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ABSTRACT 

Wind Flow Modeling for Wind Energy Analysis of the Nellis Dunes Area in Nevada 
 

by 

Upendra Rangegowda 

Dr Darrell Pepper, Advisor 
Professor, Department of Mechanical Engineering 

University of Nevada, Las Vegas 
 

A wind energy analysis of the Nellis Dunes area in Nevada was conducted. A DEM 

file which contains the elevation data was used to generate the surface model and to 

create a 3-D mesh of the region. Local meteorological tower data collected for a period of 

one year was used to generate the diagnostic initial wind fields. Upper level wind fields 

were created using a surface boundary layer technique along with linear interpolation of 

the tower level wind fields. The vertical components of the velocities were adjusted using 

the equation of continuity. Mass consistent 3-D wind fields were then calculated using 

the finite element method. Divergence reduction of the complete wind field was 

conducted using an iterative procedure.  

The statistical analysis of the measured monthly averaged wind data was also 

performed. The velocity distribution analysis of the measured data was undertaken, and 

showed a good fit with the Weibull distribution of wind velocity. The wind rose diagrams 

for all the tower locations were plotted to obtain the monthly averaged wind directions 

for the entire year.  
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The wind velocities generated from the mass-consistent wind model were used as input to 

calculate wind power density maps. Monthly wind power density maps for the entire year 

were generated. The potential locations for establishing a wind farm is discussed.  
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CHAPTER 1 

INTRODUCTION 

Wind field prediction and wind power assessment has been a consuming interest for 

the engineering community for many years. Modeling 3-D wind fields is important for 

wind energy assessment, weather forecasting, wind turbine sitting and atmospheric 

dispersion assessments problems. However, it is difficult to generate accurate 3-D wind 

fields. The main reason is that measurements of atmospheric flows are sparse and 

generally insufficient to resolve important flow phenomena. A routine approach is to link 

meteorological data and tower data with a numerical approach. Because of their 

simplicity and ease of implementation, most of the numerical models used in 

meteorological simulations use finite-volume and finite-difference techniques. In recent 

times, these techniques have adopted the use of unstructured meshes, as compared with 

global transformation techniques used many years ago to account for irregular terrain. 

For more than 20 years, atmospheric simulations have employed the use of finite-element 

method due to its abilities to deal with complex geometrical problems with 

inhomogeneous or variable properties, the use of general purpose algorithms, and 

significant computational enhancements to reduce storage and speed up solutions 

(Heinrich and Pepper 1999). 

For creating 3D wind fields, mass consistent models have been used for many years 

and have been found to be very effective in modeling atmospheric dispersion. More 

recently, such models have been useful in conducting wind energy assessments studies. 

These modeling techniques are discussed in detail in Sherman (1978), Lange (1978), 

Goodin et al. (1980), Pepper (1991), Ratto et al. (1994), Finardi et al. (1998), and 



2 
 

Montero and Sanin (2001). Most applications deal with coarse meshes and are unable to 

utilize mesh refinement where the terrain and/or velocities are complex. Mass consistent 

models represent a least squares problem in the computational domain (i.e., it minimizes 

the differences between the observed and adjusted values). These techniques are 

discussed in detail in Chapter 2. 

In this study, a finite element model has been used to create 3-D wind fields utilizing 

sparse meteorological tower data. Digital elevation map (DEM) data developed by the 

U.S. Geological Survey (USGS) was used to generate an initial mesh. Meteorological 

data collected from three tower sites were used to construct the 3D wind fields for the 

Nellis Dunes Area (see Fig. 1.1 and 1.2).  

Wind speed has a cubic relation with power, and is one of the most important factors 

to consider when assessing power potential of a candidate site. Since wind speed varies 

by the minute, hour, day, season and year, it is typically averaged over several years to 

obtain annual speed. Wind is driven by the sun and the seasons, which is the reason wind 

patterns generally repeat over the period of one year. A wind site is usually categorized 

from wind speed data averaged over the calendar months. Sometimes the wind data is 

aggregated over the year to determine the overall “windiness” of various sites. A 

probability distribution function is then used to describe the wind speed variations over a 

period of time. In this study, a Weibull Probability Distribution has been used to describe 

the variation of wind speed (Patel, 2006). 

The wind data for this study was collected for the Nellis Dunes area northeast of 

Nevada (as shown in Fig. 1.1 and 1.2) for the time period of January 1, 2008 to February 

1, 2009. Four meteorological towers were erected in the Nellis Dunes area. The locations 
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of the towers are shown in Fig. 1.2 and Table 1. Wind speeds and directions were 

recorded for every 10 min over the period from October 18th, 2008 to February 1st, 2009 

using Symphonie data loggers (Symphonie User’s Manual, 2006. see Figure. 1.3). Also, 

monthly averaged data was recorded for the period from January 1st, 2008 to October 

17th, 2008.  

 

 
Figure 1.1 Location of Nellis dunes area (Courtesy: Google Maps) 
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Figure 1.2 Locations for the four meteorological towers (Courtesy: Google Maps) 
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Figure 1.3 Topography of the Nellis dunes Area 

 

Table 1.1 Tower Descriptions 

Site No. Elevation (m) Latitude, Longitude 

Tower 1 20 N 3617717, W 11455446 

Tower 2 20 N 3616761, W 11458210 

Tower 3 20 N 3616162, W 11457560 

Tower 4 10 N 3618457, W 11456214 

 

N 
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Figure 1.4 Towers to measure the wind data 
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Figure 1.5 Symphonie data logger 
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CHAPTER 2 

NUMERICAL WIND FLOW PREDICTION 

2.1 Governing Equations of Fluid Dynamics 

 The governing equations of motion which describe the atmospheric flows are the 

conservation of mass, momentum, energy and species transport. Based on Pielke (1984), 

the governing equations for a three-dimensional atmospheric flow are: 

Conservation of Mass: 
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Conservation of Energy: 
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Specific Humidity: 
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Species Transport: 
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where u, v, w are the east-west (x), north-south (y), and vertical (z) components of 

velocity, respectively; ω  is the angular velocity of the earth; ψ  is the latitude; θ  is the 

potential temperature; q is the specific humidity; Cm is the species concentration; g is the 

acceleration of gravity; 
radt
⎟
⎠
⎞

⎜
⎝
⎛
∂
∂θ is the radiative heating/cooling of the atmosphere; 

mCS is 

the source/sink term which includes changes of state, chemical transformations, 

precipitation, and sedimentation; kh is the horizontal diffusion coefficient; and kz is the 

vertical diffusivity.  

The potential temperature is defined as:      

( ) pd CR
V pT //1000=θ               2.8 

where the unit of pressure p is in mb, Tv is the virtual temperature , Cp is the specific heat 

at constant pressure, and Rd  is the universal gas constant.  
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The ideal gas law is written as: 

VdTRp ρ=                  2.9 

where the density ρ  is defined as the inverse of the specific volume. The virtual 

temperature is defined as: 

( )qTTv 61.01+=                    2.10 

The pressure can be obtained from the hydrostatic assumption (normally this is used 

in many atmospheric models) or from solution of the “discrete” momentum equations and 

a simple poisson equation. The velocity components are adjusted by using a potential 

function which is solved from the Poisson equation (Pepper and Brueckner, 1992).  

The modeling of turbulence and resulting forms of closure are quite varied; the 

gradient diffusion approach is typically used (Pepper and Brueckner, 1992). Using the 

relation proposed by Smagorinsky et al. (1965), the horizontal mixing is approximated 

and Anthes and Warner (1978) later used this. For example, the horizontal mixing 

intensity is related to the wind shear strength, e.g., 
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where k0 is the von Karman’s constant and he  is the average element length. 

In the surface layer the vertical exchange coefficients of momentum, heat, and 

moisture are given by the relations: 

)(

*
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zuk
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and  



11 
 

)(

*
0

ζφ
θ

H

q
zz

zuk
kk ==                    2.13 

where *u  is the friction velocity; mφ  is the nondimensional wind profile; Hφ  is the 

surface layer mean vertical temperature profile; and ζ = z/L, where L is Monin-Obukhov 

length. The expression for the nondimensional wind and potential temperature profiles 

according to Businger et al. (1971) are: 
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The exchange coefficients above the surface layer are defined according to McNider 

and Pielke (1981). The thermodynamical stability of the surface controls the coefficients. 

The local exchange coefficients suggested by Blackadar (1979) are used when this layer 

is stable. The profile function of O’Brien (1970) is used when the surface layer is stable.  

 

2.2 The Finite Element Method 

Though the derivations of most of the fluid flow governing equations are not unduly 

difficult, it is a formidable task to obtain the solutions to those equations by exact 

methods. This is the case where the approximate methods of analysis provide the 

alternative means of finding the solutions. The finite difference method, the variational 

method, and the finite element method are the most frequently used methods to obtain the 

approximate solutions.  
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Similar to the finite difference scheme, in the finite element method the problem 

defined in the geometrical space (domain) is subdivided in to a finite number of small 

regions (mesh). In finite-difference and finite-volume methods the mesh consisted of 

rows and columns of orthogonal lines (this requirement can be handled through 

coordinate transformations or unstructured mesh generators); but in the finite-element 

method each subdivision is unique and it does not need to be orthogonal (Pepper and 

Heinrich 2006). Triangles and quadrilaterals are commonly used in two dimensions and 

tetrahedrons and hexahedrons are used in three dimensions. For example, an unknown 

variable (temperature, velocity, etc.) is approximated using the known functions (called 

shape functions) over each discretized element in the finite-element method. Based on the 

geometrical locations (nodes) used to define the finite element shape, these functions can 

be linear or higher-order polynomial expansions. In finite-element procedures, the 

governing equations are integrated over each finite-element and the contributions are 

summed (assembled) over the entire problem domain. In the finite-difference method, 

Taylor series approximations are used to create difference discretizations; in the finite 

volume method, a simple integration is performed over each volume to conserve mass. A 

set of finite linear equations are obtained in terms of a set of unknown parameters over 

the elements. Using linear algebra techniques, solutions can be obtained which stem from 

sparse matrices (which can be solved efficiently). 

The basis for the finite element method lies in the Galerkin method of weighted 

residuals and by which it minimizes the error throughout the computational domain. The 

Galerkin method is guaranteed to yield a compatible approximation to the governing 

equations and also is simple to use. In the Galerkin method, the dependent variable is 
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expressed by means of a finite series approximation in which the “shape” of the solution 

is assumed known, and depends on a finite number of parameters to be determined. The 

approximation generates a residual function when replaced in the governing equation, 

which is multiplied by weighting functions and is required to be orthogonal to the 

weighting functions in the integrated sense, i.e., 

∫ =Φ 0)(),()( xdxRxW                   2.16 

where Φ  is the unknown variable, ),( xR Φ  is the residual error function ( the function 

obtained when the approximation to the exact solution of Φ is replaced in the differential 

equation), x is the length coordinate, and W(x) is the weight. To determine the unknown 

parameterΦ  , a set of linear algebraic equations can be generated from these expressions, 

and hence an approximation to the solution (Pepper and Heinrich, 1992).  

 

2.3 Numerical Modeling 

A mass-consistent diagnostic model can be derived from the continuity equation 

utilizing actual wind data. “Diagnostic” is the term which was used by Pielke (1984) to 

discuss different mesoscale meteorological models. Sherman (1978) undertook the early 

research work on the mass-consistent model that was later applied by Pepper using an 

FEM approach (1991). The main idea of the mass-consistent model is to reduce the 

difference between the simulation results and the measured meteorological data. This 

uses the weighted averaging around the (usually) sparse data points to fill in the values to 

all the nodes of the domain and to match the simulation values with the meteorological 

values. 
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Using interpolation a surface wind field can be constructed over an initial mesh of a 

region using the measured data and inverse squared weighting (1/r2, where r is the radial 

distance between the grid points and the tower locations). A fixed radius R, is specified 

and beyond that radius the effect of a tower’s value is no longer felt (Goodin et al. 1979; 

Kitada et al. 1983; Pepper 1991).  R is evaluated with two values: R=L/N and R=L, 

where L is the length of the horizontal region and N is the number of observations. In the 

evaluation of the field data the use of the former R = L/N gives better results (Goodin et 

al. 1979; Kitada et al.1983). 

Upper layer velocity can be calculated from the horizontal level velocity, i.e., the 

velocity at an upper layer grid point is calculated from the velocity at the grid point that 

has the same horizontal level as the tower layer. Using log-linear interpolation the top-

layer velocity can be calculated.  

Estimation of the vertical wind velocity is one of the more difficult problems 

associated with wind modeling studies. In diagnostic and prognostic problems, the 

vertical velocity is an integral component. Using the horizontal wind observations and 

accounting for divergence correction, the vertical velocities are calculated at all grid 

points from the continuity equation, that is,  
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where u, v and w are velocities in the x, y and z directions respectively. 
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2.4 Mass-consistent FEM 

Since its inception in the mid 1950s, the finite-element method is a popular numerical 

technique that has been used by engineers and scientists to solve many structural 

problems. The application of finite-element methods to other fields, particularly to the 

fluid flow, started to occur around the late 1970s (Zienkiewicz and Zhu 1987), from then 

it has been continued to mature over the years.  

Finite-difference and finite-volume methods were commonly used in the past for fluid 

modeling. In its capabilities to deal with the complex geometries, the finite-element 

method is more attractive in comparison with the finite-difference methods. The 

discretization of the variables and the gradient terms are based upon the Taylor series 

approximation and nodal molecules in the finite-difference method (this is usually three 

point approximations yielding second-order spatial accuracy in each direction). Since the 

finite-element method uses basis functions to approximate the spatial distances (via 

elements instead of node point intervals), it allows one to capitalize on a family of 

interpolations that can yield much higher spatial accuracies.  

In the finite-element method, the computational accuracy can be increased by two 

ways- either by using a fine mesh (refinement) or by applying higher-order 

approximation (enrichment). When doing atmospheric calculations it is typically 

impractical to use a uniform fine mesh or higher order approximations over the entire 

domain; this is because atmospheric calculations usually require huge computational 

resources. This is where local adaptation can be very useful, since the adaptive finite-

element method allows one to use local refinement (h-adaptation) or local enrichment (p-
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adaptation), thereby significantly reducing the computational time and storage when 

compared to the globally refined or enriched meshes ( see Wang and Pepper 2007a, b). 

Lange (1978) at Lawrence Livermore National Laboratory was the first to use a 3-D 

mass consistent model to generate wind fields for the Atmospheric Diffusion Particle-in-

Cell (ADPIC) pollutant transport model. Dickerson (1978) and Sherman (1978) 

constructed a mass-consistent model in their work. Their technique was based on an 

objective analysis approach using a Sasaki variational technique (Sasaki 1958). Matur 

and Peters (1990) and Pepper (1991) applied this technique for air pollution modeling. 

Pepper (1991) applied this method using FEM to predict meso-scale wind fields over 

Vanderberg Air Force Base. Genetic algorithms for improved parameter estimation with 

local tetrahedral mesh refinement in a wind model were developed by Montero et al. 

(2005). Ratto et al. (1994) discusses the selection of parameters and computational 

methods implemented by different mass consistent models. Because of its simplicity and 

ease of implementation with adaptivity we have selected this approach in lieu of others. 

Warner et al. (1983) describes the use of observed winds versus the predicted winds 

employing a 3D dynamic model to predict the medium range atmospheric transport, 

along with shortcomings in accuracies attributed to each technique. 

In this procedure, an Euler-Lagrange method is used in an integral function that 

minimizes the variance of the difference between the observed and analyzed variables 

(Sasaki 1958). This function is written as 
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where, 0u , 0v  and 0w  are the values of the observed velocities in the x, y and z direction 

respectively, and Ω  is the physical domain (dΩ ≡dxdydz), and iα are the Gauss precision 

moduli, where 22 2/1 ii σα =  ( iσ  are the observation tower errors and/or deviations of the 

observed field from the desired adjusted field). Since apparent distinctions exist between 

the horizontal and vertical directions but not between x and y coordinates, the Gauss 

precision moduli are assumed identical for the horizontal directions (Sherman 1978). For 

determining the nondivergence wind field over irregular terrain these moduli are very 

important. Sherman (1978) suggested that the ( )2
21 /αα should be proportional to the 

magnitude of the expected ( )2/ uw . Using studies from Kitada et al. (1983) and from the 

above relation, the 3D wind fields tested for the minimum residual divergence occurred at 

about ( )2
21 /αα =0.01. We have taken the values of 1α  and 2α  as 0.01 and 0.1 

respectively in this study.  

The Euler-Lagrange equations, the solutions of which will minimize the equation 

(2.18) are as follows (Sherman 1978; Kitada et al. 1983; Pepper 1991; Ratto et al. 1994) 
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where λ = Lagrange multiplier.  

Since the velocities are low in this case we can assume the air density as constant in 

the computational domain; however we can take a variable density to account for the 

vertical temperature variation if warranted (see Sherman 1978). Now, substituting the 

equations (2.19) – (2.21) into the continuity equation,  
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a Poisson equation for λ (x, y, z) can be obtained of the form,  
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The 21 /αα  ratio will allow one to adjust between the horizontal or vertical influential 

preference.  

After applying the Galerkin method of weighted residuals, the integral form of 

equation (2.23) can be written as  
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where iN  is the shape function. The matrix equivalent for the above equation can be 

written as 

 

K λ = f,                                                             2.25 

where K is the stiffness matrix, which is 
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Note that f is the load vector (or the right-hand side of the equation), which is, 
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The use of this particular technique was within a factor of 2 around 50% of the time 

and within an order of magnitude about 90% of the time (see Sherman (1978) and 

Dickerson (1978)). But, the mesh routinely used at the time of their results was a coarse 

mesh. With the application of adaptation, one can get a more detailed visualization and 

help in assessing the dynamics of the flow properly.  

 

2.5 Atmospheric Boundary Layer Concept 

At high Reynolds numbers the influence of viscosity is confined to a very thin layer 

in the immediate neighborhood of the solid surface, for the fluid flow where the 

measured pressure distribution nearly agrees to the perfect fluid theory. The velocity of 

the fluid increases from zero at the surface (no slip) to its full value which corresponds to 

the external frictionless flow in this layer. This thin layer under consideration is called the 

boundary layer. Similar to boundary layers found in engineering fluid mechanics 

problems, an atmospheric boundary layer exists for the atmospheric motion.  

The velocity distribution in such a boundary layer along a surface is shown in Figure 

2.1 (the dimensions across it are considerably exaggerated). The velocity distribution is 

uniform in front of the leading edge of the surface. The thickness δ, of the retarded layer 
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increases continuously with increasing distance from the leading edge in the downstream 

direction, as the increasing quantities of the fluid become affected.  

 

 

Figure 2.1 Neutrally stratified boundary layer over uniform terrain 
 

For small scale flows, the thickness of the boundary layer which has not separated 

can be estimated in the following way (Schlichting, 1979).  

 

U
lνδ 5=                     2.28 

 

Referring to the length of the surface l  , the dimensionless boundary-layer thickness is: 

 

lRUll
55 ==
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where lR  is the Reynolds number related to the length of the surface, l , ν  is the 

kinematic viscosity, and U is the velocity outside the boundary layer. 

The concept is the same for the atmospheric boundary layer.  The atmospheric 

boundary layer is quite thin over the surface of smooth water or ice, and much thicker 

over hilly, tree covered, or urban terrains with large buildings. The boundary layer 

typically extends upward about 200 to 500 meters (650 to 1,640 feet), but it can also be 

very thin as 50 meters (164 feet) or as deep as 2 km (6,563 feet). The thickness of the 

boundary layer also varies with the latitude.  
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CHAPTER 3 

ANALYSIS OF 3D WIND FIELDS 

The full solution of the Navier-Stokes equations is not feasible to create in a 

production code for predicting 3-D wind fields. The use of interpolation of sparse data 

measurements is done first, followed by the use of an objective analysis to adjust the 

wind vectors at each grid point within the computational domain. This is the simplest 

approach for generating a gridded wind field.   

In early times, point-iterative methods and/or variational calculus with Lagrangian 

multipliers to adjust velocities was used to reduce divergence (Pepper and Kern, 1976; 

Sherman, 1978; and Pielke, 1984). These techniques allowed quick estimates of the wind 

flow field to be generated and were also relatively simple to use. However, the velocities 

at the domain boundaries can force the nature of the interior flow solution (Pepper and 

Brueckner, 1992); Likewise, the empirically chosen constants have control over the flow 

field. Surface topography was not accurately used in most of the early work and some of 

the techniques did not employ terrain-following coordinate systems. The basic grid size, 

vertical extent and the region boundaries for the Nellis Dunes area are first selected. 

Vertical height (generally of the mixing layer) and the terrain irregularity affect such cell 

sizes. Once the mesh is generated over the terrain, the measured velocities at the tower 

level are interpolated to obtain initial velocities at each computational node point. The 

interpolated velocity field is then adjusted using the finite element method to minimize 

the divergence of the flow field.  
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3.1 Surface Mesh Generation 

The topographical elevation data obtained from the U.S. Geological Survey (USGS) 

in the form of Digital Elevation Map (DEM) was used to generate the surface 

topography. The Nellis Dunes area is located in southern Nevada (North of Las Vegas). 

The Nellis Dunes are located within the area defined by longitude of W114544446 to 

W11459210 and latitude N3626162 to N3628457. The elevation data was changed to x – 

y coordinates, where x – direction is East – West and y – direction is North – South. The 

surface topography was generated using a mesh consisting of 31 x 35 elevation data. The 

three-dimensional terrain plot of the Nellis Dunes is shown in Figure 3.1. The horizontal 

surface grid used a 300 m x300 m spacing between the nodes in x and y directions.  

Out of the four towers were set up at the Nellis dunes, data from only three of the 

towers was used in the simulation, since the fourth tower (10m tower) was vandalized 

and the data was not available for the whole year. The partially available data from the 

fourth tower was used to validate the simulated values with the recorded values. Since 

these three towers were not located at the orthogonal mesh points, the surface mesh was 

altered to fix the three towers at the nodal points.  
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Figure 3.1 A 3-D Terrain of the Nellis dunes area 
 
 

 

Figure 3.2 Non-orthogonal mesh with the three towers as grid points for the Nellis dunes 
 
 

X- East West 
Y – North South 
Z - Altitude 

N 

N 



25 
 

3.2 Three Dimensional Mesh Generation 

A three dimensional mesh for six separate horizontal layers was generated above the 

ground. A Total of seven layers (including the surface layer) were used to establish the 3-

D hexahedral mesh over the region. Layer 1 is the surface layer. Layer 2 is the height at 

10 m above the surface - one of the towers had a height of 10 m. Layer 3 is 20 m above 

the surface layer and three of the other towers were at 20 m heights. Layer 4 is 50 m 

above the surface layer. Layer 5 is 100 m above, layer 6 is 500 m and layer 7 is 1000 m 

above the surface layer. A FORTRAN code was applied to generate the 3-D mesh, nodal 

points and element connectivity. The surface mesh data file was used to initialize the 

mesh generation scheme. A total of 7595 nodes and 6120 elements were generated for the 

three dimensional mesh of the Nellis Dunes region (see Figure 3.3). A 2-D cross sectional 

view of the Nellis Dunes area is shown in Figure 3.4.  

 

 

Figure 3.3 3-D mesh of the Nellis dunes area 

N 



26 
 

 

Figure 3.4  2-D Cross sectional view of the mesh for Nellis dunes area 

 

3.3 Initial Wind Field Generation 

The initial wind field is generated using the measured meteorological data from the 

three towers (converted into u and v components) by interpolation over the initial mesh 

using inverse-distance squared weighting (Pepper and Kern, 1976). A fixed radius of 

influence (R) is specified, which indicates that the influence of a station’s value is no 

longer felt beyond that R (Pepper and Brueckner, 1992). By utilizing simple differences 

to initially specify velocity components within the computational domain, the gross 

terrain features (mountain ranges, etc.) can be easily accounted.  
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3.4 Tower Data Formulation 

The wind data collected from the three towers were used for interpolation over the 

mesh (see Figure 3.5). A 10 minute average meteorological data was recorded for the 

period from October 18th, 2008 to February 1st, 2009 and monthly averaged data was 

recorded for the period from January 1st, 2008 to October 17th, 2008. The 10 minute 

average data was used to produce simulation results for those periods consisting of 10 

minute averaged values. The data for the 10 minute average was recorded in the polar 

coordinate system with wind speed in m/s and direction in degrees counting clockwise 

(where 0/360 degree corresponds to North and 90 degree corresponds to East). The data 

was converted to u and v cartesian components. A FORTRAN code was used to read the 

data from all four towers. A top view of the tower locations with the wind vectors within 

the Nellis Dunes area is shown in Figure 3.6.  

 

 

Figure 3. 5 The tower locations in the Nellis dunes area 

N 
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Figure 3. 6 A top view of the tower wind vectors in Nellis dunes area 

 

3.5 Tower Layer Velocity Generation 

After reading the tower data, an inverse weighting was performed around each tower 

to obtain tower layer velocities (Goodin, et al, 1979). The velocities at the grid points 

near the tower were calculated using the measured wind velocities from the tower. The 

velocity from the tower decays as 1/r2 with distance from the tower. Therefore, 
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Then the velocities at the grid points are given by, 
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),()(),( tttower yxvrWyxv =                 3.2b 

where 22 )()( tt yyxxr −+−= ,  which is the radial distance between the node (x, y) 

and the tower (xt, yt). For r >R, u(x,y) = 0, v(x,y) = 0  

where R is the radius of influence, (R=4500 meters), and(xt, yt) is the closest tower 

location from the node (x, y). The tower velocities are labeled ut in the x-direction and vt 

in the y-direction. 

 

3.6 Tower Layer Divergence Reduction 

After establishing the tower layer wind velocities using the measured data from the 

wind towers, the interpolated values at all the nodes of the tower layer must be checked 

to minimize the divergence, i.e., try to ensure that 0≅•∇ V
r

. The tower layer values are 

smoothed using a slightly modified version of the simple-point filter. The new value at 

any given point will be the average of the value at the point and the values at the four 

nearest points. The smoothing equations are: 
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where αk is a parameter which is used to keep the measured velocity at station k fixed   

(αk = 1) or to keep only some of its original influence (αk < 1) and is zero at all non-

measuring station points. ui,j and vi,j are the horizontal velocities of the tower layer. In the 

finite element method, ui,j and vi,j cannot be used since the mesh is unstructured. 
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Therefore u(i) and v(i) are used instead, where i is the node number, as defined by its 

nodal connectivity within an element. Now equations 3.3 and 3.4 can be written as: 
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where ncolum is the number within the tower layer (see Figure 3.7)  

 

 

Figure 3. 7 Five point stencil (number in parenthesis denote element) 
 
 

This first step reduces much of the anomalous divergence as possible. The number of 

passes through the smoothing step is determined empirically and is related to the relative 

atmospheric stability at that layer. The divergence is checked using the relative error, ε: 
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nn iuiu )()( 1 −= +ε     and    nn iviv )()( 1 −= +ε          3.7 

where n is the previous value and n+1 is the unknown value.  

For convergence, max ε ≤ 10-4 should be satisfied. Once the solution is converged the 

smooth velocities are generated for this layer. If the solution is not converged,             

u(i)n =u(i)n+1, and v(i)n =v(i)n+1 and the program returns to equations 3.5 – 3.6 until 

convergence.  

 

3.7 Upper Layer Windfield Generation 

Accurately calculating the vertical velocity based on the velocity at the tower layer is 

difficult. In early times, most used r-1 weighting to produce a smooth upper layer 

windfield (Sherman, 1978; Pepper and Brueckner, 1992). In this study, boundary layer 

technique is used to obtain the windfields at the upper layers. The top layer velocity is 

assumed to be constant, e. g. Utop = 10 m/s and Vtop = 8 m/s. The following approach is 

used to get the upper layer values and top layer values. 

 

3.8 Upper Layer Velocity Generation 

To calculate the velocity at a grid point in the upper layer, the velocity of the grid 

point which has the same horizontal location on the tower layer and top layer are used 

through a simple linear equation (see Figure 3.8): 
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                         Utop (Vtop)                                                                                          Utop (Vtop) 

        

                                        or 

 

             ut  (vt)                                        ut  (vt) 

Figure 3. 8 Formulation of linear equation 

 

Upper layer velocities are calculated from the following equations: 
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where (u, v) is the upper layer velocity, and (ut, vt) is the tower layer velocity. 

 

3.9 Divergence Reduction of the Upper Layer 

A slightly modified version of the three-point filter is used in this model to smooth 

the upper layer velocities. The new velocity at a given point is the average of the value at 

that point and at the two adjacent points in the vertical direction. The smoothing equation 

is: 
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where ng is the number of nodes on the ground ( for this case it is 7595 nodes). 
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Then divergence is given by: 

   nn iuiu )()( 1 −= +ε     and    nn iviv )()( 1 −= +ε              3.12 

where ε ≤ 10-4  should be satisfied for convergence. A FORTRAN code was used to 

generate the initial surface wind velocities and the upper layer wind filed.  

 

3.10 Generation of Vertical Velocity 

The estimation of vertical velocities is one of the most difficult problems in the 

modeling of wind flow. Integration of the mass continuity equation using the large scale 

horizontal wind observations and then accounting for divergence correction is the 

simplest method for the computation of the vertical velocities.  

The equation of continuity is:   
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In this study, the vertical velocities are calculated using a simple difference version of 

equation 3.13, which is given as: 
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Then the vertical velocities are obtained from: 

( ))()(
)()(
)()(

)1()1(
)1()1()()( ngiziz

ncolumiyncolumiy
ncolumivncolumiv

ixix
iuiungiwiw −−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−−+
−−+

+
−−+
−−+

−−=  

     3.15 

where ncolum is the number of column in the tower layer and ng is the number of nodes 

on the ground. 
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A FORTRAN subroutine is used to generate the vertical velocities at all the nodes 

from equation 3.15 and the horizontal velocity values, u and v.  

 

3.11 Wind Field Adjustment 

As described in Chapter 2, a 3-D mass consistent model was first developed for use in 

ADPIC (Lange, 1978). An integral function is defined by the general variational analysis 

formalism, whose extremal solution minimizes the variance of the difference between the 

observed and analyzed values, subject to physical constraints which are satisfied exactly 

or approximately by the analyzed values. Strong constraints are the subsidiary conditions 

to be satisfied exactly, and the approximately imposed conditions are the weak 

constraints. When the number of strong constraints is less than the number of weak 

constraints, a minimal solution exists. Subject to the strong constraint that the three-

dimensional analyzed wind field is nondivergent, a function is needed for this model to 

minimize the variance of the difference between the adjusted and original values.  

The function is shown in Equation 2.18, which is: 
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where u, v and w are the adjusted velocity components in the x, y and z directions 

respectively, 0u , 0v  and 0w  are the values of the observed velocities, λ (x, y, z) is the 

Lagrange multiplier, and iα are the Gauss precision moduli, where 22 2/1 ii σα =  ( iσ  are 

the observation tower errors and/or deviations of the observed field from the desired 
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adjusted field). Since apparent distinctions exist between the horizontal and vertical 

directions but not between x and y coordinates, the Gauss precision moduli are assumed 

identical for the horizontal directions (Sherman 1978).  The distinctions between the 

horizontal and vertical directions can be large, but the distinction between x and y 

coordinates are minimal. The Euler-Lagrange equations, the solutions of which will 

minimize the equation, are: 

 

,
2

1
2
1

0 x
uu

∂
∂

+=
λ

α
                                3.17 

 

,
2

1
2
1

0 y
vv

∂
∂

+=
λ

α
                               3.18 

 

and ,
2

1
2
2

0 z
ww

∂
∂

+=
λ

α
                                      3.19 

 

and the continuity equation is: 
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By differentiating equations 3.17 – 3.19 and substituting the results in the continuity 

equation we can obtain the equation for λ , which is a Poisson equation for λ : 
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The appropriateness of the final wind field is dependent on the specifications of the 

values of 1α  and 2α , though this technique produces a three-dimensional non-divergent 

wind field over complex terrain. Sherman (1978) showed that the assumption of zero 

initial velocities is reasonable if the atmospheric conditions are near neutral. This 

assumption is not a valid one when there is strong convective activity. The value of 

( )2
21 /αα  should be proportional to the magnitude of the expected ( )2/ uw . If it is 

smaller, then the horizontal adjustment dominates (Sherman, 1978) and if it is large, then 

the adjustment is predominantly in vertical component. We have taken the values of 1α  

and 2α  as 0.01 and 0.1 respectively in this study.  

 

3.12 Boundary Conditions of the Model 

On the boundary, either the Lagrange multiplier,λ , or the normal velocity component 

should be zero. If we specify both, it over specifies the problem and violates the 

conditions for the uniqueness of the solution. The normal derivative of λ  is not zero, 

when λ  is zero at the boundary. Therefore equations 3.17 – 3.19 give an adjustment of 

the observed velocities. A non-zero adjustment of the velocity normal to the boundary 

implies mass entering and leaving the volume. For open or “flow through” boundaries, a 

boundary condition of λ = 0 is appropriate. Since the non-normal derivatives of λ  are 

zero, a constant value for λ  on an open boundary means no adjustment is made in the 

non-normal velocity.  

The adjusted values of the normal velocity are the same as the observed value, when 

n∂∂ /λ  = 0 on the boundary. The normal velocity on the boundary will not be affected by 

setting n∂∂ /λ  = 0 on the boundary. There will be no transport of mass through the 
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boundary if the observed normal velocity is zero. Therefore n∂∂ /λ  = 0 means the 

boundary is closed or is a “no flow-through” boundary. Figure 3.9 shows the boundary 

conditions of the model.  

 

                                                                                     λ = 0, u = Utop, v = Vtop 
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3.13 Finite Element Method Application 

Applying the Galerkin weighted residuals technique to the Poisson equation (3.21) to 

solve for λ (see equation 2.24 for more details), we get: 
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which can be written in matrix equivalent form as 

K λ = f,                   3.23 

Figure 3. 9 Boundary conditions of the model 
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where,   K= Ω⎟⎟
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The relation has been “weakened” to a first order equation. The boundary condition 

flux of zero has been assumed for λ automatically in the finite element procedure, which 

is an ideal value.  

For the matrix solver, a Cholesky decomposition method is used to solve for 

hexahedral elements using 2x2x2 gauss point quadrature integration (2 points per 

direction).  

 

3.14 Check of Divergence 

Except for the tower and ground values, all the other velocity values are adjusted after 

calculating the λ values using Equations 3.17 – 3.19. A divergence check is then 

performed, i.e., 

 

   )()()( 0 iuiuiu −=ε                         3.26 

   )()()( 0 iviviv −=ε                      3.27 

)()()( 0 iwiwiw −=ε                    3.28 

)()()( 0 iii λλελ −=                    3.29 
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If any one of these values exceed 4
max 10−>ε , then, 

)()(),()(),()(),()( 0000 iiiwiwiviviuiu λλ ====  and the solution returns to equation 

3.22 until 4
max 10−≤ε .  

 

3.15 Methods of Computation 

All the calculations were done using Intel® Visual Fortran Compiler. Tecplot was 

used to display the results. For the 3-D wind fields, the NELLISINIT.F code converged 

within 2 minutes before 50 time steps and the WIND3D.F code converged in about 20 

minutes and after 650 time steps.  

 

3.16 3-D Wind Fields over the Nellis Dunes 

Figure 3.10 shows the 3-D wind fields over the Nellis Dunes for the month of April, 

2008 at three different elevations (20 m, 50 m and 100 m). As can be observed from the 

figure, the velocity magnitude increases with the elevation and becomes smoother with 

the increase in altitude.  
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Figure 3. 10 3-D Wind fields at different height levels for April 2008 

Figure 3.11 shows the wind vector plot of the entire Nellis Dunes area in the 

horizontal plane at 50 m. 

 

 

Figure 3. 11 Wind vector plot of the entire Nellis dunes area at 50 m 

N 

N 
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Figure 3.12 shows the 2-D monthly average wind speed for the entire Nellis Dunes for 

two different heights (20 m and 50 m) for all the months. 
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Figure 3. 18 2-D Wind speed of Nellis dunes for 20 m and 50 m heights 

 

3.17 Comparison with Measured Data  

To validate model results, the calculated monthly average values were compared with 

recorded monthly average values at the 10 m tower which was located at N 3618457, W 

11456214.  As shown in Table 3.1, wind velocities in the x and y directions were 

compared for the periods of August, 2008 to December, 2008. Overall good agreement 

can be observed. 

Table 3.2Comparison with Measured Data at Tower 4 

Month 10 Meter Tower Recorded (m/s) Simulation Results (m/s) 
 Ux Vy Ux Vy 

August 0 3.20 -0.89 2.98 
September -3.01 -1.20 -3.84 -1.01 

October -3.07 -1.68 -2.11 -1.08 
November -2.92 -1.01 -3.38 -1.42 
December -3.14 -1.45 -4.17 -0.94 

 

20 m 50 m 

N N 



47 
 

CHAPTER 4 

WIND ENERGY ASSESSMENT 

In the Southwestern U.S. wind energy is still a limited resource. Studies are still 

underway, but only several viable sites have been examined using local meteorological 

towers. The preliminary Wind Energy Atlas developed by NREL, MSOE and TrueWind 

solutions (AWS, Truewind) for the U.S. shows that Nevada has significant wind resource 

potential, but the estimation of wind energy resources is still under developed. Current 

assessment studies are preliminary, using relatively coarse meshes (~ 1-2 km) and do not 

include meteorological data from local towers. Due to the inaccessibility to reach remote 

ridges and mountain tops where the wind class may be higher (Class 3 or lower winds are 

common in most of the valleys), there has been very little detailed wind energy resource 

data for Nevada. The inability in obtaining appropriate wind data accumulated over the 

years within Nevada is one of the main problems in assessing wind power for Nevada.  

Over the last few years, there have been major breakthroughs in wind energy, 

particularly in the improved assessment of the local wind resources and in the 

development of advanced wind turbine technology. There has been increased turbine 

efficiency with new blade technology along with improved rotor and generator speed 

using advanced power electronics. These enhancements have made wind turbines able to 

withstand greater wind loads and to capture more energy. Large scale wind power 

capabilities at around $0.05 per kWh have been made possible with the recent advances 

in the wind industry combined with the increased turbine capacity and size. 
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In this study, wind data collected from four sites are used to evaluate the wind 

energy potential of the Nellis Dunes area of Nevada. The monthly average data collected 

for the period of January 1st, 2008 to October 17th, 2008 were used to produce Weibull 

distributions of the wind and create Wind Rose diagrams. Wind speed and direction were 

recorded every 10 minute over the period from October 18th, 2008 to February 1st, 2009 

for a dust dispersion study. This data was then converted to the monthly average format 

to produce Weibull distributions and Wind Rose diagrams. Since the data collected for 

the period October 18th, 2008 to February 1st, 2009 was averaged using 10 minute 

volumes, an MS Excel spreadsheet was used to convert the data to the monthly average 

format. 

  

4.1 Wind Speed Distribution  

Wind speed is the most critical data required to appraise the power potential of a 

candidate site since it has a cubic relation with the power. Wind speed is always unsteady 

over any site. The local land terrain, height above the ground surface and the weather 

system influence the wind speed at any site. Wind speed varies by the minute, hour, day 

season and year. Therefore to get confidence in assessing the energy-capture of a 

potential site, the annual wind field needs to be averaged over 10 or more years. 

However, it is not possible for most of the projects to wait that long and the long term 

measurements are expensive. In such situations, the “measure, correlate and predict 

(mcp)” technique is used, where the short term (say one year) data is compared with a 

nearby site having long term data (if available) to predict the long term annual wind 

speed at the site under consideration.  
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The wind pattern generally repeats over a period of one year, since it is driven by the 

sun and the seasons. To describe a wind site, most of the time the wind speed data 

averaged over the calendar months is used. For the brevity in reporting the overall 

“windiness” of various sites, sometimes the monthly data is aggregated over the year. A 

probability distribution function can be used to describe the wind-speed variations over a 

period of time.  

 

4.2 Weibull Probability Distribution 

In statistics and probability theory, the Weibull distribution (named after the Swedish 

Physicist W. Weibull, who used it to study the material strength in tension and fatigue in 

the 1930s) is a continuous probability distribution. Since the Weibull distribution closely 

mirrors the actual distribution of hourly wind speeds at many locations, it is used to 

describe the wind speed variations. Recently Azami et al.(2009) used the Weibull 

probability distribution to fit the wind speed data recorded for Malaysia. The results of 

their work using goodness-of-fit tests show that the Weibull distribution better suites the 

measured wind speeds. Weibull factor is often close to 2 and therefore a Rayleigh 

distribution can be used as a less accurate, but a simpler model.  

Weibull probability distribution function ‘h’ with two parameters, the scale parameter 

‘c’ and the shape parameter ‘k’ best describes the variation of wind speed (Wind and 

Solar Power Systems, Mukund Patel, 2006). The probability of wind speed being v at any 

time interval is given by the following relation: 

k
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In the probability distribution chart, h is plotted against v over a chosen period of time, 

where :  

v
vvandvbetweenisspeedwindthetimeoffractionh

Δ
Δ+

=
)(             4.2 

From the probability function definition, the probability that the wind speed is 

between zero and infinity is unity, i.e., 

∫
∞

=
0

1* dvh                  4.3 

The probability function can be expressed in terms of the number of hours in the year, 

if we choose the time period of one year, such that: 

v
vvandvbetweenisspeedwindhoursofnumberh

Δ
Δ+

=
)(             4.4 

If the unit for ‘h’ is the hours per year per meter per second, then the integral in 

Equation 4.3 becomes 8760 (the total number of hours in a year) instead of unity. 

 

 
Figure 4.1 Weibull probability distribution function with scale parameter c = 10 and 

shape parameter k = 1, 2 and 3(courtesy Wind and Solar Power Systems, 2006) 
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Figure 4.1 shows a plot of h versus v for three different values of k. The left side 

curve with k = 1 has a heavy bias to the left where most of the days are windless    (v = 

0). The right side curve, with k = 3, has a normal bell shape distribution, where the 

number of days with high wind speeds is equal to the days with low wind speeds. The 

middle curve with k = 2 is the wind speed distribution typically found in most of the 

sites. In this distribution, few days have high wind speeds and more number of days has 

lower speeds than the mean wind speed. Since the value of k determines the shape of the 

curve, it is called the ‘shape parameter’. For greater values of c, the curve shifts to the 

right to the higher wind speeds. Therefore more number of days will have higher wind 

speeds, when the value of ‘c’ is higher. ‘c’ is called the scale parameter, since this shifts 

the distribution of hours at a higher number of speed scale. 

When k = 1, the Weibull distribution is called an exponential distribution which is 

generally used in reliability studies. Weibull distribution approaches the normal 

distribution for k > 3, this is often called a Gaussian or bell-shape distribution. The wind 

speed at most of the sites has the Weibull distribution with k = 2, which is specifically 

known as a Rayleigh distribution. The actual measurement data taken from most sites 

compares very well with the Rayleigh distribution as shown in Figure 4.2. Therefore the 

Rayleigh distribution shows as a simple and relatively accurate representation of the wind 

speed with just one parameter, the scale parameter “c”.  
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Figure 4.2 Weibull probability distribution with shape parameter k = 2 and the scale 
parameter ranging from 8 to 16 miles per hour (mph) (courtesy Wind and Solar Power 

Systems, 2006) 
 

The Weibull probability distribution function characteristics are summarized as 

follows: 

k = 1 makes it the exponential distribution, which is given as: 

Veh λλ −= *   where c/1=λ              

k = 2 makes it the Rayleigh distribution, which is given as: 

    
2)(2 **2 VeVh λλ −= , and               

k = 3 makes it a normal Gaussian or bell-shape distribution. 

 

Most of the wind sites have a scale parameter ranging from 10 – 20 miles per hour 

(about 5 to 10 m / s), and have a shape factor ranging from 1.5 to 2.5 (rarely 3.0). Figure 

4.3 compares the histogram with the Weibull distribution function for the month of 

November for the 20 meter height Tower 1(N 3617717, W 11455446). A statistical 
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software package called EasyFit was used to obtain the comparison. As can be seen, a 

good fit is found for the measured data; the values of scale parameter and shape 

parameter for the Weibull distribution used:  

c = 4.9457, and  

k = 1.6266.  

 

Figure 4.3 Comparison of wind histogram with the Weibull distribution function 
 
 
Figure 4.4(a), (b), (c) shows the Weibull distribution plots for the month of April for 

three 20 meter towers.  

 



54 
 

Velocity Distribution ‐ 20m Tower(N 3617717, W 11455446) ‐ April ‐ 08

0

2

4

6

8

10

12

14

<0.5 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Speed (m/s)

%
 T
im

e

 
(a) Tower 1 

Velocity Distribution ‐ 20m Tower(N 3616761, W 11458210) ‐ April ‐ 08
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 (b) Tower 2 

Velocity Distribution ‐ 20m Tower(N 3616162, W 11457560) ‐ April ‐ 08
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(c) Tower 3 

Figure 4. 4 Weibull probability distribution for the month of April 2008 
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The Weibull distributions of the wind speed for the 12 month period staring January 

2008 to December 2008, for all the three are shown in Figures 4.5. Since the fourth tower 

was vandalized and the data for the whole year was not available, it was not included in 

the Weibull distribution.  
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Figure 4.5 Velocity distribution diagrams 
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From Figure 4.5, it can be observed that the wind speed distributions for all the towers 

over the 12 month period show a good fit with the Weibull distribution.  

 

4.3 Wind Rose Diagram 

Since persistent strong winds usually come from a particular direction, meteorologists 

use the wind rose to graphically represent the distribution of wind speed and direction at 

a particular location. Historically wind roses are the predecessors of the compass rose 

(found on maps). Wind roses are extremely useful in siting wind turbines. If a large 

quantity of wind energy is coming from one particular direction, it is important to have as 

few obstacles as possible and as smooth a terrain as possible upstream of the turbine in 

that direction. 

Wind roses were plotted using the polar coordinate system for the frequency of the 

wind over a long period of time. Modern wind roses are presented in a circular format 

showing the frequency of wind blowing from a particular direction. Each concentric 

circle represents a different frequency, emanating zero at the center to increasing 

frequencies at the outer circles. Typically the wind roses use 16 cardinal directions (N, 

NNE, NE, ENE, E, ESE, SE, SSE, S, SSW, SW, WSW, W, WNW, NW, NNW) and 

sometimes they are divided into 32 directions. In terms of angle of measurement in 

degrees, North corresponds to 0o/ 360o, East corresponds to 90o, South corresponds to 

180o and West corresponds to 270o. 

In this study, the wind rose diagrams were drawn for all the four tower locations. In 

the wind rose diagram shown in Figure 4.6 (for the 20 meter tall tower, location N 

3617717, W 11455446, for the month of January) each concentric circle represents a 
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different percentage of wind, emanating zero at the center to increasing percentages at the 

outer circles. For example, around 40% of the time the wind was flowing to the 

WestSouthWest direction (WSW), and around 10% towards NorthNorthEast (NNE). 

The total of the directional distribution is 100%. 

 

Wind Rose - 20m Tower(N 3617717, W 11455446) - January - 08
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Figure 4.6 Wind rose for the month of January 2008 – Tower 1 
 

The wind rose diagrams for the 12 month period staring January 2008 to December 

2008, for all the three Towers are shown in the Figure 4.7. Since the fourth tower was 

vandalized and the data for the whole year was not available, it was not included in the 

Weibull distribution.  
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Figure 4.7  Wind Rose diagrams 
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4.4 Wind Power Density 

In terms of the fossil-fuel displacement equivalency, the wind power potential 

accounts for about 0.65 of the total U.S. consumption (Pepper, 1998). Electricity 

potential from wind energy is estimated to be about 5,769 MW (Cormier, 1996) for 

Nevada.  

The term “wind power classes’ is a standard term of determining the suitability of a 

location for wind farm development. The wind power density indicates how much wind 

energy is available at the site for conversion by a wind turbine and is measured in watts 

per square meter. Based on the wind speed and available power per square meter, wind 

power is classified into seven different categories ranging from Class 1 (lowest) to Class 

7 (highest). Class 4 winds are considered to be satisfactory for power generation and 

correspond to a wind speed of about 7 m/s (or around 320 – 400 Watts per square meter). 

More recently Class 3 winds are becoming potentially viable with evolving new wind 

turbine technology. Class 2 winds are marginal for utility-scale applications but may be 

suitable for small wind projects. Class 1 winds are generally not suitable for wind power 

development.   

A vertical extrapolation of wind speeds based on the 1/7 power law is used in this 

classification. Wind speed generally increases 3% / 1000 m (5% / 5000 ft) of elevation. 

Battelle Wind Energy resource Atlas [20] is the source for this classification, and is 

shown in Table 4.1. 
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Table 4.1 Wind Power Classification 
 

 10 meter (33 ft) 50 meter (164) 

Wind 

Power 

Class 

Wind 

Power 

Density 

Wind Speed 

Range m/s (mph) 

Wind 

Power 

Density 

Wind Speed 

Range m/s (mph) 

1 <100 <4.4 (9.8) <200 <5.6 (12.5) 

2 100 – 150 4.4 (9.8) / 5.1 (11.5) 200 - 300 5. 6 (12.5) / 6.4 (14.3) 

3 150 – 200 5.1 (11.5) / 5.6 (12.5) 300 – 400 6.4 (14.3) / 7.0 (15.7) 

4 200 – 250 5.6 (12.5) / 6.0 (13.4) 400 – 500 7.0 (15.7) / 7.5 (16.8) 

5 250 – 300 6.0 (13.4) / 6.4 (14.3) 500 – 600 7.5 (16.8) /  8.0 (17.9) 

6 300 – 400 6.4 (14.3) / 7.0 (15.7) 600 – 800 8.0 (17.9) / 8.8 (19.7) 

7 >400 > 7.0 (15.7) >800 >8.8 (19.7) 

 
 
 

The basis for calculating the wind energy potential comes from the relations of 

kinetic energy (mV2 / 2) and momentum (mV). The wind power density for an average 

atmospheric condition can be calculated from:  

    35.0/ VareaWindPower ρ=                    

where the unit of power is Watts, the unit of area is m2, the unit of wind velocity is m/s 

and the density of air is 1.225 kg/m3 at sea level. The density of air at any elevation can 

be calculated from: 

    Z*)10*194.1(225.1 4−−=ρ                    

where Z is the location’s elevation above sea level in meter. 
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In this study the wind power density is calculated using the hourly wind speed at each 

grid point, which is given as: 

     222
iiii wvuSpeed ++=                                      4.5 

 

The hourly wind power density at each grid point is then calculated from the relation: 

     3**5.0 ii SpeedWPD ρ=             4.6 

 

The monthly average wind power density is thus calculated using: 

     
N

WPD
WPD

N

i
i

avgmonthly

∑
== 1

_            4.7 

where N is the total number of hours in a selected month. 

The monthly wind power density maps were generated for the period January 1st, 

2008 to December 31st, 2008 using Equations 4.5 – 4.7. Figure 4.8 shows the 2-D view of 

the monthly wind power densities for the period of January, 2008 to December, 2008 at 

50 m and 100 m heights. The units of wind power densities are W / m2. 

From the figure 4.8 it can be observed that the wind power density of the Nellis 

Dunes area at the 50 m and 100 m elevation is between 200 W/m2 to 300 W/m2.   
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Figure 4.8 Wind Power Density (WPD) plots 
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CHAPTER 5 

CONCLUSIONS 

Though the wind power densities for the whole of United States are available from 

other sources (TrueWind, etc.,) they give a mesoscale estimate of the wind power. A 

microscale estimation is more meaningful in finding the wind power potential of any site. 

Such studies have to be developed from local meteorological measurements taken over a 

period of at least a year. 

In this study, a total of four meteorological towers were placed in the Nellis Dunes 

area for collecting data. Three of the towers were 20 m tall and one of the towers was     

10 m tall. Wind Explorer (NRG Systems) was used to collect the monthly averaged wind 

data and the Symphonie Data Loggers (NRG Systems) were used to collect 10 min 

averaged data. Though data from Symphonie Data Loggers is much refined, data from 

Wind Explorer is sufficient enough to generate the monthly averaged wind field and also 

to carry out the statistical analysis of wind. In this study, wind speed at tower locations 

was smooth compared to other parts of the region. Placing the towers at locations where 

the wind speed has more variations can give much more accurate results.  Increasing the 

number of towers will also increase the accuracy of the results. Also it is important to 

protect the towers from vandalism.  

A 3-D wind field was constructed using meteorological data collected from 

meteorological towers. The finite element method is used to model the wind flow, since it 

allows the use of unstructured grids over any physical domain. DEM data was used to 

generate the ground level mesh and then the upper layers. Upper level wind fields were 

calculated using a surface boundary layer technique; vertical velocities were then 
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developed from the solutions of the continuity equation. An adjustment of the wind field 

is then obtained to ensure mass consistency.  Mass consistent finite element method was 

used to generate the wind filed and it was found very efficient. By comparing the 

simulated results with the measured data for one of the towers, the goodness of the 

prediction of the windfield was also verified.  

A statistical analysis of the measured monthly averaged wind data was also 

conducted. A good fit with the Weibull probability distribution was observed for three of 

the four tower values for the entire year. Wind rose diagrams for the entire year were also 

constructed to obtain monthly average wind directions.  

Monthly averaged wind power densities were calculated for a period of one year for 

the Nellis Dunes Area in Nevada. The wind power for the selected region was determined 

to be between 200 W/m2 to 300 W/m2 with a wind power class of 2 to 3.  Additional 

studies for the other regions of Nevada should be conducted, especially for those regions 

where the wind class is between 3 – 4.  

Because of the unavailability of computer resources, adaptive techniques were not 

used in this study. Local mesh refinement can be obtained by the use of adaptation, which 

reduces the computer time by refining the mesh in the region where the velocity 

variations are more and making the mesh coarse at locations where the velocity is more 

uniform.  
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