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ABSTRACT 
 
 

Oxidation Modeling by Means of Molecular Dynamics 
 

by 
 

Chaiyod Soontrapa 
 

Dr. Yitung Chen, Doctoral Advisory Committee Chair 
Professor of Mechanical Engineering 

University of Nevada, Las Vegas 
 

 Oxidation modeling is normally engineered to study systems at macroscopic 

scales, mostly in analytical forms based on diffusion theories.  The associated time scale 

is usually in months, days, or minutes, and the length scale is in the order of microns.  In 

this dissertation, oxidation modeling is performed at atomistic scale with the time and 

length scales in picoseconds and angstroms, respectively, using molecular dynamics.  

Molecular dynamics simulations generate trajectories of each atom or particle in a system 

according to the laws of physics.  Studying oxidations under the atomistic point of view 

can offer new insights on atomic behaviors and influencing factors in oxidation 

mechanisms. 

 This dissertation focuses on modeling dynamic behaviors of liquid lead, oxygen, 

and iron.  Lead is used as a coolant in nuclear reactors due to its excellent physical 

properties such as high boiling point and neutron transparency.  Nevertheless, liquid lead 

is very corrosive to iron, the main structural material in reactors.  As lead diffuses along 

grain boundaries and other faults in iron crystals, iron lattices become brittle.  In addition, 

oxygen dissolving in liquid lead causes another problem.  Too much oxygen promotes 

undesired compound formations of lead oxide, typically known as slags, which hinder the 
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coolant flow.  However, when only traces of oxygen are present in this lead-iron system, 

protective iron oxide layers form and help preventing further ingress of liquid lead. 

This dissertation provides a new approach in modeling oxidations, using the 

Generalized Reduced Gradient (GRG) method in minimizing the potential energy of a 

metal/metal oxide system.  The approach is then applied to model iron oxidation in the 

form of magnetite.  Finally, a system consisting of liquid lead, iron, and oxygen is studied 

under several scenarios. 
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CHAPTER 1  

INTRODUCTION 

1.1 Lead and Lead Bismuth Eutectic as Coolants 

 Owing to its outstanding properties, lead proves to be an excellent candidate for a 

coolant used in advanced nuclear reactors and accelerator driven systems (ADS) [1].  The 

melting point of lead is relatively low at 327.46 °C (600.61 K) while its boiling point is at 

1749 °C (2022.15 K).  The high boiling point of lead offers a possible application in 

thermochemical production of hydrogen, which requires the threshold temperature of 830 

°C (1103.15 K).  Lead is also transparent to neutrons because it provides low moderation, 

low absorption, but good reflection of neutrons, which is beneficial to neutron economy 

in fast reactors.  In nuclear reactors, lead actively absorbs dangerous gamma radiation 

due to the very high density of lead.  Unlike sodium, which is another candidate coolant 

in advanced nuclear reactors, lead is relatively inert to air and water, providing safer heat 

exchange between the primary and secondary loops.  The high density of lead also helps 

keeping the design dimensions of lead-cooled reactors relatively small. 

 An alloy composed of 44.8% lead and 55.2% bismuth by weight is called Lead-

Bismuth Eutectic (LBE).  A eutectic is a mixture of two or more solids at such 

proportions that the mixture’s melting temperature is at a local minimum.  Figure 1.1 

shows the LBE phase diagram [2].  Compared to lead, LBE has a lower melting point of 

125.5 °C (398.65 K) and a lower boiling point of 1670 °C (1943.15 K).  The high boiling 

points of lead and LBE improve passive safety in case of loss of coolant accidents.  This 

means coolants can absorb more energy without boiling off to further pressurize reactor 

systems.  LBE also carries over attractive properties of lead such as neutron transparency 
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and high density.  However, at least two disadvantages exist for the use of bismuth.  First, 

the price of bismuth is many times higher than the price of lead.  In 2008, bismuth cost 

about $12 per pound, while lead cost only about $1 per pound [3].  The second 

disadvantage comes from polonium, a by-product of bismuth irradiation.  Polonium is 

born when bismuth undergoes neutron capture with subsequent beta decay.  Alpha 

particles emitted by polonium can easily damage organic tissues and increase the risk of 

cancer.  In addition, the major drawback of using lead and its alloys as coolants remains 

in their very corrosive nature to structure materials such as steels. 

 

 

Figure 1.1  The phase diagram of lead-bismuth eutectic [2] 
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1.2 Corrosion in Liquid Lead Alloy Environments 

Liquid metal corrosion involves several variables that can greatly affect corrosion 

rates.  Those variables belong in one of the following three categories: (1) operating 

condition, (2) metallurgy, and (3) manufacture [4].  Examples of the corrosion factors 

according to their categories are listed in Table 1.1 [4, 5]. 

 

Table 1.1  Corrosion factors that influence corrosion rates [4, 5] 

Categories of Corrosion Factors Corrosion Factors 

Operating Condition • Temperature 

• Temperature gradient 

• Cyclic temperature 

• Surface area to volume ratio 

• Flow velocity 

Metallurgy • Purity of liquid metal 

• Mixed metal systems in the same liquid metal 

• Microstructure of container materials 

Manufacture • Condition of container materials 

 

Operating Condition: 

• Temperature 

Temperature is the most important variable in liquid metal corrosion.  

Higher temperature leads to higher solubility and higher diffusivity, which in turn 

accelerate corrosion. 
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• Temperature gradient 

A temperature gradient changes solubility limits of the same solid metal in 

hot and cold parts of a circulation loop.  It causes the continued loss of materials 

from the hot parts, and can possibly lead to selective removal if the loop 

components are made of different materials. 

• Cyclic temperature 

In a poorly controlled furnace, for example, sizable fluctuations in 

temperature allow solid metals to dissolve into liquid metals when temperature is 

erratically high.  Later, when temperature drops, dissolved metals precipitate in 

the bulk liquid.  If this cycle continues, thinning of the furnace walls will be 

evident. 

• Surface area to volume ratio 

Corrosion increases when the ratio of an exposed metallic surface area to 

the volume of liquid metal decreases.  In an isolated static system, solid metals 

will eventually saturate liquid metals that they come in contact.  Given two 

containers with the same surface area, a container with a larger amount of a liquid 

metal (hence larger volume) will corrode more heavily than the one with less 

amount of the same liquid metal.  The more liquid metals are added into the 

system, the more solid metals will dissolve in the liquid metals. 

• Flow velocity 

The flow velocity, or as measured by the Reynolds number, becomes very 

important in a forced-circulation loop.  The corrosion impacts depend on how fast 

the coolant is flowing over solid material surfaces, and, therefore, this type of 
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corrosion is termed Flow Accelerated Corrosion (FAC) [6].  The FAC combines 

the mechanical effects (abrasion and impingement) with electrochemical effects 

(dissolution and oxidation), and each effect has varied domination over one 

another depending on the flow velocity.  Generally, three velocity domains are 

considered: (a) low velocity, (b) moderate velocity, and (c) high velocity [7]. 

(a) In the low velocity domain, the mass transfer fully or partially dominates.  

When there is no flow, the solubility of solid in liquid reaches its limit at 

the solid-liquid interface.  When a low-velocity flow starts, some of the 

corrosion products at the interface are carried by the liquid flow.  A 

stronger flow will give rise to a higher corrosion rate because solid 

dissolves more at the solid-liquid interface to make up for the transported 

fragments. 

(b) In the moderate velocity domain, the flow rate continues to be the limiting 

factor until the flow velocity reaches a critical value.  When that happens, 

dissolution rate becomes the limiting factor instead.  The corrosion rate in 

this sub-domain becomes activation controlled.  In the activation 

controlled sub-domain, the dissolution of solid in liquid dictates the rate at 

which the corrosion products are formed.  Therefore, regardless of the 

flow velocity, the dissolution and reaction rates fully control the corrosion 

rate.  The strong flow just simply carries all the corrosion products from 

the interface. 

(c) In the high velocity domain, all mechanical effects become crucial.  Shear 

stresses in a single-phase highly turbulent flow and particle impacts in a 
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multi-phase turbulent flow can strip off passive oxide films from the base 

metals.  This behavior shortens diffusion distances between the underlying 

metals and liquid, and that hastens the corrosion rates.  In addition, if the 

flow changes its directions sharply due to sudden expansions/contractions 

or elbows in the circulation loop, erosion corrosion becomes severe as 

liquid and particles suspending in the flow are thrown against the loop 

walls.  Cavitation corrosion can also occur if the voids in the flowing 

liquid metals suddenly collapse on the loop walls.  Micro jets of heavy 

liquid metal atoms burst out from the collapsed bubbles will collide at 

high velocities with the loop walls, leaving those walls under high local 

pressures.  High stress in solid metal structures can result in consequences 

such as localized fatigue damages and stress-assisted cracking. 

The low velocity domain is where the flow is essentially laminar, while the flow 

is turbulent in the remaining two domains (b) and (c).  Figure 1.2 shows the 

diagram of velocity effects on the corrosion rate.  Within the turbulent flow 

domain, the combination of different effects results in four types of flow 

accelerated corrosion besides the underlying mass transfer that is continuously 

active whenever a flow exists.  The four FAC types are (1) activation-controlled 

corrosion, (2) phase-transport controlled corrosion, (3) erosion corrosion, and (4) 

cavitation corrosion [8].  The classification of these four corrosion types is shown 

in Fig. 1.3 [8].  All of these corrosion types have been described briefly, except 

for the phase-transport controlled corrosion.  The phase-transport controlled 

corrosion involves reactive phases in flowing liquid, usually gaseous phases that 
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contaminate the liquid.  The phase-transport begins when reactive phases wet or 

get in contact with structural surfaces.  The nature of the flow can accelerate the 

corrosion if the flow efficiently transports these aggressive contaminations 

throughout the loop, or the flow has bends or sudden expansions that create 

surface eddies.  An example of this corrosion type includes carbon in liquid 

sodium that impairs the elastic properties of 316-type stainless steels [9].  Another 

example is oxygen in liquid sodium that aggravates corrosion in austenite 

chromium-nickel steels [10].  Figure 1.4 shows the schematics of these four 

corrosion types in the turbulent flow domain. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.2  Velocity effects on the corrosion rate [7] 
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Figure 1.3  Classification of flow accelerated corrosion [8] 
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Metallurgy: 

• Purity of liquid metal 

Purity of the liquid metal can impact the rate at which the solubility limit 

is reached and the wetting tendency of the liquid metal on the solid metal.  

Impurities in liquid metals can either enhance or worsen corrosion rates. 

• Mixed metal systems in the same liquid metal 

When a container or a loop is made of a combination of solid metals, a 

mass transfer phenomenon (dissimilar mass transfer or concentration mass 

transfer) can occur even under an isothermal condition.  A system consisting of 

multiple types or phases of solid metals reaches equilibrium only when all the 

chemical potentials of each distinct type or phase are equal to each other.  The 

constituents in the system components will be continuously redistributed until all 

the chemical potentials satisfy an equality.  The equalization of the chemical 

potentials, the main driving force behind this process, forces the free energy of the 

system to become lower. 

• Microstructure of the container materials 

The microstructure of the container materials such as grain sizes and 

precipitations along grain boundaries affect the rates at which liquid metal attacks 

on solid metals.  Wettability of individual grains and the wettability of grain 

boundaries are different.  Good wettability normally accelerates corrosion rates.  

Corrosion can be greatly enhanced along a continuous carbide or oxide network at 

the grain boundary. 



 10

Manufacture: 

• Condition of container materials 

During a manufacturing process, welding, loading, cold work and other 

operations can cause container materials having unwanted grain boundary 

precipitates and second phases, high stress state of metals, and unfavorable grain 

sizes.  This effectively leaves the container materials in compromised conditions.  

For example, thinning due to liquid metal corrosion combined with high stress in 

container materials potentially foster premature failures.  Also, an uncontrolled 

factory environment can introduce oxide films on the surfaces of container 

materials.  In a static system, the primary effect of surface films is to change the 

rate at which the liquid metal is saturated.  The greater the unprotected surface 

area that is exposed, the faster the liquid becomes saturated.  After equilibrium is 

reached between the liquid metal and the solid metal, the surface condition should 

have no effect. 

All of the above corrosion factors play their roles in either promoting or deterring 

corrosion attacks of liquid metals on solid metals. 

Based on visual detections, there are two general types of corrosive attacks on 

solid metals by liquid metals: (1) uniform corrosion and (2) local corrosion [4].  In 

uniform corrosion, the attack of liquid metals on solid metals proceeds evenly over the 

contact areas between solid and liquid metals.  Thinning on the surfaces continues until 

structural failures take place.  However, uniform corrosion can be easily measured and 

predicted.  In contrast, local corrosion is much harder to observe as damage occurs below 

the surfaces of solid metal structures. 



 11

Furthermore, uniform and local corrosion can be further categorized based on 

specific nature of the attacks.  There are four kinds of corrosive attacks as follows [5]: 

(1) Simple solution 

The simple solution attack corrodes solid metal surfaces evenly.  The driving 

force of the attacks is solubility of solid metals in liquid metals.  For a static system, if all 

phase diagrams of liquid-solid metals in the system are available, penetration depths can 

be predicted based on solubility limits at a specific temperature.  Examples of the simple 

solution attack include the corrosion of titanium in liquid lead at 1000 °C and iron in 

liquid lithium at 1000 °C. 

(2) Diffusion penetration 

There are two modes of penetration: intragranular and intergranular.  In both 

modes of attack, intermetallic compounds (alloys) between liquid and solid metal species 

are usually formed.  In the intragranular mode of attack, liquid metals dissolve directly 

into the grains of solid metals.  In the intergranular mode of attack, liquid metals 

penetrate along the grain boundaries.  Between the two modes of attack, the intergranular 

attack causes more disastrous damages to structural metals, and it is often the preferred 

mode of attack.  Grain boundaries provide easy paths for diffusion of liquid metals.  As a 

result of penetrations and alloy formations along the grain boundaries, adhesion between 

grains weakens and grains easily detach from their crystalline networks. 

(3) Impurity reactions 

Impurities such as oxygen and nitrogen in liquid metals can promote or slow 

corrosion rates.  For example, nitrogen reacts with carbon in stainless steel, causing 
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removal of carbon from the grain boundaries of steel.  In contrast, oxygen forms 

protective film layers on steel that act as contact barriers between steel and liquid lead. 

(4) Mass transfer 

There are two types of mass transfer as listed below.  Each type of mass transfer 

differs by the driving force behind it. 

(4.1) Temperature-gradient mass transfer 

The driving force behind this type of corrosion is the difference in 

solubility of a solid metal in a liquid metal at various temperatures.  At a very hot 

portion of a circulation loop, atoms from pure solid metals or solid alloys made up 

the piping of the loop diffuse out to the surfaces and dissolve in the liquid metal.  

They are then carried through the loop.  Upon reaching colder portions of that 

loop, they settle and re-crystallize because the solubility is less in these cold parts 

than in the hot parts. 

(4.2) Dissimilar-metal mass transfer 

This type of corrosion is driven by the decrease in free energy of a system 

by alloying two or more different metals.  In a circulation loop that was made of 

two or more different metals, atoms of one metal species dissolve in a liquid 

metal, travel through the loop, and diffuse into another metal species, forming an 

alloy. 

To conclude, only simple solution is uniform corrosion, while the rest are local corrosion.  

Table 1.2 summarizes the corrosion natures and their driving forces. 
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Table 1.2  Summary of the corrosion types 

  Damage Type   Nature of Attack   Driving Force 

  Uniform Corrosion   simple solution   isothermal solubility of solid in  

  liquid 

  Local Corrosion   diffusion penetration   solubility of liquid in solid 

  impurity reactions   reactions between constituents  

  in solid with impurities in liquid 

  Mass transfer 

• temperature-gradient mass 

transfer 

• dissimilar-metal mass transfer

 

• solubility of solid in liquid at 

different temperatures 

• reduction in free energy 

 

 Liquid metal corrosion studies often mention three important parameters: (1) 

wettability, (2) solubility, and (3) diffusivity.  Surface wetting plays an important role.  A 

liquid with more wettability can spread itself over a large surface area, while a liquid with 

low wettability only appears as droplets on solid surfaces.  Therefore, the more 

wettability a liquid metal has on a solid metal surface, the faster corrosion proceeds.  This 

is directly related to the surface to volume ratio, one of the corrosion factors mentioned 

earlier.  On the other hand, wettability of liquid metals becomes lower when solid metal 

surfaces are protected by passive oxide layers.  An experiment has shown that a presence 

of passive oxide layers on T91 steel deters surface wetting by liquid lead [11]. 

The second parameter is solubility.  Related to corrosion attacks of liquid lead on 

solid iron are two important kinds of solubility: (1) oxygen solubility and (2) iron 
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solubility in liquid lead.  In the temperature range between 400 o C and 700 o C, the 

solubility of oxygen in liquid lead is given by [1]: 

TCO /50002.3log −=     (1.1) 

where OC  is the concentration of oxygen in wt. % and T  is the temperature in Kelvin.  

At 550 o C, the concentration of oxygen is 3103.1 −×  wt. %.  This translates into 1 oxygen 

atom for about every 60 lead atoms.  The oxygen solubility determines the upper limit of 

oxygen control.  Oxygen control, a key corrosion protection method, will help 

maintaining protective oxide layers.  Any oxygen exceeding its solubility limit will react 

with lead to form undesirable lead oxides.  The oxygen control process will be discussed 

in Chapter 4. 

In the temperature range between 330 o C and 910 o C, the solubility of iron in 

liquid lead is [1]: 

TCO /345034.0log −=     (1.2) 

where OC  is the concentration of oxygen in wt. % and T  is the temperature in Kelvin.  

At 550 o C, the concentration of iron is 4104.1 −×  wt. %.  This is roughly 1 iron atom in 

1914 lead atoms.  As stated earlier, if the solubility is available, the amount of metal 

losses can be calculated for a static system (no flow).  This provides a rough estimate of 

how much thinning will occur over time.  The volume of liquid lead can be calculated 

from [1]: 

TPb 1944.111367 −=ρ     (1.3) 
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where Pbρ  is the lead density in 3/ mkg  and T  is the temperature in Kelvin in the range 

600 K to 2000 K.  Figure 1.5 gives an estimate of iron loss in kilograms per one cubic 

meter of liquid lead at various temperatures in a static system using Eqns. (1.2) and (1.3). 

 

 

Figure 1.5  Iron loss in liquid lead at different temperatures in a static system 

 

 The last parameter is the diffusivity, which measures how fast an atom can travel 

in a given environment.  In the temperature range from 700 o C to 1000 o C, the 

diffusivity D  of iron in lead and LBE is approximated by [1]: 

TD /229531.2log −−=     (1.4) 
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where D  is in cm2/s, and the temperature T  is in Kelvin.  The diffusion and dissolution 

rates serve as two important parameters in analytical modeling of liquid lead and LBE 

corrosion behaviors. 

 

1.3 Prevention of Liquid Metal Corrosion Attacks on Solid Metals 

 To prevent corrosion attacks from liquid metals on solid metals, the following 

three methods are usually implemented: (1) alloying of stable oxide formers, (2) surface 

coating, and (3) adding corrosion inhibitors [1].  All of these methods involve passive 

oxide formations over the surfaces of structural materials.  Each prevention method only 

works well at certain oxygen concentrations in liquid metals.  Therefore, oxygen level in 

liquid metals must be controlled specifically for each corrosion prevention method. 

 In the first prevention method, stable oxide formers such as silicon and aluminum 

will be alloyed with structural metals to become the thin surface layers of the structural 

metals.  The alloyed surfaces do not affect the mechanical properties of the bulk materials 

due to their very thin surface layers compared to the bulk volume.  With excellent 

adherence to the structural surfaces, oxide scales of silicon and aluminum oxides can 

block or minimize the ingress of liquid metals into bulk materials.  Self-healing of oxide 

scales stay continuously active as long as oxide forming elements remain in alloyed 

surfaces throughout the service duration. 

 The second prevention method relies on direct coating of structural surfaces with 

corrosion-resistant alloys and compounds or metals that have low solubility in liquid 

metals.  The disadvantages of this prevention method are poor adherence and lack of self-

healing ability to rebuild oxide films.  However, when treated with pulsed electron 
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beams, the coatings are welded to the bulk materials, essentially transforming to the case 

of alloyed surfaces, and, as a result, adherence is improved. 

The last prevention method is to add corrosion inhibitors.  By definition, 

inhibitors are substances that are added in small quantities to a chemical system with the 

pure purpose to slow down reaction rates among reactants.  There are two types of 

inhibitors: metallic and non-metallic.  Examples of metallic inhibitors include zirconium 

(Zr) and titanium (Ti).  In LBE with very low oxygen, zirconium and titanium are found 

to reduce the dissolution rate of iron into LBE.  Instead of typical oxide scale formation, 

it is postulated that Zr and Ti first form nitride scales with available dissolved nitrogen in 

steels.  Once nitrogen is depleted, they find available dissolved carbon in steels and form 

carbide scales.  On the other hand, when a feasible concentration of oxygen exists in 

LBE, oxygen itself acts as a non-metallic corrosion inhibitor.  Oxygen oxidizes iron and 

protective oxide films are formed.  Clearly, oxygen works well only when there is enough 

oxygen concentration in liquid metals.  That is why oxygen control becomes a focal 

interest to ensure oxide formations and self-healing when damaged oxide layers wear off. 

 

1.4 Liquid Lead Corrosion Modeling 

Several models for liquid lead and LBE corrosion have been proposed.  Many of 

these models are almost all analytical and deal primarily with the macroscopic behavior 

of LBE loop systems.  The analytical models are usually based on diffusion theories and 

semi-empirical data gathered from experiments.  In a LBE loop, only the mass transfer 

and activation controlled domains are preferred.  Therefore, kinetic models have been 

specifically engineered for these two domains of interest [12-18].  Stochastic cellular 
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automaton modeling offers a departure from the analytical and semi-empirical modeling.  

Tan and Chen formulated cellular automaton modeling to study the interactive behaviors 

among iron, lead, bismuth, and oxygen at the mesoscopic scale, the next closest to the 

atomistic scale [19].  There are only a few studies on the interatomic behaviors of lead 

and iron atoms.  These studies employed molecular dynamics to explore interatomic 

interactions in iron-lead systems. 

The first molecular dynamics simulation work was done by Takahashi el al. [20].  

The Takahashi group applied a quantum mechanics theory, called the density functional 

theory, to simulate systems containing solid iron and liquid LBE.  Maulana et al. became 

the second research group to use molecular dynamics on modeling steels in LBE using a 

traditional pair potential function [21].  Both studies do not consider protective oxide 

layers in their simulations.  Incorporating oxygen into simulations involves variable 

charges on ions due to oxidation during the course of a simulation.  The lack of 

considering oxidation in these models has been rectified in this dissertation. 

 

1.5 Molecular Dynamics 

 Molecular dynamics (MD) is a computer simulation process that generates 

trajectories of atoms or molecules in a system.  There are two levels of molecular 

dynamics: Newtonian and Quantum.  Quantum MD can simulate bond forming and 

breaking among atoms, while Newtonian MD cannot accurately deal with those abrupt 

changes.  Although Newtonian MD cannot provide exact details of how atoms bonded 

together and in what configurations, it can provide representative details of oxidation 

processes such as oxide layer thickness and how thick a layer should be in order to 
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completely seal off oxygen ingress.  These oxide layers can be virtually observed and 

measured from MD simulation results.  The units related to molecular dynamics 

simulations are usually in angstroms ( )
o

Α  for distance, electron volts (eV) for energy, 

picoseconds (ps) for time, and atomic mass units (amu) for mass.  This dissertation also 

adopts these units unless otherwise noted. 

1.5.1 Verlet Algorithm 

 Newton’s second law of motion states that force F
v

 is equal to the product of a 

mass m  and acceleration av : 

amF vv
=      (1.5) 

In addition, the relationship between force F
v

 and potential energy U  is 

UF ∇−=
vv

     (1.6) 

Therefore, acceleration can also be written as: 

m
Ua ∇

−=
v

v      (1.7) 

Typically in molecular dynamics simulations, the potential energy U  is a function of 

position rv .  This essentially makes the acceleration a function of position, ( )ra v . 

To begin constructing a particle trajectory, a Taylor’s series expansion is applied 

to the position ir
v  of a particle i  at one time step tΔ  ahead of a current time t .  This 

gives: 

( )432 ))((
6
1))((

2
1)()()( tOttbttattvtrttr iiiii Δ+Δ+Δ+Δ+=Δ+

vvvvv  (1.8) 

where ivv  is the velocity of the particle i  and ib
v

 is the jerk, the third derivative of the 

position with respect to time.  The error in the above equation is in the order of 4tΔ , 
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which can be represented in the Big O notation as ( )4tO Δ .  The position of that particle at 

one time step backward is then 

( )432 ))((
6
1))((

2
1)()()( tOttbttattvtrttr iiiii Δ+Δ−Δ+Δ−=Δ−

vvvvv  (1.9) 

Adding Eqns. (1.8) and (1.9) together gives 

( )42))(()()(2)( tOttattrtrttr iiii Δ+Δ+Δ−−=Δ+ vvvv   (1.10) 

The above scheme is called the Verlet central difference method.  This method, however, 

suffers at the initial condition (when 0=t ).  The position )0(ir
v  and acceleration )0(iav  

are known, but the position )( tri Δ−v  is unknown.  In order to overcome this problem, an 

approximation from Eq. (1.8) can be made in the first time step as: 

( )32))(0(
2
1)0()0()( tOtatvrtr iiii Δ+Δ+Δ+=Δ vvvv   (1.11) 

Although the accuracy drops to ( )3tO Δ , a small time step usually helps compensate for 

accuracy for this one-time only approximation over many time steps during the course of 

a simulation.  At subsequent time steps, calculations revert back to Eq. (1.8), the original 

basic Verlet, and the accuracy still holds at ( )4tO Δ . 

Certain cases of molecular dynamics simulations require velocity in calculating 

instantaneous kinetic energy and temperatures.  The basic Verlet equation does not 

explicitly prescribe the velocity.  From Eq. (1.9), the velocity )(tvi
v  can be approximated 

by: 

( )2)()(
)( tO

t
ttrtr

tv ii
i Δ+

Δ
Δ−−

=
vv

v    (1.12) 
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Substituting the above equation into Eq. (1.10) yields a more popular scheme called the 

Velocity Verlet scheme: 

( )32))(()()()( tOttattvtrttr iiii Δ+Δ+Δ+=Δ+ vvvv   (1.13) 

The derivative with respect to time of the above equation is the velocity )( ttvi Δ+v : 

( )2)()()( tOttatvttv iii Δ+Δ+=Δ+ vvv     (1.14) 

As the name suggests, the Velocity Verlet scheme includes the velocity in the equations 

for finding positions and velocities, and it avoids the initial value problem of )( tri Δ−v .  

Substituting Eq. (1.7) in Eq. (1.13) yields: 

( ) ( )32)()(1)()()( tOttrU
m

ttvtrttr iiii Δ+Δ∇−Δ+=Δ+ vvvvv   (1.15) 

Given initial conditions, once the potential function is known, a particle position can be 

calculated. 

1.5.2 Beeman Algorithm 

 Instead of the Verlet algorithm, all the simulations in this dissertation use the 

Beeman algorithm, which is a variation of the Verlet algorithm.  The accuracy of the 

Beeman algorithm is ( )3tO Δ  in velocity compared to ( )2tO Δ  of the original Verlet 

algorithm.  The equations for Beeman algorithm are: 

( ) ( )[ ] ( )4
2

4
6
)()()()( tOttatatttvtrttr iiiii Δ+Δ−−

Δ
+Δ+=Δ+ vvvvv  (1.16) 

[ ] ( )3)()(5)(2
6

)()( tOttatattattvttv iiiii Δ+Δ−−+Δ+
Δ

+=Δ+ vvvvv  (1.17) 

The regular Beeman algorithm does not assume velocity-dependence.  That is, the 

acceleration av  used in Eqns. (1.16) and (1.17) is only a function of position rv , ( )ra vv , 

(see Eq. (1.7)).  However, certain simulations require that forces, and hence acceleration, 
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depend on not only positions but also velocities.  Examples of such simulations include 

the ones that utilize the Nose-Hoover algorithm to keep temperature constant or the 

Parrinello-Rahman algorithm to keep pressure constant.  This means, the acceleration 

now has to be a function of both position and velocity, ( )vra vvv , . 

To fully incorporate velocity dependence, the original Beeman algorithm needs to 

be modified to carry a predictor-corrector scheme.  First, the position of a particle at time 

tt Δ+  is determined from Eq. (1.16).  Then, the predicted velocity )( p
ivv at time tt Δ+  is 

calculated from a new equation: 

( ) ( )[ ] ( )3)( 3
2

)()( tOttatattvttv iii
p

i Δ+Δ−−
Δ

+=Δ+ vvvv    (1.18) 

The predicted velocity and position at time tt Δ+  give the acceleration ( )tta Δ+v  from 

the force F
v

: 

( ))(),()( )( ttvttrFtta p
iii Δ+Δ+=Δ+ vvvv     (1.19) 

The resulting acceleration is then used in finding the corrected velocity )(c
ivv  from Eq. 

(1.17): 

[ ] ( )3)( )()(5)(2
6

)()( tOttatattattvttv iiii
c

i Δ+Δ−−+Δ+
Δ

+=Δ+ vvvvv  (1.20) 

Substituting )(c
ivv  for )( p

ivv  in Eq. (1.16) gives a new value of )(c
ivv .  The iteration continues 

until convergence between )(c
ivv  and )( p

ivv  is reached, which usually takes 2-3 cycles. 

1.5.3 Nose-Hoover Algorithm 

 The Nose-Hoover algorithm can set a system at specific temperature during a 

simulation, and the algorithm has been used in this dissertation.  The algorithm couples a 

system with a heat bath, and heat will be transferred back and forth between the system 
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and heat bath in order to keep the system temperature relatively constant.  In the Nose-

Hoover algorithm, Newton’s second law of motion is modified to have an additional term 

related to the heat bath: 

( ) ( ) ( )tvt
m

tF
ta i

i

i
i

v
v

v ζ−=)(     (1.21) 

The friction coefficient ζ  is defined as: 

( ) ( )( )0TktTk
Q

N
t

dt
d

BB
F −=ζ     (1.22) 

The number of degrees of freedom FN  is equal to 13 +N , where N  is the number of 

particles in a system, ( )tT  is the instantaneous temperature, 0T  is the heat bath 

temperature, and Bk  is the Boltzmann constant.  The fictitious mass parameter Q  

determines the heat transfer rate.  Normally the Q  value does not have any effects unless 

its value is incredibly large or extremely small.  If Q  is too large, the system will 

decouple from the heat bath and that renders the algorithm ineffective.  If Q  is too small, 

heat will flow back and forth too frequently between the system and the heat bath, and 

that makes the system become unphysical. 

1.5.4 Computer Programs for Molecular Dynamics Simulations and Visualizations 

 This dissertation relies on the computer code “Moldy” to perform molecular 

dynamics (MD) simulations.  Moldy was written by Keith Refson in the C language 

specifically for MD simulations of condensed matters [22].  Moldy was chosen because 

of its relatively compact size and flexibility to be modified.  The Moldy code is easy to 

read and follow line by line of the code, compared to other molecular dynamics 

simulation computer programs.  The two modifications made to Moldy for this 
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dissertation are the additions of (1) the Embedded Atom Method (EAM) potential and (2) 

the Generalized Reduced Gradient (GRG) Method as explained in the next chapter. 

 After Moldy has finished a simulation, the simulation results are translated into a 

format called pbd (an acronym for Protein Data Bank).  The pdb files can be visualized 

through another computer program called VMD (short for Virtual Molecular Dynamics).  

VMD is developed by the Theoretical and Computational Biophysics group at the 

University of Illinois and the Beckman Institute [23].  VMD can display and animate 

molecular dynamics configurations and trajectories in a variety of representations.  All of 

the simulation figures in this dissertation have been processed through VMD. 

 

1.6 Dissertation Purpose 

 This dissertation offers another approach to study corrosion behavior in liquid 

lead – iron systems.  Difficulties in doing experiments on liquid lead corrosions 

discourage experimental investigations on various cases and scenarios.  Currently, the 

available experimental data are scarce and scattered [24 – 27].  With modeling via 

molecular dynamics, representative behaviors can be obtained, and they help in 

optimizing experiment designs with minimal costs.  In addition, molecular dynamics 

modeling can lead to the developments of new alloys for better corrosion resistance in 

liquid lead and LBE.  The rest of this dissertation is arranged as follows: 

• Chapter 2 discusses electrostatic energy minimization in oxidation modeling 

• Chapter 3 shows the results of iron oxidation modeling 

• Chapter 4 shows the results of oxide layer modeling in lead-iron systems 

• Chapter 5 concludes the dissertation 



 25

CHAPTER 2  

OPTIMIZATION APPROACH IN VARIABLE-CHARGE POTENTIAL FOR 

METAL/METAL OXIDE SYSTEMS 

2.1 Introduction 

 An oxidation occurs when a fresh metal is exposed to oxygen.  The process, 

which sometimes yields undesired results, can impede corrosion by forming protective 

oxide layers.  For example, chromium and silicon can form internal oxides in steel alloys 

preventing corrosion/erosion from lead-bismuth coolant in fast nuclear reactors [1].  

Molecular dynamics (MD) can be used as a tool to study how oxidation occurs.  By 

applying Newtonian MD, oxide layers can be virtually observed and measured from MD 

simulation results. 

 In Newtonian MD, each atom or particle obeys Newton’s second law of motion 

( amF vv
= ) and the force acting on the particle can be found by taking the first spatial 

derivative of the particle’s potential energy ( dxdUFx /−= , for example).  In the case of 

oxide simulations, the total energy is the sum of electrostatic (ES) energy and non-

electrostatic (non-ES) energy.  For a given environment, the electrostatic energy depends 

only on ionic charges, and it can vary greatly for a pair of ions with different oxidation 

states.  Repulsive and attractive forces arising from different charged pairs keep ionic 

compounds in balance.  The non-ES energy, independent of ion charges, describes inter-

atomic interactions among various atoms.  A widely used inter-atomic potential for 

metals is the embedded atom method (EAM) potential [28, 29].  The idea of EAM 

originates from embedding an atom into a site surrounded by electron clouds. 
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2.2 Embedded Atom Method (EAM) 

Most of the well-known potentials such as Lennard-Jones potentials only describe 

interactions between two atoms or molecules.  However, within a group of atoms or 

molecules, an atom is acted on by not one, but many of its neighboring atoms.  Therefore, 

there is a need for many-body potential functions and the embedded atom method is one 

of them.  The EAM potential can be derived from the Density Functional Theory (DFT), 

a quantum mechanical theory, which describes ground state properties of many-body 

systems.  Using the Hohenberg and Kohn theorems, Daw showed that the EAM potential 

is a semi-empirical application of DFT [30]. 

The EAM potential has contributions from three parts: (1) a pair potential ϕ , (2) 

an electron density function ρ , and (3) an embedding energy function F .  The EAM 

potential takes the form: 

( ) ϕρ += FE       (2.1) 

The pair potential takes the form: 

( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−−

−=
11

ee r
r

r
r

BeAer
βα

φ     (2.2) 

where α,, BA , and β  are fitting parameters that are positive numbers, r  is the distance 

between two atoms, and er  is the first nearest neighbor distance of a crystal at 

equilibrium.  The electron density f  of each individual atom as a function of the distance 

r  away from that atom is: 

( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−

=
1

er
r

eefrf
β

     (2.3) 
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where ef  is defined as the ratio between cohesive energy cE  and an atomic volume at 

equilibrium 0Ω , or 0/Ω≡ ce Ef  [31].  The total electron density ρ  at a point or a lattice 

site is approximated by the linear superposition of electron densities from all atoms 

surrounding that site, and it can be expressed as: 

( )∑=
i

irfρ       (2.4) 

where ir  is the distance from the ith neighbor to the site of interest.  This total electron 

density dictates how much energy is needed to embed an atom at a given site. 

The embedding energy function determines the energy to embed an atom into a 

cloud of electrons coming from the neighboring atoms.  The analytic form of the 

embedding energy function used in this dissertation was found independently by two 

research groups: Johnson [32] and Banerjea & Smith [33].  The embedding energy 

function takes the form: 

η
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where eρ  is the density of a lattice at equilibrium, and 0F  and η  are the fitting 

parameters.  Banerjea and Smith developed the above equation from semi-empirical data, 

while Johnson derived it from the Rose equation: 
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with 
cE
B

a
~9 0

0
Ω

= , where B~  is the bulk modulus, and cE  is the cohesive energy.  By 

combining Eqns. (2.5) and (2.6), the embedding energy function is of the form: 
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From Eq. (2.4), the total electron density due to the first n  nearest neighbors is: 
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At equilibrium the total electron density eρ  is enf .  Taking the natural logarithmic on 

both sides of Eq. (2.8) gives   
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Substituting Eq. (2.9) in Eq. (2.7) yields 
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Equation (2.10) is very similar to Eq. (2.5) developed by Banerjea and Smith from semi-

empirical data.  For convenience in parameter fitting, Eq. (2.5) is used in this dissertation.  

Furthermore, Eq. (2.5) is normalized in such a way that 
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Details in parameter fitting for the EAM potential will be described in Chapter 3. 

 

2.3 Electrostatics Energy Minimization 

 Using a second-order Taylor series expansion about a neutral point of an atom i , 

Rappé and Goddard [34] expressed energy of its isolated ion with a charge iq  as: 

( ) 2

2
10)( iiiiii qJqEqE ++= χ     (2.12) 
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where 
i

i
i q

E
∂
∂

=χ  is  the electronegativity of the atom i , and 2

2

i

i
i q

E
J

∂
∂

=  is its self-

Coulomb repulsion or Chemical Hardness.  The electronegativity and self-Coulomb 

repulsion can be calculated from the first ionization energy ( )IE  and electron affinity 

energy ( )IA  as follows [34, 35]: 

( )IAIE +=
2
1χ      (2.13) 

IAIEJ −=        (2.14) 

Within a group of ions (an ionic crystal, for example), Coulomb interactions among ions 

contribute to a total energy of each individual ion.  The total energy of the atom i  can 

now be written as: 

( ) ,
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2
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q
qkqJqEqE χ   (2.15) 

where Ck  is the Coulomb constant and ijr  is a distance between ions i  and j .  To write 

the above equation more compactly, define 
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Equation (2.15) then becomes 

( ) i
j

jijiii qqJEqE ⎟⎟
⎠

⎞
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⎛
++= ∑χ0)(     (2.17) 
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Since the total energy of the ion i  is the sum of electrostatic and non-electrostatic 

energies, the ( )0E  term can be safely considered as part of the non-electrostatic EAM.  

Therefore the electrostatic energy es
iE of an atom i  is 

i
j

jijii
es
i qqJqE ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+= ∑χ)(      (2.18) 

As the environment changes, each charge iq  in a system must readjust itself to match the 

environment.  There have been many attempts to find charge distributions in response to 

changes in the system environment.  However, each approach has some unresolved issues 

as described below. 

 Rappé and Goddard [34] used the electronegativity equalization that, at 

equilibrium, each chemical potential 
i

i
i q

E
∂
∂

=μ  must be equal to the same value, say μ .  

This leads to i
j

jij qJ χμ −=∑ , or in a matrix form as χμq −=J .  The charge vector is 

then ( )χμq −= −1J .  The chemical potential value μ  is calculated to be 

∑∑ ∑ −−
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ijij JqJ
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1χμ .  Initially, the charge neutrality condition 0=∑
i

iq  is 

applied and μ  becomes ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
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⎝

⎛
= ∑∑ −−

ji
ij

ji
jij JJ

,

1

,

1χμ .  Once the chemical potential value 

μ  is known, each iq  can be solved for.  When the values of iq ’s exceed their physical 

charge limits, the values are fixed at the limits.  Successive calculations then consider 

only unfixed charges with the net charge equal to the negative sum of all fixed 

charges fixed
unfixedii

i qq −=∑
=,

.  The calculations are repeated until all the iq  values are within 
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their bounds.  Although this approach ensures that all the charges stay within their limits, 

a system is not guaranteed to be at equilibrium when charges are forced to be fixed at 

their bounds.  Hence, the total energy is not minimized.  To illustrate this, consider one 

oxygen atom and two aluminum atoms that are aligned along one straight line.  The 

distances between each pair of the atoms are 
o

Α44.1  for the Al-O pairs, 
o

Α44.1  and 

o

Α88.2  for the Al-Al pairs.  The charge limits on aluminum and oxygen are 

eqAl 30 +≤≤  and 02 ≤≤− Oqe , respectively.  Using the parameter values from the 

reference [36], the matrix J  and vector χ  can be written as 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

5.164552.5
5018.75.0
5.25.05.1645

J  and 0,485.5,0=χ .  The value of μ  is then 3.9046, 

and that yields the charge vector to be 9.316513.5003,-9.3165,=q .  Obviously, 

the charge values of the aluminum and oxygen atoms exceed their bounds, so they have 

to be fixed at their limits.  This means that the first and second aluminum atoms will 

carry e3+  and 0 charge while the oxygen atom will carry 0 charge.  The result certainly 

violates the charge neutrality condition and therefore each atom is forced to only carry 

zero charge.  The electrostatic energy then becomes 0 eV .  In contrast, the correct result 

using a constrained optimization shows that the two aluminum atoms carry e1428.0+  

charge and the oxygen atom carries e2856.0−  charge with the minimized energy of 

7834.0−  eV . 

Following the approach of Rappé and Goddard, Streitz and Mintmire [36] 

substituted point charges in Eq. (2.18) with a charge distribution function 

( ) ( ) ( ) ( )rfZqrZqrq −+= δρ , , where Z is an effective core charge ranging from zero to 
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the charge limit of an atom, ( )rδ  is a delta function, and ( )rf N  is a distribution function 

with ( )∫ = 1drrf N .  Evidently, q  is partitioned into ( )qrq ,ρ  because ( ) qdrqrq =∫ ,ρ .  

Charge values can be then algebraically solved for, using equilibrium conditions and 

neutrality as in the approach of Rappé and Goddard.  Zhou et al. [37] pointed out two 

problems of the Streitz and Mintmire model: (1) charge instability and (2) validity of the 

model other than binary systems.  Regarding the charge instability, an example of two 

point charges of equal magnitude but opposite sign (a neutral system) was chosen.  Zhou 

et al. showed that when a distance between two ions falls below some critical value, a 

global minimum energy does not exist.  Equation (2.18) has the global minimum when 

the first and second derivatives of the energy es
iE  with respect to the charge iq  (i.e. slope 

and concavity) are zero and positive, respectively.  The second problem with the Streitz 

and Mintmire model is that it does not work when two or more metals are included in a 

system.  Streitz and Mintmire set up their model such that oxidations would always occur 

among atoms within a given system, and they only studied binary systems (one metal and 

oxygen).  If only metals are present but no oxygen, charge transfers will still occur as 

long as those metals possess different electronegativities.  Although, this is physically 

correct, such charge transfers will violate the charge neutrality condition for a system 

with only metals but no oxidizing agents. 

 Zhou et al. [37] attempted to correct those errors in the Streitz and Mintmire 

model by modifying the original model with inclusion of a special weighing function and 

limiting values of charges into the electrostatic equation.  To prevent charges from 

exceeding their bounds, the weighing variable acts as an energy penalty.  That is, when 

charges are too close to their bounds, the additional energy terms incorporated with the 
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weighing variable and charge limits rapidly increases.  According to this model, the 

electrostatic energy es
iE of an atom i  is: 
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  (2.19) 

where L
iq  and U

iq  are the bounds for the charge of atom i , U
ii

L
i qqq <<  and the energy 

penalty w  is defined to be 20.0.  The modified model with the additional energy penalty 

terms cannot be solved algebraically.  Zhou et al. used an unconstrained optimization to 

find an optimized set of charge values.  The use of the auxiliary weighing variable is a 

complicated and indirect solution.  As in the case of the Streitz and Mintmire model, this 

model lacks the actual charge constraints and suffers from the same charge divergence 

problem.  To show this, the same simple case of an aluminum-oxygen pair that Zhou et 

al. used to prove the charge diversion in the Streitz and Mintmire model is reintroduced 

here.  The electrostatic energy for a pair of Al-O in a neutral system can be written as: 
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according to the Streitz and Mintmire model and: 
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according to the Zhou et al. model.  To minimize es
totE , setting the first derivative with 

respect to Oq  equal to zero yields 
rkJJ

q
cAlO

OAl
O /2−+

−
=

χχ  for the Streitz and Mintmire 
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model and ( )
ω

ωχχ
8/2

4
+−+
−−−

=
rkJJ

qq
q

cAlO

L
O

U
AlOAl

O  for the Zhou et al. model.  Using the Streitz and 

Mintmire data ( OJ = 14.036 eV, AlJ = 10.329 eV, Oχ =5.485 eV, and Alχ = 0.0 eV) [36], 

the charges on the oxygen atom become 
r

qO /8.28365.24
485.5
−

−
=  and 

( )
rr

qO /8.28365.184
485.405

)20(8/8.28365.24
)2(3)20(4485.5

−
−

=
+−

−−−−
=  for the Streitz and Mintmire model and 

the Zhou et al. model, respectively.  Figure 2.1 shows the oxygen ion charge as a function 

of the separation distance between the Al-O pair.  The Streitz and Mintmire model gives 

a divergence at 
o

Α18.1 , while the Zhou et al. model causes a divergence to occur at 

o

Α15.0 .  If a constrained optimization is applied, the oxygen charge will be limited to 

L
Oq , which is e2− , when a divergence is encountered. 

 This dissertation presents a much more direct way to implement a charge transfer 

model for molecular dynamic simulations.  The idea is based on what Rappé and 

Goddard started.  One important difference is that a constrained optimization is used with 

the original set of equations instead of solving them algebraically.  At each time step, 

charges are adjusted so that the total energy in a system is minimized.  The EAM 

potential is considered constant because all of the input information is known.  So, 

minimizing the electrostatic potential is equivalent to minimizing the total energy of the 

system.  The next section describes the applied algorithm in more details.  A few sample 

simulations were also performed to test the validity of this code. 
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Figure 2.1  Charges on oxygen from the Streitz & Mintmire and Zhou et al. models 

 

2.4 Optimization and Charge Transfer 

 In order to reach equilibrium, all systems try to lower their internal energies as 

much as possible.  However, in a metal oxide system, there exist additional constraints on 

ion charges that have to be confined within their charge limits.  This energy 

minimization, therefore, becomes a constrained optimization problem.  The objective is 

to find an optimal set of charges that makes a total system energy as low as possible and 

yet all the charges are still within their physical limits and obey the charge neutrality 

condition.  The original equation posed by Rappé and Goddard [34] serves as a good 

starting optimization problem.  Hence, there is no need for new charge density functions 
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as Streitz and Mintmire [36] did, or the extra auxiliary terms in the Zhou et al. approach 

[37]. 

A general optimization problem can be described as: 

Minimize ),,,( 21 nqqqE K        (2.22) 

Subject to: 0),,,( 21 =nk qqqh K ,  lk ,,2,1 K=     (2.23) 

0),,,( 21 ≤nj qqqg K ,  mj ,,2,1 K=     (2.24) 

U
ii

L
i qqq ≤≤ ,   ni ,,2,1 K=     (2.25) 

where ),,,( 21 nqqqE K  is the function to be minimized, electrostatic energy in this case 

as a function of n  charges iq ’s.  Each charge iq  can only vary between its lower limit 

L
iq  and upper limit U

iq .  ),,,( 21 nk qqqh K  are the equality constraints, and there are l  

equality constraints in this optimization problem.  ),,,( 21 nj qqqg K  are the inequality 

constraints, and this problem has m  inequality constraints.  In addition, an optimal set 

*q  of iq ’s has to obey the Kuhn-Tucker conditions, which are stated as follows: 

(1) ( ) ( ) ( ) 0λπ =∇+∇+∇ *** qhqgqE TT  

(2) ( ) 0* ≤qg j  for all mj ,,2,1 K=  

(3) ( ) 0* =qhk  for all lk ,,2,1 K=  

(4) 0≥jπ  for all mj ,,2,1 K=  

(5) ( ) 0* =qg jjπ  for all mj ,,2,1 K=  

where π  and λ  are vectors with their respective components iπ ’s and jλ ’s, which are 

constants.  The five conditions above are necessary for any solution that minimizes the 

function E  under a given set of constraints. 
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There are four major direct methods to solve the general optimization problem 

above: (1) Sequential Linear Programming (SLP), (2) Sequential Quadratic Programming 

(SQP), (3) the Generalized Reduced Gradient (GRG) Method, and (4) Sequential 

Gradient Restoration Algorithm (SGRA) [38].  Other methods also exist but they offer 

only slight variations from these four principal methods.  GRG is chosen to be used in 

this dissertation mainly because Solver, a sub-program in Microsoft Excel, is also 

implemented with GRG and it serves as an excellent benchmarking tool for result 

comparisons.  The GRG method only deals with equality constraints.  Therefore, all 

inequality constraints are converted into equality constraints with additional variables, 

called slack variables.  The transformation can be written as: 

Minimize ),,,( 21 nqqqE K        (2.26) 

Subject to: 0),,,( 21 =nk qqqh K ,  lk ,,2,1 K=     (2.27) 

0),,,( 21 =+ + jnnj qqqqg K ,  mj ,,2,1 K=     (2.28) 

U
ii

L
i qqq ≤≤ ,  ni ,,2,1 K=     (2.29) 

0≥+ jnq , mj ,,2,1 K=     (2.30) 

nqqq ,,, 21 K  are the original variables, and mnnn qqq +++ ,,, 21 K  are the slack variables.  

The basic idea of the GRG method is to reduce the number of variables in a given 

optimization problem when searching for an optimal solution.  The mn +  variables 

mnnn qqqqq ++ ,,,,,, 121 KK , or in the vector notation ( )mnnn qqqqq ++= ,,,,,, 121 KKq , are 

divided into two groups: basic variables Y  and non-basic variables Z .  That is, 

( )TYZq ,= , where the superscript T  indicates the transpose.  The number of basic 

variables equals the number of constraints lm + , and these basic variables are expressed 
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in terms of the remaining ln −  non-basic variables.  This essentially makes the 

optimization problem depend only on the ln −  non-basic variables Z , and 

( )( )TZYZq ,= .  When non-basic variables are not fixed at their bounds, they are called 

super-basic variables.  Super-basic variables determine search directions for a new 

feasible solution under a given set of constraints. 

 In terms of the basic variables ( )lmyyy += ,,, 21 KY  and non-basic variables 

( )lnzzz −= ,,, 21 KZ , the reduced problem is restated as: 

Minimize ( )( )ZYZ,E         (2.31) 

Subject to ( )( ) ( ) ( ) 0ghZYZH === +
T

ml
T HHH ,,,,, 21 K    (2.32) 

U
ii

L
i zzz ≤≤ ,  lni −= ,,2,1 K     (2.33) 

U
ii

L
i yyy ≤≤ ,  lmi += ,,2,1 K     (2.34) 

The superscripts L  and U  indicate the lower and upper limits, respectively, for each 

variable.  Given a feasible starting point 0q  that yields ( ) 0qH =0 , the reduced problem 

can be expanded at a point ( )TYZq ,=  about the current feasible point ( )T000 , YZq =  

(the first-order Taylor series): 

Minimize ΔYqΔZqqΔYYΔZZ T
Y

T
Z EEEE )()()(),( 00000 ∇+∇+=++  (2.35) 

   Subject to 

0)()()(),( 00000 =∇+∇+=++ ΔYqΔZqqΔYYΔZZ T
jY

T
jZjj HHHH  (2.36) 

where ( )lnZZZ −ΔΔΔ=−= ,,, 210 KZZΔZ  and ( )lmYYY +ΔΔΔ=−= ,,, 210 KYYΔY  with 

iZΔ ’s and iYΔ ’s are real numbers, Z∇  and Y∇  denote the differentials with respect to 

Z  and Y , respectively, and the index j  runs from 1 to ml + .  Therefore, TE )( 0qZ∇  
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and T
jZ H )( 0q∇  are the ( )ln −×1  matrices 
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L , respectively.  Similarly, )( 0qY E∇  and 

)( 0qY jH∇  are the ( )lm +×1  matrices 
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 To find a search direction for an optimal solution, define the matrices A  and B  

as: 

⎥
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Equation (2.36) can then be rewritten more compactly as: 

0BΔAΔqHqH =++= YZ)()( 0     (2.36a) 

Recall that 0qH =)( 0 , and this gives 0BΔAΔ =+ YZ .  Therefore, 

ZAΔBΔY 1−−=     (2.39) 

Substituting Eq. (2.39) into Eq. (2.35) yields Eq. (2.40) after a few steps of algebra: 

( ) ( ) ( ) ( ) ZEEEE T
Y

T
Z AΔBqΔZqqq 1

000
−∇−∇+=      

( ) ( ) ( ) ( ){ }ΔZABqqqq 1
000

−∇−∇+= T
Y

T
Z EEEE      
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( ) ( ) ( ) ( ) ( ){ } ΔZqABqqq
T

Y
T

Z EEEE 0
1

00 ∇−∇+= −      

( ) ( ) ( ) ΔZGqq R
TEE += 0         (2.40) 

where ( ) ( ) ( )qABqG R EE Y
T

Z ∇−∇= −1         (2.41) 

RG , the reduced gradient of the function ( )qE , provides a search direction for an 

optimal solution.  Below is the GRG implementation in finding an optimal solution 

(adapted from Ref. [38]): 

 

GRG Algorithm: 

Step 1. Choose: 

• a starting set 0q  of feasible iq ’s ( ( ) 0=qh  must be zero) 

• an initial number of iterations sN  

• an accuracy ε  for convergence and stopping 

 Set 1=p  (iteration counter) 

Step 2. Identify basic, non-basic, and super-basic variables 

 In the first iteration ( 1=p ), variables that are not basic are set to be super-basic 

Calculate RG  

 Calculate an optimum step size *α  (see below) 

 Calculate pq  

Step 3 Convergence and Termination: 

Convergence for GRG 

If the Kuhn-Tucker conditions are satisfied then STOP. 

 Stopping Criteria 
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• 1−−= ppq qqΔ  

   If ε<qΔ  then STOP. 

• If sNp =  

o Find the extrapolated maximum number of iterations maxN  

 If sNN >max  then set maxNN s =  else STOP. 

 Continue to the next iteration (increment p  by one) 

 Go to step 2 

 

Step size computation: 

Step 1 Set RGS −=  

Step 2 Find a minimum α  from a set of positive α ’s that make pZ  stay within its 

bound.  Note that SΔZ α=  and ΔZZZ += −1pp . 

Step 3 Use Eq. (2.39) to find α  for pY  that makes pY  stay within its bounds. 

Step 4 Solve ( ) 0=α
α

E
d
d for an α  value that minimize ( )αE  (unconstrained α ). 

Step 5 Compare all the α ’s from Steps 2 to 4 and return a minimum α  that confine all 

of the iq ’s within their bounds 

Step 6 If any of iq ’s are at their bounds, set those iq ’s to be non-basic variables.  If one 

 of those iq ’s are formerly basic variables, pick new variables from the set of non-

 basic variables that stay approximately in the middle between their bounds to 

 be new basic variables. 
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 Based on Eqns. (2.31) to (2.34), the electrostatic (ES) energy minimization 

problem for a given set of n  ions is structured as: 

Minimize ∑ ∑
= =

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+=

n

i

n

j
jijiii

es
tot qJqqE

1 1
)( χq     (2.42) 

Subject to 0)(
1

== ∑
=

n

i
iqh q       (2.43) 

The ES energy minimization problem has only one equality constraint and no inequality 

constraint.  That means 1=l  and 0=m .  Therefore, this optimization problem has one 

basic variable and 1−n  non-basic variables.  Let the subscripts Y  and Z  associate with 

the basic and non-basic variables, respectively.  Then, specifically to this problem in the 

vector notation, the basic variable is ( )Yq=Y  and non-basic variables are 

( )121 ,,, −= ZnZZ qqq KZ . 

 To find the reduced gradient RG , first calculate ( )qEZ∇ .  Equation (2.42) has its 

first derivative with respect to any charge sq , which is one of the iq ’s, as: 

( )∑
=

++=
∂
∂ n

i
iissis

s

es
tot qJJ

q
E

1
χ     (2.44) 

The matrices A and B specific to this problem are: 

( ) [ ] 111,,1 −×=∇= n
T

Z h KqA     (2.45) 

( ) [ ]1=∇= T
Y h qB      (2.46) 

Thus, for a given step size of the non-basic variables in any search direction, the step size 

of the basic variable is given by: 
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The search direction RG  is shown in Eq. (2.48) below after a few steps of algebraic 

simplifications: 
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Let RiG  represent the thi  component of RG , which corresponds to Ziq , the thi  

component of the non-basic vector Z .  Then the Kuhn-Tucker conditions specific to the 

electrostatic (ES) energy minimization problem are: 

(1) 0=RiG  when a non-basic variable Ziq  is strictly between its bounds. 

(2) 0≥RiG  when a non-basic variable Ziq is at its lower bound. 
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(3) 0≤RiG  when a non-basic variable Ziq  is at its upper bound. 

The above conditions are derived from the standard Kuhn-Tucker conditions mentioned 

earlier, and the derivation is presented here.  The GRG method does not have any 

inequality constraints, except for the upper and lower bounds of each variable.  In 

addition, the optimization problem only depends on the non-basic variables according to 

the GRG method, and so do the Kuhn-Tucker conditions.  For the Kuhn-Tucker 

conditions, the bound restrictions on each non-basic variable can be transformed into the 

inequality constraints in the vector form as follows: the lower bound constraint 

( )1111 ,,,, −− −−−= Zn
L
ZnZi

L
ZiZ

L
Z

L
Z qqqqqq KKg  and the upper bound constraint 

( )U
ZnZn

U
ZiZi

U
ZZ

U
Z qqqqqqg 1111 ,,,, −− −−−= KK .  The five standard Kuhn-Tucker (KT) 

conditions can be rewritten as: 

 (1) ( ) 0λππ =+−+∇ LU
Z qE *  

 (2) ( ) 0* ≤qg L
i  and ( ) 0* ≤qgU

j  (always true by the problem statement) 

 (3) ( ) 0* =qhk  (always true by the problem statement) 

 (4) 0≥L
iπ  and 0≥U

jπ  

 (5) ( ) 0* =qg L
i

L
iπ  and ( ) 0* =qgU

j
U
jπ  

where L
iπ  and U

jπ  are the thi  and thj  components of Lπ  and Uπ , respectively.  Based 

on the bound constraints of the non-basic variables, the Kuhn-Tucker conditions differ in 

each of the three possible cases: U
ZiZi

L
Zi qqq << , Zi

L
Zi qq = , and U

ZiZi qq = .  If a non-basic 

variable is strictly between its lower and upper bounds ( )U
ZiZi

L
Zi qqq <<  then its inequality 

constraint is less than zero ( )( 0* <qg L
i  and ( ) )0* <qgU

i .  This leads to 0== U
i

L
i ππ  as 
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required by ( ) 0* =qg L
i

L
iπ  and ( ) 0* =qgU

j
U
jπ  (KT Condition 5).  That consequently 

yields ( ) 0* =+
∂
∂

i
Zi

qE
q

λ .  Recall that ( ) ( ) ( )qABqGR EE Y
T

Z ∇−∇= −1  and define 

( ) ( )qABλ EY
T
∇−≡ −1 .  This finally leads to 0=RiG .  Next, when a non-basic variable is 

at its lower bound ( )L
ZiZi qq = , 0≥L

iπ  per KT Condition 4 but 0=U
iπ  because all U

ig ’s 

are less than zero and ( ) 0* =qgU
j

U
jπ  at all time.  Therefore, ( ) 0* =++

∂
∂ L

ii
Zi

qE
q

πλ  

and this leads to 0=− L
iRiG π .  Since 0≥L

iπ , it is certain that 0≥RiG .  In the same 

fashion, when a non-basic variable is at its upper bound ( )U
ZiZi qq = , 0≥U

iπ  per KT 

Condition 4 but 0=L
iπ  because all L

ig ’s are less than zero and ( ) 0* =qg L
i

L
iπ  at all 

time.  So, ( ) 0* =++
∂
∂ U

ii
Zi

qE
q

πλ .  This gives 0=+ U
iRiG π , and certainly 0≤RiG  

because 0≥U
iπ . 

Using the GRG algorithm, resulting charge distributions in different environments 

can be determined.  The GRG code has been written in the C language specifically for 

this dissertation with over 1,000 lines of coding.  To validate the self-written GRG code, 

the same inputs were entered in Excel’s Solver, which is also implemented with GRG.  

The results from Solver and the self-written GRG code were found to be in excellent 

agreement.  In most cases, they produced the same results, and, in a few cases, the self-

written GRG code yielded better results. 

To illustrate the benchmarking with Excel’s Solver, the result from a sample case 

is reported here.  In this case, a calculation cell contains 6 atoms: one aluminum atom and 
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five oxygen atoms.  Using the same data as in Ref. [36], the J  matrix according to Eq. 

(2.16) is 

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
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⎣
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=

7.017858
2.924555

2.924555
7.017858

2.386254
3.523528

4.241726 
3.556021 

2.514477  
11.926350

3.555971  
3.824473  

2.386254
4.241726

3.523528
3.556021 

5.164328
3.344118

3.344117
7.017856

2.878696  
3.103051  

2.990698  
11.926355

2.514477
3.555971

11.926355
3.824473

2.878696
2.990698

3.103051 
11.926355

7.017858  
3.556027  

3.556027  
7.017858  

J  

The charge vector representing the aluminum charge Alq  and oxygen charges i
Oq  is 

54321 ,,,,, OOAlOOO qqqqqq  with the unit in e  (electron charge).  Table 2.1 shows 

the results from the code written for this dissertation and Excel’s solver. 

 

Table 2.1  Comparison between the self-written GRG code and Excel’s Solver 

 1
Oq  2

Oq  3
Oq  Alq  4

Oq  5
Oq  

Self-written code -0.00055 0 0 0.00198 -0.00097 -0.00046 

Excel’s Solver -0.00055 1.12E-15 0 0.00198 -0.00097 -0.00046 

 

2.5 Results from Sample Simulations 

 Sample molecular dynamics simulations were run using Moldy [22], a computer 

code for molecular dynamic simulations with the same potential parameters as in Ref. 

[36].  Moldy has been modified to accommodate the GRG algorithm and the EAM 

potential.  A test system is consisted of a 
o

Α1482.12  thick semi-infinite aluminum slab 

with oxygen on both sides of the slab.  Aluminum atoms are arranged in a face-centered 

cubic (FCC) structure with a lattice parameter of 0.40494 nm.  At the beginning, all 
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atoms are neutral and hence the overall system is neutral.  Moldy divides an original user 

defined space into smaller sub-cells to make calculations faster.  In each sub-cell, a sub-

routine named GRG is called to pre-compute a charge distribution within that sub-cell.  

The information on the charge distribution is then fed to a sub-routine that calculates 

forces and energy.  Currently, we consider only simple ionic bonding.  If electrons cannot 

be transferred within that sub-cell, GRG will leave the charge distribution as it is.  As 

long as metals and oxidizing agents exist in a sub cell, charge transfers will always occur.  

The modified Moldy can take systems that include any metals and halogens (other than 

oxygen). 

 Three test runs were performed.  Each differs by the type of oxygen on both sides 

of the aluminum slab: single-layered oxygen atoms, single-layered oxygen molecules, 

and double-layered oxygen molecules.  The temperature was kept relatively constant at 

300 K using a Nosé -Hoover heat bath.  Each run lasted 10 picoseconds (ps) with 20,000 

time steps.  The visualization software called VMD [23] was used to render snapshots of 

the system.  Figure 2.2 shows the initial setup of the aluminum slab with two layers of 

oxygen molecules.  Figure 2.3 shows the oxidized slab at the end of the 10-ps run.  The 

radial distribution functions (RDF) for Al-O are shown in Fig. 2.4.  Two dominant Al-O 

peaks in the RDF suggest that the first and second nearest bond lengths between Al and O 

are about 1.8 - 1.9 
o

Α  and 2.2 - 2.3 
o

Α , respectively.  These results agree well with the 

published experimental [39 – 43] and computational [44 – 47] results of alumina (Al2O3) 

as shown in Table 2.2. 
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Table 2.2  First nearest bond lengths of the aluminum-oxygen pair in 
o

Α  

This work Lamparter and Kniep [43] Campbell et al. [44] Hasnaoui et al. [45] 

1.8 – 1.9 
o

Α  1.8 
o

Α  1.8 
o

Α  1.8 
o

Α  

 

 

 

 

(a) 

 

(b) 

Figure 2.2  Initial setup of the 12.1482
o

Α  thick aluminum slab (green color) and two 

layers of O2 (red color).  (a) The x-z plane view.  (b) The perspective view. 
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(a) (b) 

Figure 2.3  After 10 ps, the oxidized aluminum slab expands its thickness to about 36 
o

Α .  

(a) The x-z plane view.  (b) The perspective view. 
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Figure 2.4  Al-O radial distribution functions 

 

2.6 Conclusion 

This chapter introduces a new approach to solve the original problem presented 

by Rappé and Goddard.  Streitz and Mintmire and, later, Zhou et al. also attempted to 

solve the same problem by adding additional functions and variables.  Their approaches 

arrive at correct solutions, but turn out to be unnecessarily complicated.  This new 

approach takes a step back to the original equations and solves them directly using an 

optimization method called the generalized reduced gradient (GRG) method.  This GRG 

approach can be implemented in any MD simulations for metal/metal oxide systems. 
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CHAPTER 3  

OXIDATION MODELING OF IRON IN MAGNETITE FORM 

3.1 Introduction 

Pure iron is very susceptible to oxidation.  Depending on the temperature, oxide 

layers are formed in a mixture of two or three types of iron oxides [48].  Above 570 °C, 

oxide layers consist of all three types of iron oxides: hematite (Fe2O3), magnetite (Fe3O4), 

and wüstite (FeO).  Wüstite (FeO) does not form when the temperature is below 570 °C.  

The sequence of oxide layers is shown in Fig. 3.1.  The Fe2O3 layer always occupies the 

outermost region.  The Fe3O4 layer forms next to the hematite layer.  Finally, at the 

innermost region lies the FeO layer.  This formation sequence sets in the order of 

increasing oxygen partial pressure from the metal surface to the atmospheric 

environment.  Fe2O3 is oxygen rich and sustained by high oxygen concentration at the 

outermost region.  FeO is iron rich and it can form with less oxygen concentration at the 

innermost region, while Fe3O4 is the intermediate between the two. 

Temperature and oxygen partial pressure affect oxide layer growth.  As the total 

thickness of all oxide layers increases during oxidation, the relative thickness among 

oxide layers remains about the same [48].  Above 570 °C, the Fe2O3:Fe3O4: FeO 

thickness ratio ranges from 1:10:50 to 1:10:100.  For example, at 1000 °C the 

Fe2O3:Fe3O4: FeO thickness ratio is 1:4:95 [49].  Below 570 °C, the Fe3O4 layer is thicker 

than the Fe2O3 layer with the Fe3O4:Fe2O3 thickness ratio approximately 10:1.  Since 

corrosion and oxidation in lead-cooled reactors is of interest in this dissertation, the 

temperature domain will be limited to below 570 °C (the operating temperature of current 

lead-cooled reactors is about 550 °C) with oxide layers consisting of Fe3O4 and Fe2O3.  In 
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addition, due to the relatively thick Fe3O4 layer, iron oxide is assumed to be purely Fe3O4 

for simplicity. 

 

  

                             (a)                         (b) 

Figure 3.1  Different oxide types and their respective thicknesses in iron oxidation 

depending on the temperature (thickness in an arbitrary unit L, not drawn to scale). 

(a) Below 570 °C  (b) Above 570 °C 

 

3.2 Parameter Fittings for Pure Materials (Iron and Oxygen) 

The first step in modeling is to find appropriate potentials for all species in a 

system.  Since this chapter involves iron oxidation, a series of parameters for iron and 
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oxygen have been fitted to the pair and EAM potentials, Eqns. (2.2) and (2.5), 

respectively.  Equations (2.2) and (2.5) contain six variables, and therefore, a set of six 

equations are needed in parameter fitting.  The set of six equations usually comes from 

crystal properties such as cohesive energy, equilibrium distance, bulk modulus, pressure 

derivative of bulk modulus, and elastic constants.  Equations (3.1) to (3.4) are the first 

four equations in the set, which can be obtained from cohesive energy cE , equilibrium 

pressure 0=P , bulk modulus B~ , and pressure derivative of bulk modulus dPBd~ , 

respectively.  All the derivatives are evaluated at err = , the first nearest neighbor 

distance of a crystal at equilibrium. 
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i
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Equation (3.5) below gives a theoretical elastic constant IJC , which can provide two 

more equations for parameter fittings: 
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with jiI xxX = , where ix ’s are Cartesian coordinates.  The primes on the F  and f  

functions indicate derivatives with respect to ρ  and r , respectively.  The elastic 
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constants IJC  are completely symmetric.  That is, IJC  = JIC .  Using the Voigt notation, a 

pair of Cartesian indices ij  from Eq. (3.5) is replaced by a single index I  according to 

Table 3.1.  For examples, 111 xxX =  and 234 xxX = . 

 

Table 3.1  The Voigt notation 

ij  11 22 33 32 or 23 31 or 13 21 or 12 

I  1 2 3 4 5 6 

 

In parameter fittings for pure materials like iron, Eqns. (3.1) and (3.5) can be 

further simplified.  The electrostatic term in Eq. (3.1) can be neglected, and the term 

involving 'F  in Eq. (3.5) is zero (see Eq. (2.11)).  For pure materials with cubic 

structures, the elastic constants 11C , 12C , and 44C  are usually used in parameter fittings, 

and they can be found from Eq. (3.5): 
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Another data point to be fitted is the relationship between elastic constants ijC ’s and the 

bulk modulus B~  given by the Voigt equation: 

)(2)(~9 231312332211 CCCCCCB +++++=    (3.9) 
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The starting values of the parameters were taken from the EAM database developed by 

Zhou et al. [50].  Table 3.2 shows the resulting parameters for iron in Body Centered 

Cubic (BCC) structure.  The fitting results are compared to the target values in Table 3.3. 

 

Table 3.2  Parameter values for iron 

Fitted Parameters Values 

A  0.387830322 eV 

B  0.555639102 eV 

α  9.523030631 

β  5.145940759 

0F  -2.913740839 eV 

η  0.725524773 

 

 The pair and EAM potentials of oxygen atoms were fitted from the properties of 

alpha solid oxygen using the first nearest atomic neighbors.  The cohesive energy, 

equilibrium distance, bulk modulus, pressure derivative of bulk modulus, elastic 

constants, and average phonon frequency were used in determining the oxygen potential 

parameters.  Although the literature describes a few ways to find zero wave vector 

frequencies from potential energy, the described methods are quite complicated and 

cumbersome [51].  A simplified approach based on the first nearest neighbor 

approximation is presented here. 
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Table 3.3  Comparison between the fitted and target values for the iron potentials 

Properties Fitted Values Target Values 

Cohesive Energy (eV) -4.27 -4.29 

Equilibrium Pressure (GPa) 0 0 

Bulk Modulus (GPa) 180.79 170.35 

11C  (GPa) 174.91 239.55 

12C  (GPa) 183.72 135.75 

44C  (GPa) 111.17 120.75 

 

The kinetic energy kE  is given by: 

∑∑ =⎟
⎠
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i
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dt
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mE 2
2

2 ξ
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where iξ  is a coordinate of an atom in a crystal and im  is an associated mass of that 

atom.  When atom displacements from their original positions are small, the potential U  

can be expanded as: 
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Choosing the equilibrium energy to be zero, as well as the zero force 0=
id

dU
ξ

, and 

ignoring higher-ordered terms, the above equation for small vibrations becomes: 

∑∑=
i j

jiijdU ξξ2      (3.12) 

where ji
ji

ij d
dd
Udd ==
ξξ

2

.  Newton’s equations of motion can be written in the form: 
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0=
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Or, 

0=+∑
i

iikk d ξξ&&      (3.14) 

Assume the solution is in the form: 

( )( )trkiAkk ωξ −⋅= vv
exp     (3.15) 

where kA  is the wave amplitude, k
v

 is the wave vector, rv  is the space vector, ω  is the 

angular frequency, and t  is time.  For 0=k
v

 (zero wave number), Eq. (3.15) becomes 

( )εωξ += tAkk cos      (3.16) 

where ε  is the starting phase of the wave.  Equation (3.16) represents a wave equation 

with zero wave number (k = 0).  Substituting the assumed solution of kξ , it can be 

rewritten as: 
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The values of ( )εωξ += tAkk cos  can be found by calculating the determinant: 
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In the case of alpha solid oxygen, using the first neighbor approximation, the above 

determinant becomes: 
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which gives; 
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=ω       (3.20) 

Combining Eqns. (3.3) and (3.20) yields 

2
02

~9

emr
BΩ

=ω       (3.21) 

Equation (3.21) gives the average of phonon frequency for oxygen.  The reported values 

of 2ω  are 0.9 22610 −× s and 4.7 22610 −× s  [52].  Table 3.4 below shows the fitting results 

with all the six data points.  The corresponding parameters are shown in Table 3.5.  These 

parameters will be used in finding a set of parameters for iron oxides. 

 

Table 3.4  The fitted and target values of the potential energy model for solid oxygen 

Properties Fitted Values Target Values 

Cohesive Energy cE  (eV) -2.6 -2.6 

Equilibrium Pressure (GPa) 0 0 

Bulk Modulus B~  (GPa) 2.98 2.96 

Pressure Derivative 7.76 7.78 

Zero wave number frequency ω  ( 22610 −× s ) 1.2 0.9 and 4.7 

Bulk Modulus from elastic constants B~  (GPa) 1.43 2.96 
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Table 3.5  The parameter values of the potential energy model for solid oxygen 

Parameters for Oxygen Atoms Parameter Values 

α  24.1176647 

β  2.660324226 

A  (eV) 0.011228337 

B  (eV) 0.069658629 

oF  (eV) -2.564913 

η  0.084502875 

 

A test run was performed to validate the oxygen potential parameters, and a 

serious problem was discovered.  Oxygen did not diffuse out to nearby empty space as 

expected.  Instead, the oxygen atoms stayed together as groups.  This tight binding was 

caused by a too strong attractive part in the O-O potential as the potential was intended 

for atom-atom interactions.  Therefore, another novel approach is implemented for 

oxygen.  The basic idea of this approach is to have two different potentials for oxygen: 

one for oxygen molecules (O2) and another one for oxygen atom (O).  Each oxygen 

molecule and oxygen atom will be modeled in the same form, say a hard ball sphere.  

One hard ball sphere will represent an oxygen molecule when that sphere has no charge.  

However, when it carries a negative charge, it will be morphed into an oxygen atom (or 

ion rather).  Charges on oxygen ions will be determined from the electrostatic energy 

minimization. 
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Table 3.6 shows the parameter values for O2-O2 pair potential.  The fitting was 

again based on the crystal structure of alpha solid oxygen.  It is further assumed that the 

embedded atom method (EAM) energy is small and can be neglected because only 

oxygen molecules are considered, instead of oxygen atoms as done previously.  

Therefore, only the O2-O2 pair potential parameters were fitted.  Fitting requires four data 

points for four fitting parameters ( A , B , α , and β ).  The data points are cohesive 

energy, equilibrium pressure, bulk modulus, and pressure derivative of bulk modulus.  

All the data points are the same values as used in the O-O fitting, except for the cohesive 

energy.  Now the cohesive energy represents interactions between two oxygen molecules, 

not two oxygen atoms.  The cohesive energy is calculated from the classical Lennard-

Jones potential with the neighboring molecules up to 10
o

Α .  The O2-O2 Lennard-Jones 

pair potential U as a function of separation distance r is 

⎟
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⎜
⎝
⎛=

612

4
rr

U σσε     (3.22) 

where =ε  Bk/113  K and =σ 3.433
o

Α  ( Bk  is the Boltzmann constant) [53]. 

 

Table 3.6  The pair potential parameters for oxygen molecules 

Pair Potential Parameters O2-O2 

A  0.063474454 eV 

B  0.079479388 eV 

α  10.59191243 

β  7.128116452 
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Table 3.7  The fitted and target values for the O2-O2 pair potential 

 Fitted Values Target Values 

Cohesive Energy (eV/molecule) -0.072 -0.072 

Pressure (GPa) 0.000266 0 

Bulk modulus (GPa) 2.96 2.96 

Pressure derivative of B~  5.15 7.78 

 

3.3 Parameter Fittings for Iron Oxides 

All three iron oxides (FeO, Fe2O3 and Fe3O4) have different crystal structures.  

Wüstite (FeO) has the rock salt (NaCl) structure (space group (SG) number 225, Fm-3m) 

with the lattice parameter 
o

Α= 3108.4a  [54].  The fractional coordinates for Fe and O in 

wüstite are (0, 0, 0) and (0.5, 0.5, 0.5), respectively.  Hematite (Fe2O3) has the corundum 

(α -Al2O3) structure, belonging to the space group R-3c (SG number 167) with the lattice 

parameters 
o

Α= 038.5a  and 
o

Α= 772.13c  [55].  The fractional coordinates for Fe and O 

in hematite are (0, 0, 0.3553) and (0.3059, 0, 0.25), respectively.  Magnetite crystals have 

the inverse-spinel structure (SG number 227, Fd-3m) with tetrahedral and octahedral sites 

reserved for iron ions (see Fig. 3.2).  A tetrahedral atom sits in the center of a tetrahedron 

formed by four other lattice atoms (three in-plane atoms and the fourth atom at the 

symmetrical position on top).  An octahedral site for an (interstitial) atom is the space in 

the interstices between 6 regular atoms that form an octahedra.  Four regular atoms are 

positioned in a plane, and the other two are in a symmetrical position just above or below.  

One Fe3+ ion per formula resides at tetrahedral sites while the Fe2+ and the remaining Fe3+ 

ions randomly reside at octahedral sites.  The fractional coordinates for Fe3+, Fe2+, and O 
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in magnetite are (0.125, 0.125, 0.125), (0.5, 0.5, 0.5), and (0.2549, 0.2549, 0.2549), 

respectively, with the lattice parameter 
o

Α= 3941.8a [56]. 

 

(a) (b) 

Figure 3.2  A tetrahedral site in green color is shown in (a) and a octahedral site in green 
color is shown in (b). 

 

Charges on ions become crucial in fitting pair potential parameters for oxides.  

Suppose that a reaction between x  mol of a metal M  and y  mol of oxygen O  results in 

an oxide compound yxOM .  The electrostatic energy of one M  ion from Eq. (2.15) can 

be rewritten as 

( )
e

OMCM
MMMM

es
M r

qqk
qJqEE

α
χ

2
1

2
10 2 +++=    (3.23) 

where Mα  is a Madelung constant, which is a real number representing a specific 

geometric arrangement in a crystal.  For example, any crystal with the rock salt (NaCl) 
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structure will have the Madelung constant of 1.748.  Using the neutrality condition that 

0=+ OM yqxq , Eq. (3.23) can be rewritten as: 

( ) 2
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If assuming that ( )0E  is independent of Mq , minimizing the electrostatic energy in Eq. 

(3.24) gives the charges on M  and O  ions at equilibrium.  In order for es
ME  to be an 

absolute minimum, M
es
M dqdE  and 22

M
es
M dqEd  must be zero and greater than zero 

respectively. 
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Using the data from Tables 3.8 and 3.9, the resulting values of Mq  and 22
M

es
M dqEd  are 

shown in Table 3.10.  Clearly, the value of 22
M

es
M dqEd  indicates that the charge value 

Mq  renders the function es
ME  to be an absolute maximum, instead of an absolute 

minimum as hoped for. 

 This error results from the initial assumption that an absolute minimum of the 

electrostatic energy exists for any given set of atomic and crystalline properties ( χ , J , 

Mα  and er ).  Since the absolute minimum does not exist, a relative or local minimum of 

the electrostatic energy should be sought.  Mathematically, the local minimum must exist 

at either lower or upper charge limits of Mq .  However, these limits are not the same as 

the absolute charge limits known for each ion (for example, iron ions can carry charges 

up to e3+ , where e  is the number of electrons).  To illustrate this, let the upper bounds 
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on the iron ions in FeO and Fe2O3 be e2+  and e3+ , respectively, when finding the local 

minimum electrostatic energy.  Equation (3.25) gives the local minimums of FeO and 

Fe2O3 when Mq  equal to 0 and e3+ , respectively, when confining the ion charges to 

their physical limits.  The e3+  iron ion charge in Fe2O3 might be acceptable.  However, 

the iron ion charge in FeO has to be zero, which clearly contradicts the notion that ions 

have to carry non-zero charges.  As a result, the physical charge limits are not applicable 

in this case.  Without knowing an appropriate bound, which is a subset of the physical 

charge bounds, the usual practice of finding minima using Eqns. (3.25) and (3.26) 

becomes invalid.  The common solution to get around this problem is to perform 

equilibrium charge findings and parameter fittings to experimental quantities 

simultaneously [58].  One way to this is to start out with 0=Mq  and gradually vary Mq  

until it reaches its physical bound.  The best fitting will give the smallest error in the least 

squared fitting. 

Table 3.8  Ion energetics data of iron and oxygen [57] 

 Fe O 

Ionization Energy IE  (eV) 7.9024 13.61806 

Electron Affinity EA  (eV) 0.1510 1.461112 

Electronegativity χ  (eV) 4.0267 7.539754 

Self-coulomb Repulsion J  (eV) 7.7514 12.156691 

 



 65

Table 3.9  Values used in calculating equilibrium charges of iron ions 

 FeO Fe2O3 

x  1 2 

y  1 3 

Mα  1.747565 2.347099 

er  (
o

Α ) 2.1554 1.9457 

 

Table 3.10  Charge extrema and concavity of iron oxide ES energy 

 FeO Fe2O3 

Mq  1.0262 1.0516 

2

2

M

es
M

dq
Ed  

-3.9239 -3.8291 

 

Parameter fittings for iron oxides require four data points corresponding to four 

unknown parameters A , B , α , and β  in pair potentials.  The crystal data usually used 

are cohesive energy, equilibrium pressure, bulk modulus, and pressure derivative of bulk 

modulus.  Of these four properties, cohesive energy is not usually available, but it can be 

calculated as follows.  Suppose an oxide again takes the form yxOM .  The chemical 

reaction for this oxidation can be described as: 

yxOMOyxM ⎯→⎯+ 22
    (3.27) 

The cohesive energy of yxOM  ( )yxOM
cE  is the heat of formation of yxOM  ( )yxOM

fHΔ  

subtracted by the cohesive energy of x  mol of a metal M  and y  mol of oxygen O : 
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O
c

M
c

OM
f

OM
c yExEHE yxyx −−Δ=     (3.28) 

The value of M
cE  are readily available and the value of O

cE  is 2.58 eV [59].  Table 3.11 

and 3.12 shows the results of parameter fitting.  The fitting begins with considering only 

the first nearest neighbors in calculations.  Once the starting values of the parameters are 

known, the calculations are extended to the neighbors distanced at 10
o

Α  (a typical cut-

off).  The comparisons between the fitting and target results are shown in Tables 3.13 and 

3.14.  Each set of parameters has been tested with Moldy to see if the parameters yield a 

stable structure.  A typical test is to run a pre-formed oxide with a corresponding set of 

the fitted parameters at 300 K for 10 ps.  The structural stability can be observed from 

Moldy movie files and radial distribution curves. 

 

Table 3.11  Pair potential parameters for iron oxides 

Parameters Fe-O in FeO Fe-O in Fe2O3 

A  (eV) 1.813926 0.789382 

B  (eV) 2.992601 0.084102 

α  14.30119 10.80134 

β  6.574424 0.177024 

 

Table 3.12  Fitted charges on iron ions 

 Fe2+ in FeO Fe3+ in Fe2O3 

Mq  e21.1+  e73.0+  
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Table 3.13  The fitted and target values for the pair potential of FeO 

Properties of FeO Fitted Values Target Values 

Cohesive Energy (eV/atom) -4.86 -4.86 

Pressure (GPa) -0.00146 0 

Bulk modulus (GPa) 152.21 152.21 

Pressure derivative of B~  5.5 5.5 

 

Table 3.14  The fitted and target values for the pair potential of Fe2O3 

Properties of Fe2O3 Fitted Values Target Values 

Cohesive Energy (eV/atom) -4.98 -4.98 

Pressure (GPa) -0.00006 0 

Bulk modulus (GPa) 182.65 182.65 

Pressure derivative of B~  3.5 3.5 

 

3.3 Modeling of Magnetite (Fe3O4) 

Molecular dynamics simulations of magnetite have been done using pre-formed 

bulk structure and fixed charges on tetrahedral and octahedral iron ions [60].  One pair 

potential between iron and oxygen was used.  The charges for tetrahedral and octahedral 

iron ions are fixed +2.5e and +3e, respectively.  The fact is that magnetite (Fe3O4) is 

composed of two iron oxide compounds: wüstite (FeO) and hematite (Fe2O3).  Therefore, 

to model magnetite formation in iron oxidation more correctly, two different pair 

potential functions corresponding to the two oxidation states of iron should be used.  The 

steps in modeling magnetite formation are outlined here: 
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1. Find potentials for pure materials (iron and oxygen) and the iron-oxygen atomic pair. 

2. Use the charge calculations from Chapter 2 to find ion charges at each time step. 

3. Assign oxidation states (Fe2+ and Fe3+) to iron ions so that the populations of Fe2+:Fe3+ 

being 1:2 after all the charges in the system are known. 

4. Apply the potentials corresponding to the oxidation states. 

5. For interactions between iron atoms (with zero charge) and oxygen, pick one of the 

two pair potentials that gives the lowest energy. 

After the ES energy minimization (see Chapter 2), each iron ion will be 

categorized as either Fe2+ or Fe3+.  This grouping process is quite simple, and it is only 

based on the charges that iron ions carry.  The idea is to arrange all the iron ions in order 

of the charge magnitude from minimum to maximum.  The cutoff charge magnitude will 

be determined to make the population of Fe2+:Fe3+ be 1:2.  The 1:2 population ratio 

corresponds to the actual chemical formula of magnetite (FeO)(Fe2O3), which is 

equivalent to Fe3O4.  Therefore, three groups of iron, neutral Fe (zero charge), Fe2+, and 

Fe3+, always exist in magnetite formation modeling. 

As mentioned earlier, magnetite (Fe3O4) is composed of wüstite (FeO) and 

hematite (Fe2O3).  After all iron ions have been branded with either Fe2+ or Fe3+, two 

different sets of pair potentials for iron-oxygen pairs are used: one for the Fe2+-O pair and 

another one for Fe3+-O pair.  Each set of potential parameters has been fitted to the 

corresponding crystal structures and properties of wüstite (FeO) and hematite (Fe2O3).  

For a pair of a neutral iron atom and oxygen (Fe-O pair), potential energy calculated from 

the pair potentials of the Fe2+-O and Fe3+-O pairs will be compared.  The separation 

distance between a particular pair of an iron atom and an oxygen atom/ion differs from 
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one time step to another time step.  So the pair potential that gives the lowest potential 

energy will be the choice for that Fe-O pair in that time step. 

 

3.4 Benchmarking with Experiment 

A simulation system to compare with the experiment consists of a semi-infinite 

slab of iron with oxygen on only one side.  The slab of body-centered cubic iron is 

o

Α33.57  angstrom thick.  The temperature is kept constant using a Nose-Hoover heat 

bath.  The system was run at 300 K and 423 K, corresponding to the actual temperatures 

in the experiment to be benchmarked [61].  The run time for each simulation is 40 

picoseconds (ps) with a time step of 0.0002 ps for the total of 200,000 time steps. 

Using the morphing scheme for oxygen, the results from this new oxygen 

potential approach are satisfactory.  The oxygen gas diffuses out to nearby empty space 

as it should.  The trajectories of iron and oxygen atoms/ions can be visualized using 

VMD.  The root mean square displacement (RMSD) of several forefront oxygen ions in 

the slab have been calculated using the RMSD feature in VMD.  As the name suggests, 

RSMD is the square root of mean square displacement (MSD) that is defined as: 

( ) ( ) ( ) ( )∑
=

−=−
N

i
ii rtr

N
rtr

1

22 010     (3.29) 

where N  is the number of particles in a system, ( )tri  is the distance of particle i  from a 

reference point at time t .  The distance squared is always positive no matter how a 

particle moves as moving forward and backward do not cancel the distance traveled.  

Both MSD and RMSD, analogous to variance and standard deviation, can be used to 

analyze the simulation results.  By tracking the movements of each particle or a cluster of 
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particles or atoms against time, MSD and RSMD tell how active an atom or a cluster is 

during a simulation course.  Figures 3.3 and 3.4 show forefront oxygen ions relatively 

settle by the end of each simulation.  This means that the oxide layer growth relatively 

stops. 

 

 

Figure 3.3  Root mean square distance of four forefront oxygen ions in the slab at 300 K 
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Figure 3.4  Root mean square distance of five forefront oxygen ions in the slab at 423 K 

 
The oxide layer thicknesses from the simulations (see Figs. 3.5 and 3.6) are in the 

same order as the experimental results by Grosvenor et al. [61] as shown in Table 3.15.  

The oxide layer thicknesses are the distances from the slab surfaces to the points where 

the disorders of the iron lattices occur, which can be easily observed from the distribution 

histograms (Figs. 3.7 and 3.8).  The sections between the two highlighted lines indicate 

the oxide layers.  The iron ion populations are shown in Figs. 3.9 and 3.10.  Note that the 

experiment results are from three different partial pressure environments, ranging from 

0.013 Pa to 130 Pa (see Table 3.16).  To complete the comparisons, the role of oxygen 

partial pressure is discussed in the next section. 
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Table 3.15  Comparison between the magnetite modeling and experiment results 

 Present Calculation Grosvenor et al. [61] 

Oxide thickness at 300K ~2.3 nm 1.9 nm to 3.3 nm 

Oxide thickness at 423K ~2.5 nm 3.1 nm to 5.1 nm 

 

 

 

 

 

Table 3.16  The oxide thicknesses at various experiment conditions [61] 

 0.013 Pa 1.3 Pa 130 Pa 

300K 1.9 nm 2.9 nm 3.3 nm 

423K 3.1 nm 4.0 nm 5.1 nm 
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Figure 3.5  The x-z plane view of the iron slab (green) exposed to oxygen (red) at 300 K 

(top) At time t = 0  (bottom) At time t = 20 ps, the oxide thickness is about 2 nm. 

2.3 nm 
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Figure 3.6  The x-z plane view of the iron slab (green) exposed to oxygen (red) at 423 K 

(top) At time t = 0  (bottom) At time t = 20 ps, the oxide thickness is about 2.6 nm. 

2.5 nm 
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Figure 3.7  Histogram of iron and oxygen positions along the z direction at 300 K 

 

 

Figure 3.8  Histogram of iron and oxygen positions along the z direction at 423 K 
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Figure 3.9  Population of Fe2+ and Fe3+ at the 1:2 ratio when T = 300 K 

 

 

Figure 3.10  Population of Fe2+ and Fe3+ at the 1:2 ratio when T = 423 K 
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3.5 Role of Oxygen Partial Pressure 

 Oxidation studies often report amount of oxygen by partial pressure in atm or Pa.  

The results from the benchmarking experiment involve three different oxygen partial 

pressures: 0.013 Pa, 1.3 Pa, and 130 Pa.  Ideally, to compare the results from the 

experiments and simulations, the conditions, which include temperature and pressure, 

have to be the same in both experiment and simulation studies.  However, typical 

pressures in molecular dynamics simulations are in the order of MPa, not Pa.  This is due 

to much smaller sizes of molecular dynamics systems, which are usually in the order of 

angstroms.  To illustrate this problem of scale, assume that oxygen gas behaves like an 

ideal gas.  So, n mol of oxygen at temperature T inside a volume V will have the pressure 

P equal to 

VnRTP /=      (3.30) 

where the gas constant R  is 8.314 472 J/mol–K.  Using Eq. (3.30), the sizes of the cubic 

volumes for one oxygen molecule are listed in Table 3.17 below. 

 

Table 3.17  The occupied cubic sizes of one O2 at various experiment conditions 

 0.013 Pa 1.3 Pa 130 Pa 

300 K 
o

Α6830.81  
o

Α1471.65  
o

Α317.06  

423 K 
o

Α7659.7  
o

Α1650.23  
o

Α355.53  

 

As seen from Table 3.17, the cubic sizes of one oxygen molecule at the experiment 

conditions are very large compared to the cubic cell size of iron, which is 
o

Α8665.2 .  
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Therefore, to include, say, 10 oxygen molecules, a system size will have to be in the 

order of microns, instead of angstroms - the typical molecular dynamics scale.  In 

addition, a micron-sized system is impractical in terms of computational time and 

memory for a personal computer.  Hence, the question remains: how will the pressure in 

the models be compared to the actual experiment? 

 Grosvenor et al. reported the experiment results with the inclusion of the direct 

logarithmic oxide thickness model [61].  They found that the experiment results are well 

fitted with the direct logarithmic oxide thickness model.  The model describes an oxide 

layer thickness x  as a function of time t  as [62]: 

RT
x

RT
E

ePeA
dt
dx 00

6.0
0

γ
−−

=      (3.31) 

where 0A  is the pre-exponential value, 0E  is the activation energy, R  is the gas constant, 

T  is temperature, P  is reaction pressure, 0γ  is increase in activation free energy with 

thickness of the oxide film.  Using the initial condition that ( ) 00 ==tx , the oxide layer 

thickness x  is: 
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Or, 

( )1ln1 6.0
0

0

+= tPC
b

x     (3.32a) 

where 0b  is defined as 
RT

0γ  and 0C  is defined as RT
E

eAb
0

00

−
.  The values of 0γ  and 0E  

are listed in Table 3.18 [63].  Using the data provided by Grosvenor et al. [61, 63], 0A  is 
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calculated to be approximately 810  nm/Pa0.6–s at 300 K and 710  nm/Pa0.6–s at 423 K.  

Table 3.19 lists the values of 0b  and 0C  at 300 K and 423 K. 

 Figure 3.11 shows the plot of Eq. (3.32) when the pressures are at 1 MPa and 1 Pa 

and the temperatures are at 300 K and 423 K.  The plot clearly indicates that the role of 

oxygen partial pressure is to either slow or hasten the initial oxide layer growth.  During a 

transient period, an oxide layer grows faster at a higher oxygen partial pressure.  

However, once the oxide layer approaches its equilibrium growth, the effect of oxygen 

partial pressure diminishes.  For clarity, Fig. 3.12 shows the ratio between the two oxide 

thicknesses at the same temperature but different pressures from Fig. 3.11.  After the 

transient period, the oxide thickness at 1 MPa is only about 1.7 times the oxide thickness 

at 1 Pa, even though the pressure is one million times higher.  Since the experiment 

shows that the oxide thicknesses range from 1.9 nm to 5.1 nm at pressures in the order of 

Pa, one would expect the oxide thicknesses to approximately range from 3.23 nm to 8.67 

nm at pressures in the order of MPa.  The simulation results with the pressures in the 

order of MPa yield the oxide thicknesses of about 2.3 nm and 2.5 nm at 300 K and 423 K, 

respectively, which are still in the same order of magnitude of the expected values. 

 

Table 3.18  The values of 0γ  and 0E  for the reaction of Fe with O2 [63] 

Conditions 0γ  (kJ/mol-nm) 0E  (kJ/mol) 

~ 2103.1 −×  Pa at 300 K 110 ±  632 ±  

~ 2103.1 −×  Pa at 423 K 117 ±  632 ±  
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Table 3.19  The values of 0b  and 0C  at 300 K and 423 K 

Temperatures 0b  (1/nm) 0C  (1/ Pa0.6–s) 

300 K 4.0 1075 

423 K 4.8 4483 

 

 

 

 

Figure 3.11  Oxide thicknesses according to the direct logarithmic oxide thickness model 
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Figure 3.12  Oxide thickness ratios at 300 K and 423 K 

 

3.6 Conclusion 

This chapter presents a new approach in modeling oxidation of iron in the 

magnetite form.  The approach is to use appropriate pair potentials based on charge 

distributions obtained from energy minimization.  The simulation results agree with the 

experiment in terms of oxide layer thickness.  Magnetite modeling provides a basis for 

modeling protective oxide layers that prevent lead diffusion into iron.  The next chapter 

will present simulations of a mixture of lead, iron, and oxygen. 
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CHAPTER 4  

MODELING IRON IN LIQUID LEAD UNDER OXYGEN CONTROL 

4.1 Introduction 

 This chapter brings together the applications from the previous two chapters, 

namely charge optimization, metal oxidation modeling, and embedded atom method 

(EAM) potential.  The simulated systems in this chapter are composed of solid iron, 

liquid lead, and oxygen at 550 o C (823.15 K), a typical operating temperature for lead-

cooled reactors.  It is well known that liquid lead deteriorates structural steel because 

solid iron dissolves in liquid lead.  Several methods to combat liquid lead corrosion 

problems have been mentioned in Chapter 1.  One of those prevention methods relies on 

active oxygen control. 

 Several studies indicate that active oxygen control sustains oxide layers that 

protect against penetration of lead [64-66].  The formation of protective oxide layers is: 

( ) ( ) ( )sgs OFeOFe 432 4
1

2
1

4
3

⎯→⎯+    (4.1) 

It has been experimentally proven that in a non-isothermal system, pre-oxidized steel 

cannot prevent lead corrosion attacks [64].  Unless self-healing of the protective oxide 

films takes place, Fe3O4-based oxide films will be disappearing according to the 

following reduction equation: 

( ) ( ) ( ) ( )dissolveddissolvedls PbOFePbOFe +⎯→←+
4
3

4
1

43   (4.2) 

The above equation shows that protective oxide layers vanish when lead is oxidized, 

forming solid lead oxides (PbO) that can block the circulation flow of liquid lead.  The 

two chemical reactions above are competing: one to repel oxide layers and one to repair 
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oxide layers.  Therefore, an optimum operating condition should be such that the healing 

effect overcomes the damaging effect, and yet minimizes the formation of lead oxides in 

the system.  This is when oxygen control comes into play.  Too much oxygen in a system 

will excessively produce PbO.  Too little oxygen in the system will deteriorate protective 

oxide layers. 

 An optimum oxygen level in the system will always fall between the two 

extremes: lower bound to sustain protective oxide layers and upper bound to deter lead 

oxide formations.  Thermodynamics allows rough estimates on the upper and lower limits 

of oxygen in the system.  The maximum oxygen level is simply the solubility limit of 

oxygen in liquid lead as mentioned in Chapter 1, which is given by: 

TCO /50002.3log max −=     (1.1) 

where max
OC  is the concentration of oxygen in wt % and T  is the temperature in Kelvin.  

The minimum oxygen level will be the level that can sustain the protective oxide layers.  

Reference [1] reports the minimum oxygen level to be: 

TCC FeO /10600355.2log
4
3log min −+−=    (4.3) 

where min
OC  is the concentration of oxygen in wt. %, FeC  is the concentration of iron in 

wt. %, and T  is the temperature in Kelvin.  Equation 4.3 assumes that some iron atoms 

are already dissolved in liquid lead.  For simplicity, let the existing dissolved iron 

concentration be 610−  wt. %.  So, Eq. 4.3 becomes: 

TCO /10600855.6log min −=     (4.3a) 

Figure 4.1 shows the maximum and minimum oxygen levels for liquid lead coolant. 
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Figure 4.1  The lower and upper limits of oxygen concentration in liquid lead coolant 

 

This chapter provides basis simulation studies of iron in liquid lead at various 

oxygen concentrations.  The aims are to gain a basic understanding of system behaviors 

and see if the simulation results come out as expected.  The next section explains the 

parameterization of the lead oxide (PbO) potential.  After having all the necessary 

parameter values for the EAM potentials of lead and its oxide (PbO), several systems of 

iron in liquid lead with different oxygen concentrations will be studied.  Finally, the 

simulation results are discussed, and conclusions are drawn. 
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4.2 Parameter Fittings for Lead and Lead Oxide (PbO) 

 Lead has a faced-centered-cubic (FCC) structure with the lattice parameter equal 

to 4.9508 
o

Α .  The atomic properties of lead are listed in Table 4.1.  Table 4.2 lists the 

fitted values of six pair potential and EAM parameters against the properties of lead.  The 

fitting starts with the initial values of A , B , a , and b  from Ref. [50].  Once the 

parameters for lead are obtained, the next step is to find parameters for a lead oxide that 

is stable at 550 o C. 

Lead oxides formed in lead and lead alloy coolants are found to be lead 

monoxides (PbO) [1].  The lead monoxides (PbO) exist in two forms as shown in Figs. 

4.2 and 4.3: the red tetragonal α -PbO (litharge) and the yellow orthorhombic β -PbO 

(massicot).  The stability of lead monoxides depends on operating temperatures.  Litharge 

transforms into massicot at about 640 o C (913.15 K).  Since the temperature domain of 

interest in this dissertation is below 640 o C, litharge is assumed to be the only form of 

lead oxides. 

 Litharge is in the spacegroup number 129 (P4/nmm) with the crystal parameters 

o

Α= 975.3a  and 
o

Α= 023.5c  [67].  The fractional coordinates of Pb and O in litharge is 

(0, 0.5, 0.2351) and (0, 0, 0), respectively.  Table 4.3 lists the necessary values for 

parameterization of the Pb-O pair potential.  Using the first nearest neighbors, the Pb-O 

pair potential parameter values are listed in Table 4.4 below.  The fitted charge on lead 

ions is found to be e5.0+ .  Table 4.5 shows the parameter fitting results for the pair 

potential of PbO (litharge). 
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Figure 4.2  Crystal structure of litharge 
 

 

Figure 4.3  Crystal structure of massicot. 
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Table 4.1  Atomic properties of lead [57] 

Ionization Energy IE  (eV) 7.4167 

Electron Affinity EA  (eV) 0.3640 

Electronegativity χ  (eV) 3.8904 

Self-coulomb Repulsion J  (eV) 7.0527 

 

 

 

Table 4.2  EAM parameter values of lead 

Parameters of Lead Value 

A  (eV) 0.14108114 

B  (eV) 0.210710421 

α  8.62110911 

β  4.806186728 

ef  0.65089 

η  1.173139 

0F  -1.44638 
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Table 4.3  Values used in calculating equilibrium charges of lead ions 

x  1 

y  1 

Mα  1.6543 

er  (
o

Α ) 2.3115 

 

Table 4.4  Pair potential parameter values for the Pb-O pair 

Potential parameter Pb-O 

A  (eV) 0.030194 

B  (eV) 2.524427 

α  22.17366 

β  0.009659 

 

Table 4.5  The fitted and target values for the pair potential of PbO (litharge) 

Properties of PbO Fitted Values Target Values 

Cohesive Energy (eV/atom) -3.42 -3.44 

Pressure (GPa) -0.32 0 

Bulk modulus (GPa) 43.26 22.43 (Ref. [68]) 

Pressure derivative of B~  6.9 7.0 (Ref. [68]) 
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4.3 Cross-Potential 

Unlike the simulated systems in Chapters 3 and 4, the systems in this chapter 

consist of more than one metal.  That is, each system contains iron and lead atoms, and 

that requires a cross pair potential between iron and lead.  Johnson proposed the alloy 

EAM model to find a pair potential between two different metals [69].  Consider a binary 

alloy made of type-a and type-b atoms.  Here, the alloy potential abφ  has the form: 

⎥
⎦

⎤
⎢
⎣

⎡
+= bb

b

a
aa

a

b
ab

f
f

f
f φφφ

2
1     (4.4) 

where aaφ  and bbφ  are the pair potentials of the type-a and type-b atoms, respectively, 

and af  and bf  are the electron density functions of the type-a and type-b atoms, 

respectively.  The derivation of the alloy potential begins with the transformations of the 

EAM function and pair potential.  The derivation presented in this dissertation has minor 

differences from what Johnson did [69].  Under the transformations, the total energy must 

remain the same in order for the transformations to be invariant.  Recall that the EAM 

energy F  is a function of the total electron density ρ  at a given atom site.  The original 

derivation of the EAM function provides the following transformation of F  into G  [30]: 

( ) ( ) ρρρ kFG +=      (4.5) 

where k  is an arbitrary constant.  Once the EAM transformation is known, the concurrent 

transformation to the pair potential can be derived.  Recall Eq. (2.1), the energy E  

between a pair of atoms or particles separated by a distance r  is 

( ) ( )rFE φρ
2
1

+=      (2.1) 
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If the EAM function ( )ρF  is transformed into ( )ρG , the pair potential ( )rφ  must also be 

inevitably converted into a new pair potential, say ( )rψ , in order to keep the same total 

energy.  That is, under the transformations Eq. (2.1) becomes: 

( ) ( )rGE ψρ
2
1

+=      (4.6) 

Substituting Eq. (4.5) into the above equation gives: 

( ) ( ) ( ) ( )rFrkFE φρψρρ
2
1

2
1

+=++=    (4.7) 

Therefore, 

( ) ( ) ρφψ krr 2−=      (4.8) 

Recall Eq. (2.4), 

( )∑=
i

irfρ       (2.4) 

In the case of one pair of atoms, Eq. (2.4) reduces to ( )rf=ρ , and Eq. (4.8) becomes: 

( ) ( ) ( )rkfrr 2−= φψ      (4.9) 

The concurrent transformations as shown in Eqns. (4.5) and (4.9) will be required in 

deriving Eq. (4.4), the alloy potential. 

A binary alloy of type-a and type-b atoms carries the total energy of: 

( ) ( ) ( ) ( ) ( ) ( )⎥
⎦

⎤
⎢
⎣

⎡
+++++= ∑∑∑∑∑∑

≠≠≠≠ iji
ij

ba

iji
ij

bb

iji
ij

ab

iji
ij

aa

i
i

b

i
i

a
t rrrrFFE

,,,,2
1 φφφφρρ  (4.10) 

The task here is to construct the cross-potential terms ( )rabφ  and ( )rbaφ  from the 

monatomic potentials ( )raaφ  and ( )rbbφ .  Since ( ) ( )rr baab φφ = , the above equation can 

be rewritten as: 
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( ) ( ) ( ) ( ) ( )∑∑∑∑∑
≠≠≠

+⎥
⎦

⎤
⎢
⎣
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+++=
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ij

ab

iji
ij
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iji
ij
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i
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a
t rrrFFE

,,,2
1 φφφρρ  (4.11) 

Equations (4.5) and (4.9) give the following transformed potentials: 

( ) ( ) ρρρ aaa kFG +=     (4.12) 

( ) ( ) ρρρ bbb kFG +=     (4.13) 

( ) ( ) ( )rfkrr aaaaaa 2−= φψ     (4.14) 

( ) ( ) ( )rfkrr bbbbbb 2−= φψ     (4.15) 

Equation (4.11) with the transformed potentials ( GF →  and )ψφ →  becomes: 

( ) ( ) ( ) ( ) ( )∑∑∑∑∑
≠≠≠

+⎥
⎦

⎤
⎢
⎣

⎡
+++=

iji
ij
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iji
ij
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iji
ij
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i
i

b

i
i

a
t rrrGGE

,,,2
1 ψψψρρ  (4.16) 

Substituting Eqns. (4.11) to (4.15) into the above equation gives: 

( ) ( )

( ) ( )

( ) ( )

( )∑

∑∑

∑∑

∑∑∑∑
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φ
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   (4.17) 

For clarity in dealing with summations, assume that there are aN  and bN  atoms of the 

type-a and type-b atoms, respectively.  The equation above can be expanded as: 
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( ) ( ) ( )
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With cancellations of the terms, the above equation becomes: 

( ) ( ) ( ) ( )
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∑∑∑∑∑∑

≠= ≠== ≠=

= === ==

+++

+++=

iji
ij

ab
N

i

N

ijj
ij

bb
N

i

N

ijj
ij

aa

N

i

N

j
ij

ab
N

i
i

b
N

i

N

j
ij

ba
N

i
i

a
t

rrr

rfkFrfkFE

b ba a

b aba ba

,1 ,11 ,1

1 111 11

2
1

2
1 ψφφ

ρρ
  (4.19) 

Or, in a reduced notation, 

( ) ( ) ( ) ( )

( ) ( ) ( )∑∑∑
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Comparing the above equation with Eq. (4.11) gives 

( ) ( ) ( ) ( )rfkrfkrr abbaabab −−= φψ     (4.21) 

The above equation also reduces to Eq. (4.9) as it should if ba = .  Further assume that 

alloy potentials result from combinations of monatomic potentials.  That is, there exist 

the functions ( )rM a  and ( )rM b  such that 

( ) ( ) ( ) ( ) ( )rrMrrMr bbbaaaab φφφ +=     (4.22) 

( ) ( ) ( ) ( ) ( )rrMrrMr bbbaaaab ψψψ +=    (4.23) 

Substituting the two equations above into Eq. (4.21) yields: 
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( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( )[ ] ( ) ( ) ( )[ ]rfkrrMrfkrrM

rfkrfkrrMrrM
bbbbbaaaaa

abbabbbaaa

22 −+−=

−−+

φφ

φφ
  (4.24) 

Further simplifications give: 

( ) ( ) ( ) ( ) ( ) ( )rfkrfkrMrfkrMrfk abbabbbaaa +=+ 22   (4.25) 

By inspection, the functions ( )rM a  and ( )rM b  must be 

( ) ( )
( )rf
rfrM a

b
a

2
1

=      (4.26) 

( ) ( )
( )rf
rfrM b

a
b

2
1

=      (4.27) 

The two equations above give Eq. (4.4), the alloy potential. 

 

4.4 Setting up Grain Boundaries 

 As mentioned in Chapter 1, one of the corrosion problems is due to crystal 

defects.  Grain boundaries are the places where crystal defects, called dislocations, 

accumulate.  At grain boundaries, each single crystal in a polycrystalline solid has slight 

disorientations with respect to its neighboring single crystals.  Therefore, grain 

boundaries generally carry different densities and atomic configurations than those of the 

perfect single crystals.  As a result, grain boundaries, acting like sinks, attract impurities 

and solutes, which normally segregate to interfaces.  Consequently, grain boundaries 

offer easy paths for diffusion and cracking (along the grain boundaries). 

 This chapter compares the simulation results of iron crystals with and without 

grain boundaries at various oxygen concentrations.  One way to create grain boundaries 

used in the simulations is to piece together two crystals with opposite rotations about the 
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same axis.  The two-dimensional rotation matrix is used in finding new coordinates of 

crystals after rotations.  The two-dimensional rotation matrix has the form: 

⎥
⎦

⎤
⎢
⎣

⎡
−

=
θθ
θθ

cossin
sincos

R      (4.28) 

where θ  is the angle of counter-clockwise rotation about the origin.  For a vector vv  from 

the origin (0, 0) to a coordinate ( )yx, , the new vector vr′ after a rotation is: 

v
yx
yx

y
x

v rv ′=⎥
⎦

⎤
⎢
⎣

⎡
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+

=⎥
⎦

⎤
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⎣

⎡
⎥
⎦

⎤
⎢
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⎡
−

=
θθ
θθ

θθ
θθ

cossin
sincos

cossin
sincos

R   (4.29) 

The new coordinate is ( )θθθθ cossin,sincos yxyx +−+ . 

 

4.5 Simulations of Iron in Liquid Lead at Various Oxygen Concentrations 

 This dissertation is intended to provide a basis for future simulation studies of 

iron in liquid lead under oxygen control.  The six cases shown in Table 4.6 have been 

simulated at 550 o C (823.15 K).  Oxygen is randomly distributed in liquid lead, and its 

concentrations in these cases represent three extreme limits: (1) zero oxygen, (2) oxygen 

at the maximum solubility limit ( 3103.1 −×  wt. %) in liquid lead at 550 o C (823.15 K), 

and (3) one-to-one atomic ratio between oxygen and lead.  The iron slabs in the 

simulations are finite in the z-direction and infinite in the x-y plane.  In the cases where 

iron crystals have grain boundaries, the tilt angle of all the grain boundaries is 30 degrees 

as shown in Fig. 4.4. 
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Table 4.6  The simulation cases of Fe in liquid Pb at various O2 concentrations 

 No Grain Boundary With Grain Boundary 

No Oxygen •  •  

Oxygen at Solubility Limit •  •  

Pb:O at 1:1 atomic ratio •  •  

 

 

Figure 4.4  A simple schematic of two iron crystals with a grain boundary 
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4.5.1 Single Crystal of Iron in Liquid Lead without Oxygen 

 A semi-infinite single crystal of iron is put in liquid lead at 550 o C.  The iron 

crystal is 
o

Α02.43  thick in the z direction and infinite in the x-y plane.  The simulation 

run lasts 10 picoseconds (ps) in 20,000 time steps with the temperature control via a 

Nose-Hoover heat bath.  Figures 4.5 and 4.6 show the system at the start and at the end of 

the simulation run, respectively.  At the end of the 10-ps run, the thickness of the iron 

slab reduces from 
o

Α02.43  to about 
o

Α64.37 .  Liquid lead exerts pressure on both sides 

of the slab and, at the same time, iron atoms form a denser network to counter ingress of 

lead atoms.  This results in the thickness reduction of the slab.  A few iron atoms also 

begin to dissolve in liquid lead.  At around 2.5 picoseconds in the simulation run, the 

mean squared displacement plot, especially in the z direction, clearly illustrates the 

sinusoid-like pattern as the system approaches equilibrium (Figs. 4.7 and 4.8).  The radial 

distribution function of iron-lead atoms shows that the closest distance between a pair of 

iron and lead atoms is about 
o

Α8.2  (see Fig. 4.9). 
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Figure 4.5  The initial setup of a single crystal of iron in liquid lead without oxygen.  Iron 

and lead atoms are in green and ocher colors respectively. 
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Figure 4.6  The single crystal of iron in liquid lead at the end of the 10-ps simulation run 
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Figure 4.7  Mean square displacements of iron for the case of single iron crystal in liquid 

lead without oxygen 
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Figure 4.8  Mean square displacement of lead for the case of single iron crystal in liquid 

lead without oxygen 
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Figure 4.9  Fe-Pb radial distribution function for the case of single iron crystal in liquid 

lead without oxygen 

 

4.5.2 Single Crystal of Iron in Liquid Lead with Oxygen at 3103.1 −×  wt. % 

 A semi-infinite single crystal of iron is put in liquid lead at 550 o C.  Oxygen is 

randomly distributed in liquid lead at the ratio of one oxygen atom to sixty lead atoms, 

corresponding to 3103.1 −×  wt. %.  The iron crystal is 
o

Α02.43  thick in the z direction and 

infinite in the x-y plane.  The simulation run lasts 10 picoseconds in 20,000 time steps.  

Figures 4.10 and 4.11 show the system at the start and at the end of the simulation run, 

respectively.  The movements of iron atoms become somewhat limited by the present of 

oxygen, compared to the previous case that has no oxygen, as seen from the mean square 

displacement plot of iron (Fig. 4.12).  The mean square displacement plots of lead and 
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oxygen (Figs. 4.13 and 4.14) show a typical result of mean square displacement for 

liquid. 

 At the end of the 10-ps run, the thickness reduces to about 
o

Α64.37 , and virtually 

there is no penetration of lead atoms into the bulk of the slab.  There is no formation of 

oxide films as there no excess oxygen to react with iron.  The slab surfaces show 

protrusions of iron into liquid lead.  More iron atoms also begin to dissolve in liquid lead.  

The radial distribution function (RDF) of iron and lead atoms (Fig. 4.15) shows the 

closest distance between a pair of iron and lead is about 
o

Α8.2 , the same as in the 

previous case.  The shape of the RDF curve is also similar to that of the previous case. 

 

 

Figure 4.10  The initial setup of a single crystal of iron in liquid lead with dissolved 

oxygen at 3103.1 −×  wt. %.  Oxygen is displayed in red color. 
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Figure 4.11  The end of the 10-ps simulation run of the single crystal of iron in liquid 

lead with dissolved oxygen at 3103.1 −×  wt. % 
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Figure 4.12  Mean square displacements of iron for the case of single iron crystal in 

liquid lead with dissolved oxygen at 3103.1 −×  wt. % 
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Figure 4.13  Mean square displacements of lead for the case of single iron crystal in 

liquid lead with dissolved oxygen at 3103.1 −×  wt. % 
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Figure 4.14  Mean square displacements of oxygen for the case of single iron crystal in 

liquid lead with dissolved oxygen at 3103.1 −×  wt. % 
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Figure 4.15  Fe-Pb radial distribution function for the case of single iron crystal in liquid 

lead with dissolved oxygen at 3103.1 −×  wt. % 

 

4.5.3 Single Crystal of Iron in Liquid Lead with Oxygen at Pb:O = 1:1 

 A semi-infinite single crystal of iron is put in liquid lead at 550 o C.  Oxygen is 

randomly distributed in liquid lead with one oxygen atom for every one lead atom, 

corresponding to the actual chemical formula of PbO.  The iron crystal is 
o

Α02.43  thick 

in the z direction and infinite in the x-y plane.  The simulation run lasts 10 picoseconds in 

50,000 time steps.  Figures 4.16 and 4.17 show the system at the start and at the end of 

the simulation run, respectively. 
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 At the end of the 10-ps run, the thickness of the slab reduces to about 
o

Α51.40 .  

The iron slab is oxidized, forming 
o

Α05.5 -thick oxide films on both sides of the slab.  

The mean square displacement of iron (Fig. 4.18) show that the system approaches 

equilibrium relatively faster than the previous two cases.  The MSD plot of iron has no 

sinusoidal pattern.  The MSD plots of lead and oxygen (Figs. 4.19 and 4.20) show a 

typical MSD result for liquid.  However, the movement of lead atoms is somewhat 

limited as seen from a decrease in its MSD magnitude.  The RDF plot (Fig. 4.21) shows 

that the closest distance between iron and lead atoms remains 
o

Α8.2 . 

 

 

Figure 4.16  The initial setup of an single crystal of iron in liquid lead with the Pb:O 

atomic ratio at 1:1 

 



 109

 

 

 

 

 

 

Figure 4.17  The end of the 10-ps simulation run of the single crystal of iron in liquid 

lead with the Pb:O atomic ratio at 1:1 
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Figure 4.18  Mean square displacements of iron for the case of single iron crystal in 

liquid lead with the Pb:O atomic ratio at 1:1 
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Figure 4.19  Mean square displacements of lead for the case of single iron crystal in 

liquid lead with the Pb:O atomic ratio at 1:1 
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Figure 4.20  Mean square displacements of oxygen for the case of single iron crystal in 

liquid lead with the Pb:O atomic ratio at 1:1 
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Figure 4.21  Fe-Pb radial distribution function for the case of single iron crystal in liquid 

lead with the Pb:O atomic ratio at 1:1 

 

4.5.4 Iron Crystals in Liquid Lead without Oxygen 

A semi-infinite stab of iron with grain boundaries is put in liquid lead at 550 o C.  

The iron crystal is 
o

Α67.42  thick in the z direction and infinite in the x-y plane.  The 

simulation run lasts 10 picoseconds in 20,000 time steps.  Figures 4.22 and 4.23 show the 

system at the start and at the end of the simulation run, respectively.  At the end of the 

run, the iron slab is clearly deformed.  The slab becomes denser, and, as a result, the 

overall dimension shrinks.  The thickness reduces to 
o

Α54.36 .  No lead atoms reach the 

core of the iron slab. 
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Lead atoms obviously creep into the slab via the grain boundaries as seen by the 

blunt penetrations on the surfaces.  This is expected because grain boundaries are the 

sources of defects, which provide easy diffusion paths.  However, the grain boundaries 

are somewhat hard to be noticed at the end of the simulation due to the relaxation of 

crystals.  When heated, the atoms in crystals arrange themselves in order to reduce 

internal energy as much as possible by eliminating grain boundaries.  Small crystals are 

very quick to relax when heated, and it is not surprising that the same happens in this 

case.  The mean square displacement plots indicate that the system is not approaching an 

equilibrium after 10 ps (see Figs. 4.24 and 4.25).  The closest distance between iron and 

lead atoms remains 
o

Α8.2  as seen from the RDF plot (Fig. 4.26). 

 

 

Figure 4.22  The initial setup of iron crystals in liquid lead without oxygen 
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Figure 4.23  Iron crystals in liquid lead without oxygen at the end of the 10-ps simulation 

run 
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Figure 4.24  Mean square displacements of iron for the case of iron crystals in liquid lead 

without oxygen 
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Figure 4.25  Mean square displacements of lead for the case of iron crystals in liquid lead 

without oxygen 
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Figure 4.26  Fe-Pb radial distribution function for the case of iron crystals in liquid lead 

without oxygen 

 

4.5.5 Iron Crystals in Liquid Lead with Oxygen at 3103.1 −×  wt. % 

 A semi-infinite stab of iron with grain boundaries is put in liquid lead at 550 o C.  

Oxygen is randomly distributed in liquid lead at the ratio of one oxygen atom to sixty 

lead atoms, corresponding to 3103.1 −×  wt. %.  The iron crystal is 
o

Α67.42  thick in the z 

direction and infinite in the x-y plane.  The simulation run lasts 10 picoseconds in 50,000 

time steps. 

Figures 4.27 and 4.28 show the system at the start and end of the simulation run, 

respectively.  At the end of the 10-ps run, the iron slab is not as badly deformed as in the 

previous case of the no-oxygen system.  The grain boundaries are easier to be noticed 
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compared to the previous case.  The mobility of iron atoms becomes limited compared to 

the previous case as shown in the MSD plot of iron (Fig 4.29).  Lead atoms still try to 

penetrate at the grain boundaries, obviously at a slower rate as seen from the MSD plot of 

lead (Fig. 4.30).  The MSD plot of oxygen is shown in Fig. 4.31.  Oxygen in the system 

acts as a corrosion inhibitor, and it slows down the activity of lead.  So the lead atoms do 

not creep into slab as deep as in the previous case.  The mean square plots also support 

this limited mobility of lead atoms in the x, y, and z directions, compared to the previous 

case.  The RDF plot in Fig. 4.32 shows that the closest distance between iron and lead 

atoms is 
o

Α27.4 , 
o

Α1  closer than all previous cases. 

 

 

Figure 4.27  The initial setup of iron crystals in liquid lead with dissolved oxygen at 

3103.1 −×  wt. % 
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Figure 4.28  Iron crystals in liquid lead with dissolved oxygen at 3103.1 −×  wt. % at the 

end of 10-ps simulation run 

 

 

 

 

 

 

 



 121

 

 

 

 

 

 

Figure 4.29  Mean square displacements of iron for the case of iron crystals in liquid lead 

with dissolved oxygen at 3103.1 −×  wt. % 
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Figure 4.30  Mean square displacements of lead for the case of iron crystals in liquid lead 

with dissolved oxygen at 3103.1 −×  wt. % 
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Figure 4.31  Mean square displacements of oxygen for the case of iron crystals in liquid 

lead with dissolved oxygen at 3103.1 −×  wt. % 
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Figure 4.32  Fe-Pb radial distribution function for the case of iron crystals in liquid lead 

with dissolved oxygen at 3103.1 −×  wt. % 

 

4.5.6 Iron Crystals in Liquid Lead with Oxygen at Pb:O = 1:1 

 A semi-infinite stab of iron with grain boundaries is put in liquid lead at 550 o C.  

Oxygen is randomly distributed in liquid lead at the ratio of one oxygen atom to one lead 

atom.  The iron crystal is 
o

Α67.42  thick in the z direction and infinite in the x-y plane.  

The simulation run lasts 10 picoseconds in 50,000 time steps. 

 Figures 4.33 and 4.34 show the system at the start and end of the simulation run, 

respectively.  At the end of the 10-ps run, the grain boundaries remain noticeable.  The 

iron slab is oxidized on both sides of the slab with the oxide film thickness of about 

o

Α1.4 .  Virtually, no lead atoms reach the slab core.  Most of lead atoms stay on the slab 
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surfaces, and only a few lead atoms manage to get below the surfaces.  The mean square 

displacement plots (Figs. 4.35 to 4.37) suggest that the system does not approach its 

equilibrium after 10 ps.  According to the radial distribution function for iron and lead 

atoms (Fig. 4.38), the closest distance between a pair of iron and lead is 
o

Α8.2  

 

 

Figure 4.33  The initial setup of iron crystals in liquid lead with the Pb:O atomic ratio at 

1:1. 
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Figure 4.34  The end of the 10-ps simulation run of the iron crystals in liquid lead with 

the Pb:O atomic ratio at 1:1 
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Figure 4.35  Mean square displacements of iron for the case of iron crystals in liquid lead 

with the Pb:O atomic ratio at 1:1 
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Figure 4.36  Mean square displacements of lead for the case of iron crystals in liquid lead 

with the Pb:O atomic ratio at 1:1 
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Figure 4.37  Mean square displacements of oxygen for the case of iron crystals in liquid 

lead with the Pb:O atomic ratio at 1:1 
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Figure 4.38  Fe-Pb radial distribution function for the case of iron crystals in liquid lead 

with the Pb:O atomic ratio at 1:1 

 

4.6 Discussion of Simulation Results 

The simulation runs as shown in Table 4.6 have been completed.  All six cases 

represent the limiting scenarios in the systems consisting of iron, liquid lead, and oxygen.  

Below are the detailed discussions regarding the following four attributions from the six 

cases: (1) deformation, (2) wettability, (3) penetration depth of lead, and (4) dissolution. 

 In all cases, the slabs exhibit deformation from their original shapes to some 

extent.  The slab thickness is calculated by first finding the averaged z-coordinate avgz  

and then seeking a positive value zΔ  such that the 95% of the total iron atoms locate 

between zzavg Δ± .  This represents the conventional 95% confidence interval, and the 
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slab thickness is approximated by zΔ2 .  Table 4.7 shows the value of zzavg Δ±  at the 

end of the simulation in all six cases.  The reduction in the slab thickness ranges from 

about 6% to 15% as shown in Table 4.8.  Overall, the cases with grain boundaries have 

larger reductions in thickness, compared to the single crystal cases.  This is because grain 

boundaries provide extra space for iron atoms to relocate to when lead atoms are 

compressing the iron slab surfaces. 

Wettability enhances penetration of lead into bulk iron.  Better wettability usually 

provides good surface adsorption.  In the atomic level, wettability of lead on the surfaces 

of iron can be roughly gleaned from how dense lead atoms on the contacting surfaces are.  

The distribution histograms offer this information.  Figures 4.39 to 4.44 show the 

histograms with the number of atoms displayed for each location bin.  Each bin contains 

the atoms that have the z coordinates between the intervals on the axis.  The highlighted 

sections represent the majority of the iron atoms (more than 95% of the total iron atoms) 

making up the slabs.  Across the six cases, the cases with grain boundaries clearly stand 

out as having “wetter” surfaces.  There are more lead atoms on the surfaces of the multi-

crystalline slabs than those of the single-crystal slabs (see Table 4.9).  In the single iron 

crystal cases, oxygen adversely affects the well-ordered, uniform surfaces of those single 

crystals.  The surfaces of the single crystals become rough when reacted with oxygen, 

and that favor the wettability of lead atoms. 
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Table 4.7  The iron slab positions along the z-direction at the end of the simulations 

 
Z-coordinate range of slab iron zzavg Δ±  (

o

Α ) 

No Grain Boundary With Grain Boundary 

No Oxygen 82.180.78 ±  (-18.04 to 19.60) 27.180.07 ±  (-18.20 to 18.34)

O2 at solubility limit 82.180.28 ±  (-18.54 to 19.10) 16.180.17- ±  (-18.33 to 17.98)

Pb:O at 1:1 (atomic) 26.200.05- ±  (-20.31 to 20.20) 71.190.14- ±  (-19.85 to 19.57)

 

 

 

Table 4.8  Thicknesses of the iron slabs at the end of the simulation runs 

 

Slab Thickness (
o

Α ) 

No Grain Boundary With Grain Boundary 

Start End % chg Start End % chg 

No Oxygen 43.02 37.64 13% 42.67 36.54 14% 

Oxygen at solubility limit 43.02 37.64 13% 42.67 36.31 15% 

Pb:O at 1:1 atomic ratio 43.02 40.51 6% 42.67 39.42 8% 
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Figure 4.39  Histogram of atom positions along the z direction in the case of 

single crystal of iron in liquid lead without oxygen 
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Figure 4.40  Histogram of atom positions along the z direction for the case of 

iron crystals in liquid lead without oxygen 
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Figure 4.41  Histogram of atom positions along the z direction for the case of 

single crystal of iron in liquid lead saturated with oxygen 
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Figure 4.42  Histogram of atom positions along the z direction for the case of 

iron crystals in liquid lead saturated with oxygen 
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Figure 4.43  Histogram of atom positions along the z direction for the case of 

iron single crystal in liquid lead with the Pb:O atomic ratio at 1:1 
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Figure 4.44  Histogram of atom positions along the z direction for the case of iron 

crystals in liquid lead with the Pb:O atomic ratio at 1:1 

 

Table 4.9  The number of Pb atoms on the Fe surfaces at the end of each simulation 

 

Number of Lead Atoms on Iron Slab Surface 

No Grain Boundary With Grain Boundary 

No Oxygen 24 48 

Oxygen at Solubility Limit 22 31 

Pb:O at 1:1 atomic ratio 14 5 

 

From the same histograms, in terms of preventing the penetration of lead atoms, 

the cases with grain boundaries usually perform worse than the cases without grain 
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boundaries.  More traces of lead atoms enter deeper under the slab surfaces.  However, 

when there is enough oxygen in the systems, oxygen enters much deeper than lead atoms.  

It is evident that fewer lead atoms reach the inner slab cores when the slabs are oxidized 

as seen from the histograms.  This clearly indicates that oxygen acts as an inhibitor. 

Dissolution of iron atoms into liquid lead can be observed from the cross cut 

planes as shown in the last section.  The histograms, however, provide the better views of 

the distributions of iron atom locations along the z direction.  The histograms show how 

many iron atoms wander too far from their respective slab surfaces.  That is, a 

distribution with long tails should suggest higher dissolution of iron atoms in liquid lead.  

Again the cases with grain boundaries generally perform worse than the cases of single 

crystals. 

Finally, the radial distribution functions allow a comparison between the results 

from this modeling work and the results from the works by Takahashi et al. [20] and 

Maulana et al. [21].  Tables 4.10 and 4.11 list the closest distances between the pairs of 

Fe-Pb and Fe-Fe, respectively.  The closest distance among iron atoms remains 
o

Α5.2  in 

all cases.  The closest distance between iron atoms in bulk iron crystals is 2.4825 
o

Α .  So 

this indicates that the iron slabs still relatively retain their crystal structures.  The closest 

distance between iron and lead atoms is 
o

Α8.2  in almost all cases, except for the cases 

with oxygen at its solubility limit.  When oxygen is present at its solubility limit of 

3103.1 −×  wt. %, the closest distance between iron and lead atoms decreases to 
o

Α7.2 .  At 

the oxygen solubility limit, oxygen is in its determining state of either staying as a solute 
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in lead or forming ionic bonds with lead.  This may cause the deviation in the separation 

distances between lead and iron atoms. 

Takahashi et al. reported the closest distances between the iron surface and the 

lead atom to be 1.79 
o

Α  and 1.48 
o

Α , depending on the original locations of a lead atom 

at the beginning of the simulation [20].  In addition, Takahashi et al. observed that liquid 

lead disturbs the crystal structure of iron near the contact surfaces.  This behavior is also 

observed from the simulation results in this dissertation as iron atoms at the surface 

conglomerate into a denser network.  Maulana et al. reported the closest distance between 

iron and lead atoms to be 2.7 
o

Α  for the system containing only iron and lead atoms [21].  

The closest distances between Fe-Pb atoms from this dissertation are similar to what 

Maulana et al. reported. 

 

Table 4.10  The closest distance between an Fe-Pb pair in each simulation case 

 

Closest Distance between Fe-Pb atoms (
o

Α ) 

No Grain Boundary With Grain Boundary 

No Oxygen 2.8 2.8 

Oxygen at Solubility Limit 2.7 2.7 

Pb:O at 1:1 atomic ratio 2.8 2.8 
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Table 4.11  The closest distance between an Fe-Fe pair in each simulation case 

 

Closest Distance between Fe-Fe atoms (
o

Α ) 

No Grain Boundary With Grain Boundary 

No Oxygen 2.5 2.5 

Oxygen at Solubility Limit 2.5 2.5 

Pb:O at 1:1 atomic ratio 2.5 2.5 

 

4.7 Conclusion 

 The simulation results show that the clusters of iron atoms become denser when 

put in liquid lead.  There are two explanations for this behavior.  First, iron atoms are 

compressed by lead atoms.  Second, it is a self-defense mechanism of iron in order to 

deter the penetration of lead atoms by readjusting their configurations.  As a result of 

readjustments, defects are introduced throughout the slabs, especially on the surfaces.  

When contacting surfaces turn rough, surface adsorption become favorable for lead 

atoms. 

However, when oxygen is introduced into the systems, oxygen slows down the 

interaction rates between iron and lead.  Oxygen can pin down lead atoms due to 

electrostatic forces.  The results are analogous to adding carbon to iron as it prevents the 

glide of dislocations and sliding/slipping of iron atoms in the lattice.  In addition, when 

oxygen forms magnetite oxide layers, iron in the oxide layers become positive ions.  

When lead atoms come near oxygen residing in the oxide layers, those lead atoms likely 

to become positive ions in order to form ionic bonding with oxygen.  When this happens, 
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it is highly likely that positive iron ions and positive lead ions will repel each other due to 

electrostatic forces.  This, in turn, helps against lead penetrations into iron slabs. 

 Finally, the simulation results confirm the following known experiment results: 

1. Single crystal iron seems to be the best choice against liquid lead. 

2. Oxygen acts as inhibitors by immobilizing lead atoms. 

3. If iron crystals have been pre-oxidized before put into stagnant liquid lead, 

oxide layers protect lead atoms from diffusing into the core or bulk iron. 
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CHAPTER 5  

CONCLUSIONS AND RECOMMENDATIONS 

5.1 Conclusions 

 The aim of this work is to model oxidations by using molecular dynamics with a 

specific interest on iron in liquid lead with controlled oxygen.  The first challenge in this 

work is to find a charge distribution that minimizes the total energy at each time step 

during a simulation.  This challenge is overcome by using a mathematical optimization 

method called the Generalized Reduced Gradient (GRG) method.  The GRG method 

guarantees charge neutrality at each time step during the course of a simulation.  All 

simulations start with neutral atoms, and hence the net charge is zero.  During a 

simulation, oxidations transform neutral atoms into ions, and the net charge in the system 

must be zero at all time during that simulation.  The charge neutrality condition obeys the 

conservation of charge because charges cannot be created or destroyed.  In addition, the 

GRG method ensures that each ion carries a charge that stays within its upper and lower 

limits.  For example, an oxygen ion cannot carry a e3−  charge as the lowest charge it can 

carry is e2− , where e  is the electron charge.  The simulation results of the model with 

the GRG method agree with previously published data.  This benchmarking confirms the 

validity of the GRG application in molecular dynamics modeling.  This study has been 

published in Computational Materials Science (volume 46, issue 4, October 2009, pages 

887-892). 

The second challenge comes when modeling iron oxidation to form magnetite.  

Magnetite contains two different oxidation states of iron ions: one type carries the 

maximum charge of e2+  and the other type carries the maximum charge of e3+ .  The 
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problem is how to decide which type each iron ion belongs to.  This is not a trivial 

problem because each iron ion normally carries a fractional charge, say e25.0+ , not fully 

e2+  or e3+ .  The type determination of iron ions has to be based solely on the charge 

each iron ion carries.  The simplest solution is to use the population ratio Fe2+:Fe3+ that is 

always constant at 1:2, according to the chemical formula of magnetite Fe3O4 = 

(FeO)(Fe2O3).  Iron ions with charges exceeding e2+  will be the Fe3+ type, while the rest 

will be randomly assigned to maintain the 1:2 population ratio.  When implemented, the 

model yields satisfactory results when compared to the actual experiment results. 

 The last chapter combines the applications from Chapters 2 and 3, and 

demonstrates the robustness of this modeling work through the final simulation results.  

The systems containing iron in liquid lead with various oxygen concentrations have been 

simulated.  The simulation results have come out as expected.  The simulated systems 

show penetrations of lead atoms, dissolutions of solid iron in liquid lead, and the role of 

oxygen as an inhibitor.  As the systems have behaved as hoped for, it is evident that this 

modeling work confirms the fundamental knowledge regarding corrosion attack of liquid 

lead on iron. 

 

5.2 Recommendations for Future Work 

 The suggestion for future work can be divided into three parts.  The first part 

concerns Moldy, the backbone computer code used in this dissertation for molecular 

dynamics simulations.  The second part concerns the computer code for the GRG 

method.  The final recommendations are about the basic assumptions and future systems 

to be modeled.  Regarding Moldy, the following improvements should be done: 
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(1) Implement dynamic features into Moldy so that it can handle both static and 

dynamic simulations.  This way, systems with flowing liquid lead can be 

simulated. 

(2) Revise bookkeeping of Moldy such that it will 

a. Label ions separately from neutral atoms even though they are of the same 

element. 

b. Keep track of new morphing molecules, oxygen molecules to oxygen 

atoms. 

c. Be more flexible when new particles are introduced during ongoing 

simulations. 

(3) Optimize the coding of Moldy so that it runs faster. 

 The current GRG code has been written from scratch.  So there is a lot of room 

for improvements.  The code has not been optimized for computational speed.  Since the 

GRG function is repeatedly called during a simulation, an optimized GRG code will 

make a run time much shorter.  If a more efficient algorithm exists, the GRG code should 

be replaced with that new algorithm. 

 Finally, there are opportunities to improve on assumptions and future systems to 

be simulated.  The first assumption to be improved is on the iron oxidation in a form of 

magnetite.  This dissertation assumes the simplest type classification of iron ions.  A 

better assumption should give a more accurate results based on the magnetite structure.  

Furthermore, this dissertation only assumes that protective oxide layers consist of only 

magnetite.  Not only magnetite exists, but other types of oxides exist as well.  This is also 

true for oxidations of lead.  It has been assumed that only one type of PbO forms.  
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However, if there is a change in simulation temperature, the other type of PbO can form 

as well.  Therefore, future modifications to this modeling work should be more flexible 

regarding these oxide formations. 

 At its current stage, this modeling work is flexible enough for studies on various 

static (no flow) systems regarding oxidations.  Only liquid lead is studied in this 

dissertation.  Future studies can include bismuth, forming LBE, in simulations, or a 

different family of coolant materials entirely (such as sodium).  Contaminations in 

systems or special grain boundary strengthening elements can also be studied.  Structural 

alloys composed of iron, nickel, and chromium can also be modeled in place of pure iron.  

Predictive studies are also possible if the time spans are lengthened, say 100 ps or 1,000 

ps.  In the future if experimental data are available, benchmarking the simulation and 

experimental results can offer validations and further improvements of initial modeling 

assumptions. 
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APPENDIX 
 

NOMENCLATURE 
 

Symbol Name Unit 
A  a fitting parameter for pair potential eV 

kA  a constant in a wave equation 
o

Α
0A  a constant in the oxide growth equation nm/Pa0.6–s 

a  lattice parameter 
o

Α
0a  the constant in the Rose equation −

av  acceleration vector m/s 
B  a fitting parameter for pair potential eV 
B~  bulk modulus GPa 
b
v

 the jerk, the 3rd derivative of the position with respect to time m/s3 
IJC  elastic constant GPa 
OC  concentration of oxygen wt. % 

c  lattice parameter 
o

Α
D  diffusivity cm2/s 
E  energy eV or J 

0E  activation energy eV or J 
cE  cohesive energy eV or J 
esE  electrostatic energy eV or J 
kE  kinetic energy eV or J 

F  embedding energy function eV or J 
0F  fitting parameter for embedding energy function eV or J 

F
v

 force vector N 
f  electron density of an atom −
ef  equilibrium electron density of an atom −
Nf  normalized distribution function −
0G  Gibbs free energy eV or J 
RG  reduced gradient −

g  inequality constraint −
h  equality constraint −
IA  electron affinity energy eV 
IE  the first ionization energy eV 
J  self-Coulomb repulsion or chemical hardness eV 

ijJ  a matrix element in a row i and a column j −
k  wave number −

Bk  Boltzmann constant eV/K 
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Symbol Name Unit 

Ck  Coulomb constant eV- 2/ e
o

Α  
m  mass of a particle kg 
N  the number of particles in a system −

FN  the number of degrees of freedom −
n  the number of the nearest neighbors −
( )KO  big O notation −
P  pressure N/m2 
Q  fictitious mass parameter 1/s2 
q  charge e

Lq  minimum charge limit e  
Uq  maximum charge limit e  

R  gas constant J/mol-K 

r  distance between two atoms 
o

Α

rv  position vector 
o

Α

er  the first nearest neighbor distance of a crystal at equilibrium 
o

Α

ir  distance from the ith neighbor to the site of interest 
o

Α

ijr  distance between ions i  and j  
o

Α
S  search direction −
T  temperature K 

0T  heat bath temperature K 
t  time s 
tΔ  time step s 

vv  velocity vector m/s 
( )pvv  predicted velocity m/s 
( )cvv  corrected velocity m/s 

w  energy penalty eV 
Y  a set of basic variables −
y  basic variable −
Z  a set of non-basic variables −
z  non-basic variable −

U  potential energy eV or J 

V  volume 
o

Α 3 
Z  effective core charge e
α  a fitting parameter for pair potential −

Mα  Madelung constant −
β  a fitting parameter for pair potential −

0γ  increase in activation free energy with thickness of oxide film −
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Symbol Name Unit 
δ  Delta function −
ζ  friction coefficient s-1 
λ  Lagrange multiplier −
μ  chemical potential eV 
ξ  coordinate of an atom in a crystal 

o

Α
π  Lagrange multiplier −
ρ  electron density function −

eρ  electron density at equilibrium −
Pbρ  density of lead g/cm3 
qρ  charge distribution function −
ϕ  pair potential eV 
χ  electronegativity eV 

0Ω  atomic volume at equilibrium 
o

Α 3 
ω  phonon frequency s-1 
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