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ABSTRACT

Oxidation Modeling by Means of Molecular Dynamics
by
Chaiyod Soontrapa
Dr. Yitung Chen, Doctoral Advisory Committee Chair
Professor of Mechanical Engineering
University of Nevada, Las Vegas

Oxidation modeling is normally engineered to study systems at macroscopic
scales, mostly in analytical forms based on diffusion theories. The associated time scale
is usually in months, days, or minutes, and the length scale is in the order of microns. In
this dissertation, oxidation modeling is performed at atomistic scale with the time and
length scales in picoseconds and angstroms, respectively, using molecular dynamics.
Molecular dynamics simulations generate trajectories of each atom or particle in a system
according to the laws of physics. Studying oxidations under the atomistic point of view
can offer new insights on atomic behaviors and influencing factors in oxidation
mechanisms.

This dissertation focuses on modeling dynamic behaviors of liquid lead, oxygen,
and iron. Lead is used as a coolant in nuclear reactors due to its excellent physical
properties such as high boiling point and neutron transparency. Nevertheless, liquid lead
IS very corrosive to iron, the main structural material in reactors. As lead diffuses along
grain boundaries and other faults in iron crystals, iron lattices become brittle. In addition,
oxygen dissolving in liquid lead causes another problem. Too much oxygen promotes

undesired compound formations of lead oxide, typically known as slags, which hinder the



coolant flow. However, when only traces of oxygen are present in this lead-iron system,
protective iron oxide layers form and help preventing further ingress of liquid lead.

This dissertation provides a new approach in modeling oxidations, using the
Generalized Reduced Gradient (GRG) method in minimizing the potential energy of a
metal/metal oxide system. The approach is then applied to model iron oxidation in the
form of magnetite. Finally, a system consisting of liquid lead, iron, and oxygen is studied

under several scenarios.
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CHAPTER 1
INTRODUCTION
1.1 Lead and Lead Bismuth Eutectic as Coolants

Owing to its outstanding properties, lead proves to be an excellent candidate for a
coolant used in advanced nuclear reactors and accelerator driven systems (ADS) [1]. The
melting point of lead is relatively low at 327.46 °C (600.61 K) while its boiling point is at
1749 °C (2022.15 K). The high boiling point of lead offers a possible application in
thermochemical production of hydrogen, which requires the threshold temperature of 830
°C (1103.15 K). Lead is also transparent to neutrons because it provides low moderation,
low absorption, but good reflection of neutrons, which is beneficial to neutron economy
in fast reactors. In nuclear reactors, lead actively absorbs dangerous gamma radiation
due to the very high density of lead. Unlike sodium, which is another candidate coolant
in advanced nuclear reactors, lead is relatively inert to air and water, providing safer heat
exchange between the primary and secondary loops. The high density of lead also helps
keeping the design dimensions of lead-cooled reactors relatively small.

An alloy composed of 44.8% lead and 55.2% bismuth by weight is called Lead-
Bismuth Eutectic (LBE). A eutectic is a mixture of two or more solids at such
proportions that the mixture’s melting temperature is at a local minimum. Figure 1.1
shows the LBE phase diagram [2]. Compared to lead, LBE has a lower melting point of
125.5 °C (398.65 K) and a lower boiling point of 1670 °C (1943.15 K). The high boiling
points of lead and LBE improve passive safety in case of loss of coolant accidents. This
means coolants can absorb more energy without boiling off to further pressurize reactor

systems. LBE also carries over attractive properties of lead such as neutron transparency



and high density. However, at least two disadvantages exist for the use of bismuth. First,

the price of bismuth is many times higher than the price of lead. In 2008, bismuth cost

about $12 per pound, while lead cost only about $1 per pound [3]. The second

disadvantage comes from polonium, a by-product of bismuth irradiation. Polonium is

born when bismuth undergoes neutron capture with subsequent beta decay. Alpha

particles emitted by polonium can easily damage organic tissues and increase the risk of

cancer. In addition, the major drawback of using lead and its alloys as coolants remains

in their very corrosive nature to structure materials such as steels.
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1.2 Corrosion in Liquid Lead Alloy Environments
Liquid metal corrosion involves several variables that can greatly affect corrosion
rates. Those variables belong in one of the following three categories: (1) operating
condition, (2) metallurgy, and (3) manufacture [4]. Examples of the corrosion factors

according to their categories are listed in Table 1.1 [4, 5].

Table 1.1 Corrosion factors that influence corrosion rates [4, 5]

Categories of Corrosion Factors Corrosion Factors

Operating Condition o Temperature

o Temperature gradient

o Cyclic temperature

o Surface area to volume ratio

o Flow velocity

Metallurgy . Purity of liquid metal
o Mixed metal systems in the same liquid metal

. Microstructure of container materials

Manufacture ° Condition of container materials

Operating Condition:
e Temperature
Temperature is the most important variable in liquid metal corrosion.
Higher temperature leads to higher solubility and higher diffusivity, which in turn

accelerate corrosion.



Temperature gradient

A temperature gradient changes solubility limits of the same solid metal in
hot and cold parts of a circulation loop. It causes the continued loss of materials
from the hot parts, and can possibly lead to selective removal if the loop
components are made of different materials.
Cyclic temperature

In a poorly controlled furnace, for example, sizable fluctuations in
temperature allow solid metals to dissolve into liquid metals when temperature is
erratically high. Later, when temperature drops, dissolved metals precipitate in
the bulk liquid. If this cycle continues, thinning of the furnace walls will be
evident.
Surface area to volume ratio

Corrosion increases when the ratio of an exposed metallic surface area to
the volume of liquid metal decreases. In an isolated static system, solid metals
will eventually saturate liquid metals that they come in contact. Given two
containers with the same surface area, a container with a larger amount of a liquid
metal (hence larger volume) will corrode more heavily than the one with less
amount of the same liquid metal. The more liquid metals are added into the
system, the more solid metals will dissolve in the liquid metals.
Flow velocity

The flow velocity, or as measured by the Reynolds number, becomes very
important in a forced-circulation loop. The corrosion impacts depend on how fast

the coolant is flowing over solid material surfaces, and, therefore, this type of



corrosion is termed Flow Accelerated Corrosion (FAC) [6]. The FAC combines
the mechanical effects (abrasion and impingement) with electrochemical effects
(dissolution and oxidation), and each effect has varied domination over one
another depending on the flow velocity. Generally, three velocity domains are
considered: (a) low velocity, (b) moderate velocity, and (c) high velocity [7].

(@) In the low velocity domain, the mass transfer fully or partially dominates.
When there is no flow, the solubility of solid in liquid reaches its limit at
the solid-liquid interface. When a low-velocity flow starts, some of the
corrosion products at the interface are carried by the liquid flow. A
stronger flow will give rise to a higher corrosion rate because solid
dissolves more at the solid-liquid interface to make up for the transported
fragments.

(b) In the moderate velocity domain, the flow rate continues to be the limiting
factor until the flow velocity reaches a critical value. When that happens,
dissolution rate becomes the limiting factor instead. The corrosion rate in
this sub-domain becomes activation controlled. In the activation
controlled sub-domain, the dissolution of solid in liquid dictates the rate at
which the corrosion products are formed. Therefore, regardless of the
flow velocity, the dissolution and reaction rates fully control the corrosion
rate. The strong flow just simply carries all the corrosion products from
the interface.

(c) In the high velocity domain, all mechanical effects become crucial. Shear

stresses in a single-phase highly turbulent flow and particle impacts in a



multi-phase turbulent flow can strip off passive oxide films from the base
metals. This behavior shortens diffusion distances between the underlying
metals and liquid, and that hastens the corrosion rates. In addition, if the
flow changes its directions sharply due to sudden expansions/contractions
or elbows in the circulation loop, erosion corrosion becomes severe as
liquid and particles suspending in the flow are thrown against the loop
walls. Cavitation corrosion can also occur if the voids in the flowing
liquid metals suddenly collapse on the loop walls. Micro jets of heavy
liquid metal atoms burst out from the collapsed bubbles will collide at
high velocities with the loop walls, leaving those walls under high local
pressures. High stress in solid metal structures can result in consequences
such as localized fatigue damages and stress-assisted cracking.
The low velocity domain is where the flow is essentially laminar, while the flow
is turbulent in the remaining two domains (b) and (c). Figure 1.2 shows the
diagram of velocity effects on the corrosion rate. Within the turbulent flow
domain, the combination of different effects results in four types of flow
accelerated corrosion besides the underlying mass transfer that is continuously
active whenever a flow exists. The four FAC types are (1) activation-controlled
corrosion, (2) phase-transport controlled corrosion, (3) erosion corrosion, and (4)
cavitation corrosion [8]. The classification of these four corrosion types is shown
in Fig. 1.3 [8]. All of these corrosion types have been described briefly, except
for the phase-transport controlled corrosion. The phase-transport controlled

corrosion involves reactive phases in flowing liquid, usually gaseous phases that



contaminate the liquid. The phase-transport begins when reactive phases wet or
get in contact with structural surfaces. The nature of the flow can accelerate the
corrosion if the flow efficiently transports these aggressive contaminations
throughout the loop, or the flow has bends or sudden expansions that create
surface eddies. An example of this corrosion type includes carbon in liquid
sodium that impairs the elastic properties of 316-type stainless steels [9]. Another
example is oxygen in liquid sodium that aggravates corrosion in austenite
chromium-nickel steels [10]. Figure 1.4 shows the schematics of these four

corrosion types in the turbulent flow domain.
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Figure 1.2 Velocity effects on the corrosion rate [7]
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Metallurgy:

Purity of liquid metal

Purity of the liquid metal can impact the rate at which the solubility limit
is reached and the wetting tendency of the liquid metal on the solid metal.
Impurities in liquid metals can either enhance or worsen corrosion rates.
Mixed metal systems in the same liquid metal

When a container or a loop is made of a combination of solid metals, a
mass transfer phenomenon (dissimilar mass transfer or concentration mass
transfer) can occur even under an isothermal condition. A system consisting of
multiple types or phases of solid metals reaches equilibrium only when all the
chemical potentials of each distinct type or phase are equal to each other. The
constituents in the system components will be continuously redistributed until all
the chemical potentials satisfy an equality. The equalization of the chemical
potentials, the main driving force behind this process, forces the free energy of the
system to become lower.
Microstructure of the container materials

The microstructure of the container materials such as grain sizes and
precipitations along grain boundaries affect the rates at which liquid metal attacks
on solid metals. Wettability of individual grains and the wettability of grain
boundaries are different. Good wettability normally accelerates corrosion rates.
Corrosion can be greatly enhanced along a continuous carbide or oxide network at

the grain boundary.



Manufacture:
e Condition of container materials
During a manufacturing process, welding, loading, cold work and other
operations can cause container materials having unwanted grain boundary
precipitates and second phases, high stress state of metals, and unfavorable grain
sizes. This effectively leaves the container materials in compromised conditions.

For example, thinning due to liquid metal corrosion combined with high stress in

container materials potentially foster premature failures. Also, an uncontrolled

factory environment can introduce oxide films on the surfaces of container
materials. In a static system, the primary effect of surface films is to change the
rate at which the liquid metal is saturated. The greater the unprotected surface
area that is exposed, the faster the liquid becomes saturated. After equilibrium is
reached between the liquid metal and the solid metal, the surface condition should
have no effect.

All of the above corrosion factors play their roles in either promoting or deterring

corrosion attacks of liquid metals on solid metals.

Based on visual detections, there are two general types of corrosive attacks on
solid metals by liquid metals: (1) uniform corrosion and (2) local corrosion [4]. In
uniform corrosion, the attack of liquid metals on solid metals proceeds evenly over the
contact areas between solid and liquid metals. Thinning on the surfaces continues until
structural failures take place. However, uniform corrosion can be easily measured and
predicted. In contrast, local corrosion is much harder to observe as damage occurs below

the surfaces of solid metal structures.
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Furthermore, uniform and local corrosion can be further categorized based on
specific nature of the attacks. There are four kinds of corrosive attacks as follows [5]:
(1) Simple solution

The simple solution attack corrodes solid metal surfaces evenly. The driving
force of the attacks is solubility of solid metals in liquid metals. For a static system, if all
phase diagrams of liquid-solid metals in the system are available, penetration depths can
be predicted based on solubility limits at a specific temperature. Examples of the simple
solution attack include the corrosion of titanium in liquid lead at 1000 °C and iron in
liquid lithium at 1000 °C.

(2) Diffusion penetration

There are two modes of penetration: intragranular and intergranular. In both
modes of attack, intermetallic compounds (alloys) between liquid and solid metal species
are usually formed. In the intragranular mode of attack, liquid metals dissolve directly
into the grains of solid metals. In the intergranular mode of attack, liquid metals
penetrate along the grain boundaries. Between the two modes of attack, the intergranular
attack causes more disastrous damages to structural metals, and it is often the preferred
mode of attack. Grain boundaries provide easy paths for diffusion of liquid metals. As a
result of penetrations and alloy formations along the grain boundaries, adhesion between
grains weakens and grains easily detach from their crystalline networks.

(3) Impurity reactions
Impurities such as oxygen and nitrogen in liquid metals can promote or slow

corrosion rates. For example, nitrogen reacts with carbon in stainless steel, causing
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removal of carbon from the grain boundaries of steel. In contrast, oxygen forms
protective film layers on steel that act as contact barriers between steel and liquid lead.
(4) Mass transfer
There are two types of mass transfer as listed below. Each type of mass transfer
differs by the driving force behind it.
(4.1) Temperature-gradient mass transfer
The driving force behind this type of corrosion is the difference in
solubility of a solid metal in a liquid metal at various temperatures. At a very hot
portion of a circulation loop, atoms from pure solid metals or solid alloys made up
the piping of the loop diffuse out to the surfaces and dissolve in the liquid metal.
They are then carried through the loop. Upon reaching colder portions of that
loop, they settle and re-crystallize because the solubility is less in these cold parts
than in the hot parts.
(4.2) Dissimilar-metal mass transfer
This type of corrosion is driven by the decrease in free energy of a system
by alloying two or more different metals. In a circulation loop that was made of
two or more different metals, atoms of one metal species dissolve in a liquid
metal, travel through the loop, and diffuse into another metal species, forming an
alloy.
To conclude, only simple solution is uniform corrosion, while the rest are local corrosion.

Table 1.2 summarizes the corrosion natures and their driving forces.
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Table 1.2 Summary of the corrosion types

Damage Type Nature of Attack Driving Force
Uniform Corrosion| simple solution isothermal solubility of solid in
liquid
Local Corrosion | diffusion penetration solubility of liquid in solid
Impurity reactions reactions between constituents

in solid with impurities in liquid

Mass transfer
e temperature-gradient mass e solubility of solid in liquid at
transfer different temperatures

e dissimilar-metal mass transfer | e reduction in free energy

Liquid metal corrosion studies often mention three important parameters: (1)
wettability, (2) solubility, and (3) diffusivity. Surface wetting plays an important role. A
liquid with more wettability can spread itself over a large surface area, while a liquid with
low wettability only appears as droplets on solid surfaces. Therefore, the more
wettability a liquid metal has on a solid metal surface, the faster corrosion proceeds. This
is directly related to the surface to volume ratio, one of the corrosion factors mentioned
earlier. On the other hand, wettability of liquid metals becomes lower when solid metal
surfaces are protected by passive oxide layers. An experiment has shown that a presence
of passive oxide layers on T91 steel deters surface wetting by liquid lead [11].

The second parameter is solubility. Related to corrosion attacks of liquid lead on

solid iron are two important kinds of solubility: (1) oxygen solubility and (2) iron
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solubility in liquid lead. In the temperature range between 400 ° C and 700 ° C, the
solubility of oxygen in liquid lead is given by [1]:
logC, =3.2-5000/T (1.2)

where C, is the concentration of oxygen in wt. % and T is the temperature in Kelvin.

At 550 ° C, the concentration of oxygen is 1.3x107 wt. %. This translates into 1 oxygen
atom for about every 60 lead atoms. The oxygen solubility determines the upper limit of
oxygen control. Oxygen control, a key corrosion protection method, will help
maintaining protective oxide layers. Any oxygen exceeding its solubility limit will react
with lead to form undesirable lead oxides. The oxygen control process will be discussed
in Chapter 4.

In the temperature range between 330 ° C and 910 ° C, the solubility of iron in
liquid lead is [1]:

logC, =0.34—3450/T (1.2)

where C,, is the concentration of oxygen in wt. % and T is the temperature in Kelvin.

At 550 " C, the concentration of iron is 1.4x10~* wt. %. This is roughly 1 iron atom in
1914 lead atoms. As stated earlier, if the solubility is available, the amount of metal
losses can be calculated for a static system (no flow). This provides a rough estimate of
how much thinning will occur over time. The volume of liquid lead can be calculated
from [1]:

Pop =11367 —1.1944T (1.3)
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where p,, is the lead density in kg/m?® and T is the temperature in Kelvin in the range

600 K to 2000 K. Figure 1.5 gives an estimate of iron loss in kilograms per one cubic

meter of liquid lead at various temperatures in a static system using Eqgns. (1.2) and (1.3).
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Figure 1.5 Iron loss in liquid lead at different temperatures in a static system

The last parameter is the diffusivity, which measures how fast an atom can travel

in a given environment. In the temperature range from 700 ° C to 1000 ° C, the
diffusivity D of iron in lead and LBE is approximated by [1]:

logD = -2.31-2295/T (1.4)
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where D is in cm?/s, and the temperature T is in Kelvin. The diffusion and dissolution
rates serve as two important parameters in analytical modeling of liquid lead and LBE

corrosion behaviors.

1.3 Prevention of Liquid Metal Corrosion Attacks on Solid Metals

To prevent corrosion attacks from liquid metals on solid metals, the following
three methods are usually implemented: (1) alloying of stable oxide formers, (2) surface
coating, and (3) adding corrosion inhibitors [1]. All of these methods involve passive
oxide formations over the surfaces of structural materials. Each prevention method only
works well at certain oxygen concentrations in liquid metals. Therefore, oxygen level in
liquid metals must be controlled specifically for each corrosion prevention method.

In the first prevention method, stable oxide formers such as silicon and aluminum
will be alloyed with structural metals to become the thin surface layers of the structural
metals. The alloyed surfaces do not affect the mechanical properties of the bulk materials
due to their very thin surface layers compared to the bulk volume. With excellent
adherence to the structural surfaces, oxide scales of silicon and aluminum oxides can
block or minimize the ingress of liquid metals into bulk materials. Self-healing of oxide
scales stay continuously active as long as oxide forming elements remain in alloyed
surfaces throughout the service duration.

The second prevention method relies on direct coating of structural surfaces with
corrosion-resistant alloys and compounds or metals that have low solubility in liquid
metals. The disadvantages of this prevention method are poor adherence and lack of self-

healing ability to rebuild oxide films. However, when treated with pulsed electron
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beams, the coatings are welded to the bulk materials, essentially transforming to the case
of alloyed surfaces, and, as a result, adherence is improved.

The last prevention method is to add corrosion inhibitors. By definition,
inhibitors are substances that are added in small quantities to a chemical system with the
pure purpose to slow down reaction rates among reactants. There are two types of
inhibitors: metallic and non-metallic. Examples of metallic inhibitors include zirconium
(Zr) and titanium (Ti). In LBE with very low oxygen, zirconium and titanium are found
to reduce the dissolution rate of iron into LBE. Instead of typical oxide scale formation,
it is postulated that Zr and Ti first form nitride scales with available dissolved nitrogen in
steels. Once nitrogen is depleted, they find available dissolved carbon in steels and form
carbide scales. On the other hand, when a feasible concentration of oxygen exists in
LBE, oxygen itself acts as a non-metallic corrosion inhibitor. Oxygen oxidizes iron and
protective oxide films are formed. Clearly, oxygen works well only when there is enough
oxygen concentration in liquid metals. That is why oxygen control becomes a focal

interest to ensure oxide formations and self-healing when damaged oxide layers wear off.

1.4 Liquid Lead Corrosion Modeling
Several models for liquid lead and LBE corrosion have been proposed. Many of
these models are almost all analytical and deal primarily with the macroscopic behavior
of LBE loop systems. The analytical models are usually based on diffusion theories and
semi-empirical data gathered from experiments. In a LBE loop, only the mass transfer
and activation controlled domains are preferred. Therefore, kinetic models have been

specifically engineered for these two domains of interest [12-18]. Stochastic cellular
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automaton modeling offers a departure from the analytical and semi-empirical modeling.
Tan and Chen formulated cellular automaton modeling to study the interactive behaviors
among iron, lead, bismuth, and oxygen at the mesoscopic scale, the next closest to the
atomistic scale [19]. There are only a few studies on the interatomic behaviors of lead
and iron atoms. These studies employed molecular dynamics to explore interatomic
interactions in iron-lead systems.

The first molecular dynamics simulation work was done by Takahashi el al. [20].
The Takahashi group applied a quantum mechanics theory, called the density functional
theory, to simulate systems containing solid iron and liquid LBE. Maulana et al. became
the second research group to use molecular dynamics on modeling steels in LBE using a
traditional pair potential function [21]. Both studies do not consider protective oxide
layers in their simulations. Incorporating oxygen into simulations involves variable
charges on ions due to oxidation during the course of a simulation. The lack of

considering oxidation in these models has been rectified in this dissertation.

1.5 Molecular Dynamics
Molecular dynamics (MD) is a computer simulation process that generates
trajectories of atoms or molecules in a system. There are two levels of molecular
dynamics: Newtonian and Quantum. Quantum MD can simulate bond forming and
breaking among atoms, while Newtonian MD cannot accurately deal with those abrupt
changes. Although Newtonian MD cannot provide exact details of how atoms bonded
together and in what configurations, it can provide representative details of oxidation

processes such as oxide layer thickness and how thick a layer should be in order to
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completely seal off oxygen ingress. These oxide layers can be virtually observed and

measured from MD simulation results. The units related to molecular dynamics

simulations are usually in angstroms (A) for distance, electron volts (eV) for energy,

picoseconds (ps) for time, and atomic mass units (amu) for mass. This dissertation also
adopts these units unless otherwise noted.

1.5.1 Verlet Algorithm

Newton’s second law of motion states that force F is equal to the product of a

mass m and accelerationa:
F=ma (1.5)
In addition, the relationship between force F and potential energy U is

F=-VU (1.6)

Therefore, acceleration can also be written as:
a=—- .7)

Typically in molecular dynamics simulations, the potential energy U is a function of
position . This essentially makes the acceleration a function of position, a(f).
To begin constructing a particle trajectory, a Taylor’s series expansion is applied

to the position T, of a particle i at one time step At ahead of a current time t. This

gives:

= = = 1_ 2 1- 3 4

L+ A = 1.0 + ¥ (AL+2 8, (A + b, 1)(A) +o(att)  (18)
where v, is the velocity of the particle i and b, is the jerk, the third derivative of the

position with respect to time. The error in the above equation is in the order of At*,
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which can be represented in the Big O notation as O(At“). The position of that particle at

one time step backward is then
F(t—At) =T (1) -V, () At +%ai (D)(AL)? —%Bi M +o(at!) (L)

Adding Egns. (1.8) and (1.9) together gives

F, (t+ At) = 27, (t) — F, (t — At) + &, (t)(At)? + O(At*) (1.10)
The above scheme is called the Verlet central difference method. This method, however,
suffers at the initial condition (when t =0). The position T, (0) and acceleration &, (0)
are known, but the position r; (—At) is unknown. In order to overcome this problem, an

approximation from Eq. (1.8) can be made in the first time step as:
F.(At) = F.(0) + V. (0)At +%ai (0)(At)? +O(at?) (1.11)

Although the accuracy drops to O(At3), a small time step usually helps compensate for
accuracy for this one-time only approximation over many time steps during the course of
a simulation. At subsequent time steps, calculations revert back to Eq. (1.8), the original
basic Verlet, and the accuracy still holds at O(At“).

Certain cases of molecular dynamics simulations require velocity in calculating
instantaneous kinetic energy and temperatures. The basic Verlet equation does not
explicitly prescribe the velocity. From Eq. (1.9), the velocity Vv, (t) can be approximated
by:

F (1) - F (t - AY)
At

V.(1) = +0(at?) (1.12)
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Substituting the above equation into Eq. (1.10) yields a more popular scheme called the

Velocity Verlet scheme:

P (t+At) = F; (t) +V, () At + &, (t)(At)? +O(At°) (1.13)
The derivative with respect to time of the above equation is the velocity v, (t + At):

v, (t+ At) =V, (t) + & (t) At + O(At?) (1.14)
As the name suggests, the Velocity Verlet scheme includes the velocity in the equations
for finding positions and velocities, and it avoids the initial value problem of T, (—At).

Substituting Eq. (1.7) in Eq. (1.13) yields:
F(t+At) =T (t) +V, ()At —%W (r. ())At)? +0(at?) (1.15)

Given initial conditions, once the potential function is known, a particle position can be
calculated.
1.5.2 Beeman Algorithm
Instead of the Verlet algorithm, all the simulations in this dissertation use the

Beeman algorithm, which is a variation of the Verlet algorithm. The accuracy of the
Beeman algorithm is O(At3) in velocity compared to O(Atz) of the original Verlet

algorithm. The equations for Beeman algorithm are:

F(t+A) = F (1) + V. (D) At ﬁu%[mi (t)-a (t-at)]+o(at*)  (1.16)

V. (t+At) =V, (1) +%[2:31i (t+At)+5a,(t) - a (t— A)]+ O(At®)  (1.17)

The regular Beeman algorithm does not assume velocity-dependence. That is, the
acceleration a used in Eqns. (1.16) and (1.17) is only a function of position r, a(F),

(see Eq. (1.7)). However, certain simulations require that forces, and hence acceleration,
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depend on not only positions but also velocities. Examples of such simulations include
the ones that utilize the Nose-Hoover algorithm to keep temperature constant or the
Parrinello-Rahman algorithm to keep pressure constant. This means, the acceleration

now has to be a function of both position and velocity, a(r,v).

To fully incorporate velocity dependence, the original Beeman algorithm needs to

be modified to carry a predictor-corrector scheme. First, the position of a particle at time
t + At is determined from Eq. (1.16). Then, the predicted velocity v " at time t + At is

calculated from a new equation:
7 () A A 3
VP (t+AL) =V, (t) + ?[Bai (t)-a,(t - At)]+ O(at?) (1.18)

The predicted velocity and position at time t+ At give the acceleration a(t + At) from
the force F :

a,(t+ At) = F(r,(t + At), v (t + AL)) (1.19)
The resulting acceleration is then used in finding the corrected velocity v® from Eq.

(1.17):
VO (t+ AL) = V. (t) + %[zai (t+ At)+5a, (t) - & (t — At) ]+ O(at®)  (1.20)

Substituting v for v® in Eq. (1.16) gives a new value of v . The iteration continues

until convergence between v© and v is reached, which usually takes 2-3 cycles.

1.5.3 Nose-Hoover Algorithm
The Nose-Hoover algorithm can set a system at specific temperature during a
simulation, and the algorithm has been used in this dissertation. The algorithm couples a

system with a heat bath, and heat will be transferred back and forth between the system

22



and heat bath in order to keep the system temperature relatively constant. In the Nose-
Hoover algorithm, Newton’s second law of motion is modified to have an additional term

related to the heat bath:
_ F(t _
a(t) = Rl)_ S (t) (L.21)
The friction coefficient ¢ is defined as:
i((t):&(k T(t)—kgT,) (1.22)
dt Q B B'0

The number of degrees of freedom N is equal to 3N +1, where N is the number of
particles in a system, T (t) is the instantaneous temperature, T, is the heat bath

temperature, and k; is the Boltzmann constant. The fictitious mass parameter Q
determines the heat transfer rate. Normally the Q value does not have any effects unless
its value is incredibly large or extremely small. If Q is too large, the system will
decouple from the heat bath and that renders the algorithm ineffective. If Q is too small,

heat will flow back and forth too frequently between the system and the heat bath, and
that makes the system become unphysical.

1.5.4 Computer Programs for Molecular Dynamics Simulations and Visualizations

This dissertation relies on the computer code “Moldy” to perform molecular

dynamics (MD) simulations. Moldy was written by Keith Refson in the C language
specifically for MD simulations of condensed matters [22]. Moldy was chosen because
of its relatively compact size and flexibility to be modified. The Moldy code is easy to
read and follow line by line of the code, compared to other molecular dynamics

simulation computer programs. The two modifications made to Moldy for this
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dissertation are the additions of (1) the Embedded Atom Method (EAM) potential and (2)
the Generalized Reduced Gradient (GRG) Method as explained in the next chapter.

After Moldy has finished a simulation, the simulation results are translated into a
format called pbd (an acronym for Protein Data Bank). The pdb files can be visualized
through another computer program called VMD (short for Virtual Molecular Dynamics).
VMD is developed by the Theoretical and Computational Biophysics group at the
University of Illinois and the Beckman Institute [23]. VMD can display and animate
molecular dynamics configurations and trajectories in a variety of representations. All of

the simulation figures in this dissertation have been processed through VMD.

1.6 Dissertation Purpose
This dissertation offers another approach to study corrosion behavior in liquid

lead — iron systems. Difficulties in doing experiments on liquid lead corrosions
discourage experimental investigations on various cases and scenarios. Currently, the
available experimental data are scarce and scattered [24 — 27]. With modeling via
molecular dynamics, representative behaviors can be obtained, and they help in
optimizing experiment designs with minimal costs. In addition, molecular dynamics
modeling can lead to the developments of new alloys for better corrosion resistance in
liquid lead and LBE. The rest of this dissertation is arranged as follows:

e Chapter 2 discusses electrostatic energy minimization in oxidation modeling

e Chapter 3 shows the results of iron oxidation modeling

e Chapter 4 shows the results of oxide layer modeling in lead-iron systems

e Chapter 5 concludes the dissertation
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CHAPTER 2

OPTIMIZATION APPROACH IN VARIABLE-CHARGE POTENTIAL FOR
METAL/METAL OXIDE SYSTEMS
2.1 Introduction

An oxidation occurs when a fresh metal is exposed to oxygen. The process,
which sometimes yields undesired results, can impede corrosion by forming protective
oxide layers. For example, chromium and silicon can form internal oxides in steel alloys
preventing corrosion/erosion from lead-bismuth coolant in fast nuclear reactors [1].
Molecular dynamics (MD) can be used as a tool to study how oxidation occurs. By
applying Newtonian MD, oxide layers can be virtually observed and measured from MD
simulation results.

In Newtonian MD, each atom or particle obeys Newton’s second law of motion
(F =ma) and the force acting on the particle can be found by taking the first spatial

derivative of the particle’s potential energy (F, = —dU /dx, for example). In the case of

oxide simulations, the total energy is the sum of electrostatic (ES) energy and non-
electrostatic (non-ES) energy. For a given environment, the electrostatic energy depends
only on ionic charges, and it can vary greatly for a pair of ions with different oxidation
states. Repulsive and attractive forces arising from different charged pairs keep ionic
compounds in balance. The non-ES energy, independent of ion charges, describes inter-
atomic interactions among various atoms. A widely used inter-atomic potential for
metals is the embedded atom method (EAM) potential [28, 29]. The idea of EAM

originates from embedding an atom into a site surrounded by electron clouds.
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2.2 Embedded Atom Method (EAM)

Most of the well-known potentials such as Lennard-Jones potentials only describe
interactions between two atoms or molecules. However, within a group of atoms or
molecules, an atom is acted on by not one, but many of its neighboring atoms. Therefore,
there is a need for many-body potential functions and the embedded atom method is one
of them. The EAM potential can be derived from the Density Functional Theory (DFT),
a quantum mechanical theory, which describes ground state properties of many-body
systems. Using the Hohenberg and Kohn theorems, Daw showed that the EAM potential
is a semi-empirical application of DFT [30].

The EAM potential has contributions from three parts: (1) a pair potential ¢, (2)
an electron density function p, and (3) an embedding energy function F. The EAM
potential takes the form:

E=F(p)+o (2.1)

The pair potential takes the form:
—a L,]_ -B L,]_
#(r)= Ae { j —Be { j (2.2)
where A /B,a,and g are fitting parameters that are positive numbers, r is the distance
between two atoms, and r, is the first nearest neighbor distance of a crystal at

equilibrium. The electron density f of each individual atom as a function of the distance

r away from that atom is:

f(r)=f e_ﬂ('re_lj (2.3)
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where f, is defined as the ratio between cohesive energy E, and an atomic volume at
equilibrium Q,, or f, =E_/Q, [31]. The total electron density o ata point or a lattice

site is approximated by the linear superposition of electron densities from all atoms

surrounding that site, and it can be expressed as:

p=2 1) (2.4)

where r, is the distance from the i"" neighbor to the site of interest. This total electron

density dictates how much energy is needed to embed an atom at a given site.

The embedding energy function determines the energy to embed an atom into a
cloud of electrons coming from the neighboring atoms. The analytic form of the
embedding energy function used in this dissertation was found independently by two

research groups: Johnson [32] and Banerjea & Smith [33]. The embedding energy

ootz

where p, is the density of a lattice at equilibrium, and F, and 7 are the fitting

function takes the form:

parameters. Banerjea and Smith developed the above equation from semi-empirical data,

while Johnson derived it from the Rose equation:

E =—E, [1+ a, U—l —1]] exp[— a, U—l —1}] (2.6)

, where B is the bulk modulus, and E. is the cohesive energy. By

with a, = 2,8

c

combining Egns. (2.5) and (2.6), the embedding energy function is of the form:
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F =—Ec[1+ ao[:—l—lj]exp(— ao[:—l—lﬁ—(p (.7)

From Eqg. (2.4), the total electron density due to the first n nearest neighbors is:

oz
p=nfe *° (2.8)
At equilibrium the total electron density p, is nf,. Taking the natural logarithmic on

both sides of Eq. (2.8) gives

i_lz_im[iJ:_i]n(ﬁj (29)
r, g\ nf, B\ pe

Substituting Eq. (2.9) in Eq. (2.7) yields

s R

Equation (2.10) is very similar to Eq. (2.5) developed by Banerjea and Smith from semi-
empirical data. For convenience in parameter fitting, Eq. (2.5) is used in this dissertation.

Furthermore, Eq. (2.5) is normalized in such a way that

2
:_Fo_ﬂ(ﬁjm(ﬁJ
. p \p.) \p

Details in parameter fitting for the EAM potential will be described in Chapter 3.

dF

— =0 2.11
i (2.11)

P=Pe

2.3 Electrostatics Energy Minimization
Using a second-order Taylor series expansion about a neutral point of an atom i,

Rappe and Goddard [34] expressed energy of its isolated ion with a charge g; as:

Ei(q;)= E(O)"‘Ziqi +%‘]iqi2 (2.12)
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E, . . : ’E, . .
where y, :L is the electronegativity of the atom i, and J, :aa > is its self-
q

Coulomb repulsion or Chemical Hardness. The electronegativity and self-Coulomb

repulsion can be calculated from the first ionization energy (IE) and electron affinity

energy (IA) as follows [34, 35]:
1
Z=50E+M) (2.13)

J=IE-IA (2.14)
Within a group of ions (an ionic crystal, for example), Coulomb interactions among ions
contribute to a total energy of each individual ion. The total energy of the atom i can

now be written as:

1 1 q;
Ei(Qi):E(O)"‘Ziqi "’EJiqiz‘FEkc%Z—]' (2.15)

j#i tij
where k. is the Coulomb constant and r; is a distance between ions i and j. To write

the above equation more compactly, define

1 .
—J =
5V J

W (2.16)
—= NE
2

Equation (2.15) then becomes
Ei(q)= E(O)"'(Zi +Z‘Jijqjjqi (2.17)
j
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Since the total energy of the ion i is the sum of electrostatic and non-electrostatic

energies, the E(O) term can be safely considered as part of the non-electrostatic EAM.

Therefore the electrostatic energy E*of an atom i is
Eies(qi):[;(i +Z‘]ijqj)qi (2.18)
i

As the environment changes, each charge g; in a system must readjust itself to match the

environment. There have been many attempts to find charge distributions in response to
changes in the system environment. However, each approach has some unresolved issues
as described below.

Rappé and Goddard [34] used the electronegativity equalization that, at
A : . oE,
equilibrium, each chemical potential g, = a—' must be equal to the same value, say .

This leads to ZJqu = — y;,0rinamatrix formas Jq =p—y. The charge vector is
i
then q =J*(u—y). The chemical potential value  is calculated to be

1= LZ Iitx; + Zqi] >°J;". Initially, the charge neutrality condition > q; =0 is
i i 0 i

applied and x becomes u = [ZJU‘%)/(ZJ”*J. Once the chemical potential value
ij ij

4 is known, each g; can be solved for. When the values of q;’s exceed their physical

charge limits, the values are fixed at the limits. Successive calculations then consider

only unfixed charges with the net charge equal to the negative sum of all fixed

charges Zqi =—0O4eq - 1Ne calculations are repeated until all the ¢, values are within

i,i=unfixed
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their bounds. Although this approach ensures that all the charges stay within their limits,
a system is not guaranteed to be at equilibrium when charges are forced to be fixed at
their bounds. Hence, the total energy is not minimized. To illustrate this, consider one

oxygen atom and two aluminum atoms that are aligned along one straight line. The
distances between each pair of the atoms are 1.44 A for the Al-O pairs, 1.44 A and

2.882‘x for the Al-Al pairs. The charge limits on aluminum and oxygen are

0<q, <+3e and —2e <q, <0, respectively. Using the parameter values from the
reference [36], the matrix J and vector y can be written as

51645 50 25
J=| 50 7.018 5 |andy=(0, 5485 0). Thevalueof x isthen 3.9046,
25 5 51645

and that yields the charge vector to be q =(9.3165, -13.5003, 9.3165). Obviously,

the charge values of the aluminum and oxygen atoms exceed their bounds, so they have
to be fixed at their limits. This means that the first and second aluminum atoms will
carry + 3e and 0 charge while the oxygen atom will carry 0 charge. The result certainly
violates the charge neutrality condition and therefore each atom is forced to only carry
zero charge. The electrostatic energy then becomes 0 eV . In contrast, the correct result
using a constrained optimization shows that the two aluminum atoms carry + 0.1428e
charge and the oxygen atom carries —0.2856e charge with the minimized energy of
—0.7834 eV.

Following the approach of Rappé and Goddard, Streitz and Mintmire [36]
substituted point charges in Eq. (2.18) with a charge distribution function

pq(r,a)=28(r)+(q—2)f(r), where Z is an effective core charge ranging from zero to
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the charge limit of an atom, &(r) is a delta function, and f, (r) is a distribution function
with IfN(r)dr =1. Evidently, q is partitioned into p, (r,q) because Ipq (r,q)dr=gq.

Charge values can be then algebraically solved for, using equilibrium conditions and
neutrality as in the approach of Rappé and Goddard. Zhou et al. [37] pointed out two
problems of the Streitz and Mintmire model: (1) charge instability and (2) validity of the
model other than binary systems. Regarding the charge instability, an example of two
point charges of equal magnitude but opposite sign (a neutral system) was chosen. Zhou
et al. showed that when a distance between two ions falls below some critical value, a

global minimum energy does not exist. Equation (2.18) has the global minimum when

the first and second derivatives of the energy E.* with respect to the charge g; (i.e. slope

and concavity) are zero and positive, respectively. The second problem with the Streitz
and Mintmire model is that it does not work when two or more metals are included in a
system. Streitz and Mintmire set up their model such that oxidations would always occur
among atoms within a given system, and they only studied binary systems (one metal and
oxygen). If only metals are present but no oxygen, charge transfers will still occur as
long as those metals possess different electronegativities. Although, this is physically
correct, such charge transfers will violate the charge neutrality condition for a system
with only metals but no oxidizing agents.

Zhou et al. [37] attempted to correct those errors in the Streitz and Mintmire
model by modifying the original model with inclusion of a special weighing function and
limiting values of charges into the electrostatic equation. To prevent charges from
exceeding their bounds, the weighing variable acts as an energy penalty. That is, when

charges are too close to their bounds, the additional energy terms incorporated with the
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weighing variable and charge limits rapidly increases. According to this model, the

electrostatic energy E of an atom i is:

E”(a;) :(}(i +Z‘Jijqj]qi +a{1 I _qILJ(qi _qiL)2

‘Qi —q;

b e TR,

‘Qiu _qi‘

(2.19)

where g and g; are the bounds for the charge of atom i, g < g, <q’ and the energy

penalty w is defined to be 20.0. The modified model with the additional energy penalty
terms cannot be solved algebraically. Zhou et al. used an unconstrained optimization to
find an optimized set of charge values. The use of the auxiliary weighing variable is a
complicated and indirect solution. As in the case of the Streitz and Mintmire model, this
model lacks the actual charge constraints and suffers from the same charge divergence
problem. To show this, the same simple case of an aluminum-oxygen pair that Zhou et
al. used to prove the charge diversion in the Streitz and Mintmire model is reintroduced

here. The electrostatic energy for a pair of Al-O in a neutral system can be written as:

o Jo +J K.
Bt = (Zo —Xal )qo + (% - TJqé (2.20)

according to the Streitz and Mintmire model and:

Eo = [(Zo —Za )+ 4W(QX| - 0o )]qo
(2.21)
" (% - ch + 4@]qg + 2w[(qg )2 + (qX. )z]
according to the Zhou et al. model. To minimize E; , setting the first derivative with

tot ?

respect to g, equal to zero yields q, = An ~ Xo for the Streitz and Mintmire

Jo+d, =2k It
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_ _ u 4L
model and g, = £ 40 4w(q“' qO) for the Zhou et al. model. Using the Streitz and
Jo+Ju -2k, /1 +8w

Mintmire data (J,= 14.036 eV, J, =10.329 eV, y,=5.485¢V, and y, = 0.0 eV) [36],

—5.485

the charges on the oxygen atom become =
9 yo o = 54365_288/T

_ —5.485-4(20)(3-(-2)) —405.485

0= = for the Streitz and Mintmire model and
24.365-28.8/r +8(20) 184.365-28.8/r

the Zhou et al. model, respectively. Figure 2.1 shows the oxygen ion charge as a function

of the separation distance between the Al-O pair. The Streitz and Mintmire model gives
a divergence at 1.18A , While the Zhou et al. model causes a divergence to occur at

0.152& . If a constrained optimization is applied, the oxygen charge will be limited to

dg , Which is — 2e, when a divergence is encountered.

This dissertation presents a much more direct way to implement a charge transfer
model for molecular dynamic simulations. The idea is based on what Rappé and
Goddard started. One important difference is that a constrained optimization is used with
the original set of equations instead of solving them algebraically. At each time step,
charges are adjusted so that the total energy in a system is minimized. The EAM
potential is considered constant because all of the input information is known. So,
minimizing the electrostatic potential is equivalent to minimizing the total energy of the
system. The next section describes the applied algorithm in more details. A few sample

simulations were also performed to test the validity of this code.
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Figure 2.1 Charges on oxygen from the Streitz & Mintmire and Zhou et al. models

2.4 Optimization and Charge Transfer

In order to reach equilibrium, all systems try to lower their internal energies as
much as possible. However, in a metal oxide system, there exist additional constraints on
ion charges that have to be confined within their charge limits. This energy
minimization, therefore, becomes a constrained optimization problem. The objective is
to find an optimal set of charges that makes a total system energy as low as possible and
yet all the charges are still within their physical limits and obey the charge neutrality
condition. The original equation posed by Rappé and Goddard [34] serves as a good

starting optimization problem. Hence, there is no need for new charge density functions
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as Streitz and Mintmire [36] did, or the extra auxiliary terms in the Zhou et al. approach

[37].
A general optimization problem can be described as:
Minimize E(9,.9,,---,0,) (2.22)
Subject to: h,(9,,9,,...,9,) =0, k=12,...,1 (2.23)
g9,(q,9,,...,4,) <0, j=12,....m (2.24)
L U H
qr<q, <q’, i=12,...,n (2.25)

where E(q,,0,,...,0,) is the function to be minimized, electrostatic energy in this case
as a function of n charges q,’s. Each charge g, can only vary between its lower limit
gr and upper limit g . h,(q,,9,,...,q,) are the equality constraints, and there are |
equality constraints in this optimization problem. g,(q,,q,,...,d,) are the inequality

constraints, and this problem has m inequality constraints. In addition, an optimal set

q* of g,’s has to obey the Kuhn-Tucker conditions, which are stated as follows:
(1) VE(@*)+='Vg(q*)+1"Vh(g*)=0
(2) 9,(a*)<0 forall j=12,...,m
(3) h(qg*)=0 forall k=12,...,1
(4) ;20 forall j=12,...,m
(5) 7,9;(a*)=0 forall j=12,...,m
where & and A are vectors with their respective components z; ’s and 4;’s, which are

constants. The five conditions above are necessary for any solution that minimizes the

function E under a given set of constraints.
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There are four major direct methods to solve the general optimization problem
above: (1) Sequential Linear Programming (SLP), (2) Sequential Quadratic Programming
(SQP), (3) the Generalized Reduced Gradient (GRG) Method, and (4) Sequential
Gradient Restoration Algorithm (SGRA) [38]. Other methods also exist but they offer
only slight variations from these four principal methods. GRG is chosen to be used in
this dissertation mainly because Solver, a sub-program in Microsoft Excel, is also
implemented with GRG and it serves as an excellent benchmarking tool for result
comparisons. The GRG method only deals with equality constraints. Therefore, all
inequality constraints are converted into equality constraints with additional variables,

called slack variables. The transformation can be written as:

Minimize E(9,,9,,-.-,4,) (2.26)
Subject to: h,(9,,9,,...,9,) =0, k=12,...,1 (2.27)
9,(0,9,,...,d,) +d,,; =0, j=12,....m (2.28)

g <q; <a’, i=12,...,n (2.29)

Jp,; 20, i=12,...,m (2.30)

a,.9,,...,q, arethe original variables, and q,,,d,.,,---.9,., are the slack variables.

The basic idea of the GRG method is to reduce the number of variables in a given

optimization problem when searching for an optimal solution. The n+m variables
0,,9,,---,9,,0,.15---,0,,,m» OF In the vector notation q = (ql,qz,...,qn,qM,...,qmm), are
divided into two groups: basic variables Y and non-basic variables Z.. That is,

q= (Z,Y)T , Where the superscript T indicates the transpose. The number of basic

variables equals the number of constraints m+1, and these basic variables are expressed
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in terms of the remaining n—1 non-basic variables. This essentially makes the
optimization problem depend only on the n—1 non-basic variables Z, and
q=(2Z,Y(Z))". When non-basic variables are not fixed at their bounds, they are called

super-basic variables. Super-basic variables determine search directions for a new

feasible solution under a given set of constraints.

In terms of the basic variables Y = (y,,Y,,...,Y,..,) and non-basic variables

Z=(z,,2,,...,2, ), the reduced problem is restated as:

Minimize  E(Z,Y(Z2)) (2.31)
Subjectto  H(Z,Y(Z))=(h,g)" =(H,,H,,....H,,) =0 (2.32)
2t <z,<1z7, i=12,....n—1 (2.33)
yr <y, <y’, i=12,...,m+l (2.34)

The superscripts L and U indicate the lower and upper limits, respectively, for each

variable. Given a feasible starting point q, that yields H(q,)=0, the reduced problem

can be expanded at a point q =(Z,Y)" about the current feasible point q, = (Z,,Y, )"
(the first-order Taylor series):
Minimize E(Z,+AZ,Y, +AY)=E(q,)+V,E(q,) AZ+V ,E(q,)"AY (2.35)
Subject to
H(Zy+AZ,Y, +AY)=H (q,)+V,H (q,) AZ+V,H (q,) AY =0 (2.36)
where AZ =272 -7, =(AZ,,AZ,,...,AZ, ) and AY =Y - Y, = (AY,,AY,,...,AY, ) with
AZ;’s and AY,’s are real numbers, V, and V, denote the differentials with respect to

Z and Y, respectively, and the index j runs from 1to | +m. Therefore, V,E(q,)"
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and V,H,(q,)" are the 1x (n—1) matrices {aE(qO) CE(q,) aE(qO)} and
0z, oz, 0z, ,

[8Hj(qo) oH(a,)  oH;(qo)

, respectively. Similarly, VE and
oz, oz, p } p y Y, Vy (qo)

n-I

V,H(q,) arethe 1x(m+1) matrices {aE(qO) CE(qo) . aE(‘lo)} and
ayl ayz aym+|

{aHj(qo) oH,(a)  oH,(ao)

, respectively.
ayl aYZ aym+| }

To find a search direction for an optimal solution, define the matrices A and B

as:

v H/
V,H/

I+m

v,H]
g VoHI
v, HLL

Equation (2.36) can then be rewritten more compactly as:

H(q) = H(q,) + AAZ + BAY =0
Recall that H(q,) =0, and this gives AAZ + BAY =0. Therefore,

AY = -B'AAZ
Substituting Eq. (2.39) into Eg. (2.35) yields Eq. (2.40) after a few steps of algebra

E(a)=E(q,)+V,E(q,) AZ-V,E(q,) BAAZ

E(a) = E(a,)+{VE(a,) - V4 Ela,) B ANZ

39

(2.37)

(2.38)

(2.36a)

(2.39)



E(q)= Elg,)+ 7, Elg,)- (BA) v, E(q, )] AZ
E(q)=E(q,)+(Gg) AZ (2.40)

where G, =V,E(q)-(B™A) v,E(q) (2.41)
G , the reduced gradient of the function E(q), provides a search direction for an

optimal solution. Below is the GRG implementation in finding an optimal solution

(adapted from Ref. [38]):

GRG Algorithm:

Step 1. Choose:
e astarting set q° of feasible g,’s (h(q)=0 must be zero)
e an initial number of iterations N,
e anaccuracy ¢ for convergence and stopping
Set p =1 (iteration counter)
Step 2. Identify basic, non-basic, and super-basic variables
In the first iteration ( p =1), variables that are not basic are set to be super-basic
Calculate G
Calculate an optimum step size «* (see below)
Calculate "

Step 3 Convergence and Termination:
Convergence for GRG
If the Kuhn-Tucker conditions are satisfied then STOP.

Stopping Criteria
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e Ag=lq"-q"|
If Ag < ¢ then STOP.
o If p=N,
o Find the extrapolated maximum number of iterations N,
= If N, >N, thenset N, =N, else STOP.
Continue to the next iteration (increment p by one)

Gotostep 2

Step size computation:

Stepl Set S =-G,

Step 2 Find a minimum « from a set of positive « ’s that make Z" stay within its
bound. Notethat AZ =08 and Z° =Z"" + AZ.

Step 3 Use Eq. (2.39) to find « for Y? that makes Y” stay within its bounds.

Step 4 Solve diE(a): 0foran « value that minimize E(a) (unconstrained « ).
(04

Step 5 Compare all the « ’s from Steps 2 to 4 and return a minimum « that confine all

of the g, ’s within their bounds
Step 6 If any of g, ’s are at their bounds, set those g;’s to be non-basic variables. If one
of those g, ’s are formerly basic variables, pick new variables from the set of non-

basic variables that stay approximately in the middle between their bounds to

be new basic variables.
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Based on Egns. (2.31) to (2.34), the electrostatic (ES) energy minimization

problem for a given set of n ions is structured as:

Minimize Ee (q) :Z[liqi +in‘Jijqu (2.42)
= =1

Subject to h(q)=> ;=0 (2.43)
i=1

The ES energy minimization problem has only one equality constraint and no inequality
constraint. That means | =1 and m =0. Therefore, this optimization problem has one
basic variable and n—1 non-basic variables. Let the subscripts Y and Z associate with
the basic and non-basic variables, respectively. Then, specifically to this problem in the
vector notation, the basic variable is Y = (g, ) and non-basic variables are
Z=(0s1,9550-+10g1 )

To find the reduced gradient G, first calculate V, E(q). Equation (2.42) has its

first derivative with respect to any charge g, which is one of the g,’s, as:

%=Zs+i(‘]si+‘]is)qi (244)
aqs i=1

The matrices A and B specific to this problem are:
A=V,h(q) =[L... )4 (2.45)
B=V,h(q)" =[] (2.46)
Thus, for a given step size of the non-basic variables in any search direction, the step size

of the basic variable is given by:

AY =-B'AAZ =-[if1,...1] : |= ~2.AZ, (2.47)
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The search direction G is shown in Eq. (2.48) below after a few steps of algebraic

simplifications:

Zl"'Z(Jli +‘]il)qi
i-1
n : 1 n
Gy = Zz"‘Z(JZi""]iz)Qi _[1 : |:ZY+Z(JYi+‘JiY)qi:|
i=1 : 1 i=1
Xna T Z(‘] n1i T ‘]i,nfl)qi
L i=1 i
X1 +Z(‘]1i +‘]i1)qi Xy +Z(‘JYi +Jiy )Qi
i=1 i-1
Gr=| X +Z(‘]Zi +Jiz )qi —| Xy +Z(‘JYi +Jiy )Qi
i=1 i=1
Zn—1+2( —1|+‘]|n—1)q ZY+Z ‘J +‘] )q
4 L i=1 i

Gy = ZZ_;(Y+Z(‘]Zi+J z ‘JY|+‘J
i=1 i=1
Gy =| 22 _ZY"'Z(JZi_JYi"'Jiz_JiY)qi (2.48)

Let G, represent the i"™ component of G, which corresponds to g, , the i"
Ri R Zi

component of the non-basic vector Z. Then the Kuhn-Tucker conditions specific to the

electrostatic (ES) energy minimization problem are:

(1) Gg; =0 when a non-basic variable q; is strictly between its bounds.

(2) Gy =0 when a non-basic variable g, is at its lower bound.
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(3) G, <0 when anon-basic variable g, is at its upper bound.

The above conditions are derived from the standard Kuhn-Tucker conditions mentioned
earlier, and the derivation is presented here. The GRG method does not have any
inequality constraints, except for the upper and lower bounds of each variable. In
addition, the optimization problem only depends on the non-basic variables according to
the GRG method, and so do the Kuhn-Tucker conditions. For the Kuhn-Tucker
conditions, the bound restrictions on each non-basic variable can be transformed into the

inequality constraints in the vector form as follows: the lower bound constraint

gl = (qZL1 ~QypreerOsi —CgireverOoy — qZH) and the upper bound constraint
09 =(0p =% Oy = O Oy — q‘z’n_l). The five standard Kuhn-Tucker (KT)
conditions can be rewritten as:
1) VZE(q*)+nU —a"+1=0
(2) 97(9*)<0 and g} (q*)<0 (always true by the problem statement)
(3) h.(q*)=0 (always true by the problem statement)
(4) z- >0 and ﬂ:J >0
(5) 7 gi(a*)=0 and 7 g} (q*)=0
where 7" and 7} arethe i" and j* components of &" and =", respectively. Based

on the bound constraints of the non-basic variables, the Kuhn-Tucker conditions differ in

each of the three possible cases: g5 <0, <05, 05 =0y, and q, =0y . Ifanon-basic
variable is strictly between its lower and upper bounds (qZLi <0, <0y ) then its inequality

constraint is less than zero (giL (*)<0 and g’ (q*)< 0). This leads toz;” =z’ =0 as
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required by 79} (q*)=0 and zVg" (q*)=0 (KT Condition 5). That consequently

yields E(q*)+ 4 =0. Recall that G, =V,E(q)—(B*AJ v, E(q) and define

Zi
3.=—(B*A) vV, E(q). This finally leads to G,, =0. Next, when a non-basic variable is

at its lower bound ( e qZLi), x>0 per KT Condition 4 but 7> =0 because all g ’s

are less than zero and 73 g} (q*)=0 at all time. Therefore, E(@*)+4 +7" =0

00

and this leads to G, — 7" =0. Since z >0, it is certain that G, > 0. In the same
fashion, when a non-basic variable is at its upper bound (qu = q;), x>0 per KT

Condition 4 but - =0 because all g;-’s are less than zero and 7" g (q*)=0 atall

time. So, E(q*)+ A, +7° =0. This gives Gy, +z” =0, and certainly G, <0

aqy
because z; >0.

Using the GRG algorithm, resulting charge distributions in different environments
can be determined. The GRG code has been written in the C language specifically for
this dissertation with over 1,000 lines of coding. To validate the self-written GRG code,
the same inputs were entered in Excel’s Solver, which is also implemented with GRG.
The results from Solver and the self-written GRG code were found to be in excellent
agreement. In most cases, they produced the same results, and, in a few cases, the self-
written GRG code yielded better results.

To illustrate the benchmarking with Excel’s Solver, the result from a sample case

is reported here. In this case, a calculation cell contains 6 atoms: one aluminum atom and
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five oxygen atoms. Using the same data as in Ref. [36], the J matrix according to Eq.

(2.16) is

[ 7.017858  3.556027 11.926355 2.990698 3.824473 3.555971]

3.556027  7.017858 3.103051 2.878696 11.926355 2.514477
11.926355 3.103051 7.017856 3.344118 3.556021 4.241726

2.990698 2.878696 3.344117 5.164328 3.523528 2.386254
3.824473 11926350  3.556021 3.523528 7.017858 2.924555

| 3.955971  2.514477 4241726 2.386254 2.924555 7.017858 |

The charge vector representing the aluminum charge q,, and oxygen charges q_, is

<qé, a2, 9, Q. Q. qg> with the unit in e (electron charge). Table 2.1 shows

the results from the code written for this dissertation and Excel’s solver.

Table 2.1 Comparison between the self-written GRG code and Excel’s Solver

o a5 as Uu do do
Self-written code | -0.00055 0 0 0.00198 | -0.00097 | -0.00046
Excel’s Solver | -0.00055 | 1.12E-15 0 0.00198 | -0.00097 | -0.00046

2.5 Results from Sample Simulations
Sample molecular dynamics simulations were run using Moldy [22], a computer
code for molecular dynamic simulations with the same potential parameters as in Ref.

[36]. Moldy has been modified to accommodate the GRG algorithm and the EAM

potential. A test system is consisted of a 12.1482 A thick semi-infinite aluminum slab
with oxygen on both sides of the slab. Aluminum atoms are arranged in a face-centered

cubic (FCC) structure with a lattice parameter of 0.40494 nm. At the beginning, all
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atoms are neutral and hence the overall system is neutral. Moldy divides an original user
defined space into smaller sub-cells to make calculations faster. In each sub-cell, a sub-
routine named GRG is called to pre-compute a charge distribution within that sub-cell.
The information on the charge distribution is then fed to a sub-routine that calculates
forces and energy. Currently, we consider only simple ionic bonding. If electrons cannot
be transferred within that sub-cell, GRG will leave the charge distribution as it is. As
long as metals and oxidizing agents exist in a sub cell, charge transfers will always occur.
The modified Moldy can take systems that include any metals and halogens (other than
oxygen).

Three test runs were performed. Each differs by the type of oxygen on both sides
of the aluminum slab: single-layered oxygen atoms, single-layered oxygen molecules,
and double-layered oxygen molecules. The temperature was kept relatively constant at
300 K using a Nosé -Hoover heat bath. Each run lasted 10 picoseconds (ps) with 20,000
time steps. The visualization software called VMD [23] was used to render snapshots of
the system. Figure 2.2 shows the initial setup of the aluminum slab with two layers of
oxygen molecules. Figure 2.3 shows the oxidized slab at the end of the 10-ps run. The
radial distribution functions (RDF) for Al-O are shown in Fig. 2.4. Two dominant Al-O

peaks in the RDF suggest that the first and second nearest bond lengths between Al and O

are about 1.8 - 1.9 A and 2.2 - 2.3 2&, respectively. These results agree well with the
published experimental [39 — 43] and computational [44 — 47] results of alumina (Al,O3)

as shown in Table 2.2.
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Table 2.2 First nearest bond lengths of the aluminum-oxygen pair in A

Thiswork | Lamparter and Kniep [43] | Campbell et al. [44] | Hasnaoui et al. [45]
18-19 A 18 A 1.8 A 18 A
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Figure 2.2 Initial setup of the 12.148210& thick aluminum slab (green color) and two

layers of O, (red color). (a) The x-z plane view. (b) The perspective view.
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(b)

(a)

. ]
“—12.1482A =

Figure 2.3 After 10 ps, the oxidized aluminum slab expands its thickness to about 36 A.

(a) The x-z plane view. (b) The perspective view.
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Figure 2.4 Al-O radial distribution functions

2.6 Conclusion
This chapter introduces a new approach to solve the original problem presented
by Rappé and Goddard. Streitz and Mintmire and, later, Zhou et al. also attempted to
solve the same problem by adding additional functions and variables. Their approaches
arrive at correct solutions, but turn out to be unnecessarily complicated. This new
approach takes a step back to the original equations and solves them directly using an
optimization method called the generalized reduced gradient (GRG) method. This GRG

approach can be implemented in any MD simulations for metal/metal oxide systems.
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CHAPTER 3

OXIDATION MODELING OF IRON IN MAGNETITE FORM
3.1 Introduction

Pure iron is very susceptible to oxidation. Depending on the temperature, oxide
layers are formed in a mixture of two or three types of iron oxides [48]. Above 570 °C,
oxide layers consist of all three types of iron oxides: hematite (Fe,03), magnetite (Fe3O,),
and wastite (FeO). Waistite (FeO) does not form when the temperature is below 570 °C.
The sequence of oxide layers is shown in Fig. 3.1. The Fe,O3 layer always occupies the
outermost region. The Fe3O4 layer forms next to the hematite layer. Finally, at the
innermost region lies the FeO layer. This formation sequence sets in the order of
increasing oxygen partial pressure from the metal surface to the atmospheric
environment. Fe,Os is oxygen rich and sustained by high oxygen concentration at the
outermost region. FeO is iron rich and it can form with less oxygen concentration at the
innermost region, while Fe;O, is the intermediate between the two.

Temperature and oxygen partial pressure affect oxide layer growth. As the total
thickness of all oxide layers increases during oxidation, the relative thickness among
oxide layers remains about the same [48]. Above 570 °C, the Fe,;03:Fe;04: FeO
thickness ratio ranges from 1:10:50 to 1:10:100. For example, at 1000 °C the
Fe,03:Fes04: FeO thickness ratio is 1:4:95 [49]. Below 570 °C, the Fe3O4 layer is thicker
than the Fe,O3 layer with the Fe3O4:Fe,O3 thickness ratio approximately 10:1. Since
corrosion and oxidation in lead-cooled reactors is of interest in this dissertation, the

temperature domain will be limited to below 570 °C (the operating temperature of current

lead-cooled reactors is about 550 °C) with oxide layers consisting of Fe3O4 and Fe;Os. In
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addition, due to the relatively thick Fe3O4 layer, iron oxide is assumed to be purely Fe;04

for simplicity.

Oxygen

F6203

.

(@)

Figure 3.1 Different oxide types and their respective thicknesses in iron oxidation

ey

Oxygen
Fe?_ 03

FeO

Base Iron

(b)

50L to 100L

depending on the temperature (thickness in an arbitrary unit L, not drawn to scale).

(@) Below 570 °C (b) Above 570 °C

3.2 Parameter Fittings for Pure Materials (Iron and Oxygen)

The first step in modeling is to find appropriate potentials for all species in a

system. Since this chapter involves iron oxidation, a series of parameters for iron and
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oxygen have been fitted to the pair and EAM potentials, Eqns. (2.2) and (2.5),
respectively. Equations (2.2) and (2.5) contain six variables, and therefore, a set of six
equations are needed in parameter fitting. The set of six equations usually comes from
crystal properties such as cohesive energy, equilibrium distance, bulk modulus, pressure
derivative of bulk modulus, and elastic constants. Equations (3.1) to (3.4) are the first

four equations in the set, which can be obtained from cohesive energy E, equilibrium
pressure P = 0, bulk modulus B, and pressure derivative of bulk modulus dI§/dP :

respectively. All the derivatives are evaluated at r =r,, the first nearest neighbor

distance of a crystal at equilibrium.

ZZ%) +2Fle)+ 2 E" =E, 3.1)

i ji

dE
50 3.2)
2 42 -
. dE_g (3.3)
9Q, dr

3 3 D
_1_ldzE/dr2 _dB (3.4)
r, d’E/dr? dP

Equation (3.5) below gives a theoretical elastic constant C,, , which can provide two

more equations for parameter fittings:

o I R LS

r r
1 XIXJ " ¢,j
2Z r ((p r

where x;’s are Cartesian coordinates. The primes on the F and f

(3.5)

with X, =xX;,

functions indicate derivatives with respect to o and r, respectively. The elastic
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constants C,, are completely symmetric. Thatis, C,, = C,, . Using the Voigt notation, a
pair of Cartesian indices ij from Eq. (3.5) is replaced by a single index | according to

Table 3.1. For examples, X, =x;X, and X, = X;X,.

Table 3.1 The Voigt notation

ij 11 22 33 320r23 | 31or13 | 21o0r12

I 1 2 3 4 5 6

In parameter fittings for pure materials like iron, Eqgns. (3.1) and (3.5) can be
further simplified. The electrostatic term in Eq. (3.1) can be neglected, and the term
involving F in Eq. (3.5) is zero (see Eq. (2.11)). For pure materials with cubic
structures, the elastic constants C,,, C,,, and C,, are usually used in parameter fittings,

and they can be found from Eq. (3.5):

2
x*f' 1< x* ¢’

QC,=F" +=) —| " - 3.6
011 Z ; 22 2 L(P r j (3.6)

14 X2 f ' ’ 1 X2y2 " ¢’
Q,C, =F z +_Z > | P —— (3.7)

r 2 r r

l XZ 2 ) '

Q,Cy =§Z I’Z [¢ _%j (3.8)

Another data point to be fitted is the relationship between elastic constants C;’s and the

bulk modulus B given by the Voigt equation:

9B = (Cyy +C,y +Cyg) +2(Cy, +Cyy +Cy) (3.9)
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The starting values of the parameters were taken from the EAM database developed by
Zhou et al. [50]. Table 3.2 shows the resulting parameters for iron in Body Centered

Cubic (BCC) structure. The fitting results are compared to the target values in Table 3.3.

Table 3.2 Parameter values for iron

Fitted Parameters Values
A 0.387830322 eV
B 0.555639102 eV
a 9.523030631
B 5.145940759
F, -2.913740839 eV
n 0.725524773

The pair and EAM potentials of oxygen atoms were fitted from the properties of
alpha solid oxygen using the first nearest atomic neighbors. The cohesive energy,
equilibrium distance, bulk modulus, pressure derivative of bulk modulus, elastic
constants, and average phonon frequency were used in determining the oxygen potential
parameters. Although the literature describes a few ways to find zero wave vector
frequencies from potential energy, the described methods are quite complicated and
cumbersome [51]. A simplified approach based on the first nearest neighbor

approximation is presented here.
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Table 3.3 Comparison between the fitted and target values for the iron potentials

Properties Fitted Values Target Values
Cohesive Energy (eV) -4.27 -4.29
Equilibrium Pressure (GPa) 0 0
Bulk Modulus (GPa) 180.79 170.35
C,, (GPa) 174.91 239.55
C,, (GPa) 183.72 135.75
C,, (GPa) 111.17 120.75

The kinetic energy E, is given by:

2E, —Zm(dgj ng (3.10)

where £, is a coordinate of an atom in a crystal and m, is an associated mass of that

atom. When atom displacements from their original positions are small, the potential U

can be expanded as:

2U=2U_+ 22[‘1—”} EE+ (3.12)

dg;

. +Zz[d§?§ J

Choosing the equilibrium energy to be zero, as well as the zero force j_U =0, and

ignoring higher-ordered terms, the above equation for small vibrations becomes:

2U =szij§i§j (3.12)

d2U
dgde,

where d;; =

=d ;. Newton’s equations of motion can be written in the form:
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d %, U _,

E%Jragk = (3.13)
Or,

é Jrzi:olikgi =0 (3.14)
Assume the solution is in the form:

& = Acexplilk -7 - et)) (3.15)

where A, is the wave amplitude, k is the wave vector, T is the space vector, o is the

angular frequency, and t is time. For k =0 (zero wave number), Eq. (3.15) becomes
& = A, cos(at + &) (3.16)
where & is the starting phase of the wave. Equation (3.16) represents a wave equation

with zero wave number (k = 0). Substituting the assumed solution of £, , it can be

rewritten as:

d,-mo®  d, .. dy [&
Ay dp-me’ o by [ & 317
dy,s dy, oo Ay —mue? | &

The values of &, = A, cos(at + &) can be found by calculating the determinant:

d,, - ma?’ d, d,,
d, d,-ma’ .. Ao |_g 318
d, dy, ... dy —mye’

In the case of alpha solid oxygen, using the first neighbor approximation, the above

determinant becomes:
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—Mmw? 0 0

0 —me?® 0
0 0 0’E
or?
which gives;
, 10°E
0 =—
or?

(3.19)

(3.20)

(3.21)

Equation (3.21) gives the average of phonon frequency for oxygen. The reported values

of w* are 0.9 x10®s?and 4.7 x10%*s™ [52]. Table 3.4 below shows the fitting results

with all the six data points. The corresponding parameters are shown in Table 3.5. These

parameters will be used in finding a set of parameters for iron oxides.

Table 3.4 The fitted and target values of the potential energy model for solid oxygen

Properties Fitted Values | Target Values
Cohesive Energy E_ (eV) 26 26
Equilibrium Pressure (GPa) 0 0
Bulk Modulus B (GPa) 2.98 2.96
Pressure Derivative 7.76 7.78
Zero wave number frequency o (x10%°s™) 1.2 0.9 and 4.7
Bulk Modulus from elastic constants B (GPa) 1.43 2.96
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Table 3.5 The parameter values of the potential energy model for solid oxygen

Parameters for Oxygen Atoms

Parameter VValues

a 24.1176647
B 2.660324226
A (eV) 0.011228337
B (eV) 0.069658629
F, (eV) -2.564913
n 0.084502875

A test run was performed to validate the oxygen potential parameters, and a

serious problem was discovered. Oxygen did not diffuse out to nearby empty space as

expected. Instead, the oxygen atoms stayed together as groups. This tight binding was

caused by a too strong attractive part in the O-O potential as the potential was intended

for atom-atom interactions. Therefore, another novel approach is implemented for

oxygen. The basic idea of this approach is to have two different potentials for oxygen:

one for oxygen molecules (O,) and another one for oxygen atom (O). Each oxygen

molecule and oxygen atom will be modeled in the same form, say a hard ball sphere.

One hard ball sphere will represent an oxygen molecule when that sphere has no charge.

However, when it carries a negative charge, it will be morphed into an oxygen atom (or

ion rather). Charges on oxygen ions will be determined from the electrostatic energy

minimization.
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Table 3.6 shows the parameter values for O,-O, pair potential. The fitting was
again based on the crystal structure of alpha solid oxygen. It is further assumed that the
embedded atom method (EAM) energy is small and can be neglected because only
oxygen molecules are considered, instead of oxygen atoms as done previously.
Therefore, only the O,-O, pair potential parameters were fitted. Fitting requires four data

points for four fitting parameters (A, B, «, and £). The data points are cohesive

energy, equilibrium pressure, bulk modulus, and pressure derivative of bulk modulus.
All the data points are the same values as used in the O-O fitting, except for the cohesive
energy. Now the cohesive energy represents interactions between two oxygen molecules,

not two oxygen atoms. The cohesive energy is calculated from the classical Lennard-

Jones potential with the neighboring molecules up to 10A. The 0,-0, Lennard-Jones

pair potential U as a function of separation distance r is

YOS

where ¢ = 113/k; Kand o :3.433;& (kg Is the Boltzmann constant) [53].

Table 3.6 The pair potential parameters for oxygen molecules

Pair Potential Parameters 02-0;
A 0.063474454 eV
B 0.079479388 eV
a 10.59191243
s 7.128116452
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Table 3.7 The fitted and target values for the O,-O, pair potential

Fitted Values Target Values
Cohesive Energy (eV/molecule) -0.072 -0.072
Pressure (GPa) 0.000266 0
Bulk modulus (GPa) 2.96 2.96
Pressure derivative of B 5.15 7.78

3.3 Parameter Fittings for Iron Oxides
All three iron oxides (FeO, Fe,O3 and Fe;0,4) have different crystal structures.

Wiistite (FeO) has the rock salt (NaCl) structure (space group (SG) number 225, Fm-3m)

with the lattice parameter a = 43108 A [54]. The fractional coordinates for Fe and O in
wastite are (0, 0, 0) and (0.5, 0.5, 0.5), respectively. Hematite (Fe,O3) has the corundum

(a -Al,03) structure, belonging to the space group R-3c (SG number 167) with the lattice

parameters a = 5.0382& and ¢ = 13.77210& [55]. The fractional coordinates for Fe and O
in hematite are (0, 0, 0.3553) and (0.3059, 0, 0.25), respectively. Magnetite crystals have
the inverse-spinel structure (SG number 227, Fd-3m) with tetrahedral and octahedral sites
reserved for iron ions (see Fig. 3.2). A tetrahedral atom sits in the center of a tetrahedron
formed by four other lattice atoms (three in-plane atoms and the fourth atom at the
symmetrical position on top). An octahedral site for an (interstitial) atom is the space in
the interstices between 6 regular atoms that form an octahedra. Four regular atoms are
positioned in a plane, and the other two are in a symmetrical position just above or below.
One Fe** ion per formula resides at tetrahedral sites while the Fe** and the remaining Fe*

ions randomly reside at octahedral sites. The fractional coordinates for Fe**, Fe?*, and O
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in magnetite are (0.125, 0.125, 0.125), (0.5, 0.5, 0.5), and (0.2549, 0.2549, 0.2549),

respectively, with the lattice parameter a = 8.3941A [56].

(@) (b)

Figure 3.2 A tetrahedral site in green color is shown in (a) and a octahedral site in green
color is shown in (b).

Charges on ions become crucial in fitting pair potential parameters for oxides.

Suppose that a reaction between x mol of a metal M and y mol of oxygen O results in
an oxide compound M, O, . The electrostatic energy of one M ion from Eg. (2.15) can
be rewritten as

laM quM qO (323)
2 r

e

es 1
Eu = E(0)+7(Mq|v| +§‘]Mq§/| +

where «,, is a Madelung constant, which is a real number representing a specific

geometric arrangement in a crystal. For example, any crystal with the rock salt (NaCl)
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structure will have the Madelung constant of 1.748. Using the neutrality condition that

Xqy + Ydo =0, Eq. (3.23) can be rewritten as:

X ayKe

es 1
Eu = E(O)"‘ZM Qm +§(‘JM _Vr—jq’a (3.24)

If assuming that E(0) is independent of g,, , minimizing the electrostatic energy in Eq.
(3.24) gives the charges on M and O ions at equilibrium. In order for E;; to be an
absolute minimum, dEg /dg,, and d?ES /dg% must be zero and greater than zero

respectively.

dEy; X a,k

=y +|J, ——MC g =0 3.25

dq,, Awm [M y . qu ( )
2 es
QB _y, - Xauke g (3.26)
dq, y r.

Using the data from Tables 3.8 and 3.9, the resulting values of g,, and d’ES /dq? are
shown in Table 3.10. Clearly, the value of d’E;; /dqu indicates that the charge value

qy renders the function E,; to be an absolute maximum, instead of an absolute
minimum as hoped for.

This error results from the initial assumption that an absolute minimum of the
electrostatic energy exists for any given set of atomic and crystalline properties (v, J,
a, and r,). Since the absolute minimum does not exist, a relative or local minimum of
the electrostatic energy should be sought. Mathematically, the local minimum must exist
at either lower or upper charge limits of q,, . However, these limits are not the same as

the absolute charge limits known for each ion (for example, iron ions can carry charges

up to +3e, where e is the number of electrons). To illustrate this, let the upper bounds
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on the iron ions in FeO and Fe,O3 be+ 2e and + 3e, respectively, when finding the local
minimum electrostatic energy. Equation (3.25) gives the local minimums of FeO and

Fe,O3 when q,, equal to 0 and + 3e, respectively, when confining the ion charges to

their physical limits. The +3e iron ion charge in Fe,O3; might be acceptable. However,
the iron ion charge in FeO has to be zero, which clearly contradicts the notion that ions
have to carry non-zero charges. As a result, the physical charge limits are not applicable
in this case. Without knowing an appropriate bound, which is a subset of the physical
charge bounds, the usual practice of finding minima using Eqgns. (3.25) and (3.26)
becomes invalid. The common solution to get around this problem is to perform
equilibrium charge findings and parameter fittings to experimental quantities

simultaneously [58]. One way to this is to start out with q,, =0 and gradually vary q,,

until it reaches its physical bound. The best fitting will give the smallest error in the least
squared fitting.

Table 3.8 lon energetics data of iron and oxygen [57]

Fe @)
lonization Energy IE (eV) 7.9024 13.61806
Electron Affinity EA (eV) 0.1510 1.461112
Electronegativity y (eV) 4.0267 7.539754
Self-coulomb Repulsion J (eV) 7.7514 12.156691
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Table 3.9 Values used in calculating equilibrium charges of iron ions

FeO FGzOg
X 1 2
y 1 3
ay 1.747565 2.347099
r, (A) 2.1554 1.9457

Table 3.10 Charge extrema and concavity of iron oxide ES energy

FeO Fe,O3
O 1.0262 1.0516
d’E;
das, -3.9239 -3.8201

Parameter fittings for iron oxides require four data points corresponding to four

unknown parameters A, B, «,and g in pair potentials. The crystal data usually used

are cohesive energy, equilibrium pressure, bulk modulus, and pressure derivative of bulk

modulus. Of these four properties, cohesive energy is not usually available, but it can be

calculated as follows. Suppose an oxide again takes the formM,O, . The chemical

reaction for this oxidation can be described as:

The cohesive energy of M,0, (ECMXOV) is the heat of formation of M,O, (AH ) *Oy)

XM +%O2 —>M,0,

(3.27)

subtracted by the cohesive energy of x mol of a metal M and y mol of oxygen O
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ESY = AH M —xEM — yEO (3.28)
The value of E are readily available and the value of E? is 2.58 eV [59]. Table 3.11

and 3.12 shows the results of parameter fitting. The fitting begins with considering only

the first nearest neighbors in calculations. Once the starting values of the parameters are

known, the calculations are extended to the neighbors distanced at 10A (a typical cut-
off). The comparisons between the fitting and target results are shown in Tables 3.13 and
3.14. Each set of parameters has been tested with Moldy to see if the parameters yield a
stable structure. A typical test is to run a pre-formed oxide with a corresponding set of
the fitted parameters at 300 K for 10 ps. The structural stability can be observed from

Moldy movie files and radial distribution curves.

Table 3.11 Pair potential parameters for iron oxides

Parameters Fe-O in FeO Fe-O in Fe;03
A (eV) 1.813926 0.789382
B (eV) 2.992601 0.084102
a 14.30119 10.80134
B 6.574424 0.177024

Table 3.12 Fitted charges on iron ions

Fe?" in FeO Fe>* in Fe,04

Om +1.21e +0.73e
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Table 3.13 The fitted and target values for the pair potential of FeO

Properties of FeO Fitted Values Target Values
Cohesive Energy (eV/atom) -4.86 -4.86
Pressure (GPa) -0.00146 0
Bulk modulus (GPa) 152.21 152.21
Pressure derivative of B 55 55

Table 3.14 The fitted and target values for the pair potential of Fe,O3

Properties of Fe;O3 Fitted Values Target Values
Cohesive Energy (eV/atom) -4.98 -4.98
Pressure (GPa) -0.00006 0
Bulk modulus (GPa) 182.65 182.65
Pressure derivative of B 3.5 3.5

3.3 Modeling of Magnetite (Fe3O,)

Molecular dynamics simulations of magnetite have been done using pre-formed
bulk structure and fixed charges on tetrahedral and octahedral iron ions [60]. One pair
potential between iron and oxygen was used. The charges for tetrahedral and octahedral
iron ions are fixed +2.5e and +3e, respectively. The fact is that magnetite (FesOy) is
composed of two iron oxide compounds: wustite (FeO) and hematite (Fe,Os). Therefore,
to model magnetite formation in iron oxidation more correctly, two different pair
potential functions corresponding to the two oxidation states of iron should be used. The

steps in modeling magnetite formation are outlined here:
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1. Find potentials for pure materials (iron and oxygen) and the iron-oxygen atomic pair.
2. Use the charge calculations from Chapter 2 to find ion charges at each time step.

3. Assign oxidation states (Fe”* and Fe®") to iron ions so that the populations of Fe**:Fe**
being 1:2 after all the charges in the system are known.

4. Apply the potentials corresponding to the oxidation states.

5. For interactions between iron atoms (with zero charge) and oxygen, pick one of the
two pair potentials that gives the lowest energy.

After the ES energy minimization (see Chapter 2), each iron ion will be
categorized as either Fe?* or Fe®*. This grouping process is quite simple, and it is only
based on the charges that iron ions carry. The idea is to arrange all the iron ions in order
of the charge magnitude from minimum to maximum. The cutoff charge magnitude will
be determined to make the population of Fe?*:Fe®" be 1:2. The 1:2 population ratio
corresponds to the actual chemical formula of magnetite (FeO)(Fe,Os), which is
equivalent to FesO,. Therefore, three groups of iron, neutral Fe (zero charge), Fe®*, and
Fe**, always exist in magnetite formation modeling.

As mentioned earlier, magnetite (Fe30,) is composed of wistite (FeO) and
hematite (Fe,O3). After all iron ions have been branded with either Fe** or Fe**, two
different sets of pair potentials for iron-oxygen pairs are used: one for the Fe?*-O pair and
another one for Fe**-O pair. Each set of potential parameters has been fitted to the
corresponding crystal structures and properties of wistite (FeO) and hematite (Fe,O3).
For a pair of a neutral iron atom and oxygen (Fe-O pair), potential energy calculated from
the pair potentials of the Fe?*-O and Fe**-O pairs will be compared. The separation

distance between a particular pair of an iron atom and an oxygen atom/ion differs from
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one time step to another time step. So the pair potential that gives the lowest potential

energy will be the choice for that Fe-O pair in that time step.

3.4 Benchmarking with Experiment
A simulation system to compare with the experiment consists of a semi-infinite

slab of iron with oxygen on only one side. The slab of body-centered cubic iron is

57.332& angstrom thick. The temperature is kept constant using a Nose-Hoover heat
bath. The system was run at 300 K and 423 K, corresponding to the actual temperatures
in the experiment to be benchmarked [61]. The run time for each simulation is 40
picoseconds (ps) with a time step of 0.0002 ps for the total of 200,000 time steps.

Using the morphing scheme for oxygen, the results from this new oxygen
potential approach are satisfactory. The oxygen gas diffuses out to nearby empty space
as it should. The trajectories of iron and oxygen atoms/ions can be visualized using
VMD. The root mean square displacement (RMSD) of several forefront oxygen ions in
the slab have been calculated using the RMSD feature in VMD. As the name suggests,

RSMD is the square root of mean square displacement (MSD) that is defined as:
2 19 2
<|r(t)— r(0) > = 2l 0)-r(0) (3.29)
i=1

where N is the number of particles in a system, r,(t) is the distance of particle i from a

reference point at time t. The distance squared is always positive no matter how a
particle moves as moving forward and backward do not cancel the distance traveled.
Both MSD and RMSD, analogous to variance and standard deviation, can be used to

analyze the simulation results. By tracking the movements of each particle or a cluster of

69



particles or atoms against time, MSD and RSMD tell how active an atom or a cluster is
during a simulation course. Figures 3.3 and 3.4 show forefront oxygen ions relatively
settle by the end of each simulation. This means that the oxide layer growth relatively

stops.
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Figure 3.3 Root mean square distance of four forefront oxygen ions in the slab at 300 K
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Figure 3.4 Root mean square distance of five forefront oxygen ions in the slab at 423 K

The oxide layer thicknesses from the simulations (see Figs. 3.5 and 3.6) are in the
same order as the experimental results by Grosvenor et al. [61] as shown in Table 3.15.
The oxide layer thicknesses are the distances from the slab surfaces to the points where
the disorders of the iron lattices occur, which can be easily observed from the distribution
histograms (Figs. 3.7 and 3.8). The sections between the two highlighted lines indicate
the oxide layers. The iron ion populations are shown in Figs. 3.9 and 3.10. Note that the
experiment results are from three different partial pressure environments, ranging from
0.013 Pato 130 Pa (see Table 3.16). To complete the comparisons, the role of oxygen

partial pressure is discussed in the next section.
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Table 3.15 Comparison between the magnetite modeling and experiment results

Present Calculation

Grosvenor et al. [61]

Oxide thickness at 300K

~2.3nm

1.9nmto 3.3 nm

Oxide thickness at 423K

~2.5nm

3.1nmto5.1nm

Table 3.16 The oxide thicknesses at various experiment conditions [61]

0.013 Pa 1.3 Pa 130 Pa
300K 1.9 nm 2.9 nm 3.3nm
423K 3.1 nm 4.0 nm 5.1 nm
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Figure 3.5 The x-z plane view of the iron slab (green) exposed to oxygen (red) at 300 K

20 ps, the oxide thickness is about 2 nm.
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Figure 3.6 The x-z plane view of the iron slab (green) exposed to oxygen (red) at 423 K
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20 ps, the oxide thickness is about 2.6 nm.

=0 (bottom) At time t

(top) At time t
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Figure 3.7 Histogram of iron and oxygen positions along the z direction at 300 K
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Figure 3.8 Histogram of iron and oxygen positions along the z direction at 423 K
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Figure 3.9 Population of Fe’* and Fe** at the 1:2 ratio when T = 300 K
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Figure 3.10 Population of Fe** and Fe** at the 1:2 ratio when T = 423 K

76




3.5 Role of Oxygen Partial Pressure

Oxidation studies often report amount of oxygen by partial pressure in atm or Pa.
The results from the benchmarking experiment involve three different oxygen partial
pressures: 0.013 Pa, 1.3 Pa, and 130 Pa. Ideally, to compare the results from the
experiments and simulations, the conditions, which include temperature and pressure,
have to be the same in both experiment and simulation studies. However, typical
pressures in molecular dynamics simulations are in the order of MPa, not Pa. This is due
to much smaller sizes of molecular dynamics systems, which are usually in the order of
angstroms. To illustrate this problem of scale, assume that oxygen gas behaves like an
ideal gas. So, n mol of oxygen at temperature T inside a volume V will have the pressure
P equal to

P =nRT /V (3.30)

where the gas constant R is 8.314472 J/mol-K. Using Eqg. (3.30), the sizes of the cubic

volumes for one oxygen molecule are listed in Table 3.17 below.

Table 3.17 The occupied cubic sizes of one O, at various experiment conditions

0.013 Pa 13 Pa 130 Pa
300 K 6830.81A 1471.65A 317.06 A
423 K 7659.7 A 1650.23 A 355.53 A

As seen from Table 3.17, the cubic sizes of one oxygen molecule at the experiment

conditions are very large compared to the cubic cell size of iron, which is 2.8665A .
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Therefore, to include, say, 10 oxygen molecules, a system size will have to be in the
order of microns, instead of angstroms - the typical molecular dynamics scale. In
addition, a micron-sized system is impractical in terms of computational time and
memory for a personal computer. Hence, the question remains: how will the pressure in
the models be compared to the actual experiment?

Grosvenor et al. reported the experiment results with the inclusion of the direct
logarithmic oxide thickness model [61]. They found that the experiment results are well
fitted with the direct logarithmic oxide thickness model. The model describes an oxide

layer thickness x as a function of time t as [62]:

dx o 0.6 1o
U pe R (331)

where A, is the pre-exponential value, E, is the activation energy, R is the gas constant,
T is temperature, P is reaction pressure, y, is increase in activation free energy with

thickness of the oxide film. Using the initial condition that x(t = 0)= 0, the oxide layer

thickness x is:

E
X = ﬂln[@e‘RT POt +1J (3.32)
Yo RT
Or,
1 0.6
X = b—ln(COP t+1) (3.32a)

0
Eo

where b, is defined as é/—_’i_ and C, is defined as b,A,e R". The values of y, and E,

are listed in Table 3.18 [63]. Using the data provided by Grosvenor et al. [61, 63], A, is
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calculated to be approximately 10° nm/Pa’°—s at 300 K and 107 nm/Pa’°=s at 423 K.

Table 3.19 lists the values of b, and C, at 300 K and 423 K.

Figure 3.11 shows the plot of Eq. (3.32) when the pressures are at 1 MPa and 1 Pa
and the temperatures are at 300 K and 423 K. The plot clearly indicates that the role of
oxygen partial pressure is to either slow or hasten the initial oxide layer growth. During a
transient period, an oxide layer grows faster at a higher oxygen partial pressure.

However, once the oxide layer approaches its equilibrium growth, the effect of oxygen
partial pressure diminishes. For clarity, Fig. 3.12 shows the ratio between the two oxide
thicknesses at the same temperature but different pressures from Fig. 3.11. After the
transient period, the oxide thickness at 1 MPa is only about 1.7 times the oxide thickness
at 1 Pa, even though the pressure is one million times higher. Since the experiment
shows that the oxide thicknesses range from 1.9 nm to 5.1 nm at pressures in the order of
Pa, one would expect the oxide thicknesses to approximately range from 3.23 nm to 8.67
nm at pressures in the order of MPa. The simulation results with the pressures in the
order of MPa yield the oxide thicknesses of about 2.3 nm and 2.5 nm at 300 K and 423 K,

respectively, which are still in the same order of magnitude of the expected values.

Table 3.18 The values of y, and E, for the reaction of Fe with O, [63]

Conditions 7o (kJ/mol-nm) E, (kJ/mol)
~1.3x107 Paat 300 K 10+1 32+6
~1.3x107% Paat 423 K 17+1 32+6
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Table 3.19 The values of b, and C, at 300 K and 423 K

Temperatures by (1/nm) C, (1/Pa”*-s)
300 K 4.0 1075
423 K 4.8 4483

45 //
4 ( /—
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-‘E‘ /_/’f’
B o2 | A —1 MPa at 300 K
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Figure 3.11 Oxide thicknesses according to the direct logarithmic oxide thickness model
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This chapter presents a new approach in modeling oxidation of iron in the

magnetite form. The approach is to use appropriate pair potentials based on charge

Figure 3.12 Oxide thickness ratios at 300 K and 423 K

3.6 Conclusion

distributions obtained from energy minimization. The simulation results agree with the

experiment in terms of oxide layer thickness. Magnetite modeling provides a basis for

modeling protective oxide layers that prevent lead diffusion into iron. The next chapter

will present simulations of a mixture of lead, iron, and oxygen.
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CHAPTER 4
MODELING IRON IN LIQUID LEAD UNDER OXYGEN CONTROL
4.1 Introduction
This chapter brings together the applications from the previous two chapters,
namely charge optimization, metal oxidation modeling, and embedded atom method

(EAM) potential. The simulated systems in this chapter are composed of solid iron,

liquid lead, and oxygen at 550 ° C (823.15 K), a typical operating temperature for lead-
cooled reactors. It is well known that liquid lead deteriorates structural steel because
solid iron dissolves in liquid lead. Several methods to combat liquid lead corrosion
problems have been mentioned in Chapter 1. One of those prevention methods relies on
active oxygen control.

Several studies indicate that active oxygen control sustains oxide layers that
protect against penetration of lead [64-66]. The formation of protective oxide layers is:

3 1 1

It has been experimentally proven that in a non-isothermal system, pre-oxidized steel
cannot prevent lead corrosion attacks [64]. Unless self-healing of the protective oxide
films takes place, Fe;04-based oxide films will be disappearing according to the
following reduction equation:

3

% Fe304(5) + Pb(,) <——>Z Fe( )+ PbO( (4.2)

dissolved dissolved )

The above equation shows that protective oxide layers vanish when lead is oxidized,
forming solid lead oxides (PbO) that can block the circulation flow of liquid lead. The

two chemical reactions above are competing: one to repel oxide layers and one to repair
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oxide layers. Therefore, an optimum operating condition should be such that the healing
effect overcomes the damaging effect, and yet minimizes the formation of lead oxides in
the system. This is when oxygen control comes into play. Too much oxygen in a system
will excessively produce PbO. Too little oxygen in the system will deteriorate protective
oxide layers.

An optimum oxygen level in the system will always fall between the two
extremes: lower bound to sustain protective oxide layers and upper bound to deter lead
oxide formations. Thermodynamics allows rough estimates on the upper and lower limits
of oxygen in the system. The maximum oxygen level is simply the solubility limit of

oxygen in liquid lead as mentioned in Chapter 1, which is given by:

logCJ™ =3.2—-5000/T (1.1)
where CJ® is the concentration of oxygen in wt % and T is the temperature in Kelvin.
The minimum oxygen level will be the level that can sustain the protective oxide layers.
Reference [1] reports the minimum oxygen level to be:

logCJ™ = —% logC,, +2.355-10600/T (4.3

where CJ™ is the concentration of oxygen in wt. %, C., is the concentration of iron in

wt. %, and T is the temperature in Kelvin. Equation 4.3 assumes that some iron atoms

are already dissolved in liquid lead. For simplicity, let the existing dissolved iron
concentration be 107 wt. %. So, Eq. 4.3 becomes:

logC™" = 6.855—10600/T (4.33)

Figure 4.1 shows the maximum and minimum oxygen levels for liquid lead coolant.
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Figure 4.1 The lower and upper limits of oxygen concentration in liquid lead coolant

This chapter provides basis simulation studies of iron in liquid lead at various
oxygen concentrations. The aims are to gain a basic understanding of system behaviors
and see if the simulation results come out as expected. The next section explains the
parameterization of the lead oxide (PbO) potential. After having all the necessary
parameter values for the EAM potentials of lead and its oxide (PbO), several systems of
iron in liquid lead with different oxygen concentrations will be studied. Finally, the

simulation results are discussed, and conclusions are drawn.
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4.2 Parameter Fittings for Lead and Lead Oxide (PbO)

Lead has a faced-centered-cubic (FCC) structure with the lattice parameter equal

t04.9508 A . The atomic properties of lead are listed in Table 4.1. Table 4.2 lists the
fitted values of six pair potential and EAM parameters against the properties of lead. The
fitting starts with the initial values of A, B, a, and b from Ref. [50]. Once the
parameters for lead are obtained, the next step is to find parameters for a lead oxide that
is stable at 550 ° C.

Lead oxides formed in lead and lead alloy coolants are found to be lead
monoxides (PbO) [1]. The lead monoxides (PbO) exist in two forms as shown in Figs.
4.2 and 4.3: the red tetragonal « -PbO (litharge) and the yellow orthorhombic g -PbO
(massicot). The stability of lead monoxides depends on operating temperatures. Litharge
transforms into massicot at about 640 ° C (913.15 K). Since the temperature domain of
interest in this dissertation is below 640 ° C, litharge is assumed to be the only form of
lead oxides.

Litharge is in the spacegroup number 129 (P4/nmm) with the crystal parameters

a=3.975A and ¢ = 5.023A [67]. The fractional coordinates of Pb and O in litharge is
(0, 0.5, 0.2351) and (0, 0, 0), respectively. Table 4.3 lists the necessary values for
parameterization of the Pb-O pair potential. Using the first nearest neighbors, the Pb-O
pair potential parameter values are listed in Table 4.4 below. The fitted charge on lead
ions is found to be +0.5e. Table 4.5 shows the parameter fitting results for the pair

potential of PbO (litharge).
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Figure 4.2 Crystal structure of litharge

i
il

Figure 4.3 Crystal structure of massicot.
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Table 4.1 Atomic properties of lead [57]

lonization Energy IE (eV) 7.4167
Electron Affinity EA (eV) 0.3640
Electronegativity y (eV) 3.8904
Self-coulomb Repulsion J (eV) 7.0527
Table 4.2 EAM parameter values of lead

Parameters of Lead Value

A (eV) 0.14108114

B (eV) 0.210710421

a 8.62110911

B 4.806186728
fe 0.65089
n 1.173139
Fo -1.44638
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Table 4.3 Values used in calculating equilibrium charges of lead ions

X 1

y 1
ay 1.6543
r, (A) 2.3115

Table 4.4 Pair potential parameter values for the Pb-O pair

Potential parameter Pb-O
A (eV) 0.030194
B (eV) 2.524427
a 22.17366
B 0.009659

Table 4.5 The fitted and target values for the pair potential of PbO (litharge)

Properties of PbO Fitted Values Target Values
Cohesive Energy (eV/atom) -3.42 -3.44
Pressure (GPa) -0.32 0
Bulk modulus (GPa) 43.26 22.43 (Ref. [68])
Pressure derivative of B 6.9 7.0 (Ref. [68])
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4.3 Cross-Potential
Unlike the simulated systems in Chapters 3 and 4, the systems in this chapter
consist of more than one metal. That is, each system contains iron and lead atoms, and
that requires a cross pair potential between iron and lead. Johnson proposed the alloy

EAM model to find a pair potential between two different metals [69]. Consider a binary

alloy made of type-a and type-b atoms. Here, the alloy potential ¢* has the form:

ab_lf_b aa f_abb
¢ —Z[facﬁ +fb¢} (4.4)

where ¢* and ¢ are the pair potentials of the type-a and type-b atoms, respectively,

and f? and f° are the electron density functions of the type-a and type-b atoms,

respectively. The derivation of the alloy potential begins with the transformations of the
EAM function and pair potential. The derivation presented in this dissertation has minor
differences from what Johnson did [69]. Under the transformations, the total energy must
remain the same in order for the transformations to be invariant. Recall that the EAM
energy F is a function of the total electron density p at a given atom site. The original
derivation of the EAM function provides the following transformation of F into G [30]:
G(p)=F(p)+kp (4.5)
where k is an arbitrary constant. Once the EAM transformation is known, the concurrent

transformation to the pair potential can be derived. Recall Eq. (2.1), the energy E

between a pair of atoms or particles separated by a distance r is

E = F(o)+24l0) (2.1)
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If the EAM function F(p) is transformed into G(p), the pair potential ¢(r) must also be
inevitably converted into a new pair potential, say «//(r), in order to keep the same total

energy. That is, under the transformations Eq. (2.1) becomes:

£ =G(p)+ v (1) (4.6)

Substituting Eqg. (4.5) into the above equation gives:

E = Flo)+ko+Zp(r)=F(p)+ 2 (1) @.7)
Therefore,

w(r)=¢(r)—2kp (4.8)

Recall Eq. (2.4),

p=2 1(r) (2.4)
In the case of one pair of atoms, Eq. (2.4) reduces to p = f(r), and Eq. (4.8) becomes:

w(r)=¢(r)- 2kt (r) (4.9)
The concurrent transformations as shown in Eqgns. (4.5) and (4.9) will be required in
deriving Eq. (4.4), the alloy potential.

A binary alloy of type-a and type-b atoms carries the total energy of:

E, :ZFa(Pi)+ZFb(Pi)+% Z¢aa(rij)+_z¢ab(rij)+Z¢bb(rij)+_z¢ba(rij) (4.10)

i, j#i i,j#i i, j#i i,j=i
The task here is to construct the cross-potential terms ¢ (r) and ¢*(r) from the

monatomic potentials ¢*(r) and ¢*(r). Since ¢ (r)=¢"(r), the above equation can

be rewritten as:
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E, :zFa(pi)"'Zi‘,Fb(Pi)JF% Z¢aa(rij)+_z¢bb(rij) +Z¢ab(rij)

i i, j=i i, j=i i, j=

Equations (4.5) and (4.9) give the following transformed potentials:
G*(p)=F"(p)+k%p
G"(p)=F"(p)+kp
v*(1)= 9" ()2 ()

v (0)=9°()- 2 1)

Equation (4.11) with the transformed potentials (F — G and ¢ — ) becomes:

i, j=i i j=i i, j#i

C - 36 ) EE(0) 3| o) Tule) |+ Zv )
Substituting Eqgns. (4.11) to (4.15) into the above equation gives:
E =2 o)k Xpt + 2 F (o) K Xl
+%Z¢aa(rij)_kaz f a(rij)

+%_Z¢bb (rij )- kb_Z_ f b(rij)
+ Z‘//ab(rij)

i, ji

(4.11)

(4.12)
(4.13)
(4.14)

(4.15)

(4.16)

(4.17)

For clarity in dealing with summations, assume that there are N® and N° atoms of the

type-a and type-b atoms, respectively. The equation above can be expanded as:
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i=1 i=1| j=1,j=i ! j=1
NP NP | N N®
LRk {zfa(ﬁjp fb(ru)}
i=1 i=1| j=1 j=1, j#i
N® N*® N® N*®
+%Z o) -k Y £e(r) (4.18)
i=1 j=1,j#i i=1 j=1,j#i
b Nb Nb Nb
+%z z¢bb(rij>_kb sz(ru)
i=1 j=1,j=i i=1 j=1,j=#i

(4.19)

Or, in a reduced notation,

a 1 aa 1
E, = ZF (pi)+ZFb(pi)+_Z¢ (rij)+_z¢bb(rij)
i i 2i,j¢i 2i,j¢i (4.20)
S w )+ k S0 )+ ke S ()

i, j#i i, j#i i, j#i
Comparing the above equation with Eq. (4.11) gives

w(r)=g2(r) -k £2(r)-k>12(r) (421)
The above equation also reduces to Eq. (4.9) as it should if a =b. Further assume that

alloy potentials result from combinations of monatomic potentials. That is, there exist

the functions M ?(r) and M°(r) such that
#% (r)=M*(r)g™(r)+ M* (r)g™ (r) (4.22)
(0= ([ ) M (0 429

Substituting the two equations above into Eq. (4.21) yields:
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M2(r)g®(r)+M°(r)g™(r)—k*f°(r)-k°f2(r)
=M a(r)[¢aa( ) af a(r)]+ M b(r)[¢bb (I’)— oK" f b(r)] (4.24)

Further simplifications give:
2k £ (rM 2 (r)+2k" £ (r)M°(r) =k £ °(r)+ k" £ 2(r) (4.25)

By inspection, the functions M #(r) and M"(r) must be

M a(r)=% :bgg (4.26)
M b(r):% :bgg (4.27)

The two equations above give Eg. (4.4), the alloy potential.

4.4 Setting up Grain Boundaries

As mentioned in Chapter 1, one of the corrosion problems is due to crystal
defects. Grain boundaries are the places where crystal defects, called dislocations,
accumulate. At grain boundaries, each single crystal in a polycrystalline solid has slight
disorientations with respect to its neighboring single crystals. Therefore, grain
boundaries generally carry different densities and atomic configurations than those of the
perfect single crystals. As a result, grain boundaries, acting like sinks, attract impurities
and solutes, which normally segregate to interfaces. Consequently, grain boundaries
offer easy paths for diffusion and cracking (along the grain boundaries).

This chapter compares the simulation results of iron crystals with and without
grain boundaries at various oxygen concentrations. One way to create grain boundaries

used in the simulations is to piece together two crystals with opposite rotations about the
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same axis. The two-dimensional rotation matrix is used in finding new coordinates of

crystals after rotations. The two-dimensional rotation matrix has the form:

cosd siné@
R= ] (4.28)
—-singd coséd

where @ is the angle of counter-clockwise rotation about the origin. For a vector v from

the origin (0, 0) to a coordinate (x, y), the new vector V' after a rotation is:

| cos@ sind || x Xcosd + ysing .
Rv=| = . =V (4.29)
—sing cosé ||y —Xsin@ + ycosé

The new coordinate is (xcosé + ysin8,—xsin @ + ycosé).

4.5 Simulations of Iron in Liquid Lead at Various Oxygen Concentrations

This dissertation is intended to provide a basis for future simulation studies of
iron in liquid lead under oxygen control. The six cases shown in Table 4.6 have been
simulated at 550 ° C (823.15 K). Oxygen is randomly distributed in liquid lead, and its
concentrations in these cases represent three extreme limits: (1) zero oxygen, (2) oxygen
at the maximum solubility limit (1.3x107 wt. %) in liquid lead at 550 ° C (823.15 K),
and (3) one-to-one atomic ratio between oxygen and lead. The iron slabs in the
simulations are finite in the z-direction and infinite in the x-y plane. In the cases where
iron crystals have grain boundaries, the tilt angle of all the grain boundaries is 30 degrees

as shown in Fig. 4.4.
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Table 4.6 The simulation cases of Fe in liquid Pb at various O, concentrations

No Grain Boundary With Grain Boundary
No Oxygen o .
Oxygen at Solubility Limit o .
Pb:O at 1:1 atomic ratio o o

Figure 4.4 A simple schematic of two iron crystals with a grain boundary
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4.5.1 Single Crystal of Iron in Liquid Lead without Oxygen

A semi-infinite single crystal of iron is put in liquid lead at 550 ° C. The iron

crystal is 43.02 A thick in the z direction and infinite in the X-y plane. The simulation
run lasts 10 picoseconds (ps) in 20,000 time steps with the temperature control via a
Nose-Hoover heat bath. Figures 4.5 and 4.6 show the system at the start and at the end of

the simulation run, respectively. At the end of the 10-ps run, the thickness of the iron

slab reduces from 43.02 A to about 37.64 A . Liquid lead exerts pressure on both sides
of the slab and, at the same time, iron atoms form a denser network to counter ingress of
lead atoms. This results in the thickness reduction of the slab. A few iron atoms also
begin to dissolve in liquid lead. At around 2.5 picoseconds in the simulation run, the
mean squared displacement plot, especially in the z direction, clearly illustrates the
sinusoid-like pattern as the system approaches equilibrium (Figs. 4.7 and 4.8). The radial

distribution function of iron-lead atoms shows that the closest distance between a pair of

iron and lead atoms is about 2.8 A (see Fig. 4.9).
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Figure 4.5 The initial setup of a single crystal of iron in liquid lead without oxygen. Iron

and lead atoms are in green and ocher colors respectively.
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Figure 4.6 The single crystal of iron in liquid lead at the end of the 10-ps simulation run
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lead without oxygen
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4.5.2 Single Crystal of Iron in Liquid Lead with Oxygen at 1.3x107° wt. %

A semi-infinite single crystal of iron is put in liquid lead at 550 ° C. Oxygen is

randomly distributed in liquid lead at the ratio of one oxygen atom to sixty lead atoms,

corresponding to 1.3x10°° wt. %. The iron crystal is 43.02 A thick in the z direction and
infinite in the x-y plane. The simulation run lasts 10 picoseconds in 20,000 time steps.
Figures 4.10 and 4.11 show the system at the start and at the end of the simulation run,
respectively. The movements of iron atoms become somewhat limited by the present of
oxygen, compared to the previous case that has no oxygen, as seen from the mean square

displacement plot of iron (Fig. 4.12). The mean square displacement plots of lead and
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oxygen (Figs. 4.13 and 4.14) show a typical result of mean square displacement for

liquid.

At the end of the 10-ps run, the thickness reduces to about 37.642&, and virtually
there is no penetration of lead atoms into the bulk of the slab. There is no formation of
oxide films as there no excess oxygen to react with iron. The slab surfaces show
protrusions of iron into liquid lead. More iron atoms also begin to dissolve in liquid lead.

The radial distribution function (RDF) of iron and lead atoms (Fig. 4.15) shows the

closest distance between a pair of iron and lead is about 2.8 A, the same as in the

previous case. The shape of the RDF curve is also similar to that of the previous case.
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Figure 4.10 The initial setup of a single crystal of iron in liquid lead with dissolved

oxygen at 1.3x10™° wt. %. Oxygen is displayed in red color.
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lead with dissolved oxygen at 1.3x10™° wt. %

4.5.3 Single Crystal of Iron in Liquid Lead with Oxygen at Pb:O = 1:1

A semi-infinite single crystal of iron is put in liquid lead at 550 ° C. Oxygen is

randomly distributed in liquid lead with one oxygen atom for every one lead atom,

corresponding to the actual chemical formula of PbO. The iron crystal is 43.02A thick

in the z direction and infinite in the x-y plane. The simulation run lasts 10 picoseconds in

50,000 time steps. Figures 4.16 and 4.17 show the system at the start and at the end of

the simulation run, respectively.
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At the end of the 10-ps run, the thickness of the slab reduces to about 40.51;&.

The iron slab is oxidized, forming 5.05 A -thick oxide films on both sides of the slab.
The mean square displacement of iron (Fig. 4.18) show that the system approaches
equilibrium relatively faster than the previous two cases. The MSD plot of iron has no
sinusoidal pattern. The MSD plots of lead and oxygen (Figs. 4.19 and 4.20) show a
typical MSD result for liquid. However, the movement of lead atoms is somewhat

limited as seen from a decrease in its MSD magnitude. The RDF plot (Fig. 4.21) shows

that the closest distance between iron and lead atoms remains 2.8 A .
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Figure 4.16 The initial setup of an single crystal of iron in liquid lead with the Pb:O

atomic ratio at 1:1
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109



—
|

T

T

L

I

T

-

Pl I

e e

|
—

0.45

i c c = T
18 o o HER
1% € U© B .
g 2 £ N
T a a a A Y ENNEEG YEEEE
x > N | .//u | \ I
. | N
[N TN
| | | ! / .
1] | | B I\
1 I R |,.|..|/.v.ﬂ.»
1]
s 8| & A 2 = 5 8

10

Time (picoseconds)

Figure 4.18 Mean square displacements of iron for the case of single iron crystal in
liquid lead with the Pb:O atomic ratio at 1:1
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liquid lead with the Pb:O atomic ratio at 1:1
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lead with the Pb:O atomic ratio at 1:1

4.5.4 Iron Crystals in Liquid Lead without Oxygen

A semi-infinite stab of iron with grain boundaries is put in liquid lead at 550 ° C.

The iron crystal is 42.67 A thick in the z direction and infinite in the X-y plane. The
simulation run lasts 10 picoseconds in 20,000 time steps. Figures 4.22 and 4.23 show the
system at the start and at the end of the simulation run, respectively. At the end of the

run, the iron slab is clearly deformed. The slab becomes denser, and, as a result, the

overall dimension shrinks. The thickness reduces to 36.54;\. No lead atoms reach the

core of the iron slab.
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Lead atoms obviously creep into the slab via the grain boundaries as seen by the
blunt penetrations on the surfaces. This is expected because grain boundaries are the
sources of defects, which provide easy diffusion paths. However, the grain boundaries
are somewhat hard to be noticed at the end of the simulation due to the relaxation of
crystals. When heated, the atoms in crystals arrange themselves in order to reduce
internal energy as much as possible by eliminating grain boundaries. Small crystals are
very quick to relax when heated, and it is not surprising that the same happens in this
case. The mean square displacement plots indicate that the system is not approaching an

equilibrium after 10 ps (see Figs. 4.24 and 4.25). The closest distance between iron and

lead atoms remains 2.8 A as seen from the RDF plot (Fig. 4.26).
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Figure 4.22 The initial setup of iron crystals in liquid lead without oxygen

114



L G 3 (. 54 A—P
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Figure 4.24 Mean square displacements of iron for the case of iron crystals in liquid lead
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Figure 4.25 Mean square displacements of lead for the case of iron crystals in liquid lead
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Figure 4.26 Fe-Pb radial distribution function for the case of iron crystals in liquid lead

Oxygen is randomly distributed in liquid lead at the ratio of one oxygen atom to sixty

without oxygen

4.5.5 Iron Crystals in Liquid Lead with Oxygen at 1.3x107° wt. %

A semi-infinite stab of iron with grain boundaries is put in liquid lead at 550 ° C.

lead atoms, corresponding to 1.3x10°° wt. %. The iron crystal is 42.67 A thick in the z

direction and infinite in the x-y plane. The simulation run lasts 10 picoseconds in 50,000

time steps.

Figures 4.27 and 4.28 show the system at the start and end of the simulation run,

respectively. At the end of the 10-ps run, the iron slab is not as badly deformed as in the

previous case of the no-oxygen system. The grain boundaries are easier to be noticed
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compared to the previous case. The mobility of iron atoms becomes limited compared to
the previous case as shown in the MSD plot of iron (Fig 4.29). Lead atoms still try to
penetrate at the grain boundaries, obviously at a slower rate as seen from the MSD plot of
lead (Fig. 4.30). The MSD plot of oxygen is shown in Fig. 4.31. Oxygen in the system
acts as a corrosion inhibitor, and it slows down the activity of lead. So the lead atoms do
not creep into slab as deep as in the previous case. The mean square plots also support
this limited mobility of lead atoms in the X, y, and z directions, compared to the previous

case. The RDF plot in Fig. 4.32 shows that the closest distance between iron and lead

atoms is 4.27 A, 1A closer than all previous cases.

© 00 000 o e 00 © ©
eooeoeoeo““eeogoﬂg"o:“e"ﬁg"o 00000000
0000 000 Y0, 0¢ 0y Y000 0 "0y 00000000
0000 600 ¢4 Yo 0 "0y 0, Yo, Ve  Ce0000000
00000000 ¢ 0 g Yoo %0 0 "0 Yoy Yo 00000000
000 00 0., 9¢ "0 4 Yo, Yo, Vg 0y "0, 00000000
00000000%0 , %¢ "0 "0y Yo, 0g "0y 00000000
06660000 g Y0, 06 “0g Yoy Yo Cg "0goe0000000
00000000 04 Y0 Ye O "0g "0, Yo, 00000000
000000009 ¢ "0 Yo, %9 0g "0, "oy 00000000
000000000 _ ¢ € o0 _o g E o0& 900000 o
00000000 g0 " 9 0% 0" 07 g0 0% o 00000000
00000000 oY 0 .09 _0° o © 0®" o 00000000
coo0o0e ° o 0% ¢ 09 0% 0" gCo0000000
¢ LY “ © ¢ @

00000000,0° g0 ¢@ 6% 507 ¢ 09, 00000000
00600000° 0" o9 0% 0% 07 o9 Jo0 00000000
00000000 0" o9 0% S0° 0 g0 0% 50 00000000
00000000 09 09 07 g0 g0 6% s07 006000600
0o ooooo°°0°°0°a°ee°° 0050090‘0 60000000
000000600 ©

000 _ococe 09 0% 07 o7 ¢ 0% 0% g 600000

Figure 4.27 The initial setup of iron crystals in liquid lead with dissolved oxygen at

1.3x107 wt. %
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Figure 4.28 Iron crystals in liquid lead with dissolved oxygen at 1.3x10°° wt. % at the

end of 10-ps simulation run
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Figure 4.29 Mean square displacements of iron for the case of iron crystals in liquid lead

with dissolved oxygen at 1.3x10™° wt. %
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lead with dissolved oxygen at 1.3x107° wt. %
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4.5.6 Iron Crystals in Liquid Lead with Oxygen at Pb:O = 1:1

A semi-infinite stab of iron with grain boundaries is put in liquid lead at 550 ° C.

Oxygen is randomly distributed in liquid lead at the ratio of one oxygen atom to one lead

atom. The iron crystal is 42.67 A thick in the z direction and infinite in the X-y plane.
The simulation run lasts 10 picoseconds in 50,000 time steps.

Figures 4.33 and 4.34 show the system at the start and end of the simulation run,
respectively. At the end of the 10-ps run, the grain boundaries remain noticeable. The

iron slab is oxidized on both sides of the slab with the oxide film thickness of about

41A. Virtually, no lead atoms reach the slab core. Most of lead atoms stay on the slab
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surfaces, and only a few lead atoms manage to get below the surfaces. The mean square
displacement plots (Figs. 4.35 to 4.37) suggest that the system does not approach its

equilibrium after 10 ps. According to the radial distribution function for iron and lead

atoms (Fig. 4.38), the closest distance between a pair of iron and lead is 2.81&
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Figure 4.33 The initial setup of iron crystals in liquid lead with the Pb:O atomic ratio at

1:1.
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the Pb:O atomic ratio at 1:1
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Figure 4.36 Mean square displacements of lead for the case of iron crystals in liquid lead

with the Pb:O atomic ratio at 1:1
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Figure 4.37 Mean square displacements of oxygen for the case of iron crystals in liquid

lead with the Pb:O atomic ratio at 1:1
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Figure 4.38 Fe-Pb radial distribution function for the case of iron crystals in liquid lead

with the Pb:O atomic ratio at 1:1

4.6 Discussion of Simulation Results

The simulation runs as shown in Table 4.6 have been completed. All six cases

represent the limiting scenarios in the systems consisting of iron, liquid lead, and oxygen.

Below are the detailed discussions regarding the following four attributions from the six

cases: (1) deformation, (2) wettability, (3) penetration depth of lead, and (4) dissolution.

In all cases, the slabs exhibit deformation from their original shapes to some

extent. The slab thickness is calculated by first finding the averaged z-coordinate z_,

and then seeking a positive value Az such that the 95% of the total iron atoms locate

between z

avg

+ Az. This represents the conventional 95% confidence interval, and the
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slab thickness is approximated by 2Az. Table 4.7 shows the value of z_ + Az at the

avg
end of the simulation in all six cases. The reduction in the slab thickness ranges from
about 6% to 15% as shown in Table 4.8. Overall, the cases with grain boundaries have
larger reductions in thickness, compared to the single crystal cases. This is because grain
boundaries provide extra space for iron atoms to relocate to when lead atoms are
compressing the iron slab surfaces.

Wettability enhances penetration of lead into bulk iron. Better wettability usually
provides good surface adsorption. In the atomic level, wettability of lead on the surfaces
of iron can be roughly gleaned from how dense lead atoms on the contacting surfaces are.
The distribution histograms offer this information. Figures 4.39 to 4.44 show the
histograms with the number of atoms displayed for each location bin. Each bin contains
the atoms that have the z coordinates between the intervals on the axis. The highlighted
sections represent the majority of the iron atoms (more than 95% of the total iron atoms)
making up the slabs. Across the six cases, the cases with grain boundaries clearly stand
out as having “wetter” surfaces. There are more lead atoms on the surfaces of the multi-
crystalline slabs than those of the single-crystal slabs (see Table 4.9). In the single iron
crystal cases, oxygen adversely affects the well-ordered, uniform surfaces of those single
crystals. The surfaces of the single crystals become rough when reacted with oxygen,

and that favor the wettability of lead atoms.
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Table 4.7 The iron slab positions along the z-direction at the end of the simulations

Z-coordinate range of slab iron z,,, + Az (A)

No Grain Boundary With Grain Boundary

No Oxygen 0.78+18.82 (-18.04 t0 19.60) | 0.07 £18.27 (-18.20 to 18.34)

O, at solubility limit] 0.28+18.82 (-18.54 t0 19.10) |-0.17+18.16 (-18.33 to 17.98)

Pb:O at 1:1 (atomic)| -0.05%20.26 (-20.31t0 20.20) |-0.14+19.71 (-19.85 to 19.57)

Table 4.8 Thicknesses of the iron slabs at the end of the simulation runs

Slab Thickness (A )

No Grain Boundary With Grain Boundary

Start End % chg Start End % chg

No Oxygen

43.02 | 37.64 13% 42.67 | 36.54 14%

Oxygen at solubility limit

43.02 | 37.64 13% 42.67 | 36.31 15%

Pb:O at 1:1 atomic ratio

43.02 | 4051 6% 42.67 | 39.42 8%
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Figure 4.39 Histogram of atom positions along the z direction in the case of

single crystal of iron in liquid lead without oxygen
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Figure 4.40 Histogram of atom positions along the z direction for the case of

iron crystals in liquid lead without oxygen

134



less -25 -24 -23 -22 -21 -20 19 -18 -17 17 %8 19 200 21 22 23 24 25 More
Position bin (A)

Figure 4.41 Histogram of atom positions along the z direction for the case of

single crystal of iron in liquid lead saturated with oxygen
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Figure 4.42 Histogram of atom positions along the z direction for the case of

iron crystals in liquid lead saturated with oxygen
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Figure 4.43 Histogram of atom positions along the z direction for the case of

iron single crystal in liquid lead with the Pb:O atomic ratio at 1:1
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Figure 4.44 Histogram of atom positions along the z direction for the case of iron

crystals in liquid lead with the Pb:O atomic ratio at 1:1

Table 4.9 The number of Pb atoms on the Fe surfaces at the end of each simulation

Number of Lead Atoms on Iron Slab Surface
No Grain Boundary With Grain Boundary
No Oxygen 24 48
Oxygen at Solubility Limit 22 31
Pb:O at 1:1 atomic ratio 14 5

From the same histograms, in terms of preventing the penetration of lead atoms,

the cases with grain boundaries usually perform worse than the cases without grain

138



boundaries. More traces of lead atoms enter deeper under the slab surfaces. However,
when there is enough oxygen in the systems, oxygen enters much deeper than lead atoms.
It is evident that fewer lead atoms reach the inner slab cores when the slabs are oxidized
as seen from the histograms. This clearly indicates that oxygen acts as an inhibitor.

Dissolution of iron atoms into liquid lead can be observed from the cross cut
planes as shown in the last section. The histograms, however, provide the better views of
the distributions of iron atom locations along the z direction. The histograms show how
many iron atoms wander too far from their respective slab surfaces. That is, a
distribution with long tails should suggest higher dissolution of iron atoms in liquid lead.
Again the cases with grain boundaries generally perform worse than the cases of single
crystals.

Finally, the radial distribution functions allow a comparison between the results
from this modeling work and the results from the works by Takahashi et al. [20] and

Maulana et al. [21]. Tables 4.10 and 4.11 list the closest distances between the pairs of
Fe-Pb and Fe-Fe, respectively. The closest distance among iron atoms remains 25A in

all cases. The closest distance between iron atoms in bulk iron crystals is 2.4825 A. So

this indicates that the iron slabs still relatively retain their crystal structures. The closest

distance between iron and lead atoms is 2.8 A in almost all cases, except for the cases

with oxygen at its solubility limit. When oxygen is present at its solubility limit of

1.3x107° wt. %, the closest distance between iron and lead atoms decreases to 2.710&. At

the oxygen solubility limit, oxygen is in its determining state of either staying as a solute
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in lead or forming ionic bonds with lead. This may cause the deviation in the separation
distances between lead and iron atoms.

Takahashi et al. reported the closest distances between the iron surface and the

lead atom to be 1.79 A and 1.48 A depending on the original locations of a lead atom
at the beginning of the simulation [20]. In addition, Takahashi et al. observed that liquid
lead disturbs the crystal structure of iron near the contact surfaces. This behavior is also
observed from the simulation results in this dissertation as iron atoms at the surface

conglomerate into a denser network. Maulana et al. reported the closest distance between

iron and lead atoms to be 2.7 A for the system containing only iron and lead atoms [21].
The closest distances between Fe-Pb atoms from this dissertation are similar to what

Maulana et al. reported.

Table 4.10 The closest distance between an Fe-Pb pair in each simulation case

Closest Distance between Fe-Pb atoms (/OX)
No Grain Boundary With Grain Boundary
No Oxygen 2.8 2.8
Oxygen at Solubility Limit 2.7 2.7
Pb:O at 1:1 atomic ratio 2.8 2.8
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Table 4.11 The closest distance between an Fe-Fe pair in each simulation case

Closest Distance between Fe-Fe atoms (/OX)
No Grain Boundary With Grain Boundary
No Oxygen 2.5 2.5
Oxygen at Solubility Limit 2.5 2.5
Pb:O at 1:1 atomic ratio 2.5 2.5

4.7 Conclusion

The simulation results show that the clusters of iron atoms become denser when
put in liquid lead. There are two explanations for this behavior. First, iron atoms are
compressed by lead atoms. Second, it is a self-defense mechanism of iron in order to
deter the penetration of lead atoms by readjusting their configurations. As a result of
readjustments, defects are introduced throughout the slabs, especially on the surfaces.
When contacting surfaces turn rough, surface adsorption become favorable for lead
atoms.

However, when oxygen is introduced into the systems, oxygen slows down the
interaction rates between iron and lead. Oxygen can pin down lead atoms due to
electrostatic forces. The results are analogous to adding carbon to iron as it prevents the
glide of dislocations and sliding/slipping of iron atoms in the lattice. In addition, when
oxygen forms magnetite oxide layers, iron in the oxide layers become positive ions.
When lead atoms come near oxygen residing in the oxide layers, those lead atoms likely

to become positive ions in order to form ionic bonding with oxygen. When this happens,
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it is highly likely that positive iron ions and positive lead ions will repel each other due to
electrostatic forces. This, in turn, helps against lead penetrations into iron slabs.

Finally, the simulation results confirm the following known experiment results:

1. Single crystal iron seems to be the best choice against liquid lead.

2. Oxygen acts as inhibitors by immobilizing lead atoms.

3. Ifiron crystals have been pre-oxidized before put into stagnant liquid lead,

oxide layers protect lead atoms from diffusing into the core or bulk iron.
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CHAPTER 5

CONCLUSIONS AND RECOMMENDATIONS

5.1 Conclusions

The aim of this work is to model oxidations by using molecular dynamics with a
specific interest on iron in liquid lead with controlled oxygen. The first challenge in this
work is to find a charge distribution that minimizes the total energy at each time step
during a simulation. This challenge is overcome by using a mathematical optimization
method called the Generalized Reduced Gradient (GRG) method. The GRG method
guarantees charge neutrality at each time step during the course of a simulation. All
simulations start with neutral atoms, and hence the net charge is zero. During a
simulation, oxidations transform neutral atoms into ions, and the net charge in the system
must be zero at all time during that simulation. The charge neutrality condition obeys the
conservation of charge because charges cannot be created or destroyed. In addition, the
GRG method ensures that each ion carries a charge that stays within its upper and lower
limits. For example, an oxygen ion cannot carry a —3e charge as the lowest charge it can
carry is — 2e, where e is the electron charge. The simulation results of the model with
the GRG method agree with previously published data. This benchmarking confirms the
validity of the GRG application in molecular dynamics modeling. This study has been
published in Computational Materials Science (volume 46, issue 4, October 2009, pages
887-892).

The second challenge comes when modeling iron oxidation to form magnetite.
Magnetite contains two different oxidation states of iron ions: one type carries the

maximum charge of + 2e and the other type carries the maximum charge of +3e. The
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problem is how to decide which type each iron ion belongs to. This is not a trivial
problem because each iron ion normally carries a fractional charge, say + 0.25e, not fully
+2e or +3e. The type determination of iron ions has to be based solely on the charge
each iron ion carries. The simplest solution is to use the population ratio Fe®*:Fe®* that is
always constant at 1:2, according to the chemical formula of magnetite Fe;0,4 =
(FeO)(Fe,03). Iron ions with charges exceeding +2e will be the Fe** type, while the rest
will be randomly assigned to maintain the 1:2 population ratio. When implemented, the
model yields satisfactory results when compared to the actual experiment results.

The last chapter combines the applications from Chapters 2 and 3, and
demonstrates the robustness of this modeling work through the final simulation results.
The systems containing iron in liquid lead with various oxygen concentrations have been
simulated. The simulation results have come out as expected. The simulated systems
show penetrations of lead atoms, dissolutions of solid iron in liquid lead, and the role of
oxygen as an inhibitor. As the systems have behaved as hoped for, it is evident that this
modeling work confirms the fundamental knowledge regarding corrosion attack of liquid

lead on iron.

5.2 Recommendations for Future Work
The suggestion for future work can be divided into three parts. The first part
concerns Moldy, the backbone computer code used in this dissertation for molecular
dynamics simulations. The second part concerns the computer code for the GRG
method. The final recommendations are about the basic assumptions and future systems

to be modeled. Regarding Moldy, the following improvements should be done:
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(1) Implement dynamic features into Moldy so that it can handle both static and
dynamic simulations. This way, systems with flowing liquid lead can be
simulated.

(2) Revise bookkeeping of Moldy such that it will

a. Label ions separately from neutral atoms even though they are of the same
element.

b. Keep track of new morphing molecules, oxygen molecules to oxygen
atoms.

c. Be more flexible when new particles are introduced during ongoing
simulations.

(3) Optimize the coding of Moldy so that it runs faster.

The current GRG code has been written from scratch. So there is a lot of room
for improvements. The code has not been optimized for computational speed. Since the
GRG function is repeatedly called during a simulation, an optimized GRG code will
make a run time much shorter. If a more efficient algorithm exists, the GRG code should
be replaced with that new algorithm.

Finally, there are opportunities to improve on assumptions and future systems to
be simulated. The first assumption to be improved is on the iron oxidation in a form of
magnetite. This dissertation assumes the simplest type classification of iron ions. A
better assumption should give a more accurate results based on the magnetite structure.
Furthermore, this dissertation only assumes that protective oxide layers consist of only
magnetite. Not only magnetite exists, but other types of oxides exist as well. This is also

true for oxidations of lead. It has been assumed that only one type of PbO forms.
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However, if there is a change in simulation temperature, the other type of PbO can form
as well. Therefore, future modifications to this modeling work should be more flexible
regarding these oxide formations.

At its current stage, this modeling work is flexible enough for studies on various
static (no flow) systems regarding oxidations. Only liquid lead is studied in this
dissertation. Future studies can include bismuth, forming LBE, in simulations, or a
different family of coolant materials entirely (such as sodium). Contaminations in
systems or special grain boundary strengthening elements can also be studied. Structural
alloys composed of iron, nickel, and chromium can also be modeled in place of pure iron.
Predictive studies are also possible if the time spans are lengthened, say 100 ps or 1,000
ps. In the future if experimental data are available, benchmarking the simulation and
experimental results can offer validations and further improvements of initial modeling

assumptions.
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APPENDIX

NOMENCLATURE
Symbol Name Unit
A a fitting parameter for pair potential eV
A a constant in a wave equation A
A, a constant in the oxide growth equation nm/Pa’°—s
a lattice parameter A
ay the constant in the Rose equation —
a acceleration vector m/s
B a fitting parameter for pair potential eV
B bulk modulus GPa
b the jerk, the 3rd derivative of the position with respect to time m/s®
Cy elastic constant GPa
Co concentration of oxygen wt. %
Cc lattice parameter A
D diffusivity cm’/s
E energy eV orl
E, activation energy eVorJ
E. cohesive energy eVorJ
E® electrostatic energy eV orJ
E, kinetic energy eV orJ
F embedding energy function evVorl
Fo fitting parameter for embedding energy function eVorl
F force vector N
f electron density of an atom —
fe equilibrium electron density of an atom —
fy normalized distribution function —
G’ Gibbs free energy eV orJ
Gg reduced gradient -
g inequality constraint —
h equality constraint —
1A electron affinity energy eV
IE the first ionization energy eV
J self-Coulomb repulsion or chemical hardness eV
Jjj a matrix element in a row i and a column j —
K wave number -
Ks Boltzmann constant eV/K
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Symbol Name Unit
Ke Coulomb constant eV- Al e’
m mass of a particle kg
N the number of particles in a system —
Ne the number of degrees of freedom —

n the number of the nearest neighbors —
o(..) big O notation -

P pressure N/m’
Q fictitious mass parameter 1/s*
q charge e
q- minimum charge limit e
U . ..

q maximum charge limit e
R gas constant J/mol-K
r distance between two atoms A
r position vector A
re the first nearest neighbor distance of a crystal at equilibrium A
0 distance from the i neighbor to the site of interest A
T distance between ions i and j A
S search direction -
T temperature K
T heat bath temperature K
t time S
At time step S
v velocity vector m/s

v(P) predicted velocity m/s

v© corrected velocity m/s
W energy penalty eV
Y a set of basic variables —
y basic variable —
Z a set of non-basic variables —
z non-basic variable —
U potential energy eV orl
% volume A®
VA effective core charge e
a a fitting parameter for pair potential —
) Madelung constant —
p a fitting parameter for pair potential —
7o increase in activation free energy with thickness of oxide film —
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Symbol Name Unit
o Delta function —
g friction coefficient st
A Lagrange multiplier —
H chemical potential eV
S coordinate of an atom in a crystal A
V3 Lagrange multiplier —
4 electron density function —
Pe electron density at equilibrium —

Pro density of lead glem®
Pq charge distribution function —
% pair potential eV
X electronegativity eV
Q, atomic volume at equilibrium A®
10 phonon frequency st
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