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ABSTRACT 

The objective of this research is to develop a storage technology for thermal energy 

utilizing phase change material (PCM) for high-temperature concentrating solar plant 

(CSP) applications. The project involves:  

 Development of an experimental measurement technique to select and 

characterize EPCM candidates;  

 Design and testing of a thermal energy storage (TES) system with selected 

EPCM capsules to demonstrate the technical feasibility of the technology; 

 Development of a computational model to analyze the dynamic heat transfer 

performance of TES systems, and compare it with experimental data to verify 

and improve the model for further applications.  

From initial explorations of candidate media, the two salts NaNO3 and eutectic MgCl2-

NaCl are selected as storage media with phase change. A specialized calorimeter with 

requisite size and temperature capability is designed and built to obtain enthalpy values of 

the phase change materials (PCMs) at temperatures below and above their melting points. 

The calorimeter tests prove that the salts and the encapsulation methods chosen here can 

store thermal energy effectively while taking advantage of the latent heat of phase change. 

Repeated thermal-cycles show sustained performance of the EPCM, with no discernible 
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diminishment in storage capacity. 

Stainless steel capsules containing the PCMs are fabricated then and installed in a pilot-

scale TES system for performance tests. The test section is first tested using solid copper 

capsules in place of the EPCM capsules. The results of the testing verify that the current 

instrumentation is capable of measuring the energy stored or extracted from the EPCM 

capsules with an error of +/- 5%. The test section is then loaded with EPCM capsules and 

subjected to thermal cycles with phase change in each cycle. The test section with EPCM 

capsules successfully demonstrate its ability to transfer thermal energy to and from a 

transport fluid, achieving energy storage and retrieval in multiple charging and discharging 

cycles.  

Meanwhile a simulation model is developed for the thermal energy storage system and its 

predictions are found to agree with experimental measurements within +/- 8% in stored 

energy. The dynamic performance of charging and discharging rates are also well predicted 

by the simulation model, giving confidence to engineering design capabilities in future 

applications using encapsulated phase change materials for energy storage.  
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1 INTRODUCTION 

1.1 Phase Change Materials  

Phase change material is a name for a substance when it is capable of transformation from 

a phase or a state (i.e., solid, liquid, gas) to another phase (i.e., solid, liquid, gas) at a 

specific temperature and pressure. Phase change is common in nature, and used to describe 

the transitions between solid, liquid and gaseous states as shown in Table 1-1.  

Table 1-1. Phase change between solid, liquid and gaseous states 1. 

 

A phase of a thermodynamic system has uniform physical properties. During a phase 

change, the bonding energy between the particles changes, and as a result, certain 

properties of the materials change. Latent heat is defined as the enthalpy change (usually 

noted as ∆H) of a thermodynamic system when it changes from one phase to another. For 

example, when ice (solid) melts to water (liquid) at 0 °C, 1 atm, the enthalpy change is 334 

kJ per unit mass of the ice 2, which is also known as the heat of fusion. Because of the 
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significant enthalpy changes during the phase transitions, phase change materials are 

commonly used in many technologies in regard to their thermal energy, in which the 

thermal energy is stored and retracted at a targeted temperature by phase change of storage 

media, called as latent energy storage.  

1.1.1 Desired Properties of Phase Change Materials 

Technically speaking, any substance can be used as phase change materials in thermal 

energy storage applications, since it can go through the phase transitions as long as the 

external conditions are satisfied. However, for employment as latent heat storage medium, 

the material must possess certain desirable thermodynamic, kinetic and chemical properties 

for specific applications; moreover, economic consideration and its availability are quite 

important factors when transferring the technology to the markets. The various criteria that 

govern the selection of phase change materials are summarized 3-8 and explored as follows: 

 Thermal properties.  

Desired thermal Properties of the PCM includes: (i) suitable phase change temperature; (ii) 

high latent heat of transition; (iii) suitable thermal conductivity. For a specific application, 

the phase change temperature of PCM should be in the targeted operating temperature 

range for the thermal energy storage system. For example, in the solar power plant 

applications, many researchers have been focusing on the phase change materials with high 

melting temperatures, especially in the range of 300 °C – 900 °C considering the 
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advantages in turbine efficiency in the downstream for power generation 9-13. Besides the 

suitable phase change temperature, the latent heat of fusion is another important factor in 

selecting the phase change materials. Latent heat is the amount of energy that the PCM can 

store or retrieve per unit mass or volume of material during its phase change. Especially 

the value on a volumetric basis, it directly determines the size of containments for the PCM. 

It is desirable for the chosen PCM to possess high latent heat since the higher storage 

capacity of the PCM, the smaller containment is required, which thus could reduce the 

capital cost of storage facilities and mass of the materials. While the storage capacity of 

the PCM determines the total amount of energy storage, the power of energy storage, or 

the rate of energy storage is another essential factor for the TES system considering it 

defines how fast the energy can be charged or discharged. The rate of energy storage is 

determined by the heat transfer performance between the heat transport fluid (HTF) and 

the PCM, and the conduction in the PCM. The former is mostly the convective heat transfer 

which is determined by the properties of the HTF, surface geometries of PCM and 

temperature difference between the HTF and the surface of PCM. The latter one is mostly 

determined by the thermal conductivity coefficient of the PCM and potentially some 

convection within the liquid PCM. The higher thermal conductivity coefficient of the PCM, 

the faster the heat could transfer to overall PCM and reach thermal equilibrium. Since the 

power of the TES will greatly depend on the specific applications with different time basis 

(seasons, hours, or seconds), the PCM should be carefully screened in regards to its thermal 

conduction and heat transfer performance of the overall TES system. 
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 Physical properties.  

Desired physical properties of PCM includes: (i) high density; (ii) small volume change; 

(iii) low vapor pressure. As discussed previously in the section of thermal properties, it is 

favorable to have a high storage capacity of PCM especially on a volumetric basis. Thus 

higher density of the PCM is desirable since in one hand it reduces the mass of the PCM 

required, and in the other hand, it allows a smaller size of the storage container. Both of 

them could reduce the cost of the TES system. When packing the PCM in the storage 

system, or encapsulating the PCM in single capsules 13, the volume change of the PCM has 

drawn a lot of attentions because of the significant thermal expansion during the phase 

transitions 14,15 which could risk the explosion of the capsules or containments. It is 

favorable for the PCM to have a small volume change and low vapor pressure at operating 

temperatures, which could reduce the risk for breaking the containments.  

 Kinetic properties.  

Desired kinetic properties of the PCM include: (i) no supercooling; (ii) sufficient 

crystallization rate. Supercooling, also known as undercooling, is the process of lowering 

the temperature of a liquid or a gas below its freezing point without it becoming a solid. 

When PCM suffers supercooling, there is no expected latent heat because no phase 

transition happens, which will significantly interfere with proper heat extraction from the 

storage system. Supercooling has been a troublesome aspect in PCM development, 

especially for salt hydrates 3,4,7,8 which will be introduced in details later.  
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 Chemical properties.  

Desired chemical properties of the PCM include: (i) long-term chemical stability; (ii) 

compatibility with materials of construction; (iii) no toxicity; (iv) no fire hazard. As 

reported by IRENA in the technology brief of thermal energy storage 16, the typical current 

international values for the economic lifetime is 20 years for the storage in phase change. 

The chemical stability of PCM is essential in terms of the stable chemical composition and 

sustained physical chemical properties for the reliable storage performance of overall TES 

system. PCM, especially for the salt hydrates, it can suffer from degradation of loss of 

water, which will significantly affect its storage capacity and phase change temperature. 

Compatibility with materials of construction is another important issue which needs 

significant attentions when packing the PCM in either a large containment or in single 

capsules. The interaction between the PCM and construction material is due to material 

diffusion or chemical reactions, and eventually changes the chemical and thermal 

properties of PCMs, and affects the overall storage performance of the TES system. 

Another issue which always needs the most considerations is the safety. PCM should be 

non-toxic, non-flammable and non-explosive for safety in applications. 

 Economics.  

The storage of thermal energy, typically from renewable energy sources, is the heat or 

surplus energy product, which can replace heat from fossil fuels, reduce CO2 emissions 

and lower the need for costly peak power and production capacity. The cost of TES system 
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will determine the viability of the technology in markets. The investment required for a 

TES system includes material cost ($/kWhth), manufacturing cost ($/kWhth), the cost of 

the tank and associated control facilities ($/kWhth). It has been reported that the material 

could cost about 42% of the overall investment (~ $26/kWhth) 17. Therefore it is important 

for the PCM to be low-cost and have availability in large quantities.  

1.1.2 Classification of Phase Change Materials  

As discussed in Table 1-1, seven phase transitions exist for a substance changing from one 

phase to another when external conditions are satisfied (i.e., temperature and pressure). In 

the applications of the latent heat, more attention has been paid for the solid-liquid and 

solid-solid transitions 3-5 considering the associated small volume change. Typical phase 

change materials well-known to all of us are ice, paraffin and Glauber Salt 

(Na2SO4·10H2O)4. For a liquid-gas, or a solid-gas phase transition, although the latent heat 

associated with the phase change is on the same magnitude, or even higher than the cases 

in solid-solid and solid-liquid transitions, the practical problems of storing a gaseous phase 

with abrupt volume change and the requirements of pressurized containers rule out their 

potential utility.  

In 1983 Abhat reviewed the phase change materials for low temperature latent heat storage 

in the temperature range 0 °C - 120 °C4 and classified the PCMs by chemical properties as 

shown in Table 1-2, in which the heat storage materials are classified as organic and 
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inorganic substances. Organic and inorganic heat storage materials that have been 

considered include paraffins, fatty acids, inorganic salt hydrates and eutectic compounds. 

This classification has been widely used in many recent publications for phase change 

materials 5,7,18 for a larger temperature ranges, including elevated temperatures to ~ 800 °C. 

The important heat storage material groups are examined in details below.  

Table 1-2. Classification of the phase change materials for thermal energy storage4. 

 

 

  

 Paraffins.  

As we normally understand, paraffins are substances having a waxy consistency at room 

temperature. Chemically speaking, they are a white or colorless soft solid derived from 

petroleum that consists of a mixture of straight-chain hydrocarbon molecules with only a 

small amount of branching 19. Paraffins contain in them one major component, called 
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alkanes, of which the general formula is CnH2n+2. The n-alkane content in paraffin waxes 

usually exceeds 75% and may reach 100% 20 . Pure paraffins contain only alkanes in them, 

such as the paraffin octadecane C18H18. The phase change temperatures of the alkanes 

increase with the increasing number of carbon atoms in them as indicated in Table 1-1. 

Generally, alkanes containing 14 - 40 atoms possess melting points between 6 °C – 80 °C 

as shown in Table 1-3. And the commercial waxes may have a range of 8 – 15 carbon 

atoms 20. 

Table 1-3. Melting point and latent heat for paraffins with different number of carbon 
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atoms. 

 

Paraffins qualify as heat storage media due to their large availability, fairly high latent heat 

( ~ 200 kJ/kg, or ~ 250 kJ/dm3), and solidification without supercooling 4 However, only 

technical grade paraffins may be used as storage media in the thermal energy storage 

applications, which brought an attention to the cost of materials 4,21,22. Physical properties 

for some paraffins  are tabulated in Table 1-4. 
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Table 1-4. Physical properties of some paraffins 

 

 Non-paraffins.  

The non-paraffin organics are the most numerous of phase change materials with highly 

varied properties. Unlike paraffins possessing very similar properties, each of these 

materials will have its own properties as shown in Table 1-5 . Abhat 4,21 and Buddhi et.al. 

23 have conducted extensive surveys of organic materials and indentified a number of 

esters, fatty acids, alcohol’s and glycol’s promising for latent heat storage. The non-

paraffins are further classified as fatty acids and other non-paraffin organics considering 

the fatty acids have fairly high heat of fusion as tabulated in Table 1-6. As for safety these 

non-paraffin organics require more attention because  these materials are flammable and 

should not be exposed to excessive high temperatures, flames or oxidizing agents.  

Fatty acids are organic compounds characterized as CH3(CH2)2nCOOH with latent heat 

values comparable to those of paraffins. They are known to have a sustained melting and 

freezing behavior with no or minor supercooling 4,24-26, therefore they qualify as good phase 
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change materials. Their major drawback is their cost, which is twice higher than that of 

paraffins21.  
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Table 1-5. Melting points and latent heat of non-paraffin substances. 

 

Table 1-6. Melting point and latent heat of fatty acids. 
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 Salt – hydrates.  

Salt hydrates, characterized as M·nH2O, where M is an inorganic compound, are an 

important class of heat storage materials due to their high volumetric storage capacity (~ 

350 kJ/dm3). In fact, their use as PCMs could be dated back to as early as 1947 27. The 

major problems in using salt hydrates as PCMs are incongruent melting and significant 

supercooling. Most of the salts hydrates melt incongruently, that is, they melt to a saturated 

aqueous phase and a solid phase which is generally a lower hydrate of the original salts. 

Due to the density difference, the solid phase settles down and collects at the bottom of the 

container, a phenomenon also called decomposition. Unless additional processing 

conditions are taken, this phenomenon is irreversible. Then during the solidification 

process, the solid phase will  not combine with the saturated solution to form the original 

salt hydrate, and the overall properties of the material changes with the heating and freezing 

cycles. Another important issue with salt hydrates is their poor nucleating properties 

resulting in supercooling of the liquid salt hydrate prior to solidification. Typical 

techniques, which are suggested in the literature to reduce the supercooling, are (1). 

addition of nucleating agent that possesses a similar crystal structure to that of the parent 

substance 28; (2). using a “cold finger” in the PCM 22; (3). promoting heterogeneous 

nucleation through contacting metallic heat exchanger surface21. The effects and influence 

of these techniques should be examined for various melting and freezing characteristics of 

salt hydrates.  
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 Eutectic.  

An eutectic is a minimum-melting composition of two or more components, each of which 

melts and freeze congruently forming a mixture of the component crystals during 

crystallization29. Eutectics of organic or inorganic compounds raise a lot of attention as 

phase change material in thermal energy storage, since they possess a fixed 

melting/solidification point, and acceptable values for the heat of fusion 4,5,30.  

 Metallics.  

In the class of inorganic heat storage materials, it is worthy to mention the metallics group. 

This category includes metals and metal eutectics. They are likely to be heat storage 

candidates because of their high heat of fusion (~ 500 kJ/kg) 7,11,31 in a wide temperature 

range from 28°C up to 950 °C. They also offer a good thermal conductivity for heat 

transfer, and high density which contributes to a large storage capacity on a volume basis. 

However, these metallics have not yet been seriously considered for PCM technology 

because of weight penalties.  

1.2 Storage of Thermal Energy 

Thermal energy storage is a technology that store thermal energy by heating a storage 

medium so that the stored energy can be used at a later time for various heating applications 

and power generation, in which the TES system can help balance energy demand and 
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supply on a daily, weekly and even seasonal basis. It can also reduce peak demand, CO2 

emissions and energy consumption while increasing overall efficiency of the energy 

system. It has been very popular for the conversion and storage of variable renewable 

energy, such as solar energy, in the form of thermal energy, which has greatly increased 

the share of the renewable energy in the energy markets. The TES has became particularly 

important to be integrated in concentrating solar power plants where the solar heat can be 

stored when the solar energy is most available during the daytime, and retrieved to 

continuously produce electricity after the sunset when the sunlight is not available.  

1.2.1 Key Properties of Thermal Energy Storage System 

The storage technology for thermal energy can be classified by its mechanism as 

(i).sensible heat storage by sensible heating or cooling a liquid or solid storage medium 

such as water, sand, molten salts, rocks, etc.; (ii). latent heat storage utilizing the latent heat 

of the phase change material at its transition temperature; (iii). thermo-chemical storage 

using endothermal and exothermal chemical reaction to store and release thermal energy. 

Thermo-chemical energy storage is utilizing the endothermic chemical reaction to store the 

heat while extracting the heat through reversible exothermic process. The common 

advantages of this mechanism is its high storage capacity in a magnitude of ~ 4 GJ/m3 and 

high operation reaction temperature (~ 500 - 2000 °C), which offers relatively low costs 

for energy storage through thermo-chemical conversion paths and considerate efficiency 
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for power generation. The chemical storage materials have been investigated including 

ammonia, metal oxide/metal (SnOx/Sn) and calcium carbonate. The critical issue of 

chemical system is the kinetic behavior of the reactions, and the development of the 

technology is at a very early stage 32.  

Sensible heat storage, associated with temperature increase of the storage medium, is the 

most common approach for thermal energy storage and the only storage technology used 

in commercialized solar electric generating plants up to now. Materials that have been used 

for sensible heat storage include water, rocks, graphite, oil based fluids, and some salts 

with low melting points 32. However, large-scale storage (~ 500 MWth) will require a 

volume in the order of 2×105 m3, too large for cost-competitive containment and heat 

transfer. An improvement over sensible heat storage can be obtained by utilizing latent heat 

of phase change. With a judicious choice of melting temperature, this will achieve a greater 

increase in enthalpy per unit mass of storage material with the same temperature swing.  

For a given application, the thermal energy storage system is designed to accumulate 

energy when production exceeds demand and to make it available at the users’ request. The 

key properties of the thermal energy storage system are described below16.  

 Capacity: the capacity defines the total energy that can be stored in the system, 

which depends on properties of the medium, the size of the system and 

operating conditions. 



   

19 

 Power: the power defines how fast the energy can be stored into the system and 

can be extracted from the system when the energy is needed. 

 Efficiency: the efficiency is the ratio of the energy provided to the user to the 

total energy needed to charge the storage system. It accounts for the efficiency 

of the transformation between the different forms of the energy as well as the 

energy loss during the storage period and charging/discharging period.  

 Storage period: it defines the time period for the energy storage, i.e., hours, 

days, weeks, and months for yearly storage. 

 Charge and discharge time: it defines how much time is needed to charge the 

system for energy storage and how long the energy can be extracted from 

system in discharging process. It is closely related with the thermal properties 

of the storage medium and heat transfer fluid, as well as the operating 

conditions of the TES system. 

 Cost: the cost usually refers to the capacity in $/kWh of the storage system, 

which includes the capital cost, operation and maintenance cost over its 

lifetime.  

 As introduced previously, thermal energy can be stored as sensible heat in heat storage 

media, as latent heat using phase change materials or as thermo-chemical energy associated 

with chemical reactions. The general values of the key properties for each of the storage 
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technology are summarized in Table 1-7. 

Table 1-7. The values of the key properties for the thermal energy storage technology. 

 

1.2.2 Thermal Energy Storage with EPCM 

Renewable energy is of considerable current interest due to increasing demands on the 

world’s supply of fossil fuels, and world-wide attention on global warming associated with 

the increasing amount of CO2 in our atmosphere, as noted by latest declarations from the 

Intergovernmental Panel on Climate Change 33. To date, renewable sources have only been 

minor contributors to the worlds energy supply. In 2011, approximately 13% of the total 

electricity generation in U.S. is derived from renewable energy sources, with solar energy 

accounting for ~1% 34.  

One disadvantage of most renewable sources, including solar energy, is their intermittent 

and variable nature as governed by locations and weather conditions. Even in locations 

with favorable solar incidence, the diurnal cycle provides only about 3,000 hours of 

significant irradiance in a year. Consequently, current solar power plants have average 
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capacity factors of barely 20%, in comparison to capacity factors of 85% for conventional 

coal plants and 90% for advanced nuclear power plants 35. One way to improve the capacity 

factor of solar plants is to integrate a thermal energy storage system in the power plants. 

Such systems enable the storage of energy when the solar incidence is strong, and then 

release that energy for power generation during cloudy or nocturnal periods of low or no 

solar incidence. It has been reported that the use of storage systems can double the capacity 

factor of the solar thermal/electric power plants to ~40% or greater 18. 

Of the CSP storage methods, molten-salt storage is the only storage currently used in 

commercial concentrating solar plants 36, where the energy is stored by sensible heating of 

molten salt and the molten salt is stored and circuits between a cold tank and a hot tank. In 

daytime with excess sunshine, the molten salt is pumped to a heat exchanger to capture the 

energy from a heat transfer fluid, such as oil, and store the energy in the hot tank. Then 

when the energy is needed, the molten salt is pumped from the hot tank to relieve the energy 

to the HTF, and then circuit back to the cold tank. A one-tank TES system with hot fluid 

at the top and cold fluid at the bottom of the tank, is developed by Sandia National 

Laboratories, using quartzite rock and silica sand as the storage medium 9. Such one-tank 

TES system using sensible heating of the storage medium is predicted to reduce the 

investment of the storage system by ~ 32% compared to the two-tank system 36. However, 

large solar plants will need TES components of 500 MWh thermal, or greater, requiring 

large volumes of storage medium, of the order ~ 5 ×105 m3. Latent heat storage, utilizing 

latent heat of phase change to complement sensible heat storage, can achieve significantly 



   

22 

higher storage densities 16, thus reducing the required volume of storage medium and its 

containment vessel. This promises to significant reduction in the capital cost of TES, and 

the total cost of solar electric generating plants.  

A few research and development efforts have pioneered the use of latent heat storage 

technology at temperatures suitable for CSPs. Several reports has been focused on a shell-

and-tube system, with the phase change materials, such as KNO3, placed in a large 

container and a heat transfer fluid flowing in the embedded tubes in the PCM 18,37,38. A 

difficulty of such shell-and-tube system is its slow charging and discharging rates, which 

are due to the low thermal conductivity of most PCMs and the limited heat transfer area of 

the immersed tubes. This is of special concern during the heat extraction (discharging) 

phase when liquid PCM will form a frozen layer on the heat transfer surfaces, hampering 

further energy transfer between PCM and the heat transfer fluid (HTF). 

To address this issue, the approach investigated in the current development is to reduce the 

dimensional scale of the PCM by containing measured amounts of the PCM in individual 

capsules, of which the approach has been proposed in early 1988 by Luz International 39. 

By placing limited amounts of the PCM in individual capsules, one minimizes the 

dimensional scale for conduction within the PCM, and simultaneously increases the total 

contact area of the capsules for convective heat transfer with the HTF. With appropriate 

selection of the capsules’ dimensions, the physical scale for heat transfer can be optimized 

to reduce conduction resistance within the PCM and to enhance external convective heat 
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transfer between the capsules and the HTF. The ideal dimensions for the capsules can be 

optimized for various PCMs and HTFs with different thermal properties. In plant 

applications, this beneficial improvement of heat transfer will be balanced against 

fabrication cost of encapsulation. Initial cost estimates indicated that these types of EPCM 

based TES system can be implemented with a less expensive investment than currently 

used two-tank system for storage of thermal energy 17. 

1.3 Objective of this Research 

The objective of this research is to develop a storage technology for thermal energy using 

encapsulated phase change materials (EPCM) for high temperature applications in 

concentrating solar power plants. Several issues need to be resolved for the proposed use 

of encapsulated PCMs for thermal energy storage:  

 Selection of PCMs for operating temperatures up to 550 °C. 

 Characterization of the encapsulated PCM, and evaluation of its storage 

performance in long-term melting/freezing cycles.  

 Design and test of a pilot-scale thermal energy storage system with EPCMs. 

 Development of a simulation model for the EPCM based TES system. 

The research in this project covers experimental development of encapsulated phase 
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change materials, suitable for high temperature applications in the range of 300 °C – 

550 °C. Calorimetry is utilized to characterize the proposed ECPMs, with attention on 

energy storage capacity and sustained storage performance over multiple thermal cycles 

and after long-term exposure to high temperatures. MgCl2-NaCl eutectic and NaNO3 are 

found to be two candidates for thermal energy storage at high temperatures with phase 

changes at 444 °C 30and 308°C 40 respectively. To demonstrate the storage technology, a 

pilot-scale TES system is actually designed, operated and tested with encapsulated phase 

change materials. To verify that such a system can be successfully engineered, a 

computational model of the test TES system also has been developed and its predictions 

are compared to actual performance measurements. 
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2 CHARACTERIZATIONS OF EPCM BY CALORIMETRY  

2.1 Encapsulated Phase Change Materials  

After consideration of many candidates, two salts are selected for investigation as phase 

change materials: sodium nitrate (NaNO3) and eutectic of magnesium chloride and sodium 

chloride (MgCl2-NaCl, 57% mole fraction for NaCl). These are chosen as PCM candidates 

for CSP applications because of their desirable melting points, 308 °C and 450 °C, 

respectively.  

After experimenting with various encapsulating materials and capsule geometries 41, a 

decision is made to use cylindrical steel shells to encapsulate the PCM. Thermal cycling 

tests have found that carbon steel 1018 and stainless steel 304 withstood thermal cycling 

with the two selected PCMs, without significant deterioration. As anticipated from 

published reports 42-44, no corrosion has been detected in the NaNO3 capsules. Literature 

reports regarding MgCl2-NaCl imply that corrosion of stainless and carbon steels could be 

a problem 45. While no deterioration in performance is observed in the tests described 

below, longer corrosion test for MgCl2-NaCl should be considered. 

From analyses using finite-element models, the cylindrical geometry has been found to 

have both adequate containment strength and good transient heat transfer characteristics 

for anticipated CSP operating conditions 41,46. To obtain reasonable response times for 
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internal heat transfer during thermal charging or discharging, a simulation model has been 

developed for a single cylindrical encapsulated phase change materials as indicated in eqn. 

2-1 and eqn. 2-2 shown below. The temperature in the PCM depends on the radial location 

and time only. With the thermal properties of NaNO3 
40, the time needed to heat up the 

NaNO3 from 250 °C to 350 °C is calculated for a NaNO3 capsule with a 400 °C Therminol 

VP-1 as heat transfer fluid. Sensible heat as well as phase change are considered in this 

case, assuming only radial conduction in the PCM and a convective heat transfer 

coefficient on the outside surface of the EPCM is calculated using Zhukauskas’s 

correlation47.  The heat transfer time has been calculated for the NaNO3 capsules with 

different diameters and the results are shown in Figure 2-1. For a storage time of 8 hrs, it 

has been determined that the characteristic dimension of the capsules should be less than 

20 cm. In the encapsulation procedure, the steel capsules are filled with measured amounts 

of either NaNO3 or MgCl2-NaCl, and sealed by welded end caps. Sufficient void volume, 

typically in range of 25-30 %  48,49, is left in each capsule to accommodate volume change 

of the PCM with phase change. 

𝜌𝑃𝐶𝑀𝐶𝑝,𝑃𝐶𝑀

𝜕𝑇𝑃𝐶𝑀

𝜕𝑡
= 𝑘𝑃𝐶𝑀

1

𝑟𝑃𝐶𝑀

𝜕

𝜕𝑟𝑃𝐶𝑀
(𝑟𝑃𝐶𝑀

𝜕𝑇𝑃𝐶𝑀

𝜕𝑟𝑃𝐶𝑀
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 eqn. 2-1 

(𝑘𝑃𝐶𝑀

𝜕𝑇𝑃𝐶𝑀

𝜕𝑟𝑃𝐶𝑀
)

𝑟𝑝𝑐𝑚=R

= [ℎ𝑠𝐴𝑠(𝑇𝑓 − 𝑇𝑠)]
𝑟𝑝𝑐𝑚=R

 

 eqn. 2-2 
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Figure 2-1. The heat transfer time for the encapsulated NaNO3 with 100 °C temperature 

increase and phase change in various size of the capsules. 

Figure 2-2 shows a cut-away photograph of a capsule, after multiple thermal cycles through 

the melting/freezing sequence. In this photograph, the light colored regions are the PCM, 

dark regions are voids, and grey boundaries are the capsule walls. It is seen that the capsule 

maintains integrity and original geometry after multiple thermal cycles of melting and 

freezing.  
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Figure 2-2. Cut-away photo of EPCM (MgCl2-NaCl eutectic) after thermal cycling. 

For use as storage media, specific enthalpies of EPCM capsules are required over the 

temperature ranges of interest, for both solid and liquid phases. To determine their 

enthalpies, calorimetric measurements with encapsulated bulk PCMs are desired. 

Unfortunately, no commercially available calorimeter is found to be suitable, due to the 

elevated temperature ranges and dimensional scale required in this investigation. A special 

drop calorimeter is developed and built for our purpose. The design described by Southard, 

J.C. 50, and Yamaguchi, K. and Itagaki, K. 51, is revised to use silicon oil as the immersion 

fluid, and the dimensions are optimized for accurate temperature measurements during 

drop experiments. Selection of the silicone oil is especially important since it has to 

accommodate samples at temperatures up to 550 °C, without undesirable bubbling or 

vaporization. The dimensions of the calorimeter are optimized to be small enough for 

sufficient temperature change during the drop experiments (for measurement accuracy), 
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and large enough to avoid large temperature changes during heat loss measurements. 

Details are described below. 

2.2 Calorimeter Design, Operation and Calibration 

The key component of the calorimeter is an insulated vessel containing a measured amount 

of silicone fluid. The silicone oil selected (Dynalene 600) has a high flash point (315 °C), 

fairly good thermal conductivity, and low vapor pressure – thus avoiding bubble nucleation 

and evaporation when contacted by hot samples of EPCM. To handle the sizes of our 

samples, some 4.5kg of the silicone oil is required. This amount of silicon oil and the 

corresponding dimensions of the calorimeter are selected to optimize accuracy of 

temperature measurements. A larger mass of silicone oil will reduce temperature rise of 

the calorimeter during the sample-drop phase, while a smaller mass will increase the effect 

of heat loss to ambient air - either of which will reduce accuracy of the calorimeter 

measurements just as shown in Figure 2-3. In this research, the temperature increase of the 

calorimeter is chosen to be higher than 5 °C considering that the temperature measurement 

errors is ~ 0.1 °C by thermistor. With a desirable small ratio of the heat losses to the total 

energy increase of the calorimeter, the mass of the silicon oil in the calorimeter is chosen 

to be ~ 5 kilograms. The vessel is constructed with thin stainless steel sides and bottom, 

insulated with an externally layer of polymer foam. Thermal isolation of the vessel from 

laboratory environment is further improved by placing the vessel within a concentric, guard 

cylinder, as illustrated in Figure 2-4. A mechanical stirrer is mounted in the vessel to 
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achieve uniform temperature in the silicone fluid. A wire rig is used to suspend the test 

sample of EPCM in the silicone oil during tests. Thermistors are submerged in the silicone 

fluid within the vessel, and between the vessel and external guard cylinders to accurately 

monitor temperatures during the tests. All measurements are recorded by a computerized 

data acquisition system. 

 

Figure 2-3. Optimization of the mass of the silicon oil in the calorimeter. 
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Figure 2-4. Schematic drawing of calorimeter. 

In each experiment, the test sample of encapsulated phase change material is thermally 

charged by heating to a selected high temperature (in range of 250 - 500 °C) in an external 

furnace. To achieve a uniform temperature throughout the sample, it is enclosed in 

insulation material and the entire assembly kept in an isothermal zone of the furnace till 

steady state is obtained. Three thermocouples placed around the circumference of the 

sample to measure its temperatures, and an average reading is taken to represent the 

temperature of sample. Meanwhile, the calorimeter (vessel, stirrer, silicone oil fluid, and 

guard cylinder) will be maintained at the laboratory temperature. When steady states are 

achieved for both the calorimeter and test sample, the sample will be thermally discharged 

by rapid submersion into the fluid in the calorimeter. Temperature of the fluid is recorded 
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as heat transfer occur between the sample and the calorimeter, providing the data needed 

to determine enthalpy change of the sample as it discharges its stored thermal energy into 

the calorimeter. 

 

Figure 2-5. Example of temperature transients in calorimetric experiments. 

Figure 2-5 shows a typical record of the transient energy transfer process between the 

sample and the calorimeter, where 

TS,t = sample temperature  
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TCalo.,t = temperature of the oil-filled calorimeter 

Ta,t = outside air temperature between vessel and guard cylinder  

At time t0, the preheated sample is immersed into the silicone fluid and start to cool, 

transferring its thermal energy to the fluid and calorimeter vessel. As the sample 

temperature (TS,t) decrease, the calorimeter temperature (TCalo.,t) rise, until the two 

temperatures equilibrate at time te. This time-to-equilibration (te) vary significantly with 

thermal diffusivity of the PCM and capsule size. For each capsule sample, the magnitude 

of te is obtained by numerical analysis of the transient heat transfer process within the 

capsule, including effect of phase-change as discussed previously for optimization of the 

capsule sizes for heat transfer in eqn. 2-1 and eqn. 2-2. In the experiments, care is taken to 

obtain data at times greater than te to avoid errors from non-equilibration. At times greater 

than te, the combined temperature of sample and fluid decline slowly – corresponding to 

net energy loss from the calorimeter to its surroundings. Such a record of calorimeter 

temperatures provides the requisite information for an energy balance on the calorimeter. 

It is then possible to determine the thermal energy stored in the sample (QEPCM) at preheat 

temperature TS,0. The following equations represent the energy change for various 

quantities from initial states (at time of sample immersion) to any time t. 

𝑄𝐸𝑃𝐶𝑀 = 𝑄𝐶𝑎𝑙𝑜. − 𝑄𝐿𝑜𝑠𝑠 
 eqn. 2-3 

𝑄𝐶𝑎𝑙𝑜. = 𝑚𝐶𝑎𝑙𝑜.𝐶𝑝,𝐶𝑎𝑙𝑜.(𝑇𝐶𝑎𝑙𝑜.,𝑡 − 𝑇𝐶𝑎𝑙𝑜.,0) 
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 eqn. 2-4 

�̇�𝑛𝑒𝑡 = [ ∑ 𝑚𝐶𝑝

𝑑𝑇

𝑑𝑡
𝐶𝑎𝑙𝑜.+𝐸𝑃𝐶𝑀

]

𝑎𝑓𝑡𝑒𝑟 𝑡𝑒

= 𝑈𝐴(𝑇𝑎,𝑡 − 𝑇𝐶𝑎𝑙𝑜.,𝑡) + �̇�𝑚𝑖𝑥𝑒𝑟 

 eqn. 2-5 

𝑄𝐿𝑜𝑠𝑠 = ∫ �̇�𝑛𝑒𝑡𝑑𝑡
𝑡

𝑡0

= ∫ [𝑈𝐴(𝑇𝑎,𝑡 − 𝑇𝐶𝑎𝑙𝑜.,𝑡) + �̇�𝑚𝑖𝑥𝑒𝑟]𝑑𝑡
𝑡

𝑡0

 

 eqn. 2-6 

𝑄𝑃𝐶𝑀 = 𝑄𝐸𝑃𝐶𝑀 − 𝑄𝐶𝑎𝑝𝑠𝑢𝑙𝑒 

 eqn. 2-7 

𝑄𝐶𝑎𝑝𝑠𝑢𝑙𝑒 = 𝑚𝐶𝑎𝑝𝑠𝑢𝑙𝑒 ∫ 𝐶𝑝,𝐶𝑎𝑝𝑠𝑢𝑙𝑒𝑑𝑇
𝑇𝑆,0

𝑇𝑆,𝑡

 

 eqn. 2-8 

To use eqn. 2-3 to eqn. 2-8, it is necessary to know values for the heat loss to surroundings, 

QLoss, and the effective heat capacity of the calorimeter (including vessel, silicone oil fluid, 

etc.), CpCalo.. 

Calibration for the heat capacity of the calorimeter (including vessel, silicone oil, etc.) is 

accomplished by using standard capsule samples of known properties. Two such samples 

are fabricated using solid stainless steel 304, with different masses and dimensions, as 

listed in Table 2-1. The thermal properties of stainless steel 304 are listed in Table 2-2. 

Since the heat capacity of the calorimeter varied with temperature, integration over the 

applicable temperature range is needed in order to obtain the thermal energy stored in a 

stainless steel sample.  
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Table 2-1. Standard capsule samples 

 

Table 2-2. Thermal properties of stainless steel 30452 

 

By preheating these samples of different masses to various temperatures, it is possible to 

obtain calibration of the heat capacity of the calorimeter over a range of calorimeter 

temperatures. The result is well represented by the following dimensional equation, eqn. 

2-9, in the operational range of 25 - 60 °C. 

𝐶𝑝,𝐶𝑎𝑙𝑜. = 2.05 × 𝑇𝐶𝑎𝑙𝑜. + 1.39 × 103 

 eqn. 2-9 

where CpCalo. is the effective heat capacity of calorimeter (vessel, silicone oil fluid, etc.) in 

J/kg K and TCalo. is its temperature in °C. 

The net heat loss from calorimeter to surroundings (QLoss) has to be determined individually 

for each test, since its value varies with operating temperature, ambient air conditions, and 

power input to stirrer. In a given experiment, the transient temperatures are recorded as 
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illustrated in Figure 2-5. After equilibration of sample temperature and calorimeter 

temperature (after time te), the calorimeter temperature is seen to slowly decrease, 

representing the net energy loss from heat transfer to surroundings and energy input from 

the mixer. The rate of this decline measured from the transient temperature data, provides 

the information needed to determine the two coefficients UA and 𝑄
̇
𝑚𝑖𝑥𝑒𝑟

 in eqn. 2-5. 

Knowing these coefficients, cumulative heat loss from the calorimeter (QLoss) can be 

calculated by integrating 𝑄
̇
𝑛𝑒𝑡

 from initial submersion of the sample to any subsequent 

time t, as indicated by eqn. 2-5. After these calibrations for CpCalo. and QLoss, the same 

procedure is used to obtain experimental measurements of thermal energy storage in the 

EPCM samples (QEPCM) in all tests with actual encapsulated PCMs. If desired, energy 

stored in the PCM material itself (QPCM) can be calculated by subtracting out the 

corresponding enthalpy changes of the capsule container (QCapsule). 

An analysis of measurement uncertainty in this calorimetric procedure, indicates a 

maximum uncertainty (if all uncertainties error in the same direction) of 1.6% in final value 

of stored energy (QEPCM). The actual uncertainty in results reported below are expected to 

be less than this maximum uncertainty, as it is unlikely for all uncertainties to error in same 

direction. 

2.3 Results of Calorimeter Tests 

2.3.1 Verification of Energy Balances 
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Before experimenting with the encapsulated phase change materials, we wish to verify 

validity of the calorimetric measurements and analyses, by testing standard samples for 

which energy storage can be calculated directly from known thermal properties, enabling 

direct verification of energy balance. Four standard samples are utilized, two of solid 

stainless steel and two of encapsulated zinc. The steel samples store only sensible heat 

without phase change, while the zinc samples store both sensible heat and latent heat of 

fusion. The published properties of stainless steel are given above in Table 2-2, and 

properties of zinc are given in Table 2-3. 

Table 2-3. Thermal properties of zinc 52,53 

 

 

The preheat temperatures of these samples are measured by embedded or externally 

mounted thermocouples – thus providing direct measurement of sample temperatures at 

start of submersion into the calorimeter (TS,0) for determination of enthalpy change during 

the drop tests. Figure 2-6 shows a representative record of such a run. This figure provides 

the information of temperatures needed to determine the energy stored in the sample 

capsule from eqn. 2-3 to eqn. 2-8 as experimentally measured in the calorimeter run QEPCM. 
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Figure 2-6. Example of transient temperature from verification test. 

For these validation samples, each experimental value can be compared with an expected 

value directly calculated from the initial and end temperatures and known thermal 

properties. 

𝑄𝐸𝑃𝐶𝑀,𝑒𝑥𝑝 = 𝑚𝑃𝐶𝑀 ∫ (𝐶𝑝,𝐶𝑎𝑝𝑠𝑢𝑙𝑒𝑑𝑇 + 𝐻𝑚)
𝑇𝑆,0

𝑇𝑆,𝑡

+ 𝑚𝐶𝑎𝑝𝑠𝑢𝑙𝑒 ∫ 𝐶𝑝,𝐶𝑎𝑝𝑠𝑢𝑙𝑒𝑑𝑇
𝑇𝑆,0

𝑇𝑆,𝑡

 

 eqn. 2-10 

Results of this comparison can be expressed as percentage discrepancy between 

experimental and expected values of stored energy, expressed as:  
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𝐷𝑖𝑠𝑐𝑟𝑒𝑝𝑒𝑛𝑐𝑦 % =
𝑄𝐸𝑃𝐶𝑀,𝑚𝑒𝑎𝑠. − 𝑄𝐸𝑃𝐶𝑀,𝑒𝑥𝑝.

𝑄𝐸𝑃𝐶𝑀,𝑒𝑥𝑝.
× 100 

 eqn. 2-11 

Results of these verification tests for energy balance, with four different samples, at initial 

temperatures varying from 250 °C to 490 °C, are tabulated in Table 2-4. For both sensible 

heat storage (with steel) and phase change storage (with Zinc), it is seen that energy 

balances are satisfied with less than ±1.5% discrepancy, lending confidence to the 

experimental method and measurements.  

Table 2-4. Verification tests 

 

2.3.2 Thermodynamic Properties of Candidate PCMs 
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For application as storage media, the following properties are needed for the two PCM salts 

(NaNO3 and MgCl2-NaCl eutectic): specific enthalpies over the temperature ranges of 

interest, for both solid and liquid phases, phase-transition temperatures, and latent heats of 

phase change. Only some of these properties are available from literature. Melting point 

for NaNO3 is found from reference to be 308 °C 40. Additionally, this salt is reported to 

have a solid-phase transition around 275 °C 40,49,54. For MgCl2-NaCl eutectic, the melting 

point is reported to be 450 °C45 . Enthalpy values reported in the literature for NaNO3 
40,49,54 

is measured with a very limited amount of material (~ 10 mg), while in this research, the 

enthalpy of bulk PCM is desired. No applicable enthalpy values are found in the literature 

for MgCl2-NaCl eutectic. It is deemed necessary to obtain some additional enthalpy data 

for both PCMs in the temperature ranges of interest. This is accomplished using the 

calorimeter built in this investigation. A capsule with a known mass of PCM will undergo 

measurements in the drop calorimeter at several different preheat temperatures (TS,0), 

selected to be both below and above phase transition temperature. Each calorimetric 

measurement, using eqn. 2-3 to eqn. 2-8 for data analyses, provides an enthalpy value at 

one temperature. A total of seven enthalpy measurements are obtained, four for the NaNO3 

and three for MgCl2 – NaCl eutectic. Results are presented in Figure 2-7 and Figure 2-8, 

showing the data obtained here co-plotted with data deduced from available references. All 

enthalpies are taken relative to a base state at 20 °C temperature and 1 atm. pressure. For 

NaNO3 there is seen to be some differences (of order +/- 5%) between all values indicated. 

For eutectic MgCl2-NaCl, no literature data are found and only the values determined in 

this project are shown. 
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Figure 2-7. Specific enthalpy of NaNO3. 
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Figure 2-8. Specific enthalpy of MgCl2-NaCl eutectic. 

These thermodynamic properties enable calculation of an expected storage capacity for a 

given capsule in any calorimetric experiment assuming complete phase change of the PCM, 

using eqn. 2-12 and eqn. 2-13 written in terms of enthalpies. The actual storage capacities, 

measured in the calorimeter tests, can then be compared to these anticipated values. 

𝑄𝐸𝑃𝐶𝑀,𝑒𝑥𝑝 = 𝑚𝑃𝐶𝑀[ℎ𝑃𝐶𝑀(𝑇𝑆,0) − ℎ𝑃𝐶𝑀(𝑇𝑆,𝑡)] + 𝑚𝐶𝑎𝑝𝑠𝑢𝑙𝑒 ∫ 𝐶𝑝,𝐶𝑎𝑝𝑠𝑢𝑙𝑒𝑑𝑇
𝑇𝑆,0

𝑇𝑆,𝑡

 

 eqn. 2-12 

𝑄𝑃𝐶𝑀,𝑒𝑥𝑝 = 𝑄𝐸𝑃𝐶𝑀,𝑒𝑥𝑝 − 𝑄𝐶𝑎𝑝𝑠𝑢𝑙𝑒 
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 eqn. 2-13 

2.3.3 Performance of Encapsulated PCMs 

Five samples of encapsulated phase change materials are fabricated and characterized in 

calorimeter experiments. Table 2-5 presents details of these samples, listing the phase 

change material, the capsule material, the capsule dimensions, and the mass of PCM in 

each sample. 

Table 2-5. EPCM capsules 

 

These five samples of encapsulated phase change materials are characterized in 

calorimetric experiments as described above. An example of the temperature record 

obtained (for Sample 1 with NaNO3) is shown in Figure 2-9 and Figure 2-10. Figure 2-9 

displays the temperature history for the entire 1.8×104 seconds (~5 hours) of the 

experiment, including the preheat charging period when the sample temperature is raised 

from ambient to  ~340 °C. At time of ~1.05×104 seconds, the hot sample is immersed into 
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the calorimeter fluid, equilibrated in temperature with the calorimeter, and thermally 

discharged. Figure 2-10 shows an expanded trace of the discharging process. These 

measurements of transient temperatures provide the requisite data for calculating energy 

balance for the EPCM capsule as it cools from its charged temperature (340 °C) to the 

discharged temperature (~48 °C), utilizing as described above.  

 

Figure 2-9. Example of temperature history for encapsulated phase change material in 

calorimeter experiment. 

Data of this nature are obtained for all five EPCM samples in some 18 calorimeter 
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experiments under various test conditions. In examination of these results, the first question 

to address is whether or not the phase change material behaves as designed, storing energy 

in a thermal cycle with complete phase change. The data from the calorimeter run are 

analyzed by eqn. 2-3 to eqn. 2-8 to obtain an experimental value for energy stored in the 

EPCM QEPCM, meas.. Knowing thermodynamic properties, the anticipated amount of energy 

stored in a given cycle QEPCM, exp. can be calculated separately, using eqn. 2-12 and eqn. 

2-13. Comparison of the experimental and expected values indicates whether or not the 

PCM performed as anticipated, with complete phase change. Table 6 shows the comparison 

of energy storage, measured versus expected, for the initial tests of the five EPCM samples. 
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Figure 2-10. Expanded trace of temperature transients during discharge period in 

calorimeter experiment. 

Table 2-6. Energy stored in EPCM in initial thermal-cycle. 
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ratio of experimental energy storage to anticipated energy storage is essentially 100% is an 

indication of complete phase change (melting/freezing) of the PCM. 

A second question to address is whether or not the storage capacity will diminish with 

repeated thermal cycles. Such diminishment could imply undesirable changes in the salt 

medium, possibly due to chemical interaction with the capsule walls. To answer this 

question, all five samples of ECPM are subjected to multiple thermal cycles. The results 

for all samples (1-5), involving both NaNO3 and MgCl2-NaCl, are plotted in Figure 2-11, 

showing the level of agreement between expected storage and measured storage as the 

number of cycles accumulated. It is seen that the agreements remained within 2%, for all 

cycles and all samples with no discernible trend of diminishing storage capability. Thus, 

within the test ranges, storage deterioration is not observed.  

A last issue to examine is storage performance of ECPM, after long exposure to high 

temperatures. This is of particular interest for the MgCl2-NaCl eutectic salt, since its 

operating temperature will exceed 400 °C. Samples 2, 3 and 4, all with MgCl2-NaCl but in 

capsules of different dimensions and different steels, are subjected to long exposures at 

elevated temperatures. These capsules are preheated to 470 °C (above the melting point of 

MgCl2-NaCl eutectic), held at that temperature for six hours, and then cooled down to 

300 °C (below the melting point) and held at 300 °C for two hours – comprising one long-

term thermal cycle. Repeating the cycle 50 times, accumulates 300 hours total exposure at 

470 °C. Table 2-7 presents test results of these samples, following the 300 hour high-
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temperature exposure. 

 

Figure 2-11. Storage performance of ECPM samples over multiple thermal cycles. 
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temperature exposure 

 

It is seen that agreement between experimental and expected energy storage remains within 

1%, similar to results from the first, short thermal cycle. Thus, within the test range, there 

is no sign of any significant deterioration in storage performance after 300 hours of 

exposure to high temperatures in 50 thermal cycles. 

2.4 Summary of the Calorimetry Work  

This experimental development and calorimetric investigation indicate that: 

 The two salts, NaNO3 and MgCl2-NaCl eutectic, are promising phase-change 

materials which can be encapsulated for storage of thermal energy at 

temperatures up to range of 250-550 °C, suitable for concentrating solar power 

systems. 

 For a 100 °C temperature swing (charged to discharged), bracketing the salts’ 

melting points, the latent heat of phase change contributes 57% and 75% to the 

storage capacity of the PCM mass, for NaNO3 and MgCl2-NaCl respectively. 
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 It is possible to encapsulate these candidate PCMs in stainless steel or carbon 

steel containers, though possible corrosion of the shell should be further tested 

under longer exposures for the MgCl2-NaCl salt. 

 The encapsulated PCMs show no discernible deterioration in storage capacity 

over multiple thermal cycles. 

 Long-term (multi-days) exposure of the EPCMs to elevated temperatures has 

not caused any discernible diminishment in storage performance. 
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3 A MATHEMATICAL MODEL OF THE EPCM-BASED TES SYSTEM 

A simulation model for the EPCM based TES system is set up as sketched in Figure 3-1. 

For the numerical model, the overall height of the test section is denoted as Z, [m]. The 

total length of the test section is divided into N equal cells, where N equals the number of 

the EPCM capsules, and each cell contained one capsule. For each cell, energy balances 

are calculated for each component of the test section, i.e. HTF, EPCM capsules, T/S 

chamber, insulation and heat losses from the outside surface of the insulation, to investigate 

the transient heat transfer process during thermal charging and discharging cycles. 

Furthermore, the capsule and the PCM inside are radially divided into small meshes in 

order to calculate radial temperature variation as shown in Figure 3-2(b). When the PCM 

inside the capsule reaches melting temperature, it is allowed to melt or solidify by adding 

the latent heat. As a result at any given time the capsule has three different layers: the solid 

shell, liquid PCM and a solid PCM. For simplicity of calculations, it is assumed that the 

solid PCM stays at the center of the capsule and there is no natural convection in the liquid 

PCM layer.  
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Figure 3-1. A simulation model of the EPCM based TES system. (a) front view; (b) side 

view; (c) top view. 

The heat conduction is assumed to be in the radial direction only, that is the temperature of 

the PCM, and the temperature of the shell is the function of time and radial location only 

as described by 

𝜌𝑃𝐶𝑀𝐶𝑝,𝑃𝐶𝑀

𝜕𝑇𝑃𝐶𝑀

𝜕𝑡
= 𝑘𝑃𝐶𝑀

1

𝑟𝑃𝐶𝑀

𝜕

𝜕𝑟𝑃𝐶𝑀
(𝑟𝑃𝐶𝑀

𝜕𝑇𝑃𝐶𝑀

𝜕𝑟𝑃𝐶𝑀
) 

 eqn. 3-1 

𝜌𝑠𝐶𝑝,𝑠

𝜕𝑇𝑠

𝜕𝑡
= 𝑘𝑠

1

𝑟𝑠

𝜕

𝜕𝑟𝑠
(𝑟𝑠

𝜕𝑇𝑠

𝜕𝑟𝑠
) 

 eqn. 3-2 
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While eqn. 3 only accounts for the heat conduction inside the PCM in its single phase, the 

energy balance in the interface between two phases is analyzed when the temperature of 

the PCM reaches its melting point as described by 

𝜌𝑃𝐶𝑀∆𝐻𝑃𝐶𝑀𝐿𝑠 × 𝜋
(𝑆𝑃𝐶𝑀(𝑡))2 − (𝑆𝑃𝐶𝑀(𝑡 − ∆𝑡))2

∆𝑡

= (𝑘𝑃𝐶𝑀𝐴𝑃𝐶𝑀

𝜕𝑇𝑃𝐶𝑀

𝜕𝑟𝑃𝐶𝑀
)

𝑟𝑃𝐶𝑀=𝑆𝑃𝐶𝑀−∆𝑟𝑃𝐶𝑀,𝑠𝑜𝑙𝑖𝑑

− (𝑘𝑃𝐶𝑀𝐴𝑃𝐶𝑀

𝜕𝑇𝑃𝐶𝑀

𝜕𝑟𝑃𝐶𝑀
)

𝑟𝑃𝐶𝑀=𝑆𝑃𝐶𝑀+∆𝑟𝑃𝐶𝑀,𝑙𝑖𝑞𝑢𝑖𝑑

 

 eqn. 3-3 

In this equation, SPCM is the distance of the interface (moving front) from the inside surface 

of the shell, as sketched in Figure 3-2(c). It can be used as an indicator for the progress of 

the phase change – when its value is zero, it means that the PCM is 100% in single phase; 

when its value is equal to the radius of the PCM, it means that the PCM has completed the 

phase change. And the value of the displacement of the melting front can also be used to 

calculate the percentage of the molten fraction, and further decide the contribution of the 

phase change in the overall energy stored into and retrieved from the EPCM. As indicated 

in Figure 3-2, the capsule is considered to be filled with the PCM having uniform density. 

Since the real capsule has a specific void space in the capsule as an allowance for PCM’s 

thermal expansion, the density is adjusted accordingly in this model to ensure a constant 

mass. The density is assumed to be independent of the temperature, therefore during the 

phase change the solid PCM would stay in the center when liquid phase forms on the 

outside as shown in the Figure 3-2 (c).  
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Figure 3-2. The details of the model for an EPCM capsule in a specific elevation. (a). 

temperature of PCM is a function of (r, ɵ, Ɩ, t) for a cylindrical EPCM capsule (front view); 

(b). temperature is dependent on the radial location r and time t in this model; (c). melting 

front inside the PCM during its phase change.  

For the heat transfer fluid flowing across a specific zone of ∆z, part of the total energy from 

the HTF is transferred to the capsule and T/S chamber by convection, while the other part 

is captured by the HTF itself in this section as described by 

𝜌𝑓𝐶𝑝,𝑓

𝜕𝑇𝑓

𝜕𝑡
= 𝐺𝑓𝐶𝑝,𝑓

𝜕𝑇𝑓

𝜕𝑧
− [ℎ𝑠𝐴𝑠(𝑇𝑓 − 𝑇𝑠)]

𝑟𝑠=𝑅𝑠
− [ℎ𝑐𝐴𝑐(𝑇𝑓 − 𝑇𝑐)]

𝑥𝑐=0
 

 eqn. 3-4 

The convective heat transfer coefficient from the HTF to the surface of the capsule is 

calculated using Zhukauskas correlation47 for the circular cylinder in cross flow with the 

assumption that it is independent of the angular coordinate ɵ and length Ɩ. The average 

convective heat transfer coefficient from the HTF to the surface of the T/S chamber, is also 

calculated using Zhukauskas correlation considering that with the current design, the flow 

of HTF at the surface of the T/S chamber is similar to the flow of HTF at the surface of the 

EPCM capsule. It is found that the effects of radiation is negligible, amounting only less 

than 2% of the convective heat transfer power according to calculation for current facility.  
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One-dimensional model is applied for the inside heat conduction for the T/S chamber and 

insulation as shown in Figure 3-3(b). Including a varying surface area for heat conduction 

from the inside surface of the chamber to the outside surface of the insulation the energy 

equations are described by 

(𝜌𝑐𝐶𝑝,𝑐

𝜕𝑇𝑐

𝜕𝑡
)

𝑥𝑐

= (𝑘𝑐𝐴𝑐

𝜕𝑇𝑐

𝜕𝑥𝑐
)

𝑥𝑐−∆𝑥𝑐

− (𝑘𝑐𝐴𝑐

𝜕𝑇𝑐

𝜕𝑥𝑐
)

𝑥𝑐+∆𝑥𝑐

 

 eqn. 3-5 

(𝜌𝑖𝐶𝑝,𝑖

𝜕𝑇𝑖

𝜕𝑡
)

𝑥𝑖

= (𝑘𝑖𝐴𝑖

𝜕𝑇𝑖

𝜕𝑥𝑖
)

𝑥𝑖−∆𝑥𝑖

− (𝑘𝑖𝐴𝑖

𝜕𝑇𝑖

𝜕𝑥𝑖
)

𝑥𝑖+∆𝑥𝑖

 

 eqn. 3-6 

 

Figure 3-3. The details of the model for the insulation and T/S chamber in a given elevation. 

(a). the temperature is a function of (x,y,z,t) for the insulation and T/S chamber; (b). 

temperature of the insulation and T/S chamber are assumed as a function of (x,t). 

At the outside surface of the insulation, natural convection with ambient air is considered 

with a heat transfer coefficient calculated using Churchill and Chu correlation55.  

(𝜌𝑖𝐶𝑝,𝑖

𝜕𝑇𝑖

𝜕𝑡
)

𝑥𝑖=δi

= (𝑘𝑖𝐴𝑖

𝜕𝑇𝑖

𝜕𝑥𝑖
)

𝛿𝑖−∆𝑥𝑖

− [ℎ𝑎𝐴𝑖(𝑇𝑖 − 𝑇𝑎)]𝑥𝑖=δi
 

 eqn. 3-7 
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Finite difference method has been used to discretize eqn. 3-1 - eqn. 3-7. The temperature 

profiles for each of the component – EPCM, HTF, T/S chamber and insulation can be 

obtained to determine the dynamic nature of the TES system. Especially for the EPCM 

capsules, it is of great value to further calculate their energy storage and retrieval during 

the thermal charging and discharging cycles. The results of the simulations will be 

compared against the experimental data.  
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4 EXPERIMENTAL SETUP OF AN EPCM-BASED TES SYSTEM 

In previous  research for identification of qualified encapsulated phase change materials, 

cylindrical stainless steel capsule was found to be compatible with the NaNO3 and MgCl2 

– NaCl eutectic30. These investigators illustrated that the storage capacity has not been 

deteriorated under repeated thermal tests in a specially-made calorimeter. The  present 

work aims to test and demonstrate the thermal energy storage and retrieval of multiple 

EPCM capsules in a realistic TES system. For TES systems with EPCM, most of the 

experimental research has been focused on low temperature applications5,16,55,56, such as 

using encapsulated CaCl2▪6H2O as a construction material for buildings’ thermal 

management. There are very few process demonstrations being developed for high 

temperature applications, and most of the high temperature studies have been limited in the 

level of theoretical and computational studies7,57-60. Therefore, it is essential to develop and 

execute experiments for verification of technical feasibility of the EPCM in test facilities. 

On one hand, it can be a demonstration to evaluate viability of the technology before scale-

up and commercialization. On the other hand, experimental test data, such as stored energy 

and temperature profiles of EPCM, can be obtained and compared with model predictions 

to verify and adjust the mathematical model. 

In the design of the EPCM based TES system, several parameters need to be determined:  

 Configuration of the EPCM based test section (T/S); 
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 Physical dimensions of the test section; 

 Physical dimension, and number of the EPCM capsules  

 Selection of heat transfer fluid; 

 Operating conditions of the heat transfer fluid.  

For determination of those parameters, a mathematical model is developed previously in 

Chapter 3 to analyze the effects of these parameters, and further optimize the test section 

design for desired performance. 

4.1 Design and Operation of the EPCM-based TES System  

For the current test facility, air has been chosen as the heat transport fluid to charge and 

discharge the overall test section, considering its chemical stability and its associated 

simple sub-heating system compared with liquid HTF. In the design of the test section for 

testing of EPCM capsules for process demonstration, there are six important design 

parameters that have been considered and computed in the simulation model for evaluation 

of their effects on the performance of the EPCM in the test section. These parameters are:  

 Flow rate of the air. 

 Temperature of the air at the inlet of the test section. 
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 Diameter of the EPCM capsules. 

 Number of the EPCM capsules.  

 Thickness of the insulation for the test section. 

Each of the parameter has been investigated in this simulation model, for identification of 

its importance on the performance of the EPCM-based test section. There are four main 

criteria for quantification of these parameters:  

 Majority of the energy should be stored into or extracted from the EPCM 

capsules. In other words, the thermal masses of the other components of the test 

section are desired to be minimized. 

 The temperature drop of HTF should be large across the TES system, so that 

the errors for calculation of the total energy from the HTF will be small. In this 

research, experiments are conducted with air with temperature drops across the 

test section  higher than 20 °C. Temperatures of air are measured using  

calibrated K-type thermocouples.  

 All of the encapsulated PCM will be preferred to complete phase change in a 

time period that is applicable for solar power plants. Considering the scale of 

current facility, the desired experiment duration is expected to be about 2 – 6 

hours for a charging/discharging process, and the experiment ends when the 
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temperature drop of the HTF decreases below 20 °C.  

 Easy fabrications for the test facility. 

With considerations of many configurations, one-column inline system is chosen with heat 

transport fluid flowing across horizontally-oriented EPCM capsules. Following these 

design criteria, the mathematical model has been run for a set of the above design 

parameters, including physical dimensions and operating conditions to identify desired test 

conditions of EPCM capsules. The optimization of each of the parameters is described 

below in details. In evaluating the different design parameters, the simulation results are 

shown for the case with encapsulated NaNO3 as an example, which is at 200 °C at its initial 

state. The simulation results are shown below for each of the design parameter. 

 Flow rate of the air.  

In the current facility, the air flow rate is in the range of 0.01 kg/s – 0.05 kg/s, considering 

the requirement of the electric heater which will be detailed later. The simulation have been 

run for the air mass flow rates of 0.01 kg/s, 0.03 kg/s and 0.05 kg/s and the results are 

shown from Figure 4-1 to Figure 4-6.  

Figure 4-1 shows the air temperature at the inlet of the test section in the simulation cases 

for different air mass flow rates. In this simulation, the air temperature is assumed to go 

through a transient process, that is, with a set point in the air heater, the air will go through 
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a short transient process because of the thermal mass of the piping and insulation between 

the test section and the air heater, and then reach to its steady state, just as described below 

in eqn. 4-1 

𝑚𝑓𝐶𝑝,𝑓(𝑇ℎ − 𝑇𝑓,𝑖𝑛) + (𝑚𝐶𝑝

𝑑𝑇

𝑑𝑡
)

(𝑝𝑖𝑝𝑖𝑛𝑔+𝑖𝑛𝑠𝑢𝑙𝑎𝑡𝑖𝑜𝑛)
= 𝑞ℎ𝑒𝑎𝑡𝑒𝑟 

 eqn. 4-1 

Where mf is the mass flow rate of the air, (kg/s). Th is the set point of the heater, (°C). In 

this simulation case, the set point of the heater is 450 °C. qheater is the power the heater at 

that set point, (W). Based on this equation, the temperature of the air can be predicted at 

the inlet of the test section for a given air flow rate. In the Figure 4-1, it is seen that with a 

lager mass flow rate, the air temperature at the inlet of the test section will reach to its set 

point more quickly. For the case of 0.03 kg/s air mass flow rate, the air is heated up quickly 

and reaches to 450 °C in ~ 1.5 hrs.  
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Figure 4-1. The air temperature at the inlet of the T/S with different air mass flow rates. 
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flow rate, the total energy transferred to the EPCM capsules is small, as shown in Figure 

4-3. For the case of the mass flow rate 0.01 kg/s, the total energy stored in the capsules is 

about 10 MJ, and ~ 65% of the total energy from the air is transferred to the EPCM capsules 

as shown Figure 4-4. With a larger air mass flow rate, the total energy stored in the capsule 

increases, and it has been found that with the maximum air flow rate, the EPCM capsules 

can capture up to ~ 80% of the total energy from the air. Therefore, for a larger ratio of the 

energy stored in the EPCM capsules to the total energy released from the air, it is preferable 

to have large mass flow rates.  

 

Figure 4-2. The temperature drop of the air across the test section with different air mass 

flow rates. 
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Figure 4-3. The total energy stored in the EPCM capsules with different air mass flow rates. 
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Figure 4-4. The percentage for the total energy stored in EPCM capsules of the total energy 

from the air in a charging process with different air mass flow rates. 
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expected to complete the phase change in less than ~ 2 hrs. To summarize, a large air mass 

flow rate causes the capsules heat up faster and a higher fraction of PCM to melt.  

Besides considering the effects of the air flow rates on thermal performance of the EPCM 

in the test section, the pressure drop of the air in the test section is also calculated for cross 

flow geometry, based on Ergun equation for calculation of the pressure drop in a packed 

column61, and the results are shown in Figure 4-6 for the air flow rate range in the 0.01 kg/s 

– 0.05 kg/s. It is seen that the pressure drop per unit length of the test section is pretty small, 

about 0.9 kPa/m with the maximum air flow rate.  

Considering all the factors with different mass flow rates, a large air flow rate is chosen for 

the experimental testing and the value is ~ 0.038 kg/s. 
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Figure 4-5. The molten fraction of the overall EPCM capsules in the test section with 

different air mass flow rates. 
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Figure 4-6. The air pressure drop over the test section with different mass flow rates. 

 Air Temperature at the Inlet.  

During the experiments the temperature of air at the inlet can be controlled by manually 

adjusting the set point for the temperature at the outlet of the air heater. An evaluation of 

the effects of the air inlet temperature to the test section is carried out to determine a range 

of inlet temperatures for the experiments. With a 36 kW air heater before the test section, 

the inlet air can be heated up to 650 °C in the current mass flow range. With consideration 

of a safe operation in the experimental testing, simulation cases have been run for the cases 

with 400 °C, 500 °C and 600 °C set points in the heater as shown in Figure 4-7 for the 

temperature of the air at the inlet of the test section. It has been seen that in all of these 

three cases with different set points in heater, the inlet air is capable to reach to its set point, 

the steady state in ~ 1.5 hrs.  
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Figure 4-7. The temperature profiles of the air at the inlet of the test section with different 

set points in the air heater – 400 °C, 500 °C and 600 °C. 
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a high inlet air temperature considering a high temperature drop of the air and a large 

amount of energy storage in the EPCM capsules. However, if we look into the percentage 

of the total captured energy by the capsules, it has been shown that the contribution of the 

EPCM capsules for the energy storage are quite similar in these three cases, at ~ 80% from 

Figure 4-10. This tells that with a larger operating air temperature at the inlet of the test 

section, the overall energy stored in the EPCM capsules in the test section increase, so is 

the energy stored in insulation, in the T/S chamber. Therefore, there are not much 

advantages for operating the system with very high inlet temperature in the point view of 

high contributions from the EPCM capsule in the energy storage.  
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Figure 4-8. The air temperature drop across the test section with different air inlet 

temperatures. 
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Figure 4-9. The total energy stored in the EPCM capsules with different air inlet 

temperatures. 
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Figure 4-10. The percentage for the energy stored in the overall EPCM capsules to the total 

energy captured by the test section with different air inlet temperatures. 
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Figure 4-11. The molten fraction of the overall EPCM capsules in the test section with 

different air inlet temperatures. 
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instead of during transition period of the inlet air the temperature of inlet air is chosen to 

be 440 °C for testing NaNO3 capsules. And for testing MgCl2 - NaCl capsules, the inlet air 

temperature is chosen to be 540 °C following the same evaluation procedure. 

 Diameter of the EPCM Capsule 

One of the highlights of this research is placing limited amounts of the PCM in individual 

capsules to overcome the heat transfer issues associated with the tube-and-tank systems. 

By encapsulating the phase change in small-scale capsules, one minimizes the dimensional 

scale for conduction heat transfer paths within the PCM, and simultaneously increases the 

total contact area of the capsules for convective heat transfer with the HTF. The ideal 

dimensions for the capsules can be optimized to reduce conduction resistance within the 

PCM and to enhance external convective heat transfer between the capsules and the HTF. 

With the properties of the PCMs and HTF used in the current project, the simulation model 

has been run to analyze the effects of the capsule diameter and the results are shown from 

Figure 4-12 to Figure 4-16.  

In this simulation model, the diameters of 5.1 cm, 7.6 cm and 10.1 cm have been discussed 

as the choices for the cylindrical EPCM capsules in the test section. All of the three cases 

(with different diameter sizes for capsules) are considered to be operated under same inlet 

air temperature just as shown in Figure 4-12. The temperature drop of the air is shown in 

Figure 4-13 for the three cases with different diameters for the capsules. It is seen that with 

a larger diameter for the EPCM capsules, the temperature drop of the air is higher 
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considering that the overall mass of the storage medium in the test section is larger in 

capturing the energy from the air. On the point of view of the convective heat transfer from 

the air to the EPCM capsules, the surface areas of the capsules are larger for larger size 

capsules; therefore the temperature drop of the air is larger when the diameter of the capsule 

is large. In other words, in design of the test section, it is preferred to have a large diameter 

for the EPCM capsules. 

 

Figure 4-12. The temperature of the air at the inlet in analyzing the effects of capsules 

diameters on the performance of the test section. 
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Figure 4-13. The air temperature drop of the air across the test section for different 

diameters of the EPCM capsules in the test section. 
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Figure 4-15. In other words, from the point of view of a large contribution of storage 

medium in energy storage, it is preferred to have a large diameter for the EPCM capsules. 

 

Figure 4-14. The total energy storage in the EPCM capsules with different diameters for 

the capsules.  
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Figure 4-15. The ratio of the energy stored in the EPCM capsules to the total energy from 

the air for the test sections with different diameters of EPCM capsules. 
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considering the significant thermal expansion 48,62, which is ~ 25% volume change for the 

NaNO3 for temperature change from room temperature to 440 °C, approximately 30% void 

space is left in the NaNO3 capsule as an allowance for its thermal expansion.  

 

Figure 4-16. The molten fraction of the overall EPCM in the test section with different 

diameters of the capsules. 
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capsules in the test section, in which the EPCMs are subjected to thermal charging and 

discharging by an air flow with varying conditions, such as temperature, along the test 

section. In that case, this project can be a good representative and ready for scale-up for 

further large application. In order to determine the appropriate number for the EPCM 

capsules in current test facility, the simulation model has been run with different numbers 

of the capsules in the test section.  

Figure 4-17 shows the total energy stored in the EPCM capsules when there are different 

numbers of capsules in the test section, i.e. 5 capsules, 10 capsules and 15 capsules. As 

shown in the figure, the total energy captured by the capsules increases with an increasing 

number for the capsules, and obviously it is because of the larger mass of the storage 

medium with more capsules in the test section. At the end of 3.5 hrs, it is seen that the total 

energy stored in the capsules are about proportional to the number of the capsules in the 

test section. For a less number of capsules, like the case with 5 capsules, the energy storage 

of capsules is quickly approaching to its “saturated” point, or steady state within ~ 2.5 hrs, 

then the rate of energy storage slows down because of a decreasing temperature drive from 

the air to the overall capsules. While for the test section with more capsules, it will take a 

longer time for the energy storage of the EPCM capsules to reach to its steady state as 

shown by the cases of 10 capsules and 15 capsules in Figure 4-17.  

Figure 4-18 shows the ratio of the energy stored in the EPCM capsules to the total energy 

from the air with different numbers of the capsules in the test section. It is seen that the 
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effect of the numbers of the capsules is quite small to this ratio. With current design of the 

test section, the energy stored in the EPCM capsules can be ~ 80% for all the three cases.  

 

Figure 4-17. The total energy stored in the EPCM capsules with different numbers of the 

capsules in the test section. 
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Figure 4-18. The ratio of the total energy stored in the EPCM capsules to the total energy 

from the air with different numbers of capsules in the test section. 
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During a charging process of the test section, the hot air flows into the test section at the 

inlet, and the air temperature will drop along the test section since its energy is transferred 

to the EPCM capsules and T/S chamber. Therefore, with more capsules in the test section, 

the air temperature at the outlet will be cooler. As shown in Figure 4-20, the air temperature 

drop across the test section is higher with more capsules in the test section. Therefore, to 

minimize the errors in determining the total energy from the air with these temperature 

difference measurements, it is preferred to have more capsules loaded in the test section. 

Considering the fabrication cost associated with the EPCM capsules, the test section is 

chosen to be loaded with 10 capsules. 
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Figure 4-19. The molten fraction of the overall EPCM capsules in the test section with 

different numbers of capsules. 
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Figure 4-20. The air temperature drop across the test section with different numbers of 

EPCM capsules. 
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appropriate thickness for the insulation for desired performance.  

 Figure 4-21 shows the predicted temperature and heat flux at the outside surface of the 

insulation in the mid-height of the test section with different thicknesses of the insulation. 

It is seen that with a thicker insulation, the temperature at the outside surface of the 

insulation is lower because of the thermal energy captured by the insulation itself and 

thermal resistant for heat transfer, and the heat flux to the environment is smaller because 

of the smaller temperature difference between the ambient and outside surface of the 

insulation. As seen in the figure, when the thickness of the insulation is 5.1 cm (2 inches), 

the outside surface temperature can reach up to ~ 110 °C and the heat losses is ~ 420 W/m2. 

If the insulation thickness increases to 20.3 cm (8 inches), the outside surface temperature 

is barely change compared with its initial state, and the heat flux is about 70 W /m2. It is 

also found that the outside surface temperature and the heat flux decreases slightly at the 

very beginning of the simulation. As described previously, this simulation has been run 

with the initial conditions that the inside surface of the insulation, that is the surface of T/S 

chamber, is at 200 °C, and with the assumption of a linear temperature profile in the 

insulation with the heat losses to the ambient (25°C). This condition dictates an outside 

surface temperature of ~ 40 °C at the start of the test. Then with a hot air charging the test 

section, there is a continuous heat conducted through the insulation from the inside surface 

to the outside surface. Due to the relatively quicker convection loss on the outside surface 

compared to low thermal conduction from the inners of the insulation at this outside surface 

location at the very beginning, the temperature of the surface, and the heat flux at this 



   

88 

location drop down slightly at the very beginning, and with more heat conducted from the 

inside insulation, they start to increase as shown in the figure. 

 

Figure 4-21. The temperature and heat flux at the outside surface of the insulation in the 

midway of the test section with different thicknesses of insulation. 
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increases with increasing thickness of the insulation because of its higher mass and higher 

temperatures, while the total heat losses decrease with increasing insulation thicknesses 

because of smaller temperature differences from the outside surface to the ambient.  

 

Figure 4-22. Energy stored in the insulation and the heat losses at the outside surface of the 

insulation for the test section with different thicknesses of insulation. 
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(8 inches). As a result  the molten fraction of the EPCM is barely affected by the different 

thicknesses of the insulation in the T/S neither. In other words, the effects of the insulation 

thickness can be negligible on the total energy stored in the EPCM capsules, and the 

progress of the phase change of the EPCM in the T/S.  

 

Figure 4-23. The total energy stored in the EPCM capsules in the test section with different 

thicknesses of insulation. 
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Figure 4-24. The molten fraction of the EPCM in the test section with different thicknesses 

of insulation. 
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in the EPCM is barely changed as shown previously in Figure 4-22 and Figure 4-23. 

Therefore, it is preferred to have a thicker insulation considering a higher percentage of the 

energy will be captured by the EPCM capsules. 

 

Figure 4-25. The ratio of the energy stored in the overall EPCM capsules to the total energy 

from the air in the test section with different thicknesses of insulation. 
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Figure 4-26. The air temperature drop across the test section with different thicknesses of 

insulation. 
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and discharging process. The gap between the T/S surface and capsules is 8.3 mm, which 

has been minimized within the fabrication capabilities to provide a good contact area for 

the heat transfer between the HTF and the capsules. In the test section, the ten EPCM 

capsules are separated into two stacks, with five capsules in the top section and the other 

five capsules in the bottom section as numbered #1 to #10. In each stack, the capsule is 

horizontally orientated and sits on the lower one with their special-made square end plates 

as shown in Figure 4-28. To avoid dead zones of the HTF flow, a flow distributor, made 

of a porous metal plate, is installed at the inlet and at the outlet of the test section 

respectively, and locates before the capsule #1 and after capsule #10. Meanwhile as 

sketched in Figure 4-28, four thin deflectors are assembled on each capsule, to guide the 

HTF to flow closer to the outside surfaces of the capsules. In other words, the deflectors 

and flow distributors ensure a uniform HTF flow across the test section and a good surface 

contact for heat transfer. The overall test section is externally insulated with 15 cm thick 

mineral wool insulation to reduce limit energy residue captured by the insulation itself and 

its heat losses to the ambient.  
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Figure 4-27. The test facility with EPCM based TES system for process demonstration. (a). 

schematic of the general test loop (without insulation); (b). a photo of the test section with 

insulation (the front insulation is removed); (c).a photo of the encapsulated NaNO3 

capsules in the test section. 
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Figure 4-28. The design details about the EPCM capsule for performance test in the test 

section. (a). photo of a single EPCM capsule; (b). schematic of the air flow across the 

EPCM capsules with current designs (not at scales). 

In order to charge and discharge the EPCM based test section, the air is selected as the HTF 

considering its chemical stability and simple sub-heating systems compared with liquid 

HTFs (such as synthetic oil and molten salts). In a typical charging or discharging process, 

the air is preheated to a selected temperature by an external electric heater which is shown 

in Figure 4-27(a), and flows from the top of the test section to transfer the heat to or extract 

the energy from the EPCM capsules. With the considerations of the expensive valves and 

the potential difficulties in their operations at high temperatures, the air is chosen to always 

be sent into the test section downwards, i.e., flow from the top of the T/S to the bottom in 

current demonstrations, so that a simulation model for the EPCM based test section can be 

verified first and capable of working further on the cases using different air flow directions. 

In this test facility, the air can be operated in the range of 0.01 kg/s – 0.05 kg/s for its mass 
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flow rate, and up to 600 °C for its temperature. To accommodate an 1- 5 psi pressure drop 

across the flow distributors at the inlet and at the outlet of the test section, the air is slightly 

pressurized with ~ 20 psig pressure before the first EPCM capsule. At the outlet of the test 

section, the air still possess considerable heat and is hot, therefore, a cooler is assembled 

with spraying water inside to cool the air to 40 – 60 °C for safety before exhausting the air 

to the outside.  

In order to demonstrate the energy storage within and retrieval from the EPCM caspules, 

it is necessary to measure the total energy stored in the capsules in the charging process 

and the total energy extracted from the capsules in the discharging process. For the PCM 

salts – NaNO3, and MgCl2 – NaCl eutectic, it is very difficult to determine its total energy 

change directly with temperature sensors, since it is hard to measure and identify the molten 

fraction or solidification fraction inside the capsules. However, the energy storage and 

retrieval of the EPCM capsules can be measured indirectly by subtracting the energy stored 

into the other components – chamber, insulation and heat losses, from the total energy from 

the HTF, as described below in eqn. 4-2. 

𝑄𝐶𝑎𝑝𝑠𝑢𝑙𝑒𝑠(𝑡) = 𝑄𝐻𝑇𝐹(𝑡) − [𝑄𝐶ℎ𝑎𝑚𝑏𝑒𝑟(𝑡) + 𝑄𝐼𝑛𝑠𝑢𝑙𝑎𝑡𝑖𝑜𝑛(𝑡) + 𝑄𝐿𝑜𝑠𝑠𝑒𝑠(𝑡)] 
 eqn. 4-2 

where t indicates the time; QHTF is the total energy exchanged between the TES system and 

the HTF; QChamber is the energy stored in the chamber of the TES system; QInsulation is the 

energy stored in the insulation; and QLosses is the heat losses to the ambient at the outside 

surface of the insulation. And each of the energy term in the right-hand side of the eqn. 4-2 
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can be explored further as below for measurements, 

𝑄𝐻𝑇𝐹(𝑡) = ∫ �̇�𝑓(𝑡)𝐶𝑝,𝑓(𝑇𝑓,𝑖𝑛(𝑡) − 𝑇𝑓,𝑜𝑢𝑡(𝑡))𝑑𝑡
𝑡

𝑡0

 

 eqn. 4-3 

𝑄𝐶ℎ𝑎𝑚𝑏𝑒𝑟(𝑡) = ∑ 𝑚𝑐,𝑗𝐶𝑝,𝑐(𝑇𝑐,𝑡 − 𝑇𝑐,𝑡0
)

j

 

 eqn. 4-4 

𝑄𝐼𝑛𝑠𝑢𝑙𝑎𝑡𝑖𝑜𝑛(𝑡) = ∑ 𝑚𝑖,𝑗𝐶𝑝,𝑖(𝑇𝑖,𝑡 − 𝑇𝑖,𝑡0
)

j

 

 eqn. 4-5 

𝑄𝐿𝑜𝑠𝑠𝑒𝑠(𝑡) = ∑ ∫ �̇�𝑙𝑜𝑠𝑠,𝑗(𝑡) ∙ 𝐴𝑙𝑜𝑠𝑠,𝑗𝑑𝑡
𝑡

𝑡0j

 

 eqn. 4-6 

With known thermal properties of the air, T/S chamber and insulation as tabulated in Table 

4-1 the amount of energy captured by the components – HTF, T/S chamber, insulation and 

heat losses can be determined through measuring the other parameters in the eqn. 4-3 - eqn. 

4-6, and further determine the total energy storage and retrieval of the EPCM capsules by 

using equation eqn. 4-2.  
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Table 4-1. Density and heat capacity of the air, T/S chamber and insulation 52. 

 

For the total energy exchanged between the HTF and the TES system, the mass flow rates 

of the HTF are calculated with the measurements of its volumetric flow rate (m3/s) before 

the heater with temperature and pressure compensations, as shown in Figure 4-27. 

Thermocouples with aspirating subsystem are specially designed to measure the high 

temperature air flow at the inlet and at the outlet of the TES system. This aspirating 

subsystem consists of a stainless steel tube to cover the air thermocouple, and a pump to 

aspirate a specific amount of air out of the TES system. With delicate calculations and 

designs, the aspirating subsystem is effective to minimize the errors in measuring the high 

temperature air due to the radiation loss of thermocouples tips to the chamber surface, and 

it is expected to have the total energy of the HTF measured within +/- 2% errors with error 

analysis. Though about 20% of the energy from the air is lost through the insulation in the 

experiment, T/Cs are located in 9 groups at selected locations and 7 depths of the insulation 

to establish heat transfer through the insulation, and 12 heat flux meters are located in 3 

groups at selected locations to determine the heat losses at the surface of the insulation, 

which are generally sketched and shown in Figure 4-29. It has been found that the energy 

storage and retrieval of the EPCM capsules can be measured within 5% errors with the 
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measurement facilities, of which the details are discussed in the validation tests. 

 

Figure 4-29. Measurement facilities in the TES system for determination of energy storage 

and retrieval of the EPCM capsules.  

4.3 Verifications of the Experimental Methodology 

As described previously, the energy storage and retrieval of the NaNO3 capsules can be 

determined from measured data. The question followed is how reliable are those facilities 

for measuring the energy change of the EPCM capsules using this methodology. To address 

this question, measurements have been conducted using solid copper capsules. The copper 
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capsules are fabricated with the same dimensions and designs as EPCM capsules. There is 

a thermocouple well in the center of the capsule with a depth of the capsule radius for each 

of the copper capsule as shown in Figure 4-30. During the thermal tests, a thermocouple is 

inserted into the end of the well to measure the center temperature of the copper capsule. 

Through simulations, it has been found that the temperature variation is smaller than 0.1 °C 

in every capsule with current operating conditions and capsule sizes. Therefore, the center 

temperature is well representative of the average temperature of the copper for each 

capsule. 

With known thermal properties of copper as tabulated in Table 4-2, the energy stored in 

the copper capsules 
𝑄𝐶𝑜𝑝𝑝𝑒𝑟(𝑡)

 can be determined by using measured temperature as  

𝑄𝐶𝑜𝑝𝑝𝑒𝑟(𝑡) = ∑ 𝑚𝑐𝐶𝑝,𝑐(𝑇𝑐,𝑡 − 𝑇𝑐,𝑡0
) 

 eqn. 4-7 

 

Figure 4-30. The design of copper capsule for verification tests. (a). photo of copper 

capsule with TC well (front view); (b). sketch of the TC well (side view, not at scale). 
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Table 4-2. Heat capacity and thermal conductivity of the copper 52.  

 

The energy stored in the copper capsules can also be determined from the energy balance 

described in eqn. 4-2 - eqn. 4-6. Examining the difference, as defined in eqn. 4-8  in the 

energy storage determined by these two approaches can help validating the experimental 

techniques utilized here.  

The thermal responses for each of the components in the test section have been recorded, 

as shown in Figure 4-31 for the key information in a typical charging process. It is seen 

that the inlet air, with a mass flow rate of 0.038 kg/s, have been well maintained at high 

temperature 440 °C after a short transient process due to the preheating of the piping and 

insulation between the furnace and TES system. The temperature drop of the air across the 

system, that is, the temperature difference between the inlet air and outlet air, decreases 

with the time when the test section is being thermally charged. The #1 copper capsule near 

the inlet has been heated up quickly and its temperature is close to the inlet air temperature 

within one hour. Compared with the #1 copper capsule, the #10 copper capsule located 

near the outlet, is heated up slower since the air flow is cooler on the outside surface of the 

capsule in the lower section. At the end of the testing, the temperatures of the ten copper 

capsules are in the range of ~ 360 °C - 425 °C, and with about 65 °C temperature difference 

between the capsules near the inlet and near the outlet. Besides the temperature history of 
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the copper capsules and air flow, Figure 4-31(c) also shows an example for a group of 

insulation temperature from the outside surface of the T/S chamber to the outside surface 

of the insulation at the midway of the test section. It is seen that the temperatures of the 

insulation increase following the similar trend as the copper capsule’s, with the surface of 

the chamber at ~ 380 °C and the outside surface of the insulation slightly higher than room 

temperature at the end of this charging process. For the heat flux at the outside surface of 

the insulation, it is seen that it increases from ~ + 2 W/m2 to ~ + 12 W/m2 in Figure 4-31 

(d). The positive sign means that the heat losses are from the insulation surface to the 

ambient. 

Discrepancy =
𝑄𝑐𝑜𝑝𝑝𝑒𝑟,𝑒𝑛𝑒𝑟𝑔𝑦𝑏𝑎𝑙𝑎𝑛𝑐𝑒(t) − 𝑄𝑐𝑜𝑝𝑝𝑒𝑟,𝑡𝑒𝑚𝑝.𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡(t)

𝑄𝑐𝑜𝑝𝑝𝑒𝑟,𝑡𝑒𝑚𝑝.𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡(t)
 

 eqn. 4-8 
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Figure 4-31. Key information for a verification test with copper capsules in a typical 

charging process. (a). mass flow rate of HTF – air; (b). temperature history of the copper 

capsules and air; (c). insulation temperatures from chamber surface to outside surface at 

midway of the test section; (d). heat flux on the outside surface of the insulation at the 

midway of the storage system. 

The air mass flow rates, and its temperature drops across the test section are integrated over 

the time to calculate the total energy from the air as indicated in eqn. 4-3. The temperatures 

at the outside surface of chamber are used to calculate the energy captured by the test 

section itself, with the assumption of a linear temperature change along the elevation 

direction. The energy residue in each layer of the insulation has been calculated with the 

assumptions of linear temperature change between the measurements of the two layers and 

along the elevations directions. The heat losses at the outside surface are calculated by 

integrating the heat flux over the experimental time for a certain surface area with the 
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assumption that a uniform heat flux (W/m2) in this area. The total energy from the air, the 

energy stored in the chamber and insulation, and the heat losses are shown in Figure 4-32(a) 

in the charging test with copper capsules. From this figure, it is seen that at the end of the 

experiment, there is ~ 22 MJ energy transferred from the air to the overall test section, of 

which ~ 20% is stored into the chamber and insulation, and a negligible part is the heat 

losses to the ambient.  

The total energy stored in the copper capsules that is calculated with the measurements of 

the copper temperatures is shown by purple squares in Figure 4-32(a) and (b). The stored 

energy that is calculated by the energy balance is denoted by the blue crosses in Figure 

4-32(b). It is seen that the energy measurements of the copper capsules from these two 

methods are in a very good agreement, with a ~ 1% discrepancy at the end of this charging 

test. The verification tests have been carefully conducted by testing the copper capsules in 

multiple thermal cycles. The total energy stored in the charging process, and the total 

energy extracted in the discharging process have been analyzed for the tested copper 

capsules in different temperature ranges as tabulated in Table 4-3. The energy change of 

the copper capsules that is calculated by two methods is listed in Table 4-3. It is seen that 

the difference are within +/-5% in current test ranges, which is leading confidence to the 

experimental method and measurements in determination of the energy storage of the 

capsules in the test section.  
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Figure 4-32. Energy storage of the TES system in a typical thermal charging test. (a). 

energy storage by every component from measurements. (b). energy stored in copper 

capsules calculated in two ways.  

Table 4-3. Measurements of energy storage and retrieval in the verification tests with 
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multiple thermal charging and discharging processes. 

 



   

108 

5 TESTS RESULTS WITH EPCM-BASED TES SYSTEM 

5.1 Test Section with NaNO3 Capsules  

5.1.1 Performance Tests with NaNO3 Capsules  

The thermal energy storage and retrieval of the NaNO3 capsules are analyzed to 

demonstrate the viability of the storage technology for thermal energy using encapsulated 

phase change materials. As described previously, the energy stored in the NaNO3 capsules 

is calculated by the energy balance with all the verified measurement facilities. Meanwhile 

it is also essential to monitor the thermal behavior of the NaNO3 in the charging and 

discharging process, therefore a thermocouple is placed in the last capsule to track the 

temperature of the NaNO3 near the outlet of the test section. As indicated in Figure 5-1, 

this thermocouple measures the temperature of the NaNO3 at the very bottom of the 

capsule, where the temperature indicates the possible lowest temperature of the NaNO3 in 

a charging process, and the higher temperature in a cooling process in the current test 

section. Choosing this measurement point and this length of the TC well is also based on 

the consideration to avoid the break-down of the TC well from the hanging of the solid 

NaNO3 when liquid phase NaNO3 is formed from outside shell of the capsule. 
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Figure 5-1. The thermocouple location in the #10 NaNO3 near the outlet of the T/S (not at 

scale). (a). side view; (b). front view. 

Figure 5-2 shows the temperature history of the air and the NaNO3 near the outlet of the 

T/S in a typical thermal cycle. It is seen that in the charging process, the air is heated by 

the external heater to 440 °C to charge the NaNO3 capsules, while in the discharging 

process, the heater is turned off and the cool air is sent to the test section to extract the 

energy from the capsules. After a short transition, the inlet air temperature approaches 

440 °C in the charging process and about 28 °C in the discharging process. The temperature 

of the air at the outlet shows a similar trend. During the charging test run, the temperature 

increase of the NaNO3 significantly slows down when it is approaching to the melting 

point, 308 °C. After the NaNO3 completely melts, the NaNO3 is superheated quickly in the 

liquid phase with ~ 380 °C at the end of this charging process. In the discharging process, 

the NaNO3 cools down quickly with a sharp turn as its temperature decreases below the 

freezing point. One of the reasons for the appearance of the longer melting process is 

because the cold solid sodium nitrate sinks and touches the thermocouple.  
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Figure 5-2. The temperature history of the NaNO3 near the outlet, and the air at the inlet 

and at the outlet of the TES system in a thermal cycling 

Figure 5-3 sketches this behavior of the solid NaNO3 with the liquid formed from outside 

shell during a charging process. With the current design for the location of TC in the EPCM 

capsule, the TC senses a temperature near the melting point of NaNO3 for a long period, 

until the NaNO3 in its surrounding area is completely melted and becomes liquid. 
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Figure 5-3. The sketch of the behavior of the #10 NaNO3 undergoing the melting process 

in a charging process. (a). solid phase NaNO3 before melting; (b) and (c). two phase NaNO3 

during the phase change; (d) liquid phase NaNO3 in superheating. 

 

Figure 5-4. The energy stored in the ten NaNO3 capsules in a thermal cycling 

Figure 5-4 shows the total energy stored in the 10 NaNO3 capsules in this thermal cycle. 
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All the energy values are referred to initial state of the NaNO3 capsules at t = 0. It is seen 

that the 10 NaNO3 capsules successfully capture the energy from the air during the 

charging process with an accumulated 18.4 MJ stored by the capsules at the end of the 

experiment. Then during the continued discharging process, the total energy stored in the 

capsules decreases since air is extracting the energy from the capsules. At the end of the 

discharging process, there is still approximately 1.8 MJ energy left in the NaNO3 capsules 

since they are slightly warmer than their own initial state, as indicated by the temperature 

of NaNO3 in Figure 5-5. In other words, at the end of the discharging process, the total 

energy retrieved from the capsules is about 16.6 MJ with the NaNO3 capsules changing 

from ~ 400 °C to ~50 °C. Since we do not know temperature distribution within the 

capsules it is hard to what fraction of this energy is coming from the NaNO3 inside the 

capsules. However we can estimate this energy released by the NaNO3 by estimating 

temperatures of the capsule shells. If we assume the temperature of the shell of the #1 and 

#10 capsules are the same as the air at the inlet and at the outlet, respectively, and a linear 

temperature variation from the #1 to #10 capsules shell, the total energy stored into the 

shells of capsules can be estimated. This value is close to the actual value but would be 

slightly overestimated since the shell temperature should be lower than its surrounding air. 

Subtracting this estimated energy stored by the capsule shells, there is about 12.5 MJ 

energy stored in the 16.0 kg sodium nitrate at the end of the charging process, which 

accounts for ~ 75% of the energy stored by the EPCM capsule. The latent heat of the phase 

change contributes about 23% of the total energy stored by the EPCM. The storage capacity 

(kJ/kg) of encapsulated NaNO3 is expected to be even higher with a larger capsule or larger 



   

113 

scale test section without the penalties from current limited test facility. 

Besides the storage capacity of the EPCM capsules, the rate of energy storage and removal 

is another key parameter for evaluation of the storage performance of EPCM capsules. The 

rate of storage is related to: the thermal properties of the storage materials, the heat transfer 

rates from the HTF to the capsules, the properties of the heat transfer fluid, and EPCM 

capsules and capsules’ geometry. In the current experiment, rate of the energy storage and 

removal is obtained by calculating the derivative of the energy stored in the NaNO3 

capsules over the time of thermal testing, which are shown in Figure 5-6. 

 

Figure 5-6. The rates of energy storage and retrieval of the 10 NaNO3 capsules in current 

test facilities in a typical thermal charging and discharging cycle 
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As shown in Figure 5-6, the rate of energy storage increases quickly first and reaches a 

maximum of 6 kW, and then slows down and decreases to ~ 1 kW at the end of the charging 

process. During the discharging process, since the energy is leaving the capsules,  the rate 

of the energy storage is shown with a  negative sign, as depicted in Figure 5-6. It is seen 

that the absolute value of the rate of the energy storage in the cooling process has a similar 

trend with the charging period. It increases quickly to its maximum of ~ 6.2 kW and then 

decreases to ~ 0.5 kW at the end of the discharging process as the temperature of NaNO3 

drops. It is shown that the maximum rate of the energy storage or removal does not occur 

at the very beginning of the process. It happens when the temperature difference between 

the air and the capsules is at maximum, which occurs after the initial transient as the air 

temperature settles. With the current test facility, the average of the energy storage and 

removal rate is about 3 kW, which corresponding to a ~ 50 °C temperature difference 

between the air and capsules and an estimated 60 W/m2·°C for the convective heat transfer 

coefficient-- surface area of the capsules is ~ 1 m2. It is expected that the rate of the energy 

storage and removal would be greater by using liquid HTF with which the convective heat 

transfer coefficient to the EPCM capsules would be significantly larger.  

From the first thermal cycle test, it has been well demonstrated that the NaNO3 capsules 

based test section can successfully store and retrieve thermal energy at temperatures up to 

440 °C, with phase change at its melting point 308 °C. The next question to address is to 

determine the behavior of encapsulated NaNO3 during  multiple thermal cycles. With 

regards to the overall test section, it is necessary to examine the energy storage performance 
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of the NaNO3 capsules over several thermal cycles. It is of great importance to investigate 

the thermal behavior the PCM in thermal cycling, and ensure its compatibility with the 

encapsulation materials in current scale and design. Therefore, in this experiment, the test 

section is tested with continuous charging and discharging processes. Figure 5-7(a) shows 

the temperature history of the encapsulated NaNO3 in three thermal cycles. The test section 

is charged by the hot air at ~ 440 °C, and discharged by the cool air at ~ 25 °C consecutively 

three times.  In order to ensure the thermal behavior of the encapsulated NaNO3, the 

charging process is always ended after the measured temperature for the bottom capsule is 

above the melting point of NaNO3. The discharging processes are ended at different point 

with the NaNO3 cooled down to  different temperatures and re-charged up with various 

initial states. As shown in Figure 5-7(a), the NaNO3 at the #10 capsule is heated up from 

room temperature to ~ 400 °C in the first charging process, and then cooled down to ~ 

50 °C at the end of the first cycle. In the second and third cycles, it is recharged to ~ 400 °C 

high temperature, and cooled down to ~ 100 °C at the end of both second and third cycles. 

It is seen that the measured temperature trace of the NaNO3 follows the same trend in the 

melting and solidification respectively during these three thermal cycles, which indicates 

a sustained thermal behavior of the encapsulated NaNO3 in the current test runs. 

Meanwhile, it is seen that the air temperature at the outlet also follows similar traces 

between the three heating process and three cooling process, which demonstrate the stable 

behavior of the energy storage and retrieval of the overall test section under multiple 

thermal tests in different temperature ranges. With the measurement facilities, the amount 

of the energy stored into and retrieved from the 10 NaNO3 capsules is quantified and 
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plotted in Figure 5-7(b) for each of the thermal tests. It is seen that the encapsulated NaNO3 

capsules can continuously store and release the thermal energy during the thermal cycling. 

Take heating #2 and cooling #2 as an example, the NaNO3 capsules capture about 17.5 MJ 

thermal energy from the air with their temperature raised from ~ 50 °C to ~ 440 °C, and 

reliese about 16 MJ thermal energy when the capsules are cooled from ~ 440 °C to ~ 

100 °C. The differences between the amounts of the energy stored and retrieved are due to 

the ranges of operating temperatures and progress of the phase change in the 10 NaNO3 

capsules. Another comparison can be made between cooling #2 and heating #3, where 

beginning and end points of tests have similar ranges for NaNO3 temperature. The energy 

stored into the capsules is again slightly higher than the energy extracted from the capsules, 

which might potentially be due to different temperature distributions in each capsule with 

the progress of the continuous thermal cycles. In that case, the average temperature in each 

capsule at the end of the heating #3 would be higher than the one at the end of the heating 

#2 (the beginning of the cooling #3).  
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Figure 5-7. Test of the NaNO3 capsules in three continuous thermal charging and 

discharging processes. (a). temperature history of the #10 NaNO3 and air; (b) energy 

storage and retrieval of the encapsulated nitrate capsules. 

The test section with 10 encapsulated NaNO3 has been tested four times in 45 days with ~ 

10 hours thermal cycles every time just as shown in Figure 5-7 . After the 45 days, a 
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subject to occasional thermal test with ~ 40 hours in thermal charging and discharging. In 
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Figure 5-8, it has been found that the temperature trace and the energy storage performance 

of the NaNO3 capsules are consistent with the ones in first charging test. And for the energy 

stored in the 10 NaNO3 capsules, the discrepancy between the two tests is ~ 2.5% within 

the accuracy of the measurements in current test facility. It can be concluded that the 

encapsulated NaNO3 capsules have sustained storage performance without the 

deterioration in their storage performance in current test range. 

 

Figure 5-8. Storage performance of the NaNO3 capsules with the same operating conditions 

as the first charging process after 45 days. (a) temperature profiles of the NaNO3 and inlet 

air; (b) energy stored in the 10 NaNO3 capsules. 
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Simulations have been conducted for charging and discharging processes with NaNO3 

capsules. This is aimed to compare the experimental data with the simulation results, to 

investigate the capability of the model, and to improve performance of the model if 

necessary for more accurate predictions. The mathematical model is also used to 

investigate the dynamics of the encapsulated NaNO3 in the T/S during thermal cycles. 

The model uses the measured mass flow rates of the air, and the temperature of the air at 

the inlet as inputs. The thermal properties of every component of the test section are listed 

in Table 5-1. The temperature profiles of the NaNO3 and insulation at various locations 

and the air temperature at the outlet are predicted.  

Table 5-1. Thermal properties of each component of the test section in the simulation model 
30,52,64,65.  

 

Figure 5-9 shows the predicted and measured air temperatures and the temperatures of 

NaNO3 in a typical thermal cycle. For the temperature of NaNO3 at the specific 

measurement point (the bottom capsule), there is a very good agreement between the 
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experimental data and simulation results before the melting point of the NaNO3 in the 

charging process, but a considerable difference is shown as the temperature is approaching 

the melting point. This difference is reasonable considering that in the experiment, 

thermocouple contacts with the colder solid NaNO3 which is sinking to the TC location as 

PCM melts. The model makes the unrealistic but computationally efficient and practical 

assumption that the solid NaNO3 stays in the center without sinking. Therefore, the 

simulation shows higher values than the experimental measurements when the melting 

process starts.  
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Figure 5-9. Comparison of the simulation results with the experimental data for the 

measured NaNO3 temperature and air temperature in a typical charging and discharging 

process. 
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is sensed in the experiment. At the end of the charging process t = t2, the measured 

temperature for the NaNO3 agrees with the predicted temperature at the inside surface of 

the capsule. This implies that a well-mixed NaNO3 bulk is present during the melting 

process due to the natural convection.  

 

Figure 5-10. The temperature profiles of NaNO3 in various radial locations in # 10 capsule 

in the T/S. 
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words, the temperature drop of the air across the T/S is slightly underestimated during this 

time. This may be due to the assumption of no natural convection in the liquid phase of the 

NaNO3. For the discharging process with the solid NaNO3 solidified from the surface of 

the capsule, it is seen that the outlet air temperature and the measured NaNO3 temperature 

have been both well predicted by the model. 

In order to investigate the heat conduction in the encapsulated NaNO3, the temperature 

distribution of the NaNO3 in the capsule is plotted along the radial direction and shown in 

Figure 5-11 for the #1 NaNO3 capsule near the T/S inlet, and #10 NaNO3 capsule near the 

T/S outlet with the progress of time during the thermal cycle. Figure 5-11 (a) and (c) are 

shown for this temperature information of the NaNO3 during the charging process, while 

Figure 5-11  (b) and (d) are for the ones during discharging process.  In the two figures 

Figure 5-11 (a) and (c), it is seen that the NaNO3 in the test section has been charged from 

room temperature to high temperature up to 430 °C with thermal resistances from the 

conduction and the “heat sink” due to phase change at the melting point of the NaNO3. 

Here we take the cases at time t1 = 0.4 hr for example to explain the low thermal conduction 

in the NaNO3. As it is seen in Figure 5-11, the NaNO3 at the inside surface of #1 capsule 

has already reached to the melting point 308 °C at this time, while the NaNO3 at its center 

is still cold with an about 100 °C temperature. At this time, the inside surface of the #10 

NaNO3 capsule is about 200 °C with  further cooler center which just warmed up to ~ 

50 °C. Following the progress of radial temperature distribution with time for both of the 

capsules, it is clear that the melting process is the major resistance for heat transfer to the 
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central solid core. In other words, the solid core at the center of the capsule warms uo to 

temperatures close to the melting point and almost all of the heat penetrating from the 

outside surface is used to mely the NaNO3 at the interface. At the end of the charging 

process, there are ~ 30 °C temperature variations in the #1 NaNO3 capsule, and ~ 80 °C 

temperature variations in the #10 NaNO3 capsule along the radial direction. For the 

temperature distribution during the discharging process, an interesting phenomena has 

been observed from the simulation from time tc to time t3 in both of the capsules, the 

temperature of NaNO3 close to the outside surface of the capsule decreases because of the 

heat has been extracted by the outside cool air. But at inner locations toward to the 

centerline of the capsule, temperature keeps rising even there is cooling at the surface. This 

is because at initial stages of the discharge process the maximum temperature is still not at 

the centerline but at a radius which keeps getting smaller as the heat extraction from the 

capsule continues.   
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Figure 5-11. The temperature distribution in the NaNO3 in the radial direction at various 

times in a thermal cycle. (a). charging #1 NaNO3 capsule; (b). discharging #1 NaNO3 

capsule; (c). charging #10 NaNO3 capsule. (d). discharging #10 NaNO3 capsule. 
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capsule, it starts to melt about ~ 0.5 hours later than the #1 capsule, and at the end of the 

charging process t = 1.8 hrs, it is partially melted with the melting front at r = 0.4 RPCM, 

with a solid core at the center and liquid on the outside. Once the discharging process starts 

at t=1.8 hrs, solidification starts at the inner surface of the capsule. For the top capsule the 

solidification continues to grow from the inner surface toward the centerline and 

solidification is completed at t=2.6 hrs. For the bottom capsule however, since 

solidification starts from the inner surface of the capsule there are two meting fronts one 

developing from the inner surface of the radius and one at inners of the capsule, which still 

continues to shrink (melt) during initial stages of the cooling process. The green dash line 

shows the second melting front in this bottom  capsule which is actually continuation of 

the melting front formed during the previous charging process. As seen in this figure, there 

is still some energy conducted towards to the center to melt down more NaNO3 with the 

melting front moving towards to the center, which has been discussed  in Figure 5-11 (d). 

At the time ~ 2.7 hours, these two melting front meet each other, and the liquid phase is 

completely solidified in this capsule at that time. With current operating conditions, i.e., ~ 

440 °C hot air for charging process and ~ 25 °C cool air for discharging process, the overall 

solidification process is quicker in the discharging process as shown in this Figure 5-12 

because of an overall higher temperature difference between the NaNO3’s melting point 

and the air temperature.  
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Figure 5-12. Displacement of the melting front in the #1 NaNO3 capsule and # 10 NaNO3 

capsule.  

The simulation model provides detailed information both in regard to radial variation and 

in time. The information of the temperature of NaNO3 as shown in Figure 5-11, and the 

location of the melting front as shown in Figure 5-12, can be used to calculate the energy 

stored in each of the NaNO3 capsule at any time during the thermal cycle with its phase 
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it’s theoretical value, Qs
*, with the temperature of the capsule equal to the inlet air 

temperature of 440 °C, which could happen if the experiment is run for an infinitely long 

time. It is obvious that the capsule close to the top section stores and releases the energy 

more quickly compared with the capsule at the bottom section—this is true for both 

charging and discharging periods because in the current test facility both the hot and cool 

air are both sent in from the top of the T/S. During the charging process, the variation of 

the stored energy between capsules is large at the beginning along the test section since the 

top section has larger temperature driving force. However as the time progresses, the 

capsules at the upper levels heat up and the driving force becomes smaller, when the lower 

capsules gain higher rates of energy compared to the ones at the top. During the discharge 

period, at the beginning  the energy stored in #1 capsule drops significantly by 0.4 MJ in ~ 

0.1 hrs from time t = 1.8 hrs to time t = 1.9 hrs, while the energy stored in #10 capsule 

barely changes because its surrounding air is warmer after extracting the heat from the 

capsules in its upper section. At the end of the discharging process t = 3.5 hrs, there are 

still some energy residue in each of the NaNO3 capsule.  
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Figure 5-13. Energy stored in the single NaNO3 capsule at various elevations of the T/S. 

(a) charging process;(b) discharging process. 
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has been reported that for a single encapsulated NaNO3 capsule heating up by the 400 °C 

air, the time for the phase change would be shortened by ~ 10 % if the gravity and natural 

convection is considered 66. But our case is more complicated with multiple EPCM 

capsules with the air flowing at different temperatures along the T/S. A potential extension 

of the simulation model to include the effects of gravity and the natural convection on the 

performance of the EPCMs is strongly suggested. 

 

Figure 5-14. The comparison of the energy stored in the overall 10NaNO3 capsules in a 

thermal cycle between the simulation model and experimental measurements. 
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NaNO3 tests, it is found that the energy storage can be predicted with ~ 7% discrepancy as 

shown in Figure 5-14. One of the reason for the difference is due to the natural convection 

in the liquid NaNO3 and movement (sinking) of the solid NaNO3 during the melting 

process. In order to be better predict the stored energy in the EPCM capsules, one of the 

parameters in the simulation model - the thermal conductivity of the NaNO3 is adjusted 

absolutely when the NaNO3 is in liquid phase. And the thermal conductivity of the NaNO3 

PCM is chosen to be a larger value considering that the effects of the natural convection 

and movements of the solid PCM would enhance the heat transfer during its melting 

process in the liquid phase. Figure 5-15 shows the comparison of the experimental data 

with the predicted results with the adjusted model for the total energy stored in the NaNO3 

capsules in a thermal cycle. The thermal conductivity of the liquid NaNO3 has been 

increased to 3 W/m.K during the melting process, while in the original simulation model, 

the thermal conductivity of the liquid NaNO3 is 0.68 W/m.K as shown in Table 5-1. It has 

been found that with the adjusted thermal conductivity of the liquid NaNO3, the total 

energy stored in the encapsulated PCM has been better predicted, with a less than 2% 

difference compared with the experimental data. 
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Figure 5-15. Adjustment of the simulation model based on the experimental data of NaNO3 

tests. 
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transfer fluids., It has been reported that the annular solar-to-electricity efficiency can 

increase to 20% from 16% when the operating temperature of the solar field increase from 

550 °C to 650 °C 18. Therefore in this research, MgCl2 – NaCl eutectic is chosen as a storage 

medium with a higher melting temperature at 444 °C, and encapsulated in individual 

capsules. Earlier research in the calorimetry tests has found that MgCl2 - NaCl eutectic is a 

promising storage medium that can be operated in high temperature range 250 °C – 550 °C, 

and the storage performance of the encapsulated eutectic is shown to be sustained after 

long-term high temperature exposure. Followed the calorimetry tests for the MgCl2 – NaCl 

eutectic, the eutectic is encapsulated and stainless steel capsules are fabricated as shown in 

Figure 4-28. Ten MgCl2 – NaCl eutectic capsules are loaded in the test section for 

performance test to demonstrate the energy storage and retrieval of the EPCM with phase 

change at high temperature 444 °C, and the details are described below. 

Figure 5-16 shows the temperature history of the air at the inlet and at the outlet of the T/S, 

as well as the temperature trace of the #1 MgCl2 – NaCl eutectic near the inlet of T/S and 

#10 MgCl2 – NaCl eutectic near the outlet of the T/S in a typical thermal cycle. It is seen 

that during the heating process, the air is quickly heated by the external heater to 540 °C to 

charge the eutectic capsules, while during the discharging process, the heater is turned off 

and the cool air is sent to the test section to extract the energy from the capsules. After a 

short transition, the inlet air temperature approaches 540 °C in the charging process and 

about 25 °C in the discharging process. The temperature of the air at the outlet shows a 

similar trend. During the charging test run, the temperature increases of the MgCl2 – NaCl 
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eutectics both near the inlet and near the outlet of the test section have a similar trend – the 

temperature of the capsules increase fast while the PCM is in solid phase. Temperature 

increase significantly slows down when the PCM is approaching to the melting point, 

444 °C; after the eutectic completely melts, the eutectic is superheated quickly in the liquid 

phase to ~ 500 °C at the end of this charging process. And during the discharging process, 

the eutectic cools down quickly with a sharp turn as its temperature decreases below the 

freezing point. One of the reasons for the appearance of the longer melting process is 

because the cold solid PCM sinks and touches the thermocouple as discussed previously in 

Figure 5-3. 

 

Figure 5-16. Temperature history of the air and eutectic in a typical thermal cycle. 
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Figure 5-17 shows the total energy stored in 10 MgCl2-NaCl capsules in a thermal cycle. 

All the energy values are referred to the initial state of the MgCl2-NaCl capsules at t=0. It 

is seen that the 10 MgCl2-NaCl capsules successfully capture the energy from the air during 

the charging process with an accumulated 18.9 MJ energy stored by the capsules at the end 

of the experiment. Then in the continued discharging process, the stored energy in the 

capsules decreases, which indicates the air is effectively extracting the energy from the 

capsules. At the end of the discharging process, there is still approximately 1.7 MJ residual 

energy in the MgCl2-NaCl capsules since they are slightly warmer than their own initial 

state, as shown by the temperature of the MgCl2-NaCl eutectic mixture in Figure 5-16. In 

other words, at the end of the discharging process, the total energy retrieved from the 

capsules is about 17.2 MJ with the MgCl2-NaCl eutectic capsules changing from ~ 510 °C 

– ~ 30 °C. If we assume the temperature of the shell of the #1 and #10 capsules are the 

same with the air at the inlet and at the outlet of the test section respectively, a linear 

temperature change from the #1 to #10 shells of the capsules, and a uniform temperature 

distribution in every capsule, the total energy stored into the capsules themselves can be 

estimated, and this value should be close to the real but would be somewhat overestimated 

since the shell temperature should be lower than its surrounding air. Subtracting this 

estimated energy stored by the capsule shells, there is about 13.6 MJ energy stored in the 

14.2 kg MgCl2-NaCl eutectic mixture at the end of the charging process, which accounts 

for 79% of the energy stored by the EPCM capsules. If we assume that the PCM is 

completely melted based on the temperature profile of the #10 eutectic salts in Figure 5-16, 

the latent heat of the phase change contributes about 27% of the total energy stored by the 
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encapsulated MgCl2-NaCl eutectic salts. The storage capacity (kJ/kg) of encapsulated 

MgCl2-NaCl eutectic salts is expected to be higher for a larger size capsule and larger scale 

storage units without the penalties from current limited test facility. 

 

Figure 5-17. The energy stored in the ten MgCl2-NaCl capsules in a typical charging and 

discharging process. 
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and removal is obtained by calculating the derivative of the energy stored in the MgCl2 - 

NaCl capsules over the time of thermal testing, which are shown in Figure 5-17.  

As shown in Figure 5-17., the rate of the energy storage increases quickly first and reaches 

to a maximum of 6.2 kW, and then slows down and decreases to ~ 0.3 kW at the end of the 

charging process. In the discharging process, since the energy left in the capsules decreases, 

the rate of the energy storage for the capsules is negative, as depicted in Figure 5-17. It is 

seen that the absolute value of the rate of the energy storage in the cooling process has a 

similar trend. It increases quickly to its maximum of ~ 8.0 kW and then decreases to zero 

at the end of the discharging process as the temperature of eutectic drops. It is shown that 

the maximum of the rate of the energy storage or removal does not occur at the very 

beginning of the process. The maximum temperature difference between the air and the 

capsules occurs after the transient as the air temperature settles. With the current test 

facility, the average of the energy storage and removal is about 3 kW, which corresponding 

to a ~ 50 °C temperature difference between the air and capsules with the capsules surface 

area ~ 1 m2 and an estimated 60 W/m2·°C for the convective heat transfer coefficient. It 

has been expected based on the simulation work that the rate of the energy storage and 

removal would be greater by using liquid HTF with which the convective heat transfer 

coefficient to the EPCM capsules would be significantly larger.  
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Figure 5-18. The rate of energy storage and retrieval of ten MgCl2 – NaCl capsules in the 

T/S in a typical thermal charging and discharging process. 
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capsules as shown in Figure 5-19(a), to repeat the experiment and investigate whether or 

not the energy storage is sustained after the MgCl2 – NaCl is encapsulated in the stainless 

steel capsule for 12 days and subject to occasional thermal test with ~ 12 hours in thermal 

charging and discharging. In Figure 5-19, it has been found that the temperature trace and 

the energy storage performance of the MgCl2 – NaCl capsules are consistent with ones in 

first thermal cycle test. And for the energy storage and retrieval of the 10 MgCl2 – NaCl 

capsules, the discrepancy between the two tests is ~ 1.0% within the accuracy of the 

measurements in current test facility. It can be concluded that the encapsulated MgCl2 – 

NaCl capsules have sustained storage performance without the deterioration in their storage 

performance in current test range. 
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Figure 5-19. The storage performance of the MgCl2 – NaCl capsules in the repeated thermal 

cycle. (a) temperature of MgCl2 – NaCl eutectic salts; (b). energy stored in the MgCl2 – 

NaCl capsules. 
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The model uses the measured mass flow rates of the air, and the temperature of the air at 

the inlet as inputs. Thermal properties of the MgCl2 – NaCl eutectic mixture is tabulated in 

Table 5-2 and the properties of the insulation and T/S chamber has been shown previously 

in Table 5-1. The temperature profiles of the MgCl2 – NaCl and insulation at various 

locations and the air temperature at the outlet are predicted.  

Table 5-2. Thermal properties of the MgCl2 – NaCl eutectic salts 30,45,68.  

 

Figure 5-20 shows the predicted and measured air temperature in a typical thermal cycle. 

For the temperature of air at the outlet of the T/S, there is a very good agreement between 

the experimental data and simulation results during the thermal cycle as shown in the 

figure. This indicates a good prediction for the overall thermal energy storage and retrieval 

of the test section during this thermal cycle based on the current simulation model. 
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Figure 5-20. Comparison of the simulation results with the experimental data for the air at 

the outlet of the T/S in testing MgCl2 – NaCl eutectic mixture in a thermal cycle. 

For the temperature of MgCl2 – NaCl eutectic at the specific measurement point, Figure 
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– NaCl eutectic stays in the center without sinking. Therefore, the simulation shows higher 

values than the experimental measurements when the melting process starts.  

 

Figure 5-21. Comparison of the predicted temperature for the MgCl2 – NaCl eutectic 

mixture with the experimental measurements for the capsules near the inlet and near the 

outlet of the test section. 
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eutectic at the r = RPCM starts melting; while with the liquid eutectic formed at this time 

from the outside shell, the solid MgCl2 – NaCl eutectic sinks to the bottom in the realistic 

operating system, therefore a lower temperature is sensed in the experiment. At the end of 

the charging process t = t2, the measured temperature for the MgCl2 - NaCl eutectic agrees 

with the predicted temperature at the inside surface of the capsule. This implies that a well-

mixed MgCl2 – NaCl eutectic bulk is present during the melting process due to the natural 

convection. 
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Figure 5-22. Temperature of the MgCl2 – NaCl eutectic salts of the #10 capsule in the radial 

directions in a thermal charging and discharging process. 
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salts has been charged from room temperature to high temperature up to 530 °C with 

thermal resistances from the conduction and the “heat sink” due to phase change at its 

melting point 440 °C. As seen in Figure 5-22, the eutectic mixture in the inside surface of 

#1 capsule has already been heated up to ~ 475 °C, higher than its melting point of 444 °C 

at t =0.8 hr during the charging process, while at the center of the capsule, the eutectic 

mixture is ~ 50 °C lower than the temperature at the inside surface of the capsule. At this 

time, the inside surface of the #10 NaNO3 capsule is about 420 °C at the radius with the 

center at  ~ 330 °C. A sharp turn on temperature profile has been observed when the MgCl2 

– NaCl is melting. Take the #1 capsule at t = t1 for example. The slopes of the temperature 

curves before and after the melting point is significantly different – the heat transfer in the 

liquid phase of the MgCl2 – NaCl seems quicker than the heat transfer in its solid phase. 

This indicates the thermal resistance of the phase change is more important than the one 

from conduction, which has been greatly hampered the heat conduction further to the center 

of the solid MgCl2 – NaCl eutectic mixture in this case. While compared with the case in 

NaNO3 tests shown in Figure 5-11, the temperature difference is smaller from the center 

of the capsule to the inside surface of the capsule, which is due to the higher charging 

temperature in testing the MgCl2 – NaCl capsules.  

For the discharging process, effect of heat sink at the interface is again observed. The 

temperature of the #1 capsule drop very quickly, with the surface temperature cooled down 

to 200 °C from 530 °C within 0.2 hrs after the cooling starts.  And at the end of the 

discharging process, the encapsulated MgCl2 – NaCl eutectic mixture is cooled down to ~ 
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40 °C. For the #10 capsule, because the surrounding air temperature is warmer than the 

upper section during the discharging process as shown in Figure 5-16, the temperature of 

the encapsulated MgCl2 – NaCl is cooled down slowly compared with the #1 capsule. As 

shown in this figure at t = 2.3 hrs (0.2 hr of discharging), its surface is still ~ 400 °C, ~ 

200 °C hotter than the #1 capsule near the inlet of the test section. 

 

Figure 5-23. The temperature distribution in the MgCl2 – NaCl eutectic mixture in the 

radial direction at various times in a thermal cycle. (a). charging #1 MgCl2 – NaCl capsule; 

(b). discharging #1 MgCl2 – NaCl capsule; (c). charging #10 MgCl2 – Na capsule. (d). 

discharging #10 MgCl2 – NaCl capsule. 
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Figure 5-24. Displacement of the melting front in the #1 MgCl2 - NaCl capsule and # 10 

MgCl2 - NaCl capsule.  
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NaCl eutectic mixture is in its single phase (either solid or liquid). When this value drops 

down to zero, it means that the MgCl2 – NaCl eutectic mixture in the capsule has 

completely melted or solidified.  

In Figure 5-24 it is seen that the MgCl2 – NaCl eutectic mixture in the #1 capsule starts to 

melt at ~ 0.4 hr, it takes totally ~ 1.3 hours to complete the phase change. For the #10 

MgCl2 – NaCl capsule, it starts to melt about ~ 0.4 hour later than the #1 capsule, and at 

the end of the charging process t = 2.1 hrs, it is partially melted with the melting front at r 

= 0.45 RPCM. With the partially melted MgCl2 – NaCl, there are two melting fronts in the 

capsule when the discharging process starts. Solid phase of MgCl2 – NaCl eutectic exists 

in the center of the capsule, which has not yet been melted, and forms from the inside 

surface of the capsule during the discharging process. And a liquid phase is between these 

two solid layers of the eutectic salts. Because there is still more energy conducted towards 

to the center of the capsule, the second melting front is still moving to the center, that is, 

the solid phase in the center is still melting during the charging process. And at ~ 2.7 hrs, 

the two boundaries become one as shown in Figure 5-24 and the MgCl2 – NaCl eutectic 

salts complete solidification in the #10 capsule. With current operating conditions, i.e., ~ 

540 °C hot air for charging process and ~ 25 °C cool air for discharging process, the overall 

solidification process is quicker in the discharging process as shown in Figure 5-23 and 

Figure 5-24 because of an overall higher temperature difference between the surface of the 

EPCM capsules and the HTF air. 
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In this simulation model, with the temperature history of MgCl2 – NaCl eutectic mixture 

shown in Figure 5-23 for every capsule, and the locations of the melting fronts shown in 

Figure 5-24, the energy stored in each of the MgCl2 – NaCl capsule can be calculated at 

any time during the thermal cycle with its phase change. Figure 5-25 shows the energy 

stored in each of the MgCl2 – NaCl capsule along the test section at various times. In this 

thermal cycle, the energy stored in the single capsule would be change from zero which is 

referred to its own initial state at time t1 = 0, to the theoretical value Q*, with the 

temperature of the capsule at the inlet hot air temperature 540 °C if the experiment is run 

infinitely. It is seen that the capsule close to the top section stores and releases the energy 

more quickly compared with the capsule in the bottom section, considering that in current 

test facility, the temperature drive for the #1 capsules is the largest both in thermal charging 

and discharging process. In the charging process, the variation of the stored energy between 

MgCl2 – NaCl capsules is large at the beginning along the test section since the top section 

is cold and the temperature drive between the air and capsule is large. Then this variation 

become smaller with the top section heated up during the charging process. At the 

beginning of the discharging process, the energy stored in #1 capsule drops significantly 

by 0.7 MJ in ~ 0.3 hr, while the energy stored in #10 capsule barely changes because its 

surrounding air is warm after extracting the heat from the capsules in its upper section. At 

the end of the discharging process t = 3.9 hrs, there are still very few energy residue in the 

MgCl2 – NaCl capsules shown in Figure 5-25.  
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Figure 5-25. Energy stored in the MgCl2 – NaCl capsule at different variation in the test 

section. 
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estimate and experimental measurement is approximately 8.7% for the energy stored in the 

10 MgCl2 – NaCl capsule. As discussed previously for the results of NaNO3 testing, the 

difference might due to the natural convection in the liquid phase of the MgCl2 – NaCl 

eutectic mixture, which enhances the heat transfer during its melting process.  

 

Figure 5-26. The comparison of the energy stored in the overall 10 MgCl2 – NaCl capsules 

in a thermal cycle between the simulation model and experimental measurements. 
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Latent heat storage offers a theoretical potential of significant reduction in storage material 

by utilizing PCM’s latent heat. To realize a high utilization of the PCM and a high 

efficiency of the turbine in the downstream, a configuration of multiple PCMs can be used. 

Proposal for cascaded latent heat storage can be found in server publications for application 

in parabolic through solar power plants 37,38,69. In these proposals, salts or salts mixture 

with different melting temperatures are combined and tested in a TES system, where PCM 

with a lower melting temperature is placed in the “cold end” (bottom of the storage system), 

and PCM with a higher melting point is placed in the “hot end” (top of the storage system). 

In this way, during the charging process, when HTF flows from “hot end” to “cold end”, 

the temperature drive can be maintain in a desired temperature range with judicious choice 

of the operating conditions and PCM in the bottom of the storage system.  

In this project, the two salts – NaNO3, and MgCl2 – NaCl eutectic salts have been selected 

as promising PCMs for energy storage, and tested in the pilot-scale system and shown the 

technical feasibility in storage and retrieval of the thermal energy in thermal cycles. After 

the NaNO3 tests, and eutectic salts tests, the test section is tested with 5 MgCl2 – NaCl 

capsules and 5 NaNO3 capsules, with the encapsulated MgCl2 – NaCl (melting point, 

444 °C) at the top of the T/S, and the encapsulated NaNO3 (melting point 308°C) at the 

bottom of the T/S.  

Figure 5-27 shows the temperature history of the air at the inlet and at the outlet of the T/S, 

as well as the temperature trace of the #1 MgCl2 – NaCl eutectic and #10 NaNO3 eutectic 
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near the outlet of the T/S in a typical thermal cycle. It is seen that in the heating process, 

the air is quickly heated by the external heater to 540 °C to charge the cascaded EPCM 

capsules, while in the discharging process, the heater is turned off and the cool air is sent 

to the test section to extract the energy from the capsules. As shown in this figure, with a 

short transition, the inlet air temperature is about 540 °C in the charging process and about 

28 °C in the discharging process.  

For the temperature of encapsulated MgCl2 - NaCl and encapsulated NaNO3, the 

temperature increase of the salts significantly slows down when it is approaching to their 

melting points respectively. For the #1 MgCl2 - NaCl capsule near the inlet of the T/S, after 

the eutectic mixture completely melts, it is superheated quickly in the liquid phase with ~ 

535 °C at the end of this charging process. For the #10 NaNO3 capsule near the outlet of 

the T/S, after the nitrate completely melts, it is superheated quickly in the liquid phase with 

~ 475 °C at the end of the charging process. In the charging process with cascaded PCMs, 

it is seen that #1 encapsulated MgCl2 - NaCl and #10 encapsulated NaNO3 starts to melt 

about the same time, and all the PCMs complete phase change in one hour. This test results 

are compared with the test results with 10 MgCl2 - NaCl capsules and the results are shown 

in Figure 5-28 for the temperature of outlet air and #10 EPCM capsule near the outlet of 

T/S in a charging process. It is obvious that the temperature difference between the air and 

the PCM at measurement location is higher in the lower section with two cascaded EPCM 

in the test section, which implies one of the advantages in utilizing cascaded EPCM in the 

test section – obtain high temperature in heat transfer from the HTF air to the storage 



   

155 

medium. And in the discharging process, both of the MgCl2 – NaCl eutectic salts and 

encapsulated NaNO3 cool down quickly with sharp turns when they decreases to their 

solidification points respectively, and the comparison with the discharging test results with 

10 MgCl2 – NaCl capsules will be elaborated later with the simulation results. 

 

Figure 5-27. Temperature history of the air and PCMs in the test section with cascaded 

PCMs in a thermal cycle. 
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Figure 5-28. Comparison of the temperature history of the air and PCM for the test section 

with MgCl2 – NaCl eutectic salts only, and the test section with cascaded PCMs in the 

charging process. 
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than their own initial state, as shown in Figure 5-27. In other words, at the end of the 

discharging process, the total energy retrieved from the capsules is ~ 18 MJ with the 

cascaded EPCM capsules changing from ~ 535 °C – 45 °C. If we assume the temperature 

of the shell of the #1 and #10 capsules are the same with the air at the inlet and at the outlet 

of the test section respectively, and a linear temperature change from the #1 to #10 capsule 

shells, the total energy stored into the capsules themselves can be estimated, and this value 

is close to the real but would be slightly overestimated since the shell temperature should 

be lower than its surrounding air. Subtracting this estimated energy stored by the capsule 

shells, there is about 16.2 MJ energy stored in the 17.2 kg salts at the end of the charging 

process. If we assume that the PCM is completely melted based on the temperature profiles 

shown in Figure 5-27, the latent heat of the phase change contributes ~ 23% of the total 

energy stored by the EPCM.  
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Figure 5-29. The energy stored in the cascaded EPCM capsules in a typical charging and 

discharging process. 
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Figure 5-30. The comparison of the total energy stored in EPCM capsules in two different 

test section configurations – with cascaded EPCMs and with MgCl2 – NaCl only. 

Besides the total energy stored in the cascaded EPCM capsules, their thermal response, 

that is, the rate of energy storage and removal is another key parameter for evaluation of 

the storage performance the cascaded EPCM capsules in the test section, while it indicate 

the overall heat transfer between the HTF and EPCM capsules in the thermal charging and 

discharging process. In the experiment, the rate of the energy storage and removal is 

obtained by calculating the derivative of the energy stored in the 5 MgCl2 – NaCl capsules 

and 5 NaNO3 capsules over the time of thermal testing and the results are shown in Figure 

5-31 for rate of the energy storage and retrieval for the cascaded capsules in the typical 

thermal cycle. As seen in the figure, the rate of the energy storage increases quickly first 

0 0.5 1 1.5
0

2

4

6

8

10

12

14

16

18

20

Time (hr)

E
n

e
rg

y
 S

to
re

d
 i

n
 N

a
N

O 3
 C

a
p

su
le

s 
(M

J)

 

 

5 MgCl
2
-NaCl + 5 NaNO

3

10 MgCl
2
-NaCl



   

160 

and reaches to a maximum of ~ 6.5 kW, and then slows down and decreases to ~ 1 kW at 

the end of this charging process. In the discharging process, since the energy left in the 

capsules is decreasing with the experimental time, therefore the rate of the energy storage 

for the capsules is negative as shown in the figure. It is seen that the rate of energy removal, 

the absolute value of the rate of the energy stored into the capsules in this cooling process, 

is with a similar trend as the rate of energy storage in the charging process. It increases 

quickly to its maximum of ~ 6 kW and then decreases to ~ 0.5 kW at the end of this 

discharging process. 

 

Figure 5-31. The rate of energy storage and retrieval of the cascaded EPCM capsules in the 

T/S in a typical thermal charging and discharging process. 
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From this thermal cycle test for the test section with 5 MgCl2 – NaCl capsules and 5 NaNO3 

capsules, it has been well demonstrated that the cascaded EPCM based test section can 

successfully store and retrieve thermal energy at the temperature up to 540 °C, with the 

MgCl2 – NaCl eutectic mixture melted at 444 °C in the charging process, and solidified in 

the discharging process, and with the NaNO3 melted at 308 °C in the charging process and 

then solidified in the discharging process. 

Compared of the performance of the cascaded EPCM with the test section with MgCl2 – 

NaCl capsules only, it has been shown that with the cascaded EPCM configuration, it will 

enhance the heat transfer from the HTF air to the EPCM capsules with a lower melting 

point in the lower section of the test section with a higher temperature drive between them. 

In current test section with the two chosen salts, it is also advantageous to store more energy 

with cascaded EPCM setup.  

5.3.2 Comparison with Predicted Results for Cascaded EPCMs Tests 

Followed the experimental testing of the five MgCl2 – NaCl capsules and five NaNO3 

capsules in the T/S, a simulation model has been run for the tests with the cascaded EPCM 

capsules. This is aimed to compare the experimental data with the simulation results first, 

such as the temperature of the EPCM in different locations of the test section - the 

encapsulated MgCl2 – NaCl eutectic mixture in the top section and the encapsulated NaNO3 

in the bottom section, in order to generally investigate the capability of the simulation 
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model and explore further the advantages in using cascaded EPCM capsules in the T/S. In 

the simulation of the experimental testing with the cascaded EPCM capsules, the 

experimental mass flow rates of the air, and the temperature of the air at the inlet of the T/S 

have been fit to a function of time respectively, and used as two inputs in the model. 

Thermal properties of the materials are tabulated previously in Table 5-1 and Table 5-2.  

Figure 5-32 shows the comparison between the simulation predicted value and 

experimental data for the temperature of the air at the outlet of the test section in a thermal 

cycle for the test section with cascaded EPCM capsules. As seen in the figure, the air 

temperature at the inlet has been used as one of the inputs in the simulation, therefore the 

simulation one is overlapping with the experimental data shown by red crosses. For the 

temperature of the air at the outlet of the test section, it is seen that it is well predicted by 

the simulation model in the discharging process, and for the discharging process, it is 

slightly overestimated in the time period of ~ 0.5 hr – 1.2 hrs. With the temperature 

information of the salts shown in Figure 5-27, it implies an underestimates in heat transfer 

from the HTF air to the EPCM capsules during the PCM’s melting process during the 

charging process.  
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Figure 5-32. Comparison of the simulation results with the experimental data for the air at 

the outlet of the T/S in testing cascaded EPCM in a thermal cycle. 
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values than the experimental measurements when the melting process starts.  

 

Figure 5-33. Comparison of the predicted EPCM temperature with the experimental 

measurements for the #1 capsule near the inlet and #10 capsule near the outlet of the test 

section. 
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surface (r = RPCM) of the capsule reaches the melting point, there appear a deviation 

between the experiment measurements and simulation results at the measurement point in 

both of the figures, which due to the natural convection and the sinking of the solid PCM 

when the liquid PCM is formed at the outside. At the end of the charging process, the 

measured EPCM temperature agrees with the predicted temperature at the inside surface 

of the capsule as shown in Figure 5-34 and Figure 5-35, which might indicate a well-mixed 

EPCM bulk during the melting process because of the natural convection. 

 

Figure 5-34. Temperature of the MgCl2 – NaCl eutectic salts in the #1 capsule in various 

radial directions in a thermal test of cascaded EPCM capsules. 
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Figure 5-35. Temperature of the NaNO3 in the #10 capsule in various radial directions in a 

thermal test of cascaded EPCM capsules. 
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Figure 5-36 (a) and (c), it is seen that the MgCl2 – NaCl eutectic salts has been charged 

from room temperature to high temperature up to 530 °C with thermal resistances from the 

conduction and the “heat sink” due to phase change at its melting point 444 °C. As shown 

in Figure 5-36 (a), the MgCl2 – NaCl eutectic mixture in the inside surface of #1 capsule 

has already been heated up to ~ 450 °C above its melting point 444 °C at t =0.5 hr in the 

charging process, while at the center of the capsule, the eutectic mixture is ~ 160 °C lower 

than the temperature at the inside surface of the capsule. At this time, the inside surface of 

the #10 NaNO3 capsule is about 250 °C with the center heated up to ~ 100 °C. A sharp turn 

point has been observed in the temperature curve when the MgCl2 – NaCl is melting.Take 

#1 MgCl2 – NaCl capsule at t = t3 for example. The slopes of the temperature curves before 

and after the melting point is significantly different – the heat transfer in the liquid phase 

of the MgCl2 – NaCl seems quicker than the heat transfer in its solid phase. This indicates 

the thermal resistance of the phase change is more important than the one from conduction, 

which has been greatly hampered the heat conduction further to the center of the solid 

MgCl2 – NaCl eutectic mixture in this case. And Figure 5-36 (c) shows similar phenomena 

for the #10 encapsulated NaNO3 during its phase change from solid phase to liquid phase. 

For the discharging process, sharp turn points have been also observed during the 

solidification of the encapsulated PCM in both of the #1 MgCl2 – NaCl capsule and #10 

NaNO3 capsule. The temperature of the #1 MgCl2 – NaCl capsule drop very quickly, with 

the surface temperature cooled down to 100 °C from 530 °C after 0.5 hrs discharging by 

the cool air. At the end of the discharging process, the encapsulated MgCl2 – NaCl eutectic 
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mixture is cooled down to ~ 40 °C. For the #10 NaNO3 capsule, because the surrounding 

air temperature is warmer than the upper section during the discharging process as shown 

in Figure 5-27, the temperature of the encapsulated NaNO3 is cooled down slowly 

compared with the #1 MgCl2 – NaCl capsule. As shown in this figure at t = 2 hrs (0.5 hr of 

discharging by the cool air), its surface is ~ 250 °C, ~ 150 °C hotter than the #1 MgCl2 – 

NaCl capsule near the inlet of the test section. 

 

Figure 5-36. The temperature distribution in the EPCM in a thermal cycle test with 

cascaded EPCM capsules. (a). charging #1 MgCl2 – NaCl capsule; (b). discharging #1 

MgCl2 – NaCl capsule; (c). charging #10 NaNO3 capsule. (d). discharging #10 NaNO3 

capsule. 

If tracking the radial location and the time where and when phase change is happening 

0 R
0

50

100

150

200

250

300

350

400

450

500

550

r  
(a)

#
1

 M
g

C
l 2

-N
a
C

l 
T

e
m

p
e
ra

tu
re

 (o
C

)

 

 

0 R
0

50

100

150

200

250

300

350

400

450

500

550

r  
(b)

#
1

 M
g

C
l 2

-N
a
C

l 
T

e
m

p
e
ra

tu
re

 (o
C

)

 

 

0 R
0

50

100

150

200

250

300

350

400

450

500

550

r  
(c)

#
1

0
 N

a
N

O
3
 T

e
m

p
e
ra

tu
re

 (o
C

)

0 R
0

50

100

150

200

250

300

350

400

450

500

550

r  
(d)

#
1

0
 N

a
N

O
3
 T

e
m

p
e
ra

tu
re

 (o
C

)

t
1
=0 t

2
=0.5 hr t

3
=1 hrs t

4
=1.5 hrs (end of the charging process)

t
4
=1.5 hrs t

5
=2 hrs t

6
=2.5 hrs t

7
= 2.9 hrs (end of the discharging proces)

time

time

time

time



   

169 

during the thermal cycle, it will be easily to identify the progress of the phase change, of 

which the information is also used to calculate the energy storage contributed by phase 

change. Such information for the displacement of the melting front is shown in Figure 5-37 

for the #1 MgCl2 - NaCl capsule and #10 NaNO3 capsule from the simulation. In either 

charging or discharging process, when the value of the displacement of the melting front 

is equal to the inside radius of the capsule, it means that the encapsulated PCM is in its 

single phase (either solid or liquid). When this value drops down to zero, it means that the 

EPCM in the capsule has completely melted or solidified.  

In Figure 5-37 it is seen that the MgCl2 – NaCl eutectic mixture in the #1 capsule starts to 

melt at ~ 0.4 hr, and at the end of the charging process, it is partially melted with the melting 

front at r = 0.3R away from the center of the capsule. For the #10 NaNO3 capsule, it starts 

to melt about ~ 0.5 hour, slightly later than the #1 capsule, and completes melting at the 

end of the charging process. 

With the partially melted MgCl2 – NaCl in the #1 capsule, there are two melting fronts in 

the capsule when the discharging process starts. Solid phase of MgCl2 – NaCl eutectic 

exists in the center of the capsule, which has not yet been melted, and forms from the inside 

surface of the capsule during the discharging process. And a liquid phase is between these 

two solid layers of the eutectic salts. It is seen that the second melting front is still moving 

to the center, that is, the solid phase in the center is still melting during the charging process. 

At time = ~ 2.05 hrs, the two boundaries become one as shown in the figure and the MgCl2 



   

170 

– NaCl eutectic salts complete solidification in the #1 capsule at that time. For the #10 

NaNO3 capsule, the PCM NaNO3, it starts to solidify at time = ~ 1.7 hrs, and complete the 

phase change in ~ 1 hr. With current operating conditions, i.e., ~ 540 °C hot air for charging 

process and ~ 25 °C cool air for discharging process, the overall solidification process is 

quicker in the discharging process because of an overall higher temperature difference 

between the surface of the EPCM capsules and the HTF air. 

 

Figure 5-37. Displacement of the melting front in the cascaded EPCM capsules in a thermal 

cycle. 
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the melting fronts shown in Figure 5-37, the energy stored in each cascaded EPCM capsule 

can be calculated at any time during the thermal cycle with its phase change. Figure 5-38 

shows the energy stored in each of the capsule along the test section at various times. In 

this thermal cycle, the energy stored in the single capsule would be change from zero which 

is referred to its own initial state at time t1 = 0, to the theoretical value Q*, with the 

temperature of the capsule at the inlet hot air temperature 540 °C if the experiment is run 

infinitely. For the top section, the MgCl2 – NaCl eutectic mixture is encapsulated in the 

capsule from #1 and #5, and the theoretical value of each of the capsule is denoted as 

QMgCl2-NaCl
*, and for the bottom section, NaNO3 is encapsulated in the capsule from #6 to 

#10, and the theoretical value of each of the NaNO3 capsule is denoted as QNaNO3
*.  

In Figure 5-38, it is seen that the capsule close to the inlet stores and releases the energy 

more quickly compared with the capsule far from the inlet of the T/S in the top and bottom 

section respectively, considering that in current test facility, the temperature drive is larger 

in the upper section both in thermal charging and discharging process. In the charging 

process for the top and bottom section of the T/S, the variation of the stored energy between 

EPCM capsules is large at the beginning and decrease with the proceeding time. In Figure 

5-38, it is also seen that the average energy stored in the NaNO3 capsule is higher than the 

energy stored in the MgCl2 – NaCl capsule. Take the energy storage at time t4=1.5 hr in 

the charging process for example. This is because the storage capacity of the NaNO3 is 

higher than the MgCl2 – NaCl eutectic in the solid phase, and at that time, all of the NaNO3 

has completed melting as shown in with additional heat stored by its phase change.  
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Figure 5-38. Energy stored in the cascaded EPCM capsule at different variation in the test 

section in a thermal cycle. 

When summing up the energy stored in each single capsule shown in Figure 5-38, the total 
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NaCl eutectic testing, the difference might due to the natural convection in the liquid phase 

of the PCM, which enhances the heat transfer during its melting process. Therefore the 

measured energy storage is higher than the predictions from the simulation model. 

 

Figure 5-39. The comparison of the energy stored in the cascaded capsules in a thermal 

cycle between the numerical predicts and experimental measurements. 
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stainless steel cylinders. Compressed air is used as the heat transfer fluid. Multiple EPCM 

capsules are installed in the test section for the demonstrations of the energy storage and 

retrieval with phase change in thermal cycles. The test facility and measurement 

methodology have been initially qualified using solid copper capsules and then loaded with 

EPCM capsules for performance test. A numerical model is developed to investigate the 

dynamic performance of the charging and discharging of the test section with phase change 

in the EPCM capsule. 

The experimental and the numerical investigations indicate that:  

 The test section with the EPCM capsules successfully demonstrated its ability 

to transfer thermal energy to and from a transport fluid, achieving energy 

storage and retrieval in multiple charging and discharging cycles.  

 For the test section with NaNO3 capsules, in a given storage – retrieval cycle 

where NaNO3 capsule temperatures varied from ~ 50 °C - ~ 400 °C, the test 

section has been found to store significant amount of thermal energy per EPCM 

capsule (~ 451 kJ/kg), with the NaNO3 material (PCM) accounting for ~ 76% 

of the energy stored in the capsules. The latent heat of phase change of the 

NaNO3 contributed to ~ 17% of the energy stored in the capsules due to the 

very large changes of the fluid temperature. A thermal energy storage test has 

been conducted after the NaNO3 capsules have been tested ~ 40 hours in 45 

days. It has been found that the encapsulated NaNO3 capsules have sustained 
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storage performance without deterioration in their storage capacity. 

 For the test section with MgCl2 - NaCl eutectic capsules, in a given storage – 

retrieval cycle where MgCl2 - NaCl capsule temperatures varied from ~ 30 °C 

- ~ 510 °C, the test section has been found to store significant amount of thermal 

energy per EPCM capsule (~ 560 kJ/kg), with MgCl2 - NaCl material (PCM) 

accounting for ~ 80% of the energy stored in the capsules. The latent heat of 

phase change of the MgCl2 - NaCl eutectic contributed to ~ 25% of the energy 

stored in the capsules due to the very large changes of the fluid temperature.  

 A configuration of cascaded EPCM capsules is proposed to be used in the test 

section, with five MgCl2 – NaCl capsules at the top section and five NaNO3 

capsules at the bottom section of the T/S. It has been found that under similar 

operating conditions when the test section is charged by 540 °C air, the 

cascaded EPCM capsules store ~ 15% more thermal energy within 1.5 hours in 

a charging process compared with the test section with MgCl2 – NaCl capsules 

only. It is shown that  use of five MgCl2 – NaCl capsules and five NaNO3 

capsules is advantageous with its increased heat storage capacity.  

 The results of the numerical simulations of the energy storage are found to agree 

with experimental measurements within 9%. The dynamic performance of 

charging and discharging rates were also well predicted by the model, giving 

confidence for engineering design capabilities for potential larger scale utur 
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applications using encapsulated phase change materials for energy storage. 
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6 FURTHER WORKS AND SUGGESTIONS 

The objective of this project is to establish methods for storage of thermal energy using 

encapsulated phase change materials at temperatures up to 540 °C, suitable for applications 

in concentrating solar power plants. First a calorimeter is designed and built to measure the 

storage capacity of the EPCM candidate as well as investigate its storage performance after 

long-term thermal cycles. Secondly, a pilot-scale test section is designed, built and tested 

with multiple EPCM capsules, and successfully demonstrate its ability to transfer and 

extract energy to and from the EPCM capsules in thermal cycles. Meanwhile, a simulation 

model has been developed for the engineering design and optimization of the test section 

before building the test facility, evaluation of the dynamic heat transfer performance 

comparison of the experimental data with the numerical predictions. Based on the work 

accomplished in the project, here are what we can do further:  

 It is possible to encapsulate these candidate PCMs in stainless steel or carbon 

steel containers, though possible corrosion of the shell should be further tested 

under longer exposures for the MgCl2-NaCl salt. 

 A test section with liquid heat transfer fluid could help to enhance the heat 

transfer from the HTF to the EPCM capsule and then increase the storage 

performance of the EPCM capsule in a given time duration.  

 A simulation model work can be extended to include the effects of gravity and 
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natural convection in large EPCM-based thermal energy storage system. 

 A system-level simulation model, integrating the solar field, energy storage 

system and power generation system, would be of great help to design and 

operate the thermal energy storage applicable to the energy demand
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