detected in either sample, >10nm segregated copper phase was 

detected in the post reaction sample. The measured activation energies and reaction rates 

for the WGS reaction are also competitive with previous literature reports for copper-doped 

ceria catalysts132. 

 

Figure 35: Representative HAADF-STEM micrographs of supported Cu0.35Ce0.65O2-δ 

particles before and after pretreatment and WGS catalysis.  Before exposure to 
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pretreatment and WGS reaction conditions the a) HAADF and b) bright-field micrographs 

show a high density of nanocrystalline Cu0.35Ce0.65O2-δ domains supported on the SiO2.  

After exposure to pretreatment and reaction conditions c) HAADF and d) bright-field 

micrographs showed the used catalyst to have slightly larger Cu0.35Ce0.65O2-δ crystallite 

sizes.  Also present in the post-reaction sample were some occasional secondary copper-

rich phases, as shown in e) HAADF and f) bright field micrographs.  The lattice spacing 

and interplanar angles of these latter phases could not be matched to the fluorite structure 

and were much more consistent with those expected for the cubic Cu2O or monoclinic CuO 

structures. 

 

Table 2: Catalytic Performance Characteristics of the various CuxCe1-xO2-δ materials 

supported on SiO2 

Samplea Surface areab 

(m2 g-1) 

CO light-off 

temperaturec (°C) 

WGS activation 

energyd (kJ mol-1) 

CeO2- 155 262 89.0 ± 1.2 

Cu0.01Ce0.99O2- 190 250 78.8 ± 2.4 

Cu0.05Ce0.95O2- 145 212 80.0 ± 1.1 

Cu0.15Ce0.85O2- 110 151 59.9 ± 0.6 

Cu0.29Ce0.71O2- 90 145 51.6 ± 0.5 

Cu0.35Ce0.65O2- 90 159 49.2 ± 0.9 
a Copper concentration calculated from XEDS measurements.   
b Calculated from N2 adsorption isotherms.   
c Temperature for 50% CO conversion.  
d Calculated by Arrhenius equation from data collected at under 15% conversion. 

 

3.4 Discussion 

The nature of the precipitate formed upon raising the pH of a metal nitrate solution is 

qualitatively described in a classic paper by Livage et al25.  As the pH increases, the 

interaction of the metal with the aqueous solution transitions from “aquo” (M-OH2) to 

“hydroxo” (M-OH) and finally to “oxo” (M-O), with the precise pH required for a 

‘transition’ being a function of the identity of the transition metal itself and the associated 

ligands in solution. In a typical ceria nanoparticle synthesis procedure, the pH of the 

precursor solution is raised to the point where it induces precipitation of insoluble cerium 

hydroxide nanocrystals by shifting into the ‘hydroxo’ region of Livage’s construction. The 
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hydroxide precipitate can then subsequently be transformed into cerium oxide by a suitable 

calcination treatment. 

 

Our results demonstrate that the addition of lactic acid into the precursor solution strongly 

influences the ligand associated with the cerium ion in solution. The binding constants 

(log(K1)) of nitrate and lactate ligands to Ce(III) are 0.21 and 2.756114 respectively, 

indicating a substantially stronger association of the lactic acid species to the Ce(III) 

cation38. We suggest that the direct formation of the oxide in our lactic acid mediated 

synthesis route is due to the stronger ligand association that stabilizes the cation in solution 

as the pH increases upon the addition of ammonium hydroxide. This shifts the point of 

precipitation out of the ‘hydroxo’ region into the ‘oxo’ region in the Livage diagram. 

 

The exact nature of the catalytically active site in CuxCe1-xO2- is still a matter of debate, 

however, there is general consensus that formation of a mixed Ce-Cu-O solid solution is 

critical to creating highly active sites. While it can be challenging to prove the formation 

of a true solid solution at very low dopant concentrations, all of the experimental evidence 

collected points to the formation of an intimately mixed CuxCe1-xO2- phase for x=0.01 to 

0.35 in our as-synthesized materials. The lattice parameter determined from the 

synchrotron XRD data (Figure 22) shows a progressive decrease in lattice parameter of the 

fluorite-type with increasing Cu content as would be expected from a Vegard’s law type 

relationship due to the smaller cationic radius of Cu.  Furthermore, no secondary phases 

were observed in the as-synthesized materials prepared via our lactic acid mediated 

synthesis.  
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Further evidence for Cu-Ce-O solid solution formation comes from the approximately 

linear decrease in Ce-O breathing mode Raman frequency with increasing dopant level x 

in the CuxCe1-xO2- phase (Figure 27). This is the result of the shift in phonon frequencies 

due to the decrease in lattice parameter, often referred to as the Grünier shift in Raman 

frequency31. The concurrent broadening of the Raman peaks with increasing doping level 

is also indicative of solid solution formation, where such broadening is due to substitutional 

disorder on the cation sublattice upon Cu-doping leading to a distribution of cation-anion 

breathing frequencies31. While the trends in lattice parameter, crystallite size and Raman 

spectra strongly indicate the formation of mixed oxide solid solution nanocrystals, we 

cannot fully rule out that some surface segregated amorphous copper-rich material exists 

in the as-synthesized CuxCe1-xO2- materials with x= 0.29 and 0.35. 

 

We also note that the Ce(III) to Ce(IV) ratio in our materials shows a systematic trend of 

increasing Ce(IV) content with increasing Cu(I) doping level in CuxCe1-xO2-, suggesting 

some charge compensation occurs to stabilize the oxygen within the lattice upon doping. 

Finally, we found no evidence of secondary Cu-O phases in any of our HAADF-STEM 

imaging experiments on the as-synthesized materials (Figure 24). When combined with the 

measured catalytic efficacy of the materials, all of the experimental evidence strongly 

supports the conclusion that the lactic acid mediated synthesis route forms solid solution 

CuxCe1-xO2- nanoparticles. 
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Figure 36: XRD spectra of pure ceria nanoparticles produced with varying lactic acid 

concentrations during synthesis.  Lactic acid was added to a 100mM Ce(NO3)3 solution in 

a 1:1, 2:1, and 4:1 ratio in this sample set. The use of higher concentrations of lactic acid 

was found to lead to smaller mean crystallite sizes.  The mean crystallite sizes measured 

from XRD spectra using the Scherrer equation were 3.7 nm, 3.4 nm and 2.9 nm for the 1:1, 

2:1, and 4:1 lactic acid : cerium nitrate concentrations respectively. 

 

The nominal Cu content chosen during synthesis also has a strong influence on the resulting 

nanocrystal size, evidenced, for example, by the 29% decrease in crystallite size upon 

doping with only 5% Cu into the ceria nanocrystals.  The only significant differences 

during the synthesis of these two materials relative to that of pure CeO2 is (i) the addition 

of 4mM copper nitrate and (ii) a 5% increase in lactic acid concentration to maintain the 

lactic acid : cation ratio. Analysis of mean particle size as a function of lactic acid 

concentration used (Figure 36) demonstrates that the influence of this process parameter is 

negligible. The mean crystallite size however shows a near linear relationship with the 

amount of copper in solid solution (Figure 22) and there are two possible reasons for this 

effect. As shown in Figure 20, rather than leading to precipitation of a cuprous oxide, 
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addition of ammonium hydroxide to a precursor solution containing only copper nitrate 

stimulates the formation of a complex between the Cu(II) and ammonium ion. Such a 

strong ligand-cation interaction may retard particle growth when Cu is included as the 

ammonium covers the surface of the growing particle. Alternatively, this Cu-complex may 

serve to nucleate particle formation, leading to rapid formation of a large number of small 

nuclei. Further work with alternative cationic dopant species, such as Ni, Fe, or Co, is 

required to fully understand the effect of dopant identity upon nanocrystal nucleation and 

growth using our lactic acid mediated synthesis method. 

 

The Cu0.35Ce0.65O2- material is comprised of particles with a mean size of 1.7 nm as 

determined by XRD, which is amongst the smallest ever reported for Cu doped-ceria 

material10,121,122. The ability to form such small crystallites is most likely due to the direct 

formation of the oxide during the low temperature precipitation stage, removing the need 

for a calcination step at an elevated temperature, thus avoiding unnecessary sintering. The 

materials display high surface areas due to their ultra-small crystallite sizes, up to 190 m2/g 

for the Cu0.01Ce0.99O2- sample, Table 2. There is an increase in surface area in the x=0 to 

0.01 copper concentration range due to a decrease in crystallite size from 4.2 to 3.4 nm 

respectively.  The subsequent decrease in surface area at higher values of x may be 

attributed to an increased propensity for sintering of the higher Cu-content nanocrystals 

upon sample pre-treatment as evidenced by the narrowing of the XRD peak widths in 

Figure 31. 
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While our experimental evidence points to the as-synthesized products being Cu-Ce-O 

solid solutions, these materials, particularly with the higher Cu dopant levels, become 

unstable at high temperature. XRD indicates phase separation upon calcination at ~750°C 

for lightly doped Cu0.15Ce0.85O2- formulation, whereas the second phase appeared more 

readily at ~450°C for the higher doped Cu0.35Ce0.65O2- material (Figure 31). This indicates 

why high Cu dopant levels may be difficult to achieve using more traditional synthesis 

routes where an elevated temperature calcination step is required.  

 

The XRD calcination series study also suggests slower ceria crystallite growth in samples 

containing higher copper concentrations, although this may be partly due to exsolution of 

the Cu to form secondary CuOx, leading to a loss of material from the parent CuxCe1-xO2-, 

nanoparticles.  

 

The influence of copper doping level on the catalytic activity of CuxCe1-xO2-, is clearly 

observable for the both water-gas-shift and CO oxidation reactions (Figure 33 and 34). For 

the water gas shift reaction, the overall reaction rate increases with increasing Cu loading 

up to x = 0.29 the Cu0.29Ce0.71O2- sample, but then decreases for the Cu0.35Ce0.65O2- 

composition. However, it should be noted that these materials were calcined at 450oC prior 

to these catalytic tests, which is the temperature at which phase segregation of CuOx occurs 

from Cu0.35Ce0.65O2-, implying that the decrease in reaction rate is associated with this bulk 

phase segregation. This concept is reinforced by analyzing CO oxidation light-off curves 

for the Cu0.29Ce0.71O2- material with intermediate sintering steps of increasing temperature, 

Figure 33b. The CO light-off temperature is stable until a calcination temperature of 650oC 
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is reached, at which point the subsequent light-off temperature then increases. This again 

corresponds to the temperature at which the formation of a distinct CuOx second phase is 

observed in the XRD pattern for Cu0.29Ce0.71O2-. This effect has been noted in a previous 

CO oxidation study using ceria doped with high concentrations of copper133.  It has also 

been shown that under certain conditions, copper has a tendency to segregate to the surface 

of nanoparticles when doped into ceria14.  Higher concentrations of copper on the particle 

surface will most likely lessen the accessibility to ceria, which is essential to provide 

oxygen for the reaction. 

 

3.5 Conclusions 

The facile lactic acid mediated approach for synthesizing Cu-doped ceria nanoparticles 

described here demonstrates the potential of using base precipitation as a synthesis route 

for controllably preparing nanoscale mixed oxide materials. By utilizing an intermediate 

binding strength ligand, intimately mixed Cu1-xCexO2- solid solution crystals can be 

formed directly at room temperature in aqueous solution with high dopant concentrations 

and crystallite sizes as low as 1.7 nm.  The synthesis method outlined uses low cost, easily 

accessible precursors and can be easily be implemented in any chemistry lab or scaled-up 

for industrial production. Our synthesized particles also show competitive catalytic activity 

for the water gas shift and CO oxidation reactions when compared to more conventionally 

prepared counterpart materials that have been described in the literature.  
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4. Investigation of Catalyst Deactivation and the Role of Supported Gallium Oxide 

Nanocrystals in the Ethane Dehydrogenation Reaction. 

 

4.1 Introduction 

 

Dehydrogenation reactions have a significant role in the chemical industry, turning 

relatively low cost inert alkane molecules into more reactive and valuable olefins.  With 

the recent rise in natural gas reserves, low molecular weight alkane feed stocks are more 

readily available. In the dehydrogenation reaction, the equilibrium only begins to shift 

towards olefin formation at high temperatures, at these high temperatures coke readily 

forms on the catalyst. Coke build up is a significant factor in the deactivation of 

dehydrogenation catalysts. Recent studies have investigated the use of oxidative 

dehydrogenation for the formation of olefins134-137.  Oxidative dehydrogenation has 

advantages such as coke burnoff and exothermic reactions limiting the need for external 

heating, however there are many disadvantages such as reduced selectivity, H2 

consumption, and side reactions. 

 

Gallium oxide materials have recently been researched as catalyst materials for 

dehydrogenation reactions for the formation of olefins and hydrogen138-141. As well as 

being an active catalyst, gallium has also been shown to aid in the suppression of coke in 

platinum catalyst systems138,142.  It has been shown that the catalytic properties of gallium 

oxide materials are often strongly linked to the structure and composition of the support 

material138,143-145.  Xu et al has studied the effects of Ga-TiO2 and Ga-Al2O3 on both 

propane dehydrogenation and oxidative dehydrogenation144.  Their work found that Al2O3 

support for Ga leads to higher dehydrogenation reaction rate in the absence of CO2 in 

stream however TiO2 supports lead to higher rates when CO2 is present as a mild oxidant. 
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Because the interaction of Ga with the support is important to the overall properties of the 

catalyst, the maximization of Ga-support interaction is essential.  Incipient wetness 

impregnation of oxide nanoparticles onto oxide support is a great way to maximize oxide-

oxide interactions while limiting unfavorable structure formation because the high surface 

area of the support can be maintained.  It has been shown that, coprecipitation methods 

often lead to large crystals of single oxide phased materials which often do not have the 

same catalytic properties of an oxide-on-oxide material146.  Incipient wetness impregnation 

of a precursor molecule followed by a calcination step can lead to serious reduction of the 

high surface area of the support through high temperature sintering. 

 

The present study investigates dehydrogenation catalysis using gallium oxide nanoparticles 

formed through a ligand assisted sol-gel synthesis, which has previously been shown to 

produce nanocrystalline cerium oxide147.  Due to the low temperature of synthesis, the 

oxide particles produced have small crystallites.  These particles are ideal for maximizing 

contact with a support material in a support promoted catalyst system.  Gallium oxide 

nanoparticles are studied as an active catalyst and as a component in a Pt-Ga-Al2O3 catalyst 

system.  We demonstrate how gallium oxide nanocrystals are active catalysts, reduce 

coking when used with an alumina support, and how gallium oxide nanocrystals have a 

complementary effect when used in conjunction with platinum catalysts. 
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4.2 Experimental Methods 

4.2.1 Particle Synthesis 

As shown in Figure 37 gallium based nanoparticles were synthesized in a modified sol-gel 

procedure, which has previously been shown to produce nanoscale cerium oxide 

particles147.  In a typical preparation, 100mL of aqueous solution of 100mM gallium nitrate 

and 300mM lactic acid is mixed and placed on a stir plate.  To the rapidly stirring solution 

6% ammonium hydroxide is added dropwise until the solution pH reached 8.5.  This pH is 

maintained for a 2 hour period using ammonium hydroxide as needed. After 2 hours the 

particle solution is allowed to stir overnight. 

 

 

Figure 37: Synthesis flow diagram for gallium oxide nanocrystals 

 

The particle solution is then cleaned through 4 dialysis steps using Thermo Snakeskin 

dialysis tubing (3500kDa) against deionized water for at least 3 hours per step.  Dialysis 

results in the aggregation of the particles.  After dialysis, the solution is centrifuged and 
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the pellet is suspended in deionized water. This centrifuge/resuspension process is repeated 

a total of 3 times.  After the final resuspension the solution may be placed in a sonication 

bath to aid in dispersion of the particles. 

 

4.2.2 Materials Characterization 

Dried powder samples were characterized with Powder X-Ray Diffraction (PXRD) using 

a PANalytical Empyrean X-ray diffractometer. Spectra were collected over a 10-90° 2θ 

angular range using Cu Kα radiation. Samples for high angle annular dark field scanning 

electron microscopy (HAADF-STEM) analysis were prepared by drop casting diluted 

particle solutions on nickel mesh TEM grids with a holey carbon layer (Electron 

Microscopy Sciences).  Micrographs were collected using a JEOL ARM 200CF analytical 

microscope equipped with a JEOL Centurio XEDS System operating at 200kV. Interplanar 

spacing and angles were calculated using Fast Fourier Transforms (FFT) derived from 

STEM micrographs.  Using the 2D area of gallium oxide particles measured from STEM 

micrographs, a spherical equivalent particle size distribution was calculated. 

 

4.2.3 Catalytic Testing 

Supported platinum/gallium oxide samples were prepared through incipient wetness 

impregnation of the washed nanoparticle solution onto 35-45um alumina (Infrmat, 

Manchester, CT) and 100-150um titania (Alfa Aesar) supports.  Active catalyst was loaded 

on the support at 1% mass loading, as determined through TGA analysis of the washed 

particle solution.  Catalyst samples were loaded into a 7mm inner diameter quartz tube, 
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and held in place with quartz wool. The supported catalyst materials was treated at 400°C 

in flowing N2 prior to catalytic testing. 

 

Ethane dehydrogenation catalytic testing was completed at 500°C in a gas mixture of 2.5% 

ethane balance N2 with a total flow rate of 50 ml min-1.  Hydrogen, ethane, ethylene, 

methane, and CO2 concentrations were measured using a Model 8610C GC (SRI 

Instruments) equipped with a Thermal Conductivity Detector (TCD) and a Flame 

Ionization Detector (FID).  Gasses were separated using a 6” HayeSep D chromatography 

column. Ethylene conversion (𝑋𝐸𝑡ℎ𝑦𝑙𝑒𝑛𝑒) was determined by Equation 3, where 𝒏 is the 

outlet molar concentration  

 

𝑿𝑬𝒕𝒉𝒚𝒍𝒆𝒏𝒆 =
𝒏𝑬𝒕𝒉𝒚𝒍𝒆𝒏𝒆

(𝒏𝑬𝒕𝒉𝒂𝒏𝒆+𝒏𝑬𝒕𝒉𝒚𝒍𝒆𝒏𝒆+(
𝒏𝑴𝒆𝒕𝒉𝒂𝒏𝒆

𝟐
)
× 𝟏𝟎𝟎   (3) 

 

Coke deposits produced during dehydrogenation catalysis were analyzed using 

Temperature Programed Oxidation (TPO).  Used catalyst (100mg) was loaded into a quartz 

tube reactor and held in place with quartz wool.  Oxygen (5%) and argon (95%) gas was 

flowed at 100mL min-1 as the temperature was ramped at 10°C min-1 to 800°C.  The 

downstream CO2 concentration was monitored using a Cirrus 2 benchtop quadrupole mass 

spectrometer (MKS instruments) at the reactor outlet monitoring for m/z = 32, 40 and 44 

signals which were assigned to O2, Ar and CO2 respectively.  
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4.3 Results 

 

X-ray diffraction (XRD) of the as synthesized materials shows two primary broad 

diffraction peaks with small narrow peaks which correspond to GaOOH impurities (Figure 

38).  The broad peaks are a possible match for nanocrystalline P1 or C2/m structured 

Ga2O3.  Both crystal structures have diffraction peaks clustered around the two broad peaks 

seen in our experimental results.  The broadness of the peaks suggest nanocrystalline 

particles under 4nm. 

 

 
Figure 38: X-ray diffraction pattern of as-synthesized gallium oxide nanoparticles.  Broad 

peaks are indicative of small crystallite sizes.  X-ray diffraction pattern for Ga2O3 in the 

C2/m crystal structure is shown in red (index: mp-886) and the P1 crystal structure shown 

in blue (index: mp-685090).  Primary peaks matching GaOOH impurities (COD entry: 

810-0299) are marked by a star (*). 

 

Figure 39a-c show the HAADF-STEM micrographs and size distribution of the as 

synthesized gallium oxide nanocrystals.  STEM images confirm the presence of sub 4 nm 

crystallites.  Due to the complexity and number of different Ga2O3 crystalline polymorphs, 

lattice spacing and angles derived from the fast Fourier Transform (FFT, inset Figure 39) 
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could not be tied to one particular structure139,148.  Crystallites have a rather narrow size 

distribution of 2.7 ± 0.5 nm measure from surface-equivalent spherical diameter (Figure 

39c). 

 

 
 

Figure 39: (a,b) Representative HAADF-STEM images of as synthesized gallium oxide 

nanoparticles.  Crystalline particles are shown mixed with a matrix of amorphous material.  

The inset FFT in a) is obtained from the area in the yellow box. Crystallite size distributions 

are shown in (c). 

 

 

The effect of the support material on catalysis was investigated in the dehydrogenation of 

ethane to ethylene.  Conversion over time was measured to investigate the deactivation of 

the catalyst.  Figure 40a show the conversion over time for TiO2 supported gallium (5%) 

and Al2O3 supported gallium (5%). The results show that although the TiO2 sample has 

higher conversion initially, after 48 hours the TiO2 supported catalyst deactivates 

significantly and the Al2O3 supported catalyst retains higher conversion.  Temperature 

Programed Oxidation (TPO) was conducted on Al2O3 and TiO2 supported catalyst to 

determine the extent of coking (Figure 40b).  Outlet CO2 concentration was monitored as 

temperature was increases 10°C min-1 in flowing O2 (5%) and Ar (95%) stream.  TiO2 

supported gallium show contained 2.0% m/m coke after 48 hours of reaction, 4 times higher 
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carbon content than gallium supported by Al2O3, at 0.5% m/m coke. TiO2 supported sample 

showed a lower temperature for carbon burnoff.  Figure 41 shows a TPO plot of, bare 

Al2O3, Al2O3 supported gallium oxide bulk particles (Alfa Aesar), and Al2O3 supported 

gallium oxide nanocrystals.  Both bare Al2O3 and Al2O3 supported gallium oxide bulk 

particles show less than 0.1% m/m coke deposits, due to the fact that these materials are 

largely non-catalytic. These materials showed little catalytic activity with conversions of 

0.2% and 0.6% respectively. 

 

 
Figure 40: (a) Conversion over time for 5%Ga/Al2O3 and 5%Ga/TiO2 catalysts.  Initially 

conversion for TiO2 supported gallium is higher however it drops over 48 hours. 

Conversion for Al2O3 supported gallium is steadier particularly after the first 10 hours. (b) 

Temperature Programed Oxidation (TPO) plot showing CO2 evolution with temperature 

of 48 hour aged samples. 
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Figure 41: Temperature Programed Oxidation (TPO) plot showing CO2 evolution from 48 

hour aged (a) Al2O3 supported gallium oxide nanocrystals, (b) Al2O3 supported Alfa Aesar 

gallium oxide particles (-325 mesh particles) and (c) bare Al2O3. 

 

Introducing platinum to the catalyst greatly increases the maximum conversion of ethane 

to ethylene. Conversion over time for 1%Pt-1%Ga(np)/Al2O3 catalyst samples reaches a 

conversion of 26% and maintains a conversion of 11% over a 48 hour period (Figure 42a).  

In contrast 1% platinum on alumina (1%Pt/Al2O3) and 1% platinum and 1% bulk gallium 

oxide on alumina only reach 17% and 19% conversion and they significantly lose catalytic 

activity over a 48 hour period reaching 2% and 3% conversion respectively.  This reduction 

in conversion is due to accumulation of coke. The catalyst sample with only 1% gallium 

oxide nanocrystals on alumina lacks the high initial catalytic activity of platinum 

containing samples however the sample has significantly less coke accumulation, seen in 

Figure 42b.  This sample has a lower maximum conversion of 10% however the conversion 

is more consistent with a final conversion of 6% after 48 hours. A summary of the 

characteristics of the catalyst samples used in this chapter is shown in Table 3. 
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Figure 42: (a) Conversion over time for 1%Pt-1%Ga(np)/Al2O3, 1%Pt-1%Ga(Alfa)/Al2O3, 

1%Pt/Al2O3, and 1%Ga(np)/Al2O3.  Platinum containing sample have the highest 

conversion initially however samples containing no gallium oxide or bulk gallium oxide 

see a significant drop in conversion to less than the conversion of 1%Ga(np)/Al2O3. (b) 

Temperature Programed Oxidation (TPO) plot showing CO2 evolution with temperature 

of 48 hour aged samples. Platinum containing samples show significantly higher carbon 

content than the 1%Ga(np)/Al2O3 sample. 

 

Table 3: Catalytic characteristics of the various platinum and gallium oxide materials 

supported on Al2O3. 

Sample Max Conversion (%) Conversion (48hr) Selectivity (%) Coke Massa 

Al2O3 0.2 0.2 100 0.1% 

1%Ga(Alfa)/Al2O3 0.6 0.6 100 0.1% 

1%Ga(np)/Al2O3 10.2 5.8 98.8 0.4% 

1%Pt/Al2O3 17 2.1 97.2 2.5% 

1%Pt-1%Ga(Alfa)/Al2O3 19.90 3.2 98.0 2.4% 

1%Pt-1%Ga(np)/Al2O3 25.80 11 99.4 1.9% 

a Measured after 48 hours. 

 

4.4 Discussion 

Previous studies of the dehydrogenation of alkanes to olefins over gallium oxide catalyst 

have suggested a strong relationship between support material and catalytic properties.  

Titanium oxide and aluminum oxide have been shown to have promoting effects on the 
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catalytic activity when compared to silicon oxide and magnesium oxide144.  To maximize 

the promoting effect of the gallium-support interactions gallium oxide nanocrystals have 

been produced.  In this work gallium oxide is formed in an ambient temperature synthesis 

method which produces 2.7 nm crystallites. 

 

Our results demonstrate that the synthesis method used by Curran et al. for producing 

cerium oxide can be modified to produce gallium oxide nanocrystals147.  High angle 

annular dark field scanning electron microscopy (Figure 39) shows that this method 

produces crystalline nanocrystals of about 2.7 nm, however micrographs also show 

amorphous gallium material that has been produced.  Uncertainty in lattice spacing and 

angle measurements increases as crystal size decreases due to a reduction in the number of 

lattice planes.  This high level of uncertainty in our 2.7 nm crystals along with the number 

and complexity of the gallium oxide polymorphs, makes crystal structure determination 

difficult, using transmission electron micrographs.  Similarly, powder x-ray diffraction 

shows broad peaks in the expected positions for both P1 and C2/m crystal structured 

gallium oxide, Figure 38.  Because of the broad diffraction peaks and the number of 

polymorphs of gallium oxide, it is difficult to confirm one single crystal structure. 

 

Evidence of support interactions is seen in ethane dehydrogenation experiments on TiO2 

and Al2O3 supports in this work and in the work of others144,149,150.  In our experiments, 

gallium oxide nanoparticles supported on TiO2 show higher initial conversion when 

compared to the Al2O3 sample however the conversion of the TiO2 sample goes from 16% 

at its maximum to 3% after 48 hours, a decrease of 81%.  The alumina supported catalyst 
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has a lower maximum conversion of 12% however it only decreases to 5.5% after 48 hours.  

From TPO plots we can see that the TiO2 sample accumulates significantly more coke 

during the 48 hour period. This coke accumulation is the reason for the severe catalyst 

deactivation.  The TPO oxidation experiment also shows that TiO2 supported gallium burns 

off coke at a lower temperature than Al2O3 supported gallium.  This is a likely explanation 

for the improved conversion seen by Nakagawa et al. when TiO2 supported gallium oxide 

is used with increasing partial pressures of CO2 as a mild oxidant149. 

 

Significant increases in catalytic performance have been seen in dehydrogenation catalyst 

after the addition of platinum142,151,152.  Platinum aids in C-H activation along with H2 

desorption152. Our results show platinum addition increases initial conversion of the 

catalyst, however significant decreases in conversion are seen over a 48 hour period.  In 

1%Pt/Al2O3 and 1%Pt-1%Ga(Alfa)/Al2O3 samples coke build up significantly deactivates 

the catalyst leading to 88 and 85% decreases in conversion respectively.  Bulk gallium 

oxide particles have a slight effect in reducing the deactivation but our gallium oxide 

nanocrystals have a larger impact due to their higher surface area and interaction with the 

support.  The 1%Pt-1%Ga(np)/Al2O3 sample only sees a reduction of 57% after a 48 hour 

period demonstrating and the ability of gallium oxide to prevent deactivation in this 

system. It can be seen that the effect of nanocrystals of gallium oxide and platinum are 

not independent but they are complementary to each other. 

 

Comparing the amount of coke generated during these 48 hour reaction experiments, we 

can see that there is little difference in the amount of coke in the 1%Pt/Al2O3 and 1%Pt-
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1%Ga(Alfa)/Al2O3 samples, likely due to the reduced Ga2O3-Al2O3 interaction.  However, 

we can see clear reduction in coke build up in the 1%Pt-1%Ga(np)/Al2O3 sample even 

when reactivity is higher, likely due to the high level of interaction due to the small crystal 

size of our synthesized nanocrystals. 

 

4.5 Conclusions 

The low temperature ligand mediated synthesis method described can be used to produce 

2.7 nm gallium oxide nanocrystals.  These gallium oxide crystals when used with an Al2O3 

support show activity towards the ethane dehydrogenation reaction and show reduced 

deactivation due to coke when compared to a TiO2 supported catalyst. Reaction with 

platinum and gallium oxide nanocrystals supported on alumina reached 26% and 

maintained 11% conversion after 48 hours (at 500°C and WHSV = 0.5 h-1).  Our results 

show the complementary effect of gallium oxide nanoparticles on alumina when utilized 

in platinum dehydrogenation system. This effect is due to the ability of gallium oxide on 

alumina to limit coke build-up.  These results give insight into the support interactions in 

gallium oxide dehydrogenation catalysts and may lead to new developments in 

dehydrogenation systems.  
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5. Conclusion 

 

The work presented in this dissertation describes biologically inspired methods for the 

production of transition metal oxide materials with catalytic properties.  The natural 

mineralization methods are conducted in benign aqueous solution at low temperatures, this 

gives the materials that are produced many favorable properties.  Low temperature 

synthesis methods allow for the synthesis of crystalline particles that are among the 

smallest ever produced.  This is because particle sintering and growth becomes more 

prevalent as temperatures increase.  Particularly in cerium oxide, particle size effects are 

strongly linked to catalytic performance due to oxygen vacancy increases in small particles 

particularly in the sub 5 nm.   

Chapter 2 of this dissertation demonstrates how silicatein, the silica producing enzyme in 

sea sponges, can be used in the production of cerium oxide, zirconium oxide, and a mixed 

cerium-zirconium oxide.  Ceria catalysts produced with enzymatic synthesis were shown 

to have higher CO oxidation activity, and with zirconium doped ceria enhanced reducibility 

and enhanced thermal stability further increases catalytic activity.  These catalysts were 

shown to have competitive catalytic performance as compared to similar materials 

produced with a more conventional method.  Additionally the ability to produce smaller 

particles allow for the fine tuning of the band gap of the material by quantum confinement 

for optical applications. Above all, our synthesis method has demonstrated that a 

biomineralized material produced in an environmentally friendly, low temperature, 

aqueous solution can be used as a functional catalyst. 
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Chapter 3 of this dissertation discusses another novel method for the synthesis of ceria 

based nanoparticles.  This synthesis method utilizes a ligand assisted base precipitation for 

the formation of sub 4nm pure ceria and coper-ceria solid solutions. Lactic acid binds with 

the metal precursors with an intermediate strength, due to the formation of bidentate bonds, 

allowing for the direct formation of metal oxide. This synthesis method could easily be 

implemented in a small chemistry lab or scaled for industrial production and used only low 

cost, readily available precursors in aqueous solvent. Copper doping can be achieved up to 

35% with particle size averaging 1.7nm. Catalytic performance of our synthesized particles 

in the CO oxidation and WGS reaction is competitive with similar materials described in 

literature. 

Chapter 4 discusses how the low temperature ligand mediated synthesis method described 

can be used to produce 2.7 nm gallium oxide nanocrystals and how these crystals can be 

incorporated into an ethane dehydrogenation catalyst system.  These gallium oxide crystals 

when used with an Al2O3 support show activity towards the ethane dehydrogenation 

reaction and show reduced deactivation due to coke when compared to a TiO2 supported 

catalyst. Reaction with platinum and gallium oxide nanocrystals supported on alumina 

reached 26% and maintained 11% conversion after 48 hours (at 500°C and WHSV = 0.5 

h-1).  Our results show the complementary effect of gallium oxide nanoparticles on alumina 

when utilized in platinum dehydrogenation system. This effect is due to the ability of 

gallium oxide on alumina to limit coke build-up.  The results of this chapter give insight 

into the support interactions in gallium oxide dehydrogenation catalysts and may lead to 

new developments in dehydrogenation systems. 
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